1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
16 
17 #include "llvm/ADT/PostOrderIterator.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetOperations.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/Dominators.h"
22 
23 namespace llvm {
24 
25 //===----------------------------------------------------------------------===//
26 // APIs for simple analysis of the loop. See header notes.
27 
28 /// getExitingBlocks - Return all blocks inside the loop that have successors
29 /// outside of the loop.  These are the blocks _inside of the current loop_
30 /// which branch out.  The returned list is always unique.
31 ///
32 template <class BlockT, class LoopT>
getExitingBlocks(SmallVectorImpl<BlockT * > & ExitingBlocks)33 void LoopBase<BlockT, LoopT>::getExitingBlocks(
34     SmallVectorImpl<BlockT *> &ExitingBlocks) const {
35   assert(!isInvalid() && "Loop not in a valid state!");
36   for (const auto BB : blocks())
37     for (auto *Succ : children<BlockT *>(BB))
38       if (!contains(Succ)) {
39         // Not in current loop? It must be an exit block.
40         ExitingBlocks.push_back(BB);
41         break;
42       }
43 }
44 
45 /// getExitingBlock - If getExitingBlocks would return exactly one block,
46 /// return that block. Otherwise return null.
47 template <class BlockT, class LoopT>
getExitingBlock()48 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
49   assert(!isInvalid() && "Loop not in a valid state!");
50   auto notInLoop = [&](BlockT *BB) { return !contains(BB); };
51   auto isExitBlock = [&](BlockT *BB, bool AllowRepeats) -> BlockT * {
52     assert(!AllowRepeats && "Unexpected parameter value.");
53     // Child not in current loop?  It must be an exit block.
54     return any_of(children<BlockT *>(BB), notInLoop) ? BB : nullptr;
55   };
56 
57   return find_singleton<BlockT>(blocks(), isExitBlock);
58 }
59 
60 /// getExitBlocks - Return all of the successor blocks of this loop.  These
61 /// are the blocks _outside of the current loop_ which are branched to.
62 ///
63 template <class BlockT, class LoopT>
getExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)64 void LoopBase<BlockT, LoopT>::getExitBlocks(
65     SmallVectorImpl<BlockT *> &ExitBlocks) const {
66   assert(!isInvalid() && "Loop not in a valid state!");
67   for (const auto BB : blocks())
68     for (auto *Succ : children<BlockT *>(BB))
69       if (!contains(Succ))
70         // Not in current loop? It must be an exit block.
71         ExitBlocks.push_back(Succ);
72 }
73 
74 /// getExitBlock - If getExitBlocks would return exactly one block,
75 /// return that block. Otherwise return null.
76 template <class BlockT, class LoopT>
getExitBlockHelper(const LoopBase<BlockT,LoopT> * L,bool Unique)77 std::pair<BlockT *, bool> getExitBlockHelper(const LoopBase<BlockT, LoopT> *L,
78                                              bool Unique) {
79   assert(!L->isInvalid() && "Loop not in a valid state!");
80   auto notInLoop = [&](BlockT *BB,
81                        bool AllowRepeats) -> std::pair<BlockT *, bool> {
82     assert(AllowRepeats == Unique && "Unexpected parameter value.");
83     return {!L->contains(BB) ? BB : nullptr, false};
84   };
85   auto singleExitBlock = [&](BlockT *BB,
86                              bool AllowRepeats) -> std::pair<BlockT *, bool> {
87     assert(AllowRepeats == Unique && "Unexpected parameter value.");
88     return find_singleton_nested<BlockT>(children<BlockT *>(BB), notInLoop,
89                                          AllowRepeats);
90   };
91   return find_singleton_nested<BlockT>(L->blocks(), singleExitBlock, Unique);
92 }
93 
94 template <class BlockT, class LoopT>
hasNoExitBlocks()95 bool LoopBase<BlockT, LoopT>::hasNoExitBlocks() const {
96   auto RC = getExitBlockHelper(this, false);
97   if (RC.second)
98     // found multiple exit blocks
99     return false;
100   // return true if there is no exit block
101   return !RC.first;
102 }
103 
104 /// getExitBlock - If getExitBlocks would return exactly one block,
105 /// return that block. Otherwise return null.
106 template <class BlockT, class LoopT>
getExitBlock()107 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
108   return getExitBlockHelper(this, false).first;
109 }
110 
111 template <class BlockT, class LoopT>
hasDedicatedExits()112 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
113   // Each predecessor of each exit block of a normal loop is contained
114   // within the loop.
115   SmallVector<BlockT *, 4> UniqueExitBlocks;
116   getUniqueExitBlocks(UniqueExitBlocks);
117   for (BlockT *EB : UniqueExitBlocks)
118     for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
119       if (!contains(Predecessor))
120         return false;
121   // All the requirements are met.
122   return true;
123 }
124 
125 // Helper function to get unique loop exits. Pred is a predicate pointing to
126 // BasicBlocks in a loop which should be considered to find loop exits.
127 template <class BlockT, class LoopT, typename PredicateT>
getUniqueExitBlocksHelper(const LoopT * L,SmallVectorImpl<BlockT * > & ExitBlocks,PredicateT Pred)128 void getUniqueExitBlocksHelper(const LoopT *L,
129                                SmallVectorImpl<BlockT *> &ExitBlocks,
130                                PredicateT Pred) {
131   assert(!L->isInvalid() && "Loop not in a valid state!");
132   SmallPtrSet<BlockT *, 32> Visited;
133   auto Filtered = make_filter_range(L->blocks(), Pred);
134   for (BlockT *BB : Filtered)
135     for (BlockT *Successor : children<BlockT *>(BB))
136       if (!L->contains(Successor))
137         if (Visited.insert(Successor).second)
138           ExitBlocks.push_back(Successor);
139 }
140 
141 template <class BlockT, class LoopT>
getUniqueExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)142 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
143     SmallVectorImpl<BlockT *> &ExitBlocks) const {
144   getUniqueExitBlocksHelper(this, ExitBlocks,
145                             [](const BlockT *BB) { return true; });
146 }
147 
148 template <class BlockT, class LoopT>
getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT * > & ExitBlocks)149 void LoopBase<BlockT, LoopT>::getUniqueNonLatchExitBlocks(
150     SmallVectorImpl<BlockT *> &ExitBlocks) const {
151   const BlockT *Latch = getLoopLatch();
152   assert(Latch && "Latch block must exists");
153   getUniqueExitBlocksHelper(this, ExitBlocks,
154                             [Latch](const BlockT *BB) { return BB != Latch; });
155 }
156 
157 template <class BlockT, class LoopT>
getUniqueExitBlock()158 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
159   return getExitBlockHelper(this, true).first;
160 }
161 
162 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
163 template <class BlockT, class LoopT>
getExitEdges(SmallVectorImpl<Edge> & ExitEdges)164 void LoopBase<BlockT, LoopT>::getExitEdges(
165     SmallVectorImpl<Edge> &ExitEdges) const {
166   assert(!isInvalid() && "Loop not in a valid state!");
167   for (const auto BB : blocks())
168     for (auto *Succ : children<BlockT *>(BB))
169       if (!contains(Succ))
170         // Not in current loop? It must be an exit block.
171         ExitEdges.emplace_back(BB, Succ);
172 }
173 
174 /// getLoopPreheader - If there is a preheader for this loop, return it.  A
175 /// loop has a preheader if there is only one edge to the header of the loop
176 /// from outside of the loop and it is legal to hoist instructions into the
177 /// predecessor. If this is the case, the block branching to the header of the
178 /// loop is the preheader node.
179 ///
180 /// This method returns null if there is no preheader for the loop.
181 ///
182 template <class BlockT, class LoopT>
getLoopPreheader()183 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
184   assert(!isInvalid() && "Loop not in a valid state!");
185   // Keep track of nodes outside the loop branching to the header...
186   BlockT *Out = getLoopPredecessor();
187   if (!Out)
188     return nullptr;
189 
190   // Make sure we are allowed to hoist instructions into the predecessor.
191   if (!Out->isLegalToHoistInto())
192     return nullptr;
193 
194   // Make sure there is only one exit out of the preheader.
195   typedef GraphTraits<BlockT *> BlockTraits;
196   typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
197   ++SI;
198   if (SI != BlockTraits::child_end(Out))
199     return nullptr; // Multiple exits from the block, must not be a preheader.
200 
201   // The predecessor has exactly one successor, so it is a preheader.
202   return Out;
203 }
204 
205 /// getLoopPredecessor - If the given loop's header has exactly one unique
206 /// predecessor outside the loop, return it. Otherwise return null.
207 /// This is less strict that the loop "preheader" concept, which requires
208 /// the predecessor to have exactly one successor.
209 ///
210 template <class BlockT, class LoopT>
getLoopPredecessor()211 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
212   assert(!isInvalid() && "Loop not in a valid state!");
213   // Keep track of nodes outside the loop branching to the header...
214   BlockT *Out = nullptr;
215 
216   // Loop over the predecessors of the header node...
217   BlockT *Header = getHeader();
218   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
219     if (!contains(Pred)) { // If the block is not in the loop...
220       if (Out && Out != Pred)
221         return nullptr; // Multiple predecessors outside the loop
222       Out = Pred;
223     }
224   }
225 
226   return Out;
227 }
228 
229 /// getLoopLatch - If there is a single latch block for this loop, return it.
230 /// A latch block is a block that contains a branch back to the header.
231 template <class BlockT, class LoopT>
getLoopLatch()232 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
233   assert(!isInvalid() && "Loop not in a valid state!");
234   BlockT *Header = getHeader();
235   BlockT *Latch = nullptr;
236   for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
237     if (contains(Pred)) {
238       if (Latch)
239         return nullptr;
240       Latch = Pred;
241     }
242   }
243 
244   return Latch;
245 }
246 
247 //===----------------------------------------------------------------------===//
248 // APIs for updating loop information after changing the CFG
249 //
250 
251 /// addBasicBlockToLoop - This method is used by other analyses to update loop
252 /// information.  NewBB is set to be a new member of the current loop.
253 /// Because of this, it is added as a member of all parent loops, and is added
254 /// to the specified LoopInfo object as being in the current basic block.  It
255 /// is not valid to replace the loop header with this method.
256 ///
257 template <class BlockT, class LoopT>
addBasicBlockToLoop(BlockT * NewBB,LoopInfoBase<BlockT,LoopT> & LIB)258 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
259     BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
260   assert(!isInvalid() && "Loop not in a valid state!");
261 #ifndef NDEBUG
262   if (!Blocks.empty()) {
263     auto SameHeader = LIB[getHeader()];
264     assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
265            "Incorrect LI specified for this loop!");
266   }
267 #endif
268   assert(NewBB && "Cannot add a null basic block to the loop!");
269   assert(!LIB[NewBB] && "BasicBlock already in the loop!");
270 
271   LoopT *L = static_cast<LoopT *>(this);
272 
273   // Add the loop mapping to the LoopInfo object...
274   LIB.BBMap[NewBB] = L;
275 
276   // Add the basic block to this loop and all parent loops...
277   while (L) {
278     L->addBlockEntry(NewBB);
279     L = L->getParentLoop();
280   }
281 }
282 
283 /// replaceChildLoopWith - This is used when splitting loops up.  It replaces
284 /// the OldChild entry in our children list with NewChild, and updates the
285 /// parent pointer of OldChild to be null and the NewChild to be this loop.
286 /// This updates the loop depth of the new child.
287 template <class BlockT, class LoopT>
replaceChildLoopWith(LoopT * OldChild,LoopT * NewChild)288 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
289                                                    LoopT *NewChild) {
290   assert(!isInvalid() && "Loop not in a valid state!");
291   assert(OldChild->ParentLoop == this && "This loop is already broken!");
292   assert(!NewChild->ParentLoop && "NewChild already has a parent!");
293   typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
294   assert(I != SubLoops.end() && "OldChild not in loop!");
295   *I = NewChild;
296   OldChild->ParentLoop = nullptr;
297   NewChild->ParentLoop = static_cast<LoopT *>(this);
298 }
299 
300 /// verifyLoop - Verify loop structure
301 template <class BlockT, class LoopT>
verifyLoop()302 void LoopBase<BlockT, LoopT>::verifyLoop() const {
303   assert(!isInvalid() && "Loop not in a valid state!");
304 #ifndef NDEBUG
305   assert(!Blocks.empty() && "Loop header is missing");
306 
307   // Setup for using a depth-first iterator to visit every block in the loop.
308   SmallVector<BlockT *, 8> ExitBBs;
309   getExitBlocks(ExitBBs);
310   df_iterator_default_set<BlockT *> VisitSet;
311   VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
312 
313   // Keep track of the BBs visited.
314   SmallPtrSet<BlockT *, 8> VisitedBBs;
315 
316   // Check the individual blocks.
317   for (BlockT *BB : depth_first_ext(getHeader(), VisitSet)) {
318     assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
319                        GraphTraits<BlockT *>::child_end(BB),
320                        [&](BlockT *B) { return contains(B); }) &&
321            "Loop block has no in-loop successors!");
322 
323     assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
324                        GraphTraits<Inverse<BlockT *>>::child_end(BB),
325                        [&](BlockT *B) { return contains(B); }) &&
326            "Loop block has no in-loop predecessors!");
327 
328     SmallVector<BlockT *, 2> OutsideLoopPreds;
329     for (BlockT *B :
330          llvm::make_range(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
331                           GraphTraits<Inverse<BlockT *>>::child_end(BB)))
332       if (!contains(B))
333         OutsideLoopPreds.push_back(B);
334 
335     if (BB == getHeader()) {
336       assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
337     } else if (!OutsideLoopPreds.empty()) {
338       // A non-header loop shouldn't be reachable from outside the loop,
339       // though it is permitted if the predecessor is not itself actually
340       // reachable.
341       BlockT *EntryBB = &BB->getParent()->front();
342       for (BlockT *CB : depth_first(EntryBB))
343         for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
344           assert(CB != OutsideLoopPreds[i] &&
345                  "Loop has multiple entry points!");
346     }
347     assert(BB != &getHeader()->getParent()->front() &&
348            "Loop contains function entry block!");
349 
350     VisitedBBs.insert(BB);
351   }
352 
353   if (VisitedBBs.size() != getNumBlocks()) {
354     dbgs() << "The following blocks are unreachable in the loop: ";
355     for (auto *BB : Blocks) {
356       if (!VisitedBBs.count(BB)) {
357         dbgs() << *BB << "\n";
358       }
359     }
360     assert(false && "Unreachable block in loop");
361   }
362 
363   // Check the subloops.
364   for (iterator I = begin(), E = end(); I != E; ++I)
365     // Each block in each subloop should be contained within this loop.
366     for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
367          BI != BE; ++BI) {
368       assert(contains(*BI) &&
369              "Loop does not contain all the blocks of a subloop!");
370     }
371 
372   // Check the parent loop pointer.
373   if (ParentLoop) {
374     assert(is_contained(*ParentLoop, this) &&
375            "Loop is not a subloop of its parent!");
376   }
377 #endif
378 }
379 
380 /// verifyLoop - Verify loop structure of this loop and all nested loops.
381 template <class BlockT, class LoopT>
verifyLoopNest(DenseSet<const LoopT * > * Loops)382 void LoopBase<BlockT, LoopT>::verifyLoopNest(
383     DenseSet<const LoopT *> *Loops) const {
384   assert(!isInvalid() && "Loop not in a valid state!");
385   Loops->insert(static_cast<const LoopT *>(this));
386   // Verify this loop.
387   verifyLoop();
388   // Verify the subloops.
389   for (iterator I = begin(), E = end(); I != E; ++I)
390     (*I)->verifyLoopNest(Loops);
391 }
392 
393 template <class BlockT, class LoopT>
print(raw_ostream & OS,bool Verbose,bool PrintNested,unsigned Depth)394 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, bool Verbose,
395                                     bool PrintNested, unsigned Depth) const {
396   OS.indent(Depth * 2);
397   if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
398     OS << "Parallel ";
399   OS << "Loop at depth " << getLoopDepth() << " containing: ";
400 
401   BlockT *H = getHeader();
402   for (unsigned i = 0; i < getBlocks().size(); ++i) {
403     BlockT *BB = getBlocks()[i];
404     if (!Verbose) {
405       if (i)
406         OS << ",";
407       BB->printAsOperand(OS, false);
408     } else
409       OS << "\n";
410 
411     if (BB == H)
412       OS << "<header>";
413     if (isLoopLatch(BB))
414       OS << "<latch>";
415     if (isLoopExiting(BB))
416       OS << "<exiting>";
417     if (Verbose)
418       BB->print(OS);
419   }
420 
421   if (PrintNested) {
422     OS << "\n";
423 
424     for (iterator I = begin(), E = end(); I != E; ++I)
425       (*I)->print(OS, /*Verbose*/ false, PrintNested, Depth + 2);
426   }
427 }
428 
429 //===----------------------------------------------------------------------===//
430 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
431 /// result does / not depend on use list (block predecessor) order.
432 ///
433 
434 /// Discover a subloop with the specified backedges such that: All blocks within
435 /// this loop are mapped to this loop or a subloop. And all subloops within this
436 /// loop have their parent loop set to this loop or a subloop.
437 template <class BlockT, class LoopT>
discoverAndMapSubloop(LoopT * L,ArrayRef<BlockT * > Backedges,LoopInfoBase<BlockT,LoopT> * LI,const DomTreeBase<BlockT> & DomTree)438 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
439                                   LoopInfoBase<BlockT, LoopT> *LI,
440                                   const DomTreeBase<BlockT> &DomTree) {
441   typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
442 
443   unsigned NumBlocks = 0;
444   unsigned NumSubloops = 0;
445 
446   // Perform a backward CFG traversal using a worklist.
447   std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
448   while (!ReverseCFGWorklist.empty()) {
449     BlockT *PredBB = ReverseCFGWorklist.back();
450     ReverseCFGWorklist.pop_back();
451 
452     LoopT *Subloop = LI->getLoopFor(PredBB);
453     if (!Subloop) {
454       if (!DomTree.isReachableFromEntry(PredBB))
455         continue;
456 
457       // This is an undiscovered block. Map it to the current loop.
458       LI->changeLoopFor(PredBB, L);
459       ++NumBlocks;
460       if (PredBB == L->getHeader())
461         continue;
462       // Push all block predecessors on the worklist.
463       ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
464                                 InvBlockTraits::child_begin(PredBB),
465                                 InvBlockTraits::child_end(PredBB));
466     } else {
467       // This is a discovered block. Find its outermost discovered loop.
468       Subloop = Subloop->getOutermostLoop();
469 
470       // If it is already discovered to be a subloop of this loop, continue.
471       if (Subloop == L)
472         continue;
473 
474       // Discover a subloop of this loop.
475       Subloop->setParentLoop(L);
476       ++NumSubloops;
477       NumBlocks += Subloop->getBlocksVector().capacity();
478       PredBB = Subloop->getHeader();
479       // Continue traversal along predecessors that are not loop-back edges from
480       // within this subloop tree itself. Note that a predecessor may directly
481       // reach another subloop that is not yet discovered to be a subloop of
482       // this loop, which we must traverse.
483       for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
484         if (LI->getLoopFor(Pred) != Subloop)
485           ReverseCFGWorklist.push_back(Pred);
486       }
487     }
488   }
489   L->getSubLoopsVector().reserve(NumSubloops);
490   L->reserveBlocks(NumBlocks);
491 }
492 
493 /// Populate all loop data in a stable order during a single forward DFS.
494 template <class BlockT, class LoopT> class PopulateLoopsDFS {
495   typedef GraphTraits<BlockT *> BlockTraits;
496   typedef typename BlockTraits::ChildIteratorType SuccIterTy;
497 
498   LoopInfoBase<BlockT, LoopT> *LI;
499 
500 public:
PopulateLoopsDFS(LoopInfoBase<BlockT,LoopT> * li)501   PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
502 
503   void traverse(BlockT *EntryBlock);
504 
505 protected:
506   void insertIntoLoop(BlockT *Block);
507 };
508 
509 /// Top-level driver for the forward DFS within the loop.
510 template <class BlockT, class LoopT>
traverse(BlockT * EntryBlock)511 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
512   for (BlockT *BB : post_order(EntryBlock))
513     insertIntoLoop(BB);
514 }
515 
516 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
517 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
518 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
519 template <class BlockT, class LoopT>
insertIntoLoop(BlockT * Block)520 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
521   LoopT *Subloop = LI->getLoopFor(Block);
522   if (Subloop && Block == Subloop->getHeader()) {
523     // We reach this point once per subloop after processing all the blocks in
524     // the subloop.
525     if (!Subloop->isOutermost())
526       Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
527     else
528       LI->addTopLevelLoop(Subloop);
529 
530     // For convenience, Blocks and Subloops are inserted in postorder. Reverse
531     // the lists, except for the loop header, which is always at the beginning.
532     Subloop->reverseBlock(1);
533     std::reverse(Subloop->getSubLoopsVector().begin(),
534                  Subloop->getSubLoopsVector().end());
535 
536     Subloop = Subloop->getParentLoop();
537   }
538   for (; Subloop; Subloop = Subloop->getParentLoop())
539     Subloop->addBlockEntry(Block);
540 }
541 
542 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
543 /// interleaved with backward CFG traversals within each subloop
544 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
545 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
546 /// Block vectors are then populated during a single forward CFG traversal
547 /// (PopulateLoopDFS).
548 ///
549 /// During the two CFG traversals each block is seen three times:
550 /// 1) Discovered and mapped by a reverse CFG traversal.
551 /// 2) Visited during a forward DFS CFG traversal.
552 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
553 ///
554 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
555 /// insertions per block.
556 template <class BlockT, class LoopT>
analyze(const DomTreeBase<BlockT> & DomTree)557 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
558   // Postorder traversal of the dominator tree.
559   const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
560   for (auto DomNode : post_order(DomRoot)) {
561 
562     BlockT *Header = DomNode->getBlock();
563     SmallVector<BlockT *, 4> Backedges;
564 
565     // Check each predecessor of the potential loop header.
566     for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
567       // If Header dominates predBB, this is a new loop. Collect the backedges.
568       if (DomTree.dominates(Header, Backedge) &&
569           DomTree.isReachableFromEntry(Backedge)) {
570         Backedges.push_back(Backedge);
571       }
572     }
573     // Perform a backward CFG traversal to discover and map blocks in this loop.
574     if (!Backedges.empty()) {
575       LoopT *L = AllocateLoop(Header);
576       discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
577     }
578   }
579   // Perform a single forward CFG traversal to populate block and subloop
580   // vectors for all loops.
581   PopulateLoopsDFS<BlockT, LoopT> DFS(this);
582   DFS.traverse(DomRoot->getBlock());
583 }
584 
585 template <class BlockT, class LoopT>
586 SmallVector<LoopT *, 4>
getLoopsInPreorder()587 LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() const {
588   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
589   // The outer-most loop actually goes into the result in the same relative
590   // order as we walk it. But LoopInfo stores the top level loops in reverse
591   // program order so for here we reverse it to get forward program order.
592   // FIXME: If we change the order of LoopInfo we will want to remove the
593   // reverse here.
594   for (LoopT *RootL : reverse(*this)) {
595     auto PreOrderLoopsInRootL = RootL->getLoopsInPreorder();
596     PreOrderLoops.append(PreOrderLoopsInRootL.begin(),
597                          PreOrderLoopsInRootL.end());
598   }
599 
600   return PreOrderLoops;
601 }
602 
603 template <class BlockT, class LoopT>
604 SmallVector<LoopT *, 4>
getLoopsInReverseSiblingPreorder()605 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() const {
606   SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
607   // The outer-most loop actually goes into the result in the same relative
608   // order as we walk it. LoopInfo stores the top level loops in reverse
609   // program order so we walk in order here.
610   // FIXME: If we change the order of LoopInfo we will want to add a reverse
611   // here.
612   for (LoopT *RootL : *this) {
613     assert(PreOrderWorklist.empty() &&
614            "Must start with an empty preorder walk worklist.");
615     PreOrderWorklist.push_back(RootL);
616     do {
617       LoopT *L = PreOrderWorklist.pop_back_val();
618       // Sub-loops are stored in forward program order, but will process the
619       // worklist backwards so we can just append them in order.
620       PreOrderWorklist.append(L->begin(), L->end());
621       PreOrderLoops.push_back(L);
622     } while (!PreOrderWorklist.empty());
623   }
624 
625   return PreOrderLoops;
626 }
627 
628 // Debugging
629 template <class BlockT, class LoopT>
print(raw_ostream & OS)630 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
631   for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
632     TopLevelLoops[i]->print(OS);
633 #if 0
634   for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
635          E = BBMap.end(); I != E; ++I)
636     OS << "BB '" << I->first->getName() << "' level = "
637        << I->second->getLoopDepth() << "\n";
638 #endif
639 }
640 
641 template <typename T>
compareVectors(std::vector<T> & BB1,std::vector<T> & BB2)642 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
643   llvm::sort(BB1);
644   llvm::sort(BB2);
645   return BB1 == BB2;
646 }
647 
648 template <class BlockT, class LoopT>
addInnerLoopsToHeadersMap(DenseMap<BlockT *,const LoopT * > & LoopHeaders,const LoopInfoBase<BlockT,LoopT> & LI,const LoopT & L)649 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
650                                const LoopInfoBase<BlockT, LoopT> &LI,
651                                const LoopT &L) {
652   LoopHeaders[L.getHeader()] = &L;
653   for (LoopT *SL : L)
654     addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
655 }
656 
657 #ifndef NDEBUG
658 template <class BlockT, class LoopT>
compareLoops(const LoopT * L,const LoopT * OtherL,DenseMap<BlockT *,const LoopT * > & OtherLoopHeaders)659 static void compareLoops(const LoopT *L, const LoopT *OtherL,
660                          DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
661   BlockT *H = L->getHeader();
662   BlockT *OtherH = OtherL->getHeader();
663   assert(H == OtherH &&
664          "Mismatched headers even though found in the same map entry!");
665 
666   assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
667          "Mismatched loop depth!");
668   const LoopT *ParentL = L, *OtherParentL = OtherL;
669   do {
670     assert(ParentL->getHeader() == OtherParentL->getHeader() &&
671            "Mismatched parent loop headers!");
672     ParentL = ParentL->getParentLoop();
673     OtherParentL = OtherParentL->getParentLoop();
674   } while (ParentL);
675 
676   for (const LoopT *SubL : *L) {
677     BlockT *SubH = SubL->getHeader();
678     const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
679     assert(OtherSubL && "Inner loop is missing in computed loop info!");
680     OtherLoopHeaders.erase(SubH);
681     compareLoops(SubL, OtherSubL, OtherLoopHeaders);
682   }
683 
684   std::vector<BlockT *> BBs = L->getBlocks();
685   std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
686   assert(compareVectors(BBs, OtherBBs) &&
687          "Mismatched basic blocks in the loops!");
688 
689   const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
690   const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet =
691       OtherL->getBlocksSet();
692   assert(BlocksSet.size() == OtherBlocksSet.size() &&
693          llvm::set_is_subset(BlocksSet, OtherBlocksSet) &&
694          "Mismatched basic blocks in BlocksSets!");
695 }
696 #endif
697 
698 template <class BlockT, class LoopT>
verify(const DomTreeBase<BlockT> & DomTree)699 void LoopInfoBase<BlockT, LoopT>::verify(
700     const DomTreeBase<BlockT> &DomTree) const {
701   DenseSet<const LoopT *> Loops;
702   for (iterator I = begin(), E = end(); I != E; ++I) {
703     assert((*I)->isOutermost() && "Top-level loop has a parent!");
704     (*I)->verifyLoopNest(&Loops);
705   }
706 
707 // Verify that blocks are mapped to valid loops.
708 #ifndef NDEBUG
709   for (auto &Entry : BBMap) {
710     const BlockT *BB = Entry.first;
711     LoopT *L = Entry.second;
712     assert(Loops.count(L) && "orphaned loop");
713     assert(L->contains(BB) && "orphaned block");
714     for (LoopT *ChildLoop : *L)
715       assert(!ChildLoop->contains(BB) &&
716              "BBMap should point to the innermost loop containing BB");
717   }
718 
719   // Recompute LoopInfo to verify loops structure.
720   LoopInfoBase<BlockT, LoopT> OtherLI;
721   OtherLI.analyze(DomTree);
722 
723   // Build a map we can use to move from our LI to the computed one. This
724   // allows us to ignore the particular order in any layer of the loop forest
725   // while still comparing the structure.
726   DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
727   for (LoopT *L : OtherLI)
728     addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
729 
730   // Walk the top level loops and ensure there is a corresponding top-level
731   // loop in the computed version and then recursively compare those loop
732   // nests.
733   for (LoopT *L : *this) {
734     BlockT *Header = L->getHeader();
735     const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
736     assert(OtherL && "Top level loop is missing in computed loop info!");
737     // Now that we've matched this loop, erase its header from the map.
738     OtherLoopHeaders.erase(Header);
739     // And recursively compare these loops.
740     compareLoops(L, OtherL, OtherLoopHeaders);
741   }
742 
743   // Any remaining entries in the map are loops which were found when computing
744   // a fresh LoopInfo but not present in the current one.
745   if (!OtherLoopHeaders.empty()) {
746     for (const auto &HeaderAndLoop : OtherLoopHeaders)
747       dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
748     llvm_unreachable("Found new loops when recomputing LoopInfo!");
749   }
750 #endif
751 }
752 
753 } // End llvm namespace
754 
755 #endif
756