1 //===-- CodeGenTBAA.cpp - TBAA information for LLVM CodeGen ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the code that manages TBAA information and defines the TBAA policy
10 // for the optimizer to use. Relevant standards text includes:
11 //
12 //   C99 6.5p7
13 //   C++ [basic.lval] (p10 in n3126, p15 in some earlier versions)
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "CodeGenTBAA.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Mangle.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "llvm/ADT/SmallSet.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Metadata.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
CodeGenTBAA(ASTContext & Ctx,llvm::Module & M,const CodeGenOptions & CGO,const LangOptions & Features,MangleContext & MContext)32 CodeGenTBAA::CodeGenTBAA(ASTContext &Ctx, llvm::Module &M,
33                          const CodeGenOptions &CGO,
34                          const LangOptions &Features, MangleContext &MContext)
35   : Context(Ctx), Module(M), CodeGenOpts(CGO),
36     Features(Features), MContext(MContext), MDHelper(M.getContext()),
37     Root(nullptr), Char(nullptr)
38 {}
39 
~CodeGenTBAA()40 CodeGenTBAA::~CodeGenTBAA() {
41 }
42 
getRoot()43 llvm::MDNode *CodeGenTBAA::getRoot() {
44   // Define the root of the tree. This identifies the tree, so that
45   // if our LLVM IR is linked with LLVM IR from a different front-end
46   // (or a different version of this front-end), their TBAA trees will
47   // remain distinct, and the optimizer will treat them conservatively.
48   if (!Root) {
49     if (Features.CPlusPlus)
50       Root = MDHelper.createTBAARoot("Simple C++ TBAA");
51     else
52       Root = MDHelper.createTBAARoot("Simple C/C++ TBAA");
53   }
54 
55   return Root;
56 }
57 
createScalarTypeNode(StringRef Name,llvm::MDNode * Parent,uint64_t Size)58 llvm::MDNode *CodeGenTBAA::createScalarTypeNode(StringRef Name,
59                                                 llvm::MDNode *Parent,
60                                                 uint64_t Size) {
61   if (CodeGenOpts.NewStructPathTBAA) {
62     llvm::Metadata *Id = MDHelper.createString(Name);
63     return MDHelper.createTBAATypeNode(Parent, Size, Id);
64   }
65   return MDHelper.createTBAAScalarTypeNode(Name, Parent);
66 }
67 
getChar()68 llvm::MDNode *CodeGenTBAA::getChar() {
69   // Define the root of the tree for user-accessible memory. C and C++
70   // give special powers to char and certain similar types. However,
71   // these special powers only cover user-accessible memory, and doesn't
72   // include things like vtables.
73   if (!Char)
74     Char = createScalarTypeNode("omnipotent char", getRoot(), /* Size= */ 1);
75 
76   return Char;
77 }
78 
TypeHasMayAlias(QualType QTy)79 static bool TypeHasMayAlias(QualType QTy) {
80   // Tagged types have declarations, and therefore may have attributes.
81   if (auto *TD = QTy->getAsTagDecl())
82     if (TD->hasAttr<MayAliasAttr>())
83       return true;
84 
85   // Also look for may_alias as a declaration attribute on a typedef.
86   // FIXME: We should follow GCC and model may_alias as a type attribute
87   // rather than as a declaration attribute.
88   while (auto *TT = QTy->getAs<TypedefType>()) {
89     if (TT->getDecl()->hasAttr<MayAliasAttr>())
90       return true;
91     QTy = TT->desugar();
92   }
93   return false;
94 }
95 
96 /// Check if the given type is a valid base type to be used in access tags.
isValidBaseType(QualType QTy)97 static bool isValidBaseType(QualType QTy) {
98   if (QTy->isReferenceType())
99     return false;
100   if (const RecordType *TTy = QTy->getAs<RecordType>()) {
101     const RecordDecl *RD = TTy->getDecl()->getDefinition();
102     // Incomplete types are not valid base access types.
103     if (!RD)
104       return false;
105     if (RD->hasFlexibleArrayMember())
106       return false;
107     // RD can be struct, union, class, interface or enum.
108     // For now, we only handle struct and class.
109     if (RD->isStruct() || RD->isClass())
110       return true;
111   }
112   return false;
113 }
114 
getTypeInfoHelper(const Type * Ty)115 llvm::MDNode *CodeGenTBAA::getTypeInfoHelper(const Type *Ty) {
116   uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
117 
118   // Handle builtin types.
119   if (const BuiltinType *BTy = dyn_cast<BuiltinType>(Ty)) {
120     switch (BTy->getKind()) {
121     // Character types are special and can alias anything.
122     // In C++, this technically only includes "char" and "unsigned char",
123     // and not "signed char". In C, it includes all three. For now,
124     // the risk of exploiting this detail in C++ seems likely to outweigh
125     // the benefit.
126     case BuiltinType::Char_U:
127     case BuiltinType::Char_S:
128     case BuiltinType::UChar:
129     case BuiltinType::SChar:
130       return getChar();
131 
132     // Unsigned types can alias their corresponding signed types.
133     case BuiltinType::UShort:
134       return getTypeInfo(Context.ShortTy);
135     case BuiltinType::UInt:
136       return getTypeInfo(Context.IntTy);
137     case BuiltinType::ULong:
138       return getTypeInfo(Context.LongTy);
139     case BuiltinType::ULongLong:
140       return getTypeInfo(Context.LongLongTy);
141     case BuiltinType::UInt128:
142       return getTypeInfo(Context.Int128Ty);
143 
144     case BuiltinType::UShortFract:
145       return getTypeInfo(Context.ShortFractTy);
146     case BuiltinType::UFract:
147       return getTypeInfo(Context.FractTy);
148     case BuiltinType::ULongFract:
149       return getTypeInfo(Context.LongFractTy);
150 
151     case BuiltinType::SatUShortFract:
152       return getTypeInfo(Context.SatShortFractTy);
153     case BuiltinType::SatUFract:
154       return getTypeInfo(Context.SatFractTy);
155     case BuiltinType::SatULongFract:
156       return getTypeInfo(Context.SatLongFractTy);
157 
158     case BuiltinType::UShortAccum:
159       return getTypeInfo(Context.ShortAccumTy);
160     case BuiltinType::UAccum:
161       return getTypeInfo(Context.AccumTy);
162     case BuiltinType::ULongAccum:
163       return getTypeInfo(Context.LongAccumTy);
164 
165     case BuiltinType::SatUShortAccum:
166       return getTypeInfo(Context.SatShortAccumTy);
167     case BuiltinType::SatUAccum:
168       return getTypeInfo(Context.SatAccumTy);
169     case BuiltinType::SatULongAccum:
170       return getTypeInfo(Context.SatLongAccumTy);
171 
172     // Treat all other builtin types as distinct types. This includes
173     // treating wchar_t, char16_t, and char32_t as distinct from their
174     // "underlying types".
175     default:
176       return createScalarTypeNode(BTy->getName(Features), getChar(), Size);
177     }
178   }
179 
180   // C++1z [basic.lval]p10: "If a program attempts to access the stored value of
181   // an object through a glvalue of other than one of the following types the
182   // behavior is undefined: [...] a char, unsigned char, or std::byte type."
183   if (Ty->isStdByteType())
184     return getChar();
185 
186   // Handle pointers and references.
187   // TODO: Implement C++'s type "similarity" and consider dis-"similar"
188   // pointers distinct.
189   if (Ty->isPointerType() || Ty->isReferenceType())
190     return createScalarTypeNode("any pointer", getChar(), Size);
191 
192   // Accesses to arrays are accesses to objects of their element types.
193   if (CodeGenOpts.NewStructPathTBAA && Ty->isArrayType())
194     return getTypeInfo(cast<ArrayType>(Ty)->getElementType());
195 
196   // Enum types are distinct types. In C++ they have "underlying types",
197   // however they aren't related for TBAA.
198   if (const EnumType *ETy = dyn_cast<EnumType>(Ty)) {
199     if (!Features.CPlusPlus)
200       return getTypeInfo(ETy->getDecl()->getIntegerType());
201 
202     // In C++ mode, types have linkage, so we can rely on the ODR and
203     // on their mangled names, if they're external.
204     // TODO: Is there a way to get a program-wide unique name for a
205     // decl with local linkage or no linkage?
206     if (!ETy->getDecl()->isExternallyVisible())
207       return getChar();
208 
209     SmallString<256> OutName;
210     llvm::raw_svector_ostream Out(OutName);
211     MContext.mangleCanonicalTypeName(QualType(ETy, 0), Out);
212     return createScalarTypeNode(OutName, getChar(), Size);
213   }
214 
215   if (const auto *EIT = dyn_cast<BitIntType>(Ty)) {
216     SmallString<256> OutName;
217     llvm::raw_svector_ostream Out(OutName);
218     // Don't specify signed/unsigned since integer types can alias despite sign
219     // differences.
220     Out << "_BitInt(" << EIT->getNumBits() << ')';
221     return createScalarTypeNode(OutName, getChar(), Size);
222   }
223 
224   // For now, handle any other kind of type conservatively.
225   return getChar();
226 }
227 
getTypeInfo(QualType QTy)228 llvm::MDNode *CodeGenTBAA::getTypeInfo(QualType QTy) {
229   // At -O0 or relaxed aliasing, TBAA is not emitted for regular types.
230   if (CodeGenOpts.OptimizationLevel == 0 || CodeGenOpts.RelaxedAliasing)
231     return nullptr;
232 
233   // If the type has the may_alias attribute (even on a typedef), it is
234   // effectively in the general char alias class.
235   if (TypeHasMayAlias(QTy))
236     return getChar();
237 
238   // We need this function to not fall back to returning the "omnipotent char"
239   // type node for aggregate and union types. Otherwise, any dereference of an
240   // aggregate will result into the may-alias access descriptor, meaning all
241   // subsequent accesses to direct and indirect members of that aggregate will
242   // be considered may-alias too.
243   // TODO: Combine getTypeInfo() and getBaseTypeInfo() into a single function.
244   if (isValidBaseType(QTy))
245     return getBaseTypeInfo(QTy);
246 
247   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
248   if (llvm::MDNode *N = MetadataCache[Ty])
249     return N;
250 
251   // Note that the following helper call is allowed to add new nodes to the
252   // cache, which invalidates all its previously obtained iterators. So we
253   // first generate the node for the type and then add that node to the cache.
254   llvm::MDNode *TypeNode = getTypeInfoHelper(Ty);
255   return MetadataCache[Ty] = TypeNode;
256 }
257 
getAccessInfo(QualType AccessType)258 TBAAAccessInfo CodeGenTBAA::getAccessInfo(QualType AccessType) {
259   // Pointee values may have incomplete types, but they shall never be
260   // dereferenced.
261   if (AccessType->isIncompleteType())
262     return TBAAAccessInfo::getIncompleteInfo();
263 
264   if (TypeHasMayAlias(AccessType))
265     return TBAAAccessInfo::getMayAliasInfo();
266 
267   uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity();
268   return TBAAAccessInfo(getTypeInfo(AccessType), Size);
269 }
270 
getVTablePtrAccessInfo(llvm::Type * VTablePtrType)271 TBAAAccessInfo CodeGenTBAA::getVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
272   llvm::DataLayout DL(&Module);
273   unsigned Size = DL.getPointerTypeSize(VTablePtrType);
274   return TBAAAccessInfo(createScalarTypeNode("vtable pointer", getRoot(), Size),
275                         Size);
276 }
277 
278 bool
CollectFields(uint64_t BaseOffset,QualType QTy,SmallVectorImpl<llvm::MDBuilder::TBAAStructField> & Fields,bool MayAlias)279 CodeGenTBAA::CollectFields(uint64_t BaseOffset,
280                            QualType QTy,
281                            SmallVectorImpl<llvm::MDBuilder::TBAAStructField> &
282                              Fields,
283                            bool MayAlias) {
284   /* Things not handled yet include: C++ base classes, bitfields, */
285 
286   if (const RecordType *TTy = QTy->getAs<RecordType>()) {
287     const RecordDecl *RD = TTy->getDecl()->getDefinition();
288     if (RD->hasFlexibleArrayMember())
289       return false;
290 
291     // TODO: Handle C++ base classes.
292     if (const CXXRecordDecl *Decl = dyn_cast<CXXRecordDecl>(RD))
293       if (Decl->bases_begin() != Decl->bases_end())
294         return false;
295 
296     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
297 
298     unsigned idx = 0;
299     for (RecordDecl::field_iterator i = RD->field_begin(),
300          e = RD->field_end(); i != e; ++i, ++idx) {
301       if ((*i)->isZeroSize(Context) || (*i)->isUnnamedBitfield())
302         continue;
303       uint64_t Offset = BaseOffset +
304                         Layout.getFieldOffset(idx) / Context.getCharWidth();
305       QualType FieldQTy = i->getType();
306       if (!CollectFields(Offset, FieldQTy, Fields,
307                          MayAlias || TypeHasMayAlias(FieldQTy)))
308         return false;
309     }
310     return true;
311   }
312 
313   /* Otherwise, treat whatever it is as a field. */
314   uint64_t Offset = BaseOffset;
315   uint64_t Size = Context.getTypeSizeInChars(QTy).getQuantity();
316   llvm::MDNode *TBAAType = MayAlias ? getChar() : getTypeInfo(QTy);
317   llvm::MDNode *TBAATag = getAccessTagInfo(TBAAAccessInfo(TBAAType, Size));
318   Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size, TBAATag));
319   return true;
320 }
321 
322 llvm::MDNode *
getTBAAStructInfo(QualType QTy)323 CodeGenTBAA::getTBAAStructInfo(QualType QTy) {
324   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
325 
326   if (llvm::MDNode *N = StructMetadataCache[Ty])
327     return N;
328 
329   SmallVector<llvm::MDBuilder::TBAAStructField, 4> Fields;
330   if (CollectFields(0, QTy, Fields, TypeHasMayAlias(QTy)))
331     return MDHelper.createTBAAStructNode(Fields);
332 
333   // For now, handle any other kind of type conservatively.
334   return StructMetadataCache[Ty] = nullptr;
335 }
336 
getBaseTypeInfoHelper(const Type * Ty)337 llvm::MDNode *CodeGenTBAA::getBaseTypeInfoHelper(const Type *Ty) {
338   if (auto *TTy = dyn_cast<RecordType>(Ty)) {
339     const RecordDecl *RD = TTy->getDecl()->getDefinition();
340     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
341     using TBAAStructField = llvm::MDBuilder::TBAAStructField;
342     SmallVector<TBAAStructField, 4> Fields;
343     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
344       // Handle C++ base classes. Non-virtual bases can treated a kind of
345       // field. Virtual bases are more complex and omitted, but avoid an
346       // incomplete view for NewStructPathTBAA.
347       if (CodeGenOpts.NewStructPathTBAA && CXXRD->getNumVBases() != 0)
348         return nullptr;
349       for (const CXXBaseSpecifier &B : CXXRD->bases()) {
350         if (B.isVirtual())
351           continue;
352         QualType BaseQTy = B.getType();
353         const CXXRecordDecl *BaseRD = BaseQTy->getAsCXXRecordDecl();
354         if (BaseRD->isEmpty())
355           continue;
356         llvm::MDNode *TypeNode = isValidBaseType(BaseQTy)
357                                      ? getBaseTypeInfo(BaseQTy)
358                                      : getTypeInfo(BaseQTy);
359         if (!TypeNode)
360           return nullptr;
361         uint64_t Offset = Layout.getBaseClassOffset(BaseRD).getQuantity();
362         uint64_t Size =
363             Context.getASTRecordLayout(BaseRD).getDataSize().getQuantity();
364         Fields.push_back(
365             llvm::MDBuilder::TBAAStructField(Offset, Size, TypeNode));
366       }
367       // The order in which base class subobjects are allocated is unspecified,
368       // so may differ from declaration order. In particular, Itanium ABI will
369       // allocate a primary base first.
370       // Since we exclude empty subobjects, the objects are not overlapping and
371       // their offsets are unique.
372       llvm::sort(Fields,
373                  [](const TBAAStructField &A, const TBAAStructField &B) {
374                    return A.Offset < B.Offset;
375                  });
376     }
377     for (FieldDecl *Field : RD->fields()) {
378       if (Field->isZeroSize(Context) || Field->isUnnamedBitfield())
379         continue;
380       QualType FieldQTy = Field->getType();
381       llvm::MDNode *TypeNode = isValidBaseType(FieldQTy) ?
382           getBaseTypeInfo(FieldQTy) : getTypeInfo(FieldQTy);
383       if (!TypeNode)
384         return nullptr;
385 
386       uint64_t BitOffset = Layout.getFieldOffset(Field->getFieldIndex());
387       uint64_t Offset = Context.toCharUnitsFromBits(BitOffset).getQuantity();
388       uint64_t Size = Context.getTypeSizeInChars(FieldQTy).getQuantity();
389       Fields.push_back(llvm::MDBuilder::TBAAStructField(Offset, Size,
390                                                         TypeNode));
391     }
392 
393     SmallString<256> OutName;
394     if (Features.CPlusPlus) {
395       // Don't use the mangler for C code.
396       llvm::raw_svector_ostream Out(OutName);
397       MContext.mangleCanonicalTypeName(QualType(Ty, 0), Out);
398     } else {
399       OutName = RD->getName();
400     }
401 
402     if (CodeGenOpts.NewStructPathTBAA) {
403       llvm::MDNode *Parent = getChar();
404       uint64_t Size = Context.getTypeSizeInChars(Ty).getQuantity();
405       llvm::Metadata *Id = MDHelper.createString(OutName);
406       return MDHelper.createTBAATypeNode(Parent, Size, Id, Fields);
407     }
408 
409     // Create the struct type node with a vector of pairs (offset, type).
410     SmallVector<std::pair<llvm::MDNode*, uint64_t>, 4> OffsetsAndTypes;
411     for (const auto &Field : Fields)
412         OffsetsAndTypes.push_back(std::make_pair(Field.Type, Field.Offset));
413     return MDHelper.createTBAAStructTypeNode(OutName, OffsetsAndTypes);
414   }
415 
416   return nullptr;
417 }
418 
getBaseTypeInfo(QualType QTy)419 llvm::MDNode *CodeGenTBAA::getBaseTypeInfo(QualType QTy) {
420   if (!isValidBaseType(QTy))
421     return nullptr;
422 
423   const Type *Ty = Context.getCanonicalType(QTy).getTypePtr();
424 
425   // nullptr is a valid value in the cache, so use find rather than []
426   auto I = BaseTypeMetadataCache.find(Ty);
427   if (I != BaseTypeMetadataCache.end())
428     return I->second;
429 
430   // First calculate the metadata, before recomputing the insertion point, as
431   // the helper can recursively call us.
432   llvm::MDNode *TypeNode = getBaseTypeInfoHelper(Ty);
433   LLVM_ATTRIBUTE_UNUSED auto inserted =
434       BaseTypeMetadataCache.insert({Ty, TypeNode});
435   assert(inserted.second && "BaseType metadata was already inserted");
436 
437   return TypeNode;
438 }
439 
getAccessTagInfo(TBAAAccessInfo Info)440 llvm::MDNode *CodeGenTBAA::getAccessTagInfo(TBAAAccessInfo Info) {
441   assert(!Info.isIncomplete() && "Access to an object of an incomplete type!");
442 
443   if (Info.isMayAlias())
444     Info = TBAAAccessInfo(getChar(), Info.Size);
445 
446   if (!Info.AccessType)
447     return nullptr;
448 
449   if (!CodeGenOpts.StructPathTBAA)
450     Info = TBAAAccessInfo(Info.AccessType, Info.Size);
451 
452   llvm::MDNode *&N = AccessTagMetadataCache[Info];
453   if (N)
454     return N;
455 
456   if (!Info.BaseType) {
457     Info.BaseType = Info.AccessType;
458     assert(!Info.Offset && "Nonzero offset for an access with no base type!");
459   }
460   if (CodeGenOpts.NewStructPathTBAA) {
461     return N = MDHelper.createTBAAAccessTag(Info.BaseType, Info.AccessType,
462                                             Info.Offset, Info.Size);
463   }
464   return N = MDHelper.createTBAAStructTagNode(Info.BaseType, Info.AccessType,
465                                               Info.Offset);
466 }
467 
mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,TBAAAccessInfo TargetInfo)468 TBAAAccessInfo CodeGenTBAA::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
469                                                  TBAAAccessInfo TargetInfo) {
470   if (SourceInfo.isMayAlias() || TargetInfo.isMayAlias())
471     return TBAAAccessInfo::getMayAliasInfo();
472   return TargetInfo;
473 }
474 
475 TBAAAccessInfo
mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,TBAAAccessInfo InfoB)476 CodeGenTBAA::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
477                                                  TBAAAccessInfo InfoB) {
478   if (InfoA == InfoB)
479     return InfoA;
480 
481   if (!InfoA || !InfoB)
482     return TBAAAccessInfo();
483 
484   if (InfoA.isMayAlias() || InfoB.isMayAlias())
485     return TBAAAccessInfo::getMayAliasInfo();
486 
487   // TODO: Implement the rest of the logic here. For example, two accesses
488   // with same final access types result in an access to an object of that final
489   // access type regardless of their base types.
490   return TBAAAccessInfo::getMayAliasInfo();
491 }
492 
493 TBAAAccessInfo
mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,TBAAAccessInfo SrcInfo)494 CodeGenTBAA::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
495                                             TBAAAccessInfo SrcInfo) {
496   if (DestInfo == SrcInfo)
497     return DestInfo;
498 
499   if (!DestInfo || !SrcInfo)
500     return TBAAAccessInfo();
501 
502   if (DestInfo.isMayAlias() || SrcInfo.isMayAlias())
503     return TBAAAccessInfo::getMayAliasInfo();
504 
505   // TODO: Implement the rest of the logic here. For example, two accesses
506   // with same final access types result in an access to an object of that final
507   // access type regardless of their base types.
508   return TBAAAccessInfo::getMayAliasInfo();
509 }
510