1 /*
2  * Copyright (C) 1995-2011 University of Karlsruhe.  All right reserved.
3  *
4  * This file is part of libFirm.
5  *
6  * This file may be distributed and/or modified under the terms of the
7  * GNU General Public License version 2 as published by the Free Software
8  * Foundation and appearing in the file LICENSE.GPL included in the
9  * packaging of this file.
10  *
11  * Licensees holding valid libFirm Professional Edition licenses may use
12  * this file in accordance with the libFirm Commercial License.
13  * Agreement provided with the Software.
14  *
15  * This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
16  * WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR
17  * PURPOSE.
18  */
19 
20 /**
21  * @file    tr_inheritance.c
22  * @brief   Utility routines for inheritance representation
23  * @author  Goetz Lindenmaier
24  */
25 #include "config.h"
26 
27 #include "debug.h"
28 #include "typerep.h"
29 #include "irgraph_t.h"
30 #include "irprog_t.h"
31 #include "irprintf.h"
32 #include "pset.h"
33 #include "set.h"
34 #include "irgwalk.h"
35 #include "irflag.h"
36 
37 /* ----------------------------------------------------------------------- */
38 /* Resolve implicit inheritance.                                           */
39 /* ----------------------------------------------------------------------- */
40 
default_mangle_inherited_name(const ir_entity * super,const ir_type * clss)41 ident *default_mangle_inherited_name(const ir_entity *super, const ir_type *clss)
42 {
43 	return id_mangle_u(new_id_from_str("inh"), id_mangle_u(get_class_ident(clss), get_entity_ident(super)));
44 }
45 
46 /** Replicates all entities in all super classes that are not overwritten
47     by an entity of this class. */
copy_entities_from_superclass(ir_type * clss,void * env)48 static void copy_entities_from_superclass(ir_type *clss, void *env)
49 {
50 	size_t i;
51 	size_t j;
52 	size_t k;
53 	size_t l;
54 	int overwritten;
55 	ir_type *super;
56 	ir_entity *inhent, *thisent;
57 	mangle_inherited_name_func *mfunc = *(mangle_inherited_name_func **)env;
58 
59 	for (i = 0; i < get_class_n_supertypes(clss); i++) {
60 		super = get_class_supertype(clss, i);
61 		assert(is_Class_type(super) && "not a class");
62 		for (j = 0; j < get_class_n_members(super); j++) {
63 			inhent = get_class_member(super, j);
64 			/* check whether inhent is already overwritten */
65 			overwritten = 0;
66 			for (k = 0; (k < get_class_n_members(clss)) && (overwritten == 0); k++) {
67 				thisent = get_class_member(clss, k);
68 				for (l = 0; l < get_entity_n_overwrites(thisent); l++) {
69 					if (inhent == get_entity_overwrites(thisent, l)) {
70 						/* overwritten - do not copy */
71 						overwritten = 1;
72 						break;
73 					}
74 				}
75 			}
76 			/* Inherit entity */
77 			if (!overwritten) {
78 				thisent = copy_entity_own(inhent, clss);
79 				add_entity_overwrites(thisent, inhent);
80 				if (get_entity_peculiarity(inhent) == peculiarity_existent)
81 					set_entity_peculiarity(thisent, peculiarity_inherited);
82 				set_entity_ld_ident(thisent, mfunc(inhent, clss));
83 				if (get_entity_linkage(inhent) & IR_LINKAGE_CONSTANT) {
84 					assert(is_atomic_entity(inhent) &&  /* @@@ */
85 						"Inheritance of constant, compound entities not implemented");
86 					add_entity_linkage(thisent, IR_LINKAGE_CONSTANT);
87 					set_atomic_ent_value(thisent, get_atomic_ent_value(inhent));
88 				}
89 			}
90 		}
91 	}
92 }
93 
resolve_inheritance(mangle_inherited_name_func * mfunc)94 void resolve_inheritance(mangle_inherited_name_func *mfunc)
95 {
96 	if (!mfunc)
97 		mfunc = default_mangle_inherited_name;
98 	class_walk_super2sub(copy_entities_from_superclass, NULL, (void *)&mfunc);
99 }
100 
101 
102 /* ----------------------------------------------------------------------- */
103 /* The transitive closure of the subclass/superclass and                   */
104 /* overwrites/overwrittenby relation.                                      */
105 /*                                                                         */
106 /* A walk over the ir (O(#types+#entities)) computes the transitive        */
107 /* closure.  Adding a new type/entity or changing the basic relations in   */
108 /* some other way invalidates the transitive closure, i.e., it is not      */
109 /* updated by the basic functions.                                         */
110 /*                                                                         */
111 /* All functions are named as their counterparts for the basic relations,  */
112 /* adding the infix 'trans_'.                                              */
113 /* ----------------------------------------------------------------------- */
114 
set_irp_inh_transitive_closure_state(inh_transitive_closure_state s)115 void                        set_irp_inh_transitive_closure_state(inh_transitive_closure_state s)
116 {
117 	irp->inh_trans_closure_state = s;
118 }
invalidate_irp_inh_transitive_closure_state(void)119 void                        invalidate_irp_inh_transitive_closure_state(void)
120 {
121 	if (irp->inh_trans_closure_state == inh_transitive_closure_valid)
122 		irp->inh_trans_closure_state = inh_transitive_closure_invalid;
123 }
get_irp_inh_transitive_closure_state(void)124 inh_transitive_closure_state get_irp_inh_transitive_closure_state(void)
125 {
126 	return irp->inh_trans_closure_state;
127 }
128 
assert_valid_state(void)129 static void assert_valid_state(void)
130 {
131 	assert(irp->inh_trans_closure_state == inh_transitive_closure_valid ||
132 	       irp->inh_trans_closure_state == inh_transitive_closure_invalid);
133 }
134 
135 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
136 /* There is a set that extends each entity/type with two new               */
137 /* fields:  one for the upwards directed relation: 'up' (supertype,        */
138 /* overwrites) and one for the downwards directed relation: 'down' (sub-   */
139 /* type, overwrittenby.  These fields contain psets (and maybe later       */
140 /* arrays) listing all subtypes...                                         */
141 /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
142 
143 typedef enum {
144 	d_up   = 0,
145 	d_down = 1,
146 } dir;
147 
148 typedef struct {
149 	const firm_kind *kind;   /**< An entity or type. */
150 	pset *directions[2];
151 } tr_inh_trans_tp;
152 
153 /* We use this set for all types and entities.  */
154 static set *tr_inh_trans_set = NULL;
155 
156 /**
157  * Compare two tr_inh_trans_tp entries.
158  */
tr_inh_trans_cmp(const void * e1,const void * e2,size_t size)159 static int tr_inh_trans_cmp(const void *e1, const void *e2, size_t size)
160 {
161 	const tr_inh_trans_tp *ef1 = (const tr_inh_trans_tp*)e1;
162 	const tr_inh_trans_tp *ef2 = (const tr_inh_trans_tp*)e2;
163 	(void) size;
164 
165 	return ef1->kind != ef2->kind;
166 }
167 
168 /**
169  * calculate the hash value of an tr_inh_trans_tp
170  */
tr_inh_trans_hash(const tr_inh_trans_tp * v)171 static inline unsigned int tr_inh_trans_hash(const tr_inh_trans_tp *v)
172 {
173 	return hash_ptr(v->kind);
174 }
175 
176 /* This always completes successfully. */
get_firm_kind_entry(const firm_kind * k)177 static tr_inh_trans_tp *get_firm_kind_entry(const firm_kind *k)
178 {
179 	tr_inh_trans_tp a, *found;
180 	a.kind = k;
181 
182 	if (!tr_inh_trans_set) tr_inh_trans_set = new_set(tr_inh_trans_cmp, 128);
183 
184 	found = set_find(tr_inh_trans_tp, tr_inh_trans_set, &a, sizeof(a), tr_inh_trans_hash(&a));
185 	if (!found) {
186 		a.directions[d_up]   = pset_new_ptr(16);
187 		a.directions[d_down] = pset_new_ptr(16);
188 		found = set_insert(tr_inh_trans_tp, tr_inh_trans_set, &a, sizeof(a), tr_inh_trans_hash(&a));
189 	}
190 	return found;
191 }
192 
get_entity_map(const ir_entity * ent,dir d)193 static pset *get_entity_map(const ir_entity *ent, dir d)
194 {
195 	tr_inh_trans_tp *found;
196 
197 	assert(is_entity(ent));
198 	found = get_firm_kind_entry((const firm_kind *)ent);
199 	return found->directions[d];
200 }
201 
get_type_map(const ir_type * tp,dir d)202 static pset *get_type_map(const ir_type *tp, dir d)
203 {
204 	tr_inh_trans_tp *found;
205 
206 	assert(is_type(tp));
207 	found = get_firm_kind_entry((const firm_kind *)tp);
208 	return found->directions[d];
209 }
210 
211 
212 /**
213  * Walk over all types reachable from tp in the sub/supertype
214  * relation and compute the closure for the two downwards directed
215  * relations.
216  *
217  * The walk in the dag formed by the relation is tricky:  We must visit
218  * all subtypes before visiting the supertypes.  So we first walk down.
219  * Then we can compute the closure for this type.  Then we walk up.
220  * As we call ourselves recursive, and walk in both directions, there
221  * can be cycles.  So we have to make sure, that if we visit a node
222  * a second time (in a walk up) we do nothing.  For this we increment
223  * the master visited flag twice.
224  * If the type is marked with master_flag_visited-1 it is on the stack.
225  * If it is marked with master_flag_visited it is fully processed.
226  *
227  * Well, we still miss some candidates ... */
compute_down_closure(ir_type * tp)228 static void compute_down_closure(ir_type *tp)
229 {
230 	pset *myset, *subset;
231 	size_t i, n_subtypes, n_members, n_supertypes;
232 	ir_visited_t master_visited = get_master_type_visited();
233 
234 	assert(is_Class_type(tp));
235 
236 	set_type_visited(tp, master_visited-1);
237 
238 	/* Recursive descend. */
239 	n_subtypes = get_class_n_subtypes(tp);
240 	for (i = 0; i < n_subtypes; ++i) {
241 		ir_type *stp = get_class_subtype(tp, i);
242 		if (get_type_visited(stp) < master_visited-1) {
243 			compute_down_closure(stp);
244 		}
245 	}
246 
247 	/* types */
248 	myset = get_type_map(tp, d_down);
249 	for (i = 0; i < n_subtypes; ++i) {
250 		ir_type *stp = get_class_subtype(tp, i);
251 		subset = get_type_map(stp, d_down);
252 		pset_insert_ptr(myset, stp);
253 		pset_insert_pset_ptr(myset, subset);
254 	}
255 
256 	/* entities */
257 	n_members = get_class_n_members(tp);
258 	for (i = 0; i < n_members; ++i) {
259 		ir_entity *mem = get_class_member(tp, i);
260 		size_t j, n_overwrittenby = get_entity_n_overwrittenby(mem);
261 
262 		myset = get_entity_map(mem, d_down);
263 		for (j = 0; j < n_overwrittenby; ++j) {
264 			ir_entity *ov = get_entity_overwrittenby(mem, j);
265 			subset = get_entity_map(ov, d_down);
266 			pset_insert_ptr(myset, ov);
267 			pset_insert_pset_ptr(myset, subset);
268 		}
269 	}
270 
271 	mark_type_visited(tp);
272 
273 	/* Walk up. */
274 	n_supertypes = get_class_n_supertypes(tp);
275 	for (i = 0; i < n_supertypes; ++i) {
276 		ir_type *stp = get_class_supertype(tp, i);
277 		if (get_type_visited(stp) < master_visited-1) {
278 			compute_down_closure(stp);
279 		}
280 	}
281 }
282 
compute_up_closure(ir_type * tp)283 static void compute_up_closure(ir_type *tp)
284 {
285 	pset *myset, *subset;
286 	size_t i, n_subtypes, n_members, n_supertypes;
287 	ir_visited_t master_visited = get_master_type_visited();
288 
289 	assert(is_Class_type(tp));
290 
291 	set_type_visited(tp, master_visited-1);
292 
293 	/* Recursive descend. */
294 	n_supertypes = get_class_n_supertypes(tp);
295 	for (i = 0; i < n_supertypes; ++i) {
296 		ir_type *stp = get_class_supertype(tp, i);
297 		if (get_type_visited(stp) < get_master_type_visited()-1) {
298 			compute_up_closure(stp);
299 		}
300 	}
301 
302 	/* types */
303 	myset = get_type_map(tp, d_up);
304 	for (i = 0; i < n_supertypes; ++i) {
305 		ir_type *stp = get_class_supertype(tp, i);
306 		subset = get_type_map(stp, d_up);
307 		pset_insert_ptr(myset, stp);
308 		pset_insert_pset_ptr(myset, subset);
309 	}
310 
311 	/* entities */
312 	n_members = get_class_n_members(tp);
313 	for (i = 0; i < n_members; ++i) {
314 		ir_entity *mem = get_class_member(tp, i);
315 		size_t j, n_overwrites = get_entity_n_overwrites(mem);
316 
317 		myset = get_entity_map(mem, d_up);
318 		for (j = 0; j < n_overwrites; ++j) {
319 			ir_entity *ov = get_entity_overwrites(mem, j);
320 			subset = get_entity_map(ov, d_up);
321 			pset_insert_pset_ptr(myset, subset);
322 			pset_insert_ptr(myset, ov);
323 		}
324 	}
325 
326 	mark_type_visited(tp);
327 
328 	/* Walk down. */
329 	n_subtypes = get_class_n_subtypes(tp);
330 	for (i = 0; i < n_subtypes; ++i) {
331 		ir_type *stp = get_class_subtype(tp, i);
332 		if (get_type_visited(stp) < master_visited-1) {
333 			compute_up_closure(stp);
334 		}
335 	}
336 }
337 
compute_inh_transitive_closure(void)338 void compute_inh_transitive_closure(void)
339 {
340 	size_t i, n_types = get_irp_n_types();
341 	free_inh_transitive_closure();
342 
343 	/* The 'down' relation */
344 	irp_reserve_resources(irp, IRP_RESOURCE_TYPE_VISITED);
345 	inc_master_type_visited();  /* Inc twice: one if on stack, second if values computed. */
346 	inc_master_type_visited();
347 	for (i = 0; i < n_types; ++i) {
348 		ir_type *tp = get_irp_type(i);
349 		if (is_Class_type(tp) && type_not_visited(tp)) { /* For others there is nothing to accumulate. */
350 			size_t j, n_subtypes = get_class_n_subtypes(tp);
351 			int has_unmarked_subtype = 0;
352 
353 			assert(get_type_visited(tp) < get_master_type_visited()-1);
354 			for (j = 0; j < n_subtypes; ++j) {
355 				ir_type *stp = get_class_subtype(tp, j);
356 				if (type_not_visited(stp)) {
357 					has_unmarked_subtype = 1;
358 					break;
359 				}
360 			}
361 
362 			/* This is a good starting point. */
363 			if (!has_unmarked_subtype)
364 				compute_down_closure(tp);
365 		}
366 	}
367 
368 	/* The 'up' relation */
369 	inc_master_type_visited();
370 	inc_master_type_visited();
371 	for (i = 0; i < n_types; ++i) {
372 		ir_type *tp = get_irp_type(i);
373 		if (is_Class_type(tp) && type_not_visited(tp)) { /* For others there is nothing to accumulate. */
374 			size_t j, n_supertypes = get_class_n_supertypes(tp);
375 			int has_unmarked_supertype = 0;
376 
377 			assert(get_type_visited(tp) < get_master_type_visited()-1);
378 			for (j = 0; j < n_supertypes; ++j) {
379 				ir_type *stp = get_class_supertype(tp, j);
380 				if (type_not_visited(stp)) {
381 					has_unmarked_supertype = 1;
382 					break;
383 				}
384 			}
385 
386 			/* This is a good starting point. */
387 			if (!has_unmarked_supertype)
388 				compute_up_closure(tp);
389 		}
390 	}
391 
392 	irp->inh_trans_closure_state = inh_transitive_closure_valid;
393 	irp_free_resources(irp, IRP_RESOURCE_TYPE_VISITED);
394 }
395 
free_inh_transitive_closure(void)396 void free_inh_transitive_closure(void)
397 {
398 	if (tr_inh_trans_set) {
399 		foreach_set(tr_inh_trans_set, tr_inh_trans_tp, elt) {
400 			del_pset(elt->directions[d_up]);
401 			del_pset(elt->directions[d_down]);
402 		}
403 		del_set(tr_inh_trans_set);
404 		tr_inh_trans_set = NULL;
405 	}
406 	irp->inh_trans_closure_state = inh_transitive_closure_none;
407 }
408 
409 /* - subtype ------------------------------------------------------------- */
410 
get_class_trans_subtype_first(const ir_type * tp)411 ir_type *get_class_trans_subtype_first(const ir_type *tp)
412 {
413 	assert_valid_state();
414 	return pset_first(ir_type, get_type_map(tp, d_down));
415 }
416 
get_class_trans_subtype_next(const ir_type * tp)417 ir_type *get_class_trans_subtype_next(const ir_type *tp)
418 {
419 	assert_valid_state();
420 	return pset_next(ir_type, get_type_map(tp, d_down));
421 }
422 
is_class_trans_subtype(const ir_type * tp,const ir_type * subtp)423 int is_class_trans_subtype(const ir_type *tp, const ir_type *subtp)
424 {
425 	assert_valid_state();
426 	return (pset_find_ptr(get_type_map(tp, d_down), subtp) != NULL);
427 }
428 
429 /* - supertype ----------------------------------------------------------- */
430 
get_class_trans_supertype_first(const ir_type * tp)431 ir_type *get_class_trans_supertype_first(const ir_type *tp)
432 {
433 	assert_valid_state();
434 	return pset_first(ir_type, get_type_map(tp, d_up));
435 }
436 
get_class_trans_supertype_next(const ir_type * tp)437 ir_type *get_class_trans_supertype_next(const ir_type *tp)
438 {
439 	assert_valid_state();
440 	return pset_next(ir_type, get_type_map(tp, d_up));
441 }
442 
443 /* - overwrittenby ------------------------------------------------------- */
444 
get_entity_trans_overwrittenby_first(const ir_entity * ent)445 ir_entity *get_entity_trans_overwrittenby_first(const ir_entity *ent)
446 {
447 	assert_valid_state();
448 	return pset_first(ir_entity, get_entity_map(ent, d_down));
449 }
450 
get_entity_trans_overwrittenby_next(const ir_entity * ent)451 ir_entity *get_entity_trans_overwrittenby_next(const ir_entity *ent)
452 {
453 	assert_valid_state();
454 	return pset_next(ir_entity, get_entity_map(ent, d_down));
455 }
456 
457 /* - overwrites ---------------------------------------------------------- */
458 
459 
get_entity_trans_overwrites_first(const ir_entity * ent)460 ir_entity *get_entity_trans_overwrites_first(const ir_entity *ent)
461 {
462 	assert_valid_state();
463 	return pset_first(ir_entity, get_entity_map(ent, d_up));
464 }
465 
get_entity_trans_overwrites_next(const ir_entity * ent)466 ir_entity *get_entity_trans_overwrites_next(const ir_entity *ent)
467 {
468 	assert_valid_state();
469 	return pset_next(ir_entity, get_entity_map(ent, d_up));
470 }
471 
472 
473 /* ----------------------------------------------------------------------- */
474 /* Classify pairs of types/entities in the inheritance relations.          */
475 /* ----------------------------------------------------------------------- */
476 
477 /** Returns true if low is subclass of high. */
check_is_SubClass_of(ir_type * low,ir_type * high)478 static int check_is_SubClass_of(ir_type *low, ir_type *high)
479 {
480 	size_t i, n_subtypes;
481 
482 	/* depth first search from high downwards. */
483 	n_subtypes = get_class_n_subtypes(high);
484 	for (i = 0; i < n_subtypes; i++) {
485 		ir_type *stp = get_class_subtype(high, i);
486 		if (low == stp) return 1;
487 		if (is_SubClass_of(low, stp))
488 			return 1;
489 	}
490 	return 0;
491 }
492 
is_SubClass_of(ir_type * low,ir_type * high)493 int is_SubClass_of(ir_type *low, ir_type *high)
494 {
495 	assert(is_Class_type(low) && is_Class_type(high));
496 
497 	if (low == high) return 1;
498 
499 	if (get_irp_inh_transitive_closure_state() == inh_transitive_closure_valid) {
500 		pset *m = get_type_map(high, d_down);
501 		return pset_find_ptr(m, low) ? 1 : 0;
502 	}
503 	return check_is_SubClass_of(low, high);
504 }
505 
is_SubClass_ptr_of(ir_type * low,ir_type * high)506 int is_SubClass_ptr_of(ir_type *low, ir_type *high)
507 {
508 	while (is_Pointer_type(low) && is_Pointer_type(high)) {
509 		low  = get_pointer_points_to_type(low);
510 		high = get_pointer_points_to_type(high);
511 	}
512 
513 	if (is_Class_type(low) && is_Class_type(high))
514 		return is_SubClass_of(low, high);
515 	return 0;
516 }
517 
is_overwritten_by(ir_entity * high,ir_entity * low)518 int is_overwritten_by(ir_entity *high, ir_entity *low)
519 {
520 	size_t i, n_overwrittenby;
521 	assert(is_entity(low) && is_entity(high));
522 
523 	if (get_irp_inh_transitive_closure_state() == inh_transitive_closure_valid) {
524 		pset *m = get_entity_map(high, d_down);
525 		return pset_find_ptr(m, low) ? 1 : 0;
526 	}
527 
528 	/* depth first search from high downwards. */
529 	n_overwrittenby = get_entity_n_overwrittenby(high);
530 	for (i = 0; i < n_overwrittenby; i++) {
531 		ir_entity *ov = get_entity_overwrittenby(high, i);
532 		if (low == ov) return 1;
533 		if (is_overwritten_by(low, ov))
534 			return 1;
535 	}
536 	return 0;
537 }
538 
539 /** Resolve polymorphy in the inheritance relation.
540  *
541  * Returns the dynamically referenced entity if the static entity and the
542  * dynamic type are given.
543  * Search downwards in overwritten tree.
544  *
545  * Need two routines because I want to assert the result.
546  */
do_resolve_ent_polymorphy(ir_type * dynamic_class,ir_entity * static_ent)547 static ir_entity *do_resolve_ent_polymorphy(ir_type *dynamic_class, ir_entity *static_ent)
548 {
549 	size_t i, n_overwrittenby;
550 
551 	ir_type *owner = get_entity_owner(static_ent);
552 	if (owner == dynamic_class) return static_ent;
553 
554 	// if the owner of the static_ent already is more special than the dynamic
555 	// type to check against - stop here.
556 	if (! is_SubClass_of(dynamic_class, owner)) return NULL;
557 
558 	n_overwrittenby = get_entity_n_overwrittenby(static_ent);
559 	for (i = 0; i < n_overwrittenby; ++i) {
560 		ir_entity *ent = get_entity_overwrittenby(static_ent, i);
561 		ent = do_resolve_ent_polymorphy(dynamic_class, ent);
562 		if (ent) return ent;
563 	}
564 
565 	// No further specialization of static_ent has been found
566 	return static_ent;
567 }
568 
resolve_ent_polymorphy(ir_type * dynamic_class,ir_entity * static_ent)569 ir_entity *resolve_ent_polymorphy(ir_type *dynamic_class, ir_entity *static_ent)
570 {
571 	ir_entity *res;
572 	assert(static_ent && is_entity(static_ent));
573 
574 	res = do_resolve_ent_polymorphy(dynamic_class, static_ent);
575 	assert(res);
576 
577 	return res;
578 }
579 
580 
581 
582 /* ----------------------------------------------------------------------- */
583 /* Class cast state handling.                                              */
584 /* ----------------------------------------------------------------------- */
585 
586 /* - State handling. ----------------------------------------- */
587 
set_irg_class_cast_state(ir_graph * irg,ir_class_cast_state s)588 void set_irg_class_cast_state(ir_graph *irg, ir_class_cast_state s)
589 {
590 	if (get_irp_class_cast_state() > s)
591 		set_irp_class_cast_state(s);
592 	irg->class_cast_state = s;
593 }
594 
get_irg_class_cast_state(const ir_graph * irg)595 ir_class_cast_state get_irg_class_cast_state(const ir_graph *irg)
596 {
597 	return irg->class_cast_state;
598 }
599 
set_irp_class_cast_state(ir_class_cast_state s)600 void set_irp_class_cast_state(ir_class_cast_state s)
601 {
602 #ifndef NDEBUG
603 	size_t i, n;
604 	for (i = 0, n = get_irp_n_irgs(); i < n; ++i)
605 		assert(get_irg_class_cast_state(get_irp_irg(i)) >= s);
606 #endif
607 	irp->class_cast_state = s;
608 }
609 
get_irp_class_cast_state(void)610 ir_class_cast_state get_irp_class_cast_state(void)
611 {
612 	return irp->class_cast_state;
613 }
614