xref: /netbsd/sys/dev/marvell/if_gfe.c (revision 8e38b97b)
1 /*	$NetBSD: if_gfe.c,v 1.60 2022/08/20 19:04:07 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2002 Allegro Networks, Inc., Wasabi Systems, Inc.
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. All advertising materials mentioning features or use of this software
16  *    must display the following acknowledgement:
17  *      This product includes software developed for the NetBSD Project by
18  *      Allegro Networks, Inc., and Wasabi Systems, Inc.
19  * 4. The name of Allegro Networks, Inc. may not be used to endorse
20  *    or promote products derived from this software without specific prior
21  *    written permission.
22  * 5. The name of Wasabi Systems, Inc. may not be used to endorse
23  *    or promote products derived from this software without specific prior
24  *    written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY ALLEGRO NETWORKS, INC. AND
27  * WASABI SYSTEMS, INC. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
28  * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
29  * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
30  * IN NO EVENT SHALL EITHER ALLEGRO NETWORKS, INC. OR WASABI SYSTEMS, INC.
31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37  * POSSIBILITY OF SUCH DAMAGE.
38  */
39 
40 /*
41  * if_gfe.c -- GT ethernet MAC driver
42  */
43 
44 #include <sys/cdefs.h>
45 __KERNEL_RCSID(0, "$NetBSD: if_gfe.c,v 1.60 2022/08/20 19:04:07 thorpej Exp $");
46 
47 #include "opt_inet.h"
48 
49 #include <sys/param.h>
50 #include <sys/bus.h>
51 #include <sys/callout.h>
52 #include <sys/device.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/mbuf.h>
56 #include <sys/mutex.h>
57 #include <sys/socket.h>
58 
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_ether.h>
62 #include <net/if_media.h>
63 
64 #ifdef INET
65 #include <netinet/in.h>
66 #include <netinet/if_inarp.h>
67 #endif
68 #include <net/bpf.h>
69 #include <sys/rndsource.h>
70 
71 #include <dev/mii/mii.h>
72 #include <dev/mii/miivar.h>
73 
74 #include <dev/marvell/gtreg.h>
75 #include <dev/marvell/gtvar.h>
76 #include <dev/marvell/gtethreg.h>
77 #include <dev/marvell/if_gfevar.h>
78 #include <dev/marvell/marvellreg.h>
79 #include <dev/marvell/marvellvar.h>
80 
81 #include <prop/proplib.h>
82 
83 #include "locators.h"
84 
85 
86 #define	GE_READ(sc, reg) \
87 	bus_space_read_4((sc)->sc_memt, (sc)->sc_memh, (reg))
88 #define	GE_WRITE(sc, reg, v) \
89 	bus_space_write_4((sc)->sc_memt, (sc)->sc_memh, (reg), (v))
90 
91 #define	GE_DEBUG
92 #if 0
93 #define	GE_NOHASH
94 #define	GE_NORX
95 #endif
96 
97 #ifdef GE_DEBUG
98 #define	GE_DPRINTF(sc, a)					\
99 	do {							\
100 		if ((sc)->sc_ec.ec_if.if_flags & IFF_DEBUG)	\
101 			printf a;				\
102 	} while (0 /* CONSTCOND */)
103 #define	GE_FUNC_ENTER(sc, func)	GE_DPRINTF(sc, ("[" func))
104 #define	GE_FUNC_EXIT(sc, str)	GE_DPRINTF(sc, (str "]"))
105 #else
106 #define	GE_DPRINTF(sc, a)	do { } while (0)
107 #define	GE_FUNC_ENTER(sc, func)	do { } while (0)
108 #define	GE_FUNC_EXIT(sc, str)	do { } while (0)
109 #endif
110 enum gfe_whack_op {
111 	GE_WHACK_START,		GE_WHACK_RESTART,
112 	GE_WHACK_CHANGE,	GE_WHACK_STOP
113 };
114 
115 enum gfe_hash_op {
116 	GE_HASH_ADD,		GE_HASH_REMOVE,
117 };
118 
119 #if 1
120 #define	htogt32(a)		htobe32(a)
121 #define	gt32toh(a)		be32toh(a)
122 #else
123 #define	htogt32(a)		htole32(a)
124 #define	gt32toh(a)		le32toh(a)
125 #endif
126 
127 #define GE_RXDSYNC(sc, rxq, n, ops) \
128 	bus_dmamap_sync((sc)->sc_dmat, (rxq)->rxq_desc_mem.gdm_map, \
129 	    (n) * sizeof((rxq)->rxq_descs[0]), sizeof((rxq)->rxq_descs[0]), \
130 	    (ops))
131 #define	GE_RXDPRESYNC(sc, rxq, n) \
132 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
133 #define	GE_RXDPOSTSYNC(sc, rxq, n) \
134 	GE_RXDSYNC(sc, rxq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
135 
136 #define GE_TXDSYNC(sc, txq, n, ops) \
137 	bus_dmamap_sync((sc)->sc_dmat, (txq)->txq_desc_mem.gdm_map, \
138 	    (n) * sizeof((txq)->txq_descs[0]), sizeof((txq)->txq_descs[0]), \
139 	    (ops))
140 #define	GE_TXDPRESYNC(sc, txq, n) \
141 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE)
142 #define	GE_TXDPOSTSYNC(sc, txq, n) \
143 	GE_TXDSYNC(sc, txq, n, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE)
144 
145 #define	STATIC
146 
147 
148 STATIC int gfec_match(device_t, cfdata_t, void *);
149 STATIC void gfec_attach(device_t, device_t, void *);
150 
151 STATIC int gfec_print(void *, const char *);
152 STATIC int gfec_search(device_t, cfdata_t, const int *, void *);
153 
154 STATIC int gfec_enet_phy(device_t, int);
155 STATIC int gfec_mii_read(device_t, int, int, uint16_t *);
156 STATIC int gfec_mii_write(device_t, int, int, uint16_t);
157 STATIC void gfec_mii_statchg(struct ifnet *);
158 
159 STATIC int gfe_match(device_t, cfdata_t, void *);
160 STATIC void gfe_attach(device_t, device_t, void *);
161 
162 STATIC int gfe_dmamem_alloc(struct gfe_softc *, struct gfe_dmamem *, int,
163 	size_t, int);
164 STATIC void gfe_dmamem_free(struct gfe_softc *, struct gfe_dmamem *);
165 
166 STATIC int gfe_ifioctl(struct ifnet *, u_long, void *);
167 STATIC void gfe_ifstart(struct ifnet *);
168 STATIC void gfe_ifwatchdog(struct ifnet *);
169 
170 STATIC void gfe_tick(void *arg);
171 
172 STATIC void gfe_tx_restart(void *);
173 STATIC int gfe_tx_enqueue(struct gfe_softc *, enum gfe_txprio);
174 STATIC uint32_t gfe_tx_done(struct gfe_softc *, enum gfe_txprio, uint32_t);
175 STATIC void gfe_tx_cleanup(struct gfe_softc *, enum gfe_txprio, int);
176 STATIC int gfe_tx_txqalloc(struct gfe_softc *, enum gfe_txprio);
177 STATIC int gfe_tx_start(struct gfe_softc *, enum gfe_txprio);
178 STATIC void gfe_tx_stop(struct gfe_softc *, enum gfe_whack_op);
179 
180 STATIC void gfe_rx_cleanup(struct gfe_softc *, enum gfe_rxprio);
181 STATIC void gfe_rx_get(struct gfe_softc *, enum gfe_rxprio);
182 STATIC int gfe_rx_prime(struct gfe_softc *);
183 STATIC uint32_t gfe_rx_process(struct gfe_softc *, uint32_t, uint32_t);
184 STATIC int gfe_rx_rxqalloc(struct gfe_softc *, enum gfe_rxprio);
185 STATIC int gfe_rx_rxqinit(struct gfe_softc *, enum gfe_rxprio);
186 STATIC void gfe_rx_stop(struct gfe_softc *, enum gfe_whack_op);
187 
188 STATIC int gfe_intr(void *);
189 
190 STATIC int gfe_whack(struct gfe_softc *, enum gfe_whack_op);
191 
192 STATIC int gfe_hash_compute(struct gfe_softc *, const uint8_t [ETHER_ADDR_LEN]);
193 STATIC int gfe_hash_entry_op(struct gfe_softc *, enum gfe_hash_op,
194 	enum gfe_rxprio, const uint8_t [ETHER_ADDR_LEN]);
195 STATIC int gfe_hash_multichg(struct ethercom *, const struct ether_multi *,
196 	u_long);
197 STATIC int gfe_hash_fill(struct gfe_softc *);
198 STATIC int gfe_hash_alloc(struct gfe_softc *);
199 
200 
201 CFATTACH_DECL_NEW(gfec, sizeof(struct gfec_softc),
202     gfec_match, gfec_attach, NULL, NULL);
203 CFATTACH_DECL_NEW(gfe, sizeof(struct gfe_softc),
204     gfe_match, gfe_attach, NULL, NULL);
205 
206 
207 /* ARGSUSED */
208 int
gfec_match(device_t parent,cfdata_t cf,void * aux)209 gfec_match(device_t parent, cfdata_t cf, void *aux)
210 {
211 	struct marvell_attach_args *mva = aux;
212 
213 	if (strcmp(mva->mva_name, cf->cf_name) != 0)
214 		return 0;
215 	if (mva->mva_offset == MVA_OFFSET_DEFAULT)
216 		return 0;
217 
218 	mva->mva_size = ETHC_SIZE;
219 	return 1;
220 }
221 
222 /* ARGSUSED */
223 void
gfec_attach(device_t parent,device_t self,void * aux)224 gfec_attach(device_t parent, device_t self, void *aux)
225 {
226 	struct gfec_softc *sc = device_private(self);
227 	struct marvell_attach_args *mva = aux, gfea;
228 	static int gfe_irqs[] = { 32, 33, 34 };
229 	int i;
230 
231 	aprint_naive("\n");
232 	aprint_normal(": Ethernet Controller\n");
233 
234 	sc->sc_dev = self;
235 	sc->sc_iot = mva->mva_iot;
236 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh, mva->mva_offset,
237 	    mva->mva_size, &sc->sc_ioh)) {
238 		aprint_error_dev(self, "Cannot map registers\n");
239 		return;
240 	}
241 
242 	mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NET);
243 
244 	for (i = 0; i < ETH_NUM; i++) {
245 		gfea.mva_name = "gfe";
246 		gfea.mva_model = mva->mva_model;
247 		gfea.mva_iot = sc->sc_iot;
248 		gfea.mva_ioh = sc->sc_ioh;
249 		gfea.mva_unit = i;
250 		gfea.mva_dmat = mva->mva_dmat;
251 		gfea.mva_irq = gfe_irqs[i];
252 		config_found(sc->sc_dev, &gfea, gfec_print,
253 		    CFARGS(.submatch = gfec_search));
254 	}
255 }
256 
257 int
gfec_print(void * aux,const char * pnp)258 gfec_print(void *aux, const char *pnp)
259 {
260 	struct marvell_attach_args *gfea = aux;
261 
262 	if (pnp)
263 		aprint_normal("%s at %s port %d",
264 		    gfea->mva_name, pnp, gfea->mva_unit);
265 	else {
266 		if (gfea->mva_unit != GFECCF_PORT_DEFAULT)
267 			aprint_normal(" port %d", gfea->mva_unit);
268 		if (gfea->mva_irq != GFECCF_IRQ_DEFAULT)
269 			aprint_normal(" irq %d", gfea->mva_irq);
270 	}
271 	return UNCONF;
272 }
273 
274 /* ARGSUSED */
275 int
gfec_search(device_t parent,cfdata_t cf,const int * ldesc,void * aux)276 gfec_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
277 {
278 	struct marvell_attach_args *gfea = aux;
279 
280 	if (cf->cf_loc[GFECCF_PORT] == gfea->mva_unit &&
281 	    cf->cf_loc[GFECCF_IRQ] != GFECCF_IRQ_DEFAULT)
282 		gfea->mva_irq = cf->cf_loc[GFECCF_IRQ];
283 
284 	return config_match(parent, cf, aux);
285 }
286 
287 int
gfec_enet_phy(device_t dev,int unit)288 gfec_enet_phy(device_t dev, int unit)
289 {
290 	struct gfec_softc *sc = device_private(dev);
291 	uint32_t epar;
292 
293 	epar = bus_space_read_4(sc->sc_iot, sc->sc_ioh, ETH_EPAR);
294 	return ETH_EPAR_PhyAD_GET(epar, unit);
295 }
296 
297 int
gfec_mii_read(device_t dev,int phy,int reg,uint16_t * val)298 gfec_mii_read(device_t dev, int phy, int reg, uint16_t *val)
299 {
300 	struct gfec_softc *csc = device_private(device_parent(dev));
301 	uint32_t data;
302 	int count = 10000;
303 
304 	mutex_enter(&csc->sc_mtx);
305 
306 	do {
307 		DELAY(10);
308 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
309 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
310 
311 	if (count == 0) {
312 		aprint_error_dev(dev,
313 		    "mii read for phy %d reg %d busied out\n", phy, reg);
314 		mutex_exit(&csc->sc_mtx);
315 		return ETIMEDOUT;
316 	}
317 
318 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
319 	    ETH_ESMIR_READ(phy, reg));
320 
321 	count = 10000;
322 	do {
323 		DELAY(10);
324 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
325 	} while ((data & ETH_ESMIR_ReadValid) == 0 && count-- > 0);
326 
327 	mutex_exit(&csc->sc_mtx);
328 
329 	if (count == 0) {
330 		aprint_error_dev(dev,
331 		    "mii read for phy %d reg %d timed out\n", phy, reg);
332 		return ETIMEDOUT;
333 	}
334 #if defined(GTMIIDEBUG)
335 	aprint_normal_dev(dev, "mii_read(%d, %d): %#x data %#x\n",
336 	    phy, reg, data, ETH_ESMIR_Value_GET(data));
337 #endif
338 	*val = ETH_ESMIR_Value_GET(data);
339 	return 0;
340 }
341 
342 int
gfec_mii_write(device_t dev,int phy,int reg,uint16_t value)343 gfec_mii_write(device_t dev, int phy, int reg, uint16_t value)
344 {
345 	struct gfec_softc *csc = device_private(device_parent(dev));
346 	uint32_t data;
347 	int count = 10000;
348 
349 	mutex_enter(&csc->sc_mtx);
350 
351 	do {
352 		DELAY(10);
353 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
354 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
355 
356 	if (count == 0) {
357 		aprint_error_dev(dev,
358 		    "mii write for phy %d reg %d busied out (busy)\n",
359 		    phy, reg);
360 		mutex_exit(&csc->sc_mtx);
361 		return ETIMEDOUT;
362 	}
363 
364 	bus_space_write_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR,
365 	    ETH_ESMIR_WRITE(phy, reg, value));
366 
367 	count = 10000;
368 	do {
369 		DELAY(10);
370 		data = bus_space_read_4(csc->sc_iot, csc->sc_ioh, ETH_ESMIR);
371 	} while ((data & ETH_ESMIR_Busy) && count-- > 0);
372 
373 	mutex_exit(&csc->sc_mtx);
374 
375 	if (count == 0) {
376 		aprint_error_dev(dev,
377 		    "mii write for phy %d reg %d timed out\n", phy, reg);
378 		return ETIMEDOUT;
379 	}
380 #if defined(GTMIIDEBUG)
381 	aprint_normal_dev(dev, "mii_write(%d, %d, %#hx)\n", phy, reg, value);
382 #endif
383 	return 0;
384 }
385 
386 void
gfec_mii_statchg(struct ifnet * ifp)387 gfec_mii_statchg(struct ifnet *ifp)
388 {
389 	/* struct gfe_softc *sc = ifp->if_softc; */
390 	/* do nothing? */
391 }
392 
393 /* ARGSUSED */
394 int
gfe_match(device_t parent,cfdata_t cf,void * aux)395 gfe_match(device_t parent, cfdata_t cf, void *aux)
396 {
397 
398 	return 1;
399 }
400 
401 /* ARGSUSED */
402 void
gfe_attach(device_t parent,device_t self,void * aux)403 gfe_attach(device_t parent, device_t self, void *aux)
404 {
405 	struct marvell_attach_args *mva = aux;
406 	struct gfe_softc * const sc = device_private(self);
407 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
408 	struct mii_data * const mii = &sc->sc_mii;
409 	uint32_t sdcr;
410 	int phyaddr, error;
411 	prop_data_t ea;
412 	uint8_t enaddr[6];
413 
414 	aprint_naive("\n");
415 	aprint_normal(": Ethernet Controller\n");
416 
417 	if (bus_space_subregion(mva->mva_iot, mva->mva_ioh,
418 	    mva->mva_offset, mva->mva_size, &sc->sc_memh)) {
419 		aprint_error_dev(self, "failed to map registers\n");
420 		return;
421 	}
422 	sc->sc_dev = self;
423 	sc->sc_memt = mva->mva_iot;
424 	sc->sc_dmat = mva->mva_dmat;
425 	sc->sc_macno = (mva->mva_offset == ETH_BASE(0)) ? 0 :
426 	    ((mva->mva_offset == ETH_BASE(1)) ? 1 : 2);
427 
428 	callout_init(&sc->sc_co, 0);
429 
430 	phyaddr = gfec_enet_phy(parent, sc->sc_macno);
431 
432 	ea = prop_dictionary_get(device_properties(sc->sc_dev), "mac-addr");
433 	if (ea != NULL) {
434 		KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
435 		KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
436 		memcpy(enaddr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
437 	}
438 
439 	sc->sc_pcr = GE_READ(sc, ETH_EPCR);
440 	sc->sc_pcxr = GE_READ(sc, ETH_EPCXR);
441 	sc->sc_intrmask = GE_READ(sc, ETH_EIMR) | ETH_IR_MIIPhySTC;
442 
443 	aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));
444 
445 #if defined(DEBUG)
446 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
447 #endif
448 
449 	sc->sc_pcxr &= ~ETH_EPCXR_PRIOrx_Override;
450 	if (device_cfdata(self)->cf_flags & 1) {
451 		aprint_normal_dev(self, "phy %d (rmii)\n", phyaddr);
452 		sc->sc_pcxr |= ETH_EPCXR_RMIIEn;
453 	} else {
454 		aprint_normal_dev(self, "phy %d (mii)\n", phyaddr);
455 		sc->sc_pcxr &= ~ETH_EPCXR_RMIIEn;
456 	}
457 	if (device_cfdata(self)->cf_flags & 2)
458 		sc->sc_flags |= GE_NOFREE;
459 	/* Set Max Frame Length is 1536 */
460 	sc->sc_pcxr &= ~ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_MASK);
461 	sc->sc_pcxr |= ETH_EPCXR_MFL_SET(ETH_EPCXR_MFL_1536);
462 	sc->sc_max_frame_length = 1536;
463 
464 	if (sc->sc_pcr & ETH_EPCR_EN) {
465 		int tries = 1000;
466 		/*
467 		 * Abort transmitter and receiver and wait for them to quiese
468 		 */
469 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR | ETH_ESDCMR_AT);
470 		do {
471 			delay(100);
472 			if (tries-- <= 0) {
473 				aprint_error_dev(self, "Abort TX/RX failed\n");
474 				break;
475 			}
476 		} while (GE_READ(sc, ETH_ESDCMR) &
477 		    (ETH_ESDCMR_AR | ETH_ESDCMR_AT));
478 	}
479 
480 	sc->sc_pcr &=
481 	    ~(ETH_EPCR_EN | ETH_EPCR_RBM | ETH_EPCR_PM | ETH_EPCR_PBF);
482 
483 #if defined(DEBUG)
484 	printf("pcr %#x, pcxr %#x\n", sc->sc_pcr, sc->sc_pcxr);
485 #endif
486 
487 	/*
488 	 * Now turn off the GT.  If it didn't quiese, too ***ing bad.
489 	 */
490 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
491 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
492 	sdcr = GE_READ(sc, ETH_ESDCR);
493 	ETH_ESDCR_BSZ_SET(sdcr, ETH_ESDCR_BSZ_4);
494 	sdcr |= ETH_ESDCR_RIFB;
495 	GE_WRITE(sc, ETH_ESDCR, sdcr);
496 
497 	mii->mii_ifp = ifp;
498 	mii->mii_readreg = gfec_mii_read;
499 	mii->mii_writereg = gfec_mii_write;
500 	mii->mii_statchg = gfec_mii_statchg;
501 
502 	sc->sc_ec.ec_mii = mii;
503 	ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
504 
505 	mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
506 		MII_OFFSET_ANY, MIIF_NOISOLATE);
507 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
508 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
509 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
510 	} else
511 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
512 
513 	strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
514 	ifp->if_softc = sc;
515 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
516 #if 0
517 	ifp->if_flags |= IFF_DEBUG;
518 #endif
519 	ifp->if_ioctl = gfe_ifioctl;
520 	ifp->if_start = gfe_ifstart;
521 	ifp->if_watchdog = gfe_ifwatchdog;
522 
523 	if (sc->sc_flags & GE_NOFREE) {
524 		error = gfe_rx_rxqalloc(sc, GE_RXPRIO_HI);
525 		if (!error)
526 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDHI);
527 		if (!error)
528 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_MEDLO);
529 		if (!error)
530 			error = gfe_rx_rxqalloc(sc, GE_RXPRIO_LO);
531 		if (!error)
532 			error = gfe_tx_txqalloc(sc, GE_TXPRIO_HI);
533 		if (!error)
534 			error = gfe_hash_alloc(sc);
535 		if (error)
536 			aprint_error_dev(self,
537 			    "failed to allocate resources: %d\n", error);
538 	}
539 
540 	if_attach(ifp);
541 	ether_ifattach(ifp, enaddr);
542 	bpf_attach(ifp, DLT_EN10MB, sizeof(struct ether_header));
543 	rnd_attach_source(&sc->sc_rnd_source, device_xname(self), RND_TYPE_NET,
544 	    RND_FLAG_DEFAULT);
545 	marvell_intr_establish(mva->mva_irq, IPL_NET, gfe_intr, sc);
546 }
547 
548 int
gfe_dmamem_alloc(struct gfe_softc * sc,struct gfe_dmamem * gdm,int maxsegs,size_t size,int flags)549 gfe_dmamem_alloc(struct gfe_softc *sc, struct gfe_dmamem *gdm, int maxsegs,
550 	size_t size, int flags)
551 {
552 	int error = 0;
553 	GE_FUNC_ENTER(sc, "gfe_dmamem_alloc");
554 
555 	KASSERT(gdm->gdm_kva == NULL);
556 	gdm->gdm_size = size;
557 	gdm->gdm_maxsegs = maxsegs;
558 
559 	error = bus_dmamem_alloc(sc->sc_dmat, gdm->gdm_size, PAGE_SIZE,
560 	    gdm->gdm_size, gdm->gdm_segs, gdm->gdm_maxsegs, &gdm->gdm_nsegs,
561 	    BUS_DMA_NOWAIT);
562 	if (error)
563 		goto fail;
564 
565 	error = bus_dmamem_map(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs,
566 	    gdm->gdm_size, &gdm->gdm_kva, flags | BUS_DMA_NOWAIT);
567 	if (error)
568 		goto fail;
569 
570 	error = bus_dmamap_create(sc->sc_dmat, gdm->gdm_size, gdm->gdm_nsegs,
571 	    gdm->gdm_size, 0, BUS_DMA_ALLOCNOW |BUS_DMA_NOWAIT, &gdm->gdm_map);
572 	if (error)
573 		goto fail;
574 
575 	error = bus_dmamap_load(sc->sc_dmat, gdm->gdm_map, gdm->gdm_kva,
576 	    gdm->gdm_size, NULL, BUS_DMA_NOWAIT);
577 	if (error)
578 		goto fail;
579 
580 	/* invalidate from cache */
581 	bus_dmamap_sync(sc->sc_dmat, gdm->gdm_map, 0, gdm->gdm_size,
582 	    BUS_DMASYNC_PREREAD);
583 fail:
584 	if (error) {
585 		gfe_dmamem_free(sc, gdm);
586 		GE_DPRINTF(sc, (":err=%d", error));
587 	}
588 	GE_DPRINTF(sc, (":kva=%p/%#x,map=%p,nsegs=%d,pa=%x/%x",
589 	    gdm->gdm_kva, gdm->gdm_size, gdm->gdm_map, gdm->gdm_map->dm_nsegs,
590 	    gdm->gdm_map->dm_segs->ds_addr, gdm->gdm_map->dm_segs->ds_len));
591 	GE_FUNC_EXIT(sc, "");
592 	return error;
593 }
594 
595 void
gfe_dmamem_free(struct gfe_softc * sc,struct gfe_dmamem * gdm)596 gfe_dmamem_free(struct gfe_softc *sc, struct gfe_dmamem *gdm)
597 {
598 	GE_FUNC_ENTER(sc, "gfe_dmamem_free");
599 	if (gdm->gdm_map)
600 		bus_dmamap_destroy(sc->sc_dmat, gdm->gdm_map);
601 	if (gdm->gdm_kva)
602 		bus_dmamem_unmap(sc->sc_dmat, gdm->gdm_kva, gdm->gdm_size);
603 	if (gdm->gdm_nsegs > 0)
604 		bus_dmamem_free(sc->sc_dmat, gdm->gdm_segs, gdm->gdm_nsegs);
605 	gdm->gdm_map = NULL;
606 	gdm->gdm_kva = NULL;
607 	gdm->gdm_nsegs = 0;
608 	GE_FUNC_EXIT(sc, "");
609 }
610 
611 int
gfe_ifioctl(struct ifnet * ifp,u_long cmd,void * data)612 gfe_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
613 {
614 	struct gfe_softc * const sc = ifp->if_softc;
615 	struct ifreq *ifr = (struct ifreq *) data;
616 	struct ifaddr *ifa = (struct ifaddr *) data;
617 	int s, error = 0;
618 
619 	GE_FUNC_ENTER(sc, "gfe_ifioctl");
620 	s = splnet();
621 
622 	switch (cmd) {
623 	case SIOCINITIFADDR:
624 		ifp->if_flags |= IFF_UP;
625 		error = gfe_whack(sc, GE_WHACK_START);
626 		switch (ifa->ifa_addr->sa_family) {
627 #ifdef INET
628 		case AF_INET:
629 			if (error == 0)
630 				arp_ifinit(ifp, ifa);
631 			break;
632 #endif
633 		default:
634 			break;
635 		}
636 		break;
637 
638 	case SIOCSIFFLAGS:
639 		if ((error = ifioctl_common(ifp, cmd, data)) != 0)
640 			break;
641 		/* XXX re-use ether_ioctl() */
642 		switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
643 		case IFF_UP | IFF_RUNNING:/* active->active, update */
644 			error = gfe_whack(sc, GE_WHACK_CHANGE);
645 			break;
646 		case IFF_RUNNING:	/* not up, so we stop */
647 			error = gfe_whack(sc, GE_WHACK_STOP);
648 			break;
649 		case IFF_UP:		/* not running, so we start */
650 			error = gfe_whack(sc, GE_WHACK_START);
651 			break;
652 		case 0:			/* idle->idle: do nothing */
653 			break;
654 		}
655 		break;
656 
657 	case SIOCSIFMTU:
658 		if (ifr->ifr_mtu > ETHERMTU || ifr->ifr_mtu < ETHERMIN) {
659 			error = EINVAL;
660 			break;
661 		}
662 		if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
663 			error = 0;
664 		break;
665 
666 	default:
667 		if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
668 			if (ifp->if_flags & IFF_RUNNING)
669 				error = gfe_whack(sc, GE_WHACK_CHANGE);
670 			else
671 				error = 0;
672 		}
673 		break;
674 	}
675 	splx(s);
676 	GE_FUNC_EXIT(sc, "");
677 	return error;
678 }
679 
680 void
gfe_ifstart(struct ifnet * ifp)681 gfe_ifstart(struct ifnet *ifp)
682 {
683 	struct gfe_softc * const sc = ifp->if_softc;
684 	struct mbuf *m;
685 
686 	GE_FUNC_ENTER(sc, "gfe_ifstart");
687 
688 	if ((ifp->if_flags & IFF_RUNNING) == 0) {
689 		GE_FUNC_EXIT(sc, "$");
690 		return;
691 	}
692 
693 	for (;;) {
694 		IF_POLL(&ifp->if_snd, m);
695 		if (m == NULL) {
696 			ifp->if_flags &= ~IFF_OACTIVE;
697 			GE_FUNC_EXIT(sc, "");
698 			return;
699 		}
700 
701 		/*
702 		 * No space in the pending queue?  try later.
703 		 */
704 		if (IF_QFULL(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq))
705 			break;
706 
707 		IF_DEQUEUE(&ifp->if_snd, m);
708 
709 		/*
710 		 * Try to enqueue a mbuf to the device. If that fails, we
711 		 * can always try to map the next mbuf.
712 		 */
713 		IF_ENQUEUE(&sc->sc_txq[GE_TXPRIO_HI].txq_pendq, m);
714 		GE_DPRINTF(sc, (">"));
715 #ifndef GE_NOTX
716 		(void) gfe_tx_enqueue(sc, GE_TXPRIO_HI);
717 #endif
718 	}
719 
720 	/*
721 	 * Attempt to queue the mbuf for send failed.
722 	 */
723 	ifp->if_flags |= IFF_OACTIVE;
724 	GE_FUNC_EXIT(sc, "%%");
725 }
726 
727 void
gfe_ifwatchdog(struct ifnet * ifp)728 gfe_ifwatchdog(struct ifnet *ifp)
729 {
730 	struct gfe_softc * const sc = ifp->if_softc;
731 	struct gfe_txqueue * const txq = &sc->sc_txq[GE_TXPRIO_HI];
732 
733 	GE_FUNC_ENTER(sc, "gfe_ifwatchdog");
734 	aprint_error_dev(sc->sc_dev, "device timeout");
735 	if (ifp->if_flags & IFF_RUNNING) {
736 		uint32_t curtxdnum;
737 
738 		curtxdnum = (GE_READ(sc, txq->txq_ectdp) -
739 		    txq->txq_desc_busaddr) / sizeof(txq->txq_descs[0]);
740 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
741 		GE_TXDPOSTSYNC(sc, txq, curtxdnum);
742 		aprint_error(" (fi=%d(%#x),lo=%d,cur=%d(%#x),icm=%#x) ",
743 		    txq->txq_fi, txq->txq_descs[txq->txq_fi].ed_cmdsts,
744 		    txq->txq_lo, curtxdnum, txq->txq_descs[curtxdnum].ed_cmdsts,
745 		    GE_READ(sc, ETH_EICR));
746 		GE_TXDPRESYNC(sc, txq, txq->txq_fi);
747 		GE_TXDPRESYNC(sc, txq, curtxdnum);
748 	}
749 	aprint_error("\n");
750 	if_statinc(ifp, if_oerrors);
751 	(void) gfe_whack(sc, GE_WHACK_RESTART);
752 	GE_FUNC_EXIT(sc, "");
753 }
754 
755 int
gfe_rx_rxqalloc(struct gfe_softc * sc,enum gfe_rxprio rxprio)756 gfe_rx_rxqalloc(struct gfe_softc *sc, enum gfe_rxprio rxprio)
757 {
758 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
759 	int error;
760 
761 	GE_FUNC_ENTER(sc, "gfe_rx_rxqalloc");
762 	GE_DPRINTF(sc, ("(%d)", rxprio));
763 
764 	error = gfe_dmamem_alloc(sc, &rxq->rxq_desc_mem, 1,
765 	    GE_RXDESC_MEMSIZE, BUS_DMA_NOCACHE);
766 	if (error) {
767 		GE_FUNC_EXIT(sc, "!!");
768 		return error;
769 	}
770 
771 	error = gfe_dmamem_alloc(sc, &rxq->rxq_buf_mem, GE_RXBUF_NSEGS,
772 	    GE_RXBUF_MEMSIZE, 0);
773 	if (error) {
774 		GE_FUNC_EXIT(sc, "!!!");
775 		return error;
776 	}
777 	GE_FUNC_EXIT(sc, "");
778 	return error;
779 }
780 
781 int
gfe_rx_rxqinit(struct gfe_softc * sc,enum gfe_rxprio rxprio)782 gfe_rx_rxqinit(struct gfe_softc *sc, enum gfe_rxprio rxprio)
783 {
784 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
785 	volatile struct gt_eth_desc *rxd;
786 	const bus_dma_segment_t *ds;
787 	int idx;
788 	bus_addr_t nxtaddr;
789 	bus_size_t boff;
790 
791 	GE_FUNC_ENTER(sc, "gfe_rx_rxqinit");
792 	GE_DPRINTF(sc, ("(%d)", rxprio));
793 
794 	if ((sc->sc_flags & GE_NOFREE) == 0) {
795 		int error = gfe_rx_rxqalloc(sc, rxprio);
796 		if (error) {
797 			GE_FUNC_EXIT(sc, "!");
798 			return error;
799 		}
800 	} else {
801 		KASSERT(rxq->rxq_desc_mem.gdm_kva != NULL);
802 		KASSERT(rxq->rxq_buf_mem.gdm_kva != NULL);
803 	}
804 
805 	memset(rxq->rxq_desc_mem.gdm_kva, 0, GE_RXDESC_MEMSIZE);
806 
807 	rxq->rxq_descs =
808 	    (volatile struct gt_eth_desc *) rxq->rxq_desc_mem.gdm_kva;
809 	rxq->rxq_desc_busaddr = rxq->rxq_desc_mem.gdm_map->dm_segs[0].ds_addr;
810 	rxq->rxq_bufs = (struct gfe_rxbuf *) rxq->rxq_buf_mem.gdm_kva;
811 	rxq->rxq_fi = 0;
812 	rxq->rxq_active = GE_RXDESC_MAX;
813 	boff = 0;
814 	ds = rxq->rxq_buf_mem.gdm_map->dm_segs;
815 	nxtaddr = rxq->rxq_desc_busaddr + sizeof(*rxd);
816 	for (idx = 0, rxd = rxq->rxq_descs; idx < GE_RXDESC_MAX;
817 	    idx++, rxd++, nxtaddr += sizeof(*rxd)) {
818 		rxd->ed_lencnt = htogt32(GE_RXBUF_SIZE << 16);
819 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
820 		rxd->ed_bufptr = htogt32(ds->ds_addr + boff);
821 		/*
822 		 * update the nxtptr to point to the next txd.
823 		 */
824 		if (idx == GE_RXDESC_MAX - 1)
825 			nxtaddr = rxq->rxq_desc_busaddr;
826 		rxd->ed_nxtptr = htogt32(nxtaddr);
827 		boff += GE_RXBUF_SIZE;
828 		if (boff == ds->ds_len) {
829 			ds++;
830 			boff = 0;
831 		}
832 	}
833 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map, 0,
834 			rxq->rxq_desc_mem.gdm_map->dm_mapsize,
835 			BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
836 	bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map, 0,
837 			rxq->rxq_buf_mem.gdm_map->dm_mapsize,
838 			BUS_DMASYNC_PREREAD);
839 
840 	rxq->rxq_intrbits = ETH_IR_RxBuffer | ETH_IR_RxError;
841 	switch (rxprio) {
842 	case GE_RXPRIO_HI:
843 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_3 | ETH_IR_RxError_3;
844 		rxq->rxq_efrdp = ETH_EFRDP3;
845 		rxq->rxq_ecrdp = ETH_ECRDP3;
846 		break;
847 	case GE_RXPRIO_MEDHI:
848 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_2 | ETH_IR_RxError_2;
849 		rxq->rxq_efrdp = ETH_EFRDP2;
850 		rxq->rxq_ecrdp = ETH_ECRDP2;
851 		break;
852 	case GE_RXPRIO_MEDLO:
853 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_1 | ETH_IR_RxError_1;
854 		rxq->rxq_efrdp = ETH_EFRDP1;
855 		rxq->rxq_ecrdp = ETH_ECRDP1;
856 		break;
857 	case GE_RXPRIO_LO:
858 		rxq->rxq_intrbits |= ETH_IR_RxBuffer_0 | ETH_IR_RxError_0;
859 		rxq->rxq_efrdp = ETH_EFRDP0;
860 		rxq->rxq_ecrdp = ETH_ECRDP0;
861 		break;
862 	}
863 	GE_FUNC_EXIT(sc, "");
864 	return 0;
865 }
866 
867 void
gfe_rx_get(struct gfe_softc * sc,enum gfe_rxprio rxprio)868 gfe_rx_get(struct gfe_softc *sc, enum gfe_rxprio rxprio)
869 {
870 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
871 	struct gfe_rxqueue * const rxq = &sc->sc_rxq[rxprio];
872 	struct mbuf *m = rxq->rxq_curpkt;
873 
874 	GE_FUNC_ENTER(sc, "gfe_rx_get");
875 	GE_DPRINTF(sc, ("(%d)", rxprio));
876 
877 	while (rxq->rxq_active > 0) {
878 		volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[rxq->rxq_fi];
879 		struct gfe_rxbuf *rxb = &rxq->rxq_bufs[rxq->rxq_fi];
880 		const struct ether_header *eh;
881 		unsigned int cmdsts;
882 		size_t buflen;
883 
884 		GE_RXDPOSTSYNC(sc, rxq, rxq->rxq_fi);
885 		cmdsts = gt32toh(rxd->ed_cmdsts);
886 		GE_DPRINTF(sc, (":%d=%#x", rxq->rxq_fi, cmdsts));
887 		rxq->rxq_cmdsts = cmdsts;
888 		/*
889 		 * Sometimes the GE "forgets" to reset the ownership bit.
890 		 * But if the length has been rewritten, the packet is ours
891 		 * so pretend the O bit is set.
892 		 */
893 		buflen = gt32toh(rxd->ed_lencnt) & 0xffff;
894 		if ((cmdsts & RX_CMD_O) && buflen == 0) {
895 			GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
896 			break;
897 		}
898 
899 		/*
900 		 * If this is not a single buffer packet with no errors
901 		 * or for some reason it's bigger than our frame size,
902 		 * ignore it and go to the next packet.
903 		 */
904 		if ((cmdsts & (RX_CMD_F | RX_CMD_L | RX_STS_ES)) !=
905 		    (RX_CMD_F | RX_CMD_L) ||
906 		    (buflen > sc->sc_max_frame_length)) {
907 			GE_DPRINTF(sc, ("!"));
908 			--rxq->rxq_active;
909 			if_statinc(ifp, if_ipackets);
910 			if_statinc(ifp, if_ierrors);
911 			goto give_it_back;
912 		}
913 
914 		/* CRC is included with the packet; trim it off. */
915 		buflen -= ETHER_CRC_LEN;
916 
917 		if (m == NULL) {
918 			MGETHDR(m, M_DONTWAIT, MT_DATA);
919 			if (m == NULL) {
920 				GE_DPRINTF(sc, ("?"));
921 				break;
922 			}
923 		}
924 		if ((m->m_flags & M_EXT) == 0 && buflen > MHLEN - 2) {
925 			MCLGET(m, M_DONTWAIT);
926 			if ((m->m_flags & M_EXT) == 0) {
927 				GE_DPRINTF(sc, ("?"));
928 				break;
929 			}
930 		}
931 		m->m_data += 2;
932 		m->m_len = 0;
933 		m->m_pkthdr.len = 0;
934 		m_set_rcvif(m, ifp);
935 		rxq->rxq_cmdsts = cmdsts;
936 		--rxq->rxq_active;
937 
938 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_buf_mem.gdm_map,
939 		    rxq->rxq_fi * sizeof(*rxb), buflen, BUS_DMASYNC_POSTREAD);
940 
941 		KASSERT(m->m_len == 0 && m->m_pkthdr.len == 0);
942 		memcpy(m->m_data + m->m_len, rxb->rxb_data, buflen);
943 		m->m_len = buflen;
944 		m->m_pkthdr.len = buflen;
945 
946 		eh = (const struct ether_header *) m->m_data;
947 		if ((ifp->if_flags & IFF_PROMISC) ||
948 		    (rxq->rxq_cmdsts & RX_STS_M) == 0 ||
949 		    (rxq->rxq_cmdsts & RX_STS_HE) ||
950 		    (eh->ether_dhost[0] & 1) != 0 ||
951 		    memcmp(eh->ether_dhost, CLLADDR(ifp->if_sadl),
952 							ETHER_ADDR_LEN) == 0) {
953 			if_percpuq_enqueue(ifp->if_percpuq, m);
954 			m = NULL;
955 			GE_DPRINTF(sc, (">"));
956 		} else {
957 			m->m_len = 0;
958 			m->m_pkthdr.len = 0;
959 			GE_DPRINTF(sc, ("+"));
960 		}
961 		rxq->rxq_cmdsts = 0;
962 
963 	   give_it_back:
964 		rxd->ed_lencnt &= ~0xffff;	/* zero out length */
965 		rxd->ed_cmdsts = htogt32(RX_CMD_F|RX_CMD_L|RX_CMD_O|RX_CMD_EI);
966 #if 0
967 		GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)",
968 		    rxq->rxq_fi,
969 		    ((unsigned long *)rxd)[0], ((unsigned long *)rxd)[1],
970 		    ((unsigned long *)rxd)[2], ((unsigned long *)rxd)[3]));
971 #endif
972 		GE_RXDPRESYNC(sc, rxq, rxq->rxq_fi);
973 		if (++rxq->rxq_fi == GE_RXDESC_MAX)
974 			rxq->rxq_fi = 0;
975 		rxq->rxq_active++;
976 	}
977 	rxq->rxq_curpkt = m;
978 	GE_FUNC_EXIT(sc, "");
979 }
980 
981 uint32_t
gfe_rx_process(struct gfe_softc * sc,uint32_t cause,uint32_t intrmask)982 gfe_rx_process(struct gfe_softc *sc, uint32_t cause, uint32_t intrmask)
983 {
984 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
985 	struct gfe_rxqueue *rxq;
986 	uint32_t rxbits;
987 #define	RXPRIO_DECODER	0xffffaa50
988 	GE_FUNC_ENTER(sc, "gfe_rx_process");
989 
990 	rxbits = ETH_IR_RxBuffer_GET(cause);
991 	while (rxbits) {
992 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
993 		GE_DPRINTF(sc, ("%1x", rxbits));
994 		rxbits &= ~(1 << rxprio);
995 		gfe_rx_get(sc, rxprio);
996 	}
997 
998 	rxbits = ETH_IR_RxError_GET(cause);
999 	while (rxbits) {
1000 		enum gfe_rxprio rxprio = (RXPRIO_DECODER >> (rxbits * 2)) & 3;
1001 		uint32_t masks[(GE_RXDESC_MAX + 31) / 32];
1002 		int idx;
1003 		rxbits &= ~(1 << rxprio);
1004 		rxq = &sc->sc_rxq[rxprio];
1005 		sc->sc_idlemask |= (rxq->rxq_intrbits & ETH_IR_RxBits);
1006 		intrmask &= ~(rxq->rxq_intrbits & ETH_IR_RxBits);
1007 		if ((sc->sc_tickflags & GE_TICK_RX_RESTART) == 0) {
1008 			sc->sc_tickflags |= GE_TICK_RX_RESTART;
1009 			callout_reset(&sc->sc_co, 1, gfe_tick, sc);
1010 		}
1011 		if_statinc(ifp, if_ierrors);
1012 		GE_DPRINTF(sc, ("%s: rx queue %d filled at %u\n",
1013 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi));
1014 		memset(masks, 0, sizeof(masks));
1015 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1016 		    0, rxq->rxq_desc_mem.gdm_size,
1017 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1018 		for (idx = 0; idx < GE_RXDESC_MAX; idx++) {
1019 			volatile struct gt_eth_desc *rxd = &rxq->rxq_descs[idx];
1020 
1021 			if (RX_CMD_O & gt32toh(rxd->ed_cmdsts))
1022 				masks[idx/32] |= 1 << (idx & 31);
1023 		}
1024 		bus_dmamap_sync(sc->sc_dmat, rxq->rxq_desc_mem.gdm_map,
1025 		    0, rxq->rxq_desc_mem.gdm_size,
1026 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1027 #if defined(DEBUG)
1028 		printf("%s: rx queue %d filled at %u=%#x(%#x/%#x)\n",
1029 		    device_xname(sc->sc_dev), rxprio, rxq->rxq_fi,
1030 		    rxq->rxq_cmdsts, masks[0], masks[1]);
1031 #endif
1032 	}
1033 	if ((intrmask & ETH_IR_RxBits) == 0)
1034 		intrmask &= ~(ETH_IR_RxBuffer | ETH_IR_RxError);
1035 
1036 	GE_FUNC_EXIT(sc, "");
1037 	return intrmask;
1038 }
1039 
1040 int
gfe_rx_prime(struct gfe_softc * sc)1041 gfe_rx_prime(struct gfe_softc *sc)
1042 {
1043 	struct gfe_rxqueue *rxq;
1044 	int error;
1045 
1046 	GE_FUNC_ENTER(sc, "gfe_rx_prime");
1047 
1048 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_HI);
1049 	if (error)
1050 		goto bail;
1051 	rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1052 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1053 		GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1054 		GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1055 	}
1056 	sc->sc_intrmask |= rxq->rxq_intrbits;
1057 
1058 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDHI);
1059 	if (error)
1060 		goto bail;
1061 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1062 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1063 		GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1064 		GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1065 		sc->sc_intrmask |= rxq->rxq_intrbits;
1066 	}
1067 
1068 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_MEDLO);
1069 	if (error)
1070 		goto bail;
1071 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1072 		rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1073 		GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1074 		GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1075 		sc->sc_intrmask |= rxq->rxq_intrbits;
1076 	}
1077 
1078 	error = gfe_rx_rxqinit(sc, GE_RXPRIO_LO);
1079 	if (error)
1080 		goto bail;
1081 	if ((sc->sc_flags & GE_RXACTIVE) == 0) {
1082 		rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1083 		GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1084 		GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1085 		sc->sc_intrmask |= rxq->rxq_intrbits;
1086 	}
1087 
1088   bail:
1089 	GE_FUNC_EXIT(sc, "");
1090 	return error;
1091 }
1092 
1093 void
gfe_rx_cleanup(struct gfe_softc * sc,enum gfe_rxprio rxprio)1094 gfe_rx_cleanup(struct gfe_softc *sc, enum gfe_rxprio rxprio)
1095 {
1096 	struct gfe_rxqueue *rxq = &sc->sc_rxq[rxprio];
1097 	GE_FUNC_ENTER(sc, "gfe_rx_cleanup");
1098 	if (rxq == NULL) {
1099 		GE_FUNC_EXIT(sc, "");
1100 		return;
1101 	}
1102 
1103 	if (rxq->rxq_curpkt)
1104 		m_freem(rxq->rxq_curpkt);
1105 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1106 		gfe_dmamem_free(sc, &rxq->rxq_desc_mem);
1107 		gfe_dmamem_free(sc, &rxq->rxq_buf_mem);
1108 	}
1109 	GE_FUNC_EXIT(sc, "");
1110 }
1111 
1112 void
gfe_rx_stop(struct gfe_softc * sc,enum gfe_whack_op op)1113 gfe_rx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1114 {
1115 	GE_FUNC_ENTER(sc, "gfe_rx_stop");
1116 	sc->sc_flags &= ~GE_RXACTIVE;
1117 	sc->sc_idlemask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
1118 	sc->sc_intrmask &= ~(ETH_IR_RxBits | ETH_IR_RxBuffer | ETH_IR_RxError);
1119 	GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1120 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_AR);
1121 	do {
1122 		delay(10);
1123 	} while (GE_READ(sc, ETH_ESDCMR) & ETH_ESDCMR_AR);
1124 	gfe_rx_cleanup(sc, GE_RXPRIO_HI);
1125 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDHI);
1126 	gfe_rx_cleanup(sc, GE_RXPRIO_MEDLO);
1127 	gfe_rx_cleanup(sc, GE_RXPRIO_LO);
1128 	GE_FUNC_EXIT(sc, "");
1129 }
1130 
1131 void
gfe_tick(void * arg)1132 gfe_tick(void *arg)
1133 {
1134 	struct gfe_softc * const sc = arg;
1135 	uint32_t intrmask;
1136 	unsigned int tickflags;
1137 	int s;
1138 
1139 	GE_FUNC_ENTER(sc, "gfe_tick");
1140 
1141 	s = splnet();
1142 
1143 	tickflags = sc->sc_tickflags;
1144 	sc->sc_tickflags = 0;
1145 	intrmask = sc->sc_intrmask;
1146 	if (tickflags & GE_TICK_TX_IFSTART)
1147 		gfe_ifstart(&sc->sc_ec.ec_if);
1148 	if (tickflags & GE_TICK_RX_RESTART) {
1149 		intrmask |= sc->sc_idlemask;
1150 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_3 | ETH_IR_RxError_3)) {
1151 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_HI];
1152 			rxq->rxq_fi = 0;
1153 			GE_WRITE(sc, ETH_EFRDP3, rxq->rxq_desc_busaddr);
1154 			GE_WRITE(sc, ETH_ECRDP3, rxq->rxq_desc_busaddr);
1155 		}
1156 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_2 | ETH_IR_RxError_2)) {
1157 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDHI];
1158 			rxq->rxq_fi = 0;
1159 			GE_WRITE(sc, ETH_EFRDP2, rxq->rxq_desc_busaddr);
1160 			GE_WRITE(sc, ETH_ECRDP2, rxq->rxq_desc_busaddr);
1161 		}
1162 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_1 | ETH_IR_RxError_1)) {
1163 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_MEDLO];
1164 			rxq->rxq_fi = 0;
1165 			GE_WRITE(sc, ETH_EFRDP1, rxq->rxq_desc_busaddr);
1166 			GE_WRITE(sc, ETH_ECRDP1, rxq->rxq_desc_busaddr);
1167 		}
1168 		if (sc->sc_idlemask & (ETH_IR_RxBuffer_0 | ETH_IR_RxError_0)) {
1169 			struct gfe_rxqueue *rxq = &sc->sc_rxq[GE_RXPRIO_LO];
1170 			rxq->rxq_fi = 0;
1171 			GE_WRITE(sc, ETH_EFRDP0, rxq->rxq_desc_busaddr);
1172 			GE_WRITE(sc, ETH_ECRDP0, rxq->rxq_desc_busaddr);
1173 		}
1174 		sc->sc_idlemask = 0;
1175 	}
1176 	if (intrmask != sc->sc_intrmask) {
1177 		sc->sc_intrmask = intrmask;
1178 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1179 	}
1180 	gfe_intr(sc);
1181 	splx(s);
1182 
1183 	GE_FUNC_EXIT(sc, "");
1184 }
1185 
1186 int
gfe_tx_enqueue(struct gfe_softc * sc,enum gfe_txprio txprio)1187 gfe_tx_enqueue(struct gfe_softc *sc, enum gfe_txprio txprio)
1188 {
1189 	const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1190 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1191 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1192 	volatile struct gt_eth_desc * const txd = &txq->txq_descs[txq->txq_lo];
1193 	uint32_t intrmask = sc->sc_intrmask;
1194 	size_t buflen;
1195 	struct mbuf *m;
1196 
1197 	GE_FUNC_ENTER(sc, "gfe_tx_enqueue");
1198 
1199 	/*
1200 	 * Anything in the pending queue to enqueue?  if not, punt. Likewise
1201 	 * if the txq is not yet created.
1202 	 * otherwise grab its dmamap.
1203 	 */
1204 	if (txq == NULL || (m = txq->txq_pendq.ifq_head) == NULL) {
1205 		GE_FUNC_EXIT(sc, "-");
1206 		return 0;
1207 	}
1208 
1209 	/*
1210 	 * Have we [over]consumed our limit of descriptors?
1211 	 * Do we have enough free descriptors?
1212 	 */
1213 	if (GE_TXDESC_MAX == txq->txq_nactive + 2) {
1214 		volatile struct gt_eth_desc * const txd2 = &txq->txq_descs[txq->txq_fi];
1215 		uint32_t cmdsts;
1216 		size_t pktlen;
1217 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1218 		cmdsts = gt32toh(txd2->ed_cmdsts);
1219 		if (cmdsts & TX_CMD_O) {
1220 			int nextin;
1221 			/*
1222 			 * Sometime the Discovery forgets to update the
1223 			 * last descriptor.  See if we own the descriptor
1224 			 * after it (since we know we've turned that to
1225 			 * the discovery and if we owned it, the Discovery
1226 			 * gave it back).  If we do, we know the Discovery
1227 			 * gave back this one but forgot to mark it as ours.
1228 			 */
1229 			nextin = txq->txq_fi + 1;
1230 			if (nextin == GE_TXDESC_MAX)
1231 				nextin = 0;
1232 			GE_TXDPOSTSYNC(sc, txq, nextin);
1233 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1234 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1235 				GE_TXDPRESYNC(sc, txq, nextin);
1236 				GE_FUNC_EXIT(sc, "@");
1237 				return 0;
1238 			}
1239 #ifdef DEBUG
1240 			printf("%s: txenqueue: transmitter resynced at %d\n",
1241 			    device_xname(sc->sc_dev), txq->txq_fi);
1242 #endif
1243 		}
1244 		if (++txq->txq_fi == GE_TXDESC_MAX)
1245 			txq->txq_fi = 0;
1246 		txq->txq_inptr = gt32toh(txd2->ed_bufptr) - txq->txq_buf_busaddr;
1247 		pktlen = (gt32toh(txd2->ed_lencnt) >> 16) & 0xffff;
1248 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1249 		txq->txq_nactive--;
1250 
1251 		/* statistics */
1252 		if_statinc(ifp, if_opackets);
1253 		if (cmdsts & TX_STS_ES)
1254 			if_statinc(ifp, if_oerrors);
1255 		GE_DPRINTF(sc, ("%%"));
1256 	}
1257 
1258 	buflen = roundup(m->m_pkthdr.len, dcache_line_size);
1259 
1260 	/*
1261 	 * If this packet would wrap around the end of the buffer, reset back
1262 	 * to the beginning.
1263 	 */
1264 	if (txq->txq_outptr + buflen > GE_TXBUF_SIZE) {
1265 		txq->txq_ei_gapcount += GE_TXBUF_SIZE - txq->txq_outptr;
1266 		txq->txq_outptr = 0;
1267 	}
1268 
1269 	/*
1270 	 * Make sure the output packet doesn't run over the beginning of
1271 	 * what we've already given the GT.
1272 	 */
1273 	if (txq->txq_nactive > 0 && txq->txq_outptr <= txq->txq_inptr &&
1274 	    txq->txq_outptr + buflen > txq->txq_inptr) {
1275 		intrmask |= txq->txq_intrbits &
1276 		    (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow);
1277 		if (sc->sc_intrmask != intrmask) {
1278 			sc->sc_intrmask = intrmask;
1279 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1280 		}
1281 		GE_FUNC_EXIT(sc, "#");
1282 		return 0;
1283 	}
1284 
1285 	/*
1286 	 * The end-of-list descriptor we put on last time is the starting point
1287 	 * for this packet.  The GT is supposed to terminate list processing on
1288 	 * a NULL nxtptr but that currently is broken so a CPU-owned descriptor
1289 	 * must terminate the list.
1290 	 */
1291 	intrmask = sc->sc_intrmask;
1292 
1293 	m_copydata(m, 0, m->m_pkthdr.len,
1294 	    (char *)txq->txq_buf_mem.gdm_kva + (int)txq->txq_outptr);
1295 	bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1296 	    txq->txq_outptr, buflen, BUS_DMASYNC_PREWRITE);
1297 	txd->ed_bufptr = htogt32(txq->txq_buf_busaddr + txq->txq_outptr);
1298 	txd->ed_lencnt = htogt32(m->m_pkthdr.len << 16);
1299 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1300 
1301 	/*
1302 	 * Request a buffer interrupt every 2/3 of the way thru the transmit
1303 	 * buffer.
1304 	 */
1305 	txq->txq_ei_gapcount += buflen;
1306 	if (txq->txq_ei_gapcount > 2 * GE_TXBUF_SIZE / 3) {
1307 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST |TX_CMD_LAST |TX_CMD_EI);
1308 		txq->txq_ei_gapcount = 0;
1309 	} else {
1310 		txd->ed_cmdsts = htogt32(TX_CMD_FIRST | TX_CMD_LAST);
1311 	}
1312 #if 0
1313 	GE_DPRINTF(sc, ("([%d]->%08lx.%08lx.%08lx.%08lx)", txq->txq_lo,
1314 	    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1315 	    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1316 #endif
1317 	GE_TXDPRESYNC(sc, txq, txq->txq_lo);
1318 
1319 	txq->txq_outptr += buflen;
1320 	/*
1321 	 * Tell the SDMA engine to "Fetch!"
1322 	 */
1323 	GE_WRITE(sc, ETH_ESDCMR,
1324 		 txq->txq_esdcmrbits & (ETH_ESDCMR_TXDH | ETH_ESDCMR_TXDL));
1325 
1326 	GE_DPRINTF(sc, ("(%d)", txq->txq_lo));
1327 
1328 	/*
1329 	 * Update the last out appropriately.
1330 	 */
1331 	txq->txq_nactive++;
1332 	if (++txq->txq_lo == GE_TXDESC_MAX)
1333 		txq->txq_lo = 0;
1334 
1335 	/*
1336 	 * Move mbuf from the pending queue to the snd queue.
1337 	 */
1338 	IF_DEQUEUE(&txq->txq_pendq, m);
1339 	bpf_mtap(ifp, m, BPF_D_OUT);
1340 	m_freem(m);
1341 	ifp->if_flags &= ~IFF_OACTIVE;
1342 
1343 	/*
1344 	 * Since we have put an item into the packet queue, we now want
1345 	 * an interrupt when the transmit queue finishes processing the
1346 	 * list.  But only update the mask if needs changing.
1347 	 */
1348 	intrmask |= txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow);
1349 	if (sc->sc_intrmask != intrmask) {
1350 		sc->sc_intrmask = intrmask;
1351 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1352 	}
1353 	if (ifp->if_timer == 0)
1354 		ifp->if_timer = 5;
1355 	GE_FUNC_EXIT(sc, "*");
1356 	return 1;
1357 }
1358 
1359 uint32_t
gfe_tx_done(struct gfe_softc * sc,enum gfe_txprio txprio,uint32_t intrmask)1360 gfe_tx_done(struct gfe_softc *sc, enum gfe_txprio txprio, uint32_t intrmask)
1361 {
1362 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1363 	struct ifnet * const ifp = &sc->sc_ec.ec_if;
1364 
1365 	GE_FUNC_ENTER(sc, "gfe_tx_done");
1366 
1367 	if (txq == NULL) {
1368 		GE_FUNC_EXIT(sc, "");
1369 		return intrmask;
1370 	}
1371 
1372 	while (txq->txq_nactive > 0) {
1373 		const int dcache_line_size = curcpu()->ci_ci.dcache_line_size;
1374 		volatile struct gt_eth_desc *txd = &txq->txq_descs[txq->txq_fi];
1375 		uint32_t cmdsts;
1376 		size_t pktlen;
1377 
1378 		GE_TXDPOSTSYNC(sc, txq, txq->txq_fi);
1379 		if ((cmdsts = gt32toh(txd->ed_cmdsts)) & TX_CMD_O) {
1380 			int nextin;
1381 
1382 			if (txq->txq_nactive == 1) {
1383 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1384 				GE_FUNC_EXIT(sc, "");
1385 				return intrmask;
1386 			}
1387 			/*
1388 			 * Sometimes the Discovery forgets to update the
1389 			 * ownership bit in the descriptor.  See if we own the
1390 			 * descriptor after it (since we know we've turned
1391 			 * that to the Discovery and if we own it now then the
1392 			 * Discovery gave it back).  If we do, we know the
1393 			 * Discovery gave back this one but forgot to mark it
1394 			 * as ours.
1395 			 */
1396 			nextin = txq->txq_fi + 1;
1397 			if (nextin == GE_TXDESC_MAX)
1398 				nextin = 0;
1399 			GE_TXDPOSTSYNC(sc, txq, nextin);
1400 			if (gt32toh(txq->txq_descs[nextin].ed_cmdsts) & TX_CMD_O) {
1401 				GE_TXDPRESYNC(sc, txq, txq->txq_fi);
1402 				GE_TXDPRESYNC(sc, txq, nextin);
1403 				GE_FUNC_EXIT(sc, "");
1404 				return intrmask;
1405 			}
1406 #ifdef DEBUG
1407 			printf("%s: txdone: transmitter resynced at %d\n",
1408 			    device_xname(sc->sc_dev), txq->txq_fi);
1409 #endif
1410 		}
1411 #if 0
1412 		GE_DPRINTF(sc, ("([%d]<-%08lx.%08lx.%08lx.%08lx)",
1413 		    txq->txq_lo,
1414 		    ((unsigned long *)txd)[0], ((unsigned long *)txd)[1],
1415 		    ((unsigned long *)txd)[2], ((unsigned long *)txd)[3]));
1416 #endif
1417 		GE_DPRINTF(sc, ("(%d)", txq->txq_fi));
1418 		if (++txq->txq_fi == GE_TXDESC_MAX)
1419 			txq->txq_fi = 0;
1420 		txq->txq_inptr = gt32toh(txd->ed_bufptr) - txq->txq_buf_busaddr;
1421 		pktlen = (gt32toh(txd->ed_lencnt) >> 16) & 0xffff;
1422 		bus_dmamap_sync(sc->sc_dmat, txq->txq_buf_mem.gdm_map,
1423 		    txq->txq_inptr, pktlen, BUS_DMASYNC_POSTWRITE);
1424 		txq->txq_inptr += roundup(pktlen, dcache_line_size);
1425 
1426 		/* statistics */
1427 		if_statinc(ifp, if_opackets);
1428 		if (cmdsts & TX_STS_ES)
1429 			if_statinc(ifp, if_oerrors);
1430 
1431 		/* txd->ed_bufptr = 0; */
1432 
1433 		ifp->if_timer = 5;
1434 		--txq->txq_nactive;
1435 	}
1436 	if (txq->txq_nactive != 0)
1437 		panic("%s: transmit fifo%d empty but active count (%d) > 0!",
1438 		    device_xname(sc->sc_dev), txprio, txq->txq_nactive);
1439 	ifp->if_timer = 0;
1440 	intrmask &=
1441 	    ~(txq->txq_intrbits & (ETH_IR_TxEndHigh | ETH_IR_TxEndLow));
1442 	intrmask &=
1443 	    ~(txq->txq_intrbits & (ETH_IR_TxBufferHigh | ETH_IR_TxBufferLow));
1444 	GE_FUNC_EXIT(sc, "");
1445 	return intrmask;
1446 }
1447 
1448 int
gfe_tx_txqalloc(struct gfe_softc * sc,enum gfe_txprio txprio)1449 gfe_tx_txqalloc(struct gfe_softc *sc, enum gfe_txprio txprio)
1450 {
1451 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1452 	int error;
1453 
1454 	GE_FUNC_ENTER(sc, "gfe_tx_txqalloc");
1455 
1456 	error = gfe_dmamem_alloc(sc, &txq->txq_desc_mem, 1,
1457 	    GE_TXDESC_MEMSIZE, BUS_DMA_NOCACHE);
1458 	if (error) {
1459 		GE_FUNC_EXIT(sc, "");
1460 		return error;
1461 	}
1462 	error = gfe_dmamem_alloc(sc, &txq->txq_buf_mem, 1, GE_TXBUF_SIZE, 0);
1463 	if (error) {
1464 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1465 		GE_FUNC_EXIT(sc, "");
1466 		return error;
1467 	}
1468 	GE_FUNC_EXIT(sc, "");
1469 	return 0;
1470 }
1471 
1472 int
gfe_tx_start(struct gfe_softc * sc,enum gfe_txprio txprio)1473 gfe_tx_start(struct gfe_softc *sc, enum gfe_txprio txprio)
1474 {
1475 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1476 	volatile struct gt_eth_desc *txd;
1477 	unsigned int i;
1478 	bus_addr_t addr;
1479 
1480 	GE_FUNC_ENTER(sc, "gfe_tx_start");
1481 
1482 	sc->sc_intrmask &=
1483 	    ~(ETH_IR_TxEndHigh		|
1484 	      ETH_IR_TxBufferHigh	|
1485 	      ETH_IR_TxEndLow		|
1486 	      ETH_IR_TxBufferLow);
1487 
1488 	if (sc->sc_flags & GE_NOFREE) {
1489 		KASSERT(txq->txq_desc_mem.gdm_kva != NULL);
1490 		KASSERT(txq->txq_buf_mem.gdm_kva != NULL);
1491 	} else {
1492 		int error = gfe_tx_txqalloc(sc, txprio);
1493 		if (error) {
1494 			GE_FUNC_EXIT(sc, "!");
1495 			return error;
1496 		}
1497 	}
1498 
1499 	txq->txq_descs =
1500 	    (volatile struct gt_eth_desc *) txq->txq_desc_mem.gdm_kva;
1501 	txq->txq_desc_busaddr = txq->txq_desc_mem.gdm_map->dm_segs[0].ds_addr;
1502 	txq->txq_buf_busaddr = txq->txq_buf_mem.gdm_map->dm_segs[0].ds_addr;
1503 
1504 	txq->txq_pendq.ifq_maxlen = 10;
1505 	txq->txq_ei_gapcount = 0;
1506 	txq->txq_nactive = 0;
1507 	txq->txq_fi = 0;
1508 	txq->txq_lo = 0;
1509 	txq->txq_inptr = GE_TXBUF_SIZE;
1510 	txq->txq_outptr = 0;
1511 	for (i = 0, txd = txq->txq_descs,
1512 	    addr = txq->txq_desc_busaddr + sizeof(*txd);
1513 	    i < GE_TXDESC_MAX - 1; i++, txd++, addr += sizeof(*txd)) {
1514 		/*
1515 		 * update the nxtptr to point to the next txd.
1516 		 */
1517 		txd->ed_cmdsts = 0;
1518 		txd->ed_nxtptr = htogt32(addr);
1519 	}
1520 	txq->txq_descs[GE_TXDESC_MAX-1].ed_nxtptr =
1521 	    htogt32(txq->txq_desc_busaddr);
1522 	bus_dmamap_sync(sc->sc_dmat, txq->txq_desc_mem.gdm_map, 0,
1523 	    GE_TXDESC_MEMSIZE, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1524 
1525 	switch (txprio) {
1526 	case GE_TXPRIO_HI:
1527 		txq->txq_intrbits = ETH_IR_TxEndHigh | ETH_IR_TxBufferHigh;
1528 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDH;
1529 		txq->txq_epsrbits = ETH_EPSR_TxHigh;
1530 		txq->txq_ectdp = ETH_ECTDP1;
1531 		GE_WRITE(sc, ETH_ECTDP1, txq->txq_desc_busaddr);
1532 		break;
1533 
1534 	case GE_TXPRIO_LO:
1535 		txq->txq_intrbits = ETH_IR_TxEndLow | ETH_IR_TxBufferLow;
1536 		txq->txq_esdcmrbits = ETH_ESDCMR_TXDL;
1537 		txq->txq_epsrbits = ETH_EPSR_TxLow;
1538 		txq->txq_ectdp = ETH_ECTDP0;
1539 		GE_WRITE(sc, ETH_ECTDP0, txq->txq_desc_busaddr);
1540 		break;
1541 
1542 	case GE_TXPRIO_NONE:
1543 		break;
1544 	}
1545 #if 0
1546 	GE_DPRINTF(sc, ("(ectdp=%#x", txq->txq_ectdp));
1547 	GE_WRITE(sc->sc_dev, txq->txq_ectdp, txq->txq_desc_busaddr);
1548 	GE_DPRINTF(sc, (")"));
1549 #endif
1550 
1551 	/*
1552 	 * If we are restarting, there may be packets in the pending queue
1553 	 * waiting to be enqueued.  Try enqueuing packets from both priority
1554 	 * queues until the pending queue is empty or there no room for them
1555 	 * on the device.
1556 	 */
1557 	while (gfe_tx_enqueue(sc, txprio))
1558 		continue;
1559 
1560 	GE_FUNC_EXIT(sc, "");
1561 	return 0;
1562 }
1563 
1564 void
gfe_tx_cleanup(struct gfe_softc * sc,enum gfe_txprio txprio,int flush)1565 gfe_tx_cleanup(struct gfe_softc *sc, enum gfe_txprio txprio, int flush)
1566 {
1567 	struct gfe_txqueue * const txq = &sc->sc_txq[txprio];
1568 
1569 	GE_FUNC_ENTER(sc, "gfe_tx_cleanup");
1570 	if (txq == NULL) {
1571 		GE_FUNC_EXIT(sc, "");
1572 		return;
1573 	}
1574 
1575 	if (!flush) {
1576 		GE_FUNC_EXIT(sc, "");
1577 		return;
1578 	}
1579 
1580 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1581 		gfe_dmamem_free(sc, &txq->txq_desc_mem);
1582 		gfe_dmamem_free(sc, &txq->txq_buf_mem);
1583 	}
1584 	GE_FUNC_EXIT(sc, "-F");
1585 }
1586 
1587 void
gfe_tx_stop(struct gfe_softc * sc,enum gfe_whack_op op)1588 gfe_tx_stop(struct gfe_softc *sc, enum gfe_whack_op op)
1589 {
1590 	GE_FUNC_ENTER(sc, "gfe_tx_stop");
1591 
1592 	GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_STDH | ETH_ESDCMR_STDL);
1593 
1594 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, sc->sc_intrmask);
1595 	sc->sc_intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, sc->sc_intrmask);
1596 	sc->sc_intrmask &=
1597 	    ~(ETH_IR_TxEndHigh		|
1598 	      ETH_IR_TxBufferHigh	|
1599 	      ETH_IR_TxEndLow		|
1600 	      ETH_IR_TxBufferLow);
1601 
1602 	gfe_tx_cleanup(sc, GE_TXPRIO_HI, op == GE_WHACK_STOP);
1603 	gfe_tx_cleanup(sc, GE_TXPRIO_LO, op == GE_WHACK_STOP);
1604 
1605 	sc->sc_ec.ec_if.if_timer = 0;
1606 	GE_FUNC_EXIT(sc, "");
1607 }
1608 
1609 int
gfe_intr(void * arg)1610 gfe_intr(void *arg)
1611 {
1612 	struct gfe_softc * const sc = arg;
1613 	uint32_t cause;
1614 	uint32_t intrmask = sc->sc_intrmask;
1615 	int claim = 0;
1616 	int cnt;
1617 
1618 	GE_FUNC_ENTER(sc, "gfe_intr");
1619 
1620 	for (cnt = 0; cnt < 4; cnt++) {
1621 		if (sc->sc_intrmask != intrmask) {
1622 			sc->sc_intrmask = intrmask;
1623 			GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1624 		}
1625 		cause = GE_READ(sc, ETH_EICR);
1626 		cause &= sc->sc_intrmask;
1627 		GE_DPRINTF(sc, (".%#x", cause));
1628 		if (cause == 0)
1629 			break;
1630 
1631 		claim = 1;
1632 
1633 		GE_WRITE(sc, ETH_EICR, ~cause);
1634 #ifndef GE_NORX
1635 		if (cause & (ETH_IR_RxBuffer | ETH_IR_RxError))
1636 			intrmask = gfe_rx_process(sc, cause, intrmask);
1637 #endif
1638 
1639 #ifndef GE_NOTX
1640 		if (cause & (ETH_IR_TxBufferHigh | ETH_IR_TxEndHigh))
1641 			intrmask = gfe_tx_done(sc, GE_TXPRIO_HI, intrmask);
1642 		if (cause & (ETH_IR_TxBufferLow | ETH_IR_TxEndLow))
1643 			intrmask = gfe_tx_done(sc, GE_TXPRIO_LO, intrmask);
1644 #endif
1645 		if (cause & ETH_IR_MIIPhySTC) {
1646 			sc->sc_flags |= GE_PHYSTSCHG;
1647 			/* intrmask &= ~ETH_IR_MIIPhySTC; */
1648 		}
1649 	}
1650 
1651 	while (gfe_tx_enqueue(sc, GE_TXPRIO_HI))
1652 		continue;
1653 	while (gfe_tx_enqueue(sc, GE_TXPRIO_LO))
1654 		continue;
1655 
1656 	GE_FUNC_EXIT(sc, "");
1657 	return claim;
1658 }
1659 
1660 int
gfe_whack(struct gfe_softc * sc,enum gfe_whack_op op)1661 gfe_whack(struct gfe_softc *sc, enum gfe_whack_op op)
1662 {
1663 	int error = 0;
1664 	GE_FUNC_ENTER(sc, "gfe_whack");
1665 
1666 	switch (op) {
1667 	case GE_WHACK_RESTART:
1668 #ifndef GE_NOTX
1669 		gfe_tx_stop(sc, op);
1670 #endif
1671 		/* sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING; */
1672 		/* FALLTHROUGH */
1673 	case GE_WHACK_START:
1674 #ifndef GE_NOHASH
1675 		if (error == 0 && sc->sc_hashtable == NULL) {
1676 			error = gfe_hash_alloc(sc);
1677 			if (error)
1678 				break;
1679 		}
1680 		if (op != GE_WHACK_RESTART)
1681 			gfe_hash_fill(sc);
1682 #endif
1683 #ifndef GE_NORX
1684 		if (op != GE_WHACK_RESTART) {
1685 			error = gfe_rx_prime(sc);
1686 			if (error)
1687 				break;
1688 		}
1689 #endif
1690 #ifndef GE_NOTX
1691 		error = gfe_tx_start(sc, GE_TXPRIO_HI);
1692 		if (error)
1693 			break;
1694 #endif
1695 		sc->sc_ec.ec_if.if_flags |= IFF_RUNNING;
1696 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1697 		GE_WRITE(sc, ETH_EPCXR, sc->sc_pcxr);
1698 		GE_WRITE(sc, ETH_EICR, 0);
1699 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1700 #ifndef GE_NOHASH
1701 		GE_WRITE(sc, ETH_EHTPR,
1702 		    sc->sc_hash_mem.gdm_map->dm_segs->ds_addr);
1703 #endif
1704 #ifndef GE_NORX
1705 		GE_WRITE(sc, ETH_ESDCMR, ETH_ESDCMR_ERD);
1706 		sc->sc_flags |= GE_RXACTIVE;
1707 #endif
1708 		/* FALLTHROUGH */
1709 	case GE_WHACK_CHANGE:
1710 		GE_DPRINTF(sc, ("(pcr=%#x,imr=%#x)",
1711 		    GE_READ(sc, ETH_EPCR), GE_READ(sc, ETH_EIMR)));
1712 		GE_WRITE(sc, ETH_EPCR, sc->sc_pcr | ETH_EPCR_EN);
1713 		GE_WRITE(sc, ETH_EIMR, sc->sc_intrmask);
1714 		gfe_ifstart(&sc->sc_ec.ec_if);
1715 		GE_DPRINTF(sc, ("(ectdp0=%#x, ectdp1=%#x)",
1716 		    GE_READ(sc, ETH_ECTDP0), GE_READ(sc, ETH_ECTDP1)));
1717 		GE_FUNC_EXIT(sc, "");
1718 		return error;
1719 	case GE_WHACK_STOP:
1720 		break;
1721 	}
1722 
1723 #ifdef GE_DEBUG
1724 	if (error)
1725 		GE_DPRINTF(sc, (" failed: %d\n", error));
1726 #endif
1727 	GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1728 	GE_WRITE(sc, ETH_EIMR, 0);
1729 	sc->sc_ec.ec_if.if_flags &= ~IFF_RUNNING;
1730 #ifndef GE_NOTX
1731 	gfe_tx_stop(sc, GE_WHACK_STOP);
1732 #endif
1733 #ifndef GE_NORX
1734 	gfe_rx_stop(sc, GE_WHACK_STOP);
1735 #endif
1736 #ifndef GE_NOHASH
1737 	if ((sc->sc_flags & GE_NOFREE) == 0) {
1738 		gfe_dmamem_free(sc, &sc->sc_hash_mem);
1739 		sc->sc_hashtable = NULL;
1740 	}
1741 #endif
1742 
1743 	GE_FUNC_EXIT(sc, "");
1744 	return error;
1745 }
1746 
1747 int
gfe_hash_compute(struct gfe_softc * sc,const uint8_t eaddr[ETHER_ADDR_LEN])1748 gfe_hash_compute(struct gfe_softc *sc, const uint8_t eaddr[ETHER_ADDR_LEN])
1749 {
1750 	uint32_t w0, add0, add1;
1751 	uint32_t result;
1752 
1753 	GE_FUNC_ENTER(sc, "gfe_hash_compute");
1754 	add0 = ((uint32_t) eaddr[5] <<	0) |
1755 	       ((uint32_t) eaddr[4] <<	8) |
1756 	       ((uint32_t) eaddr[3] << 16);
1757 
1758 	add0 = ((add0 & 0x00f0f0f0) >> 4) | ((add0 & 0x000f0f0f) << 4);
1759 	add0 = ((add0 & 0x00cccccc) >> 2) | ((add0 & 0x00333333) << 2);
1760 	add0 = ((add0 & 0x00aaaaaa) >> 1) | ((add0 & 0x00555555) << 1);
1761 
1762 	add1 = ((uint32_t) eaddr[2] <<	0) |
1763 	       ((uint32_t) eaddr[1] <<	8) |
1764 	       ((uint32_t) eaddr[0] << 16);
1765 
1766 	add1 = ((add1 & 0x00f0f0f0) >> 4) | ((add1 & 0x000f0f0f) << 4);
1767 	add1 = ((add1 & 0x00cccccc) >> 2) | ((add1 & 0x00333333) << 2);
1768 	add1 = ((add1 & 0x00aaaaaa) >> 1) | ((add1 & 0x00555555) << 1);
1769 
1770 	GE_DPRINTF(sc, ("%s=", ether_sprintf(eaddr)));
1771 	/*
1772 	 * hashResult is the 15 bits Hash entry address.
1773 	 * ethernetADD is a 48 bit number, which is derived from the Ethernet
1774 	 *	MAC address, by nibble swapping in every byte (i.e MAC address
1775 	 *	of 0x123456789abc translates to ethernetADD of 0x21436587a9cb).
1776 	 */
1777 
1778 	if ((sc->sc_pcr & ETH_EPCR_HM) == 0) {
1779 		/*
1780 		 * hashResult[14:0] = hashFunc0(ethernetADD[47:0])
1781 		 *
1782 		 * hashFunc0 calculates the hashResult in the following manner:
1783 		 *   hashResult[ 8:0] = ethernetADD[14:8,1,0]
1784 		 *		XOR ethernetADD[23:15] XOR ethernetADD[32:24]
1785 		 */
1786 		result = (add0 & 3) | ((add0 >> 6) & ~3);
1787 		result ^= (add0 >> 15) ^ (add1 >>  0);
1788 		result &= 0x1ff;
1789 		/*
1790 		 *   hashResult[14:9] = ethernetADD[7:2]
1791 		 */
1792 		result |= (add0 & ~3) << 7;	/* excess bits will be masked */
1793 		GE_DPRINTF(sc, ("0(%#x)", result & 0x7fff));
1794 	} else {
1795 #define	TRIBITFLIP	073516240	/* yes its in octal */
1796 		/*
1797 		 * hashResult[14:0] = hashFunc1(ethernetADD[47:0])
1798 		 *
1799 		 * hashFunc1 calculates the hashResult in the following manner:
1800 		 *   hashResult[08:00] = ethernetADD[06:14]
1801 		 *		XOR ethernetADD[15:23] XOR ethernetADD[24:32]
1802 		 */
1803 		w0 = ((add0 >> 6) ^ (add0 >> 15) ^ (add1)) & 0x1ff;
1804 		/*
1805 		 * Now bitswap those 9 bits
1806 		 */
1807 		result = 0;
1808 		result |= ((TRIBITFLIP >> (((w0 >> 0) & 7) * 3)) & 7) << 6;
1809 		result |= ((TRIBITFLIP >> (((w0 >> 3) & 7) * 3)) & 7) << 3;
1810 		result |= ((TRIBITFLIP >> (((w0 >> 6) & 7) * 3)) & 7) << 0;
1811 
1812 		/*
1813 		 *   hashResult[14:09] = ethernetADD[00:05]
1814 		 */
1815 		result |= ((TRIBITFLIP >> (((add0 >> 0) & 7) * 3)) & 7) << 12;
1816 		result |= ((TRIBITFLIP >> (((add0 >> 3) & 7) * 3)) & 7) << 9;
1817 		GE_DPRINTF(sc, ("1(%#x)", result));
1818 	}
1819 	GE_FUNC_EXIT(sc, "");
1820 	return result & ((sc->sc_pcr & ETH_EPCR_HS_512) ? 0x7ff : 0x7fff);
1821 }
1822 
1823 int
gfe_hash_entry_op(struct gfe_softc * sc,enum gfe_hash_op op,enum gfe_rxprio prio,const uint8_t eaddr[ETHER_ADDR_LEN])1824 gfe_hash_entry_op(struct gfe_softc *sc, enum gfe_hash_op op,
1825 	enum gfe_rxprio prio, const uint8_t eaddr[ETHER_ADDR_LEN])
1826 {
1827 	uint64_t he;
1828 	uint64_t *maybe_he_p = NULL;
1829 	int limit;
1830 	int hash;
1831 	int maybe_hash = 0;
1832 
1833 	GE_FUNC_ENTER(sc, "gfe_hash_entry_op");
1834 
1835 	hash = gfe_hash_compute(sc, eaddr);
1836 
1837 	if (sc->sc_hashtable == NULL) {
1838 		panic("%s:%d: hashtable == NULL!", device_xname(sc->sc_dev),
1839 			__LINE__);
1840 	}
1841 
1842 	/*
1843 	 * Assume we are going to insert so create the hash entry we
1844 	 * are going to insert.  We also use it to match entries we
1845 	 * will be removing.
1846 	 */
1847 	he = ((uint64_t) eaddr[5] << 43) |
1848 	     ((uint64_t) eaddr[4] << 35) |
1849 	     ((uint64_t) eaddr[3] << 27) |
1850 	     ((uint64_t) eaddr[2] << 19) |
1851 	     ((uint64_t) eaddr[1] << 11) |
1852 	     ((uint64_t) eaddr[0] <<  3) |
1853 	     HSH_PRIO_INS(prio) | HSH_V | HSH_R;
1854 
1855 	/*
1856 	 * The GT will search upto 12 entries for a hit, so we must mimic that.
1857 	 */
1858 	hash &= sc->sc_hashmask / sizeof(he);
1859 	for (limit = HSH_LIMIT; limit > 0 ; --limit) {
1860 		/*
1861 		 * Does the GT wrap at the end, stop at the, or overrun the
1862 		 * end?  Assume it wraps for now.  Stash a copy of the
1863 		 * current hash entry.
1864 		 */
1865 		uint64_t *he_p = &sc->sc_hashtable[hash];
1866 		uint64_t thishe = *he_p;
1867 
1868 		/*
1869 		 * If the hash entry isn't valid, that break the chain.  And
1870 		 * this entry a good candidate for reuse.
1871 		 */
1872 		if ((thishe & HSH_V) == 0) {
1873 			maybe_he_p = he_p;
1874 			break;
1875 		}
1876 
1877 		/*
1878 		 * If the hash entry has the same address we are looking for
1879 		 * then ...  if we are removing and the skip bit is set, its
1880 		 * already been removed.  if are adding and the skip bit is
1881 		 * clear, then its already added.  In either return EBUSY
1882 		 * indicating the op has already been done.  Otherwise flip
1883 		 * the skip bit and return 0.
1884 		 */
1885 		if (((he ^ thishe) & HSH_ADDR_MASK) == 0) {
1886 			if (((op == GE_HASH_REMOVE) && (thishe & HSH_S)) ||
1887 			    ((op == GE_HASH_ADD) && (thishe & HSH_S) == 0))
1888 				return EBUSY;
1889 			*he_p = thishe ^ HSH_S;
1890 			bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1891 			    hash * sizeof(he), sizeof(he),
1892 			    BUS_DMASYNC_PREWRITE);
1893 			GE_FUNC_EXIT(sc, "^");
1894 			return 0;
1895 		}
1896 
1897 		/*
1898 		 * If we haven't found a slot for the entry and this entry
1899 		 * is currently being skipped, return this entry.
1900 		 */
1901 		if (maybe_he_p == NULL && (thishe & HSH_S)) {
1902 			maybe_he_p = he_p;
1903 			maybe_hash = hash;
1904 		}
1905 
1906 		hash = (hash + 1) & (sc->sc_hashmask / sizeof(he));
1907 	}
1908 
1909 	/*
1910 	 * If we got here, then there was no entry to remove.
1911 	 */
1912 	if (op == GE_HASH_REMOVE) {
1913 		GE_FUNC_EXIT(sc, "?");
1914 		return ENOENT;
1915 	}
1916 
1917 	/*
1918 	 * If we couldn't find a slot, return an error.
1919 	 */
1920 	if (maybe_he_p == NULL) {
1921 		GE_FUNC_EXIT(sc, "!");
1922 		return ENOSPC;
1923 	}
1924 
1925 	/* Update the entry.
1926 	 */
1927 	*maybe_he_p = he;
1928 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
1929 	    maybe_hash * sizeof(he), sizeof(he), BUS_DMASYNC_PREWRITE);
1930 	GE_FUNC_EXIT(sc, "+");
1931 	return 0;
1932 }
1933 
1934 int
gfe_hash_multichg(struct ethercom * ec,const struct ether_multi * enm,u_long cmd)1935 gfe_hash_multichg(struct ethercom *ec, const struct ether_multi *enm,
1936 		  u_long cmd)
1937 {
1938 	struct gfe_softc *sc = ec->ec_if.if_softc;
1939 	int error;
1940 	enum gfe_hash_op op;
1941 	enum gfe_rxprio prio;
1942 
1943 	GE_FUNC_ENTER(sc, "hash_multichg");
1944 	/*
1945 	 * Is this a wildcard entry?  If so and its being removed, recompute.
1946 	 */
1947 	if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
1948 		if (cmd == SIOCDELMULTI) {
1949 			GE_FUNC_EXIT(sc, "");
1950 			return ENETRESET;
1951 		}
1952 
1953 		/*
1954 		 * Switch in
1955 		 */
1956 		sc->sc_flags |= GE_ALLMULTI;
1957 		if ((sc->sc_pcr & ETH_EPCR_PM) == 0) {
1958 			sc->sc_pcr |= ETH_EPCR_PM;
1959 			GE_WRITE(sc, ETH_EPCR, sc->sc_pcr);
1960 			GE_FUNC_EXIT(sc, "");
1961 			return 0;
1962 		}
1963 		GE_FUNC_EXIT(sc, "");
1964 		return ENETRESET;
1965 	}
1966 
1967 	prio = GE_RXPRIO_MEDLO;
1968 	op = (cmd == SIOCDELMULTI ? GE_HASH_REMOVE : GE_HASH_ADD);
1969 
1970 	if (sc->sc_hashtable == NULL) {
1971 		GE_FUNC_EXIT(sc, "");
1972 		return 0;
1973 	}
1974 
1975 	error = gfe_hash_entry_op(sc, op, prio, enm->enm_addrlo);
1976 	if (error == EBUSY) {
1977 		aprint_error_dev(sc->sc_dev, "multichg: tried to %s %s again\n",
1978 		   cmd == SIOCDELMULTI ? "remove" : "add",
1979 		   ether_sprintf(enm->enm_addrlo));
1980 		GE_FUNC_EXIT(sc, "");
1981 		return 0;
1982 	}
1983 
1984 	if (error == ENOENT) {
1985 		aprint_error_dev(sc->sc_dev,
1986 		    "multichg: failed to remove %s: not in table\n",
1987 		    ether_sprintf(enm->enm_addrlo));
1988 		GE_FUNC_EXIT(sc, "");
1989 		return 0;
1990 	}
1991 
1992 	if (error == ENOSPC) {
1993 		aprint_error_dev(sc->sc_dev, "multichg:"
1994 		    " failed to add %s: no space; regenerating table\n",
1995 		    ether_sprintf(enm->enm_addrlo));
1996 		GE_FUNC_EXIT(sc, "");
1997 		return ENETRESET;
1998 	}
1999 	GE_DPRINTF(sc, ("%s: multichg: %s: %s succeeded\n",
2000 	    device_xname(sc->sc_dev),
2001 	    cmd == SIOCDELMULTI ? "remove" : "add",
2002 	    ether_sprintf(enm->enm_addrlo)));
2003 	GE_FUNC_EXIT(sc, "");
2004 	return 0;
2005 }
2006 
2007 int
gfe_hash_fill(struct gfe_softc * sc)2008 gfe_hash_fill(struct gfe_softc *sc)
2009 {
2010 	struct ethercom *ec = &sc->sc_ec;
2011 	struct ether_multistep step;
2012 	struct ether_multi *enm;
2013 	int error;
2014 
2015 	GE_FUNC_ENTER(sc, "gfe_hash_fill");
2016 
2017 	error = gfe_hash_entry_op(sc, GE_HASH_ADD, GE_RXPRIO_HI,
2018 	    CLLADDR(ec->ec_if.if_sadl));
2019 	if (error) {
2020 		GE_FUNC_EXIT(sc, "!");
2021 		return error;
2022 	}
2023 
2024 	sc->sc_flags &= ~GE_ALLMULTI;
2025 	if ((ec->ec_if.if_flags & IFF_PROMISC) == 0)
2026 		sc->sc_pcr &= ~ETH_EPCR_PM;
2027 	ETHER_LOCK(ec);
2028 	ETHER_FIRST_MULTI(step, ec, enm);
2029 	while (enm != NULL) {
2030 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
2031 			sc->sc_flags |= GE_ALLMULTI;
2032 			sc->sc_pcr |= ETH_EPCR_PM;
2033 		} else {
2034 			error = gfe_hash_entry_op(sc, GE_HASH_ADD,
2035 			    GE_RXPRIO_MEDLO, enm->enm_addrlo);
2036 			if (error == ENOSPC)
2037 				break;
2038 		}
2039 		ETHER_NEXT_MULTI(step, enm);
2040 	}
2041 	ETHER_UNLOCK(ec);
2042 
2043 	GE_FUNC_EXIT(sc, "");
2044 	return error;
2045 }
2046 
2047 int
gfe_hash_alloc(struct gfe_softc * sc)2048 gfe_hash_alloc(struct gfe_softc *sc)
2049 {
2050 	int error;
2051 	GE_FUNC_ENTER(sc, "gfe_hash_alloc");
2052 	sc->sc_hashmask = (sc->sc_pcr & ETH_EPCR_HS_512 ? 16 : 256)*1024 - 1;
2053 	error = gfe_dmamem_alloc(sc, &sc->sc_hash_mem, 1, sc->sc_hashmask + 1,
2054 	    BUS_DMA_NOCACHE);
2055 	if (error) {
2056 		aprint_error_dev(sc->sc_dev,
2057 		    "failed to allocate %d bytes for hash table: %d\n",
2058 		    sc->sc_hashmask + 1, error);
2059 		GE_FUNC_EXIT(sc, "");
2060 		return error;
2061 	}
2062 	sc->sc_hashtable = (uint64_t *) sc->sc_hash_mem.gdm_kva;
2063 	memset(sc->sc_hashtable, 0, sc->sc_hashmask + 1);
2064 	bus_dmamap_sync(sc->sc_dmat, sc->sc_hash_mem.gdm_map,
2065 	    0, sc->sc_hashmask + 1, BUS_DMASYNC_PREWRITE);
2066 	GE_FUNC_EXIT(sc, "");
2067 	return 0;
2068 }
2069