xref: /linux/arch/x86/kvm/mmu/mmu_internal.h (revision f3310e62)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __KVM_X86_MMU_INTERNAL_H
3 #define __KVM_X86_MMU_INTERNAL_H
4 
5 #include <linux/types.h>
6 #include <linux/kvm_host.h>
7 #include <asm/kvm_host.h>
8 
9 #ifdef CONFIG_KVM_PROVE_MMU
10 #define KVM_MMU_WARN_ON(x) WARN_ON_ONCE(x)
11 #else
12 #define KVM_MMU_WARN_ON(x) BUILD_BUG_ON_INVALID(x)
13 #endif
14 
15 /* Page table builder macros common to shadow (host) PTEs and guest PTEs. */
16 #define __PT_BASE_ADDR_MASK GENMASK_ULL(51, 12)
17 #define __PT_LEVEL_SHIFT(level, bits_per_level)	\
18 	(PAGE_SHIFT + ((level) - 1) * (bits_per_level))
19 #define __PT_INDEX(address, level, bits_per_level) \
20 	(((address) >> __PT_LEVEL_SHIFT(level, bits_per_level)) & ((1 << (bits_per_level)) - 1))
21 
22 #define __PT_LVL_ADDR_MASK(base_addr_mask, level, bits_per_level) \
23 	((base_addr_mask) & ~((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
24 
25 #define __PT_LVL_OFFSET_MASK(base_addr_mask, level, bits_per_level) \
26 	((base_addr_mask) & ((1ULL << (PAGE_SHIFT + (((level) - 1) * (bits_per_level)))) - 1))
27 
28 #define __PT_ENT_PER_PAGE(bits_per_level)  (1 << (bits_per_level))
29 
30 /*
31  * Unlike regular MMU roots, PAE "roots", a.k.a. PDPTEs/PDPTRs, have a PRESENT
32  * bit, and thus are guaranteed to be non-zero when valid.  And, when a guest
33  * PDPTR is !PRESENT, its corresponding PAE root cannot be set to INVALID_PAGE,
34  * as the CPU would treat that as PRESENT PDPTR with reserved bits set.  Use
35  * '0' instead of INVALID_PAGE to indicate an invalid PAE root.
36  */
37 #define INVALID_PAE_ROOT	0
38 #define IS_VALID_PAE_ROOT(x)	(!!(x))
39 
kvm_mmu_get_dummy_root(void)40 static inline hpa_t kvm_mmu_get_dummy_root(void)
41 {
42 	return my_zero_pfn(0) << PAGE_SHIFT;
43 }
44 
kvm_mmu_is_dummy_root(hpa_t shadow_page)45 static inline bool kvm_mmu_is_dummy_root(hpa_t shadow_page)
46 {
47 	return is_zero_pfn(shadow_page >> PAGE_SHIFT);
48 }
49 
50 typedef u64 __rcu *tdp_ptep_t;
51 
52 struct kvm_mmu_page {
53 	/*
54 	 * Note, "link" through "spt" fit in a single 64 byte cache line on
55 	 * 64-bit kernels, keep it that way unless there's a reason not to.
56 	 */
57 	struct list_head link;
58 	struct hlist_node hash_link;
59 
60 	bool tdp_mmu_page;
61 	bool unsync;
62 	union {
63 		u8 mmu_valid_gen;
64 
65 		/* Only accessed under slots_lock.  */
66 		bool tdp_mmu_scheduled_root_to_zap;
67 	};
68 
69 	 /*
70 	  * The shadow page can't be replaced by an equivalent huge page
71 	  * because it is being used to map an executable page in the guest
72 	  * and the NX huge page mitigation is enabled.
73 	  */
74 	bool nx_huge_page_disallowed;
75 
76 	/*
77 	 * The following two entries are used to key the shadow page in the
78 	 * hash table.
79 	 */
80 	union kvm_mmu_page_role role;
81 	gfn_t gfn;
82 
83 	u64 *spt;
84 
85 	/*
86 	 * Stores the result of the guest translation being shadowed by each
87 	 * SPTE.  KVM shadows two types of guest translations: nGPA -> GPA
88 	 * (shadow EPT/NPT) and GVA -> GPA (traditional shadow paging). In both
89 	 * cases the result of the translation is a GPA and a set of access
90 	 * constraints.
91 	 *
92 	 * The GFN is stored in the upper bits (PAGE_SHIFT) and the shadowed
93 	 * access permissions are stored in the lower bits. Note, for
94 	 * convenience and uniformity across guests, the access permissions are
95 	 * stored in KVM format (e.g.  ACC_EXEC_MASK) not the raw guest format.
96 	 */
97 	u64 *shadowed_translation;
98 
99 	/* Currently serving as active root */
100 	union {
101 		int root_count;
102 		refcount_t tdp_mmu_root_count;
103 	};
104 	unsigned int unsync_children;
105 	union {
106 		struct kvm_rmap_head parent_ptes; /* rmap pointers to parent sptes */
107 		tdp_ptep_t ptep;
108 	};
109 	DECLARE_BITMAP(unsync_child_bitmap, 512);
110 
111 	/*
112 	 * Tracks shadow pages that, if zapped, would allow KVM to create an NX
113 	 * huge page.  A shadow page will have nx_huge_page_disallowed set but
114 	 * not be on the list if a huge page is disallowed for other reasons,
115 	 * e.g. because KVM is shadowing a PTE at the same gfn, the memslot
116 	 * isn't properly aligned, etc...
117 	 */
118 	struct list_head possible_nx_huge_page_link;
119 #ifdef CONFIG_X86_32
120 	/*
121 	 * Used out of the mmu-lock to avoid reading spte values while an
122 	 * update is in progress; see the comments in __get_spte_lockless().
123 	 */
124 	int clear_spte_count;
125 #endif
126 
127 	/* Number of writes since the last time traversal visited this page.  */
128 	atomic_t write_flooding_count;
129 
130 #ifdef CONFIG_X86_64
131 	/* Used for freeing the page asynchronously if it is a TDP MMU page. */
132 	struct rcu_head rcu_head;
133 #endif
134 };
135 
136 extern struct kmem_cache *mmu_page_header_cache;
137 
kvm_mmu_role_as_id(union kvm_mmu_page_role role)138 static inline int kvm_mmu_role_as_id(union kvm_mmu_page_role role)
139 {
140 	return role.smm ? 1 : 0;
141 }
142 
kvm_mmu_page_as_id(struct kvm_mmu_page * sp)143 static inline int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
144 {
145 	return kvm_mmu_role_as_id(sp->role);
146 }
147 
kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page * sp)148 static inline bool kvm_mmu_page_ad_need_write_protect(struct kvm_mmu_page *sp)
149 {
150 	/*
151 	 * When using the EPT page-modification log, the GPAs in the CPU dirty
152 	 * log would come from L2 rather than L1.  Therefore, we need to rely
153 	 * on write protection to record dirty pages, which bypasses PML, since
154 	 * writes now result in a vmexit.  Note, the check on CPU dirty logging
155 	 * being enabled is mandatory as the bits used to denote WP-only SPTEs
156 	 * are reserved for PAE paging (32-bit KVM).
157 	 */
158 	return kvm_x86_ops.cpu_dirty_log_size && sp->role.guest_mode;
159 }
160 
gfn_round_for_level(gfn_t gfn,int level)161 static inline gfn_t gfn_round_for_level(gfn_t gfn, int level)
162 {
163 	return gfn & -KVM_PAGES_PER_HPAGE(level);
164 }
165 
166 int mmu_try_to_unsync_pages(struct kvm *kvm, const struct kvm_memory_slot *slot,
167 			    gfn_t gfn, bool can_unsync, bool prefetch);
168 
169 void kvm_mmu_gfn_disallow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
170 void kvm_mmu_gfn_allow_lpage(const struct kvm_memory_slot *slot, gfn_t gfn);
171 bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
172 				    struct kvm_memory_slot *slot, u64 gfn,
173 				    int min_level);
174 
175 /* Flush the given page (huge or not) of guest memory. */
kvm_flush_remote_tlbs_gfn(struct kvm * kvm,gfn_t gfn,int level)176 static inline void kvm_flush_remote_tlbs_gfn(struct kvm *kvm, gfn_t gfn, int level)
177 {
178 	kvm_flush_remote_tlbs_range(kvm, gfn_round_for_level(gfn, level),
179 				    KVM_PAGES_PER_HPAGE(level));
180 }
181 
182 unsigned int pte_list_count(struct kvm_rmap_head *rmap_head);
183 
184 extern int nx_huge_pages;
is_nx_huge_page_enabled(struct kvm * kvm)185 static inline bool is_nx_huge_page_enabled(struct kvm *kvm)
186 {
187 	return READ_ONCE(nx_huge_pages) && !kvm->arch.disable_nx_huge_pages;
188 }
189 
190 struct kvm_page_fault {
191 	/* arguments to kvm_mmu_do_page_fault.  */
192 	const gpa_t addr;
193 	const u64 error_code;
194 	const bool prefetch;
195 
196 	/* Derived from error_code.  */
197 	const bool exec;
198 	const bool write;
199 	const bool present;
200 	const bool rsvd;
201 	const bool user;
202 
203 	/* Derived from mmu and global state.  */
204 	const bool is_tdp;
205 	const bool is_private;
206 	const bool nx_huge_page_workaround_enabled;
207 
208 	/*
209 	 * Whether a >4KB mapping can be created or is forbidden due to NX
210 	 * hugepages.
211 	 */
212 	bool huge_page_disallowed;
213 
214 	/*
215 	 * Maximum page size that can be created for this fault; input to
216 	 * FNAME(fetch), direct_map() and kvm_tdp_mmu_map().
217 	 */
218 	u8 max_level;
219 
220 	/*
221 	 * Page size that can be created based on the max_level and the
222 	 * page size used by the host mapping.
223 	 */
224 	u8 req_level;
225 
226 	/*
227 	 * Page size that will be created based on the req_level and
228 	 * huge_page_disallowed.
229 	 */
230 	u8 goal_level;
231 
232 	/* Shifted addr, or result of guest page table walk if addr is a gva.  */
233 	gfn_t gfn;
234 
235 	/* The memslot containing gfn. May be NULL. */
236 	struct kvm_memory_slot *slot;
237 
238 	/* Outputs of kvm_faultin_pfn.  */
239 	unsigned long mmu_seq;
240 	kvm_pfn_t pfn;
241 	hva_t hva;
242 	bool map_writable;
243 
244 	/*
245 	 * Indicates the guest is trying to write a gfn that contains one or
246 	 * more of the PTEs used to translate the write itself, i.e. the access
247 	 * is changing its own translation in the guest page tables.
248 	 */
249 	bool write_fault_to_shadow_pgtable;
250 };
251 
252 int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
253 
254 /*
255  * Return values of handle_mmio_page_fault(), mmu.page_fault(), fast_page_fault(),
256  * and of course kvm_mmu_do_page_fault().
257  *
258  * RET_PF_CONTINUE: So far, so good, keep handling the page fault.
259  * RET_PF_RETRY: let CPU fault again on the address.
260  * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
261  * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
262  * RET_PF_FIXED: The faulting entry has been fixed.
263  * RET_PF_SPURIOUS: The faulting entry was already fixed, e.g. by another vCPU.
264  *
265  * Any names added to this enum should be exported to userspace for use in
266  * tracepoints via TRACE_DEFINE_ENUM() in mmutrace.h
267  *
268  * Note, all values must be greater than or equal to zero so as not to encroach
269  * on -errno return values.  Somewhat arbitrarily use '0' for CONTINUE, which
270  * will allow for efficient machine code when checking for CONTINUE, e.g.
271  * "TEST %rax, %rax, JNZ", as all "stop!" values are non-zero.
272  */
273 enum {
274 	RET_PF_CONTINUE = 0,
275 	RET_PF_RETRY,
276 	RET_PF_EMULATE,
277 	RET_PF_INVALID,
278 	RET_PF_FIXED,
279 	RET_PF_SPURIOUS,
280 };
281 
kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu * vcpu,struct kvm_page_fault * fault)282 static inline void kvm_mmu_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
283 						     struct kvm_page_fault *fault)
284 {
285 	kvm_prepare_memory_fault_exit(vcpu, fault->gfn << PAGE_SHIFT,
286 				      PAGE_SIZE, fault->write, fault->exec,
287 				      fault->is_private);
288 }
289 
kvm_mmu_do_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 err,bool prefetch,int * emulation_type)290 static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
291 					u64 err, bool prefetch, int *emulation_type)
292 {
293 	struct kvm_page_fault fault = {
294 		.addr = cr2_or_gpa,
295 		.error_code = err,
296 		.exec = err & PFERR_FETCH_MASK,
297 		.write = err & PFERR_WRITE_MASK,
298 		.present = err & PFERR_PRESENT_MASK,
299 		.rsvd = err & PFERR_RSVD_MASK,
300 		.user = err & PFERR_USER_MASK,
301 		.prefetch = prefetch,
302 		.is_tdp = likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault),
303 		.nx_huge_page_workaround_enabled =
304 			is_nx_huge_page_enabled(vcpu->kvm),
305 
306 		.max_level = KVM_MAX_HUGEPAGE_LEVEL,
307 		.req_level = PG_LEVEL_4K,
308 		.goal_level = PG_LEVEL_4K,
309 		.is_private = err & PFERR_PRIVATE_ACCESS,
310 
311 		.pfn = KVM_PFN_ERR_FAULT,
312 		.hva = KVM_HVA_ERR_BAD,
313 	};
314 	int r;
315 
316 	if (vcpu->arch.mmu->root_role.direct) {
317 		fault.gfn = fault.addr >> PAGE_SHIFT;
318 		fault.slot = kvm_vcpu_gfn_to_memslot(vcpu, fault.gfn);
319 	}
320 
321 	/*
322 	 * Async #PF "faults", a.k.a. prefetch faults, are not faults from the
323 	 * guest perspective and have already been counted at the time of the
324 	 * original fault.
325 	 */
326 	if (!prefetch)
327 		vcpu->stat.pf_taken++;
328 
329 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && fault.is_tdp)
330 		r = kvm_tdp_page_fault(vcpu, &fault);
331 	else
332 		r = vcpu->arch.mmu->page_fault(vcpu, &fault);
333 
334 	/*
335 	 * Not sure what's happening, but punt to userspace and hope that
336 	 * they can fix it by changing memory to shared, or they can
337 	 * provide a better error.
338 	 */
339 	if (r == RET_PF_EMULATE && fault.is_private) {
340 		pr_warn_ratelimited("kvm: unexpected emulation request on private memory\n");
341 		kvm_mmu_prepare_memory_fault_exit(vcpu, &fault);
342 		return -EFAULT;
343 	}
344 
345 	if (fault.write_fault_to_shadow_pgtable && emulation_type)
346 		*emulation_type |= EMULTYPE_WRITE_PF_TO_SP;
347 
348 	/*
349 	 * Similar to above, prefetch faults aren't truly spurious, and the
350 	 * async #PF path doesn't do emulation.  Do count faults that are fixed
351 	 * by the async #PF handler though, otherwise they'll never be counted.
352 	 */
353 	if (r == RET_PF_FIXED)
354 		vcpu->stat.pf_fixed++;
355 	else if (prefetch)
356 		;
357 	else if (r == RET_PF_EMULATE)
358 		vcpu->stat.pf_emulate++;
359 	else if (r == RET_PF_SPURIOUS)
360 		vcpu->stat.pf_spurious++;
361 	return r;
362 }
363 
364 int kvm_mmu_max_mapping_level(struct kvm *kvm,
365 			      const struct kvm_memory_slot *slot, gfn_t gfn,
366 			      int max_level);
367 void kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
368 void disallowed_hugepage_adjust(struct kvm_page_fault *fault, u64 spte, int cur_level);
369 
370 void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
371 
372 void track_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
373 void untrack_possible_nx_huge_page(struct kvm *kvm, struct kvm_mmu_page *sp);
374 
375 #endif /* __KVM_X86_MMU_INTERNAL_H */
376