1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the PPCISelLowering class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "PPCISelLowering.h"
14 #include "MCTargetDesc/PPCPredicates.h"
15 #include "PPC.h"
16 #include "PPCCCState.h"
17 #include "PPCCallingConv.h"
18 #include "PPCFrameLowering.h"
19 #include "PPCInstrInfo.h"
20 #include "PPCMachineFunctionInfo.h"
21 #include "PPCPerfectShuffle.h"
22 #include "PPCRegisterInfo.h"
23 #include "PPCSubtarget.h"
24 #include "PPCTargetMachine.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/APInt.h"
27 #include "llvm/ADT/APSInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/ADT/StringRef.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include "llvm/CodeGen/CallingConvLower.h"
38 #include "llvm/CodeGen/ISDOpcodes.h"
39 #include "llvm/CodeGen/MachineBasicBlock.h"
40 #include "llvm/CodeGen/MachineFrameInfo.h"
41 #include "llvm/CodeGen/MachineFunction.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineJumpTableInfo.h"
45 #include "llvm/CodeGen/MachineLoopInfo.h"
46 #include "llvm/CodeGen/MachineMemOperand.h"
47 #include "llvm/CodeGen/MachineModuleInfo.h"
48 #include "llvm/CodeGen/MachineOperand.h"
49 #include "llvm/CodeGen/MachineRegisterInfo.h"
50 #include "llvm/CodeGen/MachineValueType.h"
51 #include "llvm/CodeGen/RuntimeLibcalls.h"
52 #include "llvm/CodeGen/SelectionDAG.h"
53 #include "llvm/CodeGen/SelectionDAGNodes.h"
54 #include "llvm/CodeGen/TargetInstrInfo.h"
55 #include "llvm/CodeGen/TargetLowering.h"
56 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
57 #include "llvm/CodeGen/TargetRegisterInfo.h"
58 #include "llvm/CodeGen/ValueTypes.h"
59 #include "llvm/IR/CallingConv.h"
60 #include "llvm/IR/Constant.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DataLayout.h"
63 #include "llvm/IR/DebugLoc.h"
64 #include "llvm/IR/DerivedTypes.h"
65 #include "llvm/IR/Function.h"
66 #include "llvm/IR/GlobalValue.h"
67 #include "llvm/IR/IRBuilder.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/Intrinsics.h"
70 #include "llvm/IR/IntrinsicsPowerPC.h"
71 #include "llvm/IR/Module.h"
72 #include "llvm/IR/Type.h"
73 #include "llvm/IR/Use.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/MC/MCContext.h"
76 #include "llvm/MC/MCExpr.h"
77 #include "llvm/MC/MCRegisterInfo.h"
78 #include "llvm/MC/MCSectionXCOFF.h"
79 #include "llvm/MC/MCSymbolXCOFF.h"
80 #include "llvm/Support/AtomicOrdering.h"
81 #include "llvm/Support/BranchProbability.h"
82 #include "llvm/Support/Casting.h"
83 #include "llvm/Support/CodeGen.h"
84 #include "llvm/Support/CommandLine.h"
85 #include "llvm/Support/Compiler.h"
86 #include "llvm/Support/Debug.h"
87 #include "llvm/Support/ErrorHandling.h"
88 #include "llvm/Support/Format.h"
89 #include "llvm/Support/KnownBits.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Target/TargetMachine.h"
93 #include "llvm/Target/TargetOptions.h"
94 #include <algorithm>
95 #include <cassert>
96 #include <cstdint>
97 #include <iterator>
98 #include <list>
99 #include <optional>
100 #include <utility>
101 #include <vector>
102 
103 using namespace llvm;
104 
105 #define DEBUG_TYPE "ppc-lowering"
106 
107 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
108 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
109 
110 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
111 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
112 
113 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
114 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
115 
116 static cl::opt<bool> DisableSCO("disable-ppc-sco",
117 cl::desc("disable sibling call optimization on ppc"), cl::Hidden);
118 
119 static cl::opt<bool> DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32",
120 cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden);
121 
122 static cl::opt<bool> UseAbsoluteJumpTables("ppc-use-absolute-jumptables",
123 cl::desc("use absolute jump tables on ppc"), cl::Hidden);
124 
125 static cl::opt<bool>
126     DisablePerfectShuffle("ppc-disable-perfect-shuffle",
127                           cl::desc("disable vector permute decomposition"),
128                           cl::init(true), cl::Hidden);
129 
130 cl::opt<bool> DisableAutoPairedVecSt(
131     "disable-auto-paired-vec-st",
132     cl::desc("disable automatically generated 32byte paired vector stores"),
133     cl::init(true), cl::Hidden);
134 
135 static cl::opt<unsigned> PPCMinimumJumpTableEntries(
136     "ppc-min-jump-table-entries", cl::init(64), cl::Hidden,
137     cl::desc("Set minimum number of entries to use a jump table on PPC"));
138 
139 STATISTIC(NumTailCalls, "Number of tail calls");
140 STATISTIC(NumSiblingCalls, "Number of sibling calls");
141 STATISTIC(ShufflesHandledWithVPERM,
142           "Number of shuffles lowered to a VPERM or XXPERM");
143 STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed");
144 
145 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int);
146 
147 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl);
148 
149 static const char AIXSSPCanaryWordName[] = "__ssp_canary_word";
150 
151 // A faster local-exec TLS access sequence (enabled with the
152 // -maix-small-local-exec-tls option) can be produced for TLS variables;
153 // consistent with the IBM XL compiler, we apply a max size of slightly under
154 // 32KB.
155 constexpr uint64_t AIXSmallTlsPolicySizeLimit = 32751;
156 
157 // FIXME: Remove this once the bug has been fixed!
158 extern cl::opt<bool> ANDIGlueBug;
159 
PPCTargetLowering(const PPCTargetMachine & TM,const PPCSubtarget & STI)160 PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM,
161                                      const PPCSubtarget &STI)
162     : TargetLowering(TM), Subtarget(STI) {
163   // Initialize map that relates the PPC addressing modes to the computed flags
164   // of a load/store instruction. The map is used to determine the optimal
165   // addressing mode when selecting load and stores.
166   initializeAddrModeMap();
167   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
168   // arguments are at least 4/8 bytes aligned.
169   bool isPPC64 = Subtarget.isPPC64();
170   setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4));
171 
172   // Set up the register classes.
173   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
174   if (!useSoftFloat()) {
175     if (hasSPE()) {
176       addRegisterClass(MVT::f32, &PPC::GPRCRegClass);
177       // EFPU2 APU only supports f32
178       if (!Subtarget.hasEFPU2())
179         addRegisterClass(MVT::f64, &PPC::SPERCRegClass);
180     } else {
181       addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
182       addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
183     }
184   }
185 
186   // Match BITREVERSE to customized fast code sequence in the td file.
187   setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
188   setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
189 
190   // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended.
191   setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
192 
193   // Custom lower inline assembly to check for special registers.
194   setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
195   setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom);
196 
197   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD.
198   for (MVT VT : MVT::integer_valuetypes()) {
199     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
200     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand);
201   }
202 
203   if (Subtarget.isISA3_0()) {
204     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal);
205     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal);
206     setTruncStoreAction(MVT::f64, MVT::f16, Legal);
207     setTruncStoreAction(MVT::f32, MVT::f16, Legal);
208   } else {
209     // No extending loads from f16 or HW conversions back and forth.
210     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
211     setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
212     setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
213     setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
214     setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
215     setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
216     setTruncStoreAction(MVT::f64, MVT::f16, Expand);
217     setTruncStoreAction(MVT::f32, MVT::f16, Expand);
218   }
219 
220   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
221 
222   // PowerPC has pre-inc load and store's.
223   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
224   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
225   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
226   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
227   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
228   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
229   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
230   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
231   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
232   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
233   if (!Subtarget.hasSPE()) {
234     setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal);
235     setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal);
236     setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal);
237     setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal);
238   }
239 
240   // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry.
241   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
242   for (MVT VT : ScalarIntVTs) {
243     setOperationAction(ISD::ADDC, VT, Legal);
244     setOperationAction(ISD::ADDE, VT, Legal);
245     setOperationAction(ISD::SUBC, VT, Legal);
246     setOperationAction(ISD::SUBE, VT, Legal);
247   }
248 
249   if (Subtarget.useCRBits()) {
250     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
251 
252     if (isPPC64 || Subtarget.hasFPCVT()) {
253       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote);
254       AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1,
255                         isPPC64 ? MVT::i64 : MVT::i32);
256       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote);
257       AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1,
258                         isPPC64 ? MVT::i64 : MVT::i32);
259 
260       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
261       AddPromotedToType (ISD::SINT_TO_FP, MVT::i1,
262                          isPPC64 ? MVT::i64 : MVT::i32);
263       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
264       AddPromotedToType(ISD::UINT_TO_FP, MVT::i1,
265                         isPPC64 ? MVT::i64 : MVT::i32);
266 
267       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote);
268       AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1,
269                         isPPC64 ? MVT::i64 : MVT::i32);
270       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote);
271       AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1,
272                         isPPC64 ? MVT::i64 : MVT::i32);
273 
274       setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
275       AddPromotedToType(ISD::FP_TO_SINT, MVT::i1,
276                         isPPC64 ? MVT::i64 : MVT::i32);
277       setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
278       AddPromotedToType(ISD::FP_TO_UINT, MVT::i1,
279                         isPPC64 ? MVT::i64 : MVT::i32);
280     } else {
281       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom);
282       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom);
283       setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom);
284       setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom);
285     }
286 
287     // PowerPC does not support direct load/store of condition registers.
288     setOperationAction(ISD::LOAD, MVT::i1, Custom);
289     setOperationAction(ISD::STORE, MVT::i1, Custom);
290 
291     // FIXME: Remove this once the ANDI glue bug is fixed:
292     if (ANDIGlueBug)
293       setOperationAction(ISD::TRUNCATE, MVT::i1, Custom);
294 
295     for (MVT VT : MVT::integer_valuetypes()) {
296       setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
297       setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
298       setTruncStoreAction(VT, MVT::i1, Expand);
299     }
300 
301     addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass);
302   }
303 
304   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
305   // PPC (the libcall is not available).
306   setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom);
307   setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom);
308   setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom);
309   setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom);
310 
311   // We do not currently implement these libm ops for PowerPC.
312   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
313   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
314   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
315   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
316   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
317   setOperationAction(ISD::FREM, MVT::ppcf128, Expand);
318 
319   // PowerPC has no SREM/UREM instructions unless we are on P9
320   // On P9 we may use a hardware instruction to compute the remainder.
321   // When the result of both the remainder and the division is required it is
322   // more efficient to compute the remainder from the result of the division
323   // rather than use the remainder instruction. The instructions are legalized
324   // directly because the DivRemPairsPass performs the transformation at the IR
325   // level.
326   if (Subtarget.isISA3_0()) {
327     setOperationAction(ISD::SREM, MVT::i32, Legal);
328     setOperationAction(ISD::UREM, MVT::i32, Legal);
329     setOperationAction(ISD::SREM, MVT::i64, Legal);
330     setOperationAction(ISD::UREM, MVT::i64, Legal);
331   } else {
332     setOperationAction(ISD::SREM, MVT::i32, Expand);
333     setOperationAction(ISD::UREM, MVT::i32, Expand);
334     setOperationAction(ISD::SREM, MVT::i64, Expand);
335     setOperationAction(ISD::UREM, MVT::i64, Expand);
336   }
337 
338   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
339   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
340   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
341   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
342   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
343   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
344   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
345   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
346   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
347 
348   // Handle constrained floating-point operations of scalar.
349   // TODO: Handle SPE specific operation.
350   setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal);
351   setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal);
352   setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal);
353   setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal);
354   setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
355 
356   setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal);
357   setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal);
358   setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal);
359   setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal);
360 
361   if (!Subtarget.hasSPE()) {
362     setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal);
363     setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal);
364   }
365 
366   if (Subtarget.hasVSX()) {
367     setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal);
368     setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal);
369   }
370 
371   if (Subtarget.hasFSQRT()) {
372     setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal);
373     setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal);
374   }
375 
376   if (Subtarget.hasFPRND()) {
377     setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal);
378     setOperationAction(ISD::STRICT_FCEIL,  MVT::f32, Legal);
379     setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal);
380     setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal);
381 
382     setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal);
383     setOperationAction(ISD::STRICT_FCEIL,  MVT::f64, Legal);
384     setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal);
385     setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal);
386   }
387 
388   // We don't support sin/cos/sqrt/fmod/pow
389   setOperationAction(ISD::FSIN , MVT::f64, Expand);
390   setOperationAction(ISD::FCOS , MVT::f64, Expand);
391   setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
392   setOperationAction(ISD::FREM , MVT::f64, Expand);
393   setOperationAction(ISD::FPOW , MVT::f64, Expand);
394   setOperationAction(ISD::FSIN , MVT::f32, Expand);
395   setOperationAction(ISD::FCOS , MVT::f32, Expand);
396   setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
397   setOperationAction(ISD::FREM , MVT::f32, Expand);
398   setOperationAction(ISD::FPOW , MVT::f32, Expand);
399 
400   // MASS transformation for LLVM intrinsics with replicating fast-math flag
401   // to be consistent to PPCGenScalarMASSEntries pass
402   if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) {
403     setOperationAction(ISD::FSIN , MVT::f64, Custom);
404     setOperationAction(ISD::FCOS , MVT::f64, Custom);
405     setOperationAction(ISD::FPOW , MVT::f64, Custom);
406     setOperationAction(ISD::FLOG, MVT::f64, Custom);
407     setOperationAction(ISD::FLOG10, MVT::f64, Custom);
408     setOperationAction(ISD::FEXP, MVT::f64, Custom);
409     setOperationAction(ISD::FSIN , MVT::f32, Custom);
410     setOperationAction(ISD::FCOS , MVT::f32, Custom);
411     setOperationAction(ISD::FPOW , MVT::f32, Custom);
412     setOperationAction(ISD::FLOG, MVT::f32, Custom);
413     setOperationAction(ISD::FLOG10, MVT::f32, Custom);
414     setOperationAction(ISD::FEXP, MVT::f32, Custom);
415   }
416 
417   if (Subtarget.hasSPE()) {
418     setOperationAction(ISD::FMA  , MVT::f64, Expand);
419     setOperationAction(ISD::FMA  , MVT::f32, Expand);
420   } else {
421     setOperationAction(ISD::FMA  , MVT::f64, Legal);
422     setOperationAction(ISD::FMA  , MVT::f32, Legal);
423   }
424 
425   if (Subtarget.hasSPE())
426     setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
427 
428   setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom);
429 
430   // If we're enabling GP optimizations, use hardware square root
431   if (!Subtarget.hasFSQRT() &&
432       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() &&
433         Subtarget.hasFRE()))
434     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
435 
436   if (!Subtarget.hasFSQRT() &&
437       !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() &&
438         Subtarget.hasFRES()))
439     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
440 
441   if (Subtarget.hasFCPSGN()) {
442     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal);
443     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal);
444   } else {
445     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
446     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
447   }
448 
449   if (Subtarget.hasFPRND()) {
450     setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
451     setOperationAction(ISD::FCEIL,  MVT::f64, Legal);
452     setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
453     setOperationAction(ISD::FROUND, MVT::f64, Legal);
454 
455     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
456     setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
457     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
458     setOperationAction(ISD::FROUND, MVT::f32, Legal);
459   }
460 
461   // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP
462   // instruction xxbrd to speed up scalar BSWAP64.
463   if (Subtarget.isISA3_1()) {
464     setOperationAction(ISD::BSWAP, MVT::i32, Legal);
465     setOperationAction(ISD::BSWAP, MVT::i64, Legal);
466   } else {
467     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
468     setOperationAction(
469         ISD::BSWAP, MVT::i64,
470         (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand);
471   }
472 
473   // CTPOP or CTTZ were introduced in P8/P9 respectively
474   if (Subtarget.isISA3_0()) {
475     setOperationAction(ISD::CTTZ , MVT::i32  , Legal);
476     setOperationAction(ISD::CTTZ , MVT::i64  , Legal);
477   } else {
478     setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
479     setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
480   }
481 
482   if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) {
483     setOperationAction(ISD::CTPOP, MVT::i32  , Legal);
484     setOperationAction(ISD::CTPOP, MVT::i64  , Legal);
485   } else {
486     setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
487     setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
488   }
489 
490   // PowerPC does not have ROTR
491   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
492   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
493 
494   if (!Subtarget.useCRBits()) {
495     // PowerPC does not have Select
496     setOperationAction(ISD::SELECT, MVT::i32, Expand);
497     setOperationAction(ISD::SELECT, MVT::i64, Expand);
498     setOperationAction(ISD::SELECT, MVT::f32, Expand);
499     setOperationAction(ISD::SELECT, MVT::f64, Expand);
500   }
501 
502   // PowerPC wants to turn select_cc of FP into fsel when possible.
503   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
504   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
505 
506   // PowerPC wants to optimize integer setcc a bit
507   if (!Subtarget.useCRBits())
508     setOperationAction(ISD::SETCC, MVT::i32, Custom);
509 
510   if (Subtarget.hasFPU()) {
511     setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal);
512     setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal);
513     setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal);
514 
515     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
516     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
517     setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal);
518   }
519 
520   // PowerPC does not have BRCOND which requires SetCC
521   if (!Subtarget.useCRBits())
522     setOperationAction(ISD::BRCOND, MVT::Other, Expand);
523 
524   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
525 
526   if (Subtarget.hasSPE()) {
527     // SPE has built-in conversions
528     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal);
529     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal);
530     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal);
531     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
532     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
533     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
534 
535     // SPE supports signaling compare of f32/f64.
536     setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal);
537     setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal);
538   } else {
539     // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
540     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
541     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
542 
543     // PowerPC does not have [U|S]INT_TO_FP
544     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand);
545     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand);
546     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
547     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
548   }
549 
550   if (Subtarget.hasDirectMove() && isPPC64) {
551     setOperationAction(ISD::BITCAST, MVT::f32, Legal);
552     setOperationAction(ISD::BITCAST, MVT::i32, Legal);
553     setOperationAction(ISD::BITCAST, MVT::i64, Legal);
554     setOperationAction(ISD::BITCAST, MVT::f64, Legal);
555     if (TM.Options.UnsafeFPMath) {
556       setOperationAction(ISD::LRINT, MVT::f64, Legal);
557       setOperationAction(ISD::LRINT, MVT::f32, Legal);
558       setOperationAction(ISD::LLRINT, MVT::f64, Legal);
559       setOperationAction(ISD::LLRINT, MVT::f32, Legal);
560       setOperationAction(ISD::LROUND, MVT::f64, Legal);
561       setOperationAction(ISD::LROUND, MVT::f32, Legal);
562       setOperationAction(ISD::LLROUND, MVT::f64, Legal);
563       setOperationAction(ISD::LLROUND, MVT::f32, Legal);
564     }
565   } else {
566     setOperationAction(ISD::BITCAST, MVT::f32, Expand);
567     setOperationAction(ISD::BITCAST, MVT::i32, Expand);
568     setOperationAction(ISD::BITCAST, MVT::i64, Expand);
569     setOperationAction(ISD::BITCAST, MVT::f64, Expand);
570   }
571 
572   // We cannot sextinreg(i1).  Expand to shifts.
573   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
574 
575   // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
576   // SjLj exception handling but a light-weight setjmp/longjmp replacement to
577   // support continuation, user-level threading, and etc.. As a result, no
578   // other SjLj exception interfaces are implemented and please don't build
579   // your own exception handling based on them.
580   // LLVM/Clang supports zero-cost DWARF exception handling.
581   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
582   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
583 
584   // We want to legalize GlobalAddress and ConstantPool nodes into the
585   // appropriate instructions to materialize the address.
586   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
587   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
588   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
589   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
590   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
591   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
592   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
593   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
594   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
595   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
596 
597   // TRAP is legal.
598   setOperationAction(ISD::TRAP, MVT::Other, Legal);
599 
600   // TRAMPOLINE is custom lowered.
601   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
602   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
603 
604   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
605   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
606 
607   if (Subtarget.is64BitELFABI()) {
608     // VAARG always uses double-word chunks, so promote anything smaller.
609     setOperationAction(ISD::VAARG, MVT::i1, Promote);
610     AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64);
611     setOperationAction(ISD::VAARG, MVT::i8, Promote);
612     AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64);
613     setOperationAction(ISD::VAARG, MVT::i16, Promote);
614     AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64);
615     setOperationAction(ISD::VAARG, MVT::i32, Promote);
616     AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64);
617     setOperationAction(ISD::VAARG, MVT::Other, Expand);
618   } else if (Subtarget.is32BitELFABI()) {
619     // VAARG is custom lowered with the 32-bit SVR4 ABI.
620     setOperationAction(ISD::VAARG, MVT::Other, Custom);
621     setOperationAction(ISD::VAARG, MVT::i64, Custom);
622   } else
623     setOperationAction(ISD::VAARG, MVT::Other, Expand);
624 
625   // VACOPY is custom lowered with the 32-bit SVR4 ABI.
626   if (Subtarget.is32BitELFABI())
627     setOperationAction(ISD::VACOPY            , MVT::Other, Custom);
628   else
629     setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
630 
631   // Use the default implementation.
632   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
633   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
634   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
635   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
636   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
637   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom);
638   setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom);
639   setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom);
640   setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom);
641 
642   // We want to custom lower some of our intrinsics.
643   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
644   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom);
645   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom);
646   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
647   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom);
648 
649   // To handle counter-based loop conditions.
650   setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom);
651 
652   setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
653   setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
654   setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom);
655   setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
656 
657   // Comparisons that require checking two conditions.
658   if (Subtarget.hasSPE()) {
659     setCondCodeAction(ISD::SETO, MVT::f32, Expand);
660     setCondCodeAction(ISD::SETO, MVT::f64, Expand);
661     setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
662     setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
663   }
664   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
665   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
666   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
667   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
668   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
669   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
670   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
671   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
672   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
673   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
674   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
675   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
676 
677   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal);
678   setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal);
679 
680   if (Subtarget.has64BitSupport()) {
681     // They also have instructions for converting between i64 and fp.
682     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
683     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand);
684     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
685     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand);
686     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
687     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
688     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
689     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
690     // This is just the low 32 bits of a (signed) fp->i64 conversion.
691     // We cannot do this with Promote because i64 is not a legal type.
692     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
693     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
694 
695     if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) {
696       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
697       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
698     }
699   } else {
700     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
701     if (Subtarget.hasSPE()) {
702       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal);
703       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
704     } else {
705       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand);
706       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
707     }
708   }
709 
710   // With the instructions enabled under FPCVT, we can do everything.
711   if (Subtarget.hasFPCVT()) {
712     if (Subtarget.has64BitSupport()) {
713       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom);
714       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom);
715       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom);
716       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom);
717       setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
718       setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
719       setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
720       setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
721     }
722 
723     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom);
724     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom);
725     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom);
726     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom);
727     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
728     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
729     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
730     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
731   }
732 
733   if (Subtarget.use64BitRegs()) {
734     // 64-bit PowerPC implementations can support i64 types directly
735     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
736     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
737     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
738     // 64-bit PowerPC wants to expand i128 shifts itself.
739     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
740     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
741     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
742   } else {
743     // 32-bit PowerPC wants to expand i64 shifts itself.
744     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
745     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
746     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
747   }
748 
749   // PowerPC has better expansions for funnel shifts than the generic
750   // TargetLowering::expandFunnelShift.
751   if (Subtarget.has64BitSupport()) {
752     setOperationAction(ISD::FSHL, MVT::i64, Custom);
753     setOperationAction(ISD::FSHR, MVT::i64, Custom);
754   }
755   setOperationAction(ISD::FSHL, MVT::i32, Custom);
756   setOperationAction(ISD::FSHR, MVT::i32, Custom);
757 
758   if (Subtarget.hasVSX()) {
759     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
760     setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
761     setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
762     setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
763   }
764 
765   if (Subtarget.hasAltivec()) {
766     for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) {
767       setOperationAction(ISD::SADDSAT, VT, Legal);
768       setOperationAction(ISD::SSUBSAT, VT, Legal);
769       setOperationAction(ISD::UADDSAT, VT, Legal);
770       setOperationAction(ISD::USUBSAT, VT, Legal);
771     }
772     // First set operation action for all vector types to expand. Then we
773     // will selectively turn on ones that can be effectively codegen'd.
774     for (MVT VT : MVT::fixedlen_vector_valuetypes()) {
775       // add/sub are legal for all supported vector VT's.
776       setOperationAction(ISD::ADD, VT, Legal);
777       setOperationAction(ISD::SUB, VT, Legal);
778 
779       // For v2i64, these are only valid with P8Vector. This is corrected after
780       // the loop.
781       if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) {
782         setOperationAction(ISD::SMAX, VT, Legal);
783         setOperationAction(ISD::SMIN, VT, Legal);
784         setOperationAction(ISD::UMAX, VT, Legal);
785         setOperationAction(ISD::UMIN, VT, Legal);
786       }
787       else {
788         setOperationAction(ISD::SMAX, VT, Expand);
789         setOperationAction(ISD::SMIN, VT, Expand);
790         setOperationAction(ISD::UMAX, VT, Expand);
791         setOperationAction(ISD::UMIN, VT, Expand);
792       }
793 
794       if (Subtarget.hasVSX()) {
795         setOperationAction(ISD::FMAXNUM, VT, Legal);
796         setOperationAction(ISD::FMINNUM, VT, Legal);
797       }
798 
799       // Vector instructions introduced in P8
800       if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) {
801         setOperationAction(ISD::CTPOP, VT, Legal);
802         setOperationAction(ISD::CTLZ, VT, Legal);
803       }
804       else {
805         setOperationAction(ISD::CTPOP, VT, Expand);
806         setOperationAction(ISD::CTLZ, VT, Expand);
807       }
808 
809       // Vector instructions introduced in P9
810       if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128))
811         setOperationAction(ISD::CTTZ, VT, Legal);
812       else
813         setOperationAction(ISD::CTTZ, VT, Expand);
814 
815       // We promote all shuffles to v16i8.
816       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
817       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
818 
819       // We promote all non-typed operations to v4i32.
820       setOperationAction(ISD::AND   , VT, Promote);
821       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
822       setOperationAction(ISD::OR    , VT, Promote);
823       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
824       setOperationAction(ISD::XOR   , VT, Promote);
825       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
826       setOperationAction(ISD::LOAD  , VT, Promote);
827       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
828       setOperationAction(ISD::SELECT, VT, Promote);
829       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
830       setOperationAction(ISD::VSELECT, VT, Legal);
831       setOperationAction(ISD::SELECT_CC, VT, Promote);
832       AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32);
833       setOperationAction(ISD::STORE, VT, Promote);
834       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
835 
836       // No other operations are legal.
837       setOperationAction(ISD::MUL , VT, Expand);
838       setOperationAction(ISD::SDIV, VT, Expand);
839       setOperationAction(ISD::SREM, VT, Expand);
840       setOperationAction(ISD::UDIV, VT, Expand);
841       setOperationAction(ISD::UREM, VT, Expand);
842       setOperationAction(ISD::FDIV, VT, Expand);
843       setOperationAction(ISD::FREM, VT, Expand);
844       setOperationAction(ISD::FNEG, VT, Expand);
845       setOperationAction(ISD::FSQRT, VT, Expand);
846       setOperationAction(ISD::FLOG, VT, Expand);
847       setOperationAction(ISD::FLOG10, VT, Expand);
848       setOperationAction(ISD::FLOG2, VT, Expand);
849       setOperationAction(ISD::FEXP, VT, Expand);
850       setOperationAction(ISD::FEXP2, VT, Expand);
851       setOperationAction(ISD::FSIN, VT, Expand);
852       setOperationAction(ISD::FCOS, VT, Expand);
853       setOperationAction(ISD::FABS, VT, Expand);
854       setOperationAction(ISD::FFLOOR, VT, Expand);
855       setOperationAction(ISD::FCEIL,  VT, Expand);
856       setOperationAction(ISD::FTRUNC, VT, Expand);
857       setOperationAction(ISD::FRINT,  VT, Expand);
858       setOperationAction(ISD::FLDEXP, VT, Expand);
859       setOperationAction(ISD::FNEARBYINT, VT, Expand);
860       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
861       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
862       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
863       setOperationAction(ISD::MULHU, VT, Expand);
864       setOperationAction(ISD::MULHS, VT, Expand);
865       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
866       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
867       setOperationAction(ISD::UDIVREM, VT, Expand);
868       setOperationAction(ISD::SDIVREM, VT, Expand);
869       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
870       setOperationAction(ISD::FPOW, VT, Expand);
871       setOperationAction(ISD::BSWAP, VT, Expand);
872       setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
873       setOperationAction(ISD::ROTL, VT, Expand);
874       setOperationAction(ISD::ROTR, VT, Expand);
875 
876       for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) {
877         setTruncStoreAction(VT, InnerVT, Expand);
878         setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
879         setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
880         setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
881       }
882     }
883     setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand);
884     if (!Subtarget.hasP8Vector()) {
885       setOperationAction(ISD::SMAX, MVT::v2i64, Expand);
886       setOperationAction(ISD::SMIN, MVT::v2i64, Expand);
887       setOperationAction(ISD::UMAX, MVT::v2i64, Expand);
888       setOperationAction(ISD::UMIN, MVT::v2i64, Expand);
889     }
890 
891     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
892     // with merges, splats, etc.
893     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
894 
895     // Vector truncates to sub-word integer that fit in an Altivec/VSX register
896     // are cheap, so handle them before they get expanded to scalar.
897     setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom);
898     setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom);
899     setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom);
900     setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom);
901     setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom);
902 
903     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
904     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
905     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
906     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
907     setOperationAction(ISD::SELECT, MVT::v4i32,
908                        Subtarget.useCRBits() ? Legal : Expand);
909     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
910     setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal);
911     setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal);
912     setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal);
913     setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal);
914     setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
915     setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
916     setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
917     setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
918     setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
919     setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
920     setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
921     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
922 
923     // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8.
924     setOperationAction(ISD::ROTL, MVT::v1i128, Custom);
925     // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w).
926     if (Subtarget.hasAltivec())
927       for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8})
928         setOperationAction(ISD::ROTL, VT, Legal);
929     // With hasP8Altivec set, we can lower ISD::ROTL to vrld.
930     if (Subtarget.hasP8Altivec())
931       setOperationAction(ISD::ROTL, MVT::v2i64, Legal);
932 
933     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
934     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
935     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
936     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
937 
938     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
939     setOperationAction(ISD::FMA, MVT::v4f32, Legal);
940 
941     if (Subtarget.hasVSX()) {
942       setOperationAction(ISD::FDIV, MVT::v4f32, Legal);
943       setOperationAction(ISD::FSQRT, MVT::v4f32, Legal);
944       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom);
945     }
946 
947     if (Subtarget.hasP8Altivec())
948       setOperationAction(ISD::MUL, MVT::v4i32, Legal);
949     else
950       setOperationAction(ISD::MUL, MVT::v4i32, Custom);
951 
952     if (Subtarget.isISA3_1()) {
953       setOperationAction(ISD::MUL, MVT::v2i64, Legal);
954       setOperationAction(ISD::MULHS, MVT::v2i64, Legal);
955       setOperationAction(ISD::MULHU, MVT::v2i64, Legal);
956       setOperationAction(ISD::MULHS, MVT::v4i32, Legal);
957       setOperationAction(ISD::MULHU, MVT::v4i32, Legal);
958       setOperationAction(ISD::UDIV, MVT::v2i64, Legal);
959       setOperationAction(ISD::SDIV, MVT::v2i64, Legal);
960       setOperationAction(ISD::UDIV, MVT::v4i32, Legal);
961       setOperationAction(ISD::SDIV, MVT::v4i32, Legal);
962       setOperationAction(ISD::UREM, MVT::v2i64, Legal);
963       setOperationAction(ISD::SREM, MVT::v2i64, Legal);
964       setOperationAction(ISD::UREM, MVT::v4i32, Legal);
965       setOperationAction(ISD::SREM, MVT::v4i32, Legal);
966       setOperationAction(ISD::UREM, MVT::v1i128, Legal);
967       setOperationAction(ISD::SREM, MVT::v1i128, Legal);
968       setOperationAction(ISD::UDIV, MVT::v1i128, Legal);
969       setOperationAction(ISD::SDIV, MVT::v1i128, Legal);
970       setOperationAction(ISD::ROTL, MVT::v1i128, Legal);
971     }
972 
973     setOperationAction(ISD::MUL, MVT::v8i16, Legal);
974     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
975 
976     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
977     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
978 
979     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
980     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
981     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
982     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
983 
984     // Altivec does not contain unordered floating-point compare instructions
985     setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
986     setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
987     setCondCodeAction(ISD::SETO,   MVT::v4f32, Expand);
988     setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand);
989 
990     if (Subtarget.hasVSX()) {
991       setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal);
992       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
993       if (Subtarget.hasP8Vector()) {
994         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal);
995         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal);
996       }
997       if (Subtarget.hasDirectMove() && isPPC64) {
998         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal);
999         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal);
1000         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal);
1001         setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal);
1002         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal);
1003         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal);
1004         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal);
1005         setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal);
1006       }
1007       setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal);
1008 
1009       // The nearbyint variants are not allowed to raise the inexact exception
1010       // so we can only code-gen them with unsafe math.
1011       if (TM.Options.UnsafeFPMath) {
1012         setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
1013         setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
1014       }
1015 
1016       setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal);
1017       setOperationAction(ISD::FCEIL, MVT::v2f64, Legal);
1018       setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal);
1019       setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal);
1020       setOperationAction(ISD::FRINT, MVT::v2f64, Legal);
1021       setOperationAction(ISD::FROUND, MVT::v2f64, Legal);
1022       setOperationAction(ISD::FROUND, MVT::f64, Legal);
1023       setOperationAction(ISD::FRINT, MVT::f64, Legal);
1024 
1025       setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
1026       setOperationAction(ISD::FRINT, MVT::v4f32, Legal);
1027       setOperationAction(ISD::FROUND, MVT::v4f32, Legal);
1028       setOperationAction(ISD::FROUND, MVT::f32, Legal);
1029       setOperationAction(ISD::FRINT, MVT::f32, Legal);
1030 
1031       setOperationAction(ISD::MUL, MVT::v2f64, Legal);
1032       setOperationAction(ISD::FMA, MVT::v2f64, Legal);
1033 
1034       setOperationAction(ISD::FDIV, MVT::v2f64, Legal);
1035       setOperationAction(ISD::FSQRT, MVT::v2f64, Legal);
1036 
1037       // Share the Altivec comparison restrictions.
1038       setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand);
1039       setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand);
1040       setCondCodeAction(ISD::SETO,   MVT::v2f64, Expand);
1041       setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand);
1042 
1043       setOperationAction(ISD::LOAD, MVT::v2f64, Legal);
1044       setOperationAction(ISD::STORE, MVT::v2f64, Legal);
1045 
1046       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom);
1047 
1048       if (Subtarget.hasP8Vector())
1049         addRegisterClass(MVT::f32, &PPC::VSSRCRegClass);
1050 
1051       addRegisterClass(MVT::f64, &PPC::VSFRCRegClass);
1052 
1053       addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass);
1054       addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass);
1055       addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass);
1056 
1057       if (Subtarget.hasP8Altivec()) {
1058         setOperationAction(ISD::SHL, MVT::v2i64, Legal);
1059         setOperationAction(ISD::SRA, MVT::v2i64, Legal);
1060         setOperationAction(ISD::SRL, MVT::v2i64, Legal);
1061 
1062         // 128 bit shifts can be accomplished via 3 instructions for SHL and
1063         // SRL, but not for SRA because of the instructions available:
1064         // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth
1065         // doing
1066         setOperationAction(ISD::SHL, MVT::v1i128, Expand);
1067         setOperationAction(ISD::SRL, MVT::v1i128, Expand);
1068         setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1069 
1070         setOperationAction(ISD::SETCC, MVT::v2i64, Legal);
1071       }
1072       else {
1073         setOperationAction(ISD::SHL, MVT::v2i64, Expand);
1074         setOperationAction(ISD::SRA, MVT::v2i64, Expand);
1075         setOperationAction(ISD::SRL, MVT::v2i64, Expand);
1076 
1077         setOperationAction(ISD::SETCC, MVT::v2i64, Custom);
1078 
1079         // VSX v2i64 only supports non-arithmetic operations.
1080         setOperationAction(ISD::ADD, MVT::v2i64, Expand);
1081         setOperationAction(ISD::SUB, MVT::v2i64, Expand);
1082       }
1083 
1084       if (Subtarget.isISA3_1())
1085         setOperationAction(ISD::SETCC, MVT::v1i128, Legal);
1086       else
1087         setOperationAction(ISD::SETCC, MVT::v1i128, Expand);
1088 
1089       setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
1090       AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64);
1091       setOperationAction(ISD::STORE, MVT::v2i64, Promote);
1092       AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64);
1093 
1094       setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom);
1095 
1096       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal);
1097       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal);
1098       setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal);
1099       setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal);
1100       setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal);
1101       setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal);
1102       setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal);
1103       setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal);
1104 
1105       // Custom handling for partial vectors of integers converted to
1106       // floating point. We already have optimal handling for v2i32 through
1107       // the DAG combine, so those aren't necessary.
1108       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom);
1109       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom);
1110       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom);
1111       setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom);
1112       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom);
1113       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom);
1114       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom);
1115       setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom);
1116       setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom);
1117       setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom);
1118       setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom);
1119       setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
1120       setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom);
1121       setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom);
1122       setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom);
1123       setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
1124 
1125       setOperationAction(ISD::FNEG, MVT::v4f32, Legal);
1126       setOperationAction(ISD::FNEG, MVT::v2f64, Legal);
1127       setOperationAction(ISD::FABS, MVT::v4f32, Legal);
1128       setOperationAction(ISD::FABS, MVT::v2f64, Legal);
1129       setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal);
1130       setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal);
1131 
1132       setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom);
1133       setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom);
1134 
1135       // Handle constrained floating-point operations of vector.
1136       // The predictor is `hasVSX` because altivec instruction has
1137       // no exception but VSX vector instruction has.
1138       setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal);
1139       setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal);
1140       setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal);
1141       setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal);
1142       setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal);
1143       setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal);
1144       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal);
1145       setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal);
1146       setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal);
1147       setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal);
1148       setOperationAction(ISD::STRICT_FCEIL,  MVT::v4f32, Legal);
1149       setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal);
1150       setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal);
1151 
1152       setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal);
1153       setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal);
1154       setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal);
1155       setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal);
1156       setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal);
1157       setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal);
1158       setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal);
1159       setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal);
1160       setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal);
1161       setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal);
1162       setOperationAction(ISD::STRICT_FCEIL,  MVT::v2f64, Legal);
1163       setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal);
1164       setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal);
1165 
1166       addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass);
1167       addRegisterClass(MVT::f128, &PPC::VRRCRegClass);
1168 
1169       for (MVT FPT : MVT::fp_valuetypes())
1170         setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand);
1171 
1172       // Expand the SELECT to SELECT_CC
1173       setOperationAction(ISD::SELECT, MVT::f128, Expand);
1174 
1175       setTruncStoreAction(MVT::f128, MVT::f64, Expand);
1176       setTruncStoreAction(MVT::f128, MVT::f32, Expand);
1177 
1178       // No implementation for these ops for PowerPC.
1179       setOperationAction(ISD::FSINCOS, MVT::f128, Expand);
1180       setOperationAction(ISD::FSIN, MVT::f128, Expand);
1181       setOperationAction(ISD::FCOS, MVT::f128, Expand);
1182       setOperationAction(ISD::FPOW, MVT::f128, Expand);
1183       setOperationAction(ISD::FPOWI, MVT::f128, Expand);
1184       setOperationAction(ISD::FREM, MVT::f128, Expand);
1185     }
1186 
1187     if (Subtarget.hasP8Altivec()) {
1188       addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass);
1189       addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass);
1190     }
1191 
1192     if (Subtarget.hasP9Vector()) {
1193       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom);
1194       setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom);
1195 
1196       // Test data class instructions store results in CR bits.
1197       if (Subtarget.useCRBits()) {
1198         setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom);
1199         setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom);
1200         setOperationAction(ISD::IS_FPCLASS, MVT::f128, Custom);
1201       }
1202 
1203       // 128 bit shifts can be accomplished via 3 instructions for SHL and
1204       // SRL, but not for SRA because of the instructions available:
1205       // VS{RL} and VS{RL}O.
1206       setOperationAction(ISD::SHL, MVT::v1i128, Legal);
1207       setOperationAction(ISD::SRL, MVT::v1i128, Legal);
1208       setOperationAction(ISD::SRA, MVT::v1i128, Expand);
1209 
1210       setOperationAction(ISD::FADD, MVT::f128, Legal);
1211       setOperationAction(ISD::FSUB, MVT::f128, Legal);
1212       setOperationAction(ISD::FDIV, MVT::f128, Legal);
1213       setOperationAction(ISD::FMUL, MVT::f128, Legal);
1214       setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal);
1215 
1216       setOperationAction(ISD::FMA, MVT::f128, Legal);
1217       setCondCodeAction(ISD::SETULT, MVT::f128, Expand);
1218       setCondCodeAction(ISD::SETUGT, MVT::f128, Expand);
1219       setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand);
1220       setCondCodeAction(ISD::SETOGE, MVT::f128, Expand);
1221       setCondCodeAction(ISD::SETOLE, MVT::f128, Expand);
1222       setCondCodeAction(ISD::SETONE, MVT::f128, Expand);
1223 
1224       setOperationAction(ISD::FTRUNC, MVT::f128, Legal);
1225       setOperationAction(ISD::FRINT, MVT::f128, Legal);
1226       setOperationAction(ISD::FFLOOR, MVT::f128, Legal);
1227       setOperationAction(ISD::FCEIL, MVT::f128, Legal);
1228       setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal);
1229       setOperationAction(ISD::FROUND, MVT::f128, Legal);
1230 
1231       setOperationAction(ISD::FP_ROUND, MVT::f64, Legal);
1232       setOperationAction(ISD::FP_ROUND, MVT::f32, Legal);
1233       setOperationAction(ISD::BITCAST, MVT::i128, Custom);
1234 
1235       // Handle constrained floating-point operations of fp128
1236       setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal);
1237       setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal);
1238       setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal);
1239       setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal);
1240       setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal);
1241       setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal);
1242       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal);
1243       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal);
1244       setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal);
1245       setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal);
1246       setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal);
1247       setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal);
1248       setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal);
1249       setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal);
1250       setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal);
1251       setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom);
1252       setOperationAction(ISD::BSWAP, MVT::v8i16, Legal);
1253       setOperationAction(ISD::BSWAP, MVT::v4i32, Legal);
1254       setOperationAction(ISD::BSWAP, MVT::v2i64, Legal);
1255       setOperationAction(ISD::BSWAP, MVT::v1i128, Legal);
1256     } else if (Subtarget.hasVSX()) {
1257       setOperationAction(ISD::LOAD, MVT::f128, Promote);
1258       setOperationAction(ISD::STORE, MVT::f128, Promote);
1259 
1260       AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32);
1261       AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32);
1262 
1263       // Set FADD/FSUB as libcall to avoid the legalizer to expand the
1264       // fp_to_uint and int_to_fp.
1265       setOperationAction(ISD::FADD, MVT::f128, LibCall);
1266       setOperationAction(ISD::FSUB, MVT::f128, LibCall);
1267 
1268       setOperationAction(ISD::FMUL, MVT::f128, Expand);
1269       setOperationAction(ISD::FDIV, MVT::f128, Expand);
1270       setOperationAction(ISD::FNEG, MVT::f128, Expand);
1271       setOperationAction(ISD::FABS, MVT::f128, Expand);
1272       setOperationAction(ISD::FSQRT, MVT::f128, Expand);
1273       setOperationAction(ISD::FMA, MVT::f128, Expand);
1274       setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand);
1275 
1276       // Expand the fp_extend if the target type is fp128.
1277       setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand);
1278       setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand);
1279 
1280       // Expand the fp_round if the source type is fp128.
1281       for (MVT VT : {MVT::f32, MVT::f64}) {
1282         setOperationAction(ISD::FP_ROUND, VT, Custom);
1283         setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom);
1284       }
1285 
1286       setOperationAction(ISD::SETCC, MVT::f128, Custom);
1287       setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom);
1288       setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom);
1289       setOperationAction(ISD::BR_CC, MVT::f128, Expand);
1290 
1291       // Lower following f128 select_cc pattern:
1292       // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE
1293       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1294 
1295       // We need to handle f128 SELECT_CC with integer result type.
1296       setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
1297       setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand);
1298     }
1299 
1300     if (Subtarget.hasP9Altivec()) {
1301       if (Subtarget.isISA3_1()) {
1302         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal);
1303         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal);
1304         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal);
1305         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal);
1306       } else {
1307         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom);
1308         setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom);
1309       }
1310       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8,  Legal);
1311       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal);
1312       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal);
1313       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8,  Legal);
1314       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal);
1315       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal);
1316       setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal);
1317 
1318       setOperationAction(ISD::ABDU, MVT::v16i8, Legal);
1319       setOperationAction(ISD::ABDU, MVT::v8i16, Legal);
1320       setOperationAction(ISD::ABDU, MVT::v4i32, Legal);
1321       setOperationAction(ISD::ABDS, MVT::v4i32, Legal);
1322     }
1323 
1324     if (Subtarget.hasP10Vector()) {
1325       setOperationAction(ISD::SELECT_CC, MVT::f128, Custom);
1326     }
1327   }
1328 
1329   if (Subtarget.pairedVectorMemops()) {
1330     addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass);
1331     setOperationAction(ISD::LOAD, MVT::v256i1, Custom);
1332     setOperationAction(ISD::STORE, MVT::v256i1, Custom);
1333   }
1334   if (Subtarget.hasMMA()) {
1335     if (Subtarget.isISAFuture())
1336       addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass);
1337     else
1338       addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass);
1339     setOperationAction(ISD::LOAD, MVT::v512i1, Custom);
1340     setOperationAction(ISD::STORE, MVT::v512i1, Custom);
1341     setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom);
1342   }
1343 
1344   if (Subtarget.has64BitSupport())
1345     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
1346 
1347   if (Subtarget.isISA3_1())
1348     setOperationAction(ISD::SRA, MVT::v1i128, Legal);
1349 
1350   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom);
1351 
1352   if (!isPPC64) {
1353     setOperationAction(ISD::ATOMIC_LOAD,  MVT::i64, Expand);
1354     setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
1355   }
1356 
1357   if (shouldInlineQuadwordAtomics()) {
1358     setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom);
1359     setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom);
1360     setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom);
1361   }
1362 
1363   setBooleanContents(ZeroOrOneBooleanContent);
1364 
1365   if (Subtarget.hasAltivec()) {
1366     // Altivec instructions set fields to all zeros or all ones.
1367     setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
1368   }
1369 
1370   setLibcallName(RTLIB::MULO_I128, nullptr);
1371   if (!isPPC64) {
1372     // These libcalls are not available in 32-bit.
1373     setLibcallName(RTLIB::SHL_I128, nullptr);
1374     setLibcallName(RTLIB::SRL_I128, nullptr);
1375     setLibcallName(RTLIB::SRA_I128, nullptr);
1376     setLibcallName(RTLIB::MUL_I128, nullptr);
1377     setLibcallName(RTLIB::MULO_I64, nullptr);
1378   }
1379 
1380   if (shouldInlineQuadwordAtomics())
1381     setMaxAtomicSizeInBitsSupported(128);
1382   else if (isPPC64)
1383     setMaxAtomicSizeInBitsSupported(64);
1384   else
1385     setMaxAtomicSizeInBitsSupported(32);
1386 
1387   setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1);
1388 
1389   // We have target-specific dag combine patterns for the following nodes:
1390   setTargetDAGCombine({ISD::AND, ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL,
1391                        ISD::MUL, ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR});
1392   if (Subtarget.hasFPCVT())
1393     setTargetDAGCombine(ISD::UINT_TO_FP);
1394   setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC});
1395   if (Subtarget.useCRBits())
1396     setTargetDAGCombine(ISD::BRCOND);
1397   setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN,
1398                        ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID});
1399 
1400   setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND});
1401 
1402   setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE});
1403 
1404   if (Subtarget.useCRBits()) {
1405     setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC});
1406   }
1407 
1408   setLibcallName(RTLIB::LOG_F128, "logf128");
1409   setLibcallName(RTLIB::LOG2_F128, "log2f128");
1410   setLibcallName(RTLIB::LOG10_F128, "log10f128");
1411   setLibcallName(RTLIB::EXP_F128, "expf128");
1412   setLibcallName(RTLIB::EXP2_F128, "exp2f128");
1413   setLibcallName(RTLIB::SIN_F128, "sinf128");
1414   setLibcallName(RTLIB::COS_F128, "cosf128");
1415   setLibcallName(RTLIB::SINCOS_F128, "sincosf128");
1416   setLibcallName(RTLIB::POW_F128, "powf128");
1417   setLibcallName(RTLIB::FMIN_F128, "fminf128");
1418   setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
1419   setLibcallName(RTLIB::REM_F128, "fmodf128");
1420   setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
1421   setLibcallName(RTLIB::CEIL_F128, "ceilf128");
1422   setLibcallName(RTLIB::FLOOR_F128, "floorf128");
1423   setLibcallName(RTLIB::TRUNC_F128, "truncf128");
1424   setLibcallName(RTLIB::ROUND_F128, "roundf128");
1425   setLibcallName(RTLIB::LROUND_F128, "lroundf128");
1426   setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
1427   setLibcallName(RTLIB::RINT_F128, "rintf128");
1428   setLibcallName(RTLIB::LRINT_F128, "lrintf128");
1429   setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
1430   setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
1431   setLibcallName(RTLIB::FMA_F128, "fmaf128");
1432   setLibcallName(RTLIB::FREXP_F128, "frexpf128");
1433 
1434   if (Subtarget.isAIXABI()) {
1435     setLibcallName(RTLIB::MEMCPY, isPPC64 ? "___memmove64" : "___memmove");
1436     setLibcallName(RTLIB::MEMMOVE, isPPC64 ? "___memmove64" : "___memmove");
1437     setLibcallName(RTLIB::MEMSET, isPPC64 ? "___memset64" : "___memset");
1438     setLibcallName(RTLIB::BZERO, isPPC64 ? "___bzero64" : "___bzero");
1439   }
1440 
1441   // With 32 condition bits, we don't need to sink (and duplicate) compares
1442   // aggressively in CodeGenPrep.
1443   if (Subtarget.useCRBits()) {
1444     setHasMultipleConditionRegisters();
1445     setJumpIsExpensive();
1446   }
1447 
1448   // TODO: The default entry number is set to 64. This stops most jump table
1449   // generation on PPC. But it is good for current PPC HWs because the indirect
1450   // branch instruction mtctr to the jump table may lead to bad branch predict.
1451   // Re-evaluate this value on future HWs that can do better with mtctr.
1452   setMinimumJumpTableEntries(PPCMinimumJumpTableEntries);
1453 
1454   setMinFunctionAlignment(Align(4));
1455 
1456   switch (Subtarget.getCPUDirective()) {
1457   default: break;
1458   case PPC::DIR_970:
1459   case PPC::DIR_A2:
1460   case PPC::DIR_E500:
1461   case PPC::DIR_E500mc:
1462   case PPC::DIR_E5500:
1463   case PPC::DIR_PWR4:
1464   case PPC::DIR_PWR5:
1465   case PPC::DIR_PWR5X:
1466   case PPC::DIR_PWR6:
1467   case PPC::DIR_PWR6X:
1468   case PPC::DIR_PWR7:
1469   case PPC::DIR_PWR8:
1470   case PPC::DIR_PWR9:
1471   case PPC::DIR_PWR10:
1472   case PPC::DIR_PWR_FUTURE:
1473     setPrefLoopAlignment(Align(16));
1474     setPrefFunctionAlignment(Align(16));
1475     break;
1476   }
1477 
1478   if (Subtarget.enableMachineScheduler())
1479     setSchedulingPreference(Sched::Source);
1480   else
1481     setSchedulingPreference(Sched::Hybrid);
1482 
1483   computeRegisterProperties(STI.getRegisterInfo());
1484 
1485   // The Freescale cores do better with aggressive inlining of memcpy and
1486   // friends. GCC uses same threshold of 128 bytes (= 32 word stores).
1487   if (Subtarget.getCPUDirective() == PPC::DIR_E500mc ||
1488       Subtarget.getCPUDirective() == PPC::DIR_E5500) {
1489     MaxStoresPerMemset = 32;
1490     MaxStoresPerMemsetOptSize = 16;
1491     MaxStoresPerMemcpy = 32;
1492     MaxStoresPerMemcpyOptSize = 8;
1493     MaxStoresPerMemmove = 32;
1494     MaxStoresPerMemmoveOptSize = 8;
1495   } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) {
1496     // The A2 also benefits from (very) aggressive inlining of memcpy and
1497     // friends. The overhead of a the function call, even when warm, can be
1498     // over one hundred cycles.
1499     MaxStoresPerMemset = 128;
1500     MaxStoresPerMemcpy = 128;
1501     MaxStoresPerMemmove = 128;
1502     MaxLoadsPerMemcmp = 128;
1503   } else {
1504     MaxLoadsPerMemcmp = 8;
1505     MaxLoadsPerMemcmpOptSize = 4;
1506   }
1507 
1508   IsStrictFPEnabled = true;
1509 
1510   // Let the subtarget (CPU) decide if a predictable select is more expensive
1511   // than the corresponding branch. This information is used in CGP to decide
1512   // when to convert selects into branches.
1513   PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive();
1514 }
1515 
1516 // *********************************** NOTE ************************************
1517 // For selecting load and store instructions, the addressing modes are defined
1518 // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD
1519 // patterns to match the load the store instructions.
1520 //
1521 // The TD definitions for the addressing modes correspond to their respective
1522 // Select<AddrMode>Form() function in PPCISelDAGToDAG.cpp. These functions rely
1523 // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the
1524 // address mode flags of a particular node. Afterwards, the computed address
1525 // flags are passed into getAddrModeForFlags() in order to retrieve the optimal
1526 // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement
1527 // accordingly, based on the preferred addressing mode.
1528 //
1529 // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode.
1530 // MemOpFlags contains all the possible flags that can be used to compute the
1531 // optimal addressing mode for load and store instructions.
1532 // AddrMode contains all the possible load and store addressing modes available
1533 // on Power (such as DForm, DSForm, DQForm, XForm, etc.)
1534 //
1535 // When adding new load and store instructions, it is possible that new address
1536 // flags may need to be added into MemOpFlags, and a new addressing mode will
1537 // need to be added to AddrMode. An entry of the new addressing mode (consisting
1538 // of the minimal and main distinguishing address flags for the new load/store
1539 // instructions) will need to be added into initializeAddrModeMap() below.
1540 // Finally, when adding new addressing modes, the getAddrModeForFlags() will
1541 // need to be updated to account for selecting the optimal addressing mode.
1542 // *****************************************************************************
1543 /// Initialize the map that relates the different addressing modes of the load
1544 /// and store instructions to a set of flags. This ensures the load/store
1545 /// instruction is correctly matched during instruction selection.
initializeAddrModeMap()1546 void PPCTargetLowering::initializeAddrModeMap() {
1547   AddrModesMap[PPC::AM_DForm] = {
1548       // LWZ, STW
1549       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt,
1550       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt,
1551       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1552       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1553       // LBZ, LHZ, STB, STH
1554       PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1555       PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1556       PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1557       PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1558       // LHA
1559       PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt,
1560       PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt,
1561       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt,
1562       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt,
1563       // LFS, LFD, STFS, STFD
1564       PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1565       PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1566       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1567       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9,
1568   };
1569   AddrModesMap[PPC::AM_DSForm] = {
1570       // LWA
1571       PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt,
1572       PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt,
1573       PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt,
1574       // LD, STD
1575       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt,
1576       PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt,
1577       PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt,
1578       // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64
1579       PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1580       PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1581       PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9,
1582   };
1583   AddrModesMap[PPC::AM_DQForm] = {
1584       // LXV, STXV
1585       PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1586       PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1587       PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9,
1588   };
1589   AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 |
1590                                        PPC::MOF_SubtargetP10};
1591   // TODO: Add mapping for quadword load/store.
1592 }
1593 
1594 /// getMaxByValAlign - Helper for getByValTypeAlignment to determine
1595 /// the desired ByVal argument alignment.
getMaxByValAlign(Type * Ty,Align & MaxAlign,Align MaxMaxAlign)1596 static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) {
1597   if (MaxAlign == MaxMaxAlign)
1598     return;
1599   if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
1600     if (MaxMaxAlign >= 32 &&
1601         VTy->getPrimitiveSizeInBits().getFixedValue() >= 256)
1602       MaxAlign = Align(32);
1603     else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 &&
1604              MaxAlign < 16)
1605       MaxAlign = Align(16);
1606   } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
1607     Align EltAlign;
1608     getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign);
1609     if (EltAlign > MaxAlign)
1610       MaxAlign = EltAlign;
1611   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
1612     for (auto *EltTy : STy->elements()) {
1613       Align EltAlign;
1614       getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign);
1615       if (EltAlign > MaxAlign)
1616         MaxAlign = EltAlign;
1617       if (MaxAlign == MaxMaxAlign)
1618         break;
1619     }
1620   }
1621 }
1622 
1623 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1624 /// function arguments in the caller parameter area.
getByValTypeAlignment(Type * Ty,const DataLayout & DL) const1625 uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty,
1626                                                   const DataLayout &DL) const {
1627   // 16byte and wider vectors are passed on 16byte boundary.
1628   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
1629   Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
1630   if (Subtarget.hasAltivec())
1631     getMaxByValAlign(Ty, Alignment, Align(16));
1632   return Alignment.value();
1633 }
1634 
useSoftFloat() const1635 bool PPCTargetLowering::useSoftFloat() const {
1636   return Subtarget.useSoftFloat();
1637 }
1638 
hasSPE() const1639 bool PPCTargetLowering::hasSPE() const {
1640   return Subtarget.hasSPE();
1641 }
1642 
preferIncOfAddToSubOfNot(EVT VT) const1643 bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const {
1644   return VT.isScalarInteger();
1645 }
1646 
shallExtractConstSplatVectorElementToStore(Type * VectorTy,unsigned ElemSizeInBits,unsigned & Index) const1647 bool PPCTargetLowering::shallExtractConstSplatVectorElementToStore(
1648     Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
1649   if (!Subtarget.isPPC64() || !Subtarget.hasVSX())
1650     return false;
1651 
1652   if (auto *VTy = dyn_cast<VectorType>(VectorTy)) {
1653     if (VTy->getScalarType()->isIntegerTy()) {
1654       // ElemSizeInBits 8/16 can fit in immediate field, not needed here.
1655       if (ElemSizeInBits == 32) {
1656         Index = Subtarget.isLittleEndian() ? 2 : 1;
1657         return true;
1658       }
1659       if (ElemSizeInBits == 64) {
1660         Index = Subtarget.isLittleEndian() ? 1 : 0;
1661         return true;
1662       }
1663     }
1664   }
1665   return false;
1666 }
1667 
getTargetNodeName(unsigned Opcode) const1668 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
1669   switch ((PPCISD::NodeType)Opcode) {
1670   case PPCISD::FIRST_NUMBER:    break;
1671   case PPCISD::FSEL:            return "PPCISD::FSEL";
1672   case PPCISD::XSMAXC:          return "PPCISD::XSMAXC";
1673   case PPCISD::XSMINC:          return "PPCISD::XSMINC";
1674   case PPCISD::FCFID:           return "PPCISD::FCFID";
1675   case PPCISD::FCFIDU:          return "PPCISD::FCFIDU";
1676   case PPCISD::FCFIDS:          return "PPCISD::FCFIDS";
1677   case PPCISD::FCFIDUS:         return "PPCISD::FCFIDUS";
1678   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
1679   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
1680   case PPCISD::FCTIDUZ:         return "PPCISD::FCTIDUZ";
1681   case PPCISD::FCTIWUZ:         return "PPCISD::FCTIWUZ";
1682   case PPCISD::FRE:             return "PPCISD::FRE";
1683   case PPCISD::FRSQRTE:         return "PPCISD::FRSQRTE";
1684   case PPCISD::FTSQRT:
1685     return "PPCISD::FTSQRT";
1686   case PPCISD::FSQRT:
1687     return "PPCISD::FSQRT";
1688   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
1689   case PPCISD::VPERM:           return "PPCISD::VPERM";
1690   case PPCISD::XXSPLT:          return "PPCISD::XXSPLT";
1691   case PPCISD::XXSPLTI_SP_TO_DP:
1692     return "PPCISD::XXSPLTI_SP_TO_DP";
1693   case PPCISD::XXSPLTI32DX:
1694     return "PPCISD::XXSPLTI32DX";
1695   case PPCISD::VECINSERT:       return "PPCISD::VECINSERT";
1696   case PPCISD::XXPERMDI:        return "PPCISD::XXPERMDI";
1697   case PPCISD::XXPERM:
1698     return "PPCISD::XXPERM";
1699   case PPCISD::VECSHL:          return "PPCISD::VECSHL";
1700   case PPCISD::CMPB:            return "PPCISD::CMPB";
1701   case PPCISD::Hi:              return "PPCISD::Hi";
1702   case PPCISD::Lo:              return "PPCISD::Lo";
1703   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
1704   case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8";
1705   case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16";
1706   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
1707   case PPCISD::DYNAREAOFFSET:   return "PPCISD::DYNAREAOFFSET";
1708   case PPCISD::PROBED_ALLOCA:   return "PPCISD::PROBED_ALLOCA";
1709   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
1710   case PPCISD::SRL:             return "PPCISD::SRL";
1711   case PPCISD::SRA:             return "PPCISD::SRA";
1712   case PPCISD::SHL:             return "PPCISD::SHL";
1713   case PPCISD::SRA_ADDZE:       return "PPCISD::SRA_ADDZE";
1714   case PPCISD::CALL:            return "PPCISD::CALL";
1715   case PPCISD::CALL_NOP:        return "PPCISD::CALL_NOP";
1716   case PPCISD::CALL_NOTOC:      return "PPCISD::CALL_NOTOC";
1717   case PPCISD::CALL_RM:
1718     return "PPCISD::CALL_RM";
1719   case PPCISD::CALL_NOP_RM:
1720     return "PPCISD::CALL_NOP_RM";
1721   case PPCISD::CALL_NOTOC_RM:
1722     return "PPCISD::CALL_NOTOC_RM";
1723   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
1724   case PPCISD::BCTRL:           return "PPCISD::BCTRL";
1725   case PPCISD::BCTRL_LOAD_TOC:  return "PPCISD::BCTRL_LOAD_TOC";
1726   case PPCISD::BCTRL_RM:
1727     return "PPCISD::BCTRL_RM";
1728   case PPCISD::BCTRL_LOAD_TOC_RM:
1729     return "PPCISD::BCTRL_LOAD_TOC_RM";
1730   case PPCISD::RET_GLUE:        return "PPCISD::RET_GLUE";
1731   case PPCISD::READ_TIME_BASE:  return "PPCISD::READ_TIME_BASE";
1732   case PPCISD::EH_SJLJ_SETJMP:  return "PPCISD::EH_SJLJ_SETJMP";
1733   case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
1734   case PPCISD::MFOCRF:          return "PPCISD::MFOCRF";
1735   case PPCISD::MFVSR:           return "PPCISD::MFVSR";
1736   case PPCISD::MTVSRA:          return "PPCISD::MTVSRA";
1737   case PPCISD::MTVSRZ:          return "PPCISD::MTVSRZ";
1738   case PPCISD::SINT_VEC_TO_FP:  return "PPCISD::SINT_VEC_TO_FP";
1739   case PPCISD::UINT_VEC_TO_FP:  return "PPCISD::UINT_VEC_TO_FP";
1740   case PPCISD::SCALAR_TO_VECTOR_PERMUTED:
1741     return "PPCISD::SCALAR_TO_VECTOR_PERMUTED";
1742   case PPCISD::ANDI_rec_1_EQ_BIT:
1743     return "PPCISD::ANDI_rec_1_EQ_BIT";
1744   case PPCISD::ANDI_rec_1_GT_BIT:
1745     return "PPCISD::ANDI_rec_1_GT_BIT";
1746   case PPCISD::VCMP:            return "PPCISD::VCMP";
1747   case PPCISD::VCMP_rec:        return "PPCISD::VCMP_rec";
1748   case PPCISD::LBRX:            return "PPCISD::LBRX";
1749   case PPCISD::STBRX:           return "PPCISD::STBRX";
1750   case PPCISD::LFIWAX:          return "PPCISD::LFIWAX";
1751   case PPCISD::LFIWZX:          return "PPCISD::LFIWZX";
1752   case PPCISD::LXSIZX:          return "PPCISD::LXSIZX";
1753   case PPCISD::STXSIX:          return "PPCISD::STXSIX";
1754   case PPCISD::VEXTS:           return "PPCISD::VEXTS";
1755   case PPCISD::LXVD2X:          return "PPCISD::LXVD2X";
1756   case PPCISD::STXVD2X:         return "PPCISD::STXVD2X";
1757   case PPCISD::LOAD_VEC_BE:     return "PPCISD::LOAD_VEC_BE";
1758   case PPCISD::STORE_VEC_BE:    return "PPCISD::STORE_VEC_BE";
1759   case PPCISD::ST_VSR_SCAL_INT:
1760                                 return "PPCISD::ST_VSR_SCAL_INT";
1761   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
1762   case PPCISD::BDNZ:            return "PPCISD::BDNZ";
1763   case PPCISD::BDZ:             return "PPCISD::BDZ";
1764   case PPCISD::MFFS:            return "PPCISD::MFFS";
1765   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
1766   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
1767   case PPCISD::CR6SET:          return "PPCISD::CR6SET";
1768   case PPCISD::CR6UNSET:        return "PPCISD::CR6UNSET";
1769   case PPCISD::PPC32_GOT:       return "PPCISD::PPC32_GOT";
1770   case PPCISD::PPC32_PICGOT:    return "PPCISD::PPC32_PICGOT";
1771   case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
1772   case PPCISD::LD_GOT_TPREL_L:  return "PPCISD::LD_GOT_TPREL_L";
1773   case PPCISD::ADD_TLS:         return "PPCISD::ADD_TLS";
1774   case PPCISD::ADDIS_TLSGD_HA:  return "PPCISD::ADDIS_TLSGD_HA";
1775   case PPCISD::ADDI_TLSGD_L:    return "PPCISD::ADDI_TLSGD_L";
1776   case PPCISD::GET_TLS_ADDR:    return "PPCISD::GET_TLS_ADDR";
1777   case PPCISD::GET_TPOINTER:    return "PPCISD::GET_TPOINTER";
1778   case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR";
1779   case PPCISD::TLSGD_AIX:       return "PPCISD::TLSGD_AIX";
1780   case PPCISD::ADDIS_TLSLD_HA:  return "PPCISD::ADDIS_TLSLD_HA";
1781   case PPCISD::ADDI_TLSLD_L:    return "PPCISD::ADDI_TLSLD_L";
1782   case PPCISD::GET_TLSLD_ADDR:  return "PPCISD::GET_TLSLD_ADDR";
1783   case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR";
1784   case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
1785   case PPCISD::ADDI_DTPREL_L:   return "PPCISD::ADDI_DTPREL_L";
1786   case PPCISD::PADDI_DTPREL:
1787     return "PPCISD::PADDI_DTPREL";
1788   case PPCISD::VADD_SPLAT:      return "PPCISD::VADD_SPLAT";
1789   case PPCISD::SC:              return "PPCISD::SC";
1790   case PPCISD::CLRBHRB:         return "PPCISD::CLRBHRB";
1791   case PPCISD::MFBHRBE:         return "PPCISD::MFBHRBE";
1792   case PPCISD::RFEBB:           return "PPCISD::RFEBB";
1793   case PPCISD::XXSWAPD:         return "PPCISD::XXSWAPD";
1794   case PPCISD::SWAP_NO_CHAIN:   return "PPCISD::SWAP_NO_CHAIN";
1795   case PPCISD::BUILD_FP128:     return "PPCISD::BUILD_FP128";
1796   case PPCISD::BUILD_SPE64:     return "PPCISD::BUILD_SPE64";
1797   case PPCISD::EXTRACT_SPE:     return "PPCISD::EXTRACT_SPE";
1798   case PPCISD::EXTSWSLI:        return "PPCISD::EXTSWSLI";
1799   case PPCISD::LD_VSX_LH:       return "PPCISD::LD_VSX_LH";
1800   case PPCISD::FP_EXTEND_HALF:  return "PPCISD::FP_EXTEND_HALF";
1801   case PPCISD::MAT_PCREL_ADDR:  return "PPCISD::MAT_PCREL_ADDR";
1802   case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR:
1803     return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR";
1804   case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR:
1805     return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR";
1806   case PPCISD::ACC_BUILD:       return "PPCISD::ACC_BUILD";
1807   case PPCISD::PAIR_BUILD:      return "PPCISD::PAIR_BUILD";
1808   case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG";
1809   case PPCISD::XXMFACC:         return "PPCISD::XXMFACC";
1810   case PPCISD::LD_SPLAT:        return "PPCISD::LD_SPLAT";
1811   case PPCISD::ZEXT_LD_SPLAT:   return "PPCISD::ZEXT_LD_SPLAT";
1812   case PPCISD::SEXT_LD_SPLAT:   return "PPCISD::SEXT_LD_SPLAT";
1813   case PPCISD::FNMSUB:          return "PPCISD::FNMSUB";
1814   case PPCISD::STRICT_FADDRTZ:
1815     return "PPCISD::STRICT_FADDRTZ";
1816   case PPCISD::STRICT_FCTIDZ:
1817     return "PPCISD::STRICT_FCTIDZ";
1818   case PPCISD::STRICT_FCTIWZ:
1819     return "PPCISD::STRICT_FCTIWZ";
1820   case PPCISD::STRICT_FCTIDUZ:
1821     return "PPCISD::STRICT_FCTIDUZ";
1822   case PPCISD::STRICT_FCTIWUZ:
1823     return "PPCISD::STRICT_FCTIWUZ";
1824   case PPCISD::STRICT_FCFID:
1825     return "PPCISD::STRICT_FCFID";
1826   case PPCISD::STRICT_FCFIDU:
1827     return "PPCISD::STRICT_FCFIDU";
1828   case PPCISD::STRICT_FCFIDS:
1829     return "PPCISD::STRICT_FCFIDS";
1830   case PPCISD::STRICT_FCFIDUS:
1831     return "PPCISD::STRICT_FCFIDUS";
1832   case PPCISD::LXVRZX:          return "PPCISD::LXVRZX";
1833   case PPCISD::STORE_COND:
1834     return "PPCISD::STORE_COND";
1835   }
1836   return nullptr;
1837 }
1838 
getSetCCResultType(const DataLayout & DL,LLVMContext & C,EVT VT) const1839 EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C,
1840                                           EVT VT) const {
1841   if (!VT.isVector())
1842     return Subtarget.useCRBits() ? MVT::i1 : MVT::i32;
1843 
1844   return VT.changeVectorElementTypeToInteger();
1845 }
1846 
enableAggressiveFMAFusion(EVT VT) const1847 bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1848   assert(VT.isFloatingPoint() && "Non-floating-point FMA?");
1849   return true;
1850 }
1851 
1852 //===----------------------------------------------------------------------===//
1853 // Node matching predicates, for use by the tblgen matching code.
1854 //===----------------------------------------------------------------------===//
1855 
1856 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
isFloatingPointZero(SDValue Op)1857 static bool isFloatingPointZero(SDValue Op) {
1858   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
1859     return CFP->getValueAPF().isZero();
1860   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
1861     // Maybe this has already been legalized into the constant pool?
1862     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
1863       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
1864         return CFP->getValueAPF().isZero();
1865   }
1866   return false;
1867 }
1868 
1869 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
1870 /// true if Op is undef or if it matches the specified value.
isConstantOrUndef(int Op,int Val)1871 static bool isConstantOrUndef(int Op, int Val) {
1872   return Op < 0 || Op == Val;
1873 }
1874 
1875 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
1876 /// VPKUHUM instruction.
1877 /// The ShuffleKind distinguishes between big-endian operations with
1878 /// two different inputs (0), either-endian operations with two identical
1879 /// inputs (1), and little-endian operations with two different inputs (2).
1880 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUHUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1881 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1882                                SelectionDAG &DAG) {
1883   bool IsLE = DAG.getDataLayout().isLittleEndian();
1884   if (ShuffleKind == 0) {
1885     if (IsLE)
1886       return false;
1887     for (unsigned i = 0; i != 16; ++i)
1888       if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
1889         return false;
1890   } else if (ShuffleKind == 2) {
1891     if (!IsLE)
1892       return false;
1893     for (unsigned i = 0; i != 16; ++i)
1894       if (!isConstantOrUndef(N->getMaskElt(i), i*2))
1895         return false;
1896   } else if (ShuffleKind == 1) {
1897     unsigned j = IsLE ? 0 : 1;
1898     for (unsigned i = 0; i != 8; ++i)
1899       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+j) ||
1900           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j))
1901         return false;
1902   }
1903   return true;
1904 }
1905 
1906 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
1907 /// VPKUWUM instruction.
1908 /// The ShuffleKind distinguishes between big-endian operations with
1909 /// two different inputs (0), either-endian operations with two identical
1910 /// inputs (1), and little-endian operations with two different inputs (2).
1911 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUWUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1912 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1913                                SelectionDAG &DAG) {
1914   bool IsLE = DAG.getDataLayout().isLittleEndian();
1915   if (ShuffleKind == 0) {
1916     if (IsLE)
1917       return false;
1918     for (unsigned i = 0; i != 16; i += 2)
1919       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
1920           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
1921         return false;
1922   } else if (ShuffleKind == 2) {
1923     if (!IsLE)
1924       return false;
1925     for (unsigned i = 0; i != 16; i += 2)
1926       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1927           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1))
1928         return false;
1929   } else if (ShuffleKind == 1) {
1930     unsigned j = IsLE ? 0 : 2;
1931     for (unsigned i = 0; i != 8; i += 2)
1932       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1933           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1934           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1935           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1))
1936         return false;
1937   }
1938   return true;
1939 }
1940 
1941 /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a
1942 /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the
1943 /// current subtarget.
1944 ///
1945 /// The ShuffleKind distinguishes between big-endian operations with
1946 /// two different inputs (0), either-endian operations with two identical
1947 /// inputs (1), and little-endian operations with two different inputs (2).
1948 /// For the latter, the input operands are swapped (see PPCInstrAltivec.td).
isVPKUDUMShuffleMask(ShuffleVectorSDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)1949 bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind,
1950                                SelectionDAG &DAG) {
1951   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
1952   if (!Subtarget.hasP8Vector())
1953     return false;
1954 
1955   bool IsLE = DAG.getDataLayout().isLittleEndian();
1956   if (ShuffleKind == 0) {
1957     if (IsLE)
1958       return false;
1959     for (unsigned i = 0; i != 16; i += 4)
1960       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+4) ||
1961           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+5) ||
1962           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+6) ||
1963           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+7))
1964         return false;
1965   } else if (ShuffleKind == 2) {
1966     if (!IsLE)
1967       return false;
1968     for (unsigned i = 0; i != 16; i += 4)
1969       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2) ||
1970           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+1) ||
1971           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+2) ||
1972           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+3))
1973         return false;
1974   } else if (ShuffleKind == 1) {
1975     unsigned j = IsLE ? 0 : 4;
1976     for (unsigned i = 0; i != 8; i += 4)
1977       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+j)   ||
1978           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+j+1) ||
1979           !isConstantOrUndef(N->getMaskElt(i+2),  i*2+j+2) ||
1980           !isConstantOrUndef(N->getMaskElt(i+3),  i*2+j+3) ||
1981           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+j)   ||
1982           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+j+1) ||
1983           !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) ||
1984           !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3))
1985         return false;
1986   }
1987   return true;
1988 }
1989 
1990 /// isVMerge - Common function, used to match vmrg* shuffles.
1991 ///
isVMerge(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned LHSStart,unsigned RHSStart)1992 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
1993                      unsigned LHSStart, unsigned RHSStart) {
1994   if (N->getValueType(0) != MVT::v16i8)
1995     return false;
1996   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
1997          "Unsupported merge size!");
1998 
1999   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
2000     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
2001       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
2002                              LHSStart+j+i*UnitSize) ||
2003           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
2004                              RHSStart+j+i*UnitSize))
2005         return false;
2006     }
2007   return true;
2008 }
2009 
2010 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
2011 /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes).
2012 /// The ShuffleKind distinguishes between big-endian merges with two
2013 /// different inputs (0), either-endian merges with two identical inputs (1),
2014 /// and little-endian merges with two different inputs (2).  For the latter,
2015 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGLShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)2016 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
2017                              unsigned ShuffleKind, SelectionDAG &DAG) {
2018   if (DAG.getDataLayout().isLittleEndian()) {
2019     if (ShuffleKind == 1) // unary
2020       return isVMerge(N, UnitSize, 0, 0);
2021     else if (ShuffleKind == 2) // swapped
2022       return isVMerge(N, UnitSize, 0, 16);
2023     else
2024       return false;
2025   } else {
2026     if (ShuffleKind == 1) // unary
2027       return isVMerge(N, UnitSize, 8, 8);
2028     else if (ShuffleKind == 0) // normal
2029       return isVMerge(N, UnitSize, 8, 24);
2030     else
2031       return false;
2032   }
2033 }
2034 
2035 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
2036 /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes).
2037 /// The ShuffleKind distinguishes between big-endian merges with two
2038 /// different inputs (0), either-endian merges with two identical inputs (1),
2039 /// and little-endian merges with two different inputs (2).  For the latter,
2040 /// the input operands are swapped (see PPCInstrAltivec.td).
isVMRGHShuffleMask(ShuffleVectorSDNode * N,unsigned UnitSize,unsigned ShuffleKind,SelectionDAG & DAG)2041 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
2042                              unsigned ShuffleKind, SelectionDAG &DAG) {
2043   if (DAG.getDataLayout().isLittleEndian()) {
2044     if (ShuffleKind == 1) // unary
2045       return isVMerge(N, UnitSize, 8, 8);
2046     else if (ShuffleKind == 2) // swapped
2047       return isVMerge(N, UnitSize, 8, 24);
2048     else
2049       return false;
2050   } else {
2051     if (ShuffleKind == 1) // unary
2052       return isVMerge(N, UnitSize, 0, 0);
2053     else if (ShuffleKind == 0) // normal
2054       return isVMerge(N, UnitSize, 0, 16);
2055     else
2056       return false;
2057   }
2058 }
2059 
2060 /**
2061  * Common function used to match vmrgew and vmrgow shuffles
2062  *
2063  * The indexOffset determines whether to look for even or odd words in
2064  * the shuffle mask. This is based on the of the endianness of the target
2065  * machine.
2066  *   - Little Endian:
2067  *     - Use offset of 0 to check for odd elements
2068  *     - Use offset of 4 to check for even elements
2069  *   - Big Endian:
2070  *     - Use offset of 0 to check for even elements
2071  *     - Use offset of 4 to check for odd elements
2072  * A detailed description of the vector element ordering for little endian and
2073  * big endian can be found at
2074  * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html
2075  * Targeting your applications - what little endian and big endian IBM XL C/C++
2076  * compiler differences mean to you
2077  *
2078  * The mask to the shuffle vector instruction specifies the indices of the
2079  * elements from the two input vectors to place in the result. The elements are
2080  * numbered in array-access order, starting with the first vector. These vectors
2081  * are always of type v16i8, thus each vector will contain 16 elements of size
2082  * 8. More info on the shuffle vector can be found in the
2083  * http://llvm.org/docs/LangRef.html#shufflevector-instruction
2084  * Language Reference.
2085  *
2086  * The RHSStartValue indicates whether the same input vectors are used (unary)
2087  * or two different input vectors are used, based on the following:
2088  *   - If the instruction uses the same vector for both inputs, the range of the
2089  *     indices will be 0 to 15. In this case, the RHSStart value passed should
2090  *     be 0.
2091  *   - If the instruction has two different vectors then the range of the
2092  *     indices will be 0 to 31. In this case, the RHSStart value passed should
2093  *     be 16 (indices 0-15 specify elements in the first vector while indices 16
2094  *     to 31 specify elements in the second vector).
2095  *
2096  * \param[in] N The shuffle vector SD Node to analyze
2097  * \param[in] IndexOffset Specifies whether to look for even or odd elements
2098  * \param[in] RHSStartValue Specifies the starting index for the righthand input
2099  * vector to the shuffle_vector instruction
2100  * \return true iff this shuffle vector represents an even or odd word merge
2101  */
isVMerge(ShuffleVectorSDNode * N,unsigned IndexOffset,unsigned RHSStartValue)2102 static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset,
2103                      unsigned RHSStartValue) {
2104   if (N->getValueType(0) != MVT::v16i8)
2105     return false;
2106 
2107   for (unsigned i = 0; i < 2; ++i)
2108     for (unsigned j = 0; j < 4; ++j)
2109       if (!isConstantOrUndef(N->getMaskElt(i*4+j),
2110                              i*RHSStartValue+j+IndexOffset) ||
2111           !isConstantOrUndef(N->getMaskElt(i*4+j+8),
2112                              i*RHSStartValue+j+IndexOffset+8))
2113         return false;
2114   return true;
2115 }
2116 
2117 /**
2118  * Determine if the specified shuffle mask is suitable for the vmrgew or
2119  * vmrgow instructions.
2120  *
2121  * \param[in] N The shuffle vector SD Node to analyze
2122  * \param[in] CheckEven Check for an even merge (true) or an odd merge (false)
2123  * \param[in] ShuffleKind Identify the type of merge:
2124  *   - 0 = big-endian merge with two different inputs;
2125  *   - 1 = either-endian merge with two identical inputs;
2126  *   - 2 = little-endian merge with two different inputs (inputs are swapped for
2127  *     little-endian merges).
2128  * \param[in] DAG The current SelectionDAG
2129  * \return true iff this shuffle mask
2130  */
isVMRGEOShuffleMask(ShuffleVectorSDNode * N,bool CheckEven,unsigned ShuffleKind,SelectionDAG & DAG)2131 bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven,
2132                               unsigned ShuffleKind, SelectionDAG &DAG) {
2133   if (DAG.getDataLayout().isLittleEndian()) {
2134     unsigned indexOffset = CheckEven ? 4 : 0;
2135     if (ShuffleKind == 1) // Unary
2136       return isVMerge(N, indexOffset, 0);
2137     else if (ShuffleKind == 2) // swapped
2138       return isVMerge(N, indexOffset, 16);
2139     else
2140       return false;
2141   }
2142   else {
2143     unsigned indexOffset = CheckEven ? 0 : 4;
2144     if (ShuffleKind == 1) // Unary
2145       return isVMerge(N, indexOffset, 0);
2146     else if (ShuffleKind == 0) // Normal
2147       return isVMerge(N, indexOffset, 16);
2148     else
2149       return false;
2150   }
2151   return false;
2152 }
2153 
2154 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
2155 /// amount, otherwise return -1.
2156 /// The ShuffleKind distinguishes between big-endian operations with two
2157 /// different inputs (0), either-endian operations with two identical inputs
2158 /// (1), and little-endian operations with two different inputs (2).  For the
2159 /// latter, the input operands are swapped (see PPCInstrAltivec.td).
isVSLDOIShuffleMask(SDNode * N,unsigned ShuffleKind,SelectionDAG & DAG)2160 int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind,
2161                              SelectionDAG &DAG) {
2162   if (N->getValueType(0) != MVT::v16i8)
2163     return -1;
2164 
2165   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2166 
2167   // Find the first non-undef value in the shuffle mask.
2168   unsigned i;
2169   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
2170     /*search*/;
2171 
2172   if (i == 16) return -1;  // all undef.
2173 
2174   // Otherwise, check to see if the rest of the elements are consecutively
2175   // numbered from this value.
2176   unsigned ShiftAmt = SVOp->getMaskElt(i);
2177   if (ShiftAmt < i) return -1;
2178 
2179   ShiftAmt -= i;
2180   bool isLE = DAG.getDataLayout().isLittleEndian();
2181 
2182   if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) {
2183     // Check the rest of the elements to see if they are consecutive.
2184     for (++i; i != 16; ++i)
2185       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
2186         return -1;
2187   } else if (ShuffleKind == 1) {
2188     // Check the rest of the elements to see if they are consecutive.
2189     for (++i; i != 16; ++i)
2190       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
2191         return -1;
2192   } else
2193     return -1;
2194 
2195   if (isLE)
2196     ShiftAmt = 16 - ShiftAmt;
2197 
2198   return ShiftAmt;
2199 }
2200 
2201 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
2202 /// specifies a splat of a single element that is suitable for input to
2203 /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.).
isSplatShuffleMask(ShuffleVectorSDNode * N,unsigned EltSize)2204 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
2205   EVT VT = N->getValueType(0);
2206   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2207     return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1);
2208 
2209   assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) &&
2210          EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes");
2211 
2212   // The consecutive indices need to specify an element, not part of two
2213   // different elements.  So abandon ship early if this isn't the case.
2214   if (N->getMaskElt(0) % EltSize != 0)
2215     return false;
2216 
2217   // This is a splat operation if each element of the permute is the same, and
2218   // if the value doesn't reference the second vector.
2219   unsigned ElementBase = N->getMaskElt(0);
2220 
2221   // FIXME: Handle UNDEF elements too!
2222   if (ElementBase >= 16)
2223     return false;
2224 
2225   // Check that the indices are consecutive, in the case of a multi-byte element
2226   // splatted with a v16i8 mask.
2227   for (unsigned i = 1; i != EltSize; ++i)
2228     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
2229       return false;
2230 
2231   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
2232     if (N->getMaskElt(i) < 0) continue;
2233     for (unsigned j = 0; j != EltSize; ++j)
2234       if (N->getMaskElt(i+j) != N->getMaskElt(j))
2235         return false;
2236   }
2237   return true;
2238 }
2239 
2240 /// Check that the mask is shuffling N byte elements. Within each N byte
2241 /// element of the mask, the indices could be either in increasing or
2242 /// decreasing order as long as they are consecutive.
2243 /// \param[in] N the shuffle vector SD Node to analyze
2244 /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/
2245 /// Word/DoubleWord/QuadWord).
2246 /// \param[in] StepLen the delta indices number among the N byte element, if
2247 /// the mask is in increasing/decreasing order then it is 1/-1.
2248 /// \return true iff the mask is shuffling N byte elements.
isNByteElemShuffleMask(ShuffleVectorSDNode * N,unsigned Width,int StepLen)2249 static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width,
2250                                    int StepLen) {
2251   assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) &&
2252          "Unexpected element width.");
2253   assert((StepLen == 1 || StepLen == -1) && "Unexpected element width.");
2254 
2255   unsigned NumOfElem = 16 / Width;
2256   unsigned MaskVal[16]; //  Width is never greater than 16
2257   for (unsigned i = 0; i < NumOfElem; ++i) {
2258     MaskVal[0] = N->getMaskElt(i * Width);
2259     if ((StepLen == 1) && (MaskVal[0] % Width)) {
2260       return false;
2261     } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) {
2262       return false;
2263     }
2264 
2265     for (unsigned int j = 1; j < Width; ++j) {
2266       MaskVal[j] = N->getMaskElt(i * Width + j);
2267       if (MaskVal[j] != MaskVal[j-1] + StepLen) {
2268         return false;
2269       }
2270     }
2271   }
2272 
2273   return true;
2274 }
2275 
isXXINSERTWMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,unsigned & InsertAtByte,bool & Swap,bool IsLE)2276 bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2277                           unsigned &InsertAtByte, bool &Swap, bool IsLE) {
2278   if (!isNByteElemShuffleMask(N, 4, 1))
2279     return false;
2280 
2281   // Now we look at mask elements 0,4,8,12
2282   unsigned M0 = N->getMaskElt(0) / 4;
2283   unsigned M1 = N->getMaskElt(4) / 4;
2284   unsigned M2 = N->getMaskElt(8) / 4;
2285   unsigned M3 = N->getMaskElt(12) / 4;
2286   unsigned LittleEndianShifts[] = { 2, 1, 0, 3 };
2287   unsigned BigEndianShifts[] = { 3, 0, 1, 2 };
2288 
2289   // Below, let H and L be arbitrary elements of the shuffle mask
2290   // where H is in the range [4,7] and L is in the range [0,3].
2291   // H, 1, 2, 3 or L, 5, 6, 7
2292   if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) ||
2293       (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) {
2294     ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3];
2295     InsertAtByte = IsLE ? 12 : 0;
2296     Swap = M0 < 4;
2297     return true;
2298   }
2299   // 0, H, 2, 3 or 4, L, 6, 7
2300   if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) ||
2301       (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) {
2302     ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3];
2303     InsertAtByte = IsLE ? 8 : 4;
2304     Swap = M1 < 4;
2305     return true;
2306   }
2307   // 0, 1, H, 3 or 4, 5, L, 7
2308   if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) ||
2309       (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) {
2310     ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3];
2311     InsertAtByte = IsLE ? 4 : 8;
2312     Swap = M2 < 4;
2313     return true;
2314   }
2315   // 0, 1, 2, H or 4, 5, 6, L
2316   if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) ||
2317       (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) {
2318     ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3];
2319     InsertAtByte = IsLE ? 0 : 12;
2320     Swap = M3 < 4;
2321     return true;
2322   }
2323 
2324   // If both vector operands for the shuffle are the same vector, the mask will
2325   // contain only elements from the first one and the second one will be undef.
2326   if (N->getOperand(1).isUndef()) {
2327     ShiftElts = 0;
2328     Swap = true;
2329     unsigned XXINSERTWSrcElem = IsLE ? 2 : 1;
2330     if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) {
2331       InsertAtByte = IsLE ? 12 : 0;
2332       return true;
2333     }
2334     if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) {
2335       InsertAtByte = IsLE ? 8 : 4;
2336       return true;
2337     }
2338     if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) {
2339       InsertAtByte = IsLE ? 4 : 8;
2340       return true;
2341     }
2342     if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) {
2343       InsertAtByte = IsLE ? 0 : 12;
2344       return true;
2345     }
2346   }
2347 
2348   return false;
2349 }
2350 
isXXSLDWIShuffleMask(ShuffleVectorSDNode * N,unsigned & ShiftElts,bool & Swap,bool IsLE)2351 bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts,
2352                                bool &Swap, bool IsLE) {
2353   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2354   // Ensure each byte index of the word is consecutive.
2355   if (!isNByteElemShuffleMask(N, 4, 1))
2356     return false;
2357 
2358   // Now we look at mask elements 0,4,8,12, which are the beginning of words.
2359   unsigned M0 = N->getMaskElt(0) / 4;
2360   unsigned M1 = N->getMaskElt(4) / 4;
2361   unsigned M2 = N->getMaskElt(8) / 4;
2362   unsigned M3 = N->getMaskElt(12) / 4;
2363 
2364   // If both vector operands for the shuffle are the same vector, the mask will
2365   // contain only elements from the first one and the second one will be undef.
2366   if (N->getOperand(1).isUndef()) {
2367     assert(M0 < 4 && "Indexing into an undef vector?");
2368     if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4)
2369       return false;
2370 
2371     ShiftElts = IsLE ? (4 - M0) % 4 : M0;
2372     Swap = false;
2373     return true;
2374   }
2375 
2376   // Ensure each word index of the ShuffleVector Mask is consecutive.
2377   if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8)
2378     return false;
2379 
2380   if (IsLE) {
2381     if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) {
2382       // Input vectors don't need to be swapped if the leading element
2383       // of the result is one of the 3 left elements of the second vector
2384       // (or if there is no shift to be done at all).
2385       Swap = false;
2386       ShiftElts = (8 - M0) % 8;
2387     } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) {
2388       // Input vectors need to be swapped if the leading element
2389       // of the result is one of the 3 left elements of the first vector
2390       // (or if we're shifting by 4 - thereby simply swapping the vectors).
2391       Swap = true;
2392       ShiftElts = (4 - M0) % 4;
2393     }
2394 
2395     return true;
2396   } else {                                          // BE
2397     if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) {
2398       // Input vectors don't need to be swapped if the leading element
2399       // of the result is one of the 4 elements of the first vector.
2400       Swap = false;
2401       ShiftElts = M0;
2402     } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) {
2403       // Input vectors need to be swapped if the leading element
2404       // of the result is one of the 4 elements of the right vector.
2405       Swap = true;
2406       ShiftElts = M0 - 4;
2407     }
2408 
2409     return true;
2410   }
2411 }
2412 
isXXBRShuffleMaskHelper(ShuffleVectorSDNode * N,int Width)2413 bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) {
2414   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2415 
2416   if (!isNByteElemShuffleMask(N, Width, -1))
2417     return false;
2418 
2419   for (int i = 0; i < 16; i += Width)
2420     if (N->getMaskElt(i) != i + Width - 1)
2421       return false;
2422 
2423   return true;
2424 }
2425 
isXXBRHShuffleMask(ShuffleVectorSDNode * N)2426 bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) {
2427   return isXXBRShuffleMaskHelper(N, 2);
2428 }
2429 
isXXBRWShuffleMask(ShuffleVectorSDNode * N)2430 bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) {
2431   return isXXBRShuffleMaskHelper(N, 4);
2432 }
2433 
isXXBRDShuffleMask(ShuffleVectorSDNode * N)2434 bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) {
2435   return isXXBRShuffleMaskHelper(N, 8);
2436 }
2437 
isXXBRQShuffleMask(ShuffleVectorSDNode * N)2438 bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) {
2439   return isXXBRShuffleMaskHelper(N, 16);
2440 }
2441 
2442 /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap
2443 /// if the inputs to the instruction should be swapped and set \p DM to the
2444 /// value for the immediate.
2445 /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI
2446 /// AND element 0 of the result comes from the first input (LE) or second input
2447 /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered.
2448 /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle
2449 /// mask.
isXXPERMDIShuffleMask(ShuffleVectorSDNode * N,unsigned & DM,bool & Swap,bool IsLE)2450 bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM,
2451                                bool &Swap, bool IsLE) {
2452   assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8");
2453 
2454   // Ensure each byte index of the double word is consecutive.
2455   if (!isNByteElemShuffleMask(N, 8, 1))
2456     return false;
2457 
2458   unsigned M0 = N->getMaskElt(0) / 8;
2459   unsigned M1 = N->getMaskElt(8) / 8;
2460   assert(((M0 | M1) < 4) && "A mask element out of bounds?");
2461 
2462   // If both vector operands for the shuffle are the same vector, the mask will
2463   // contain only elements from the first one and the second one will be undef.
2464   if (N->getOperand(1).isUndef()) {
2465     if ((M0 | M1) < 2) {
2466       DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1);
2467       Swap = false;
2468       return true;
2469     } else
2470       return false;
2471   }
2472 
2473   if (IsLE) {
2474     if (M0 > 1 && M1 < 2) {
2475       Swap = false;
2476     } else if (M0 < 2 && M1 > 1) {
2477       M0 = (M0 + 2) % 4;
2478       M1 = (M1 + 2) % 4;
2479       Swap = true;
2480     } else
2481       return false;
2482 
2483     // Note: if control flow comes here that means Swap is already set above
2484     DM = (((~M1) & 1) << 1) + ((~M0) & 1);
2485     return true;
2486   } else { // BE
2487     if (M0 < 2 && M1 > 1) {
2488       Swap = false;
2489     } else if (M0 > 1 && M1 < 2) {
2490       M0 = (M0 + 2) % 4;
2491       M1 = (M1 + 2) % 4;
2492       Swap = true;
2493     } else
2494       return false;
2495 
2496     // Note: if control flow comes here that means Swap is already set above
2497     DM = (M0 << 1) + (M1 & 1);
2498     return true;
2499   }
2500 }
2501 
2502 
2503 /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is
2504 /// appropriate for PPC mnemonics (which have a big endian bias - namely
2505 /// elements are counted from the left of the vector register).
getSplatIdxForPPCMnemonics(SDNode * N,unsigned EltSize,SelectionDAG & DAG)2506 unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize,
2507                                          SelectionDAG &DAG) {
2508   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
2509   assert(isSplatShuffleMask(SVOp, EltSize));
2510   EVT VT = SVOp->getValueType(0);
2511 
2512   if (VT == MVT::v2i64 || VT == MVT::v2f64)
2513     return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0)
2514                                                 : SVOp->getMaskElt(0);
2515 
2516   if (DAG.getDataLayout().isLittleEndian())
2517     return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize);
2518   else
2519     return SVOp->getMaskElt(0) / EltSize;
2520 }
2521 
2522 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
2523 /// by using a vspltis[bhw] instruction of the specified element size, return
2524 /// the constant being splatted.  The ByteSize field indicates the number of
2525 /// bytes of each element [124] -> [bhw].
get_VSPLTI_elt(SDNode * N,unsigned ByteSize,SelectionDAG & DAG)2526 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
2527   SDValue OpVal;
2528 
2529   // If ByteSize of the splat is bigger than the element size of the
2530   // build_vector, then we have a case where we are checking for a splat where
2531   // multiple elements of the buildvector are folded together into a single
2532   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
2533   unsigned EltSize = 16/N->getNumOperands();
2534   if (EltSize < ByteSize) {
2535     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
2536     SDValue UniquedVals[4];
2537     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
2538 
2539     // See if all of the elements in the buildvector agree across.
2540     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2541       if (N->getOperand(i).isUndef()) continue;
2542       // If the element isn't a constant, bail fully out.
2543       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
2544 
2545       if (!UniquedVals[i&(Multiple-1)].getNode())
2546         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
2547       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
2548         return SDValue();  // no match.
2549     }
2550 
2551     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
2552     // either constant or undef values that are identical for each chunk.  See
2553     // if these chunks can form into a larger vspltis*.
2554 
2555     // Check to see if all of the leading entries are either 0 or -1.  If
2556     // neither, then this won't fit into the immediate field.
2557     bool LeadingZero = true;
2558     bool LeadingOnes = true;
2559     for (unsigned i = 0; i != Multiple-1; ++i) {
2560       if (!UniquedVals[i].getNode()) continue;  // Must have been undefs.
2561 
2562       LeadingZero &= isNullConstant(UniquedVals[i]);
2563       LeadingOnes &= isAllOnesConstant(UniquedVals[i]);
2564     }
2565     // Finally, check the least significant entry.
2566     if (LeadingZero) {
2567       if (!UniquedVals[Multiple-1].getNode())
2568         return DAG.getTargetConstant(0, SDLoc(N), MVT::i32);  // 0,0,0,undef
2569       int Val = UniquedVals[Multiple - 1]->getAsZExtVal();
2570       if (Val < 16)                                   // 0,0,0,4 -> vspltisw(4)
2571         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2572     }
2573     if (LeadingOnes) {
2574       if (!UniquedVals[Multiple-1].getNode())
2575         return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef
2576       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
2577       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
2578         return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32);
2579     }
2580 
2581     return SDValue();
2582   }
2583 
2584   // Check to see if this buildvec has a single non-undef value in its elements.
2585   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
2586     if (N->getOperand(i).isUndef()) continue;
2587     if (!OpVal.getNode())
2588       OpVal = N->getOperand(i);
2589     else if (OpVal != N->getOperand(i))
2590       return SDValue();
2591   }
2592 
2593   if (!OpVal.getNode()) return SDValue();  // All UNDEF: use implicit def.
2594 
2595   unsigned ValSizeInBytes = EltSize;
2596   uint64_t Value = 0;
2597   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2598     Value = CN->getZExtValue();
2599   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2600     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
2601     Value = llvm::bit_cast<uint32_t>(CN->getValueAPF().convertToFloat());
2602   }
2603 
2604   // If the splat value is larger than the element value, then we can never do
2605   // this splat.  The only case that we could fit the replicated bits into our
2606   // immediate field for would be zero, and we prefer to use vxor for it.
2607   if (ValSizeInBytes < ByteSize) return SDValue();
2608 
2609   // If the element value is larger than the splat value, check if it consists
2610   // of a repeated bit pattern of size ByteSize.
2611   if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8))
2612     return SDValue();
2613 
2614   // Properly sign extend the value.
2615   int MaskVal = SignExtend32(Value, ByteSize * 8);
2616 
2617   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
2618   if (MaskVal == 0) return SDValue();
2619 
2620   // Finally, if this value fits in a 5 bit sext field, return it
2621   if (SignExtend32<5>(MaskVal) == MaskVal)
2622     return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32);
2623   return SDValue();
2624 }
2625 
2626 //===----------------------------------------------------------------------===//
2627 //  Addressing Mode Selection
2628 //===----------------------------------------------------------------------===//
2629 
2630 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
2631 /// or 64-bit immediate, and if the value can be accurately represented as a
2632 /// sign extension from a 16-bit value.  If so, this returns true and the
2633 /// immediate.
isIntS16Immediate(SDNode * N,int16_t & Imm)2634 bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) {
2635   if (!isa<ConstantSDNode>(N))
2636     return false;
2637 
2638   Imm = (int16_t)N->getAsZExtVal();
2639   if (N->getValueType(0) == MVT::i32)
2640     return Imm == (int32_t)N->getAsZExtVal();
2641   else
2642     return Imm == (int64_t)N->getAsZExtVal();
2643 }
isIntS16Immediate(SDValue Op,int16_t & Imm)2644 bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) {
2645   return isIntS16Immediate(Op.getNode(), Imm);
2646 }
2647 
2648 /// Used when computing address flags for selecting loads and stores.
2649 /// If we have an OR, check if the LHS and RHS are provably disjoint.
2650 /// An OR of two provably disjoint values is equivalent to an ADD.
2651 /// Most PPC load/store instructions compute the effective address as a sum,
2652 /// so doing this conversion is useful.
provablyDisjointOr(SelectionDAG & DAG,const SDValue & N)2653 static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) {
2654   if (N.getOpcode() != ISD::OR)
2655     return false;
2656   KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2657   if (!LHSKnown.Zero.getBoolValue())
2658     return false;
2659   KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2660   return (~(LHSKnown.Zero | RHSKnown.Zero) == 0);
2661 }
2662 
2663 /// SelectAddressEVXRegReg - Given the specified address, check to see if it can
2664 /// be represented as an indexed [r+r] operation.
SelectAddressEVXRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2665 bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base,
2666                                                SDValue &Index,
2667                                                SelectionDAG &DAG) const {
2668   for (SDNode *U : N->uses()) {
2669     if (MemSDNode *Memop = dyn_cast<MemSDNode>(U)) {
2670       if (Memop->getMemoryVT() == MVT::f64) {
2671           Base = N.getOperand(0);
2672           Index = N.getOperand(1);
2673           return true;
2674       }
2675     }
2676   }
2677   return false;
2678 }
2679 
2680 /// isIntS34Immediate - This method tests if value of node given can be
2681 /// accurately represented as a sign extension from a 34-bit value.  If so,
2682 /// this returns true and the immediate.
isIntS34Immediate(SDNode * N,int64_t & Imm)2683 bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) {
2684   if (!isa<ConstantSDNode>(N))
2685     return false;
2686 
2687   Imm = (int64_t)N->getAsZExtVal();
2688   return isInt<34>(Imm);
2689 }
isIntS34Immediate(SDValue Op,int64_t & Imm)2690 bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) {
2691   return isIntS34Immediate(Op.getNode(), Imm);
2692 }
2693 
2694 /// SelectAddressRegReg - Given the specified addressed, check to see if it
2695 /// can be represented as an indexed [r+r] operation.  Returns false if it
2696 /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is
2697 /// non-zero and N can be represented by a base register plus a signed 16-bit
2698 /// displacement, make a more precise judgement by checking (displacement % \p
2699 /// EncodingAlignment).
SelectAddressRegReg(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG,MaybeAlign EncodingAlignment) const2700 bool PPCTargetLowering::SelectAddressRegReg(
2701     SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG,
2702     MaybeAlign EncodingAlignment) const {
2703   // If we have a PC Relative target flag don't select as [reg+reg]. It will be
2704   // a [pc+imm].
2705   if (SelectAddressPCRel(N, Base))
2706     return false;
2707 
2708   int16_t Imm = 0;
2709   if (N.getOpcode() == ISD::ADD) {
2710     // Is there any SPE load/store (f64), which can't handle 16bit offset?
2711     // SPE load/store can only handle 8-bit offsets.
2712     if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG))
2713         return true;
2714     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2715         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2716       return false; // r+i
2717     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
2718       return false;    // r+i
2719 
2720     Base = N.getOperand(0);
2721     Index = N.getOperand(1);
2722     return true;
2723   } else if (N.getOpcode() == ISD::OR) {
2724     if (isIntS16Immediate(N.getOperand(1), Imm) &&
2725         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm)))
2726       return false; // r+i can fold it if we can.
2727 
2728     // If this is an or of disjoint bitfields, we can codegen this as an add
2729     // (for better address arithmetic) if the LHS and RHS of the OR are provably
2730     // disjoint.
2731     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2732 
2733     if (LHSKnown.Zero.getBoolValue()) {
2734       KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1));
2735       // If all of the bits are known zero on the LHS or RHS, the add won't
2736       // carry.
2737       if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) {
2738         Base = N.getOperand(0);
2739         Index = N.getOperand(1);
2740         return true;
2741       }
2742     }
2743   }
2744 
2745   return false;
2746 }
2747 
2748 // If we happen to be doing an i64 load or store into a stack slot that has
2749 // less than a 4-byte alignment, then the frame-index elimination may need to
2750 // use an indexed load or store instruction (because the offset may not be a
2751 // multiple of 4). The extra register needed to hold the offset comes from the
2752 // register scavenger, and it is possible that the scavenger will need to use
2753 // an emergency spill slot. As a result, we need to make sure that a spill slot
2754 // is allocated when doing an i64 load/store into a less-than-4-byte-aligned
2755 // stack slot.
fixupFuncForFI(SelectionDAG & DAG,int FrameIdx,EVT VT)2756 static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) {
2757   // FIXME: This does not handle the LWA case.
2758   if (VT != MVT::i64)
2759     return;
2760 
2761   // NOTE: We'll exclude negative FIs here, which come from argument
2762   // lowering, because there are no known test cases triggering this problem
2763   // using packed structures (or similar). We can remove this exclusion if
2764   // we find such a test case. The reason why this is so test-case driven is
2765   // because this entire 'fixup' is only to prevent crashes (from the
2766   // register scavenger) on not-really-valid inputs. For example, if we have:
2767   //   %a = alloca i1
2768   //   %b = bitcast i1* %a to i64*
2769   //   store i64* a, i64 b
2770   // then the store should really be marked as 'align 1', but is not. If it
2771   // were marked as 'align 1' then the indexed form would have been
2772   // instruction-selected initially, and the problem this 'fixup' is preventing
2773   // won't happen regardless.
2774   if (FrameIdx < 0)
2775     return;
2776 
2777   MachineFunction &MF = DAG.getMachineFunction();
2778   MachineFrameInfo &MFI = MF.getFrameInfo();
2779 
2780   if (MFI.getObjectAlign(FrameIdx) >= Align(4))
2781     return;
2782 
2783   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2784   FuncInfo->setHasNonRISpills();
2785 }
2786 
2787 /// Returns true if the address N can be represented by a base register plus
2788 /// a signed 16-bit displacement [r+imm], and if it is not better
2789 /// represented as reg+reg.  If \p EncodingAlignment is non-zero, only accept
2790 /// displacements that are multiples of that value.
SelectAddressRegImm(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,MaybeAlign EncodingAlignment) const2791 bool PPCTargetLowering::SelectAddressRegImm(
2792     SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG,
2793     MaybeAlign EncodingAlignment) const {
2794   // FIXME dl should come from parent load or store, not from address
2795   SDLoc dl(N);
2796 
2797   // If we have a PC Relative target flag don't select as [reg+imm]. It will be
2798   // a [pc+imm].
2799   if (SelectAddressPCRel(N, Base))
2800     return false;
2801 
2802   // If this can be more profitably realized as r+r, fail.
2803   if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment))
2804     return false;
2805 
2806   if (N.getOpcode() == ISD::ADD) {
2807     int16_t imm = 0;
2808     if (isIntS16Immediate(N.getOperand(1), imm) &&
2809         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2810       Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2811       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2812         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2813         fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2814       } else {
2815         Base = N.getOperand(0);
2816       }
2817       return true; // [r+i]
2818     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
2819       // Match LOAD (ADD (X, Lo(G))).
2820       assert(!N.getOperand(1).getConstantOperandVal(1) &&
2821              "Cannot handle constant offsets yet!");
2822       Disp = N.getOperand(1).getOperand(0);  // The global address.
2823       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
2824              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
2825              Disp.getOpcode() == ISD::TargetConstantPool ||
2826              Disp.getOpcode() == ISD::TargetJumpTable);
2827       Base = N.getOperand(0);
2828       return true;  // [&g+r]
2829     }
2830   } else if (N.getOpcode() == ISD::OR) {
2831     int16_t imm = 0;
2832     if (isIntS16Immediate(N.getOperand(1), imm) &&
2833         (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) {
2834       // If this is an or of disjoint bitfields, we can codegen this as an add
2835       // (for better address arithmetic) if the LHS and RHS of the OR are
2836       // provably disjoint.
2837       KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2838 
2839       if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
2840         // If all of the bits are known zero on the LHS or RHS, the add won't
2841         // carry.
2842         if (FrameIndexSDNode *FI =
2843               dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
2844           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2845           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2846         } else {
2847           Base = N.getOperand(0);
2848         }
2849         Disp = DAG.getTargetConstant(imm, dl, N.getValueType());
2850         return true;
2851       }
2852     }
2853   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
2854     // Loading from a constant address.
2855 
2856     // If this address fits entirely in a 16-bit sext immediate field, codegen
2857     // this as "d, 0"
2858     int16_t Imm;
2859     if (isIntS16Immediate(CN, Imm) &&
2860         (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) {
2861       Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0));
2862       Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2863                              CN->getValueType(0));
2864       return true;
2865     }
2866 
2867     // Handle 32-bit sext immediates with LIS + addr mode.
2868     if ((CN->getValueType(0) == MVT::i32 ||
2869          (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) &&
2870         (!EncodingAlignment ||
2871          isAligned(*EncodingAlignment, CN->getZExtValue()))) {
2872       int Addr = (int)CN->getZExtValue();
2873 
2874       // Otherwise, break this down into an LIS + disp.
2875       Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32);
2876 
2877       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl,
2878                                    MVT::i32);
2879       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
2880       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
2881       return true;
2882     }
2883   }
2884 
2885   Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout()));
2886   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
2887     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2888     fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
2889   } else
2890     Base = N;
2891   return true;      // [r+0]
2892 }
2893 
2894 /// Similar to the 16-bit case but for instructions that take a 34-bit
2895 /// displacement field (prefixed loads/stores).
SelectAddressRegImm34(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG) const2896 bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp,
2897                                               SDValue &Base,
2898                                               SelectionDAG &DAG) const {
2899   // Only on 64-bit targets.
2900   if (N.getValueType() != MVT::i64)
2901     return false;
2902 
2903   SDLoc dl(N);
2904   int64_t Imm = 0;
2905 
2906   if (N.getOpcode() == ISD::ADD) {
2907     if (!isIntS34Immediate(N.getOperand(1), Imm))
2908       return false;
2909     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2910     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2911       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2912     else
2913       Base = N.getOperand(0);
2914     return true;
2915   }
2916 
2917   if (N.getOpcode() == ISD::OR) {
2918     if (!isIntS34Immediate(N.getOperand(1), Imm))
2919       return false;
2920     // If this is an or of disjoint bitfields, we can codegen this as an add
2921     // (for better address arithmetic) if the LHS and RHS of the OR are
2922     // provably disjoint.
2923     KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0));
2924     if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL)
2925       return false;
2926     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
2927       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
2928     else
2929       Base = N.getOperand(0);
2930     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2931     return true;
2932   }
2933 
2934   if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const.
2935     Disp = DAG.getTargetConstant(Imm, dl, N.getValueType());
2936     Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
2937     return true;
2938   }
2939 
2940   return false;
2941 }
2942 
2943 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
2944 /// represented as an indexed [r+r] operation.
SelectAddressRegRegOnly(SDValue N,SDValue & Base,SDValue & Index,SelectionDAG & DAG) const2945 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
2946                                                 SDValue &Index,
2947                                                 SelectionDAG &DAG) const {
2948   // Check to see if we can easily represent this as an [r+r] address.  This
2949   // will fail if it thinks that the address is more profitably represented as
2950   // reg+imm, e.g. where imm = 0.
2951   if (SelectAddressRegReg(N, Base, Index, DAG))
2952     return true;
2953 
2954   // If the address is the result of an add, we will utilize the fact that the
2955   // address calculation includes an implicit add.  However, we can reduce
2956   // register pressure if we do not materialize a constant just for use as the
2957   // index register.  We only get rid of the add if it is not an add of a
2958   // value and a 16-bit signed constant and both have a single use.
2959   int16_t imm = 0;
2960   if (N.getOpcode() == ISD::ADD &&
2961       (!isIntS16Immediate(N.getOperand(1), imm) ||
2962        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
2963     Base = N.getOperand(0);
2964     Index = N.getOperand(1);
2965     return true;
2966   }
2967 
2968   // Otherwise, do it the hard way, using R0 as the base register.
2969   Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
2970                          N.getValueType());
2971   Index = N;
2972   return true;
2973 }
2974 
isValidPCRelNode(SDValue N)2975 template <typename Ty> static bool isValidPCRelNode(SDValue N) {
2976   Ty *PCRelCand = dyn_cast<Ty>(N);
2977   return PCRelCand && (PPCInstrInfo::hasPCRelFlag(PCRelCand->getTargetFlags()));
2978 }
2979 
2980 /// Returns true if this address is a PC Relative address.
2981 /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG
2982 /// or if the node opcode is PPCISD::MAT_PCREL_ADDR.
SelectAddressPCRel(SDValue N,SDValue & Base) const2983 bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const {
2984   // This is a materialize PC Relative node. Always select this as PC Relative.
2985   Base = N;
2986   if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR)
2987     return true;
2988   if (isValidPCRelNode<ConstantPoolSDNode>(N) ||
2989       isValidPCRelNode<GlobalAddressSDNode>(N) ||
2990       isValidPCRelNode<JumpTableSDNode>(N) ||
2991       isValidPCRelNode<BlockAddressSDNode>(N))
2992     return true;
2993   return false;
2994 }
2995 
2996 /// Returns true if we should use a direct load into vector instruction
2997 /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence.
usePartialVectorLoads(SDNode * N,const PPCSubtarget & ST)2998 static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) {
2999 
3000   // If there are any other uses other than scalar to vector, then we should
3001   // keep it as a scalar load -> direct move pattern to prevent multiple
3002   // loads.
3003   LoadSDNode *LD = dyn_cast<LoadSDNode>(N);
3004   if (!LD)
3005     return false;
3006 
3007   EVT MemVT = LD->getMemoryVT();
3008   if (!MemVT.isSimple())
3009     return false;
3010   switch(MemVT.getSimpleVT().SimpleTy) {
3011   case MVT::i64:
3012     break;
3013   case MVT::i32:
3014     if (!ST.hasP8Vector())
3015       return false;
3016     break;
3017   case MVT::i16:
3018   case MVT::i8:
3019     if (!ST.hasP9Vector())
3020       return false;
3021     break;
3022   default:
3023     return false;
3024   }
3025 
3026   SDValue LoadedVal(N, 0);
3027   if (!LoadedVal.hasOneUse())
3028     return false;
3029 
3030   for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end();
3031        UI != UE; ++UI)
3032     if (UI.getUse().get().getResNo() == 0 &&
3033         UI->getOpcode() != ISD::SCALAR_TO_VECTOR &&
3034         UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED)
3035       return false;
3036 
3037   return true;
3038 }
3039 
3040 /// getPreIndexedAddressParts - returns true by value, base pointer and
3041 /// offset pointer and addressing mode by reference if the node's address
3042 /// can be legally represented as pre-indexed load / store address.
getPreIndexedAddressParts(SDNode * N,SDValue & Base,SDValue & Offset,ISD::MemIndexedMode & AM,SelectionDAG & DAG) const3043 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
3044                                                   SDValue &Offset,
3045                                                   ISD::MemIndexedMode &AM,
3046                                                   SelectionDAG &DAG) const {
3047   if (DisablePPCPreinc) return false;
3048 
3049   bool isLoad = true;
3050   SDValue Ptr;
3051   EVT VT;
3052   Align Alignment;
3053   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3054     Ptr = LD->getBasePtr();
3055     VT = LD->getMemoryVT();
3056     Alignment = LD->getAlign();
3057   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
3058     Ptr = ST->getBasePtr();
3059     VT  = ST->getMemoryVT();
3060     Alignment = ST->getAlign();
3061     isLoad = false;
3062   } else
3063     return false;
3064 
3065   // Do not generate pre-inc forms for specific loads that feed scalar_to_vector
3066   // instructions because we can fold these into a more efficient instruction
3067   // instead, (such as LXSD).
3068   if (isLoad && usePartialVectorLoads(N, Subtarget)) {
3069     return false;
3070   }
3071 
3072   // PowerPC doesn't have preinc load/store instructions for vectors
3073   if (VT.isVector())
3074     return false;
3075 
3076   if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
3077     // Common code will reject creating a pre-inc form if the base pointer
3078     // is a frame index, or if N is a store and the base pointer is either
3079     // the same as or a predecessor of the value being stored.  Check for
3080     // those situations here, and try with swapped Base/Offset instead.
3081     bool Swap = false;
3082 
3083     if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
3084       Swap = true;
3085     else if (!isLoad) {
3086       SDValue Val = cast<StoreSDNode>(N)->getValue();
3087       if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
3088         Swap = true;
3089     }
3090 
3091     if (Swap)
3092       std::swap(Base, Offset);
3093 
3094     AM = ISD::PRE_INC;
3095     return true;
3096   }
3097 
3098   // LDU/STU can only handle immediates that are a multiple of 4.
3099   if (VT != MVT::i64) {
3100     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt))
3101       return false;
3102   } else {
3103     // LDU/STU need an address with at least 4-byte alignment.
3104     if (Alignment < Align(4))
3105       return false;
3106 
3107     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4)))
3108       return false;
3109   }
3110 
3111   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
3112     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
3113     // sext i32 to i64 when addr mode is r+i.
3114     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
3115         LD->getExtensionType() == ISD::SEXTLOAD &&
3116         isa<ConstantSDNode>(Offset))
3117       return false;
3118   }
3119 
3120   AM = ISD::PRE_INC;
3121   return true;
3122 }
3123 
3124 //===----------------------------------------------------------------------===//
3125 //  LowerOperation implementation
3126 //===----------------------------------------------------------------------===//
3127 
3128 /// Return true if we should reference labels using a PICBase, set the HiOpFlags
3129 /// and LoOpFlags to the target MO flags.
getLabelAccessInfo(bool IsPIC,const PPCSubtarget & Subtarget,unsigned & HiOpFlags,unsigned & LoOpFlags,const GlobalValue * GV=nullptr)3130 static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget,
3131                                unsigned &HiOpFlags, unsigned &LoOpFlags,
3132                                const GlobalValue *GV = nullptr) {
3133   HiOpFlags = PPCII::MO_HA;
3134   LoOpFlags = PPCII::MO_LO;
3135 
3136   // Don't use the pic base if not in PIC relocation model.
3137   if (IsPIC) {
3138     HiOpFlags = PPCII::MO_PIC_HA_FLAG;
3139     LoOpFlags = PPCII::MO_PIC_LO_FLAG;
3140   }
3141 }
3142 
LowerLabelRef(SDValue HiPart,SDValue LoPart,bool isPIC,SelectionDAG & DAG)3143 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
3144                              SelectionDAG &DAG) {
3145   SDLoc DL(HiPart);
3146   EVT PtrVT = HiPart.getValueType();
3147   SDValue Zero = DAG.getConstant(0, DL, PtrVT);
3148 
3149   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
3150   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
3151 
3152   // With PIC, the first instruction is actually "GR+hi(&G)".
3153   if (isPIC)
3154     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
3155                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
3156 
3157   // Generate non-pic code that has direct accesses to the constant pool.
3158   // The address of the global is just (hi(&g)+lo(&g)).
3159   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
3160 }
3161 
setUsesTOCBasePtr(MachineFunction & MF)3162 static void setUsesTOCBasePtr(MachineFunction &MF) {
3163   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3164   FuncInfo->setUsesTOCBasePtr();
3165 }
3166 
setUsesTOCBasePtr(SelectionDAG & DAG)3167 static void setUsesTOCBasePtr(SelectionDAG &DAG) {
3168   setUsesTOCBasePtr(DAG.getMachineFunction());
3169 }
3170 
getTOCEntry(SelectionDAG & DAG,const SDLoc & dl,SDValue GA) const3171 SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl,
3172                                        SDValue GA) const {
3173   const bool Is64Bit = Subtarget.isPPC64();
3174   EVT VT = Is64Bit ? MVT::i64 : MVT::i32;
3175   SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT)
3176                         : Subtarget.isAIXABI()
3177                               ? DAG.getRegister(PPC::R2, VT)
3178                               : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT);
3179   SDValue Ops[] = { GA, Reg };
3180   return DAG.getMemIntrinsicNode(
3181       PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT,
3182       MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt,
3183       MachineMemOperand::MOLoad);
3184 }
3185 
LowerConstantPool(SDValue Op,SelectionDAG & DAG) const3186 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
3187                                              SelectionDAG &DAG) const {
3188   EVT PtrVT = Op.getValueType();
3189   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
3190   const Constant *C = CP->getConstVal();
3191 
3192   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3193   // The actual address of the GlobalValue is stored in the TOC.
3194   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3195     if (Subtarget.isUsingPCRelativeCalls()) {
3196       SDLoc DL(CP);
3197       EVT Ty = getPointerTy(DAG.getDataLayout());
3198       SDValue ConstPool = DAG.getTargetConstantPool(
3199           C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG);
3200       return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool);
3201     }
3202     setUsesTOCBasePtr(DAG);
3203     SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0);
3204     return getTOCEntry(DAG, SDLoc(CP), GA);
3205   }
3206 
3207   unsigned MOHiFlag, MOLoFlag;
3208   bool IsPIC = isPositionIndependent();
3209   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3210 
3211   if (IsPIC && Subtarget.isSVR4ABI()) {
3212     SDValue GA =
3213         DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG);
3214     return getTOCEntry(DAG, SDLoc(CP), GA);
3215   }
3216 
3217   SDValue CPIHi =
3218       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag);
3219   SDValue CPILo =
3220       DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag);
3221   return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG);
3222 }
3223 
3224 // For 64-bit PowerPC, prefer the more compact relative encodings.
3225 // This trades 32 bits per jump table entry for one or two instructions
3226 // on the jump site.
getJumpTableEncoding() const3227 unsigned PPCTargetLowering::getJumpTableEncoding() const {
3228   if (isJumpTableRelative())
3229     return MachineJumpTableInfo::EK_LabelDifference32;
3230 
3231   return TargetLowering::getJumpTableEncoding();
3232 }
3233 
isJumpTableRelative() const3234 bool PPCTargetLowering::isJumpTableRelative() const {
3235   if (UseAbsoluteJumpTables)
3236     return false;
3237   if (Subtarget.isPPC64() || Subtarget.isAIXABI())
3238     return true;
3239   return TargetLowering::isJumpTableRelative();
3240 }
3241 
getPICJumpTableRelocBase(SDValue Table,SelectionDAG & DAG) const3242 SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table,
3243                                                     SelectionDAG &DAG) const {
3244   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3245     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3246 
3247   switch (getTargetMachine().getCodeModel()) {
3248   case CodeModel::Small:
3249   case CodeModel::Medium:
3250     return TargetLowering::getPICJumpTableRelocBase(Table, DAG);
3251   default:
3252     return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(),
3253                        getPointerTy(DAG.getDataLayout()));
3254   }
3255 }
3256 
3257 const MCExpr *
getPICJumpTableRelocBaseExpr(const MachineFunction * MF,unsigned JTI,MCContext & Ctx) const3258 PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
3259                                                 unsigned JTI,
3260                                                 MCContext &Ctx) const {
3261   if (!Subtarget.isPPC64() || Subtarget.isAIXABI())
3262     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3263 
3264   switch (getTargetMachine().getCodeModel()) {
3265   case CodeModel::Small:
3266   case CodeModel::Medium:
3267     return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx);
3268   default:
3269     return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx);
3270   }
3271 }
3272 
LowerJumpTable(SDValue Op,SelectionDAG & DAG) const3273 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
3274   EVT PtrVT = Op.getValueType();
3275   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
3276 
3277   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3278   if (Subtarget.isUsingPCRelativeCalls()) {
3279     SDLoc DL(JT);
3280     EVT Ty = getPointerTy(DAG.getDataLayout());
3281     SDValue GA =
3282         DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG);
3283     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3284     return MatAddr;
3285   }
3286 
3287   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3288   // The actual address of the GlobalValue is stored in the TOC.
3289   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3290     setUsesTOCBasePtr(DAG);
3291     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
3292     return getTOCEntry(DAG, SDLoc(JT), GA);
3293   }
3294 
3295   unsigned MOHiFlag, MOLoFlag;
3296   bool IsPIC = isPositionIndependent();
3297   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3298 
3299   if (IsPIC && Subtarget.isSVR4ABI()) {
3300     SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT,
3301                                         PPCII::MO_PIC_FLAG);
3302     return getTOCEntry(DAG, SDLoc(GA), GA);
3303   }
3304 
3305   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
3306   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
3307   return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG);
3308 }
3309 
LowerBlockAddress(SDValue Op,SelectionDAG & DAG) const3310 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
3311                                              SelectionDAG &DAG) const {
3312   EVT PtrVT = Op.getValueType();
3313   BlockAddressSDNode *BASDN = cast<BlockAddressSDNode>(Op);
3314   const BlockAddress *BA = BASDN->getBlockAddress();
3315 
3316   // isUsingPCRelativeCalls() returns true when PCRelative is enabled
3317   if (Subtarget.isUsingPCRelativeCalls()) {
3318     SDLoc DL(BASDN);
3319     EVT Ty = getPointerTy(DAG.getDataLayout());
3320     SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(),
3321                                            PPCII::MO_PCREL_FLAG);
3322     SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3323     return MatAddr;
3324   }
3325 
3326   // 64-bit SVR4 ABI and AIX ABI code are always position-independent.
3327   // The actual BlockAddress is stored in the TOC.
3328   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3329     setUsesTOCBasePtr(DAG);
3330     SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset());
3331     return getTOCEntry(DAG, SDLoc(BASDN), GA);
3332   }
3333 
3334   // 32-bit position-independent ELF stores the BlockAddress in the .got.
3335   if (Subtarget.is32BitELFABI() && isPositionIndependent())
3336     return getTOCEntry(
3337         DAG, SDLoc(BASDN),
3338         DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()));
3339 
3340   unsigned MOHiFlag, MOLoFlag;
3341   bool IsPIC = isPositionIndependent();
3342   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag);
3343   SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
3344   SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
3345   return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG);
3346 }
3347 
LowerGlobalTLSAddress(SDValue Op,SelectionDAG & DAG) const3348 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
3349                                               SelectionDAG &DAG) const {
3350   if (Subtarget.isAIXABI())
3351     return LowerGlobalTLSAddressAIX(Op, DAG);
3352 
3353   return LowerGlobalTLSAddressLinux(Op, DAG);
3354 }
3355 
LowerGlobalTLSAddressAIX(SDValue Op,SelectionDAG & DAG) const3356 SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op,
3357                                                     SelectionDAG &DAG) const {
3358   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3359 
3360   if (DAG.getTarget().useEmulatedTLS())
3361     report_fatal_error("Emulated TLS is not yet supported on AIX");
3362 
3363   SDLoc dl(GA);
3364   const GlobalValue *GV = GA->getGlobal();
3365   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3366   bool Is64Bit = Subtarget.isPPC64();
3367   bool HasAIXSmallLocalExecTLS = Subtarget.hasAIXSmallLocalExecTLS();
3368   TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
3369   bool IsTLSLocalExecModel = Model == TLSModel::LocalExec;
3370 
3371   if (IsTLSLocalExecModel || Model == TLSModel::InitialExec) {
3372     SDValue VariableOffsetTGA =
3373         DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_FLAG);
3374     SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3375     SDValue TLSReg;
3376     if (Is64Bit) {
3377       // For local-exec and initial-exec on AIX (64-bit), the sequence generated
3378       // involves a load of the variable offset (from the TOC), followed by an
3379       // add of the loaded variable offset to R13 (the thread pointer).
3380       // This code sequence looks like:
3381       //    ld reg1,var[TC](2)
3382       //    add reg2, reg1, r13     // r13 contains the thread pointer
3383       TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3384 
3385       // With the -maix-small-local-exec-tls option, produce a faster access
3386       // sequence for local-exec TLS variables where the offset from the TLS
3387       // base is encoded as an immediate operand.
3388       //
3389       // We only utilize the faster local-exec access sequence when the TLS
3390       // variable has a size within the policy limit. We treat types that are
3391       // not sized or are empty as being over the policy size limit.
3392       if (HasAIXSmallLocalExecTLS && IsTLSLocalExecModel) {
3393         Type *GVType = GV->getValueType();
3394         if (GVType->isSized() && !GVType->isEmptyTy() &&
3395             GV->getParent()->getDataLayout().getTypeAllocSize(GVType) <=
3396                 AIXSmallTlsPolicySizeLimit)
3397           return DAG.getNode(PPCISD::Lo, dl, PtrVT, VariableOffsetTGA, TLSReg);
3398       }
3399     } else {
3400       // For local-exec and initial-exec on AIX (32-bit), the sequence generated
3401       // involves loading the variable offset from the TOC, generating a call to
3402       // .__get_tpointer to get the thread pointer (which will be in R3), and
3403       // adding the two together:
3404       //    lwz reg1,var[TC](2)
3405       //    bla .__get_tpointer
3406       //    add reg2, reg1, r3
3407       TLSReg = DAG.getNode(PPCISD::GET_TPOINTER, dl, PtrVT);
3408 
3409       // We do not implement the 32-bit version of the faster access sequence
3410       // for local-exec that is controlled by -maix-small-local-exec-tls.
3411       if (HasAIXSmallLocalExecTLS)
3412         report_fatal_error("The small-local-exec TLS access sequence is "
3413                            "currently only supported on AIX (64-bit mode).");
3414     }
3415     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, VariableOffset);
3416   }
3417 
3418   // Only Local-Exec, Initial-Exec and General-Dynamic TLS models are currently
3419   // supported models. If Local- or Initial-exec are not possible or specified,
3420   // all GlobalTLSAddress nodes are lowered using the general-dynamic model.
3421   // We need to generate two TOC entries, one for the variable offset, one for
3422   // the region handle. The global address for the TOC entry of the region
3423   // handle is created with the MO_TLSGDM_FLAG flag and the global address
3424   // for the TOC entry of the variable offset is created with MO_TLSGD_FLAG.
3425   SDValue VariableOffsetTGA =
3426       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG);
3427   SDValue RegionHandleTGA =
3428       DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG);
3429   SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA);
3430   SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA);
3431   return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset,
3432                      RegionHandle);
3433 }
3434 
LowerGlobalTLSAddressLinux(SDValue Op,SelectionDAG & DAG) const3435 SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op,
3436                                                       SelectionDAG &DAG) const {
3437   // FIXME: TLS addresses currently use medium model code sequences,
3438   // which is the most useful form.  Eventually support for small and
3439   // large models could be added if users need it, at the cost of
3440   // additional complexity.
3441   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
3442   if (DAG.getTarget().useEmulatedTLS())
3443     return LowerToTLSEmulatedModel(GA, DAG);
3444 
3445   SDLoc dl(GA);
3446   const GlobalValue *GV = GA->getGlobal();
3447   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3448   bool is64bit = Subtarget.isPPC64();
3449   const Module *M = DAG.getMachineFunction().getFunction().getParent();
3450   PICLevel::Level picLevel = M->getPICLevel();
3451 
3452   const TargetMachine &TM = getTargetMachine();
3453   TLSModel::Model Model = TM.getTLSModel(GV);
3454 
3455   if (Model == TLSModel::LocalExec) {
3456     if (Subtarget.isUsingPCRelativeCalls()) {
3457       SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64);
3458       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3459                                                PPCII::MO_TPREL_PCREL_FLAG);
3460       SDValue MatAddr =
3461           DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA);
3462       return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr);
3463     }
3464 
3465     SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3466                                                PPCII::MO_TPREL_HA);
3467     SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3468                                                PPCII::MO_TPREL_LO);
3469     SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64)
3470                              : DAG.getRegister(PPC::R2, MVT::i32);
3471 
3472     SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
3473     return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
3474   }
3475 
3476   if (Model == TLSModel::InitialExec) {
3477     bool IsPCRel = Subtarget.isUsingPCRelativeCalls();
3478     SDValue TGA = DAG.getTargetGlobalAddress(
3479         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0);
3480     SDValue TGATLS = DAG.getTargetGlobalAddress(
3481         GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_TLS_PCREL_FLAG : PPCII::MO_TLS);
3482     SDValue TPOffset;
3483     if (IsPCRel) {
3484       SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA);
3485       TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel,
3486                              MachinePointerInfo());
3487     } else {
3488       SDValue GOTPtr;
3489       if (is64bit) {
3490         setUsesTOCBasePtr(DAG);
3491         SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3492         GOTPtr =
3493             DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA);
3494       } else {
3495         if (!TM.isPositionIndependent())
3496           GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT);
3497         else if (picLevel == PICLevel::SmallPIC)
3498           GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3499         else
3500           GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3501       }
3502       TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr);
3503     }
3504     return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS);
3505   }
3506 
3507   if (Model == TLSModel::GeneralDynamic) {
3508     if (Subtarget.isUsingPCRelativeCalls()) {
3509       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3510                                                PPCII::MO_GOT_TLSGD_PCREL_FLAG);
3511       return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3512     }
3513 
3514     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3515     SDValue GOTPtr;
3516     if (is64bit) {
3517       setUsesTOCBasePtr(DAG);
3518       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3519       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
3520                                    GOTReg, TGA);
3521     } else {
3522       if (picLevel == PICLevel::SmallPIC)
3523         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3524       else
3525         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3526     }
3527     return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT,
3528                        GOTPtr, TGA, TGA);
3529   }
3530 
3531   if (Model == TLSModel::LocalDynamic) {
3532     if (Subtarget.isUsingPCRelativeCalls()) {
3533       SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
3534                                                PPCII::MO_GOT_TLSLD_PCREL_FLAG);
3535       SDValue MatPCRel =
3536           DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA);
3537       return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA);
3538     }
3539 
3540     SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
3541     SDValue GOTPtr;
3542     if (is64bit) {
3543       setUsesTOCBasePtr(DAG);
3544       SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
3545       GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
3546                            GOTReg, TGA);
3547     } else {
3548       if (picLevel == PICLevel::SmallPIC)
3549         GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT);
3550       else
3551         GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT);
3552     }
3553     SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl,
3554                                   PtrVT, GOTPtr, TGA, TGA);
3555     SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl,
3556                                       PtrVT, TLSAddr, TGA);
3557     return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
3558   }
3559 
3560   llvm_unreachable("Unknown TLS model!");
3561 }
3562 
LowerGlobalAddress(SDValue Op,SelectionDAG & DAG) const3563 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
3564                                               SelectionDAG &DAG) const {
3565   EVT PtrVT = Op.getValueType();
3566   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
3567   SDLoc DL(GSDN);
3568   const GlobalValue *GV = GSDN->getGlobal();
3569 
3570   // 64-bit SVR4 ABI & AIX ABI code is always position-independent.
3571   // The actual address of the GlobalValue is stored in the TOC.
3572   if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) {
3573     if (Subtarget.isUsingPCRelativeCalls()) {
3574       EVT Ty = getPointerTy(DAG.getDataLayout());
3575       if (isAccessedAsGotIndirect(Op)) {
3576         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3577                                                 PPCII::MO_GOT_PCREL_FLAG);
3578         SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3579         SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel,
3580                                    MachinePointerInfo());
3581         return Load;
3582       } else {
3583         SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(),
3584                                                 PPCII::MO_PCREL_FLAG);
3585         return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA);
3586       }
3587     }
3588     setUsesTOCBasePtr(DAG);
3589     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
3590     return getTOCEntry(DAG, DL, GA);
3591   }
3592 
3593   unsigned MOHiFlag, MOLoFlag;
3594   bool IsPIC = isPositionIndependent();
3595   getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV);
3596 
3597   if (IsPIC && Subtarget.isSVR4ABI()) {
3598     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT,
3599                                             GSDN->getOffset(),
3600                                             PPCII::MO_PIC_FLAG);
3601     return getTOCEntry(DAG, DL, GA);
3602   }
3603 
3604   SDValue GAHi =
3605     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
3606   SDValue GALo =
3607     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
3608 
3609   return LowerLabelRef(GAHi, GALo, IsPIC, DAG);
3610 }
3611 
LowerSETCC(SDValue Op,SelectionDAG & DAG) const3612 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
3613   bool IsStrict = Op->isStrictFPOpcode();
3614   ISD::CondCode CC =
3615       cast<CondCodeSDNode>(Op.getOperand(IsStrict ? 3 : 2))->get();
3616   SDValue LHS = Op.getOperand(IsStrict ? 1 : 0);
3617   SDValue RHS = Op.getOperand(IsStrict ? 2 : 1);
3618   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
3619   EVT LHSVT = LHS.getValueType();
3620   SDLoc dl(Op);
3621 
3622   // Soften the setcc with libcall if it is fp128.
3623   if (LHSVT == MVT::f128) {
3624     assert(!Subtarget.hasP9Vector() &&
3625            "SETCC for f128 is already legal under Power9!");
3626     softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain,
3627                         Op->getOpcode() == ISD::STRICT_FSETCCS);
3628     if (RHS.getNode())
3629       LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS,
3630                         DAG.getCondCode(CC));
3631     if (IsStrict)
3632       return DAG.getMergeValues({LHS, Chain}, dl);
3633     return LHS;
3634   }
3635 
3636   assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!");
3637 
3638   if (Op.getValueType() == MVT::v2i64) {
3639     // When the operands themselves are v2i64 values, we need to do something
3640     // special because VSX has no underlying comparison operations for these.
3641     if (LHS.getValueType() == MVT::v2i64) {
3642       // Equality can be handled by casting to the legal type for Altivec
3643       // comparisons, everything else needs to be expanded.
3644       if (CC != ISD::SETEQ && CC != ISD::SETNE)
3645         return SDValue();
3646       SDValue SetCC32 = DAG.getSetCC(
3647           dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS),
3648           DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC);
3649       int ShuffV[] = {1, 0, 3, 2};
3650       SDValue Shuff =
3651           DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV);
3652       return DAG.getBitcast(MVT::v2i64,
3653                             DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR,
3654                                         dl, MVT::v4i32, Shuff, SetCC32));
3655     }
3656 
3657     // We handle most of these in the usual way.
3658     return Op;
3659   }
3660 
3661   // If we're comparing for equality to zero, expose the fact that this is
3662   // implemented as a ctlz/srl pair on ppc, so that the dag combiner can
3663   // fold the new nodes.
3664   if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG))
3665     return V;
3666 
3667   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS)) {
3668     // Leave comparisons against 0 and -1 alone for now, since they're usually
3669     // optimized.  FIXME: revisit this when we can custom lower all setcc
3670     // optimizations.
3671     if (C->isAllOnes() || C->isZero())
3672       return SDValue();
3673   }
3674 
3675   // If we have an integer seteq/setne, turn it into a compare against zero
3676   // by xor'ing the rhs with the lhs, which is faster than setting a
3677   // condition register, reading it back out, and masking the correct bit.  The
3678   // normal approach here uses sub to do this instead of xor.  Using xor exposes
3679   // the result to other bit-twiddling opportunities.
3680   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
3681     EVT VT = Op.getValueType();
3682     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS);
3683     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC);
3684   }
3685   return SDValue();
3686 }
3687 
LowerVAARG(SDValue Op,SelectionDAG & DAG) const3688 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const {
3689   SDNode *Node = Op.getNode();
3690   EVT VT = Node->getValueType(0);
3691   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3692   SDValue InChain = Node->getOperand(0);
3693   SDValue VAListPtr = Node->getOperand(1);
3694   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
3695   SDLoc dl(Node);
3696 
3697   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
3698 
3699   // gpr_index
3700   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3701                                     VAListPtr, MachinePointerInfo(SV), MVT::i8);
3702   InChain = GprIndex.getValue(1);
3703 
3704   if (VT == MVT::i64) {
3705     // Check if GprIndex is even
3706     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
3707                                  DAG.getConstant(1, dl, MVT::i32));
3708     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
3709                                 DAG.getConstant(0, dl, MVT::i32), ISD::SETNE);
3710     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
3711                                           DAG.getConstant(1, dl, MVT::i32));
3712     // Align GprIndex to be even if it isn't
3713     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
3714                            GprIndex);
3715   }
3716 
3717   // fpr index is 1 byte after gpr
3718   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3719                                DAG.getConstant(1, dl, MVT::i32));
3720 
3721   // fpr
3722   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
3723                                     FprPtr, MachinePointerInfo(SV), MVT::i8);
3724   InChain = FprIndex.getValue(1);
3725 
3726   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3727                                        DAG.getConstant(8, dl, MVT::i32));
3728 
3729   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
3730                                         DAG.getConstant(4, dl, MVT::i32));
3731 
3732   // areas
3733   SDValue OverflowArea =
3734       DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo());
3735   InChain = OverflowArea.getValue(1);
3736 
3737   SDValue RegSaveArea =
3738       DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo());
3739   InChain = RegSaveArea.getValue(1);
3740 
3741   // select overflow_area if index > 8
3742   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
3743                             DAG.getConstant(8, dl, MVT::i32), ISD::SETLT);
3744 
3745   // adjustment constant gpr_index * 4/8
3746   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
3747                                     VT.isInteger() ? GprIndex : FprIndex,
3748                                     DAG.getConstant(VT.isInteger() ? 4 : 8, dl,
3749                                                     MVT::i32));
3750 
3751   // OurReg = RegSaveArea + RegConstant
3752   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
3753                                RegConstant);
3754 
3755   // Floating types are 32 bytes into RegSaveArea
3756   if (VT.isFloatingPoint())
3757     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
3758                          DAG.getConstant(32, dl, MVT::i32));
3759 
3760   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
3761   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
3762                                    VT.isInteger() ? GprIndex : FprIndex,
3763                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl,
3764                                                    MVT::i32));
3765 
3766   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
3767                               VT.isInteger() ? VAListPtr : FprPtr,
3768                               MachinePointerInfo(SV), MVT::i8);
3769 
3770   // determine if we should load from reg_save_area or overflow_area
3771   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
3772 
3773   // increase overflow_area by 4/8 if gpr/fpr > 8
3774   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
3775                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
3776                                           dl, MVT::i32));
3777 
3778   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
3779                              OverflowAreaPlusN);
3780 
3781   InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr,
3782                               MachinePointerInfo(), MVT::i32);
3783 
3784   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo());
3785 }
3786 
LowerVACOPY(SDValue Op,SelectionDAG & DAG) const3787 SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const {
3788   assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only");
3789 
3790   // We have to copy the entire va_list struct:
3791   // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte
3792   return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2),
3793                        DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8),
3794                        false, true, false, MachinePointerInfo(),
3795                        MachinePointerInfo());
3796 }
3797 
LowerADJUST_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const3798 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
3799                                                   SelectionDAG &DAG) const {
3800   if (Subtarget.isAIXABI())
3801     report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX.");
3802 
3803   return Op.getOperand(0);
3804 }
3805 
LowerINLINEASM(SDValue Op,SelectionDAG & DAG) const3806 SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const {
3807   MachineFunction &MF = DAG.getMachineFunction();
3808   PPCFunctionInfo &MFI = *MF.getInfo<PPCFunctionInfo>();
3809 
3810   assert((Op.getOpcode() == ISD::INLINEASM ||
3811           Op.getOpcode() == ISD::INLINEASM_BR) &&
3812          "Expecting Inline ASM node.");
3813 
3814   // If an LR store is already known to be required then there is not point in
3815   // checking this ASM as well.
3816   if (MFI.isLRStoreRequired())
3817     return Op;
3818 
3819   // Inline ASM nodes have an optional last operand that is an incoming Flag of
3820   // type MVT::Glue. We want to ignore this last operand if that is the case.
3821   unsigned NumOps = Op.getNumOperands();
3822   if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue)
3823     --NumOps;
3824 
3825   // Check all operands that may contain the LR.
3826   for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
3827     const InlineAsm::Flag Flags(Op.getConstantOperandVal(i));
3828     unsigned NumVals = Flags.getNumOperandRegisters();
3829     ++i; // Skip the ID value.
3830 
3831     switch (Flags.getKind()) {
3832     default:
3833       llvm_unreachable("Bad flags!");
3834     case InlineAsm::Kind::RegUse:
3835     case InlineAsm::Kind::Imm:
3836     case InlineAsm::Kind::Mem:
3837       i += NumVals;
3838       break;
3839     case InlineAsm::Kind::Clobber:
3840     case InlineAsm::Kind::RegDef:
3841     case InlineAsm::Kind::RegDefEarlyClobber: {
3842       for (; NumVals; --NumVals, ++i) {
3843         Register Reg = cast<RegisterSDNode>(Op.getOperand(i))->getReg();
3844         if (Reg != PPC::LR && Reg != PPC::LR8)
3845           continue;
3846         MFI.setLRStoreRequired();
3847         return Op;
3848       }
3849       break;
3850     }
3851     }
3852   }
3853 
3854   return Op;
3855 }
3856 
LowerINIT_TRAMPOLINE(SDValue Op,SelectionDAG & DAG) const3857 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
3858                                                 SelectionDAG &DAG) const {
3859   if (Subtarget.isAIXABI())
3860     report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX.");
3861 
3862   SDValue Chain = Op.getOperand(0);
3863   SDValue Trmp = Op.getOperand(1); // trampoline
3864   SDValue FPtr = Op.getOperand(2); // nested function
3865   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
3866   SDLoc dl(Op);
3867 
3868   EVT PtrVT = getPointerTy(DAG.getDataLayout());
3869   bool isPPC64 = (PtrVT == MVT::i64);
3870   Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
3871 
3872   TargetLowering::ArgListTy Args;
3873   TargetLowering::ArgListEntry Entry;
3874 
3875   Entry.Ty = IntPtrTy;
3876   Entry.Node = Trmp; Args.push_back(Entry);
3877 
3878   // TrampSize == (isPPC64 ? 48 : 40);
3879   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl,
3880                                isPPC64 ? MVT::i64 : MVT::i32);
3881   Args.push_back(Entry);
3882 
3883   Entry.Node = FPtr; Args.push_back(Entry);
3884   Entry.Node = Nest; Args.push_back(Entry);
3885 
3886   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
3887   TargetLowering::CallLoweringInfo CLI(DAG);
3888   CLI.setDebugLoc(dl).setChain(Chain).setLibCallee(
3889       CallingConv::C, Type::getVoidTy(*DAG.getContext()),
3890       DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args));
3891 
3892   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
3893   return CallResult.second;
3894 }
3895 
LowerVASTART(SDValue Op,SelectionDAG & DAG) const3896 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
3897   MachineFunction &MF = DAG.getMachineFunction();
3898   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3899   EVT PtrVT = getPointerTy(MF.getDataLayout());
3900 
3901   SDLoc dl(Op);
3902 
3903   if (Subtarget.isPPC64() || Subtarget.isAIXABI()) {
3904     // vastart just stores the address of the VarArgsFrameIndex slot into the
3905     // memory location argument.
3906     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
3907     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3908     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
3909                         MachinePointerInfo(SV));
3910   }
3911 
3912   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
3913   // We suppose the given va_list is already allocated.
3914   //
3915   // typedef struct {
3916   //  char gpr;     /* index into the array of 8 GPRs
3917   //                 * stored in the register save area
3918   //                 * gpr=0 corresponds to r3,
3919   //                 * gpr=1 to r4, etc.
3920   //                 */
3921   //  char fpr;     /* index into the array of 8 FPRs
3922   //                 * stored in the register save area
3923   //                 * fpr=0 corresponds to f1,
3924   //                 * fpr=1 to f2, etc.
3925   //                 */
3926   //  char *overflow_arg_area;
3927   //                /* location on stack that holds
3928   //                 * the next overflow argument
3929   //                 */
3930   //  char *reg_save_area;
3931   //               /* where r3:r10 and f1:f8 (if saved)
3932   //                * are stored
3933   //                */
3934   // } va_list[1];
3935 
3936   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32);
3937   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32);
3938   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
3939                                             PtrVT);
3940   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
3941                                  PtrVT);
3942 
3943   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
3944   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT);
3945 
3946   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
3947   SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT);
3948 
3949   uint64_t FPROffset = 1;
3950   SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT);
3951 
3952   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
3953 
3954   // Store first byte : number of int regs
3955   SDValue firstStore =
3956       DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1),
3957                         MachinePointerInfo(SV), MVT::i8);
3958   uint64_t nextOffset = FPROffset;
3959   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
3960                                   ConstFPROffset);
3961 
3962   // Store second byte : number of float regs
3963   SDValue secondStore =
3964       DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
3965                         MachinePointerInfo(SV, nextOffset), MVT::i8);
3966   nextOffset += StackOffset;
3967   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
3968 
3969   // Store second word : arguments given on stack
3970   SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
3971                                     MachinePointerInfo(SV, nextOffset));
3972   nextOffset += FrameOffset;
3973   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
3974 
3975   // Store third word : arguments given in registers
3976   return DAG.getStore(thirdStore, dl, FR, nextPtr,
3977                       MachinePointerInfo(SV, nextOffset));
3978 }
3979 
3980 /// FPR - The set of FP registers that should be allocated for arguments
3981 /// on Darwin and AIX.
3982 static const MCPhysReg FPR[] = {PPC::F1,  PPC::F2,  PPC::F3, PPC::F4, PPC::F5,
3983                                 PPC::F6,  PPC::F7,  PPC::F8, PPC::F9, PPC::F10,
3984                                 PPC::F11, PPC::F12, PPC::F13};
3985 
3986 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
3987 /// the stack.
CalculateStackSlotSize(EVT ArgVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)3988 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
3989                                        unsigned PtrByteSize) {
3990   unsigned ArgSize = ArgVT.getStoreSize();
3991   if (Flags.isByVal())
3992     ArgSize = Flags.getByValSize();
3993 
3994   // Round up to multiples of the pointer size, except for array members,
3995   // which are always packed.
3996   if (!Flags.isInConsecutiveRegs())
3997     ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
3998 
3999   return ArgSize;
4000 }
4001 
4002 /// CalculateStackSlotAlignment - Calculates the alignment of this argument
4003 /// on the stack.
CalculateStackSlotAlignment(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize)4004 static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT,
4005                                          ISD::ArgFlagsTy Flags,
4006                                          unsigned PtrByteSize) {
4007   Align Alignment(PtrByteSize);
4008 
4009   // Altivec parameters are padded to a 16 byte boundary.
4010   if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4011       ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4012       ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
4013       ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
4014     Alignment = Align(16);
4015 
4016   // ByVal parameters are aligned as requested.
4017   if (Flags.isByVal()) {
4018     auto BVAlign = Flags.getNonZeroByValAlign();
4019     if (BVAlign > PtrByteSize) {
4020       if (BVAlign.value() % PtrByteSize != 0)
4021         llvm_unreachable(
4022             "ByVal alignment is not a multiple of the pointer size");
4023 
4024       Alignment = BVAlign;
4025     }
4026   }
4027 
4028   // Array members are always packed to their original alignment.
4029   if (Flags.isInConsecutiveRegs()) {
4030     // If the array member was split into multiple registers, the first
4031     // needs to be aligned to the size of the full type.  (Except for
4032     // ppcf128, which is only aligned as its f64 components.)
4033     if (Flags.isSplit() && OrigVT != MVT::ppcf128)
4034       Alignment = Align(OrigVT.getStoreSize());
4035     else
4036       Alignment = Align(ArgVT.getStoreSize());
4037   }
4038 
4039   return Alignment;
4040 }
4041 
4042 /// CalculateStackSlotUsed - Return whether this argument will use its
4043 /// stack slot (instead of being passed in registers).  ArgOffset,
4044 /// AvailableFPRs, and AvailableVRs must hold the current argument
4045 /// position, and will be updated to account for this argument.
CalculateStackSlotUsed(EVT ArgVT,EVT OrigVT,ISD::ArgFlagsTy Flags,unsigned PtrByteSize,unsigned LinkageSize,unsigned ParamAreaSize,unsigned & ArgOffset,unsigned & AvailableFPRs,unsigned & AvailableVRs)4046 static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags,
4047                                    unsigned PtrByteSize, unsigned LinkageSize,
4048                                    unsigned ParamAreaSize, unsigned &ArgOffset,
4049                                    unsigned &AvailableFPRs,
4050                                    unsigned &AvailableVRs) {
4051   bool UseMemory = false;
4052 
4053   // Respect alignment of argument on the stack.
4054   Align Alignment =
4055       CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
4056   ArgOffset = alignTo(ArgOffset, Alignment);
4057   // If there's no space left in the argument save area, we must
4058   // use memory (this check also catches zero-sized arguments).
4059   if (ArgOffset >= LinkageSize + ParamAreaSize)
4060     UseMemory = true;
4061 
4062   // Allocate argument on the stack.
4063   ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
4064   if (Flags.isInConsecutiveRegsLast())
4065     ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4066   // If we overran the argument save area, we must use memory
4067   // (this check catches arguments passed partially in memory)
4068   if (ArgOffset > LinkageSize + ParamAreaSize)
4069     UseMemory = true;
4070 
4071   // However, if the argument is actually passed in an FPR or a VR,
4072   // we don't use memory after all.
4073   if (!Flags.isByVal()) {
4074     if (ArgVT == MVT::f32 || ArgVT == MVT::f64)
4075       if (AvailableFPRs > 0) {
4076         --AvailableFPRs;
4077         return false;
4078       }
4079     if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 ||
4080         ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 ||
4081         ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 ||
4082         ArgVT == MVT::v1i128 || ArgVT == MVT::f128)
4083       if (AvailableVRs > 0) {
4084         --AvailableVRs;
4085         return false;
4086       }
4087   }
4088 
4089   return UseMemory;
4090 }
4091 
4092 /// EnsureStackAlignment - Round stack frame size up from NumBytes to
4093 /// ensure minimum alignment required for target.
EnsureStackAlignment(const PPCFrameLowering * Lowering,unsigned NumBytes)4094 static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering,
4095                                      unsigned NumBytes) {
4096   return alignTo(NumBytes, Lowering->getStackAlign());
4097 }
4098 
LowerFormalArguments(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4099 SDValue PPCTargetLowering::LowerFormalArguments(
4100     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4101     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4102     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4103   if (Subtarget.isAIXABI())
4104     return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG,
4105                                     InVals);
4106   if (Subtarget.is64BitELFABI())
4107     return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4108                                        InVals);
4109   assert(Subtarget.is32BitELFABI());
4110   return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG,
4111                                      InVals);
4112 }
4113 
LowerFormalArguments_32SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4114 SDValue PPCTargetLowering::LowerFormalArguments_32SVR4(
4115     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4116     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4117     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4118 
4119   // 32-bit SVR4 ABI Stack Frame Layout:
4120   //              +-----------------------------------+
4121   //        +-->  |            Back chain             |
4122   //        |     +-----------------------------------+
4123   //        |     | Floating-point register save area |
4124   //        |     +-----------------------------------+
4125   //        |     |    General register save area     |
4126   //        |     +-----------------------------------+
4127   //        |     |          CR save word             |
4128   //        |     +-----------------------------------+
4129   //        |     |         VRSAVE save word          |
4130   //        |     +-----------------------------------+
4131   //        |     |         Alignment padding         |
4132   //        |     +-----------------------------------+
4133   //        |     |     Vector register save area     |
4134   //        |     +-----------------------------------+
4135   //        |     |       Local variable space        |
4136   //        |     +-----------------------------------+
4137   //        |     |        Parameter list area        |
4138   //        |     +-----------------------------------+
4139   //        |     |           LR save word            |
4140   //        |     +-----------------------------------+
4141   // SP-->  +---  |            Back chain             |
4142   //              +-----------------------------------+
4143   //
4144   // Specifications:
4145   //   System V Application Binary Interface PowerPC Processor Supplement
4146   //   AltiVec Technology Programming Interface Manual
4147 
4148   MachineFunction &MF = DAG.getMachineFunction();
4149   MachineFrameInfo &MFI = MF.getFrameInfo();
4150   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4151 
4152   EVT PtrVT = getPointerTy(MF.getDataLayout());
4153   // Potential tail calls could cause overwriting of argument stack slots.
4154   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4155                        (CallConv == CallingConv::Fast));
4156   const Align PtrAlign(4);
4157 
4158   // Assign locations to all of the incoming arguments.
4159   SmallVector<CCValAssign, 16> ArgLocs;
4160   PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
4161                  *DAG.getContext());
4162 
4163   // Reserve space for the linkage area on the stack.
4164   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4165   CCInfo.AllocateStack(LinkageSize, PtrAlign);
4166   if (useSoftFloat())
4167     CCInfo.PreAnalyzeFormalArguments(Ins);
4168 
4169   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
4170   CCInfo.clearWasPPCF128();
4171 
4172   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
4173     CCValAssign &VA = ArgLocs[i];
4174 
4175     // Arguments stored in registers.
4176     if (VA.isRegLoc()) {
4177       const TargetRegisterClass *RC;
4178       EVT ValVT = VA.getValVT();
4179 
4180       switch (ValVT.getSimpleVT().SimpleTy) {
4181         default:
4182           llvm_unreachable("ValVT not supported by formal arguments Lowering");
4183         case MVT::i1:
4184         case MVT::i32:
4185           RC = &PPC::GPRCRegClass;
4186           break;
4187         case MVT::f32:
4188           if (Subtarget.hasP8Vector())
4189             RC = &PPC::VSSRCRegClass;
4190           else if (Subtarget.hasSPE())
4191             RC = &PPC::GPRCRegClass;
4192           else
4193             RC = &PPC::F4RCRegClass;
4194           break;
4195         case MVT::f64:
4196           if (Subtarget.hasVSX())
4197             RC = &PPC::VSFRCRegClass;
4198           else if (Subtarget.hasSPE())
4199             // SPE passes doubles in GPR pairs.
4200             RC = &PPC::GPRCRegClass;
4201           else
4202             RC = &PPC::F8RCRegClass;
4203           break;
4204         case MVT::v16i8:
4205         case MVT::v8i16:
4206         case MVT::v4i32:
4207           RC = &PPC::VRRCRegClass;
4208           break;
4209         case MVT::v4f32:
4210           RC = &PPC::VRRCRegClass;
4211           break;
4212         case MVT::v2f64:
4213         case MVT::v2i64:
4214           RC = &PPC::VRRCRegClass;
4215           break;
4216       }
4217 
4218       SDValue ArgValue;
4219       // Transform the arguments stored in physical registers into
4220       // virtual ones.
4221       if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) {
4222         assert(i + 1 < e && "No second half of double precision argument");
4223         Register RegLo = MF.addLiveIn(VA.getLocReg(), RC);
4224         Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC);
4225         SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32);
4226         SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32);
4227         if (!Subtarget.isLittleEndian())
4228           std::swap (ArgValueLo, ArgValueHi);
4229         ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo,
4230                                ArgValueHi);
4231       } else {
4232         Register Reg = MF.addLiveIn(VA.getLocReg(), RC);
4233         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg,
4234                                       ValVT == MVT::i1 ? MVT::i32 : ValVT);
4235         if (ValVT == MVT::i1)
4236           ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue);
4237       }
4238 
4239       InVals.push_back(ArgValue);
4240     } else {
4241       // Argument stored in memory.
4242       assert(VA.isMemLoc());
4243 
4244       // Get the extended size of the argument type in stack
4245       unsigned ArgSize = VA.getLocVT().getStoreSize();
4246       // Get the actual size of the argument type
4247       unsigned ObjSize = VA.getValVT().getStoreSize();
4248       unsigned ArgOffset = VA.getLocMemOffset();
4249       // Stack objects in PPC32 are right justified.
4250       ArgOffset += ArgSize - ObjSize;
4251       int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable);
4252 
4253       // Create load nodes to retrieve arguments from the stack.
4254       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4255       InVals.push_back(
4256           DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo()));
4257     }
4258   }
4259 
4260   // Assign locations to all of the incoming aggregate by value arguments.
4261   // Aggregates passed by value are stored in the local variable space of the
4262   // caller's stack frame, right above the parameter list area.
4263   SmallVector<CCValAssign, 16> ByValArgLocs;
4264   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4265                       ByValArgLocs, *DAG.getContext());
4266 
4267   // Reserve stack space for the allocations in CCInfo.
4268   CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign);
4269 
4270   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
4271 
4272   // Area that is at least reserved in the caller of this function.
4273   unsigned MinReservedArea = CCByValInfo.getStackSize();
4274   MinReservedArea = std::max(MinReservedArea, LinkageSize);
4275 
4276   // Set the size that is at least reserved in caller of this function.  Tail
4277   // call optimized function's reserved stack space needs to be aligned so that
4278   // taking the difference between two stack areas will result in an aligned
4279   // stack.
4280   MinReservedArea =
4281       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4282   FuncInfo->setMinReservedArea(MinReservedArea);
4283 
4284   SmallVector<SDValue, 8> MemOps;
4285 
4286   // If the function takes variable number of arguments, make a frame index for
4287   // the start of the first vararg value... for expansion of llvm.va_start.
4288   if (isVarArg) {
4289     static const MCPhysReg GPArgRegs[] = {
4290       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4291       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4292     };
4293     const unsigned NumGPArgRegs = std::size(GPArgRegs);
4294 
4295     static const MCPhysReg FPArgRegs[] = {
4296       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
4297       PPC::F8
4298     };
4299     unsigned NumFPArgRegs = std::size(FPArgRegs);
4300 
4301     if (useSoftFloat() || hasSPE())
4302        NumFPArgRegs = 0;
4303 
4304     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs));
4305     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs));
4306 
4307     // Make room for NumGPArgRegs and NumFPArgRegs.
4308     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
4309                 NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8;
4310 
4311     FuncInfo->setVarArgsStackOffset(MFI.CreateFixedObject(
4312         PtrVT.getSizeInBits() / 8, CCInfo.getStackSize(), true));
4313 
4314     FuncInfo->setVarArgsFrameIndex(
4315         MFI.CreateStackObject(Depth, Align(8), false));
4316     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4317 
4318     // The fixed integer arguments of a variadic function are stored to the
4319     // VarArgsFrameIndex on the stack so that they may be loaded by
4320     // dereferencing the result of va_next.
4321     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
4322       // Get an existing live-in vreg, or add a new one.
4323       Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
4324       if (!VReg)
4325         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
4326 
4327       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4328       SDValue Store =
4329           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4330       MemOps.push_back(Store);
4331       // Increment the address by four for the next argument to store
4332       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT);
4333       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4334     }
4335 
4336     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
4337     // is set.
4338     // The double arguments are stored to the VarArgsFrameIndex
4339     // on the stack.
4340     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
4341       // Get an existing live-in vreg, or add a new one.
4342       Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
4343       if (!VReg)
4344         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
4345 
4346       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
4347       SDValue Store =
4348           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4349       MemOps.push_back(Store);
4350       // Increment the address by eight for the next argument to store
4351       SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl,
4352                                          PtrVT);
4353       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4354     }
4355   }
4356 
4357   if (!MemOps.empty())
4358     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4359 
4360   return Chain;
4361 }
4362 
4363 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4364 // value to MVT::i64 and then truncate to the correct register size.
extendArgForPPC64(ISD::ArgFlagsTy Flags,EVT ObjectVT,SelectionDAG & DAG,SDValue ArgVal,const SDLoc & dl) const4365 SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags,
4366                                              EVT ObjectVT, SelectionDAG &DAG,
4367                                              SDValue ArgVal,
4368                                              const SDLoc &dl) const {
4369   if (Flags.isSExt())
4370     ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
4371                          DAG.getValueType(ObjectVT));
4372   else if (Flags.isZExt())
4373     ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
4374                          DAG.getValueType(ObjectVT));
4375 
4376   return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal);
4377 }
4378 
LowerFormalArguments_64SVR4(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const4379 SDValue PPCTargetLowering::LowerFormalArguments_64SVR4(
4380     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
4381     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
4382     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
4383   // TODO: add description of PPC stack frame format, or at least some docs.
4384   //
4385   bool isELFv2ABI = Subtarget.isELFv2ABI();
4386   bool isLittleEndian = Subtarget.isLittleEndian();
4387   MachineFunction &MF = DAG.getMachineFunction();
4388   MachineFrameInfo &MFI = MF.getFrameInfo();
4389   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
4390 
4391   assert(!(CallConv == CallingConv::Fast && isVarArg) &&
4392          "fastcc not supported on varargs functions");
4393 
4394   EVT PtrVT = getPointerTy(MF.getDataLayout());
4395   // Potential tail calls could cause overwriting of argument stack slots.
4396   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
4397                        (CallConv == CallingConv::Fast));
4398   unsigned PtrByteSize = 8;
4399   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4400 
4401   static const MCPhysReg GPR[] = {
4402     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4403     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4404   };
4405   static const MCPhysReg VR[] = {
4406     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4407     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4408   };
4409 
4410   const unsigned Num_GPR_Regs = std::size(GPR);
4411   const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13;
4412   const unsigned Num_VR_Regs = std::size(VR);
4413 
4414   // Do a first pass over the arguments to determine whether the ABI
4415   // guarantees that our caller has allocated the parameter save area
4416   // on its stack frame.  In the ELFv1 ABI, this is always the case;
4417   // in the ELFv2 ABI, it is true if this is a vararg function or if
4418   // any parameter is located in a stack slot.
4419 
4420   bool HasParameterArea = !isELFv2ABI || isVarArg;
4421   unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize;
4422   unsigned NumBytes = LinkageSize;
4423   unsigned AvailableFPRs = Num_FPR_Regs;
4424   unsigned AvailableVRs = Num_VR_Regs;
4425   for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
4426     if (Ins[i].Flags.isNest())
4427       continue;
4428 
4429     if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags,
4430                                PtrByteSize, LinkageSize, ParamAreaSize,
4431                                NumBytes, AvailableFPRs, AvailableVRs))
4432       HasParameterArea = true;
4433   }
4434 
4435   // Add DAG nodes to load the arguments or copy them out of registers.  On
4436   // entry to a function on PPC, the arguments start after the linkage area,
4437   // although the first ones are often in registers.
4438 
4439   unsigned ArgOffset = LinkageSize;
4440   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4441   SmallVector<SDValue, 8> MemOps;
4442   Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin();
4443   unsigned CurArgIdx = 0;
4444   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
4445     SDValue ArgVal;
4446     bool needsLoad = false;
4447     EVT ObjectVT = Ins[ArgNo].VT;
4448     EVT OrigVT = Ins[ArgNo].ArgVT;
4449     unsigned ObjSize = ObjectVT.getStoreSize();
4450     unsigned ArgSize = ObjSize;
4451     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
4452     if (Ins[ArgNo].isOrigArg()) {
4453       std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx);
4454       CurArgIdx = Ins[ArgNo].getOrigArgIndex();
4455     }
4456     // We re-align the argument offset for each argument, except when using the
4457     // fast calling convention, when we need to make sure we do that only when
4458     // we'll actually use a stack slot.
4459     unsigned CurArgOffset;
4460     Align Alignment;
4461     auto ComputeArgOffset = [&]() {
4462       /* Respect alignment of argument on the stack.  */
4463       Alignment =
4464           CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize);
4465       ArgOffset = alignTo(ArgOffset, Alignment);
4466       CurArgOffset = ArgOffset;
4467     };
4468 
4469     if (CallConv != CallingConv::Fast) {
4470       ComputeArgOffset();
4471 
4472       /* Compute GPR index associated with argument offset.  */
4473       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4474       GPR_idx = std::min(GPR_idx, Num_GPR_Regs);
4475     }
4476 
4477     // FIXME the codegen can be much improved in some cases.
4478     // We do not have to keep everything in memory.
4479     if (Flags.isByVal()) {
4480       assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit");
4481 
4482       if (CallConv == CallingConv::Fast)
4483         ComputeArgOffset();
4484 
4485       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
4486       ObjSize = Flags.getByValSize();
4487       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4488       // Empty aggregate parameters do not take up registers.  Examples:
4489       //   struct { } a;
4490       //   union  { } b;
4491       //   int c[0];
4492       // etc.  However, we have to provide a place-holder in InVals, so
4493       // pretend we have an 8-byte item at the current address for that
4494       // purpose.
4495       if (!ObjSize) {
4496         int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true);
4497         SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4498         InVals.push_back(FIN);
4499         continue;
4500       }
4501 
4502       // Create a stack object covering all stack doublewords occupied
4503       // by the argument.  If the argument is (fully or partially) on
4504       // the stack, or if the argument is fully in registers but the
4505       // caller has allocated the parameter save anyway, we can refer
4506       // directly to the caller's stack frame.  Otherwise, create a
4507       // local copy in our own frame.
4508       int FI;
4509       if (HasParameterArea ||
4510           ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize)
4511         FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true);
4512       else
4513         FI = MFI.CreateStackObject(ArgSize, Alignment, false);
4514       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4515 
4516       // Handle aggregates smaller than 8 bytes.
4517       if (ObjSize < PtrByteSize) {
4518         // The value of the object is its address, which differs from the
4519         // address of the enclosing doubleword on big-endian systems.
4520         SDValue Arg = FIN;
4521         if (!isLittleEndian) {
4522           SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT);
4523           Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff);
4524         }
4525         InVals.push_back(Arg);
4526 
4527         if (GPR_idx != Num_GPR_Regs) {
4528           Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4529           FuncInfo->addLiveInAttr(VReg, Flags);
4530           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4531           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8);
4532           SDValue Store =
4533               DAG.getTruncStore(Val.getValue(1), dl, Val, Arg,
4534                                 MachinePointerInfo(&*FuncArg), ObjType);
4535           MemOps.push_back(Store);
4536         }
4537         // Whether we copied from a register or not, advance the offset
4538         // into the parameter save area by a full doubleword.
4539         ArgOffset += PtrByteSize;
4540         continue;
4541       }
4542 
4543       // The value of the object is its address, which is the address of
4544       // its first stack doubleword.
4545       InVals.push_back(FIN);
4546 
4547       // Store whatever pieces of the object are in registers to memory.
4548       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
4549         if (GPR_idx == Num_GPR_Regs)
4550           break;
4551 
4552         Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4553         FuncInfo->addLiveInAttr(VReg, Flags);
4554         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4555         SDValue Addr = FIN;
4556         if (j) {
4557           SDValue Off = DAG.getConstant(j, dl, PtrVT);
4558           Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off);
4559         }
4560         unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8;
4561         EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits);
4562         SDValue Store =
4563             DAG.getTruncStore(Val.getValue(1), dl, Val, Addr,
4564                               MachinePointerInfo(&*FuncArg, j), ObjType);
4565         MemOps.push_back(Store);
4566         ++GPR_idx;
4567       }
4568       ArgOffset += ArgSize;
4569       continue;
4570     }
4571 
4572     switch (ObjectVT.getSimpleVT().SimpleTy) {
4573     default: llvm_unreachable("Unhandled argument type!");
4574     case MVT::i1:
4575     case MVT::i32:
4576     case MVT::i64:
4577       if (Flags.isNest()) {
4578         // The 'nest' parameter, if any, is passed in R11.
4579         Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass);
4580         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4581 
4582         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4583           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4584 
4585         break;
4586       }
4587 
4588       // These can be scalar arguments or elements of an integer array type
4589       // passed directly.  Clang may use those instead of "byval" aggregate
4590       // types to avoid forcing arguments to memory unnecessarily.
4591       if (GPR_idx != Num_GPR_Regs) {
4592         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4593         FuncInfo->addLiveInAttr(VReg, Flags);
4594         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4595 
4596         if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1)
4597           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
4598           // value to MVT::i64 and then truncate to the correct register size.
4599           ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
4600       } else {
4601         if (CallConv == CallingConv::Fast)
4602           ComputeArgOffset();
4603 
4604         needsLoad = true;
4605         ArgSize = PtrByteSize;
4606       }
4607       if (CallConv != CallingConv::Fast || needsLoad)
4608         ArgOffset += 8;
4609       break;
4610 
4611     case MVT::f32:
4612     case MVT::f64:
4613       // These can be scalar arguments or elements of a float array type
4614       // passed directly.  The latter are used to implement ELFv2 homogenous
4615       // float aggregates.
4616       if (FPR_idx != Num_FPR_Regs) {
4617         unsigned VReg;
4618 
4619         if (ObjectVT == MVT::f32)
4620           VReg = MF.addLiveIn(FPR[FPR_idx],
4621                               Subtarget.hasP8Vector()
4622                                   ? &PPC::VSSRCRegClass
4623                                   : &PPC::F4RCRegClass);
4624         else
4625           VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX()
4626                                                 ? &PPC::VSFRCRegClass
4627                                                 : &PPC::F8RCRegClass);
4628 
4629         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4630         ++FPR_idx;
4631       } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) {
4632         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
4633         // once we support fp <-> gpr moves.
4634 
4635         // This can only ever happen in the presence of f32 array types,
4636         // since otherwise we never run out of FPRs before running out
4637         // of GPRs.
4638         Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass);
4639         FuncInfo->addLiveInAttr(VReg, Flags);
4640         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
4641 
4642         if (ObjectVT == MVT::f32) {
4643           if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0))
4644             ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal,
4645                                  DAG.getConstant(32, dl, MVT::i32));
4646           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
4647         }
4648 
4649         ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal);
4650       } else {
4651         if (CallConv == CallingConv::Fast)
4652           ComputeArgOffset();
4653 
4654         needsLoad = true;
4655       }
4656 
4657       // When passing an array of floats, the array occupies consecutive
4658       // space in the argument area; only round up to the next doubleword
4659       // at the end of the array.  Otherwise, each float takes 8 bytes.
4660       if (CallConv != CallingConv::Fast || needsLoad) {
4661         ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize;
4662         ArgOffset += ArgSize;
4663         if (Flags.isInConsecutiveRegsLast())
4664           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
4665       }
4666       break;
4667     case MVT::v4f32:
4668     case MVT::v4i32:
4669     case MVT::v8i16:
4670     case MVT::v16i8:
4671     case MVT::v2f64:
4672     case MVT::v2i64:
4673     case MVT::v1i128:
4674     case MVT::f128:
4675       // These can be scalar arguments or elements of a vector array type
4676       // passed directly.  The latter are used to implement ELFv2 homogenous
4677       // vector aggregates.
4678       if (VR_idx != Num_VR_Regs) {
4679         Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
4680         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
4681         ++VR_idx;
4682       } else {
4683         if (CallConv == CallingConv::Fast)
4684           ComputeArgOffset();
4685         needsLoad = true;
4686       }
4687       if (CallConv != CallingConv::Fast || needsLoad)
4688         ArgOffset += 16;
4689       break;
4690     }
4691 
4692     // We need to load the argument to a virtual register if we determined
4693     // above that we ran out of physical registers of the appropriate type.
4694     if (needsLoad) {
4695       if (ObjSize < ArgSize && !isLittleEndian)
4696         CurArgOffset += ArgSize - ObjSize;
4697       int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable);
4698       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
4699       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo());
4700     }
4701 
4702     InVals.push_back(ArgVal);
4703   }
4704 
4705   // Area that is at least reserved in the caller of this function.
4706   unsigned MinReservedArea;
4707   if (HasParameterArea)
4708     MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize);
4709   else
4710     MinReservedArea = LinkageSize;
4711 
4712   // Set the size that is at least reserved in caller of this function.  Tail
4713   // call optimized functions' reserved stack space needs to be aligned so that
4714   // taking the difference between two stack areas will result in an aligned
4715   // stack.
4716   MinReservedArea =
4717       EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea);
4718   FuncInfo->setMinReservedArea(MinReservedArea);
4719 
4720   // If the function takes variable number of arguments, make a frame index for
4721   // the start of the first vararg value... for expansion of llvm.va_start.
4722   // On ELFv2ABI spec, it writes:
4723   // C programs that are intended to be *portable* across different compilers
4724   // and architectures must use the header file <stdarg.h> to deal with variable
4725   // argument lists.
4726   if (isVarArg && MFI.hasVAStart()) {
4727     int Depth = ArgOffset;
4728 
4729     FuncInfo->setVarArgsFrameIndex(
4730       MFI.CreateFixedObject(PtrByteSize, Depth, true));
4731     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
4732 
4733     // If this function is vararg, store any remaining integer argument regs
4734     // to their spots on the stack so that they may be loaded by dereferencing
4735     // the result of va_next.
4736     for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
4737          GPR_idx < Num_GPR_Regs; ++GPR_idx) {
4738       Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
4739       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
4740       SDValue Store =
4741           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
4742       MemOps.push_back(Store);
4743       // Increment the address by four for the next argument to store
4744       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
4745       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
4746     }
4747   }
4748 
4749   if (!MemOps.empty())
4750     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
4751 
4752   return Chain;
4753 }
4754 
4755 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
4756 /// adjusted to accommodate the arguments for the tailcall.
CalculateTailCallSPDiff(SelectionDAG & DAG,bool isTailCall,unsigned ParamSize)4757 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
4758                                    unsigned ParamSize) {
4759 
4760   if (!isTailCall) return 0;
4761 
4762   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
4763   unsigned CallerMinReservedArea = FI->getMinReservedArea();
4764   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
4765   // Remember only if the new adjustment is bigger.
4766   if (SPDiff < FI->getTailCallSPDelta())
4767     FI->setTailCallSPDelta(SPDiff);
4768 
4769   return SPDiff;
4770 }
4771 
4772 static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV);
4773 
callsShareTOCBase(const Function * Caller,const GlobalValue * CalleeGV,const TargetMachine & TM)4774 static bool callsShareTOCBase(const Function *Caller,
4775                               const GlobalValue *CalleeGV,
4776                               const TargetMachine &TM) {
4777   // It does not make sense to call callsShareTOCBase() with a caller that
4778   // is PC Relative since PC Relative callers do not have a TOC.
4779 #ifndef NDEBUG
4780   const PPCSubtarget *STICaller = &TM.getSubtarget<PPCSubtarget>(*Caller);
4781   assert(!STICaller->isUsingPCRelativeCalls() &&
4782          "PC Relative callers do not have a TOC and cannot share a TOC Base");
4783 #endif
4784 
4785   // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols
4786   // don't have enough information to determine if the caller and callee share
4787   // the same  TOC base, so we have to pessimistically assume they don't for
4788   // correctness.
4789   if (!CalleeGV)
4790     return false;
4791 
4792   // If the callee is preemptable, then the static linker will use a plt-stub
4793   // which saves the toc to the stack, and needs a nop after the call
4794   // instruction to convert to a toc-restore.
4795   if (!TM.shouldAssumeDSOLocal(*Caller->getParent(), CalleeGV))
4796     return false;
4797 
4798   // Functions with PC Relative enabled may clobber the TOC in the same DSO.
4799   // We may need a TOC restore in the situation where the caller requires a
4800   // valid TOC but the callee is PC Relative and does not.
4801   const Function *F = dyn_cast<Function>(CalleeGV);
4802   const GlobalAlias *Alias = dyn_cast<GlobalAlias>(CalleeGV);
4803 
4804   // If we have an Alias we can try to get the function from there.
4805   if (Alias) {
4806     const GlobalObject *GlobalObj = Alias->getAliaseeObject();
4807     F = dyn_cast<Function>(GlobalObj);
4808   }
4809 
4810   // If we still have no valid function pointer we do not have enough
4811   // information to determine if the callee uses PC Relative calls so we must
4812   // assume that it does.
4813   if (!F)
4814     return false;
4815 
4816   // If the callee uses PC Relative we cannot guarantee that the callee won't
4817   // clobber the TOC of the caller and so we must assume that the two
4818   // functions do not share a TOC base.
4819   const PPCSubtarget *STICallee = &TM.getSubtarget<PPCSubtarget>(*F);
4820   if (STICallee->isUsingPCRelativeCalls())
4821     return false;
4822 
4823   // If the GV is not a strong definition then we need to assume it can be
4824   // replaced by another function at link time. The function that replaces
4825   // it may not share the same TOC as the caller since the callee may be
4826   // replaced by a PC Relative version of the same function.
4827   if (!CalleeGV->isStrongDefinitionForLinker())
4828     return false;
4829 
4830   // The medium and large code models are expected to provide a sufficiently
4831   // large TOC to provide all data addressing needs of a module with a
4832   // single TOC.
4833   if (CodeModel::Medium == TM.getCodeModel() ||
4834       CodeModel::Large == TM.getCodeModel())
4835     return true;
4836 
4837   // Any explicitly-specified sections and section prefixes must also match.
4838   // Also, if we're using -ffunction-sections, then each function is always in
4839   // a different section (the same is true for COMDAT functions).
4840   if (TM.getFunctionSections() || CalleeGV->hasComdat() ||
4841       Caller->hasComdat() || CalleeGV->getSection() != Caller->getSection())
4842     return false;
4843   if (const auto *F = dyn_cast<Function>(CalleeGV)) {
4844     if (F->getSectionPrefix() != Caller->getSectionPrefix())
4845       return false;
4846   }
4847 
4848   return true;
4849 }
4850 
4851 static bool
needStackSlotPassParameters(const PPCSubtarget & Subtarget,const SmallVectorImpl<ISD::OutputArg> & Outs)4852 needStackSlotPassParameters(const PPCSubtarget &Subtarget,
4853                             const SmallVectorImpl<ISD::OutputArg> &Outs) {
4854   assert(Subtarget.is64BitELFABI());
4855 
4856   const unsigned PtrByteSize = 8;
4857   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
4858 
4859   static const MCPhysReg GPR[] = {
4860     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4861     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4862   };
4863   static const MCPhysReg VR[] = {
4864     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4865     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4866   };
4867 
4868   const unsigned NumGPRs = std::size(GPR);
4869   const unsigned NumFPRs = 13;
4870   const unsigned NumVRs = std::size(VR);
4871   const unsigned ParamAreaSize = NumGPRs * PtrByteSize;
4872 
4873   unsigned NumBytes = LinkageSize;
4874   unsigned AvailableFPRs = NumFPRs;
4875   unsigned AvailableVRs = NumVRs;
4876 
4877   for (const ISD::OutputArg& Param : Outs) {
4878     if (Param.Flags.isNest()) continue;
4879 
4880     if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize,
4881                                LinkageSize, ParamAreaSize, NumBytes,
4882                                AvailableFPRs, AvailableVRs))
4883       return true;
4884   }
4885   return false;
4886 }
4887 
hasSameArgumentList(const Function * CallerFn,const CallBase & CB)4888 static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) {
4889   if (CB.arg_size() != CallerFn->arg_size())
4890     return false;
4891 
4892   auto CalleeArgIter = CB.arg_begin();
4893   auto CalleeArgEnd = CB.arg_end();
4894   Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin();
4895 
4896   for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) {
4897     const Value* CalleeArg = *CalleeArgIter;
4898     const Value* CallerArg = &(*CallerArgIter);
4899     if (CalleeArg == CallerArg)
4900       continue;
4901 
4902     // e.g. @caller([4 x i64] %a, [4 x i64] %b) {
4903     //        tail call @callee([4 x i64] undef, [4 x i64] %b)
4904     //      }
4905     // 1st argument of callee is undef and has the same type as caller.
4906     if (CalleeArg->getType() == CallerArg->getType() &&
4907         isa<UndefValue>(CalleeArg))
4908       continue;
4909 
4910     return false;
4911   }
4912 
4913   return true;
4914 }
4915 
4916 // Returns true if TCO is possible between the callers and callees
4917 // calling conventions.
4918 static bool
areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,CallingConv::ID CalleeCC)4919 areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC,
4920                                     CallingConv::ID CalleeCC) {
4921   // Tail calls are possible with fastcc and ccc.
4922   auto isTailCallableCC  = [] (CallingConv::ID CC){
4923       return  CC == CallingConv::C || CC == CallingConv::Fast;
4924   };
4925   if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC))
4926     return false;
4927 
4928   // We can safely tail call both fastcc and ccc callees from a c calling
4929   // convention caller. If the caller is fastcc, we may have less stack space
4930   // than a non-fastcc caller with the same signature so disable tail-calls in
4931   // that case.
4932   return CallerCC == CallingConv::C || CallerCC == CalleeCC;
4933 }
4934 
IsEligibleForTailCallOptimization_64SVR4(const GlobalValue * CalleeGV,CallingConv::ID CalleeCC,CallingConv::ID CallerCC,const CallBase * CB,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,const Function * CallerFunc,bool isCalleeExternalSymbol) const4935 bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4(
4936     const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
4937     CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
4938     const SmallVectorImpl<ISD::OutputArg> &Outs,
4939     const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
4940     bool isCalleeExternalSymbol) const {
4941   bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt;
4942 
4943   if (DisableSCO && !TailCallOpt) return false;
4944 
4945   // Variadic argument functions are not supported.
4946   if (isVarArg) return false;
4947 
4948   // Check that the calling conventions are compatible for tco.
4949   if (!areCallingConvEligibleForTCO_64SVR4(CallerCC, CalleeCC))
4950     return false;
4951 
4952   // Caller contains any byval parameter is not supported.
4953   if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
4954     return false;
4955 
4956   // Callee contains any byval parameter is not supported, too.
4957   // Note: This is a quick work around, because in some cases, e.g.
4958   // caller's stack size > callee's stack size, we are still able to apply
4959   // sibling call optimization. For example, gcc is able to do SCO for caller1
4960   // in the following example, but not for caller2.
4961   //   struct test {
4962   //     long int a;
4963   //     char ary[56];
4964   //   } gTest;
4965   //   __attribute__((noinline)) int callee(struct test v, struct test *b) {
4966   //     b->a = v.a;
4967   //     return 0;
4968   //   }
4969   //   void caller1(struct test a, struct test c, struct test *b) {
4970   //     callee(gTest, b); }
4971   //   void caller2(struct test *b) { callee(gTest, b); }
4972   if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); }))
4973     return false;
4974 
4975   // If callee and caller use different calling conventions, we cannot pass
4976   // parameters on stack since offsets for the parameter area may be different.
4977   if (CallerCC != CalleeCC && needStackSlotPassParameters(Subtarget, Outs))
4978     return false;
4979 
4980   // All variants of 64-bit ELF ABIs without PC-Relative addressing require that
4981   // the caller and callee share the same TOC for TCO/SCO. If the caller and
4982   // callee potentially have different TOC bases then we cannot tail call since
4983   // we need to restore the TOC pointer after the call.
4984   // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977
4985   // We cannot guarantee this for indirect calls or calls to external functions.
4986   // When PC-Relative addressing is used, the concept of the TOC is no longer
4987   // applicable so this check is not required.
4988   // Check first for indirect calls.
4989   if (!Subtarget.isUsingPCRelativeCalls() &&
4990       !isFunctionGlobalAddress(CalleeGV) && !isCalleeExternalSymbol)
4991     return false;
4992 
4993   // Check if we share the TOC base.
4994   if (!Subtarget.isUsingPCRelativeCalls() &&
4995       !callsShareTOCBase(CallerFunc, CalleeGV, getTargetMachine()))
4996     return false;
4997 
4998   // TCO allows altering callee ABI, so we don't have to check further.
4999   if (CalleeCC == CallingConv::Fast && TailCallOpt)
5000     return true;
5001 
5002   if (DisableSCO) return false;
5003 
5004   // If callee use the same argument list that caller is using, then we can
5005   // apply SCO on this case. If it is not, then we need to check if callee needs
5006   // stack for passing arguments.
5007   // PC Relative tail calls may not have a CallBase.
5008   // If there is no CallBase we cannot verify if we have the same argument
5009   // list so assume that we don't have the same argument list.
5010   if (CB && !hasSameArgumentList(CallerFunc, *CB) &&
5011       needStackSlotPassParameters(Subtarget, Outs))
5012     return false;
5013   else if (!CB && needStackSlotPassParameters(Subtarget, Outs))
5014     return false;
5015 
5016   return true;
5017 }
5018 
5019 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
5020 /// for tail call optimization. Targets which want to do tail call
5021 /// optimization should implement this function.
IsEligibleForTailCallOptimization(const GlobalValue * CalleeGV,CallingConv::ID CalleeCC,CallingConv::ID CallerCC,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins) const5022 bool PPCTargetLowering::IsEligibleForTailCallOptimization(
5023     const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
5024     CallingConv::ID CallerCC, bool isVarArg,
5025     const SmallVectorImpl<ISD::InputArg> &Ins) const {
5026   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5027     return false;
5028 
5029   // Variable argument functions are not supported.
5030   if (isVarArg)
5031     return false;
5032 
5033   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
5034     // Functions containing by val parameters are not supported.
5035     if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); }))
5036       return false;
5037 
5038     // Non-PIC/GOT tail calls are supported.
5039     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
5040       return true;
5041 
5042     // At the moment we can only do local tail calls (in same module, hidden
5043     // or protected) if we are generating PIC.
5044     if (CalleeGV)
5045       return CalleeGV->hasHiddenVisibility() ||
5046              CalleeGV->hasProtectedVisibility();
5047   }
5048 
5049   return false;
5050 }
5051 
5052 /// isCallCompatibleAddress - Return the immediate to use if the specified
5053 /// 32-bit value is representable in the immediate field of a BxA instruction.
isBLACompatibleAddress(SDValue Op,SelectionDAG & DAG)5054 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
5055   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
5056   if (!C) return nullptr;
5057 
5058   int Addr = C->getZExtValue();
5059   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
5060       SignExtend32<26>(Addr) != Addr)
5061     return nullptr;  // Top 6 bits have to be sext of immediate.
5062 
5063   return DAG
5064       .getConstant(
5065           (int)C->getZExtValue() >> 2, SDLoc(Op),
5066           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()))
5067       .getNode();
5068 }
5069 
5070 namespace {
5071 
5072 struct TailCallArgumentInfo {
5073   SDValue Arg;
5074   SDValue FrameIdxOp;
5075   int FrameIdx = 0;
5076 
5077   TailCallArgumentInfo() = default;
5078 };
5079 
5080 } // end anonymous namespace
5081 
5082 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
StoreTailCallArgumentsToStackSlot(SelectionDAG & DAG,SDValue Chain,const SmallVectorImpl<TailCallArgumentInfo> & TailCallArgs,SmallVectorImpl<SDValue> & MemOpChains,const SDLoc & dl)5083 static void StoreTailCallArgumentsToStackSlot(
5084     SelectionDAG &DAG, SDValue Chain,
5085     const SmallVectorImpl<TailCallArgumentInfo> &TailCallArgs,
5086     SmallVectorImpl<SDValue> &MemOpChains, const SDLoc &dl) {
5087   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
5088     SDValue Arg = TailCallArgs[i].Arg;
5089     SDValue FIN = TailCallArgs[i].FrameIdxOp;
5090     int FI = TailCallArgs[i].FrameIdx;
5091     // Store relative to framepointer.
5092     MemOpChains.push_back(DAG.getStore(
5093         Chain, dl, Arg, FIN,
5094         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI)));
5095   }
5096 }
5097 
5098 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
5099 /// the appropriate stack slot for the tail call optimized function call.
EmitTailCallStoreFPAndRetAddr(SelectionDAG & DAG,SDValue Chain,SDValue OldRetAddr,SDValue OldFP,int SPDiff,const SDLoc & dl)5100 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain,
5101                                              SDValue OldRetAddr, SDValue OldFP,
5102                                              int SPDiff, const SDLoc &dl) {
5103   if (SPDiff) {
5104     // Calculate the new stack slot for the return address.
5105     MachineFunction &MF = DAG.getMachineFunction();
5106     const PPCSubtarget &Subtarget = MF.getSubtarget<PPCSubtarget>();
5107     const PPCFrameLowering *FL = Subtarget.getFrameLowering();
5108     bool isPPC64 = Subtarget.isPPC64();
5109     int SlotSize = isPPC64 ? 8 : 4;
5110     int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset();
5111     int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize,
5112                                                          NewRetAddrLoc, true);
5113     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5114     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
5115     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
5116                          MachinePointerInfo::getFixedStack(MF, NewRetAddr));
5117   }
5118   return Chain;
5119 }
5120 
5121 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
5122 /// the position of the argument.
5123 static void
CalculateTailCallArgDest(SelectionDAG & DAG,MachineFunction & MF,bool isPPC64,SDValue Arg,int SPDiff,unsigned ArgOffset,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)5124 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
5125                          SDValue Arg, int SPDiff, unsigned ArgOffset,
5126                      SmallVectorImpl<TailCallArgumentInfo>& TailCallArguments) {
5127   int Offset = ArgOffset + SPDiff;
5128   uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8;
5129   int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true);
5130   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
5131   SDValue FIN = DAG.getFrameIndex(FI, VT);
5132   TailCallArgumentInfo Info;
5133   Info.Arg = Arg;
5134   Info.FrameIdxOp = FIN;
5135   Info.FrameIdx = FI;
5136   TailCallArguments.push_back(Info);
5137 }
5138 
5139 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
5140 /// stack slot. Returns the chain as result and the loaded frame pointers in
5141 /// LROpOut/FPOpout. Used when tail calling.
EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,int SPDiff,SDValue Chain,SDValue & LROpOut,SDValue & FPOpOut,const SDLoc & dl) const5142 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(
5143     SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut,
5144     SDValue &FPOpOut, const SDLoc &dl) const {
5145   if (SPDiff) {
5146     // Load the LR and FP stack slot for later adjusting.
5147     EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5148     LROpOut = getReturnAddrFrameIndex(DAG);
5149     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo());
5150     Chain = SDValue(LROpOut.getNode(), 1);
5151   }
5152   return Chain;
5153 }
5154 
5155 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
5156 /// by "Src" to address "Dst" of size "Size".  Alignment information is
5157 /// specified by the specific parameter attribute. The copy will be passed as
5158 /// a byval function parameter.
5159 /// Sometimes what we are copying is the end of a larger object, the part that
5160 /// does not fit in registers.
CreateCopyOfByValArgument(SDValue Src,SDValue Dst,SDValue Chain,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl)5161 static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst,
5162                                          SDValue Chain, ISD::ArgFlagsTy Flags,
5163                                          SelectionDAG &DAG, const SDLoc &dl) {
5164   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32);
5165   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode,
5166                        Flags.getNonZeroByValAlign(), false, false, false,
5167                        MachinePointerInfo(), MachinePointerInfo());
5168 }
5169 
5170 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
5171 /// tail calls.
LowerMemOpCallTo(SelectionDAG & DAG,MachineFunction & MF,SDValue Chain,SDValue Arg,SDValue PtrOff,int SPDiff,unsigned ArgOffset,bool isPPC64,bool isTailCall,bool isVector,SmallVectorImpl<SDValue> & MemOpChains,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments,const SDLoc & dl)5172 static void LowerMemOpCallTo(
5173     SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg,
5174     SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64,
5175     bool isTailCall, bool isVector, SmallVectorImpl<SDValue> &MemOpChains,
5176     SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments, const SDLoc &dl) {
5177   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5178   if (!isTailCall) {
5179     if (isVector) {
5180       SDValue StackPtr;
5181       if (isPPC64)
5182         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
5183       else
5184         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5185       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
5186                            DAG.getConstant(ArgOffset, dl, PtrVT));
5187     }
5188     MemOpChains.push_back(
5189         DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
5190     // Calculate and remember argument location.
5191   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
5192                                   TailCallArguments);
5193 }
5194 
5195 static void
PrepareTailCall(SelectionDAG & DAG,SDValue & InGlue,SDValue & Chain,const SDLoc & dl,int SPDiff,unsigned NumBytes,SDValue LROp,SDValue FPOp,SmallVectorImpl<TailCallArgumentInfo> & TailCallArguments)5196 PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain,
5197                 const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp,
5198                 SDValue FPOp,
5199                 SmallVectorImpl<TailCallArgumentInfo> &TailCallArguments) {
5200   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
5201   // might overwrite each other in case of tail call optimization.
5202   SmallVector<SDValue, 8> MemOpChains2;
5203   // Do not flag preceding copytoreg stuff together with the following stuff.
5204   InGlue = SDValue();
5205   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
5206                                     MemOpChains2, dl);
5207   if (!MemOpChains2.empty())
5208     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2);
5209 
5210   // Store the return address to the appropriate stack slot.
5211   Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl);
5212 
5213   // Emit callseq_end just before tailcall node.
5214   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl);
5215   InGlue = Chain.getValue(1);
5216 }
5217 
5218 // Is this global address that of a function that can be called by name? (as
5219 // opposed to something that must hold a descriptor for an indirect call).
isFunctionGlobalAddress(const GlobalValue * GV)5220 static bool isFunctionGlobalAddress(const GlobalValue *GV) {
5221   if (GV) {
5222     if (GV->isThreadLocal())
5223       return false;
5224 
5225     return GV->getValueType()->isFunctionTy();
5226   }
5227 
5228   return false;
5229 }
5230 
LowerCallResult(SDValue Chain,SDValue InGlue,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const5231 SDValue PPCTargetLowering::LowerCallResult(
5232     SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg,
5233     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5234     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
5235   SmallVector<CCValAssign, 16> RVLocs;
5236   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
5237                     *DAG.getContext());
5238 
5239   CCRetInfo.AnalyzeCallResult(
5240       Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
5241                ? RetCC_PPC_Cold
5242                : RetCC_PPC);
5243 
5244   // Copy all of the result registers out of their specified physreg.
5245   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
5246     CCValAssign &VA = RVLocs[i];
5247     assert(VA.isRegLoc() && "Can only return in registers!");
5248 
5249     SDValue Val;
5250 
5251     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
5252       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5253                                       InGlue);
5254       Chain = Lo.getValue(1);
5255       InGlue = Lo.getValue(2);
5256       VA = RVLocs[++i]; // skip ahead to next loc
5257       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
5258                                       InGlue);
5259       Chain = Hi.getValue(1);
5260       InGlue = Hi.getValue(2);
5261       if (!Subtarget.isLittleEndian())
5262         std::swap (Lo, Hi);
5263       Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi);
5264     } else {
5265       Val = DAG.getCopyFromReg(Chain, dl,
5266                                VA.getLocReg(), VA.getLocVT(), InGlue);
5267       Chain = Val.getValue(1);
5268       InGlue = Val.getValue(2);
5269     }
5270 
5271     switch (VA.getLocInfo()) {
5272     default: llvm_unreachable("Unknown loc info!");
5273     case CCValAssign::Full: break;
5274     case CCValAssign::AExt:
5275       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5276       break;
5277     case CCValAssign::ZExt:
5278       Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
5279                         DAG.getValueType(VA.getValVT()));
5280       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5281       break;
5282     case CCValAssign::SExt:
5283       Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
5284                         DAG.getValueType(VA.getValVT()));
5285       Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
5286       break;
5287     }
5288 
5289     InVals.push_back(Val);
5290   }
5291 
5292   return Chain;
5293 }
5294 
isIndirectCall(const SDValue & Callee,SelectionDAG & DAG,const PPCSubtarget & Subtarget,bool isPatchPoint)5295 static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG,
5296                            const PPCSubtarget &Subtarget, bool isPatchPoint) {
5297   auto *G = dyn_cast<GlobalAddressSDNode>(Callee);
5298   const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5299 
5300   // PatchPoint calls are not indirect.
5301   if (isPatchPoint)
5302     return false;
5303 
5304   if (isFunctionGlobalAddress(GV) || isa<ExternalSymbolSDNode>(Callee))
5305     return false;
5306 
5307   // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not
5308   // becuase the immediate function pointer points to a descriptor instead of
5309   // a function entry point. The ELFv2 ABI cannot use a BLA because the function
5310   // pointer immediate points to the global entry point, while the BLA would
5311   // need to jump to the local entry point (see rL211174).
5312   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() &&
5313       isBLACompatibleAddress(Callee, DAG))
5314     return false;
5315 
5316   return true;
5317 }
5318 
5319 // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls.
isTOCSaveRestoreRequired(const PPCSubtarget & Subtarget)5320 static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) {
5321   return Subtarget.isAIXABI() ||
5322          (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls());
5323 }
5324 
getCallOpcode(PPCTargetLowering::CallFlags CFlags,const Function & Caller,const SDValue & Callee,const PPCSubtarget & Subtarget,const TargetMachine & TM,bool IsStrictFPCall=false)5325 static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags,
5326                               const Function &Caller, const SDValue &Callee,
5327                               const PPCSubtarget &Subtarget,
5328                               const TargetMachine &TM,
5329                               bool IsStrictFPCall = false) {
5330   if (CFlags.IsTailCall)
5331     return PPCISD::TC_RETURN;
5332 
5333   unsigned RetOpc = 0;
5334   // This is a call through a function pointer.
5335   if (CFlags.IsIndirect) {
5336     // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross
5337     // indirect calls. The save of the caller's TOC pointer to the stack will be
5338     // inserted into the DAG as part of call lowering. The restore of the TOC
5339     // pointer is modeled by using a pseudo instruction for the call opcode that
5340     // represents the 2 instruction sequence of an indirect branch and link,
5341     // immediately followed by a load of the TOC pointer from the stack save
5342     // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC
5343     // as it is not saved or used.
5344     RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC
5345                                                  : PPCISD::BCTRL;
5346   } else if (Subtarget.isUsingPCRelativeCalls()) {
5347     assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI.");
5348     RetOpc = PPCISD::CALL_NOTOC;
5349   } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) {
5350     // The ABIs that maintain a TOC pointer accross calls need to have a nop
5351     // immediately following the call instruction if the caller and callee may
5352     // have different TOC bases. At link time if the linker determines the calls
5353     // may not share a TOC base, the call is redirected to a trampoline inserted
5354     // by the linker. The trampoline will (among other things) save the callers
5355     // TOC pointer at an ABI designated offset in the linkage area and the
5356     // linker will rewrite the nop to be a load of the TOC pointer from the
5357     // linkage area into gpr2.
5358     auto *G = dyn_cast<GlobalAddressSDNode>(Callee);
5359     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5360     RetOpc =
5361         callsShareTOCBase(&Caller, GV, TM) ? PPCISD::CALL : PPCISD::CALL_NOP;
5362   } else
5363     RetOpc = PPCISD::CALL;
5364   if (IsStrictFPCall) {
5365     switch (RetOpc) {
5366     default:
5367       llvm_unreachable("Unknown call opcode");
5368     case PPCISD::BCTRL_LOAD_TOC:
5369       RetOpc = PPCISD::BCTRL_LOAD_TOC_RM;
5370       break;
5371     case PPCISD::BCTRL:
5372       RetOpc = PPCISD::BCTRL_RM;
5373       break;
5374     case PPCISD::CALL_NOTOC:
5375       RetOpc = PPCISD::CALL_NOTOC_RM;
5376       break;
5377     case PPCISD::CALL:
5378       RetOpc = PPCISD::CALL_RM;
5379       break;
5380     case PPCISD::CALL_NOP:
5381       RetOpc = PPCISD::CALL_NOP_RM;
5382       break;
5383     }
5384   }
5385   return RetOpc;
5386 }
5387 
transformCallee(const SDValue & Callee,SelectionDAG & DAG,const SDLoc & dl,const PPCSubtarget & Subtarget)5388 static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG,
5389                                const SDLoc &dl, const PPCSubtarget &Subtarget) {
5390   if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI())
5391     if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
5392       return SDValue(Dest, 0);
5393 
5394   // Returns true if the callee is local, and false otherwise.
5395   auto isLocalCallee = [&]() {
5396     const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee);
5397     const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5398     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5399 
5400     return DAG.getTarget().shouldAssumeDSOLocal(*Mod, GV) &&
5401            !isa_and_nonnull<GlobalIFunc>(GV);
5402   };
5403 
5404   // The PLT is only used in 32-bit ELF PIC mode.  Attempting to use the PLT in
5405   // a static relocation model causes some versions of GNU LD (2.17.50, at
5406   // least) to force BSS-PLT, instead of secure-PLT, even if all objects are
5407   // built with secure-PLT.
5408   bool UsePlt =
5409       Subtarget.is32BitELFABI() && !isLocalCallee() &&
5410       Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_;
5411 
5412   const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) {
5413     const TargetMachine &TM = Subtarget.getTargetMachine();
5414     const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering();
5415     MCSymbolXCOFF *S =
5416         cast<MCSymbolXCOFF>(TLOF->getFunctionEntryPointSymbol(GV, TM));
5417 
5418     MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
5419     return DAG.getMCSymbol(S, PtrVT);
5420   };
5421 
5422   auto *G = dyn_cast<GlobalAddressSDNode>(Callee);
5423   const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5424   if (isFunctionGlobalAddress(GV)) {
5425     const GlobalValue *GV = cast<GlobalAddressSDNode>(Callee)->getGlobal();
5426 
5427     if (Subtarget.isAIXABI()) {
5428       assert(!isa<GlobalIFunc>(GV) && "IFunc is not supported on AIX.");
5429       return getAIXFuncEntryPointSymbolSDNode(GV);
5430     }
5431     return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0,
5432                                       UsePlt ? PPCII::MO_PLT : 0);
5433   }
5434 
5435   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
5436     const char *SymName = S->getSymbol();
5437     if (Subtarget.isAIXABI()) {
5438       // If there exists a user-declared function whose name is the same as the
5439       // ExternalSymbol's, then we pick up the user-declared version.
5440       const Module *Mod = DAG.getMachineFunction().getFunction().getParent();
5441       if (const Function *F =
5442               dyn_cast_or_null<Function>(Mod->getNamedValue(SymName)))
5443         return getAIXFuncEntryPointSymbolSDNode(F);
5444 
5445       // On AIX, direct function calls reference the symbol for the function's
5446       // entry point, which is named by prepending a "." before the function's
5447       // C-linkage name. A Qualname is returned here because an external
5448       // function entry point is a csect with XTY_ER property.
5449       const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) {
5450         auto &Context = DAG.getMachineFunction().getMMI().getContext();
5451         MCSectionXCOFF *Sec = Context.getXCOFFSection(
5452             (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(),
5453             XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER));
5454         return Sec->getQualNameSymbol();
5455       };
5456 
5457       SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data();
5458     }
5459     return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(),
5460                                        UsePlt ? PPCII::MO_PLT : 0);
5461   }
5462 
5463   // No transformation needed.
5464   assert(Callee.getNode() && "What no callee?");
5465   return Callee;
5466 }
5467 
getOutputChainFromCallSeq(SDValue CallSeqStart)5468 static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) {
5469   assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START &&
5470          "Expected a CALLSEQ_STARTSDNode.");
5471 
5472   // The last operand is the chain, except when the node has glue. If the node
5473   // has glue, then the last operand is the glue, and the chain is the second
5474   // last operand.
5475   SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1);
5476   if (LastValue.getValueType() != MVT::Glue)
5477     return LastValue;
5478 
5479   return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2);
5480 }
5481 
5482 // Creates the node that moves a functions address into the count register
5483 // to prepare for an indirect call instruction.
prepareIndirectCall(SelectionDAG & DAG,SDValue & Callee,SDValue & Glue,SDValue & Chain,const SDLoc & dl)5484 static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5485                                 SDValue &Glue, SDValue &Chain,
5486                                 const SDLoc &dl) {
5487   SDValue MTCTROps[] = {Chain, Callee, Glue};
5488   EVT ReturnTypes[] = {MVT::Other, MVT::Glue};
5489   Chain = DAG.getNode(PPCISD::MTCTR, dl, ArrayRef(ReturnTypes, 2),
5490                       ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2));
5491   // The glue is the second value produced.
5492   Glue = Chain.getValue(1);
5493 }
5494 
prepareDescriptorIndirectCall(SelectionDAG & DAG,SDValue & Callee,SDValue & Glue,SDValue & Chain,SDValue CallSeqStart,const CallBase * CB,const SDLoc & dl,bool hasNest,const PPCSubtarget & Subtarget)5495 static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee,
5496                                           SDValue &Glue, SDValue &Chain,
5497                                           SDValue CallSeqStart,
5498                                           const CallBase *CB, const SDLoc &dl,
5499                                           bool hasNest,
5500                                           const PPCSubtarget &Subtarget) {
5501   // Function pointers in the 64-bit SVR4 ABI do not point to the function
5502   // entry point, but to the function descriptor (the function entry point
5503   // address is part of the function descriptor though).
5504   // The function descriptor is a three doubleword structure with the
5505   // following fields: function entry point, TOC base address and
5506   // environment pointer.
5507   // Thus for a call through a function pointer, the following actions need
5508   // to be performed:
5509   //   1. Save the TOC of the caller in the TOC save area of its stack
5510   //      frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
5511   //   2. Load the address of the function entry point from the function
5512   //      descriptor.
5513   //   3. Load the TOC of the callee from the function descriptor into r2.
5514   //   4. Load the environment pointer from the function descriptor into
5515   //      r11.
5516   //   5. Branch to the function entry point address.
5517   //   6. On return of the callee, the TOC of the caller needs to be
5518   //      restored (this is done in FinishCall()).
5519   //
5520   // The loads are scheduled at the beginning of the call sequence, and the
5521   // register copies are flagged together to ensure that no other
5522   // operations can be scheduled in between. E.g. without flagging the
5523   // copies together, a TOC access in the caller could be scheduled between
5524   // the assignment of the callee TOC and the branch to the callee, which leads
5525   // to incorrect code.
5526 
5527   // Start by loading the function address from the descriptor.
5528   SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart);
5529   auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors()
5530                       ? (MachineMemOperand::MODereferenceable |
5531                          MachineMemOperand::MOInvariant)
5532                       : MachineMemOperand::MONone;
5533 
5534   MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr);
5535 
5536   // Registers used in building the DAG.
5537   const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister();
5538   const MCRegister TOCReg = Subtarget.getTOCPointerRegister();
5539 
5540   // Offsets of descriptor members.
5541   const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset();
5542   const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset();
5543 
5544   const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
5545   const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4);
5546 
5547   // One load for the functions entry point address.
5548   SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI,
5549                                     Alignment, MMOFlags);
5550 
5551   // One for loading the TOC anchor for the module that contains the called
5552   // function.
5553   SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl);
5554   SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff);
5555   SDValue TOCPtr =
5556       DAG.getLoad(RegVT, dl, LDChain, AddTOC,
5557                   MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags);
5558 
5559   // One for loading the environment pointer.
5560   SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl);
5561   SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff);
5562   SDValue LoadEnvPtr =
5563       DAG.getLoad(RegVT, dl, LDChain, AddPtr,
5564                   MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags);
5565 
5566 
5567   // Then copy the newly loaded TOC anchor to the TOC pointer.
5568   SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue);
5569   Chain = TOCVal.getValue(0);
5570   Glue = TOCVal.getValue(1);
5571 
5572   // If the function call has an explicit 'nest' parameter, it takes the
5573   // place of the environment pointer.
5574   assert((!hasNest || !Subtarget.isAIXABI()) &&
5575          "Nest parameter is not supported on AIX.");
5576   if (!hasNest) {
5577     SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue);
5578     Chain = EnvVal.getValue(0);
5579     Glue = EnvVal.getValue(1);
5580   }
5581 
5582   // The rest of the indirect call sequence is the same as the non-descriptor
5583   // DAG.
5584   prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl);
5585 }
5586 
5587 static void
buildCallOperands(SmallVectorImpl<SDValue> & Ops,PPCTargetLowering::CallFlags CFlags,const SDLoc & dl,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue Glue,SDValue Chain,SDValue & Callee,int SPDiff,const PPCSubtarget & Subtarget)5588 buildCallOperands(SmallVectorImpl<SDValue> &Ops,
5589                   PPCTargetLowering::CallFlags CFlags, const SDLoc &dl,
5590                   SelectionDAG &DAG,
5591                   SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
5592                   SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff,
5593                   const PPCSubtarget &Subtarget) {
5594   const bool IsPPC64 = Subtarget.isPPC64();
5595   // MVT for a general purpose register.
5596   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
5597 
5598   // First operand is always the chain.
5599   Ops.push_back(Chain);
5600 
5601   // If it's a direct call pass the callee as the second operand.
5602   if (!CFlags.IsIndirect)
5603     Ops.push_back(Callee);
5604   else {
5605     assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect.");
5606 
5607     // For the TOC based ABIs, we have saved the TOC pointer to the linkage area
5608     // on the stack (this would have been done in `LowerCall_64SVR4` or
5609     // `LowerCall_AIX`). The call instruction is a pseudo instruction that
5610     // represents both the indirect branch and a load that restores the TOC
5611     // pointer from the linkage area. The operand for the TOC restore is an add
5612     // of the TOC save offset to the stack pointer. This must be the second
5613     // operand: after the chain input but before any other variadic arguments.
5614     // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not
5615     // saved or used.
5616     if (isTOCSaveRestoreRequired(Subtarget)) {
5617       const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
5618 
5619       SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT);
5620       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
5621       SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
5622       SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff);
5623       Ops.push_back(AddTOC);
5624     }
5625 
5626     // Add the register used for the environment pointer.
5627     if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest)
5628       Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(),
5629                                     RegVT));
5630 
5631 
5632     // Add CTR register as callee so a bctr can be emitted later.
5633     if (CFlags.IsTailCall)
5634       Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT));
5635   }
5636 
5637   // If this is a tail call add stack pointer delta.
5638   if (CFlags.IsTailCall)
5639     Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32));
5640 
5641   // Add argument registers to the end of the list so that they are known live
5642   // into the call.
5643   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
5644     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
5645                                   RegsToPass[i].second.getValueType()));
5646 
5647   // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is
5648   // no way to mark dependencies as implicit here.
5649   // We will add the R2/X2 dependency in EmitInstrWithCustomInserter.
5650   if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) &&
5651        !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls())
5652     Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT));
5653 
5654   // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
5655   if (CFlags.IsVarArg && Subtarget.is32BitELFABI())
5656     Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
5657 
5658   // Add a register mask operand representing the call-preserved registers.
5659   const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo();
5660   const uint32_t *Mask =
5661       TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv);
5662   assert(Mask && "Missing call preserved mask for calling convention");
5663   Ops.push_back(DAG.getRegisterMask(Mask));
5664 
5665   // If the glue is valid, it is the last operand.
5666   if (Glue.getNode())
5667     Ops.push_back(Glue);
5668 }
5669 
FinishCall(CallFlags CFlags,const SDLoc & dl,SelectionDAG & DAG,SmallVector<std::pair<unsigned,SDValue>,8> & RegsToPass,SDValue Glue,SDValue Chain,SDValue CallSeqStart,SDValue & Callee,int SPDiff,unsigned NumBytes,const SmallVectorImpl<ISD::InputArg> & Ins,SmallVectorImpl<SDValue> & InVals,const CallBase * CB) const5670 SDValue PPCTargetLowering::FinishCall(
5671     CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG,
5672     SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass, SDValue Glue,
5673     SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff,
5674     unsigned NumBytes, const SmallVectorImpl<ISD::InputArg> &Ins,
5675     SmallVectorImpl<SDValue> &InVals, const CallBase *CB) const {
5676 
5677   if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) ||
5678       Subtarget.isAIXABI())
5679     setUsesTOCBasePtr(DAG);
5680 
5681   unsigned CallOpc =
5682       getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee,
5683                     Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false);
5684 
5685   if (!CFlags.IsIndirect)
5686     Callee = transformCallee(Callee, DAG, dl, Subtarget);
5687   else if (Subtarget.usesFunctionDescriptors())
5688     prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB,
5689                                   dl, CFlags.HasNest, Subtarget);
5690   else
5691     prepareIndirectCall(DAG, Callee, Glue, Chain, dl);
5692 
5693   // Build the operand list for the call instruction.
5694   SmallVector<SDValue, 8> Ops;
5695   buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee,
5696                     SPDiff, Subtarget);
5697 
5698   // Emit tail call.
5699   if (CFlags.IsTailCall) {
5700     // Indirect tail call when using PC Relative calls do not have the same
5701     // constraints.
5702     assert(((Callee.getOpcode() == ISD::Register &&
5703              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
5704             Callee.getOpcode() == ISD::TargetExternalSymbol ||
5705             Callee.getOpcode() == ISD::TargetGlobalAddress ||
5706             isa<ConstantSDNode>(Callee) ||
5707             (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) &&
5708            "Expecting a global address, external symbol, absolute value, "
5709            "register or an indirect tail call when PC Relative calls are "
5710            "used.");
5711     // PC Relative calls also use TC_RETURN as the way to mark tail calls.
5712     assert(CallOpc == PPCISD::TC_RETURN &&
5713            "Unexpected call opcode for a tail call.");
5714     DAG.getMachineFunction().getFrameInfo().setHasTailCall();
5715     SDValue Ret = DAG.getNode(CallOpc, dl, MVT::Other, Ops);
5716     DAG.addNoMergeSiteInfo(Ret.getNode(), CFlags.NoMerge);
5717     return Ret;
5718   }
5719 
5720   std::array<EVT, 2> ReturnTypes = {{MVT::Other, MVT::Glue}};
5721   Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops);
5722   DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge);
5723   Glue = Chain.getValue(1);
5724 
5725   // When performing tail call optimization the callee pops its arguments off
5726   // the stack. Account for this here so these bytes can be pushed back on in
5727   // PPCFrameLowering::eliminateCallFramePseudoInstr.
5728   int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast &&
5729                          getTargetMachine().Options.GuaranteedTailCallOpt)
5730                             ? NumBytes
5731                             : 0;
5732 
5733   Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl);
5734   Glue = Chain.getValue(1);
5735 
5736   return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl,
5737                          DAG, InVals);
5738 }
5739 
supportsTailCallFor(const CallBase * CB) const5740 bool PPCTargetLowering::supportsTailCallFor(const CallBase *CB) const {
5741   CallingConv::ID CalleeCC = CB->getCallingConv();
5742   const Function *CallerFunc = CB->getCaller();
5743   CallingConv::ID CallerCC = CallerFunc->getCallingConv();
5744   const Function *CalleeFunc = CB->getCalledFunction();
5745   if (!CalleeFunc)
5746     return false;
5747   const GlobalValue *CalleeGV = dyn_cast<GlobalValue>(CalleeFunc);
5748 
5749   SmallVector<ISD::OutputArg, 2> Outs;
5750   SmallVector<ISD::InputArg, 2> Ins;
5751 
5752   GetReturnInfo(CalleeCC, CalleeFunc->getReturnType(),
5753                 CalleeFunc->getAttributes(), Outs, *this,
5754                 CalleeFunc->getParent()->getDataLayout());
5755 
5756   return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB,
5757                           CalleeFunc->isVarArg(), Outs, Ins, CallerFunc,
5758                           false /*isCalleeExternalSymbol*/);
5759 }
5760 
isEligibleForTCO(const GlobalValue * CalleeGV,CallingConv::ID CalleeCC,CallingConv::ID CallerCC,const CallBase * CB,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<ISD::InputArg> & Ins,const Function * CallerFunc,bool isCalleeExternalSymbol) const5761 bool PPCTargetLowering::isEligibleForTCO(
5762     const GlobalValue *CalleeGV, CallingConv::ID CalleeCC,
5763     CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg,
5764     const SmallVectorImpl<ISD::OutputArg> &Outs,
5765     const SmallVectorImpl<ISD::InputArg> &Ins, const Function *CallerFunc,
5766     bool isCalleeExternalSymbol) const {
5767   if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall()))
5768     return false;
5769 
5770   if (Subtarget.isSVR4ABI() && Subtarget.isPPC64())
5771     return IsEligibleForTailCallOptimization_64SVR4(
5772         CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc,
5773         isCalleeExternalSymbol);
5774   else
5775     return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC,
5776                                              isVarArg, Ins);
5777 }
5778 
5779 SDValue
LowerCall(TargetLowering::CallLoweringInfo & CLI,SmallVectorImpl<SDValue> & InVals) const5780 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
5781                              SmallVectorImpl<SDValue> &InVals) const {
5782   SelectionDAG &DAG                     = CLI.DAG;
5783   SDLoc &dl                             = CLI.DL;
5784   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
5785   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
5786   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
5787   SDValue Chain                         = CLI.Chain;
5788   SDValue Callee                        = CLI.Callee;
5789   bool &isTailCall                      = CLI.IsTailCall;
5790   CallingConv::ID CallConv              = CLI.CallConv;
5791   bool isVarArg                         = CLI.IsVarArg;
5792   bool isPatchPoint                     = CLI.IsPatchPoint;
5793   const CallBase *CB                    = CLI.CB;
5794 
5795   if (isTailCall) {
5796     MachineFunction &MF = DAG.getMachineFunction();
5797     CallingConv::ID CallerCC = MF.getFunction().getCallingConv();
5798     auto *G = dyn_cast<GlobalAddressSDNode>(Callee);
5799     const GlobalValue *GV = G ? G->getGlobal() : nullptr;
5800     bool IsCalleeExternalSymbol = isa<ExternalSymbolSDNode>(Callee);
5801 
5802     isTailCall =
5803         isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins,
5804                          &(MF.getFunction()), IsCalleeExternalSymbol);
5805     if (isTailCall) {
5806       ++NumTailCalls;
5807       if (!getTargetMachine().Options.GuaranteedTailCallOpt)
5808         ++NumSiblingCalls;
5809 
5810       // PC Relative calls no longer guarantee that the callee is a Global
5811       // Address Node. The callee could be an indirect tail call in which
5812       // case the SDValue for the callee could be a load (to load the address
5813       // of a function pointer) or it may be a register copy (to move the
5814       // address of the callee from a function parameter into a virtual
5815       // register). It may also be an ExternalSymbolSDNode (ex memcopy).
5816       assert((Subtarget.isUsingPCRelativeCalls() ||
5817               isa<GlobalAddressSDNode>(Callee)) &&
5818              "Callee should be an llvm::Function object.");
5819 
5820       LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName()
5821                         << "\nTCO callee: ");
5822       LLVM_DEBUG(Callee.dump());
5823     }
5824   }
5825 
5826   if (!isTailCall && CB && CB->isMustTailCall())
5827     report_fatal_error("failed to perform tail call elimination on a call "
5828                        "site marked musttail");
5829 
5830   // When long calls (i.e. indirect calls) are always used, calls are always
5831   // made via function pointer. If we have a function name, first translate it
5832   // into a pointer.
5833   if (Subtarget.useLongCalls() && isa<GlobalAddressSDNode>(Callee) &&
5834       !isTailCall)
5835     Callee = LowerGlobalAddress(Callee, DAG);
5836 
5837   CallFlags CFlags(
5838       CallConv, isTailCall, isVarArg, isPatchPoint,
5839       isIndirectCall(Callee, DAG, Subtarget, isPatchPoint),
5840       // hasNest
5841       Subtarget.is64BitELFABI() &&
5842           any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }),
5843       CLI.NoMerge);
5844 
5845   if (Subtarget.isAIXABI())
5846     return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5847                          InVals, CB);
5848 
5849   assert(Subtarget.isSVR4ABI());
5850   if (Subtarget.isPPC64())
5851     return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5852                             InVals, CB);
5853   return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG,
5854                           InVals, CB);
5855 }
5856 
LowerCall_32SVR4(SDValue Chain,SDValue Callee,CallFlags CFlags,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const CallBase * CB) const5857 SDValue PPCTargetLowering::LowerCall_32SVR4(
5858     SDValue Chain, SDValue Callee, CallFlags CFlags,
5859     const SmallVectorImpl<ISD::OutputArg> &Outs,
5860     const SmallVectorImpl<SDValue> &OutVals,
5861     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
5862     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
5863     const CallBase *CB) const {
5864   // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
5865   // of the 32-bit SVR4 ABI stack frame layout.
5866 
5867   const CallingConv::ID CallConv = CFlags.CallConv;
5868   const bool IsVarArg = CFlags.IsVarArg;
5869   const bool IsTailCall = CFlags.IsTailCall;
5870 
5871   assert((CallConv == CallingConv::C ||
5872           CallConv == CallingConv::Cold ||
5873           CallConv == CallingConv::Fast) && "Unknown calling convention!");
5874 
5875   const Align PtrAlign(4);
5876 
5877   MachineFunction &MF = DAG.getMachineFunction();
5878 
5879   // Mark this function as potentially containing a function that contains a
5880   // tail call. As a consequence the frame pointer will be used for dynamicalloc
5881   // and restoring the callers stack pointer in this functions epilog. This is
5882   // done because by tail calling the called function might overwrite the value
5883   // in this function's (MF) stack pointer stack slot 0(SP).
5884   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
5885       CallConv == CallingConv::Fast)
5886     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
5887 
5888   // Count how many bytes are to be pushed on the stack, including the linkage
5889   // area, parameter list area and the part of the local variable space which
5890   // contains copies of aggregates which are passed by value.
5891 
5892   // Assign locations to all of the outgoing arguments.
5893   SmallVector<CCValAssign, 16> ArgLocs;
5894   PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
5895 
5896   // Reserve space for the linkage area on the stack.
5897   CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(),
5898                        PtrAlign);
5899   if (useSoftFloat())
5900     CCInfo.PreAnalyzeCallOperands(Outs);
5901 
5902   if (IsVarArg) {
5903     // Handle fixed and variable vector arguments differently.
5904     // Fixed vector arguments go into registers as long as registers are
5905     // available. Variable vector arguments always go into memory.
5906     unsigned NumArgs = Outs.size();
5907 
5908     for (unsigned i = 0; i != NumArgs; ++i) {
5909       MVT ArgVT = Outs[i].VT;
5910       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
5911       bool Result;
5912 
5913       if (Outs[i].IsFixed) {
5914         Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
5915                                CCInfo);
5916       } else {
5917         Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
5918                                       ArgFlags, CCInfo);
5919       }
5920 
5921       if (Result) {
5922 #ifndef NDEBUG
5923         errs() << "Call operand #" << i << " has unhandled type "
5924                << ArgVT << "\n";
5925 #endif
5926         llvm_unreachable(nullptr);
5927       }
5928     }
5929   } else {
5930     // All arguments are treated the same.
5931     CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
5932   }
5933   CCInfo.clearWasPPCF128();
5934 
5935   // Assign locations to all of the outgoing aggregate by value arguments.
5936   SmallVector<CCValAssign, 16> ByValArgLocs;
5937   CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext());
5938 
5939   // Reserve stack space for the allocations in CCInfo.
5940   CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign);
5941 
5942   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
5943 
5944   // Size of the linkage area, parameter list area and the part of the local
5945   // space variable where copies of aggregates which are passed by value are
5946   // stored.
5947   unsigned NumBytes = CCByValInfo.getStackSize();
5948 
5949   // Calculate by how many bytes the stack has to be adjusted in case of tail
5950   // call optimization.
5951   int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes);
5952 
5953   // Adjust the stack pointer for the new arguments...
5954   // These operations are automatically eliminated by the prolog/epilog pass
5955   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
5956   SDValue CallSeqStart = Chain;
5957 
5958   // Load the return address and frame pointer so it can be moved somewhere else
5959   // later.
5960   SDValue LROp, FPOp;
5961   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
5962 
5963   // Set up a copy of the stack pointer for use loading and storing any
5964   // arguments that may not fit in the registers available for argument
5965   // passing.
5966   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
5967 
5968   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
5969   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
5970   SmallVector<SDValue, 8> MemOpChains;
5971 
5972   bool seenFloatArg = false;
5973   // Walk the register/memloc assignments, inserting copies/loads.
5974   // i - Tracks the index into the list of registers allocated for the call
5975   // RealArgIdx - Tracks the index into the list of actual function arguments
5976   // j - Tracks the index into the list of byval arguments
5977   for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size();
5978        i != e;
5979        ++i, ++RealArgIdx) {
5980     CCValAssign &VA = ArgLocs[i];
5981     SDValue Arg = OutVals[RealArgIdx];
5982     ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags;
5983 
5984     if (Flags.isByVal()) {
5985       // Argument is an aggregate which is passed by value, thus we need to
5986       // create a copy of it in the local variable space of the current stack
5987       // frame (which is the stack frame of the caller) and pass the address of
5988       // this copy to the callee.
5989       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
5990       CCValAssign &ByValVA = ByValArgLocs[j++];
5991       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
5992 
5993       // Memory reserved in the local variable space of the callers stack frame.
5994       unsigned LocMemOffset = ByValVA.getLocMemOffset();
5995 
5996       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
5997       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
5998                            StackPtr, PtrOff);
5999 
6000       // Create a copy of the argument in the local area of the current
6001       // stack frame.
6002       SDValue MemcpyCall =
6003         CreateCopyOfByValArgument(Arg, PtrOff,
6004                                   CallSeqStart.getNode()->getOperand(0),
6005                                   Flags, DAG, dl);
6006 
6007       // This must go outside the CALLSEQ_START..END.
6008       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0,
6009                                                      SDLoc(MemcpyCall));
6010       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
6011                              NewCallSeqStart.getNode());
6012       Chain = CallSeqStart = NewCallSeqStart;
6013 
6014       // Pass the address of the aggregate copy on the stack either in a
6015       // physical register or in the parameter list area of the current stack
6016       // frame to the callee.
6017       Arg = PtrOff;
6018     }
6019 
6020     // When useCRBits() is true, there can be i1 arguments.
6021     // It is because getRegisterType(MVT::i1) => MVT::i1,
6022     // and for other integer types getRegisterType() => MVT::i32.
6023     // Extend i1 and ensure callee will get i32.
6024     if (Arg.getValueType() == MVT::i1)
6025       Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
6026                         dl, MVT::i32, Arg);
6027 
6028     if (VA.isRegLoc()) {
6029       seenFloatArg |= VA.getLocVT().isFloatingPoint();
6030       // Put argument in a physical register.
6031       if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) {
6032         bool IsLE = Subtarget.isLittleEndian();
6033         SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6034                         DAG.getIntPtrConstant(IsLE ? 0 : 1, dl));
6035         RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0)));
6036         SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
6037                            DAG.getIntPtrConstant(IsLE ? 1 : 0, dl));
6038         RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(),
6039                              SVal.getValue(0)));
6040       } else
6041         RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
6042     } else {
6043       // Put argument in the parameter list area of the current stack frame.
6044       assert(VA.isMemLoc());
6045       unsigned LocMemOffset = VA.getLocMemOffset();
6046 
6047       if (!IsTailCall) {
6048         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
6049         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()),
6050                              StackPtr, PtrOff);
6051 
6052         MemOpChains.push_back(
6053             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
6054       } else {
6055         // Calculate and remember argument location.
6056         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
6057                                  TailCallArguments);
6058       }
6059     }
6060   }
6061 
6062   if (!MemOpChains.empty())
6063     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6064 
6065   // Build a sequence of copy-to-reg nodes chained together with token chain
6066   // and flag operands which copy the outgoing args into the appropriate regs.
6067   SDValue InGlue;
6068   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6069     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6070                              RegsToPass[i].second, InGlue);
6071     InGlue = Chain.getValue(1);
6072   }
6073 
6074   // Set CR bit 6 to true if this is a vararg call with floating args passed in
6075   // registers.
6076   if (IsVarArg) {
6077     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
6078     SDValue Ops[] = { Chain, InGlue };
6079 
6080     Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl,
6081                         VTs, ArrayRef(Ops, InGlue.getNode() ? 2 : 1));
6082 
6083     InGlue = Chain.getValue(1);
6084   }
6085 
6086   if (IsTailCall)
6087     PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6088                     TailCallArguments);
6089 
6090   return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
6091                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6092 }
6093 
6094 // Copy an argument into memory, being careful to do this outside the
6095 // call sequence for the call to which the argument belongs.
createMemcpyOutsideCallSeq(SDValue Arg,SDValue PtrOff,SDValue CallSeqStart,ISD::ArgFlagsTy Flags,SelectionDAG & DAG,const SDLoc & dl) const6096 SDValue PPCTargetLowering::createMemcpyOutsideCallSeq(
6097     SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
6098     SelectionDAG &DAG, const SDLoc &dl) const {
6099   SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
6100                         CallSeqStart.getNode()->getOperand(0),
6101                         Flags, DAG, dl);
6102   // The MEMCPY must go outside the CALLSEQ_START..END.
6103   int64_t FrameSize = CallSeqStart.getConstantOperandVal(1);
6104   SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0,
6105                                                  SDLoc(MemcpyCall));
6106   DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
6107                          NewCallSeqStart.getNode());
6108   return NewCallSeqStart;
6109 }
6110 
LowerCall_64SVR4(SDValue Chain,SDValue Callee,CallFlags CFlags,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const CallBase * CB) const6111 SDValue PPCTargetLowering::LowerCall_64SVR4(
6112     SDValue Chain, SDValue Callee, CallFlags CFlags,
6113     const SmallVectorImpl<ISD::OutputArg> &Outs,
6114     const SmallVectorImpl<SDValue> &OutVals,
6115     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
6116     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
6117     const CallBase *CB) const {
6118   bool isELFv2ABI = Subtarget.isELFv2ABI();
6119   bool isLittleEndian = Subtarget.isLittleEndian();
6120   unsigned NumOps = Outs.size();
6121   bool IsSibCall = false;
6122   bool IsFastCall = CFlags.CallConv == CallingConv::Fast;
6123 
6124   EVT PtrVT = getPointerTy(DAG.getDataLayout());
6125   unsigned PtrByteSize = 8;
6126 
6127   MachineFunction &MF = DAG.getMachineFunction();
6128 
6129   if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt)
6130     IsSibCall = true;
6131 
6132   // Mark this function as potentially containing a function that contains a
6133   // tail call. As a consequence the frame pointer will be used for dynamicalloc
6134   // and restoring the callers stack pointer in this functions epilog. This is
6135   // done because by tail calling the called function might overwrite the value
6136   // in this function's (MF) stack pointer stack slot 0(SP).
6137   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6138     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
6139 
6140   assert(!(IsFastCall && CFlags.IsVarArg) &&
6141          "fastcc not supported on varargs functions");
6142 
6143   // Count how many bytes are to be pushed on the stack, including the linkage
6144   // area, and parameter passing area.  On ELFv1, the linkage area is 48 bytes
6145   // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage
6146   // area is 32 bytes reserved space for [SP][CR][LR][TOC].
6147   unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
6148   unsigned NumBytes = LinkageSize;
6149   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
6150 
6151   static const MCPhysReg GPR[] = {
6152     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6153     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
6154   };
6155   static const MCPhysReg VR[] = {
6156     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
6157     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
6158   };
6159 
6160   const unsigned NumGPRs = std::size(GPR);
6161   const unsigned NumFPRs = useSoftFloat() ? 0 : 13;
6162   const unsigned NumVRs = std::size(VR);
6163 
6164   // On ELFv2, we can avoid allocating the parameter area if all the arguments
6165   // can be passed to the callee in registers.
6166   // For the fast calling convention, there is another check below.
6167   // Note: We should keep consistent with LowerFormalArguments_64SVR4()
6168   bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall;
6169   if (!HasParameterArea) {
6170     unsigned ParamAreaSize = NumGPRs * PtrByteSize;
6171     unsigned AvailableFPRs = NumFPRs;
6172     unsigned AvailableVRs = NumVRs;
6173     unsigned NumBytesTmp = NumBytes;
6174     for (unsigned i = 0; i != NumOps; ++i) {
6175       if (Outs[i].Flags.isNest()) continue;
6176       if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags,
6177                                  PtrByteSize, LinkageSize, ParamAreaSize,
6178                                  NumBytesTmp, AvailableFPRs, AvailableVRs))
6179         HasParameterArea = true;
6180     }
6181   }
6182 
6183   // When using the fast calling convention, we don't provide backing for
6184   // arguments that will be in registers.
6185   unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0;
6186 
6187   // Avoid allocating parameter area for fastcc functions if all the arguments
6188   // can be passed in the registers.
6189   if (IsFastCall)
6190     HasParameterArea = false;
6191 
6192   // Add up all the space actually used.
6193   for (unsigned i = 0; i != NumOps; ++i) {
6194     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6195     EVT ArgVT = Outs[i].VT;
6196     EVT OrigVT = Outs[i].ArgVT;
6197 
6198     if (Flags.isNest())
6199       continue;
6200 
6201     if (IsFastCall) {
6202       if (Flags.isByVal()) {
6203         NumGPRsUsed += (Flags.getByValSize()+7)/8;
6204         if (NumGPRsUsed > NumGPRs)
6205           HasParameterArea = true;
6206       } else {
6207         switch (ArgVT.getSimpleVT().SimpleTy) {
6208         default: llvm_unreachable("Unexpected ValueType for argument!");
6209         case MVT::i1:
6210         case MVT::i32:
6211         case MVT::i64:
6212           if (++NumGPRsUsed <= NumGPRs)
6213             continue;
6214           break;
6215         case MVT::v4i32:
6216         case MVT::v8i16:
6217         case MVT::v16i8:
6218         case MVT::v2f64:
6219         case MVT::v2i64:
6220         case MVT::v1i128:
6221         case MVT::f128:
6222           if (++NumVRsUsed <= NumVRs)
6223             continue;
6224           break;
6225         case MVT::v4f32:
6226           if (++NumVRsUsed <= NumVRs)
6227             continue;
6228           break;
6229         case MVT::f32:
6230         case MVT::f64:
6231           if (++NumFPRsUsed <= NumFPRs)
6232             continue;
6233           break;
6234         }
6235         HasParameterArea = true;
6236       }
6237     }
6238 
6239     /* Respect alignment of argument on the stack.  */
6240     auto Alignement =
6241         CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6242     NumBytes = alignTo(NumBytes, Alignement);
6243 
6244     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
6245     if (Flags.isInConsecutiveRegsLast())
6246       NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6247   }
6248 
6249   unsigned NumBytesActuallyUsed = NumBytes;
6250 
6251   // In the old ELFv1 ABI,
6252   // the prolog code of the callee may store up to 8 GPR argument registers to
6253   // the stack, allowing va_start to index over them in memory if its varargs.
6254   // Because we cannot tell if this is needed on the caller side, we have to
6255   // conservatively assume that it is needed.  As such, make sure we have at
6256   // least enough stack space for the caller to store the 8 GPRs.
6257   // In the ELFv2 ABI, we allocate the parameter area iff a callee
6258   // really requires memory operands, e.g. a vararg function.
6259   if (HasParameterArea)
6260     NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize);
6261   else
6262     NumBytes = LinkageSize;
6263 
6264   // Tail call needs the stack to be aligned.
6265   if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall)
6266     NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes);
6267 
6268   int SPDiff = 0;
6269 
6270   // Calculate by how many bytes the stack has to be adjusted in case of tail
6271   // call optimization.
6272   if (!IsSibCall)
6273     SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes);
6274 
6275   // To protect arguments on the stack from being clobbered in a tail call,
6276   // force all the loads to happen before doing any other lowering.
6277   if (CFlags.IsTailCall)
6278     Chain = DAG.getStackArgumentTokenFactor(Chain);
6279 
6280   // Adjust the stack pointer for the new arguments...
6281   // These operations are automatically eliminated by the prolog/epilog pass
6282   if (!IsSibCall)
6283     Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
6284   SDValue CallSeqStart = Chain;
6285 
6286   // Load the return address and frame pointer so it can be move somewhere else
6287   // later.
6288   SDValue LROp, FPOp;
6289   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl);
6290 
6291   // Set up a copy of the stack pointer for use loading and storing any
6292   // arguments that may not fit in the registers available for argument
6293   // passing.
6294   SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
6295 
6296   // Figure out which arguments are going to go in registers, and which in
6297   // memory.  Also, if this is a vararg function, floating point operations
6298   // must be stored to our stack, and loaded into integer regs as well, if
6299   // any integer regs are available for argument passing.
6300   unsigned ArgOffset = LinkageSize;
6301 
6302   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
6303   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
6304 
6305   SmallVector<SDValue, 8> MemOpChains;
6306   for (unsigned i = 0; i != NumOps; ++i) {
6307     SDValue Arg = OutVals[i];
6308     ISD::ArgFlagsTy Flags = Outs[i].Flags;
6309     EVT ArgVT = Outs[i].VT;
6310     EVT OrigVT = Outs[i].ArgVT;
6311 
6312     // PtrOff will be used to store the current argument to the stack if a
6313     // register cannot be found for it.
6314     SDValue PtrOff;
6315 
6316     // We re-align the argument offset for each argument, except when using the
6317     // fast calling convention, when we need to make sure we do that only when
6318     // we'll actually use a stack slot.
6319     auto ComputePtrOff = [&]() {
6320       /* Respect alignment of argument on the stack.  */
6321       auto Alignment =
6322           CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize);
6323       ArgOffset = alignTo(ArgOffset, Alignment);
6324 
6325       PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType());
6326 
6327       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6328     };
6329 
6330     if (!IsFastCall) {
6331       ComputePtrOff();
6332 
6333       /* Compute GPR index associated with argument offset.  */
6334       GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize;
6335       GPR_idx = std::min(GPR_idx, NumGPRs);
6336     }
6337 
6338     // Promote integers to 64-bit values.
6339     if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) {
6340       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
6341       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
6342       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
6343     }
6344 
6345     // FIXME memcpy is used way more than necessary.  Correctness first.
6346     // Note: "by value" is code for passing a structure by value, not
6347     // basic types.
6348     if (Flags.isByVal()) {
6349       // Note: Size includes alignment padding, so
6350       //   struct x { short a; char b; }
6351       // will have Size = 4.  With #pragma pack(1), it will have Size = 3.
6352       // These are the proper values we need for right-justifying the
6353       // aggregate in a parameter register.
6354       unsigned Size = Flags.getByValSize();
6355 
6356       // An empty aggregate parameter takes up no storage and no
6357       // registers.
6358       if (Size == 0)
6359         continue;
6360 
6361       if (IsFastCall)
6362         ComputePtrOff();
6363 
6364       // All aggregates smaller than 8 bytes must be passed right-justified.
6365       if (Size==1 || Size==2 || Size==4) {
6366         EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
6367         if (GPR_idx != NumGPRs) {
6368           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
6369                                         MachinePointerInfo(), VT);
6370           MemOpChains.push_back(Load.getValue(1));
6371           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6372 
6373           ArgOffset += PtrByteSize;
6374           continue;
6375         }
6376       }
6377 
6378       if (GPR_idx == NumGPRs && Size < 8) {
6379         SDValue AddPtr = PtrOff;
6380         if (!isLittleEndian) {
6381           SDValue Const = DAG.getConstant(PtrByteSize - Size, dl,
6382                                           PtrOff.getValueType());
6383           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6384         }
6385         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6386                                                           CallSeqStart,
6387                                                           Flags, DAG, dl);
6388         ArgOffset += PtrByteSize;
6389         continue;
6390       }
6391       // Copy the object to parameter save area if it can not be entirely passed
6392       // by registers.
6393       // FIXME: we only need to copy the parts which need to be passed in
6394       // parameter save area. For the parts passed by registers, we don't need
6395       // to copy them to the stack although we need to allocate space for them
6396       // in parameter save area.
6397       if ((NumGPRs - GPR_idx) * PtrByteSize < Size)
6398         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
6399                                                           CallSeqStart,
6400                                                           Flags, DAG, dl);
6401 
6402       // When a register is available, pass a small aggregate right-justified.
6403       if (Size < 8 && GPR_idx != NumGPRs) {
6404         // The easiest way to get this right-justified in a register
6405         // is to copy the structure into the rightmost portion of a
6406         // local variable slot, then load the whole slot into the
6407         // register.
6408         // FIXME: The memcpy seems to produce pretty awful code for
6409         // small aggregates, particularly for packed ones.
6410         // FIXME: It would be preferable to use the slot in the
6411         // parameter save area instead of a new local variable.
6412         SDValue AddPtr = PtrOff;
6413         if (!isLittleEndian) {
6414           SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType());
6415           AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
6416         }
6417         Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
6418                                                           CallSeqStart,
6419                                                           Flags, DAG, dl);
6420 
6421         // Load the slot into the register.
6422         SDValue Load =
6423             DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo());
6424         MemOpChains.push_back(Load.getValue(1));
6425         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6426 
6427         // Done with this argument.
6428         ArgOffset += PtrByteSize;
6429         continue;
6430       }
6431 
6432       // For aggregates larger than PtrByteSize, copy the pieces of the
6433       // object that fit into registers from the parameter save area.
6434       for (unsigned j=0; j<Size; j+=PtrByteSize) {
6435         SDValue Const = DAG.getConstant(j, dl, PtrOff.getValueType());
6436         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
6437         if (GPR_idx != NumGPRs) {
6438           unsigned LoadSizeInBits = std::min(PtrByteSize, (Size - j)) * 8;
6439           EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), LoadSizeInBits);
6440           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, AddArg,
6441                                         MachinePointerInfo(), ObjType);
6442 
6443           MemOpChains.push_back(Load.getValue(1));
6444           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6445           ArgOffset += PtrByteSize;
6446         } else {
6447           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
6448           break;
6449         }
6450       }
6451       continue;
6452     }
6453 
6454     switch (Arg.getSimpleValueType().SimpleTy) {
6455     default: llvm_unreachable("Unexpected ValueType for argument!");
6456     case MVT::i1:
6457     case MVT::i32:
6458     case MVT::i64:
6459       if (Flags.isNest()) {
6460         // The 'nest' parameter, if any, is passed in R11.
6461         RegsToPass.push_back(std::make_pair(PPC::X11, Arg));
6462         break;
6463       }
6464 
6465       // These can be scalar arguments or elements of an integer array type
6466       // passed directly.  Clang may use those instead of "byval" aggregate
6467       // types to avoid forcing arguments to memory unnecessarily.
6468       if (GPR_idx != NumGPRs) {
6469         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
6470       } else {
6471         if (IsFastCall)
6472           ComputePtrOff();
6473 
6474         assert(HasParameterArea &&
6475                "Parameter area must exist to pass an argument in memory.");
6476         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6477                          true, CFlags.IsTailCall, false, MemOpChains,
6478                          TailCallArguments, dl);
6479         if (IsFastCall)
6480           ArgOffset += PtrByteSize;
6481       }
6482       if (!IsFastCall)
6483         ArgOffset += PtrByteSize;
6484       break;
6485     case MVT::f32:
6486     case MVT::f64: {
6487       // These can be scalar arguments or elements of a float array type
6488       // passed directly.  The latter are used to implement ELFv2 homogenous
6489       // float aggregates.
6490 
6491       // Named arguments go into FPRs first, and once they overflow, the
6492       // remaining arguments go into GPRs and then the parameter save area.
6493       // Unnamed arguments for vararg functions always go to GPRs and
6494       // then the parameter save area.  For now, put all arguments to vararg
6495       // routines always in both locations (FPR *and* GPR or stack slot).
6496       bool NeedGPROrStack = CFlags.IsVarArg || FPR_idx == NumFPRs;
6497       bool NeededLoad = false;
6498 
6499       // First load the argument into the next available FPR.
6500       if (FPR_idx != NumFPRs)
6501         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
6502 
6503       // Next, load the argument into GPR or stack slot if needed.
6504       if (!NeedGPROrStack)
6505         ;
6506       else if (GPR_idx != NumGPRs && !IsFastCall) {
6507         // FIXME: We may want to re-enable this for CallingConv::Fast on the P8
6508         // once we support fp <-> gpr moves.
6509 
6510         // In the non-vararg case, this can only ever happen in the
6511         // presence of f32 array types, since otherwise we never run
6512         // out of FPRs before running out of GPRs.
6513         SDValue ArgVal;
6514 
6515         // Double values are always passed in a single GPR.
6516         if (Arg.getValueType() != MVT::f32) {
6517           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg);
6518 
6519         // Non-array float values are extended and passed in a GPR.
6520         } else if (!Flags.isInConsecutiveRegs()) {
6521           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6522           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6523 
6524         // If we have an array of floats, we collect every odd element
6525         // together with its predecessor into one GPR.
6526         } else if (ArgOffset % PtrByteSize != 0) {
6527           SDValue Lo, Hi;
6528           Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]);
6529           Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6530           if (!isLittleEndian)
6531             std::swap(Lo, Hi);
6532           ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
6533 
6534         // The final element, if even, goes into the first half of a GPR.
6535         } else if (Flags.isInConsecutiveRegsLast()) {
6536           ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
6537           ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal);
6538           if (!isLittleEndian)
6539             ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal,
6540                                  DAG.getConstant(32, dl, MVT::i32));
6541 
6542         // Non-final even elements are skipped; they will be handled
6543         // together the with subsequent argument on the next go-around.
6544         } else
6545           ArgVal = SDValue();
6546 
6547         if (ArgVal.getNode())
6548           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal));
6549       } else {
6550         if (IsFastCall)
6551           ComputePtrOff();
6552 
6553         // Single-precision floating-point values are mapped to the
6554         // second (rightmost) word of the stack doubleword.
6555         if (Arg.getValueType() == MVT::f32 &&
6556             !isLittleEndian && !Flags.isInConsecutiveRegs()) {
6557           SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType());
6558           PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
6559         }
6560 
6561         assert(HasParameterArea &&
6562                "Parameter area must exist to pass an argument in memory.");
6563         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6564                          true, CFlags.IsTailCall, false, MemOpChains,
6565                          TailCallArguments, dl);
6566 
6567         NeededLoad = true;
6568       }
6569       // When passing an array of floats, the array occupies consecutive
6570       // space in the argument area; only round up to the next doubleword
6571       // at the end of the array.  Otherwise, each float takes 8 bytes.
6572       if (!IsFastCall || NeededLoad) {
6573         ArgOffset += (Arg.getValueType() == MVT::f32 &&
6574                       Flags.isInConsecutiveRegs()) ? 4 : 8;
6575         if (Flags.isInConsecutiveRegsLast())
6576           ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
6577       }
6578       break;
6579     }
6580     case MVT::v4f32:
6581     case MVT::v4i32:
6582     case MVT::v8i16:
6583     case MVT::v16i8:
6584     case MVT::v2f64:
6585     case MVT::v2i64:
6586     case MVT::v1i128:
6587     case MVT::f128:
6588       // These can be scalar arguments or elements of a vector array type
6589       // passed directly.  The latter are used to implement ELFv2 homogenous
6590       // vector aggregates.
6591 
6592       // For a varargs call, named arguments go into VRs or on the stack as
6593       // usual; unnamed arguments always go to the stack or the corresponding
6594       // GPRs when within range.  For now, we always put the value in both
6595       // locations (or even all three).
6596       if (CFlags.IsVarArg) {
6597         assert(HasParameterArea &&
6598                "Parameter area must exist if we have a varargs call.");
6599         // We could elide this store in the case where the object fits
6600         // entirely in R registers.  Maybe later.
6601         SDValue Store =
6602             DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
6603         MemOpChains.push_back(Store);
6604         if (VR_idx != NumVRs) {
6605           SDValue Load =
6606               DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo());
6607           MemOpChains.push_back(Load.getValue(1));
6608           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
6609         }
6610         ArgOffset += 16;
6611         for (unsigned i=0; i<16; i+=PtrByteSize) {
6612           if (GPR_idx == NumGPRs)
6613             break;
6614           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
6615                                    DAG.getConstant(i, dl, PtrVT));
6616           SDValue Load =
6617               DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo());
6618           MemOpChains.push_back(Load.getValue(1));
6619           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
6620         }
6621         break;
6622       }
6623 
6624       // Non-varargs Altivec params go into VRs or on the stack.
6625       if (VR_idx != NumVRs) {
6626         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
6627       } else {
6628         if (IsFastCall)
6629           ComputePtrOff();
6630 
6631         assert(HasParameterArea &&
6632                "Parameter area must exist to pass an argument in memory.");
6633         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
6634                          true, CFlags.IsTailCall, true, MemOpChains,
6635                          TailCallArguments, dl);
6636         if (IsFastCall)
6637           ArgOffset += 16;
6638       }
6639 
6640       if (!IsFastCall)
6641         ArgOffset += 16;
6642       break;
6643     }
6644   }
6645 
6646   assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) &&
6647          "mismatch in size of parameter area");
6648   (void)NumBytesActuallyUsed;
6649 
6650   if (!MemOpChains.empty())
6651     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
6652 
6653   // Check if this is an indirect call (MTCTR/BCTRL).
6654   // See prepareDescriptorIndirectCall and buildCallOperands for more
6655   // information about calls through function pointers in the 64-bit SVR4 ABI.
6656   if (CFlags.IsIndirect) {
6657     // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the
6658     // caller in the TOC save area.
6659     if (isTOCSaveRestoreRequired(Subtarget)) {
6660       assert(!CFlags.IsTailCall && "Indirect tails calls not supported");
6661       // Load r2 into a virtual register and store it to the TOC save area.
6662       setUsesTOCBasePtr(DAG);
6663       SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
6664       // TOC save area offset.
6665       unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset();
6666       SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
6667       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
6668       Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr,
6669                            MachinePointerInfo::getStack(
6670                                DAG.getMachineFunction(), TOCSaveOffset));
6671     }
6672     // In the ELFv2 ABI, R12 must contain the address of an indirect callee.
6673     // This does not mean the MTCTR instruction must use R12; it's easier
6674     // to model this as an extra parameter, so do that.
6675     if (isELFv2ABI && !CFlags.IsPatchPoint)
6676       RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
6677   }
6678 
6679   // Build a sequence of copy-to-reg nodes chained together with token chain
6680   // and flag operands which copy the outgoing args into the appropriate regs.
6681   SDValue InGlue;
6682   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
6683     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
6684                              RegsToPass[i].second, InGlue);
6685     InGlue = Chain.getValue(1);
6686   }
6687 
6688   if (CFlags.IsTailCall && !IsSibCall)
6689     PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp,
6690                     TailCallArguments);
6691 
6692   return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
6693                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
6694 }
6695 
6696 // Returns true when the shadow of a general purpose argument register
6697 // in the parameter save area is aligned to at least 'RequiredAlign'.
isGPRShadowAligned(MCPhysReg Reg,Align RequiredAlign)6698 static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) {
6699   assert(RequiredAlign.value() <= 16 &&
6700          "Required alignment greater than stack alignment.");
6701   switch (Reg) {
6702   default:
6703     report_fatal_error("called on invalid register.");
6704   case PPC::R5:
6705   case PPC::R9:
6706   case PPC::X3:
6707   case PPC::X5:
6708   case PPC::X7:
6709   case PPC::X9:
6710     // These registers are 16 byte aligned which is the most strict aligment
6711     // we can support.
6712     return true;
6713   case PPC::R3:
6714   case PPC::R7:
6715   case PPC::X4:
6716   case PPC::X6:
6717   case PPC::X8:
6718   case PPC::X10:
6719     // The shadow of these registers in the PSA is 8 byte aligned.
6720     return RequiredAlign <= 8;
6721   case PPC::R4:
6722   case PPC::R6:
6723   case PPC::R8:
6724   case PPC::R10:
6725     return RequiredAlign <= 4;
6726   }
6727 }
6728 
CC_AIX(unsigned ValNo,MVT ValVT,MVT LocVT,CCValAssign::LocInfo LocInfo,ISD::ArgFlagsTy ArgFlags,CCState & S)6729 static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT,
6730                    CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags,
6731                    CCState &S) {
6732   AIXCCState &State = static_cast<AIXCCState &>(S);
6733   const PPCSubtarget &Subtarget = static_cast<const PPCSubtarget &>(
6734       State.getMachineFunction().getSubtarget());
6735   const bool IsPPC64 = Subtarget.isPPC64();
6736   const Align PtrAlign = IsPPC64 ? Align(8) : Align(4);
6737   const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32;
6738 
6739   if (ValVT == MVT::f128)
6740     report_fatal_error("f128 is unimplemented on AIX.");
6741 
6742   if (ArgFlags.isNest())
6743     report_fatal_error("Nest arguments are unimplemented.");
6744 
6745   static const MCPhysReg GPR_32[] = {// 32-bit registers.
6746                                      PPC::R3, PPC::R4, PPC::R5, PPC::R6,
6747                                      PPC::R7, PPC::R8, PPC::R9, PPC::R10};
6748   static const MCPhysReg GPR_64[] = {// 64-bit registers.
6749                                      PPC::X3, PPC::X4, PPC::X5, PPC::X6,
6750                                      PPC::X7, PPC::X8, PPC::X9, PPC::X10};
6751 
6752   static const MCPhysReg VR[] = {// Vector registers.
6753                                  PPC::V2,  PPC::V3,  PPC::V4,  PPC::V5,
6754                                  PPC::V6,  PPC::V7,  PPC::V8,  PPC::V9,
6755                                  PPC::V10, PPC::V11, PPC::V12, PPC::V13};
6756 
6757   if (ArgFlags.isByVal()) {
6758     if (ArgFlags.getNonZeroByValAlign() > PtrAlign)
6759       report_fatal_error("Pass-by-value arguments with alignment greater than "
6760                          "register width are not supported.");
6761 
6762     const unsigned ByValSize = ArgFlags.getByValSize();
6763 
6764     // An empty aggregate parameter takes up no storage and no registers,
6765     // but needs a MemLoc for a stack slot for the formal arguments side.
6766     if (ByValSize == 0) {
6767       State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6768                                        State.getStackSize(), RegVT, LocInfo));
6769       return false;
6770     }
6771 
6772     const unsigned StackSize = alignTo(ByValSize, PtrAlign);
6773     unsigned Offset = State.AllocateStack(StackSize, PtrAlign);
6774     for (const unsigned E = Offset + StackSize; Offset < E;
6775          Offset += PtrAlign.value()) {
6776       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6777         State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6778       else {
6779         State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE,
6780                                          Offset, MVT::INVALID_SIMPLE_VALUE_TYPE,
6781                                          LocInfo));
6782         break;
6783       }
6784     }
6785     return false;
6786   }
6787 
6788   // Arguments always reserve parameter save area.
6789   switch (ValVT.SimpleTy) {
6790   default:
6791     report_fatal_error("Unhandled value type for argument.");
6792   case MVT::i64:
6793     // i64 arguments should have been split to i32 for PPC32.
6794     assert(IsPPC64 && "PPC32 should have split i64 values.");
6795     [[fallthrough]];
6796   case MVT::i1:
6797   case MVT::i32: {
6798     const unsigned Offset = State.AllocateStack(PtrAlign.value(), PtrAlign);
6799     // AIX integer arguments are always passed in register width.
6800     if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits())
6801       LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt
6802                                   : CCValAssign::LocInfo::ZExt;
6803     if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32))
6804       State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6805     else
6806       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo));
6807 
6808     return false;
6809   }
6810   case MVT::f32:
6811   case MVT::f64: {
6812     // Parameter save area (PSA) is reserved even if the float passes in fpr.
6813     const unsigned StoreSize = LocVT.getStoreSize();
6814     // Floats are always 4-byte aligned in the PSA on AIX.
6815     // This includes f64 in 64-bit mode for ABI compatibility.
6816     const unsigned Offset =
6817         State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4));
6818     unsigned FReg = State.AllocateReg(FPR);
6819     if (FReg)
6820       State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo));
6821 
6822     // Reserve and initialize GPRs or initialize the PSA as required.
6823     for (unsigned I = 0; I < StoreSize; I += PtrAlign.value()) {
6824       if (unsigned Reg = State.AllocateReg(IsPPC64 ? GPR_64 : GPR_32)) {
6825         assert(FReg && "An FPR should be available when a GPR is reserved.");
6826         if (State.isVarArg()) {
6827           // Successfully reserved GPRs are only initialized for vararg calls.
6828           // Custom handling is required for:
6829           //   f64 in PPC32 needs to be split into 2 GPRs.
6830           //   f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR.
6831           State.addLoc(
6832               CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6833         }
6834       } else {
6835         // If there are insufficient GPRs, the PSA needs to be initialized.
6836         // Initialization occurs even if an FPR was initialized for
6837         // compatibility with the AIX XL compiler. The full memory for the
6838         // argument will be initialized even if a prior word is saved in GPR.
6839         // A custom memLoc is used when the argument also passes in FPR so
6840         // that the callee handling can skip over it easily.
6841         State.addLoc(
6842             FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT,
6843                                              LocInfo)
6844                  : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6845         break;
6846       }
6847     }
6848 
6849     return false;
6850   }
6851   case MVT::v4f32:
6852   case MVT::v4i32:
6853   case MVT::v8i16:
6854   case MVT::v16i8:
6855   case MVT::v2i64:
6856   case MVT::v2f64:
6857   case MVT::v1i128: {
6858     const unsigned VecSize = 16;
6859     const Align VecAlign(VecSize);
6860 
6861     if (!State.isVarArg()) {
6862       // If there are vector registers remaining we don't consume any stack
6863       // space.
6864       if (unsigned VReg = State.AllocateReg(VR)) {
6865         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6866         return false;
6867       }
6868       // Vectors passed on the stack do not shadow GPRs or FPRs even though they
6869       // might be allocated in the portion of the PSA that is shadowed by the
6870       // GPRs.
6871       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6872       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6873       return false;
6874     }
6875 
6876     const unsigned PtrSize = IsPPC64 ? 8 : 4;
6877     ArrayRef<MCPhysReg> GPRs = IsPPC64 ? GPR_64 : GPR_32;
6878 
6879     unsigned NextRegIndex = State.getFirstUnallocated(GPRs);
6880     // Burn any underaligned registers and their shadowed stack space until
6881     // we reach the required alignment.
6882     while (NextRegIndex != GPRs.size() &&
6883            !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) {
6884       // Shadow allocate register and its stack shadow.
6885       unsigned Reg = State.AllocateReg(GPRs);
6886       State.AllocateStack(PtrSize, PtrAlign);
6887       assert(Reg && "Allocating register unexpectedly failed.");
6888       (void)Reg;
6889       NextRegIndex = State.getFirstUnallocated(GPRs);
6890     }
6891 
6892     // Vectors that are passed as fixed arguments are handled differently.
6893     // They are passed in VRs if any are available (unlike arguments passed
6894     // through ellipses) and shadow GPRs (unlike arguments to non-vaarg
6895     // functions)
6896     if (State.isFixed(ValNo)) {
6897       if (unsigned VReg = State.AllocateReg(VR)) {
6898         State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo));
6899         // Shadow allocate GPRs and stack space even though we pass in a VR.
6900         for (unsigned I = 0; I != VecSize; I += PtrSize)
6901           State.AllocateReg(GPRs);
6902         State.AllocateStack(VecSize, VecAlign);
6903         return false;
6904       }
6905       // No vector registers remain so pass on the stack.
6906       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6907       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6908       return false;
6909     }
6910 
6911     // If all GPRS are consumed then we pass the argument fully on the stack.
6912     if (NextRegIndex == GPRs.size()) {
6913       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6914       State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6915       return false;
6916     }
6917 
6918     // Corner case for 32-bit codegen. We have 2 registers to pass the first
6919     // half of the argument, and then need to pass the remaining half on the
6920     // stack.
6921     if (GPRs[NextRegIndex] == PPC::R9) {
6922       const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6923       State.addLoc(
6924           CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6925 
6926       const unsigned FirstReg = State.AllocateReg(PPC::R9);
6927       const unsigned SecondReg = State.AllocateReg(PPC::R10);
6928       assert(FirstReg && SecondReg &&
6929              "Allocating R9 or R10 unexpectedly failed.");
6930       State.addLoc(
6931           CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo));
6932       State.addLoc(
6933           CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo));
6934       return false;
6935     }
6936 
6937     // We have enough GPRs to fully pass the vector argument, and we have
6938     // already consumed any underaligned registers. Start with the custom
6939     // MemLoc and then the custom RegLocs.
6940     const unsigned Offset = State.AllocateStack(VecSize, VecAlign);
6941     State.addLoc(
6942         CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo));
6943     for (unsigned I = 0; I != VecSize; I += PtrSize) {
6944       const unsigned Reg = State.AllocateReg(GPRs);
6945       assert(Reg && "Failed to allocated register for vararg vector argument");
6946       State.addLoc(
6947           CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo));
6948     }
6949     return false;
6950   }
6951   }
6952   return true;
6953 }
6954 
6955 // So far, this function is only used by LowerFormalArguments_AIX()
getRegClassForSVT(MVT::SimpleValueType SVT,bool IsPPC64,bool HasP8Vector,bool HasVSX)6956 static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT,
6957                                                     bool IsPPC64,
6958                                                     bool HasP8Vector,
6959                                                     bool HasVSX) {
6960   assert((IsPPC64 || SVT != MVT::i64) &&
6961          "i64 should have been split for 32-bit codegen.");
6962 
6963   switch (SVT) {
6964   default:
6965     report_fatal_error("Unexpected value type for formal argument");
6966   case MVT::i1:
6967   case MVT::i32:
6968   case MVT::i64:
6969     return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6970   case MVT::f32:
6971     return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass;
6972   case MVT::f64:
6973     return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass;
6974   case MVT::v4f32:
6975   case MVT::v4i32:
6976   case MVT::v8i16:
6977   case MVT::v16i8:
6978   case MVT::v2i64:
6979   case MVT::v2f64:
6980   case MVT::v1i128:
6981     return &PPC::VRRCRegClass;
6982   }
6983 }
6984 
truncateScalarIntegerArg(ISD::ArgFlagsTy Flags,EVT ValVT,SelectionDAG & DAG,SDValue ArgValue,MVT LocVT,const SDLoc & dl)6985 static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT,
6986                                         SelectionDAG &DAG, SDValue ArgValue,
6987                                         MVT LocVT, const SDLoc &dl) {
6988   assert(ValVT.isScalarInteger() && LocVT.isScalarInteger());
6989   assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits());
6990 
6991   if (Flags.isSExt())
6992     ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
6993                            DAG.getValueType(ValVT));
6994   else if (Flags.isZExt())
6995     ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
6996                            DAG.getValueType(ValVT));
6997 
6998   return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue);
6999 }
7000 
mapArgRegToOffsetAIX(unsigned Reg,const PPCFrameLowering * FL)7001 static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) {
7002   const unsigned LASize = FL->getLinkageSize();
7003 
7004   if (PPC::GPRCRegClass.contains(Reg)) {
7005     assert(Reg >= PPC::R3 && Reg <= PPC::R10 &&
7006            "Reg must be a valid argument register!");
7007     return LASize + 4 * (Reg - PPC::R3);
7008   }
7009 
7010   if (PPC::G8RCRegClass.contains(Reg)) {
7011     assert(Reg >= PPC::X3 && Reg <= PPC::X10 &&
7012            "Reg must be a valid argument register!");
7013     return LASize + 8 * (Reg - PPC::X3);
7014   }
7015 
7016   llvm_unreachable("Only general purpose registers expected.");
7017 }
7018 
7019 //   AIX ABI Stack Frame Layout:
7020 //
7021 //   Low Memory +--------------------------------------------+
7022 //   SP   +---> | Back chain                                 | ---+
7023 //        |     +--------------------------------------------+    |
7024 //        |     | Saved Condition Register                   |    |
7025 //        |     +--------------------------------------------+    |
7026 //        |     | Saved Linkage Register                     |    |
7027 //        |     +--------------------------------------------+    | Linkage Area
7028 //        |     | Reserved for compilers                     |    |
7029 //        |     +--------------------------------------------+    |
7030 //        |     | Reserved for binders                       |    |
7031 //        |     +--------------------------------------------+    |
7032 //        |     | Saved TOC pointer                          | ---+
7033 //        |     +--------------------------------------------+
7034 //        |     | Parameter save area                        |
7035 //        |     +--------------------------------------------+
7036 //        |     | Alloca space                               |
7037 //        |     +--------------------------------------------+
7038 //        |     | Local variable space                       |
7039 //        |     +--------------------------------------------+
7040 //        |     | Float/int conversion temporary             |
7041 //        |     +--------------------------------------------+
7042 //        |     | Save area for AltiVec registers            |
7043 //        |     +--------------------------------------------+
7044 //        |     | AltiVec alignment padding                  |
7045 //        |     +--------------------------------------------+
7046 //        |     | Save area for VRSAVE register              |
7047 //        |     +--------------------------------------------+
7048 //        |     | Save area for General Purpose registers    |
7049 //        |     +--------------------------------------------+
7050 //        |     | Save area for Floating Point registers     |
7051 //        |     +--------------------------------------------+
7052 //        +---- | Back chain                                 |
7053 // High Memory  +--------------------------------------------+
7054 //
7055 //  Specifications:
7056 //  AIX 7.2 Assembler Language Reference
7057 //  Subroutine linkage convention
7058 
LowerFormalArguments_AIX(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals) const7059 SDValue PPCTargetLowering::LowerFormalArguments_AIX(
7060     SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
7061     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7062     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
7063 
7064   assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold ||
7065           CallConv == CallingConv::Fast) &&
7066          "Unexpected calling convention!");
7067 
7068   if (getTargetMachine().Options.GuaranteedTailCallOpt)
7069     report_fatal_error("Tail call support is unimplemented on AIX.");
7070 
7071   if (useSoftFloat())
7072     report_fatal_error("Soft float support is unimplemented on AIX.");
7073 
7074   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7075 
7076   const bool IsPPC64 = Subtarget.isPPC64();
7077   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7078 
7079   // Assign locations to all of the incoming arguments.
7080   SmallVector<CCValAssign, 16> ArgLocs;
7081   MachineFunction &MF = DAG.getMachineFunction();
7082   MachineFrameInfo &MFI = MF.getFrameInfo();
7083   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7084   AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext());
7085 
7086   const EVT PtrVT = getPointerTy(MF.getDataLayout());
7087   // Reserve space for the linkage area on the stack.
7088   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7089   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7090   CCInfo.AnalyzeFormalArguments(Ins, CC_AIX);
7091 
7092   SmallVector<SDValue, 8> MemOps;
7093 
7094   for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) {
7095     CCValAssign &VA = ArgLocs[I++];
7096     MVT LocVT = VA.getLocVT();
7097     MVT ValVT = VA.getValVT();
7098     ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags;
7099     // For compatibility with the AIX XL compiler, the float args in the
7100     // parameter save area are initialized even if the argument is available
7101     // in register.  The caller is required to initialize both the register
7102     // and memory, however, the callee can choose to expect it in either.
7103     // The memloc is dismissed here because the argument is retrieved from
7104     // the register.
7105     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint())
7106       continue;
7107 
7108     auto HandleMemLoc = [&]() {
7109       const unsigned LocSize = LocVT.getStoreSize();
7110       const unsigned ValSize = ValVT.getStoreSize();
7111       assert((ValSize <= LocSize) &&
7112              "Object size is larger than size of MemLoc");
7113       int CurArgOffset = VA.getLocMemOffset();
7114       // Objects are right-justified because AIX is big-endian.
7115       if (LocSize > ValSize)
7116         CurArgOffset += LocSize - ValSize;
7117       // Potential tail calls could cause overwriting of argument stack slots.
7118       const bool IsImmutable =
7119           !(getTargetMachine().Options.GuaranteedTailCallOpt &&
7120             (CallConv == CallingConv::Fast));
7121       int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable);
7122       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7123       SDValue ArgValue =
7124           DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo());
7125       InVals.push_back(ArgValue);
7126     };
7127 
7128     // Vector arguments to VaArg functions are passed both on the stack, and
7129     // in any available GPRs. Load the value from the stack and add the GPRs
7130     // as live ins.
7131     if (VA.isMemLoc() && VA.needsCustom()) {
7132       assert(ValVT.isVector() && "Unexpected Custom MemLoc type.");
7133       assert(isVarArg && "Only use custom memloc for vararg.");
7134       // ValNo of the custom MemLoc, so we can compare it to the ValNo of the
7135       // matching custom RegLocs.
7136       const unsigned OriginalValNo = VA.getValNo();
7137       (void)OriginalValNo;
7138 
7139       auto HandleCustomVecRegLoc = [&]() {
7140         assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7141                "Missing custom RegLoc.");
7142         VA = ArgLocs[I++];
7143         assert(VA.getValVT().isVector() &&
7144                "Unexpected Val type for custom RegLoc.");
7145         assert(VA.getValNo() == OriginalValNo &&
7146                "ValNo mismatch between custom MemLoc and RegLoc.");
7147         MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy;
7148         MF.addLiveIn(VA.getLocReg(),
7149                      getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7150                                        Subtarget.hasVSX()));
7151       };
7152 
7153       HandleMemLoc();
7154       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7155       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7156       // R10.
7157       HandleCustomVecRegLoc();
7158       HandleCustomVecRegLoc();
7159 
7160       // If we are targeting 32-bit, there might be 2 extra custom RegLocs if
7161       // we passed the vector in R5, R6, R7 and R8.
7162       if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) {
7163         assert(!IsPPC64 &&
7164                "Only 2 custom RegLocs expected for 64-bit codegen.");
7165         HandleCustomVecRegLoc();
7166         HandleCustomVecRegLoc();
7167       }
7168 
7169       continue;
7170     }
7171 
7172     if (VA.isRegLoc()) {
7173       if (VA.getValVT().isScalarInteger())
7174         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7175       else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) {
7176         switch (VA.getValVT().SimpleTy) {
7177         default:
7178           report_fatal_error("Unhandled value type for argument.");
7179         case MVT::f32:
7180           FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint);
7181           break;
7182         case MVT::f64:
7183           FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint);
7184           break;
7185         }
7186       } else if (VA.getValVT().isVector()) {
7187         switch (VA.getValVT().SimpleTy) {
7188         default:
7189           report_fatal_error("Unhandled value type for argument.");
7190         case MVT::v16i8:
7191           FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar);
7192           break;
7193         case MVT::v8i16:
7194           FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort);
7195           break;
7196         case MVT::v4i32:
7197         case MVT::v2i64:
7198         case MVT::v1i128:
7199           FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt);
7200           break;
7201         case MVT::v4f32:
7202         case MVT::v2f64:
7203           FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat);
7204           break;
7205         }
7206       }
7207     }
7208 
7209     if (Flags.isByVal() && VA.isMemLoc()) {
7210       const unsigned Size =
7211           alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize,
7212                   PtrByteSize);
7213       const int FI = MF.getFrameInfo().CreateFixedObject(
7214           Size, VA.getLocMemOffset(), /* IsImmutable */ false,
7215           /* IsAliased */ true);
7216       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7217       InVals.push_back(FIN);
7218 
7219       continue;
7220     }
7221 
7222     if (Flags.isByVal()) {
7223       assert(VA.isRegLoc() && "MemLocs should already be handled.");
7224 
7225       const MCPhysReg ArgReg = VA.getLocReg();
7226       const PPCFrameLowering *FL = Subtarget.getFrameLowering();
7227 
7228       if (Flags.getNonZeroByValAlign() > PtrByteSize)
7229         report_fatal_error("Over aligned byvals not supported yet.");
7230 
7231       const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize);
7232       const int FI = MF.getFrameInfo().CreateFixedObject(
7233           StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false,
7234           /* IsAliased */ true);
7235       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
7236       InVals.push_back(FIN);
7237 
7238       // Add live ins for all the RegLocs for the same ByVal.
7239       const TargetRegisterClass *RegClass =
7240           IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
7241 
7242       auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg,
7243                                                unsigned Offset) {
7244         const Register VReg = MF.addLiveIn(PhysReg, RegClass);
7245         // Since the callers side has left justified the aggregate in the
7246         // register, we can simply store the entire register into the stack
7247         // slot.
7248         SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7249         // The store to the fixedstack object is needed becuase accessing a
7250         // field of the ByVal will use a gep and load. Ideally we will optimize
7251         // to extracting the value from the register directly, and elide the
7252         // stores when the arguments address is not taken, but that will need to
7253         // be future work.
7254         SDValue Store = DAG.getStore(
7255             CopyFrom.getValue(1), dl, CopyFrom,
7256             DAG.getObjectPtrOffset(dl, FIN, TypeSize::getFixed(Offset)),
7257             MachinePointerInfo::getFixedStack(MF, FI, Offset));
7258 
7259         MemOps.push_back(Store);
7260       };
7261 
7262       unsigned Offset = 0;
7263       HandleRegLoc(VA.getLocReg(), Offset);
7264       Offset += PtrByteSize;
7265       for (; Offset != StackSize && ArgLocs[I].isRegLoc();
7266            Offset += PtrByteSize) {
7267         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7268                "RegLocs should be for ByVal argument.");
7269 
7270         const CCValAssign RL = ArgLocs[I++];
7271         HandleRegLoc(RL.getLocReg(), Offset);
7272         FuncInfo->appendParameterType(PPCFunctionInfo::FixedType);
7273       }
7274 
7275       if (Offset != StackSize) {
7276         assert(ArgLocs[I].getValNo() == VA.getValNo() &&
7277                "Expected MemLoc for remaining bytes.");
7278         assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes.");
7279         // Consume the MemLoc.The InVal has already been emitted, so nothing
7280         // more needs to be done.
7281         ++I;
7282       }
7283 
7284       continue;
7285     }
7286 
7287     if (VA.isRegLoc() && !VA.needsCustom()) {
7288       MVT::SimpleValueType SVT = ValVT.SimpleTy;
7289       Register VReg =
7290           MF.addLiveIn(VA.getLocReg(),
7291                        getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(),
7292                                          Subtarget.hasVSX()));
7293       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
7294       if (ValVT.isScalarInteger() &&
7295           (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) {
7296         ArgValue =
7297             truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl);
7298       }
7299       InVals.push_back(ArgValue);
7300       continue;
7301     }
7302     if (VA.isMemLoc()) {
7303       HandleMemLoc();
7304       continue;
7305     }
7306   }
7307 
7308   // On AIX a minimum of 8 words is saved to the parameter save area.
7309   const unsigned MinParameterSaveArea = 8 * PtrByteSize;
7310   // Area that is at least reserved in the caller of this function.
7311   unsigned CallerReservedArea = std::max<unsigned>(
7312       CCInfo.getStackSize(), LinkageSize + MinParameterSaveArea);
7313 
7314   // Set the size that is at least reserved in caller of this function. Tail
7315   // call optimized function's reserved stack space needs to be aligned so
7316   // that taking the difference between two stack areas will result in an
7317   // aligned stack.
7318   CallerReservedArea =
7319       EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea);
7320   FuncInfo->setMinReservedArea(CallerReservedArea);
7321 
7322   if (isVarArg) {
7323     FuncInfo->setVarArgsFrameIndex(
7324         MFI.CreateFixedObject(PtrByteSize, CCInfo.getStackSize(), true));
7325     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
7326 
7327     static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6,
7328                                        PPC::R7, PPC::R8, PPC::R9, PPC::R10};
7329 
7330     static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6,
7331                                        PPC::X7, PPC::X8, PPC::X9, PPC::X10};
7332     const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32);
7333 
7334     // The fixed integer arguments of a variadic function are stored to the
7335     // VarArgsFrameIndex on the stack so that they may be loaded by
7336     // dereferencing the result of va_next.
7337     for (unsigned GPRIndex =
7338              (CCInfo.getStackSize() - LinkageSize) / PtrByteSize;
7339          GPRIndex < NumGPArgRegs; ++GPRIndex) {
7340 
7341       const Register VReg =
7342           IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass)
7343                   : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass);
7344 
7345       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
7346       SDValue Store =
7347           DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo());
7348       MemOps.push_back(Store);
7349       // Increment the address for the next argument to store.
7350       SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT);
7351       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
7352     }
7353   }
7354 
7355   if (!MemOps.empty())
7356     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
7357 
7358   return Chain;
7359 }
7360 
LowerCall_AIX(SDValue Chain,SDValue Callee,CallFlags CFlags,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SmallVectorImpl<ISD::InputArg> & Ins,const SDLoc & dl,SelectionDAG & DAG,SmallVectorImpl<SDValue> & InVals,const CallBase * CB) const7361 SDValue PPCTargetLowering::LowerCall_AIX(
7362     SDValue Chain, SDValue Callee, CallFlags CFlags,
7363     const SmallVectorImpl<ISD::OutputArg> &Outs,
7364     const SmallVectorImpl<SDValue> &OutVals,
7365     const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
7366     SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals,
7367     const CallBase *CB) const {
7368   // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the
7369   // AIX ABI stack frame layout.
7370 
7371   assert((CFlags.CallConv == CallingConv::C ||
7372           CFlags.CallConv == CallingConv::Cold ||
7373           CFlags.CallConv == CallingConv::Fast) &&
7374          "Unexpected calling convention!");
7375 
7376   if (CFlags.IsPatchPoint)
7377     report_fatal_error("This call type is unimplemented on AIX.");
7378 
7379   const PPCSubtarget &Subtarget = DAG.getSubtarget<PPCSubtarget>();
7380 
7381   MachineFunction &MF = DAG.getMachineFunction();
7382   SmallVector<CCValAssign, 16> ArgLocs;
7383   AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs,
7384                     *DAG.getContext());
7385 
7386   // Reserve space for the linkage save area (LSA) on the stack.
7387   // In both PPC32 and PPC64 there are 6 reserved slots in the LSA:
7388   //   [SP][CR][LR][2 x reserved][TOC].
7389   // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64.
7390   const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize();
7391   const bool IsPPC64 = Subtarget.isPPC64();
7392   const EVT PtrVT = getPointerTy(DAG.getDataLayout());
7393   const unsigned PtrByteSize = IsPPC64 ? 8 : 4;
7394   CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize));
7395   CCInfo.AnalyzeCallOperands(Outs, CC_AIX);
7396 
7397   // The prolog code of the callee may store up to 8 GPR argument registers to
7398   // the stack, allowing va_start to index over them in memory if the callee
7399   // is variadic.
7400   // Because we cannot tell if this is needed on the caller side, we have to
7401   // conservatively assume that it is needed.  As such, make sure we have at
7402   // least enough stack space for the caller to store the 8 GPRs.
7403   const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize;
7404   const unsigned NumBytes = std::max<unsigned>(
7405       LinkageSize + MinParameterSaveAreaSize, CCInfo.getStackSize());
7406 
7407   // Adjust the stack pointer for the new arguments...
7408   // These operations are automatically eliminated by the prolog/epilog pass.
7409   Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl);
7410   SDValue CallSeqStart = Chain;
7411 
7412   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
7413   SmallVector<SDValue, 8> MemOpChains;
7414 
7415   // Set up a copy of the stack pointer for loading and storing any
7416   // arguments that may not fit in the registers available for argument
7417   // passing.
7418   const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64)
7419                                    : DAG.getRegister(PPC::R1, MVT::i32);
7420 
7421   for (unsigned I = 0, E = ArgLocs.size(); I != E;) {
7422     const unsigned ValNo = ArgLocs[I].getValNo();
7423     SDValue Arg = OutVals[ValNo];
7424     ISD::ArgFlagsTy Flags = Outs[ValNo].Flags;
7425 
7426     if (Flags.isByVal()) {
7427       const unsigned ByValSize = Flags.getByValSize();
7428 
7429       // Nothing to do for zero-sized ByVals on the caller side.
7430       if (!ByValSize) {
7431         ++I;
7432         continue;
7433       }
7434 
7435       auto GetLoad = [&](EVT VT, unsigned LoadOffset) {
7436         return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain,
7437                               (LoadOffset != 0)
7438                                   ? DAG.getObjectPtrOffset(
7439                                         dl, Arg, TypeSize::getFixed(LoadOffset))
7440                                   : Arg,
7441                               MachinePointerInfo(), VT);
7442       };
7443 
7444       unsigned LoadOffset = 0;
7445 
7446       // Initialize registers, which are fully occupied by the by-val argument.
7447       while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) {
7448         SDValue Load = GetLoad(PtrVT, LoadOffset);
7449         MemOpChains.push_back(Load.getValue(1));
7450         LoadOffset += PtrByteSize;
7451         const CCValAssign &ByValVA = ArgLocs[I++];
7452         assert(ByValVA.getValNo() == ValNo &&
7453                "Unexpected location for pass-by-value argument.");
7454         RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load));
7455       }
7456 
7457       if (LoadOffset == ByValSize)
7458         continue;
7459 
7460       // There must be one more loc to handle the remainder.
7461       assert(ArgLocs[I].getValNo() == ValNo &&
7462              "Expected additional location for by-value argument.");
7463 
7464       if (ArgLocs[I].isMemLoc()) {
7465         assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg.");
7466         const CCValAssign &ByValVA = ArgLocs[I++];
7467         ISD::ArgFlagsTy MemcpyFlags = Flags;
7468         // Only memcpy the bytes that don't pass in register.
7469         MemcpyFlags.setByValSize(ByValSize - LoadOffset);
7470         Chain = CallSeqStart = createMemcpyOutsideCallSeq(
7471             (LoadOffset != 0) ? DAG.getObjectPtrOffset(
7472                                     dl, Arg, TypeSize::getFixed(LoadOffset))
7473                               : Arg,
7474             DAG.getObjectPtrOffset(
7475                 dl, StackPtr, TypeSize::getFixed(ByValVA.getLocMemOffset())),
7476             CallSeqStart, MemcpyFlags, DAG, dl);
7477         continue;
7478       }
7479 
7480       // Initialize the final register residue.
7481       // Any residue that occupies the final by-val arg register must be
7482       // left-justified on AIX. Loads must be a power-of-2 size and cannot be
7483       // larger than the ByValSize. For example: a 7 byte by-val arg requires 4,
7484       // 2 and 1 byte loads.
7485       const unsigned ResidueBytes = ByValSize % PtrByteSize;
7486       assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize &&
7487              "Unexpected register residue for by-value argument.");
7488       SDValue ResidueVal;
7489       for (unsigned Bytes = 0; Bytes != ResidueBytes;) {
7490         const unsigned N = llvm::bit_floor(ResidueBytes - Bytes);
7491         const MVT VT =
7492             N == 1 ? MVT::i8
7493                    : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64));
7494         SDValue Load = GetLoad(VT, LoadOffset);
7495         MemOpChains.push_back(Load.getValue(1));
7496         LoadOffset += N;
7497         Bytes += N;
7498 
7499         // By-val arguments are passed left-justfied in register.
7500         // Every load here needs to be shifted, otherwise a full register load
7501         // should have been used.
7502         assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) &&
7503                "Unexpected load emitted during handling of pass-by-value "
7504                "argument.");
7505         unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8);
7506         EVT ShiftAmountTy =
7507             getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout());
7508         SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy);
7509         SDValue ShiftedLoad =
7510             DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt);
7511         ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal,
7512                                               ShiftedLoad)
7513                                 : ShiftedLoad;
7514       }
7515 
7516       const CCValAssign &ByValVA = ArgLocs[I++];
7517       RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal));
7518       continue;
7519     }
7520 
7521     CCValAssign &VA = ArgLocs[I++];
7522     const MVT LocVT = VA.getLocVT();
7523     const MVT ValVT = VA.getValVT();
7524 
7525     switch (VA.getLocInfo()) {
7526     default:
7527       report_fatal_error("Unexpected argument extension type.");
7528     case CCValAssign::Full:
7529       break;
7530     case CCValAssign::ZExt:
7531       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7532       break;
7533     case CCValAssign::SExt:
7534       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7535       break;
7536     }
7537 
7538     if (VA.isRegLoc() && !VA.needsCustom()) {
7539       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
7540       continue;
7541     }
7542 
7543     // Vector arguments passed to VarArg functions need custom handling when
7544     // they are passed (at least partially) in GPRs.
7545     if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) {
7546       assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args.");
7547       // Store value to its stack slot.
7548       SDValue PtrOff =
7549           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7550       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7551       SDValue Store =
7552           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo());
7553       MemOpChains.push_back(Store);
7554       const unsigned OriginalValNo = VA.getValNo();
7555       // Then load the GPRs from the stack
7556       unsigned LoadOffset = 0;
7557       auto HandleCustomVecRegLoc = [&]() {
7558         assert(I != E && "Unexpected end of CCvalAssigns.");
7559         assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7560                "Expected custom RegLoc.");
7561         CCValAssign RegVA = ArgLocs[I++];
7562         assert(RegVA.getValNo() == OriginalValNo &&
7563                "Custom MemLoc ValNo and custom RegLoc ValNo must match.");
7564         SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
7565                                   DAG.getConstant(LoadOffset, dl, PtrVT));
7566         SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo());
7567         MemOpChains.push_back(Load.getValue(1));
7568         RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load));
7569         LoadOffset += PtrByteSize;
7570       };
7571 
7572       // In 64-bit there will be exactly 2 custom RegLocs that follow, and in
7573       // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and
7574       // R10.
7575       HandleCustomVecRegLoc();
7576       HandleCustomVecRegLoc();
7577 
7578       if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() &&
7579           ArgLocs[I].getValNo() == OriginalValNo) {
7580         assert(!IsPPC64 &&
7581                "Only 2 custom RegLocs expected for 64-bit codegen.");
7582         HandleCustomVecRegLoc();
7583         HandleCustomVecRegLoc();
7584       }
7585 
7586       continue;
7587     }
7588 
7589     if (VA.isMemLoc()) {
7590       SDValue PtrOff =
7591           DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType());
7592       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7593       MemOpChains.push_back(
7594           DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()));
7595 
7596       continue;
7597     }
7598 
7599     if (!ValVT.isFloatingPoint())
7600       report_fatal_error(
7601           "Unexpected register handling for calling convention.");
7602 
7603     // Custom handling is used for GPR initializations for vararg float
7604     // arguments.
7605     assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg &&
7606            LocVT.isInteger() &&
7607            "Custom register handling only expected for VarArg.");
7608 
7609     SDValue ArgAsInt =
7610         DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg);
7611 
7612     if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize())
7613       // f32 in 32-bit GPR
7614       // f64 in 64-bit GPR
7615       RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt));
7616     else if (Arg.getValueType().getFixedSizeInBits() <
7617              LocVT.getFixedSizeInBits())
7618       // f32 in 64-bit GPR.
7619       RegsToPass.push_back(std::make_pair(
7620           VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT)));
7621     else {
7622       // f64 in two 32-bit GPRs
7623       // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs.
7624       assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 &&
7625              "Unexpected custom register for argument!");
7626       CCValAssign &GPR1 = VA;
7627       SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt,
7628                                      DAG.getConstant(32, dl, MVT::i8));
7629       RegsToPass.push_back(std::make_pair(
7630           GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32)));
7631 
7632       if (I != E) {
7633         // If only 1 GPR was available, there will only be one custom GPR and
7634         // the argument will also pass in memory.
7635         CCValAssign &PeekArg = ArgLocs[I];
7636         if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) {
7637           assert(PeekArg.needsCustom() && "A second custom GPR is expected.");
7638           CCValAssign &GPR2 = ArgLocs[I++];
7639           RegsToPass.push_back(std::make_pair(
7640               GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32)));
7641         }
7642       }
7643     }
7644   }
7645 
7646   if (!MemOpChains.empty())
7647     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
7648 
7649   // For indirect calls, we need to save the TOC base to the stack for
7650   // restoration after the call.
7651   if (CFlags.IsIndirect) {
7652     assert(!CFlags.IsTailCall && "Indirect tail-calls not supported.");
7653     const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister();
7654     const MCRegister StackPtrReg = Subtarget.getStackPointerRegister();
7655     const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
7656     const unsigned TOCSaveOffset =
7657         Subtarget.getFrameLowering()->getTOCSaveOffset();
7658 
7659     setUsesTOCBasePtr(DAG);
7660     SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT);
7661     SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl);
7662     SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT);
7663     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
7664     Chain = DAG.getStore(
7665         Val.getValue(1), dl, Val, AddPtr,
7666         MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset));
7667   }
7668 
7669   // Build a sequence of copy-to-reg nodes chained together with token chain
7670   // and flag operands which copy the outgoing args into the appropriate regs.
7671   SDValue InGlue;
7672   for (auto Reg : RegsToPass) {
7673     Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InGlue);
7674     InGlue = Chain.getValue(1);
7675   }
7676 
7677   const int SPDiff = 0;
7678   return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart,
7679                     Callee, SPDiff, NumBytes, Ins, InVals, CB);
7680 }
7681 
7682 bool
CanLowerReturn(CallingConv::ID CallConv,MachineFunction & MF,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,LLVMContext & Context) const7683 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
7684                                   MachineFunction &MF, bool isVarArg,
7685                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
7686                                   LLVMContext &Context) const {
7687   SmallVector<CCValAssign, 16> RVLocs;
7688   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
7689   return CCInfo.CheckReturn(
7690       Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7691                 ? RetCC_PPC_Cold
7692                 : RetCC_PPC);
7693 }
7694 
7695 SDValue
LowerReturn(SDValue Chain,CallingConv::ID CallConv,bool isVarArg,const SmallVectorImpl<ISD::OutputArg> & Outs,const SmallVectorImpl<SDValue> & OutVals,const SDLoc & dl,SelectionDAG & DAG) const7696 PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
7697                                bool isVarArg,
7698                                const SmallVectorImpl<ISD::OutputArg> &Outs,
7699                                const SmallVectorImpl<SDValue> &OutVals,
7700                                const SDLoc &dl, SelectionDAG &DAG) const {
7701   SmallVector<CCValAssign, 16> RVLocs;
7702   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
7703                  *DAG.getContext());
7704   CCInfo.AnalyzeReturn(Outs,
7705                        (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold)
7706                            ? RetCC_PPC_Cold
7707                            : RetCC_PPC);
7708 
7709   SDValue Glue;
7710   SmallVector<SDValue, 4> RetOps(1, Chain);
7711 
7712   // Copy the result values into the output registers.
7713   for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) {
7714     CCValAssign &VA = RVLocs[i];
7715     assert(VA.isRegLoc() && "Can only return in registers!");
7716 
7717     SDValue Arg = OutVals[RealResIdx];
7718 
7719     switch (VA.getLocInfo()) {
7720     default: llvm_unreachable("Unknown loc info!");
7721     case CCValAssign::Full: break;
7722     case CCValAssign::AExt:
7723       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
7724       break;
7725     case CCValAssign::ZExt:
7726       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
7727       break;
7728     case CCValAssign::SExt:
7729       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
7730       break;
7731     }
7732     if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) {
7733       bool isLittleEndian = Subtarget.isLittleEndian();
7734       // Legalize ret f64 -> ret 2 x i32.
7735       SDValue SVal =
7736           DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7737                       DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl));
7738       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue);
7739       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7740       SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg,
7741                          DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl));
7742       Glue = Chain.getValue(1);
7743       VA = RVLocs[++i]; // skip ahead to next loc
7744       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue);
7745     } else
7746       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue);
7747     Glue = Chain.getValue(1);
7748     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
7749   }
7750 
7751   RetOps[0] = Chain;  // Update chain.
7752 
7753   // Add the glue if we have it.
7754   if (Glue.getNode())
7755     RetOps.push_back(Glue);
7756 
7757   return DAG.getNode(PPCISD::RET_GLUE, dl, MVT::Other, RetOps);
7758 }
7759 
7760 SDValue
LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,SelectionDAG & DAG) const7761 PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op,
7762                                                 SelectionDAG &DAG) const {
7763   SDLoc dl(Op);
7764 
7765   // Get the correct type for integers.
7766   EVT IntVT = Op.getValueType();
7767 
7768   // Get the inputs.
7769   SDValue Chain = Op.getOperand(0);
7770   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7771   // Build a DYNAREAOFFSET node.
7772   SDValue Ops[2] = {Chain, FPSIdx};
7773   SDVTList VTs = DAG.getVTList(IntVT);
7774   return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops);
7775 }
7776 
LowerSTACKRESTORE(SDValue Op,SelectionDAG & DAG) const7777 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op,
7778                                              SelectionDAG &DAG) const {
7779   // When we pop the dynamic allocation we need to restore the SP link.
7780   SDLoc dl(Op);
7781 
7782   // Get the correct type for pointers.
7783   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7784 
7785   // Construct the stack pointer operand.
7786   bool isPPC64 = Subtarget.isPPC64();
7787   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
7788   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
7789 
7790   // Get the operands for the STACKRESTORE.
7791   SDValue Chain = Op.getOperand(0);
7792   SDValue SaveSP = Op.getOperand(1);
7793 
7794   // Load the old link SP.
7795   SDValue LoadLinkSP =
7796       DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo());
7797 
7798   // Restore the stack pointer.
7799   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
7800 
7801   // Store the old link SP.
7802   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo());
7803 }
7804 
getReturnAddrFrameIndex(SelectionDAG & DAG) const7805 SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const {
7806   MachineFunction &MF = DAG.getMachineFunction();
7807   bool isPPC64 = Subtarget.isPPC64();
7808   EVT PtrVT = getPointerTy(MF.getDataLayout());
7809 
7810   // Get current frame pointer save index.  The users of this index will be
7811   // primarily DYNALLOC instructions.
7812   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7813   int RASI = FI->getReturnAddrSaveIndex();
7814 
7815   // If the frame pointer save index hasn't been defined yet.
7816   if (!RASI) {
7817     // Find out what the fix offset of the frame pointer save area.
7818     int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset();
7819     // Allocate the frame index for frame pointer save area.
7820     RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false);
7821     // Save the result.
7822     FI->setReturnAddrSaveIndex(RASI);
7823   }
7824   return DAG.getFrameIndex(RASI, PtrVT);
7825 }
7826 
7827 SDValue
getFramePointerFrameIndex(SelectionDAG & DAG) const7828 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
7829   MachineFunction &MF = DAG.getMachineFunction();
7830   bool isPPC64 = Subtarget.isPPC64();
7831   EVT PtrVT = getPointerTy(MF.getDataLayout());
7832 
7833   // Get current frame pointer save index.  The users of this index will be
7834   // primarily DYNALLOC instructions.
7835   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
7836   int FPSI = FI->getFramePointerSaveIndex();
7837 
7838   // If the frame pointer save index hasn't been defined yet.
7839   if (!FPSI) {
7840     // Find out what the fix offset of the frame pointer save area.
7841     int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset();
7842     // Allocate the frame index for frame pointer save area.
7843     FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
7844     // Save the result.
7845     FI->setFramePointerSaveIndex(FPSI);
7846   }
7847   return DAG.getFrameIndex(FPSI, PtrVT);
7848 }
7849 
LowerDYNAMIC_STACKALLOC(SDValue Op,SelectionDAG & DAG) const7850 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
7851                                                    SelectionDAG &DAG) const {
7852   MachineFunction &MF = DAG.getMachineFunction();
7853   // Get the inputs.
7854   SDValue Chain = Op.getOperand(0);
7855   SDValue Size  = Op.getOperand(1);
7856   SDLoc dl(Op);
7857 
7858   // Get the correct type for pointers.
7859   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7860   // Negate the size.
7861   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
7862                                 DAG.getConstant(0, dl, PtrVT), Size);
7863   // Construct a node for the frame pointer save index.
7864   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
7865   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
7866   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
7867   if (hasInlineStackProbe(MF))
7868     return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops);
7869   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops);
7870 }
7871 
LowerEH_DWARF_CFA(SDValue Op,SelectionDAG & DAG) const7872 SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op,
7873                                                      SelectionDAG &DAG) const {
7874   MachineFunction &MF = DAG.getMachineFunction();
7875 
7876   bool isPPC64 = Subtarget.isPPC64();
7877   EVT PtrVT = getPointerTy(DAG.getDataLayout());
7878 
7879   int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false);
7880   return DAG.getFrameIndex(FI, PtrVT);
7881 }
7882 
lowerEH_SJLJ_SETJMP(SDValue Op,SelectionDAG & DAG) const7883 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
7884                                                SelectionDAG &DAG) const {
7885   SDLoc DL(Op);
7886   return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
7887                      DAG.getVTList(MVT::i32, MVT::Other),
7888                      Op.getOperand(0), Op.getOperand(1));
7889 }
7890 
lowerEH_SJLJ_LONGJMP(SDValue Op,SelectionDAG & DAG) const7891 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
7892                                                 SelectionDAG &DAG) const {
7893   SDLoc DL(Op);
7894   return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
7895                      Op.getOperand(0), Op.getOperand(1));
7896 }
7897 
LowerLOAD(SDValue Op,SelectionDAG & DAG) const7898 SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
7899   if (Op.getValueType().isVector())
7900     return LowerVectorLoad(Op, DAG);
7901 
7902   assert(Op.getValueType() == MVT::i1 &&
7903          "Custom lowering only for i1 loads");
7904 
7905   // First, load 8 bits into 32 bits, then truncate to 1 bit.
7906 
7907   SDLoc dl(Op);
7908   LoadSDNode *LD = cast<LoadSDNode>(Op);
7909 
7910   SDValue Chain = LD->getChain();
7911   SDValue BasePtr = LD->getBasePtr();
7912   MachineMemOperand *MMO = LD->getMemOperand();
7913 
7914   SDValue NewLD =
7915       DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain,
7916                      BasePtr, MVT::i8, MMO);
7917   SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD);
7918 
7919   SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) };
7920   return DAG.getMergeValues(Ops, dl);
7921 }
7922 
LowerSTORE(SDValue Op,SelectionDAG & DAG) const7923 SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
7924   if (Op.getOperand(1).getValueType().isVector())
7925     return LowerVectorStore(Op, DAG);
7926 
7927   assert(Op.getOperand(1).getValueType() == MVT::i1 &&
7928          "Custom lowering only for i1 stores");
7929 
7930   // First, zero extend to 32 bits, then use a truncating store to 8 bits.
7931 
7932   SDLoc dl(Op);
7933   StoreSDNode *ST = cast<StoreSDNode>(Op);
7934 
7935   SDValue Chain = ST->getChain();
7936   SDValue BasePtr = ST->getBasePtr();
7937   SDValue Value = ST->getValue();
7938   MachineMemOperand *MMO = ST->getMemOperand();
7939 
7940   Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()),
7941                       Value);
7942   return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO);
7943 }
7944 
7945 // FIXME: Remove this once the ANDI glue bug is fixed:
LowerTRUNCATE(SDValue Op,SelectionDAG & DAG) const7946 SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const {
7947   assert(Op.getValueType() == MVT::i1 &&
7948          "Custom lowering only for i1 results");
7949 
7950   SDLoc DL(Op);
7951   return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0));
7952 }
7953 
LowerTRUNCATEVector(SDValue Op,SelectionDAG & DAG) const7954 SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op,
7955                                                SelectionDAG &DAG) const {
7956 
7957   // Implements a vector truncate that fits in a vector register as a shuffle.
7958   // We want to legalize vector truncates down to where the source fits in
7959   // a vector register (and target is therefore smaller than vector register
7960   // size).  At that point legalization will try to custom lower the sub-legal
7961   // result and get here - where we can contain the truncate as a single target
7962   // operation.
7963 
7964   // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows:
7965   //   <MSB1|LSB1, MSB2|LSB2> to <LSB1, LSB2>
7966   //
7967   // We will implement it for big-endian ordering as this (where x denotes
7968   // undefined):
7969   //   < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to
7970   //   < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u>
7971   //
7972   // The same operation in little-endian ordering will be:
7973   //   <uu, uu, uu, uu, uu, uu, LSB2|MSB2, LSB1|MSB1> to
7974   //   <u, u, u, u, u, u, u, u, u, u, u, u, u, u, LSB2, LSB1>
7975 
7976   EVT TrgVT = Op.getValueType();
7977   assert(TrgVT.isVector() && "Vector type expected.");
7978   unsigned TrgNumElts = TrgVT.getVectorNumElements();
7979   EVT EltVT = TrgVT.getVectorElementType();
7980   if (!isOperationCustom(Op.getOpcode(), TrgVT) ||
7981       TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) ||
7982       !llvm::has_single_bit<uint32_t>(EltVT.getSizeInBits()))
7983     return SDValue();
7984 
7985   SDValue N1 = Op.getOperand(0);
7986   EVT SrcVT = N1.getValueType();
7987   unsigned SrcSize = SrcVT.getSizeInBits();
7988   if (SrcSize > 256 || !isPowerOf2_32(SrcVT.getVectorNumElements()) ||
7989       !llvm::has_single_bit<uint32_t>(
7990           SrcVT.getVectorElementType().getSizeInBits()))
7991     return SDValue();
7992   if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2)
7993     return SDValue();
7994 
7995   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
7996   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
7997 
7998   SDLoc DL(Op);
7999   SDValue Op1, Op2;
8000   if (SrcSize == 256) {
8001     EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout());
8002     EVT SplitVT =
8003         N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
8004     unsigned SplitNumElts = SplitVT.getVectorNumElements();
8005     Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
8006                       DAG.getConstant(0, DL, VecIdxTy));
8007     Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1,
8008                       DAG.getConstant(SplitNumElts, DL, VecIdxTy));
8009   }
8010   else {
8011     Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL);
8012     Op2 = DAG.getUNDEF(WideVT);
8013   }
8014 
8015   // First list the elements we want to keep.
8016   unsigned SizeMult = SrcSize / TrgVT.getSizeInBits();
8017   SmallVector<int, 16> ShuffV;
8018   if (Subtarget.isLittleEndian())
8019     for (unsigned i = 0; i < TrgNumElts; ++i)
8020       ShuffV.push_back(i * SizeMult);
8021   else
8022     for (unsigned i = 1; i <= TrgNumElts; ++i)
8023       ShuffV.push_back(i * SizeMult - 1);
8024 
8025   // Populate the remaining elements with undefs.
8026   for (unsigned i = TrgNumElts; i < WideNumElts; ++i)
8027     // ShuffV.push_back(i + WideNumElts);
8028     ShuffV.push_back(WideNumElts + 1);
8029 
8030   Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1);
8031   Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2);
8032   return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV);
8033 }
8034 
8035 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
8036 /// possible.
LowerSELECT_CC(SDValue Op,SelectionDAG & DAG) const8037 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
8038   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
8039   EVT ResVT = Op.getValueType();
8040   EVT CmpVT = Op.getOperand(0).getValueType();
8041   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
8042   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
8043   SDLoc dl(Op);
8044 
8045   // Without power9-vector, we don't have native instruction for f128 comparison.
8046   // Following transformation to libcall is needed for setcc:
8047   // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE
8048   if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) {
8049     SDValue Z = DAG.getSetCC(
8050         dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT),
8051         LHS, RHS, CC);
8052     SDValue Zero = DAG.getConstant(0, dl, Z.getValueType());
8053     return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE);
8054   }
8055 
8056   // Not FP, or using SPE? Not a fsel.
8057   if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() ||
8058       Subtarget.hasSPE())
8059     return Op;
8060 
8061   SDNodeFlags Flags = Op.getNode()->getFlags();
8062 
8063   // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the
8064   // presence of infinities.
8065   if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) {
8066     switch (CC) {
8067     default:
8068       break;
8069     case ISD::SETOGT:
8070     case ISD::SETGT:
8071       return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS);
8072     case ISD::SETOLT:
8073     case ISD::SETLT:
8074       return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS);
8075     }
8076   }
8077 
8078   // We might be able to do better than this under some circumstances, but in
8079   // general, fsel-based lowering of select is a finite-math-only optimization.
8080   // For more information, see section F.3 of the 2.06 ISA specification.
8081   // With ISA 3.0
8082   if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) ||
8083       (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()) ||
8084       ResVT == MVT::f128)
8085     return Op;
8086 
8087   // If the RHS of the comparison is a 0.0, we don't need to do the
8088   // subtraction at all.
8089   SDValue Sel1;
8090   if (isFloatingPointZero(RHS))
8091     switch (CC) {
8092     default: break;       // SETUO etc aren't handled by fsel.
8093     case ISD::SETNE:
8094       std::swap(TV, FV);
8095       [[fallthrough]];
8096     case ISD::SETEQ:
8097       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8098         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8099       Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8100       if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8101         Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8102       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8103                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV);
8104     case ISD::SETULT:
8105     case ISD::SETLT:
8106       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8107       [[fallthrough]];
8108     case ISD::SETOGE:
8109     case ISD::SETGE:
8110       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8111         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8112       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
8113     case ISD::SETUGT:
8114     case ISD::SETGT:
8115       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
8116       [[fallthrough]];
8117     case ISD::SETOLE:
8118     case ISD::SETLE:
8119       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
8120         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
8121       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8122                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
8123     }
8124 
8125   SDValue Cmp;
8126   switch (CC) {
8127   default: break;       // SETUO etc aren't handled by fsel.
8128   case ISD::SETNE:
8129     std::swap(TV, FV);
8130     [[fallthrough]];
8131   case ISD::SETEQ:
8132     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8133     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8134       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8135     Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8136     if (Sel1.getValueType() == MVT::f32)   // Comparison is always 64-bits
8137       Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1);
8138     return DAG.getNode(PPCISD::FSEL, dl, ResVT,
8139                        DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV);
8140   case ISD::SETULT:
8141   case ISD::SETLT:
8142     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8143     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8144       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8145     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8146   case ISD::SETOGE:
8147   case ISD::SETGE:
8148     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags);
8149     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8150       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8151     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8152   case ISD::SETUGT:
8153   case ISD::SETGT:
8154     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8155     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8156       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8157     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
8158   case ISD::SETOLE:
8159   case ISD::SETLE:
8160     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags);
8161     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
8162       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
8163     return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
8164   }
8165   return Op;
8166 }
8167 
getPPCStrictOpcode(unsigned Opc)8168 static unsigned getPPCStrictOpcode(unsigned Opc) {
8169   switch (Opc) {
8170   default:
8171     llvm_unreachable("No strict version of this opcode!");
8172   case PPCISD::FCTIDZ:
8173     return PPCISD::STRICT_FCTIDZ;
8174   case PPCISD::FCTIWZ:
8175     return PPCISD::STRICT_FCTIWZ;
8176   case PPCISD::FCTIDUZ:
8177     return PPCISD::STRICT_FCTIDUZ;
8178   case PPCISD::FCTIWUZ:
8179     return PPCISD::STRICT_FCTIWUZ;
8180   case PPCISD::FCFID:
8181     return PPCISD::STRICT_FCFID;
8182   case PPCISD::FCFIDU:
8183     return PPCISD::STRICT_FCFIDU;
8184   case PPCISD::FCFIDS:
8185     return PPCISD::STRICT_FCFIDS;
8186   case PPCISD::FCFIDUS:
8187     return PPCISD::STRICT_FCFIDUS;
8188   }
8189 }
8190 
convertFPToInt(SDValue Op,SelectionDAG & DAG,const PPCSubtarget & Subtarget)8191 static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG,
8192                               const PPCSubtarget &Subtarget) {
8193   SDLoc dl(Op);
8194   bool IsStrict = Op->isStrictFPOpcode();
8195   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8196                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8197 
8198   // TODO: Any other flags to propagate?
8199   SDNodeFlags Flags;
8200   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8201 
8202   // For strict nodes, source is the second operand.
8203   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8204   SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue();
8205   MVT DestTy = Op.getSimpleValueType();
8206   assert(Src.getValueType().isFloatingPoint() &&
8207          (DestTy == MVT::i8 || DestTy == MVT::i16 || DestTy == MVT::i32 ||
8208           DestTy == MVT::i64) &&
8209          "Invalid FP_TO_INT types");
8210   if (Src.getValueType() == MVT::f32) {
8211     if (IsStrict) {
8212       Src =
8213           DAG.getNode(ISD::STRICT_FP_EXTEND, dl,
8214                       DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags);
8215       Chain = Src.getValue(1);
8216     } else
8217       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
8218   }
8219   if ((DestTy == MVT::i8 || DestTy == MVT::i16) && Subtarget.hasP9Vector())
8220     DestTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
8221   unsigned Opc = ISD::DELETED_NODE;
8222   switch (DestTy.SimpleTy) {
8223   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
8224   case MVT::i32:
8225     Opc = IsSigned ? PPCISD::FCTIWZ
8226                    : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ);
8227     break;
8228   case MVT::i64:
8229     assert((IsSigned || Subtarget.hasFPCVT()) &&
8230            "i64 FP_TO_UINT is supported only with FPCVT");
8231     Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ;
8232   }
8233   EVT ConvTy = Src.getValueType() == MVT::f128 ? MVT::f128 : MVT::f64;
8234   SDValue Conv;
8235   if (IsStrict) {
8236     Opc = getPPCStrictOpcode(Opc);
8237     Conv = DAG.getNode(Opc, dl, DAG.getVTList(ConvTy, MVT::Other), {Chain, Src},
8238                        Flags);
8239   } else {
8240     Conv = DAG.getNode(Opc, dl, ConvTy, Src);
8241   }
8242   return Conv;
8243 }
8244 
LowerFP_TO_INTForReuse(SDValue Op,ReuseLoadInfo & RLI,SelectionDAG & DAG,const SDLoc & dl) const8245 void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI,
8246                                                SelectionDAG &DAG,
8247                                                const SDLoc &dl) const {
8248   SDValue Tmp = convertFPToInt(Op, DAG, Subtarget);
8249   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8250                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8251   bool IsStrict = Op->isStrictFPOpcode();
8252 
8253   // Convert the FP value to an int value through memory.
8254   bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() &&
8255                   (IsSigned || Subtarget.hasFPCVT());
8256   SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64);
8257   int FI = cast<FrameIndexSDNode>(FIPtr)->getIndex();
8258   MachinePointerInfo MPI =
8259       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI);
8260 
8261   // Emit a store to the stack slot.
8262   SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode();
8263   Align Alignment(DAG.getEVTAlign(Tmp.getValueType()));
8264   if (i32Stack) {
8265     MachineFunction &MF = DAG.getMachineFunction();
8266     Alignment = Align(4);
8267     MachineMemOperand *MMO =
8268         MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment);
8269     SDValue Ops[] = { Chain, Tmp, FIPtr };
8270     Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl,
8271               DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO);
8272   } else
8273     Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment);
8274 
8275   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
8276   // add in a bias on big endian.
8277   if (Op.getValueType() == MVT::i32 && !i32Stack) {
8278     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
8279                         DAG.getConstant(4, dl, FIPtr.getValueType()));
8280     MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4);
8281   }
8282 
8283   RLI.Chain = Chain;
8284   RLI.Ptr = FIPtr;
8285   RLI.MPI = MPI;
8286   RLI.Alignment = Alignment;
8287 }
8288 
8289 /// Custom lowers floating point to integer conversions to use
8290 /// the direct move instructions available in ISA 2.07 to avoid the
8291 /// need for load/store combinations.
LowerFP_TO_INTDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const8292 SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op,
8293                                                     SelectionDAG &DAG,
8294                                                     const SDLoc &dl) const {
8295   SDValue Conv = convertFPToInt(Op, DAG, Subtarget);
8296   SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv);
8297   if (Op->isStrictFPOpcode())
8298     return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl);
8299   else
8300     return Mov;
8301 }
8302 
LowerFP_TO_INT(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const8303 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
8304                                           const SDLoc &dl) const {
8305   bool IsStrict = Op->isStrictFPOpcode();
8306   bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT ||
8307                   Op.getOpcode() == ISD::STRICT_FP_TO_SINT;
8308   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8309   EVT SrcVT = Src.getValueType();
8310   EVT DstVT = Op.getValueType();
8311 
8312   // FP to INT conversions are legal for f128.
8313   if (SrcVT == MVT::f128)
8314     return Subtarget.hasP9Vector() ? Op : SDValue();
8315 
8316   // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on
8317   // PPC (the libcall is not available).
8318   if (SrcVT == MVT::ppcf128) {
8319     if (DstVT == MVT::i32) {
8320       // TODO: Conservatively pass only nofpexcept flag here. Need to check and
8321       // set other fast-math flags to FP operations in both strict and
8322       // non-strict cases. (FP_TO_SINT, FSUB)
8323       SDNodeFlags Flags;
8324       Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8325 
8326       if (IsSigned) {
8327         SDValue Lo, Hi;
8328         std::tie(Lo, Hi) = DAG.SplitScalar(Src, dl, MVT::f64, MVT::f64);
8329 
8330         // Add the two halves of the long double in round-to-zero mode, and use
8331         // a smaller FP_TO_SINT.
8332         if (IsStrict) {
8333           SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl,
8334                                     DAG.getVTList(MVT::f64, MVT::Other),
8335                                     {Op.getOperand(0), Lo, Hi}, Flags);
8336           return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8337                              DAG.getVTList(MVT::i32, MVT::Other),
8338                              {Res.getValue(1), Res}, Flags);
8339         } else {
8340           SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
8341           return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res);
8342         }
8343       } else {
8344         const uint64_t TwoE31[] = {0x41e0000000000000LL, 0};
8345         APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31));
8346         SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
8347         SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT);
8348         if (IsStrict) {
8349           // Sel = Src < 0x80000000
8350           // FltOfs = select Sel, 0.0, 0x80000000
8351           // IntOfs = select Sel, 0, 0x80000000
8352           // Result = fp_to_sint(Src - FltOfs) ^ IntOfs
8353           SDValue Chain = Op.getOperand(0);
8354           EVT SetCCVT =
8355               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
8356           EVT DstSetCCVT =
8357               getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT);
8358           SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT,
8359                                      Chain, true);
8360           Chain = Sel.getValue(1);
8361 
8362           SDValue FltOfs = DAG.getSelect(
8363               dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst);
8364           Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT);
8365 
8366           SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl,
8367                                     DAG.getVTList(SrcVT, MVT::Other),
8368                                     {Chain, Src, FltOfs}, Flags);
8369           Chain = Val.getValue(1);
8370           SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl,
8371                                      DAG.getVTList(DstVT, MVT::Other),
8372                                      {Chain, Val}, Flags);
8373           Chain = SInt.getValue(1);
8374           SDValue IntOfs = DAG.getSelect(
8375               dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask);
8376           SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs);
8377           return DAG.getMergeValues({Result, Chain}, dl);
8378         } else {
8379           // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X
8380           // FIXME: generated code sucks.
8381           SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst);
8382           True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True);
8383           True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask);
8384           SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src);
8385           return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE);
8386         }
8387       }
8388     }
8389 
8390     return SDValue();
8391   }
8392 
8393   if (Subtarget.hasDirectMove() && Subtarget.isPPC64())
8394     return LowerFP_TO_INTDirectMove(Op, DAG, dl);
8395 
8396   ReuseLoadInfo RLI;
8397   LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8398 
8399   return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8400                      RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8401 }
8402 
8403 // We're trying to insert a regular store, S, and then a load, L. If the
8404 // incoming value, O, is a load, we might just be able to have our load use the
8405 // address used by O. However, we don't know if anything else will store to
8406 // that address before we can load from it. To prevent this situation, we need
8407 // to insert our load, L, into the chain as a peer of O. To do this, we give L
8408 // the same chain operand as O, we create a token factor from the chain results
8409 // of O and L, and we replace all uses of O's chain result with that token
8410 // factor (see spliceIntoChain below for this last part).
canReuseLoadAddress(SDValue Op,EVT MemVT,ReuseLoadInfo & RLI,SelectionDAG & DAG,ISD::LoadExtType ET) const8411 bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT,
8412                                             ReuseLoadInfo &RLI,
8413                                             SelectionDAG &DAG,
8414                                             ISD::LoadExtType ET) const {
8415   // Conservatively skip reusing for constrained FP nodes.
8416   if (Op->isStrictFPOpcode())
8417     return false;
8418 
8419   SDLoc dl(Op);
8420   bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT &&
8421                        (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32);
8422   if (ET == ISD::NON_EXTLOAD &&
8423       (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) &&
8424       isOperationLegalOrCustom(Op.getOpcode(),
8425                                Op.getOperand(0).getValueType())) {
8426 
8427     LowerFP_TO_INTForReuse(Op, RLI, DAG, dl);
8428     return true;
8429   }
8430 
8431   LoadSDNode *LD = dyn_cast<LoadSDNode>(Op);
8432   if (!LD || LD->getExtensionType() != ET || LD->isVolatile() ||
8433       LD->isNonTemporal())
8434     return false;
8435   if (LD->getMemoryVT() != MemVT)
8436     return false;
8437 
8438   // If the result of the load is an illegal type, then we can't build a
8439   // valid chain for reuse since the legalised loads and token factor node that
8440   // ties the legalised loads together uses a different output chain then the
8441   // illegal load.
8442   if (!isTypeLegal(LD->getValueType(0)))
8443     return false;
8444 
8445   RLI.Ptr = LD->getBasePtr();
8446   if (LD->isIndexed() && !LD->getOffset().isUndef()) {
8447     assert(LD->getAddressingMode() == ISD::PRE_INC &&
8448            "Non-pre-inc AM on PPC?");
8449     RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr,
8450                           LD->getOffset());
8451   }
8452 
8453   RLI.Chain = LD->getChain();
8454   RLI.MPI = LD->getPointerInfo();
8455   RLI.IsDereferenceable = LD->isDereferenceable();
8456   RLI.IsInvariant = LD->isInvariant();
8457   RLI.Alignment = LD->getAlign();
8458   RLI.AAInfo = LD->getAAInfo();
8459   RLI.Ranges = LD->getRanges();
8460 
8461   RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1);
8462   return true;
8463 }
8464 
8465 // Given the head of the old chain, ResChain, insert a token factor containing
8466 // it and NewResChain, and make users of ResChain now be users of that token
8467 // factor.
8468 // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead.
spliceIntoChain(SDValue ResChain,SDValue NewResChain,SelectionDAG & DAG) const8469 void PPCTargetLowering::spliceIntoChain(SDValue ResChain,
8470                                         SDValue NewResChain,
8471                                         SelectionDAG &DAG) const {
8472   if (!ResChain)
8473     return;
8474 
8475   SDLoc dl(NewResChain);
8476 
8477   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
8478                            NewResChain, DAG.getUNDEF(MVT::Other));
8479   assert(TF.getNode() != NewResChain.getNode() &&
8480          "A new TF really is required here");
8481 
8482   DAG.ReplaceAllUsesOfValueWith(ResChain, TF);
8483   DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain);
8484 }
8485 
8486 /// Analyze profitability of direct move
8487 /// prefer float load to int load plus direct move
8488 /// when there is no integer use of int load
directMoveIsProfitable(const SDValue & Op) const8489 bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const {
8490   SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode();
8491   if (Origin->getOpcode() != ISD::LOAD)
8492     return true;
8493 
8494   // If there is no LXSIBZX/LXSIHZX, like Power8,
8495   // prefer direct move if the memory size is 1 or 2 bytes.
8496   MachineMemOperand *MMO = cast<LoadSDNode>(Origin)->getMemOperand();
8497   if (!Subtarget.hasP9Vector() && MMO->getSize() <= 2)
8498     return true;
8499 
8500   for (SDNode::use_iterator UI = Origin->use_begin(),
8501                             UE = Origin->use_end();
8502        UI != UE; ++UI) {
8503 
8504     // Only look at the users of the loaded value.
8505     if (UI.getUse().get().getResNo() != 0)
8506       continue;
8507 
8508     if (UI->getOpcode() != ISD::SINT_TO_FP &&
8509         UI->getOpcode() != ISD::UINT_TO_FP &&
8510         UI->getOpcode() != ISD::STRICT_SINT_TO_FP &&
8511         UI->getOpcode() != ISD::STRICT_UINT_TO_FP)
8512       return true;
8513   }
8514 
8515   return false;
8516 }
8517 
convertIntToFP(SDValue Op,SDValue Src,SelectionDAG & DAG,const PPCSubtarget & Subtarget,SDValue Chain=SDValue ())8518 static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG,
8519                               const PPCSubtarget &Subtarget,
8520                               SDValue Chain = SDValue()) {
8521   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8522                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8523   SDLoc dl(Op);
8524 
8525   // TODO: Any other flags to propagate?
8526   SDNodeFlags Flags;
8527   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8528 
8529   // If we have FCFIDS, then use it when converting to single-precision.
8530   // Otherwise, convert to double-precision and then round.
8531   bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT();
8532   unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS)
8533                               : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU);
8534   EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64;
8535   if (Op->isStrictFPOpcode()) {
8536     if (!Chain)
8537       Chain = Op.getOperand(0);
8538     return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl,
8539                        DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags);
8540   } else
8541     return DAG.getNode(ConvOpc, dl, ConvTy, Src);
8542 }
8543 
8544 /// Custom lowers integer to floating point conversions to use
8545 /// the direct move instructions available in ISA 2.07 to avoid the
8546 /// need for load/store combinations.
LowerINT_TO_FPDirectMove(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const8547 SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op,
8548                                                     SelectionDAG &DAG,
8549                                                     const SDLoc &dl) const {
8550   assert((Op.getValueType() == MVT::f32 ||
8551           Op.getValueType() == MVT::f64) &&
8552          "Invalid floating point type as target of conversion");
8553   assert(Subtarget.hasFPCVT() &&
8554          "Int to FP conversions with direct moves require FPCVT");
8555   SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0);
8556   bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32;
8557   bool Signed = Op.getOpcode() == ISD::SINT_TO_FP ||
8558                 Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8559   unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA;
8560   SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src);
8561   return convertIntToFP(Op, Mov, DAG, Subtarget);
8562 }
8563 
widenVec(SelectionDAG & DAG,SDValue Vec,const SDLoc & dl)8564 static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) {
8565 
8566   EVT VecVT = Vec.getValueType();
8567   assert(VecVT.isVector() && "Expected a vector type.");
8568   assert(VecVT.getSizeInBits() < 128 && "Vector is already full width.");
8569 
8570   EVT EltVT = VecVT.getVectorElementType();
8571   unsigned WideNumElts = 128 / EltVT.getSizeInBits();
8572   EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts);
8573 
8574   unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements();
8575   SmallVector<SDValue, 16> Ops(NumConcat);
8576   Ops[0] = Vec;
8577   SDValue UndefVec = DAG.getUNDEF(VecVT);
8578   for (unsigned i = 1; i < NumConcat; ++i)
8579     Ops[i] = UndefVec;
8580 
8581   return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops);
8582 }
8583 
LowerINT_TO_FPVector(SDValue Op,SelectionDAG & DAG,const SDLoc & dl) const8584 SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG,
8585                                                 const SDLoc &dl) const {
8586   bool IsStrict = Op->isStrictFPOpcode();
8587   unsigned Opc = Op.getOpcode();
8588   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8589   assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP ||
8590           Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) &&
8591          "Unexpected conversion type");
8592   assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) &&
8593          "Supports conversions to v2f64/v4f32 only.");
8594 
8595   // TODO: Any other flags to propagate?
8596   SDNodeFlags Flags;
8597   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8598 
8599   bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP;
8600   bool FourEltRes = Op.getValueType() == MVT::v4f32;
8601 
8602   SDValue Wide = widenVec(DAG, Src, dl);
8603   EVT WideVT = Wide.getValueType();
8604   unsigned WideNumElts = WideVT.getVectorNumElements();
8605   MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64;
8606 
8607   SmallVector<int, 16> ShuffV;
8608   for (unsigned i = 0; i < WideNumElts; ++i)
8609     ShuffV.push_back(i + WideNumElts);
8610 
8611   int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2;
8612   int SaveElts = FourEltRes ? 4 : 2;
8613   if (Subtarget.isLittleEndian())
8614     for (int i = 0; i < SaveElts; i++)
8615       ShuffV[i * Stride] = i;
8616   else
8617     for (int i = 1; i <= SaveElts; i++)
8618       ShuffV[i * Stride - 1] = i - 1;
8619 
8620   SDValue ShuffleSrc2 =
8621       SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT);
8622   SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV);
8623 
8624   SDValue Extend;
8625   if (SignedConv) {
8626     Arrange = DAG.getBitcast(IntermediateVT, Arrange);
8627     EVT ExtVT = Src.getValueType();
8628     if (Subtarget.hasP9Altivec())
8629       ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(),
8630                                IntermediateVT.getVectorNumElements());
8631 
8632     Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange,
8633                          DAG.getValueType(ExtVT));
8634   } else
8635     Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange);
8636 
8637   if (IsStrict)
8638     return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other),
8639                        {Op.getOperand(0), Extend}, Flags);
8640 
8641   return DAG.getNode(Opc, dl, Op.getValueType(), Extend);
8642 }
8643 
LowerINT_TO_FP(SDValue Op,SelectionDAG & DAG) const8644 SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op,
8645                                           SelectionDAG &DAG) const {
8646   SDLoc dl(Op);
8647   bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP ||
8648                   Op.getOpcode() == ISD::STRICT_SINT_TO_FP;
8649   bool IsStrict = Op->isStrictFPOpcode();
8650   SDValue Src = Op.getOperand(IsStrict ? 1 : 0);
8651   SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode();
8652 
8653   // TODO: Any other flags to propagate?
8654   SDNodeFlags Flags;
8655   Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept());
8656 
8657   EVT InVT = Src.getValueType();
8658   EVT OutVT = Op.getValueType();
8659   if (OutVT.isVector() && OutVT.isFloatingPoint() &&
8660       isOperationCustom(Op.getOpcode(), InVT))
8661     return LowerINT_TO_FPVector(Op, DAG, dl);
8662 
8663   // Conversions to f128 are legal.
8664   if (Op.getValueType() == MVT::f128)
8665     return Subtarget.hasP9Vector() ? Op : SDValue();
8666 
8667   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
8668   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
8669     return SDValue();
8670 
8671   if (Src.getValueType() == MVT::i1) {
8672     SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src,
8673                               DAG.getConstantFP(1.0, dl, Op.getValueType()),
8674                               DAG.getConstantFP(0.0, dl, Op.getValueType()));
8675     if (IsStrict)
8676       return DAG.getMergeValues({Sel, Chain}, dl);
8677     else
8678       return Sel;
8679   }
8680 
8681   // If we have direct moves, we can do all the conversion, skip the store/load
8682   // however, without FPCVT we can't do most conversions.
8683   if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) &&
8684       Subtarget.isPPC64() && Subtarget.hasFPCVT())
8685     return LowerINT_TO_FPDirectMove(Op, DAG, dl);
8686 
8687   assert((IsSigned || Subtarget.hasFPCVT()) &&
8688          "UINT_TO_FP is supported only with FPCVT");
8689 
8690   if (Src.getValueType() == MVT::i64) {
8691     SDValue SINT = Src;
8692     // When converting to single-precision, we actually need to convert
8693     // to double-precision first and then round to single-precision.
8694     // To avoid double-rounding effects during that operation, we have
8695     // to prepare the input operand.  Bits that might be truncated when
8696     // converting to double-precision are replaced by a bit that won't
8697     // be lost at this stage, but is below the single-precision rounding
8698     // position.
8699     //
8700     // However, if -enable-unsafe-fp-math is in effect, accept double
8701     // rounding to avoid the extra overhead.
8702     if (Op.getValueType() == MVT::f32 &&
8703         !Subtarget.hasFPCVT() &&
8704         !DAG.getTarget().Options.UnsafeFPMath) {
8705 
8706       // Twiddle input to make sure the low 11 bits are zero.  (If this
8707       // is the case, we are guaranteed the value will fit into the 53 bit
8708       // mantissa of an IEEE double-precision value without rounding.)
8709       // If any of those low 11 bits were not zero originally, make sure
8710       // bit 12 (value 2048) is set instead, so that the final rounding
8711       // to single-precision gets the correct result.
8712       SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8713                                   SINT, DAG.getConstant(2047, dl, MVT::i64));
8714       Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
8715                           Round, DAG.getConstant(2047, dl, MVT::i64));
8716       Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
8717       Round = DAG.getNode(ISD::AND, dl, MVT::i64,
8718                           Round, DAG.getConstant(-2048, dl, MVT::i64));
8719 
8720       // However, we cannot use that value unconditionally: if the magnitude
8721       // of the input value is small, the bit-twiddling we did above might
8722       // end up visibly changing the output.  Fortunately, in that case, we
8723       // don't need to twiddle bits since the original input will convert
8724       // exactly to double-precision floating-point already.  Therefore,
8725       // construct a conditional to use the original value if the top 11
8726       // bits are all sign-bit copies, and use the rounded value computed
8727       // above otherwise.
8728       SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
8729                                  SINT, DAG.getConstant(53, dl, MVT::i32));
8730       Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
8731                          Cond, DAG.getConstant(1, dl, MVT::i64));
8732       Cond = DAG.getSetCC(
8733           dl,
8734           getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64),
8735           Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT);
8736 
8737       SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
8738     }
8739 
8740     ReuseLoadInfo RLI;
8741     SDValue Bits;
8742 
8743     MachineFunction &MF = DAG.getMachineFunction();
8744     if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) {
8745       Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI,
8746                          RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges);
8747       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8748     } else if (Subtarget.hasLFIWAX() &&
8749                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) {
8750       MachineMemOperand *MMO =
8751         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8752                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8753       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8754       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl,
8755                                      DAG.getVTList(MVT::f64, MVT::Other),
8756                                      Ops, MVT::i32, MMO);
8757       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8758     } else if (Subtarget.hasFPCVT() &&
8759                canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) {
8760       MachineMemOperand *MMO =
8761         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8762                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8763       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8764       Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl,
8765                                      DAG.getVTList(MVT::f64, MVT::Other),
8766                                      Ops, MVT::i32, MMO);
8767       spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG);
8768     } else if (((Subtarget.hasLFIWAX() &&
8769                  SINT.getOpcode() == ISD::SIGN_EXTEND) ||
8770                 (Subtarget.hasFPCVT() &&
8771                  SINT.getOpcode() == ISD::ZERO_EXTEND)) &&
8772                SINT.getOperand(0).getValueType() == MVT::i32) {
8773       MachineFrameInfo &MFI = MF.getFrameInfo();
8774       EVT PtrVT = getPointerTy(DAG.getDataLayout());
8775 
8776       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8777       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8778 
8779       SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx,
8780                                    MachinePointerInfo::getFixedStack(
8781                                        DAG.getMachineFunction(), FrameIdx));
8782       Chain = Store;
8783 
8784       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8785              "Expected an i32 store");
8786 
8787       RLI.Ptr = FIdx;
8788       RLI.Chain = Chain;
8789       RLI.MPI =
8790           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8791       RLI.Alignment = Align(4);
8792 
8793       MachineMemOperand *MMO =
8794         MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8795                                 RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8796       SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8797       Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ?
8798                                      PPCISD::LFIWZX : PPCISD::LFIWAX,
8799                                      dl, DAG.getVTList(MVT::f64, MVT::Other),
8800                                      Ops, MVT::i32, MMO);
8801       Chain = Bits.getValue(1);
8802     } else
8803       Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
8804 
8805     SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain);
8806     if (IsStrict)
8807       Chain = FP.getValue(1);
8808 
8809     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8810       if (IsStrict)
8811         FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8812                          DAG.getVTList(MVT::f32, MVT::Other),
8813                          {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8814       else
8815         FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8816                          DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8817     }
8818     return FP;
8819   }
8820 
8821   assert(Src.getValueType() == MVT::i32 &&
8822          "Unhandled INT_TO_FP type in custom expander!");
8823   // Since we only generate this in 64-bit mode, we can take advantage of
8824   // 64-bit registers.  In particular, sign extend the input value into the
8825   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
8826   // then lfd it and fcfid it.
8827   MachineFunction &MF = DAG.getMachineFunction();
8828   MachineFrameInfo &MFI = MF.getFrameInfo();
8829   EVT PtrVT = getPointerTy(MF.getDataLayout());
8830 
8831   SDValue Ld;
8832   if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) {
8833     ReuseLoadInfo RLI;
8834     bool ReusingLoad;
8835     if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) {
8836       int FrameIdx = MFI.CreateStackObject(4, Align(4), false);
8837       SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8838 
8839       SDValue Store = DAG.getStore(Chain, dl, Src, FIdx,
8840                                    MachinePointerInfo::getFixedStack(
8841                                        DAG.getMachineFunction(), FrameIdx));
8842       Chain = Store;
8843 
8844       assert(cast<StoreSDNode>(Store)->getMemoryVT() == MVT::i32 &&
8845              "Expected an i32 store");
8846 
8847       RLI.Ptr = FIdx;
8848       RLI.Chain = Chain;
8849       RLI.MPI =
8850           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx);
8851       RLI.Alignment = Align(4);
8852     }
8853 
8854     MachineMemOperand *MMO =
8855       MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4,
8856                               RLI.Alignment, RLI.AAInfo, RLI.Ranges);
8857     SDValue Ops[] = { RLI.Chain, RLI.Ptr };
8858     Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl,
8859                                  DAG.getVTList(MVT::f64, MVT::Other), Ops,
8860                                  MVT::i32, MMO);
8861     Chain = Ld.getValue(1);
8862     if (ReusingLoad)
8863       spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG);
8864   } else {
8865     assert(Subtarget.isPPC64() &&
8866            "i32->FP without LFIWAX supported only on PPC64");
8867 
8868     int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
8869     SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
8870 
8871     SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src);
8872 
8873     // STD the extended value into the stack slot.
8874     SDValue Store = DAG.getStore(
8875         Chain, dl, Ext64, FIdx,
8876         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8877     Chain = Store;
8878 
8879     // Load the value as a double.
8880     Ld = DAG.getLoad(
8881         MVT::f64, dl, Chain, FIdx,
8882         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx));
8883     Chain = Ld.getValue(1);
8884   }
8885 
8886   // FCFID it and return it.
8887   SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain);
8888   if (IsStrict)
8889     Chain = FP.getValue(1);
8890   if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
8891     if (IsStrict)
8892       FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl,
8893                        DAG.getVTList(MVT::f32, MVT::Other),
8894                        {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags);
8895     else
8896       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
8897                        DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
8898   }
8899   return FP;
8900 }
8901 
LowerGET_ROUNDING(SDValue Op,SelectionDAG & DAG) const8902 SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op,
8903                                              SelectionDAG &DAG) const {
8904   SDLoc dl(Op);
8905   /*
8906    The rounding mode is in bits 30:31 of FPSR, and has the following
8907    settings:
8908      00 Round to nearest
8909      01 Round to 0
8910      10 Round to +inf
8911      11 Round to -inf
8912 
8913   GET_ROUNDING, on the other hand, expects the following:
8914     -1 Undefined
8915      0 Round to 0
8916      1 Round to nearest
8917      2 Round to +inf
8918      3 Round to -inf
8919 
8920   To perform the conversion, we do:
8921     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
8922   */
8923 
8924   MachineFunction &MF = DAG.getMachineFunction();
8925   EVT VT = Op.getValueType();
8926   EVT PtrVT = getPointerTy(MF.getDataLayout());
8927 
8928   // Save FP Control Word to register
8929   SDValue Chain = Op.getOperand(0);
8930   SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain);
8931   Chain = MFFS.getValue(1);
8932 
8933   SDValue CWD;
8934   if (isTypeLegal(MVT::i64)) {
8935     CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32,
8936                       DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS));
8937   } else {
8938     // Save FP register to stack slot
8939     int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false);
8940     SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
8941     Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo());
8942 
8943     // Load FP Control Word from low 32 bits of stack slot.
8944     assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) &&
8945            "Stack slot adjustment is valid only on big endian subtargets!");
8946     SDValue Four = DAG.getConstant(4, dl, PtrVT);
8947     SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
8948     CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo());
8949     Chain = CWD.getValue(1);
8950   }
8951 
8952   // Transform as necessary
8953   SDValue CWD1 =
8954     DAG.getNode(ISD::AND, dl, MVT::i32,
8955                 CWD, DAG.getConstant(3, dl, MVT::i32));
8956   SDValue CWD2 =
8957     DAG.getNode(ISD::SRL, dl, MVT::i32,
8958                 DAG.getNode(ISD::AND, dl, MVT::i32,
8959                             DAG.getNode(ISD::XOR, dl, MVT::i32,
8960                                         CWD, DAG.getConstant(3, dl, MVT::i32)),
8961                             DAG.getConstant(3, dl, MVT::i32)),
8962                 DAG.getConstant(1, dl, MVT::i32));
8963 
8964   SDValue RetVal =
8965     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
8966 
8967   RetVal =
8968       DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND),
8969                   dl, VT, RetVal);
8970 
8971   return DAG.getMergeValues({RetVal, Chain}, dl);
8972 }
8973 
LowerSHL_PARTS(SDValue Op,SelectionDAG & DAG) const8974 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
8975   EVT VT = Op.getValueType();
8976   unsigned BitWidth = VT.getSizeInBits();
8977   SDLoc dl(Op);
8978   assert(Op.getNumOperands() == 3 &&
8979          VT == Op.getOperand(1).getValueType() &&
8980          "Unexpected SHL!");
8981 
8982   // Expand into a bunch of logical ops.  Note that these ops
8983   // depend on the PPC behavior for oversized shift amounts.
8984   SDValue Lo = Op.getOperand(0);
8985   SDValue Hi = Op.getOperand(1);
8986   SDValue Amt = Op.getOperand(2);
8987   EVT AmtVT = Amt.getValueType();
8988 
8989   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
8990                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
8991   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
8992   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
8993   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
8994   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
8995                              DAG.getConstant(-BitWidth, dl, AmtVT));
8996   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
8997   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
8998   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
8999   SDValue OutOps[] = { OutLo, OutHi };
9000   return DAG.getMergeValues(OutOps, dl);
9001 }
9002 
LowerSRL_PARTS(SDValue Op,SelectionDAG & DAG) const9003 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
9004   EVT VT = Op.getValueType();
9005   SDLoc dl(Op);
9006   unsigned BitWidth = VT.getSizeInBits();
9007   assert(Op.getNumOperands() == 3 &&
9008          VT == Op.getOperand(1).getValueType() &&
9009          "Unexpected SRL!");
9010 
9011   // Expand into a bunch of logical ops.  Note that these ops
9012   // depend on the PPC behavior for oversized shift amounts.
9013   SDValue Lo = Op.getOperand(0);
9014   SDValue Hi = Op.getOperand(1);
9015   SDValue Amt = Op.getOperand(2);
9016   EVT AmtVT = Amt.getValueType();
9017 
9018   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
9019                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
9020   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
9021   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
9022   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9023   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
9024                              DAG.getConstant(-BitWidth, dl, AmtVT));
9025   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
9026   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
9027   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
9028   SDValue OutOps[] = { OutLo, OutHi };
9029   return DAG.getMergeValues(OutOps, dl);
9030 }
9031 
LowerSRA_PARTS(SDValue Op,SelectionDAG & DAG) const9032 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
9033   SDLoc dl(Op);
9034   EVT VT = Op.getValueType();
9035   unsigned BitWidth = VT.getSizeInBits();
9036   assert(Op.getNumOperands() == 3 &&
9037          VT == Op.getOperand(1).getValueType() &&
9038          "Unexpected SRA!");
9039 
9040   // Expand into a bunch of logical ops, followed by a select_cc.
9041   SDValue Lo = Op.getOperand(0);
9042   SDValue Hi = Op.getOperand(1);
9043   SDValue Amt = Op.getOperand(2);
9044   EVT AmtVT = Amt.getValueType();
9045 
9046   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
9047                              DAG.getConstant(BitWidth, dl, AmtVT), Amt);
9048   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
9049   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
9050   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
9051   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
9052                              DAG.getConstant(-BitWidth, dl, AmtVT));
9053   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
9054   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
9055   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT),
9056                                   Tmp4, Tmp6, ISD::SETLE);
9057   SDValue OutOps[] = { OutLo, OutHi };
9058   return DAG.getMergeValues(OutOps, dl);
9059 }
9060 
LowerFunnelShift(SDValue Op,SelectionDAG & DAG) const9061 SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op,
9062                                             SelectionDAG &DAG) const {
9063   SDLoc dl(Op);
9064   EVT VT = Op.getValueType();
9065   unsigned BitWidth = VT.getSizeInBits();
9066 
9067   bool IsFSHL = Op.getOpcode() == ISD::FSHL;
9068   SDValue X = Op.getOperand(0);
9069   SDValue Y = Op.getOperand(1);
9070   SDValue Z = Op.getOperand(2);
9071   EVT AmtVT = Z.getValueType();
9072 
9073   // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
9074   // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
9075   // This is simpler than TargetLowering::expandFunnelShift because we can rely
9076   // on PowerPC shift by BW being well defined.
9077   Z = DAG.getNode(ISD::AND, dl, AmtVT, Z,
9078                   DAG.getConstant(BitWidth - 1, dl, AmtVT));
9079   SDValue SubZ =
9080       DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z);
9081   X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ);
9082   Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z);
9083   return DAG.getNode(ISD::OR, dl, VT, X, Y);
9084 }
9085 
9086 //===----------------------------------------------------------------------===//
9087 // Vector related lowering.
9088 //
9089 
9090 /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an
9091 /// element size of SplatSize. Cast the result to VT.
getCanonicalConstSplat(uint64_t Val,unsigned SplatSize,EVT VT,SelectionDAG & DAG,const SDLoc & dl)9092 static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT,
9093                                       SelectionDAG &DAG, const SDLoc &dl) {
9094   static const MVT VTys[] = { // canonical VT to use for each size.
9095     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
9096   };
9097 
9098   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
9099 
9100   // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize.
9101   if (Val == ((1LLU << (SplatSize * 8)) - 1)) {
9102     SplatSize = 1;
9103     Val = 0xFF;
9104   }
9105 
9106   EVT CanonicalVT = VTys[SplatSize-1];
9107 
9108   // Build a canonical splat for this value.
9109   return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT));
9110 }
9111 
9112 /// BuildIntrinsicOp - Return a unary operator intrinsic node with the
9113 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)9114 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG,
9115                                 const SDLoc &dl, EVT DestVT = MVT::Other) {
9116   if (DestVT == MVT::Other) DestVT = Op.getValueType();
9117   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9118                      DAG.getConstant(IID, dl, MVT::i32), Op);
9119 }
9120 
9121 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
9122 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)9123 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
9124                                 SelectionDAG &DAG, const SDLoc &dl,
9125                                 EVT DestVT = MVT::Other) {
9126   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
9127   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9128                      DAG.getConstant(IID, dl, MVT::i32), LHS, RHS);
9129 }
9130 
9131 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
9132 /// specified intrinsic ID.
BuildIntrinsicOp(unsigned IID,SDValue Op0,SDValue Op1,SDValue Op2,SelectionDAG & DAG,const SDLoc & dl,EVT DestVT=MVT::Other)9133 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
9134                                 SDValue Op2, SelectionDAG &DAG, const SDLoc &dl,
9135                                 EVT DestVT = MVT::Other) {
9136   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
9137   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
9138                      DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2);
9139 }
9140 
9141 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
9142 /// amount.  The result has the specified value type.
BuildVSLDOI(SDValue LHS,SDValue RHS,unsigned Amt,EVT VT,SelectionDAG & DAG,const SDLoc & dl)9143 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT,
9144                            SelectionDAG &DAG, const SDLoc &dl) {
9145   // Force LHS/RHS to be the right type.
9146   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
9147   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
9148 
9149   int Ops[16];
9150   for (unsigned i = 0; i != 16; ++i)
9151     Ops[i] = i + Amt;
9152   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
9153   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9154 }
9155 
9156 /// Do we have an efficient pattern in a .td file for this node?
9157 ///
9158 /// \param V - pointer to the BuildVectorSDNode being matched
9159 /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves?
9160 ///
9161 /// There are some patterns where it is beneficial to keep a BUILD_VECTOR
9162 /// node as a BUILD_VECTOR node rather than expanding it. The patterns where
9163 /// the opposite is true (expansion is beneficial) are:
9164 /// - The node builds a vector out of integers that are not 32 or 64-bits
9165 /// - The node builds a vector out of constants
9166 /// - The node is a "load-and-splat"
9167 /// In all other cases, we will choose to keep the BUILD_VECTOR.
haveEfficientBuildVectorPattern(BuildVectorSDNode * V,bool HasDirectMove,bool HasP8Vector)9168 static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V,
9169                                             bool HasDirectMove,
9170                                             bool HasP8Vector) {
9171   EVT VecVT = V->getValueType(0);
9172   bool RightType = VecVT == MVT::v2f64 ||
9173     (HasP8Vector && VecVT == MVT::v4f32) ||
9174     (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32));
9175   if (!RightType)
9176     return false;
9177 
9178   bool IsSplat = true;
9179   bool IsLoad = false;
9180   SDValue Op0 = V->getOperand(0);
9181 
9182   // This function is called in a block that confirms the node is not a constant
9183   // splat. So a constant BUILD_VECTOR here means the vector is built out of
9184   // different constants.
9185   if (V->isConstant())
9186     return false;
9187   for (int i = 0, e = V->getNumOperands(); i < e; ++i) {
9188     if (V->getOperand(i).isUndef())
9189       return false;
9190     // We want to expand nodes that represent load-and-splat even if the
9191     // loaded value is a floating point truncation or conversion to int.
9192     if (V->getOperand(i).getOpcode() == ISD::LOAD ||
9193         (V->getOperand(i).getOpcode() == ISD::FP_ROUND &&
9194          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9195         (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT &&
9196          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) ||
9197         (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT &&
9198          V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD))
9199       IsLoad = true;
9200     // If the operands are different or the input is not a load and has more
9201     // uses than just this BV node, then it isn't a splat.
9202     if (V->getOperand(i) != Op0 ||
9203         (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode())))
9204       IsSplat = false;
9205   }
9206   return !(IsSplat && IsLoad);
9207 }
9208 
9209 // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128.
LowerBITCAST(SDValue Op,SelectionDAG & DAG) const9210 SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const {
9211 
9212   SDLoc dl(Op);
9213   SDValue Op0 = Op->getOperand(0);
9214 
9215   if ((Op.getValueType() != MVT::f128) ||
9216       (Op0.getOpcode() != ISD::BUILD_PAIR) ||
9217       (Op0.getOperand(0).getValueType() != MVT::i64) ||
9218       (Op0.getOperand(1).getValueType() != MVT::i64))
9219     return SDValue();
9220 
9221   return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Op0.getOperand(0),
9222                      Op0.getOperand(1));
9223 }
9224 
getNormalLoadInput(const SDValue & Op,bool & IsPermuted)9225 static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) {
9226   const SDValue *InputLoad = &Op;
9227   while (InputLoad->getOpcode() == ISD::BITCAST)
9228     InputLoad = &InputLoad->getOperand(0);
9229   if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR ||
9230       InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) {
9231     IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED;
9232     InputLoad = &InputLoad->getOperand(0);
9233   }
9234   if (InputLoad->getOpcode() != ISD::LOAD)
9235     return nullptr;
9236   LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9237   return ISD::isNormalLoad(LD) ? InputLoad : nullptr;
9238 }
9239 
9240 // Convert the argument APFloat to a single precision APFloat if there is no
9241 // loss in information during the conversion to single precision APFloat and the
9242 // resulting number is not a denormal number. Return true if successful.
convertToNonDenormSingle(APFloat & ArgAPFloat)9243 bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) {
9244   APFloat APFloatToConvert = ArgAPFloat;
9245   bool LosesInfo = true;
9246   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9247                            &LosesInfo);
9248   bool Success = (!LosesInfo && !APFloatToConvert.isDenormal());
9249   if (Success)
9250     ArgAPFloat = APFloatToConvert;
9251   return Success;
9252 }
9253 
9254 // Bitcast the argument APInt to a double and convert it to a single precision
9255 // APFloat, bitcast the APFloat to an APInt and assign it to the original
9256 // argument if there is no loss in information during the conversion from
9257 // double to single precision APFloat and the resulting number is not a denormal
9258 // number. Return true if successful.
convertToNonDenormSingle(APInt & ArgAPInt)9259 bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) {
9260   double DpValue = ArgAPInt.bitsToDouble();
9261   APFloat APFloatDp(DpValue);
9262   bool Success = convertToNonDenormSingle(APFloatDp);
9263   if (Success)
9264     ArgAPInt = APFloatDp.bitcastToAPInt();
9265   return Success;
9266 }
9267 
9268 // Nondestructive check for convertTonNonDenormSingle.
checkConvertToNonDenormSingle(APFloat & ArgAPFloat)9269 bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) {
9270   // Only convert if it loses info, since XXSPLTIDP should
9271   // handle the other case.
9272   APFloat APFloatToConvert = ArgAPFloat;
9273   bool LosesInfo = true;
9274   APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
9275                            &LosesInfo);
9276 
9277   return (!LosesInfo && !APFloatToConvert.isDenormal());
9278 }
9279 
isValidSplatLoad(const PPCSubtarget & Subtarget,const SDValue & Op,unsigned & Opcode)9280 static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op,
9281                              unsigned &Opcode) {
9282   LoadSDNode *InputNode = dyn_cast<LoadSDNode>(Op.getOperand(0));
9283   if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode))
9284     return false;
9285 
9286   EVT Ty = Op->getValueType(0);
9287   // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending
9288   // as we cannot handle extending loads for these types.
9289   if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) &&
9290       ISD::isNON_EXTLoad(InputNode))
9291     return true;
9292 
9293   EVT MemVT = InputNode->getMemoryVT();
9294   // For v8i16 and v16i8 types, extending loads can be handled as long as the
9295   // memory VT is the same vector element VT type.
9296   // The loads feeding into the v8i16 and v16i8 types will be extending because
9297   // scalar i8/i16 are not legal types.
9298   if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) &&
9299       (MemVT == Ty.getVectorElementType()))
9300     return true;
9301 
9302   if (Ty == MVT::v2i64) {
9303     // Check the extend type, when the input type is i32, and the output vector
9304     // type is v2i64.
9305     if (MemVT == MVT::i32) {
9306       if (ISD::isZEXTLoad(InputNode))
9307         Opcode = PPCISD::ZEXT_LD_SPLAT;
9308       if (ISD::isSEXTLoad(InputNode))
9309         Opcode = PPCISD::SEXT_LD_SPLAT;
9310     }
9311     return true;
9312   }
9313   return false;
9314 }
9315 
9316 // If this is a case we can't handle, return null and let the default
9317 // expansion code take care of it.  If we CAN select this case, and if it
9318 // selects to a single instruction, return Op.  Otherwise, if we can codegen
9319 // this case more efficiently than a constant pool load, lower it to the
9320 // sequence of ops that should be used.
LowerBUILD_VECTOR(SDValue Op,SelectionDAG & DAG) const9321 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
9322                                              SelectionDAG &DAG) const {
9323   SDLoc dl(Op);
9324   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
9325   assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
9326 
9327   // Check if this is a splat of a constant value.
9328   APInt APSplatBits, APSplatUndef;
9329   unsigned SplatBitSize;
9330   bool HasAnyUndefs;
9331   bool BVNIsConstantSplat =
9332       BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
9333                            HasAnyUndefs, 0, !Subtarget.isLittleEndian());
9334 
9335   // If it is a splat of a double, check if we can shrink it to a 32 bit
9336   // non-denormal float which when converted back to double gives us the same
9337   // double. This is to exploit the XXSPLTIDP instruction.
9338   // If we lose precision, we use XXSPLTI32DX.
9339   if (BVNIsConstantSplat && (SplatBitSize == 64) &&
9340       Subtarget.hasPrefixInstrs()) {
9341     // Check the type first to short-circuit so we don't modify APSplatBits if
9342     // this block isn't executed.
9343     if ((Op->getValueType(0) == MVT::v2f64) &&
9344         convertToNonDenormSingle(APSplatBits)) {
9345       SDValue SplatNode = DAG.getNode(
9346           PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64,
9347           DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32));
9348       return DAG.getBitcast(Op.getValueType(), SplatNode);
9349     } else {
9350       // We may lose precision, so we have to use XXSPLTI32DX.
9351 
9352       uint32_t Hi =
9353           (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32);
9354       uint32_t Lo =
9355           (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF);
9356       SDValue SplatNode = DAG.getUNDEF(MVT::v2i64);
9357 
9358       if (!Hi || !Lo)
9359         // If either load is 0, then we should generate XXLXOR to set to 0.
9360         SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64);
9361 
9362       if (Hi)
9363         SplatNode = DAG.getNode(
9364             PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9365             DAG.getTargetConstant(0, dl, MVT::i32),
9366             DAG.getTargetConstant(Hi, dl, MVT::i32));
9367 
9368       if (Lo)
9369         SplatNode =
9370             DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode,
9371                         DAG.getTargetConstant(1, dl, MVT::i32),
9372                         DAG.getTargetConstant(Lo, dl, MVT::i32));
9373 
9374       return DAG.getBitcast(Op.getValueType(), SplatNode);
9375     }
9376   }
9377 
9378   if (!BVNIsConstantSplat || SplatBitSize > 32) {
9379     unsigned NewOpcode = PPCISD::LD_SPLAT;
9380 
9381     // Handle load-and-splat patterns as we have instructions that will do this
9382     // in one go.
9383     if (DAG.isSplatValue(Op, true) &&
9384         isValidSplatLoad(Subtarget, Op, NewOpcode)) {
9385       const SDValue *InputLoad = &Op.getOperand(0);
9386       LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
9387 
9388       // If the input load is an extending load, it will be an i32 -> i64
9389       // extending load and isValidSplatLoad() will update NewOpcode.
9390       unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits();
9391       unsigned ElementSize =
9392           MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2);
9393 
9394       assert(((ElementSize == 2 * MemorySize)
9395                   ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT ||
9396                      NewOpcode == PPCISD::SEXT_LD_SPLAT)
9397                   : (NewOpcode == PPCISD::LD_SPLAT)) &&
9398              "Unmatched element size and opcode!\n");
9399 
9400       // Checking for a single use of this load, we have to check for vector
9401       // width (128 bits) / ElementSize uses (since each operand of the
9402       // BUILD_VECTOR is a separate use of the value.
9403       unsigned NumUsesOfInputLD = 128 / ElementSize;
9404       for (SDValue BVInOp : Op->ops())
9405         if (BVInOp.isUndef())
9406           NumUsesOfInputLD--;
9407 
9408       // Exclude somes case where LD_SPLAT is worse than scalar_to_vector:
9409       // Below cases should also happen for "lfiwzx/lfiwax + LE target + index
9410       // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index
9411       // 15", but function IsValidSplatLoad() now will only return true when
9412       // the data at index 0 is not nullptr. So we will not get into trouble for
9413       // these cases.
9414       //
9415       // case 1 - lfiwzx/lfiwax
9416       // 1.1: load result is i32 and is sign/zero extend to i64;
9417       // 1.2: build a v2i64 vector type with above loaded value;
9418       // 1.3: the vector has only one value at index 0, others are all undef;
9419       // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute.
9420       if (NumUsesOfInputLD == 1 &&
9421           (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT &&
9422            !Subtarget.isLittleEndian() && Subtarget.hasVSX() &&
9423            Subtarget.hasLFIWAX()))
9424         return SDValue();
9425 
9426       // case 2 - lxvr[hb]x
9427       // 2.1: load result is at most i16;
9428       // 2.2: build a vector with above loaded value;
9429       // 2.3: the vector has only one value at index 0, others are all undef;
9430       // 2.4: on LE target, so that lxvr[hb]x does not need any permute.
9431       if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() &&
9432           Subtarget.isISA3_1() && ElementSize <= 16)
9433         return SDValue();
9434 
9435       assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?");
9436       if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) &&
9437           Subtarget.hasVSX()) {
9438         SDValue Ops[] = {
9439           LD->getChain(),    // Chain
9440           LD->getBasePtr(),  // Ptr
9441           DAG.getValueType(Op.getValueType()) // VT
9442         };
9443         SDValue LdSplt = DAG.getMemIntrinsicNode(
9444             NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops,
9445             LD->getMemoryVT(), LD->getMemOperand());
9446         // Replace all uses of the output chain of the original load with the
9447         // output chain of the new load.
9448         DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1),
9449                                       LdSplt.getValue(1));
9450         return LdSplt;
9451       }
9452     }
9453 
9454     // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to
9455     // 32-bits can be lowered to VSX instructions under certain conditions.
9456     // Without VSX, there is no pattern more efficient than expanding the node.
9457     if (Subtarget.hasVSX() && Subtarget.isPPC64() &&
9458         haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(),
9459                                         Subtarget.hasP8Vector()))
9460       return Op;
9461     return SDValue();
9462   }
9463 
9464   uint64_t SplatBits = APSplatBits.getZExtValue();
9465   uint64_t SplatUndef = APSplatUndef.getZExtValue();
9466   unsigned SplatSize = SplatBitSize / 8;
9467 
9468   // First, handle single instruction cases.
9469 
9470   // All zeros?
9471   if (SplatBits == 0) {
9472     // Canonicalize all zero vectors to be v4i32.
9473     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
9474       SDValue Z = DAG.getConstant(0, dl, MVT::v4i32);
9475       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
9476     }
9477     return Op;
9478   }
9479 
9480   // We have XXSPLTIW for constant splats four bytes wide.
9481   // Given vector length is a multiple of 4, 2-byte splats can be replaced
9482   // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to
9483   // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be
9484   // turned into a 4-byte splat of 0xABABABAB.
9485   if (Subtarget.hasPrefixInstrs() && SplatSize == 2)
9486     return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2,
9487                                   Op.getValueType(), DAG, dl);
9488 
9489   if (Subtarget.hasPrefixInstrs() && SplatSize == 4)
9490     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9491                                   dl);
9492 
9493   // We have XXSPLTIB for constant splats one byte wide.
9494   if (Subtarget.hasP9Vector() && SplatSize == 1)
9495     return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG,
9496                                   dl);
9497 
9498   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
9499   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
9500                     (32-SplatBitSize));
9501   if (SextVal >= -16 && SextVal <= 15)
9502     return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG,
9503                                   dl);
9504 
9505   // Two instruction sequences.
9506 
9507   // If this value is in the range [-32,30] and is even, use:
9508   //     VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
9509   // If this value is in the range [17,31] and is odd, use:
9510   //     VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
9511   // If this value is in the range [-31,-17] and is odd, use:
9512   //     VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
9513   // Note the last two are three-instruction sequences.
9514   if (SextVal >= -32 && SextVal <= 31) {
9515     // To avoid having these optimizations undone by constant folding,
9516     // we convert to a pseudo that will be expanded later into one of
9517     // the above forms.
9518     SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32);
9519     EVT VT = (SplatSize == 1 ? MVT::v16i8 :
9520               (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32));
9521     SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32);
9522     SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
9523     if (VT == Op.getValueType())
9524       return RetVal;
9525     else
9526       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal);
9527   }
9528 
9529   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
9530   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
9531   // for fneg/fabs.
9532   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
9533     // Make -1 and vspltisw -1:
9534     SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl);
9535 
9536     // Make the VSLW intrinsic, computing 0x8000_0000.
9537     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
9538                                    OnesV, DAG, dl);
9539 
9540     // xor by OnesV to invert it.
9541     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
9542     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9543   }
9544 
9545   // Check to see if this is a wide variety of vsplti*, binop self cases.
9546   static const signed char SplatCsts[] = {
9547     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
9548     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
9549   };
9550 
9551   for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) {
9552     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
9553     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
9554     int i = SplatCsts[idx];
9555 
9556     // Figure out what shift amount will be used by altivec if shifted by i in
9557     // this splat size.
9558     unsigned TypeShiftAmt = i & (SplatBitSize-1);
9559 
9560     // vsplti + shl self.
9561     if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
9562       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9563       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9564         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
9565         Intrinsic::ppc_altivec_vslw
9566       };
9567       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9568       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9569     }
9570 
9571     // vsplti + srl self.
9572     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
9573       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9574       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9575         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
9576         Intrinsic::ppc_altivec_vsrw
9577       };
9578       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9579       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9580     }
9581 
9582     // vsplti + rol self.
9583     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
9584                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
9585       SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl);
9586       static const unsigned IIDs[] = { // Intrinsic to use for each size.
9587         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
9588         Intrinsic::ppc_altivec_vrlw
9589       };
9590       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
9591       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
9592     }
9593 
9594     // t = vsplti c, result = vsldoi t, t, 1
9595     if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
9596       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9597       unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1;
9598       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9599     }
9600     // t = vsplti c, result = vsldoi t, t, 2
9601     if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
9602       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9603       unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2;
9604       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9605     }
9606     // t = vsplti c, result = vsldoi t, t, 3
9607     if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
9608       SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl);
9609       unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3;
9610       return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl);
9611     }
9612   }
9613 
9614   return SDValue();
9615 }
9616 
9617 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
9618 /// the specified operations to build the shuffle.
GeneratePerfectShuffle(unsigned PFEntry,SDValue LHS,SDValue RHS,SelectionDAG & DAG,const SDLoc & dl)9619 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
9620                                       SDValue RHS, SelectionDAG &DAG,
9621                                       const SDLoc &dl) {
9622   unsigned OpNum = (PFEntry >> 26) & 0x0F;
9623   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
9624   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
9625 
9626   enum {
9627     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
9628     OP_VMRGHW,
9629     OP_VMRGLW,
9630     OP_VSPLTISW0,
9631     OP_VSPLTISW1,
9632     OP_VSPLTISW2,
9633     OP_VSPLTISW3,
9634     OP_VSLDOI4,
9635     OP_VSLDOI8,
9636     OP_VSLDOI12
9637   };
9638 
9639   if (OpNum == OP_COPY) {
9640     if (LHSID == (1*9+2)*9+3) return LHS;
9641     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
9642     return RHS;
9643   }
9644 
9645   SDValue OpLHS, OpRHS;
9646   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
9647   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
9648 
9649   int ShufIdxs[16];
9650   switch (OpNum) {
9651   default: llvm_unreachable("Unknown i32 permute!");
9652   case OP_VMRGHW:
9653     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
9654     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
9655     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
9656     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
9657     break;
9658   case OP_VMRGLW:
9659     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
9660     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
9661     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
9662     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
9663     break;
9664   case OP_VSPLTISW0:
9665     for (unsigned i = 0; i != 16; ++i)
9666       ShufIdxs[i] = (i&3)+0;
9667     break;
9668   case OP_VSPLTISW1:
9669     for (unsigned i = 0; i != 16; ++i)
9670       ShufIdxs[i] = (i&3)+4;
9671     break;
9672   case OP_VSPLTISW2:
9673     for (unsigned i = 0; i != 16; ++i)
9674       ShufIdxs[i] = (i&3)+8;
9675     break;
9676   case OP_VSPLTISW3:
9677     for (unsigned i = 0; i != 16; ++i)
9678       ShufIdxs[i] = (i&3)+12;
9679     break;
9680   case OP_VSLDOI4:
9681     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
9682   case OP_VSLDOI8:
9683     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
9684   case OP_VSLDOI12:
9685     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
9686   }
9687   EVT VT = OpLHS.getValueType();
9688   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
9689   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
9690   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
9691   return DAG.getNode(ISD::BITCAST, dl, VT, T);
9692 }
9693 
9694 /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled
9695 /// by the VINSERTB instruction introduced in ISA 3.0, else just return default
9696 /// SDValue.
lowerToVINSERTB(ShuffleVectorSDNode * N,SelectionDAG & DAG) const9697 SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N,
9698                                            SelectionDAG &DAG) const {
9699   const unsigned BytesInVector = 16;
9700   bool IsLE = Subtarget.isLittleEndian();
9701   SDLoc dl(N);
9702   SDValue V1 = N->getOperand(0);
9703   SDValue V2 = N->getOperand(1);
9704   unsigned ShiftElts = 0, InsertAtByte = 0;
9705   bool Swap = false;
9706 
9707   // Shifts required to get the byte we want at element 7.
9708   unsigned LittleEndianShifts[] = {8, 7,  6,  5,  4,  3,  2,  1,
9709                                    0, 15, 14, 13, 12, 11, 10, 9};
9710   unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0,
9711                                 1, 2,  3,  4,  5,  6,  7,  8};
9712 
9713   ArrayRef<int> Mask = N->getMask();
9714   int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
9715 
9716   // For each mask element, find out if we're just inserting something
9717   // from V2 into V1 or vice versa.
9718   // Possible permutations inserting an element from V2 into V1:
9719   //   X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9720   //   0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
9721   //   ...
9722   //   0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X
9723   // Inserting from V1 into V2 will be similar, except mask range will be
9724   // [16,31].
9725 
9726   bool FoundCandidate = false;
9727   // If both vector operands for the shuffle are the same vector, the mask
9728   // will contain only elements from the first one and the second one will be
9729   // undef.
9730   unsigned VINSERTBSrcElem = IsLE ? 8 : 7;
9731   // Go through the mask of half-words to find an element that's being moved
9732   // from one vector to the other.
9733   for (unsigned i = 0; i < BytesInVector; ++i) {
9734     unsigned CurrentElement = Mask[i];
9735     // If 2nd operand is undefined, we should only look for element 7 in the
9736     // Mask.
9737     if (V2.isUndef() && CurrentElement != VINSERTBSrcElem)
9738       continue;
9739 
9740     bool OtherElementsInOrder = true;
9741     // Examine the other elements in the Mask to see if they're in original
9742     // order.
9743     for (unsigned j = 0; j < BytesInVector; ++j) {
9744       if (j == i)
9745         continue;
9746       // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be
9747       // from V2 [16,31] and vice versa.  Unless the 2nd operand is undefined,
9748       // in which we always assume we're always picking from the 1st operand.
9749       int MaskOffset =
9750           (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0;
9751       if (Mask[j] != OriginalOrder[j] + MaskOffset) {
9752         OtherElementsInOrder = false;
9753         break;
9754       }
9755     }
9756     // If other elements are in original order, we record the number of shifts
9757     // we need to get the element we want into element 7. Also record which byte
9758     // in the vector we should insert into.
9759     if (OtherElementsInOrder) {
9760       // If 2nd operand is undefined, we assume no shifts and no swapping.
9761       if (V2.isUndef()) {
9762         ShiftElts = 0;
9763         Swap = false;
9764       } else {
9765         // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4.
9766         ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF]
9767                          : BigEndianShifts[CurrentElement & 0xF];
9768         Swap = CurrentElement < BytesInVector;
9769       }
9770       InsertAtByte = IsLE ? BytesInVector - (i + 1) : i;
9771       FoundCandidate = true;
9772       break;
9773     }
9774   }
9775 
9776   if (!FoundCandidate)
9777     return SDValue();
9778 
9779   // Candidate found, construct the proper SDAG sequence with VINSERTB,
9780   // optionally with VECSHL if shift is required.
9781   if (Swap)
9782     std::swap(V1, V2);
9783   if (V2.isUndef())
9784     V2 = V1;
9785   if (ShiftElts) {
9786     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9787                               DAG.getConstant(ShiftElts, dl, MVT::i32));
9788     return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl,
9789                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
9790   }
9791   return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2,
9792                      DAG.getConstant(InsertAtByte, dl, MVT::i32));
9793 }
9794 
9795 /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled
9796 /// by the VINSERTH instruction introduced in ISA 3.0, else just return default
9797 /// SDValue.
lowerToVINSERTH(ShuffleVectorSDNode * N,SelectionDAG & DAG) const9798 SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N,
9799                                            SelectionDAG &DAG) const {
9800   const unsigned NumHalfWords = 8;
9801   const unsigned BytesInVector = NumHalfWords * 2;
9802   // Check that the shuffle is on half-words.
9803   if (!isNByteElemShuffleMask(N, 2, 1))
9804     return SDValue();
9805 
9806   bool IsLE = Subtarget.isLittleEndian();
9807   SDLoc dl(N);
9808   SDValue V1 = N->getOperand(0);
9809   SDValue V2 = N->getOperand(1);
9810   unsigned ShiftElts = 0, InsertAtByte = 0;
9811   bool Swap = false;
9812 
9813   // Shifts required to get the half-word we want at element 3.
9814   unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5};
9815   unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4};
9816 
9817   uint32_t Mask = 0;
9818   uint32_t OriginalOrderLow = 0x1234567;
9819   uint32_t OriginalOrderHigh = 0x89ABCDEF;
9820   // Now we look at mask elements 0,2,4,6,8,10,12,14.  Pack the mask into a
9821   // 32-bit space, only need 4-bit nibbles per element.
9822   for (unsigned i = 0; i < NumHalfWords; ++i) {
9823     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9824     Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift);
9825   }
9826 
9827   // For each mask element, find out if we're just inserting something
9828   // from V2 into V1 or vice versa.  Possible permutations inserting an element
9829   // from V2 into V1:
9830   //   X, 1, 2, 3, 4, 5, 6, 7
9831   //   0, X, 2, 3, 4, 5, 6, 7
9832   //   0, 1, X, 3, 4, 5, 6, 7
9833   //   0, 1, 2, X, 4, 5, 6, 7
9834   //   0, 1, 2, 3, X, 5, 6, 7
9835   //   0, 1, 2, 3, 4, X, 6, 7
9836   //   0, 1, 2, 3, 4, 5, X, 7
9837   //   0, 1, 2, 3, 4, 5, 6, X
9838   // Inserting from V1 into V2 will be similar, except mask range will be [8,15].
9839 
9840   bool FoundCandidate = false;
9841   // Go through the mask of half-words to find an element that's being moved
9842   // from one vector to the other.
9843   for (unsigned i = 0; i < NumHalfWords; ++i) {
9844     unsigned MaskShift = (NumHalfWords - 1 - i) * 4;
9845     uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF;
9846     uint32_t MaskOtherElts = ~(0xF << MaskShift);
9847     uint32_t TargetOrder = 0x0;
9848 
9849     // If both vector operands for the shuffle are the same vector, the mask
9850     // will contain only elements from the first one and the second one will be
9851     // undef.
9852     if (V2.isUndef()) {
9853       ShiftElts = 0;
9854       unsigned VINSERTHSrcElem = IsLE ? 4 : 3;
9855       TargetOrder = OriginalOrderLow;
9856       Swap = false;
9857       // Skip if not the correct element or mask of other elements don't equal
9858       // to our expected order.
9859       if (MaskOneElt == VINSERTHSrcElem &&
9860           (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9861         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9862         FoundCandidate = true;
9863         break;
9864       }
9865     } else { // If both operands are defined.
9866       // Target order is [8,15] if the current mask is between [0,7].
9867       TargetOrder =
9868           (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow;
9869       // Skip if mask of other elements don't equal our expected order.
9870       if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) {
9871         // We only need the last 3 bits for the number of shifts.
9872         ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7]
9873                          : BigEndianShifts[MaskOneElt & 0x7];
9874         InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2;
9875         Swap = MaskOneElt < NumHalfWords;
9876         FoundCandidate = true;
9877         break;
9878       }
9879     }
9880   }
9881 
9882   if (!FoundCandidate)
9883     return SDValue();
9884 
9885   // Candidate found, construct the proper SDAG sequence with VINSERTH,
9886   // optionally with VECSHL if shift is required.
9887   if (Swap)
9888     std::swap(V1, V2);
9889   if (V2.isUndef())
9890     V2 = V1;
9891   SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
9892   if (ShiftElts) {
9893     // Double ShiftElts because we're left shifting on v16i8 type.
9894     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2,
9895                               DAG.getConstant(2 * ShiftElts, dl, MVT::i32));
9896     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl);
9897     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9898                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
9899     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9900   }
9901   SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2);
9902   SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2,
9903                             DAG.getConstant(InsertAtByte, dl, MVT::i32));
9904   return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
9905 }
9906 
9907 /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be
9908 /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise
9909 /// return the default SDValue.
lowerToXXSPLTI32DX(ShuffleVectorSDNode * SVN,SelectionDAG & DAG) const9910 SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN,
9911                                               SelectionDAG &DAG) const {
9912   // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles
9913   // to v16i8. Peek through the bitcasts to get the actual operands.
9914   SDValue LHS = peekThroughBitcasts(SVN->getOperand(0));
9915   SDValue RHS = peekThroughBitcasts(SVN->getOperand(1));
9916 
9917   auto ShuffleMask = SVN->getMask();
9918   SDValue VecShuffle(SVN, 0);
9919   SDLoc DL(SVN);
9920 
9921   // Check that we have a four byte shuffle.
9922   if (!isNByteElemShuffleMask(SVN, 4, 1))
9923     return SDValue();
9924 
9925   // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx.
9926   if (RHS->getOpcode() != ISD::BUILD_VECTOR) {
9927     std::swap(LHS, RHS);
9928     VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN));
9929     ShuffleVectorSDNode *CommutedSV = dyn_cast<ShuffleVectorSDNode>(VecShuffle);
9930     if (!CommutedSV)
9931       return SDValue();
9932     ShuffleMask = CommutedSV->getMask();
9933   }
9934 
9935   // Ensure that the RHS is a vector of constants.
9936   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(RHS.getNode());
9937   if (!BVN)
9938     return SDValue();
9939 
9940   // Check if RHS is a splat of 4-bytes (or smaller).
9941   APInt APSplatValue, APSplatUndef;
9942   unsigned SplatBitSize;
9943   bool HasAnyUndefs;
9944   if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize,
9945                             HasAnyUndefs, 0, !Subtarget.isLittleEndian()) ||
9946       SplatBitSize > 32)
9947     return SDValue();
9948 
9949   // Check that the shuffle mask matches the semantics of XXSPLTI32DX.
9950   // The instruction splats a constant C into two words of the source vector
9951   // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }.
9952   // Thus we check that the shuffle mask is the equivalent  of
9953   // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively.
9954   // Note: the check above of isNByteElemShuffleMask() ensures that the bytes
9955   // within each word are consecutive, so we only need to check the first byte.
9956   SDValue Index;
9957   bool IsLE = Subtarget.isLittleEndian();
9958   if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) &&
9959       (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 &&
9960        ShuffleMask[4] > 15 && ShuffleMask[12] > 15))
9961     Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32);
9962   else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) &&
9963            (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 &&
9964             ShuffleMask[0] > 15 && ShuffleMask[8] > 15))
9965     Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32);
9966   else
9967     return SDValue();
9968 
9969   // If the splat is narrower than 32-bits, we need to get the 32-bit value
9970   // for XXSPLTI32DX.
9971   unsigned SplatVal = APSplatValue.getZExtValue();
9972   for (; SplatBitSize < 32; SplatBitSize <<= 1)
9973     SplatVal |= (SplatVal << SplatBitSize);
9974 
9975   SDValue SplatNode = DAG.getNode(
9976       PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS),
9977       Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32));
9978   return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode);
9979 }
9980 
9981 /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8).
9982 /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is
9983 /// a multiple of 8. Otherwise convert it to a scalar rotation(i128)
9984 /// i.e (or (shl x, C1), (srl x, 128-C1)).
LowerROTL(SDValue Op,SelectionDAG & DAG) const9985 SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const {
9986   assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL");
9987   assert(Op.getValueType() == MVT::v1i128 &&
9988          "Only set v1i128 as custom, other type shouldn't reach here!");
9989   SDLoc dl(Op);
9990   SDValue N0 = peekThroughBitcasts(Op.getOperand(0));
9991   SDValue N1 = peekThroughBitcasts(Op.getOperand(1));
9992   unsigned SHLAmt = N1.getConstantOperandVal(0);
9993   if (SHLAmt % 8 == 0) {
9994     std::array<int, 16> Mask;
9995     std::iota(Mask.begin(), Mask.end(), 0);
9996     std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end());
9997     if (SDValue Shuffle =
9998             DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0),
9999                                  DAG.getUNDEF(MVT::v16i8), Mask))
10000       return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle);
10001   }
10002   SDValue ArgVal = DAG.getBitcast(MVT::i128, N0);
10003   SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal,
10004                               DAG.getConstant(SHLAmt, dl, MVT::i32));
10005   SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal,
10006                               DAG.getConstant(128 - SHLAmt, dl, MVT::i32));
10007   SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp);
10008   return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp);
10009 }
10010 
10011 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
10012 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
10013 /// return the code it can be lowered into.  Worst case, it can always be
10014 /// lowered into a vperm.
LowerVECTOR_SHUFFLE(SDValue Op,SelectionDAG & DAG) const10015 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
10016                                                SelectionDAG &DAG) const {
10017   SDLoc dl(Op);
10018   SDValue V1 = Op.getOperand(0);
10019   SDValue V2 = Op.getOperand(1);
10020   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10021 
10022   // Any nodes that were combined in the target-independent combiner prior
10023   // to vector legalization will not be sent to the target combine. Try to
10024   // combine it here.
10025   if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) {
10026     if (!isa<ShuffleVectorSDNode>(NewShuffle))
10027       return NewShuffle;
10028     Op = NewShuffle;
10029     SVOp = cast<ShuffleVectorSDNode>(Op);
10030     V1 = Op.getOperand(0);
10031     V2 = Op.getOperand(1);
10032   }
10033   EVT VT = Op.getValueType();
10034   bool isLittleEndian = Subtarget.isLittleEndian();
10035 
10036   unsigned ShiftElts, InsertAtByte;
10037   bool Swap = false;
10038 
10039   // If this is a load-and-splat, we can do that with a single instruction
10040   // in some cases. However if the load has multiple uses, we don't want to
10041   // combine it because that will just produce multiple loads.
10042   bool IsPermutedLoad = false;
10043   const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad);
10044   if (InputLoad && Subtarget.hasVSX() && V2.isUndef() &&
10045       (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) &&
10046       InputLoad->hasOneUse()) {
10047     bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4);
10048     int SplatIdx =
10049       PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG);
10050 
10051     // The splat index for permuted loads will be in the left half of the vector
10052     // which is strictly wider than the loaded value by 8 bytes. So we need to
10053     // adjust the splat index to point to the correct address in memory.
10054     if (IsPermutedLoad) {
10055       assert((isLittleEndian || IsFourByte) &&
10056              "Unexpected size for permuted load on big endian target");
10057       SplatIdx += IsFourByte ? 2 : 1;
10058       assert((SplatIdx < (IsFourByte ? 4 : 2)) &&
10059              "Splat of a value outside of the loaded memory");
10060     }
10061 
10062     LoadSDNode *LD = cast<LoadSDNode>(*InputLoad);
10063     // For 4-byte load-and-splat, we need Power9.
10064     if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) {
10065       uint64_t Offset = 0;
10066       if (IsFourByte)
10067         Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4;
10068       else
10069         Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8;
10070 
10071       // If the width of the load is the same as the width of the splat,
10072       // loading with an offset would load the wrong memory.
10073       if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64))
10074         Offset = 0;
10075 
10076       SDValue BasePtr = LD->getBasePtr();
10077       if (Offset != 0)
10078         BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
10079                               BasePtr, DAG.getIntPtrConstant(Offset, dl));
10080       SDValue Ops[] = {
10081         LD->getChain(),    // Chain
10082         BasePtr,           // BasePtr
10083         DAG.getValueType(Op.getValueType()) // VT
10084       };
10085       SDVTList VTL =
10086         DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other);
10087       SDValue LdSplt =
10088         DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL,
10089                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
10090       DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1));
10091       if (LdSplt.getValueType() != SVOp->getValueType(0))
10092         LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt);
10093       return LdSplt;
10094     }
10095   }
10096 
10097   // All v2i64 and v2f64 shuffles are legal
10098   if (VT == MVT::v2i64 || VT == MVT::v2f64)
10099     return Op;
10100 
10101   if (Subtarget.hasP9Vector() &&
10102       PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap,
10103                            isLittleEndian)) {
10104     if (Swap)
10105       std::swap(V1, V2);
10106     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10107     SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2);
10108     if (ShiftElts) {
10109       SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2,
10110                                 DAG.getConstant(ShiftElts, dl, MVT::i32));
10111       SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl,
10112                                 DAG.getConstant(InsertAtByte, dl, MVT::i32));
10113       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
10114     }
10115     SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2,
10116                               DAG.getConstant(InsertAtByte, dl, MVT::i32));
10117     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins);
10118   }
10119 
10120   if (Subtarget.hasPrefixInstrs()) {
10121     SDValue SplatInsertNode;
10122     if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG)))
10123       return SplatInsertNode;
10124   }
10125 
10126   if (Subtarget.hasP9Altivec()) {
10127     SDValue NewISDNode;
10128     if ((NewISDNode = lowerToVINSERTH(SVOp, DAG)))
10129       return NewISDNode;
10130 
10131     if ((NewISDNode = lowerToVINSERTB(SVOp, DAG)))
10132       return NewISDNode;
10133   }
10134 
10135   if (Subtarget.hasVSX() &&
10136       PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10137     if (Swap)
10138       std::swap(V1, V2);
10139     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10140     SDValue Conv2 =
10141         DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2);
10142 
10143     SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2,
10144                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10145     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl);
10146   }
10147 
10148   if (Subtarget.hasVSX() &&
10149     PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) {
10150     if (Swap)
10151       std::swap(V1, V2);
10152     SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10153     SDValue Conv2 =
10154         DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2);
10155 
10156     SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2,
10157                               DAG.getConstant(ShiftElts, dl, MVT::i32));
10158     return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI);
10159   }
10160 
10161   if (Subtarget.hasP9Vector()) {
10162      if (PPC::isXXBRHShuffleMask(SVOp)) {
10163       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1);
10164       SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv);
10165       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord);
10166     } else if (PPC::isXXBRWShuffleMask(SVOp)) {
10167       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10168       SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv);
10169       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord);
10170     } else if (PPC::isXXBRDShuffleMask(SVOp)) {
10171       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1);
10172       SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv);
10173       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord);
10174     } else if (PPC::isXXBRQShuffleMask(SVOp)) {
10175       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1);
10176       SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv);
10177       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord);
10178     }
10179   }
10180 
10181   if (Subtarget.hasVSX()) {
10182     if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) {
10183       int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG);
10184 
10185       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1);
10186       SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv,
10187                                   DAG.getConstant(SplatIdx, dl, MVT::i32));
10188       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat);
10189     }
10190 
10191     // Left shifts of 8 bytes are actually swaps. Convert accordingly.
10192     if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) {
10193       SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1);
10194       SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv);
10195       return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap);
10196     }
10197   }
10198 
10199   // Cases that are handled by instructions that take permute immediates
10200   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
10201   // selected by the instruction selector.
10202   if (V2.isUndef()) {
10203     if (PPC::isSplatShuffleMask(SVOp, 1) ||
10204         PPC::isSplatShuffleMask(SVOp, 2) ||
10205         PPC::isSplatShuffleMask(SVOp, 4) ||
10206         PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) ||
10207         PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) ||
10208         PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 ||
10209         PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) ||
10210         PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) ||
10211         PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) ||
10212         PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) ||
10213         PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) ||
10214         PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) ||
10215         (Subtarget.hasP8Altivec() && (
10216          PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) ||
10217          PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) ||
10218          PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) {
10219       return Op;
10220     }
10221   }
10222 
10223   // Altivec has a variety of "shuffle immediates" that take two vector inputs
10224   // and produce a fixed permutation.  If any of these match, do not lower to
10225   // VPERM.
10226   unsigned int ShuffleKind = isLittleEndian ? 2 : 0;
10227   if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10228       PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10229       PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 ||
10230       PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10231       PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10232       PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10233       PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) ||
10234       PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) ||
10235       PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) ||
10236       (Subtarget.hasP8Altivec() && (
10237        PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) ||
10238        PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) ||
10239        PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG))))
10240     return Op;
10241 
10242   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
10243   // perfect shuffle table to emit an optimal matching sequence.
10244   ArrayRef<int> PermMask = SVOp->getMask();
10245 
10246   if (!DisablePerfectShuffle && !isLittleEndian) {
10247     unsigned PFIndexes[4];
10248     bool isFourElementShuffle = true;
10249     for (unsigned i = 0; i != 4 && isFourElementShuffle;
10250          ++i) {                           // Element number
10251       unsigned EltNo = 8;                 // Start out undef.
10252       for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
10253         if (PermMask[i * 4 + j] < 0)
10254           continue; // Undef, ignore it.
10255 
10256         unsigned ByteSource = PermMask[i * 4 + j];
10257         if ((ByteSource & 3) != j) {
10258           isFourElementShuffle = false;
10259           break;
10260         }
10261 
10262         if (EltNo == 8) {
10263           EltNo = ByteSource / 4;
10264         } else if (EltNo != ByteSource / 4) {
10265           isFourElementShuffle = false;
10266           break;
10267         }
10268       }
10269       PFIndexes[i] = EltNo;
10270     }
10271 
10272     // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
10273     // perfect shuffle vector to determine if it is cost effective to do this as
10274     // discrete instructions, or whether we should use a vperm.
10275     // For now, we skip this for little endian until such time as we have a
10276     // little-endian perfect shuffle table.
10277     if (isFourElementShuffle) {
10278       // Compute the index in the perfect shuffle table.
10279       unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 +
10280                               PFIndexes[2] * 9 + PFIndexes[3];
10281 
10282       unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
10283       unsigned Cost = (PFEntry >> 30);
10284 
10285       // Determining when to avoid vperm is tricky.  Many things affect the cost
10286       // of vperm, particularly how many times the perm mask needs to be
10287       // computed. For example, if the perm mask can be hoisted out of a loop or
10288       // is already used (perhaps because there are multiple permutes with the
10289       // same shuffle mask?) the vperm has a cost of 1.  OTOH, hoisting the
10290       // permute mask out of the loop requires an extra register.
10291       //
10292       // As a compromise, we only emit discrete instructions if the shuffle can
10293       // be generated in 3 or fewer operations.  When we have loop information
10294       // available, if this block is within a loop, we should avoid using vperm
10295       // for 3-operation perms and use a constant pool load instead.
10296       if (Cost < 3)
10297         return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
10298     }
10299   }
10300 
10301   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
10302   // vector that will get spilled to the constant pool.
10303   if (V2.isUndef()) V2 = V1;
10304 
10305   return LowerVPERM(Op, DAG, PermMask, VT, V1, V2);
10306 }
10307 
LowerVPERM(SDValue Op,SelectionDAG & DAG,ArrayRef<int> PermMask,EVT VT,SDValue V1,SDValue V2) const10308 SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG,
10309                                       ArrayRef<int> PermMask, EVT VT,
10310                                       SDValue V1, SDValue V2) const {
10311   unsigned Opcode = PPCISD::VPERM;
10312   EVT ValType = V1.getValueType();
10313   SDLoc dl(Op);
10314   bool NeedSwap = false;
10315   bool isLittleEndian = Subtarget.isLittleEndian();
10316   bool isPPC64 = Subtarget.isPPC64();
10317 
10318   if (Subtarget.hasVSX() && Subtarget.hasP9Vector() &&
10319       (V1->hasOneUse() || V2->hasOneUse())) {
10320     LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using "
10321                          "XXPERM instead\n");
10322     Opcode = PPCISD::XXPERM;
10323 
10324     // The second input to XXPERM is also an output so if the second input has
10325     // multiple uses then copying is necessary, as a result we want the
10326     // single-use operand to be used as the second input to prevent copying.
10327     if ((!isLittleEndian && !V2->hasOneUse() && V1->hasOneUse()) ||
10328         (isLittleEndian && !V1->hasOneUse() && V2->hasOneUse())) {
10329       std::swap(V1, V2);
10330       NeedSwap = !NeedSwap;
10331     }
10332   }
10333 
10334   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
10335   // that it is in input element units, not in bytes.  Convert now.
10336 
10337   // For little endian, the order of the input vectors is reversed, and
10338   // the permutation mask is complemented with respect to 31.  This is
10339   // necessary to produce proper semantics with the big-endian-based vperm
10340   // instruction.
10341   EVT EltVT = V1.getValueType().getVectorElementType();
10342   unsigned BytesPerElement = EltVT.getSizeInBits() / 8;
10343 
10344   bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10345   bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD;
10346 
10347   /*
10348   Vectors will be appended like so: [ V1 | v2 ]
10349   XXSWAPD on V1:
10350   [   A   |   B   |   C   |   D   ] -> [   C   |   D   |   A   |   B   ]
10351      0-3     4-7     8-11   12-15         0-3     4-7     8-11   12-15
10352   i.e.  index of A, B += 8, and index of C, D -= 8.
10353   XXSWAPD on V2:
10354   [   E   |   F   |   G   |   H   ] -> [   G   |   H   |   E   |   F   ]
10355     16-19   20-23   24-27   28-31        16-19   20-23   24-27   28-31
10356   i.e.  index of E, F += 8, index of G, H -= 8
10357   Swap V1 and V2:
10358   [   V1   |   V2  ] -> [   V2   |   V1   ]
10359      0-15     16-31        0-15     16-31
10360   i.e.  index of V1 += 16, index of V2 -= 16
10361   */
10362 
10363   SmallVector<SDValue, 16> ResultMask;
10364   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
10365     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
10366 
10367     if (V1HasXXSWAPD) {
10368       if (SrcElt < 8)
10369         SrcElt += 8;
10370       else if (SrcElt < 16)
10371         SrcElt -= 8;
10372     }
10373     if (V2HasXXSWAPD) {
10374       if (SrcElt > 23)
10375         SrcElt -= 8;
10376       else if (SrcElt > 15)
10377         SrcElt += 8;
10378     }
10379     if (NeedSwap) {
10380       if (SrcElt < 16)
10381         SrcElt += 16;
10382       else
10383         SrcElt -= 16;
10384     }
10385     for (unsigned j = 0; j != BytesPerElement; ++j)
10386       if (isLittleEndian)
10387         ResultMask.push_back(
10388             DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32));
10389       else
10390         ResultMask.push_back(
10391             DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32));
10392   }
10393 
10394   if (V1HasXXSWAPD) {
10395     dl = SDLoc(V1->getOperand(0));
10396     V1 = V1->getOperand(0)->getOperand(1);
10397   }
10398   if (V2HasXXSWAPD) {
10399     dl = SDLoc(V2->getOperand(0));
10400     V2 = V2->getOperand(0)->getOperand(1);
10401   }
10402 
10403   if (isPPC64 && (V1HasXXSWAPD || V2HasXXSWAPD)) {
10404     if (ValType != MVT::v2f64)
10405       V1 = DAG.getBitcast(MVT::v2f64, V1);
10406     if (V2.getValueType() != MVT::v2f64)
10407       V2 = DAG.getBitcast(MVT::v2f64, V2);
10408   }
10409 
10410   ShufflesHandledWithVPERM++;
10411   SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask);
10412   LLVM_DEBUG({
10413     ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
10414     if (Opcode == PPCISD::XXPERM) {
10415       dbgs() << "Emitting a XXPERM for the following shuffle:\n";
10416     } else {
10417       dbgs() << "Emitting a VPERM for the following shuffle:\n";
10418     }
10419     SVOp->dump();
10420     dbgs() << "With the following permute control vector:\n";
10421     VPermMask.dump();
10422   });
10423 
10424   if (Opcode == PPCISD::XXPERM)
10425     VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask);
10426 
10427   // Only need to place items backwards in LE,
10428   // the mask was properly calculated.
10429   if (isLittleEndian)
10430     std::swap(V1, V2);
10431 
10432   SDValue VPERMNode =
10433       DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask);
10434 
10435   VPERMNode = DAG.getBitcast(ValType, VPERMNode);
10436   return VPERMNode;
10437 }
10438 
10439 /// getVectorCompareInfo - Given an intrinsic, return false if it is not a
10440 /// vector comparison.  If it is, return true and fill in Opc/isDot with
10441 /// information about the intrinsic.
getVectorCompareInfo(SDValue Intrin,int & CompareOpc,bool & isDot,const PPCSubtarget & Subtarget)10442 static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc,
10443                                  bool &isDot, const PPCSubtarget &Subtarget) {
10444   unsigned IntrinsicID = Intrin.getConstantOperandVal(0);
10445   CompareOpc = -1;
10446   isDot = false;
10447   switch (IntrinsicID) {
10448   default:
10449     return false;
10450   // Comparison predicates.
10451   case Intrinsic::ppc_altivec_vcmpbfp_p:
10452     CompareOpc = 966;
10453     isDot = true;
10454     break;
10455   case Intrinsic::ppc_altivec_vcmpeqfp_p:
10456     CompareOpc = 198;
10457     isDot = true;
10458     break;
10459   case Intrinsic::ppc_altivec_vcmpequb_p:
10460     CompareOpc = 6;
10461     isDot = true;
10462     break;
10463   case Intrinsic::ppc_altivec_vcmpequh_p:
10464     CompareOpc = 70;
10465     isDot = true;
10466     break;
10467   case Intrinsic::ppc_altivec_vcmpequw_p:
10468     CompareOpc = 134;
10469     isDot = true;
10470     break;
10471   case Intrinsic::ppc_altivec_vcmpequd_p:
10472     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10473       CompareOpc = 199;
10474       isDot = true;
10475     } else
10476       return false;
10477     break;
10478   case Intrinsic::ppc_altivec_vcmpneb_p:
10479   case Intrinsic::ppc_altivec_vcmpneh_p:
10480   case Intrinsic::ppc_altivec_vcmpnew_p:
10481   case Intrinsic::ppc_altivec_vcmpnezb_p:
10482   case Intrinsic::ppc_altivec_vcmpnezh_p:
10483   case Intrinsic::ppc_altivec_vcmpnezw_p:
10484     if (Subtarget.hasP9Altivec()) {
10485       switch (IntrinsicID) {
10486       default:
10487         llvm_unreachable("Unknown comparison intrinsic.");
10488       case Intrinsic::ppc_altivec_vcmpneb_p:
10489         CompareOpc = 7;
10490         break;
10491       case Intrinsic::ppc_altivec_vcmpneh_p:
10492         CompareOpc = 71;
10493         break;
10494       case Intrinsic::ppc_altivec_vcmpnew_p:
10495         CompareOpc = 135;
10496         break;
10497       case Intrinsic::ppc_altivec_vcmpnezb_p:
10498         CompareOpc = 263;
10499         break;
10500       case Intrinsic::ppc_altivec_vcmpnezh_p:
10501         CompareOpc = 327;
10502         break;
10503       case Intrinsic::ppc_altivec_vcmpnezw_p:
10504         CompareOpc = 391;
10505         break;
10506       }
10507       isDot = true;
10508     } else
10509       return false;
10510     break;
10511   case Intrinsic::ppc_altivec_vcmpgefp_p:
10512     CompareOpc = 454;
10513     isDot = true;
10514     break;
10515   case Intrinsic::ppc_altivec_vcmpgtfp_p:
10516     CompareOpc = 710;
10517     isDot = true;
10518     break;
10519   case Intrinsic::ppc_altivec_vcmpgtsb_p:
10520     CompareOpc = 774;
10521     isDot = true;
10522     break;
10523   case Intrinsic::ppc_altivec_vcmpgtsh_p:
10524     CompareOpc = 838;
10525     isDot = true;
10526     break;
10527   case Intrinsic::ppc_altivec_vcmpgtsw_p:
10528     CompareOpc = 902;
10529     isDot = true;
10530     break;
10531   case Intrinsic::ppc_altivec_vcmpgtsd_p:
10532     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10533       CompareOpc = 967;
10534       isDot = true;
10535     } else
10536       return false;
10537     break;
10538   case Intrinsic::ppc_altivec_vcmpgtub_p:
10539     CompareOpc = 518;
10540     isDot = true;
10541     break;
10542   case Intrinsic::ppc_altivec_vcmpgtuh_p:
10543     CompareOpc = 582;
10544     isDot = true;
10545     break;
10546   case Intrinsic::ppc_altivec_vcmpgtuw_p:
10547     CompareOpc = 646;
10548     isDot = true;
10549     break;
10550   case Intrinsic::ppc_altivec_vcmpgtud_p:
10551     if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) {
10552       CompareOpc = 711;
10553       isDot = true;
10554     } else
10555       return false;
10556     break;
10557 
10558   case Intrinsic::ppc_altivec_vcmpequq:
10559   case Intrinsic::ppc_altivec_vcmpgtsq:
10560   case Intrinsic::ppc_altivec_vcmpgtuq:
10561     if (!Subtarget.isISA3_1())
10562       return false;
10563     switch (IntrinsicID) {
10564     default:
10565       llvm_unreachable("Unknown comparison intrinsic.");
10566     case Intrinsic::ppc_altivec_vcmpequq:
10567       CompareOpc = 455;
10568       break;
10569     case Intrinsic::ppc_altivec_vcmpgtsq:
10570       CompareOpc = 903;
10571       break;
10572     case Intrinsic::ppc_altivec_vcmpgtuq:
10573       CompareOpc = 647;
10574       break;
10575     }
10576     break;
10577 
10578   // VSX predicate comparisons use the same infrastructure
10579   case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10580   case Intrinsic::ppc_vsx_xvcmpgedp_p:
10581   case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10582   case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10583   case Intrinsic::ppc_vsx_xvcmpgesp_p:
10584   case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10585     if (Subtarget.hasVSX()) {
10586       switch (IntrinsicID) {
10587       case Intrinsic::ppc_vsx_xvcmpeqdp_p:
10588         CompareOpc = 99;
10589         break;
10590       case Intrinsic::ppc_vsx_xvcmpgedp_p:
10591         CompareOpc = 115;
10592         break;
10593       case Intrinsic::ppc_vsx_xvcmpgtdp_p:
10594         CompareOpc = 107;
10595         break;
10596       case Intrinsic::ppc_vsx_xvcmpeqsp_p:
10597         CompareOpc = 67;
10598         break;
10599       case Intrinsic::ppc_vsx_xvcmpgesp_p:
10600         CompareOpc = 83;
10601         break;
10602       case Intrinsic::ppc_vsx_xvcmpgtsp_p:
10603         CompareOpc = 75;
10604         break;
10605       }
10606       isDot = true;
10607     } else
10608       return false;
10609     break;
10610 
10611   // Normal Comparisons.
10612   case Intrinsic::ppc_altivec_vcmpbfp:
10613     CompareOpc = 966;
10614     break;
10615   case Intrinsic::ppc_altivec_vcmpeqfp:
10616     CompareOpc = 198;
10617     break;
10618   case Intrinsic::ppc_altivec_vcmpequb:
10619     CompareOpc = 6;
10620     break;
10621   case Intrinsic::ppc_altivec_vcmpequh:
10622     CompareOpc = 70;
10623     break;
10624   case Intrinsic::ppc_altivec_vcmpequw:
10625     CompareOpc = 134;
10626     break;
10627   case Intrinsic::ppc_altivec_vcmpequd:
10628     if (Subtarget.hasP8Altivec())
10629       CompareOpc = 199;
10630     else
10631       return false;
10632     break;
10633   case Intrinsic::ppc_altivec_vcmpneb:
10634   case Intrinsic::ppc_altivec_vcmpneh:
10635   case Intrinsic::ppc_altivec_vcmpnew:
10636   case Intrinsic::ppc_altivec_vcmpnezb:
10637   case Intrinsic::ppc_altivec_vcmpnezh:
10638   case Intrinsic::ppc_altivec_vcmpnezw:
10639     if (Subtarget.hasP9Altivec())
10640       switch (IntrinsicID) {
10641       default:
10642         llvm_unreachable("Unknown comparison intrinsic.");
10643       case Intrinsic::ppc_altivec_vcmpneb:
10644         CompareOpc = 7;
10645         break;
10646       case Intrinsic::ppc_altivec_vcmpneh:
10647         CompareOpc = 71;
10648         break;
10649       case Intrinsic::ppc_altivec_vcmpnew:
10650         CompareOpc = 135;
10651         break;
10652       case Intrinsic::ppc_altivec_vcmpnezb:
10653         CompareOpc = 263;
10654         break;
10655       case Intrinsic::ppc_altivec_vcmpnezh:
10656         CompareOpc = 327;
10657         break;
10658       case Intrinsic::ppc_altivec_vcmpnezw:
10659         CompareOpc = 391;
10660         break;
10661       }
10662     else
10663       return false;
10664     break;
10665   case Intrinsic::ppc_altivec_vcmpgefp:
10666     CompareOpc = 454;
10667     break;
10668   case Intrinsic::ppc_altivec_vcmpgtfp:
10669     CompareOpc = 710;
10670     break;
10671   case Intrinsic::ppc_altivec_vcmpgtsb:
10672     CompareOpc = 774;
10673     break;
10674   case Intrinsic::ppc_altivec_vcmpgtsh:
10675     CompareOpc = 838;
10676     break;
10677   case Intrinsic::ppc_altivec_vcmpgtsw:
10678     CompareOpc = 902;
10679     break;
10680   case Intrinsic::ppc_altivec_vcmpgtsd:
10681     if (Subtarget.hasP8Altivec())
10682       CompareOpc = 967;
10683     else
10684       return false;
10685     break;
10686   case Intrinsic::ppc_altivec_vcmpgtub:
10687     CompareOpc = 518;
10688     break;
10689   case Intrinsic::ppc_altivec_vcmpgtuh:
10690     CompareOpc = 582;
10691     break;
10692   case Intrinsic::ppc_altivec_vcmpgtuw:
10693     CompareOpc = 646;
10694     break;
10695   case Intrinsic::ppc_altivec_vcmpgtud:
10696     if (Subtarget.hasP8Altivec())
10697       CompareOpc = 711;
10698     else
10699       return false;
10700     break;
10701   case Intrinsic::ppc_altivec_vcmpequq_p:
10702   case Intrinsic::ppc_altivec_vcmpgtsq_p:
10703   case Intrinsic::ppc_altivec_vcmpgtuq_p:
10704     if (!Subtarget.isISA3_1())
10705       return false;
10706     switch (IntrinsicID) {
10707     default:
10708       llvm_unreachable("Unknown comparison intrinsic.");
10709     case Intrinsic::ppc_altivec_vcmpequq_p:
10710       CompareOpc = 455;
10711       break;
10712     case Intrinsic::ppc_altivec_vcmpgtsq_p:
10713       CompareOpc = 903;
10714       break;
10715     case Intrinsic::ppc_altivec_vcmpgtuq_p:
10716       CompareOpc = 647;
10717       break;
10718     }
10719     isDot = true;
10720     break;
10721   }
10722   return true;
10723 }
10724 
10725 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
10726 /// lower, do it, otherwise return null.
LowerINTRINSIC_WO_CHAIN(SDValue Op,SelectionDAG & DAG) const10727 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
10728                                                    SelectionDAG &DAG) const {
10729   unsigned IntrinsicID = Op.getConstantOperandVal(0);
10730 
10731   SDLoc dl(Op);
10732 
10733   switch (IntrinsicID) {
10734   case Intrinsic::thread_pointer:
10735     // Reads the thread pointer register, used for __builtin_thread_pointer.
10736     if (Subtarget.isPPC64())
10737       return DAG.getRegister(PPC::X13, MVT::i64);
10738     return DAG.getRegister(PPC::R2, MVT::i32);
10739 
10740   case Intrinsic::ppc_mma_disassemble_acc: {
10741     if (Subtarget.isISAFuture()) {
10742       EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
10743       SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl,
10744                                                    ArrayRef(ReturnTypes, 2),
10745                                                    Op.getOperand(1)),
10746                                 0);
10747       SmallVector<SDValue, 4> RetOps;
10748       SDValue Value = SDValue(WideVec.getNode(), 0);
10749       SDValue Value2 = SDValue(WideVec.getNode(), 1);
10750 
10751       SDValue Extract;
10752       Extract = DAG.getNode(
10753           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10754           Subtarget.isLittleEndian() ? Value2 : Value,
10755           DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10756                           dl, getPointerTy(DAG.getDataLayout())));
10757       RetOps.push_back(Extract);
10758       Extract = DAG.getNode(
10759           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10760           Subtarget.isLittleEndian() ? Value2 : Value,
10761           DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10762                           dl, getPointerTy(DAG.getDataLayout())));
10763       RetOps.push_back(Extract);
10764       Extract = DAG.getNode(
10765           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10766           Subtarget.isLittleEndian() ? Value : Value2,
10767           DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0,
10768                           dl, getPointerTy(DAG.getDataLayout())));
10769       RetOps.push_back(Extract);
10770       Extract = DAG.getNode(
10771           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
10772           Subtarget.isLittleEndian() ? Value : Value2,
10773           DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1,
10774                           dl, getPointerTy(DAG.getDataLayout())));
10775       RetOps.push_back(Extract);
10776       return DAG.getMergeValues(RetOps, dl);
10777     }
10778     [[fallthrough]];
10779   }
10780   case Intrinsic::ppc_vsx_disassemble_pair: {
10781     int NumVecs = 2;
10782     SDValue WideVec = Op.getOperand(1);
10783     if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) {
10784       NumVecs = 4;
10785       WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec);
10786     }
10787     SmallVector<SDValue, 4> RetOps;
10788     for (int VecNo = 0; VecNo < NumVecs; VecNo++) {
10789       SDValue Extract = DAG.getNode(
10790           PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec,
10791           DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo
10792                                                      : VecNo,
10793                           dl, getPointerTy(DAG.getDataLayout())));
10794       RetOps.push_back(Extract);
10795     }
10796     return DAG.getMergeValues(RetOps, dl);
10797   }
10798 
10799   case Intrinsic::ppc_mma_xxmfacc:
10800   case Intrinsic::ppc_mma_xxmtacc: {
10801     // Allow pre-isa-future subtargets to lower as normal.
10802     if (!Subtarget.isISAFuture())
10803       return SDValue();
10804     // The intrinsics for xxmtacc and xxmfacc take one argument of
10805     // type v512i1, for future cpu the corresponding wacc instruction
10806     // dmxx[inst|extf]dmr512 is always generated for type v512i1, negating
10807     // the need to produce the xxm[t|f]acc.
10808     SDValue WideVec = Op.getOperand(1);
10809     DAG.ReplaceAllUsesWith(Op, WideVec);
10810     return SDValue();
10811   }
10812 
10813   case Intrinsic::ppc_unpack_longdouble: {
10814     auto *Idx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
10815     assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) &&
10816            "Argument of long double unpack must be 0 or 1!");
10817     return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1),
10818                        DAG.getConstant(!!(Idx->getSExtValue()), dl,
10819                                        Idx->getValueType(0)));
10820   }
10821 
10822   case Intrinsic::ppc_compare_exp_lt:
10823   case Intrinsic::ppc_compare_exp_gt:
10824   case Intrinsic::ppc_compare_exp_eq:
10825   case Intrinsic::ppc_compare_exp_uo: {
10826     unsigned Pred;
10827     switch (IntrinsicID) {
10828     case Intrinsic::ppc_compare_exp_lt:
10829       Pred = PPC::PRED_LT;
10830       break;
10831     case Intrinsic::ppc_compare_exp_gt:
10832       Pred = PPC::PRED_GT;
10833       break;
10834     case Intrinsic::ppc_compare_exp_eq:
10835       Pred = PPC::PRED_EQ;
10836       break;
10837     case Intrinsic::ppc_compare_exp_uo:
10838       Pred = PPC::PRED_UN;
10839       break;
10840     }
10841     return SDValue(
10842         DAG.getMachineNode(
10843             PPC::SELECT_CC_I4, dl, MVT::i32,
10844             {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32,
10845                                         Op.getOperand(1), Op.getOperand(2)),
10846                      0),
10847              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10848              DAG.getTargetConstant(Pred, dl, MVT::i32)}),
10849         0);
10850   }
10851   case Intrinsic::ppc_test_data_class: {
10852     EVT OpVT = Op.getOperand(1).getValueType();
10853     unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP
10854                                          : (OpVT == MVT::f64 ? PPC::XSTSTDCDP
10855                                                              : PPC::XSTSTDCSP);
10856     return SDValue(
10857         DAG.getMachineNode(
10858             PPC::SELECT_CC_I4, dl, MVT::i32,
10859             {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2),
10860                                         Op.getOperand(1)),
10861                      0),
10862              DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32),
10863              DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}),
10864         0);
10865   }
10866   case Intrinsic::ppc_fnmsub: {
10867     EVT VT = Op.getOperand(1).getValueType();
10868     if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128))
10869       return DAG.getNode(
10870           ISD::FNEG, dl, VT,
10871           DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2),
10872                       DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3))));
10873     return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1),
10874                        Op.getOperand(2), Op.getOperand(3));
10875   }
10876   case Intrinsic::ppc_convert_f128_to_ppcf128:
10877   case Intrinsic::ppc_convert_ppcf128_to_f128: {
10878     RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128
10879                             ? RTLIB::CONVERT_PPCF128_F128
10880                             : RTLIB::CONVERT_F128_PPCF128;
10881     MakeLibCallOptions CallOptions;
10882     std::pair<SDValue, SDValue> Result =
10883         makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions,
10884                     dl, SDValue());
10885     return Result.first;
10886   }
10887   case Intrinsic::ppc_maxfe:
10888   case Intrinsic::ppc_maxfl:
10889   case Intrinsic::ppc_maxfs:
10890   case Intrinsic::ppc_minfe:
10891   case Intrinsic::ppc_minfl:
10892   case Intrinsic::ppc_minfs: {
10893     EVT VT = Op.getValueType();
10894     assert(
10895         all_of(Op->ops().drop_front(4),
10896                [VT](const SDUse &Use) { return Use.getValueType() == VT; }) &&
10897         "ppc_[max|min]f[e|l|s] must have uniform type arguments");
10898     (void)VT;
10899     ISD::CondCode CC = ISD::SETGT;
10900     if (IntrinsicID == Intrinsic::ppc_minfe ||
10901         IntrinsicID == Intrinsic::ppc_minfl ||
10902         IntrinsicID == Intrinsic::ppc_minfs)
10903       CC = ISD::SETLT;
10904     unsigned I = Op.getNumOperands() - 2, Cnt = I;
10905     SDValue Res = Op.getOperand(I);
10906     for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) {
10907       Res =
10908           DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC);
10909     }
10910     return Res;
10911   }
10912   }
10913 
10914   // If this is a lowered altivec predicate compare, CompareOpc is set to the
10915   // opcode number of the comparison.
10916   int CompareOpc;
10917   bool isDot;
10918   if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget))
10919     return SDValue();    // Don't custom lower most intrinsics.
10920 
10921   // If this is a non-dot comparison, make the VCMP node and we are done.
10922   if (!isDot) {
10923     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
10924                               Op.getOperand(1), Op.getOperand(2),
10925                               DAG.getConstant(CompareOpc, dl, MVT::i32));
10926     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
10927   }
10928 
10929   // Create the PPCISD altivec 'dot' comparison node.
10930   SDValue Ops[] = {
10931     Op.getOperand(2),  // LHS
10932     Op.getOperand(3),  // RHS
10933     DAG.getConstant(CompareOpc, dl, MVT::i32)
10934   };
10935   EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
10936   SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
10937 
10938   // Now that we have the comparison, emit a copy from the CR to a GPR.
10939   // This is flagged to the above dot comparison.
10940   SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32,
10941                                 DAG.getRegister(PPC::CR6, MVT::i32),
10942                                 CompNode.getValue(1));
10943 
10944   // Unpack the result based on how the target uses it.
10945   unsigned BitNo;   // Bit # of CR6.
10946   bool InvertBit;   // Invert result?
10947   switch (Op.getConstantOperandVal(1)) {
10948   default:  // Can't happen, don't crash on invalid number though.
10949   case 0:   // Return the value of the EQ bit of CR6.
10950     BitNo = 0; InvertBit = false;
10951     break;
10952   case 1:   // Return the inverted value of the EQ bit of CR6.
10953     BitNo = 0; InvertBit = true;
10954     break;
10955   case 2:   // Return the value of the LT bit of CR6.
10956     BitNo = 2; InvertBit = false;
10957     break;
10958   case 3:   // Return the inverted value of the LT bit of CR6.
10959     BitNo = 2; InvertBit = true;
10960     break;
10961   }
10962 
10963   // Shift the bit into the low position.
10964   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
10965                       DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32));
10966   // Isolate the bit.
10967   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
10968                       DAG.getConstant(1, dl, MVT::i32));
10969 
10970   // If we are supposed to, toggle the bit.
10971   if (InvertBit)
10972     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
10973                         DAG.getConstant(1, dl, MVT::i32));
10974   return Flags;
10975 }
10976 
LowerINTRINSIC_VOID(SDValue Op,SelectionDAG & DAG) const10977 SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op,
10978                                                SelectionDAG &DAG) const {
10979   // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to
10980   // the beginning of the argument list.
10981   int ArgStart = isa<ConstantSDNode>(Op.getOperand(0)) ? 0 : 1;
10982   SDLoc DL(Op);
10983   switch (Op.getConstantOperandVal(ArgStart)) {
10984   case Intrinsic::ppc_cfence: {
10985     assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument.");
10986     SDValue Val = Op.getOperand(ArgStart + 1);
10987     EVT Ty = Val.getValueType();
10988     if (Ty == MVT::i128) {
10989       // FIXME: Testing one of two paired registers is sufficient to guarantee
10990       // ordering?
10991       Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val);
10992     }
10993     unsigned Opcode = Subtarget.isPPC64() ? PPC::CFENCE8 : PPC::CFENCE;
10994     EVT FTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32;
10995     return SDValue(
10996         DAG.getMachineNode(Opcode, DL, MVT::Other,
10997                            DAG.getNode(ISD::ANY_EXTEND, DL, FTy, Val),
10998                            Op.getOperand(0)),
10999         0);
11000   }
11001   default:
11002     break;
11003   }
11004   return SDValue();
11005 }
11006 
11007 // Lower scalar BSWAP64 to xxbrd.
LowerBSWAP(SDValue Op,SelectionDAG & DAG) const11008 SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const {
11009   SDLoc dl(Op);
11010   if (!Subtarget.isPPC64())
11011     return Op;
11012   // MTVSRDD
11013   Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0),
11014                    Op.getOperand(0));
11015   // XXBRD
11016   Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op);
11017   // MFVSRD
11018   int VectorIndex = 0;
11019   if (Subtarget.isLittleEndian())
11020     VectorIndex = 1;
11021   Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op,
11022                    DAG.getTargetConstant(VectorIndex, dl, MVT::i32));
11023   return Op;
11024 }
11025 
11026 // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be
11027 // compared to a value that is atomically loaded (atomic loads zero-extend).
LowerATOMIC_CMP_SWAP(SDValue Op,SelectionDAG & DAG) const11028 SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op,
11029                                                 SelectionDAG &DAG) const {
11030   assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP &&
11031          "Expecting an atomic compare-and-swap here.");
11032   SDLoc dl(Op);
11033   auto *AtomicNode = cast<AtomicSDNode>(Op.getNode());
11034   EVT MemVT = AtomicNode->getMemoryVT();
11035   if (MemVT.getSizeInBits() >= 32)
11036     return Op;
11037 
11038   SDValue CmpOp = Op.getOperand(2);
11039   // If this is already correctly zero-extended, leave it alone.
11040   auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits());
11041   if (DAG.MaskedValueIsZero(CmpOp, HighBits))
11042     return Op;
11043 
11044   // Clear the high bits of the compare operand.
11045   unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1;
11046   SDValue NewCmpOp =
11047     DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp,
11048                 DAG.getConstant(MaskVal, dl, MVT::i32));
11049 
11050   // Replace the existing compare operand with the properly zero-extended one.
11051   SmallVector<SDValue, 4> Ops;
11052   for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++)
11053     Ops.push_back(AtomicNode->getOperand(i));
11054   Ops[2] = NewCmpOp;
11055   MachineMemOperand *MMO = AtomicNode->getMemOperand();
11056   SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other);
11057   auto NodeTy =
11058     (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16;
11059   return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO);
11060 }
11061 
LowerATOMIC_LOAD_STORE(SDValue Op,SelectionDAG & DAG) const11062 SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op,
11063                                                   SelectionDAG &DAG) const {
11064   AtomicSDNode *N = cast<AtomicSDNode>(Op.getNode());
11065   EVT MemVT = N->getMemoryVT();
11066   assert(MemVT.getSimpleVT() == MVT::i128 &&
11067          "Expect quadword atomic operations");
11068   SDLoc dl(N);
11069   unsigned Opc = N->getOpcode();
11070   switch (Opc) {
11071   case ISD::ATOMIC_LOAD: {
11072     // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be
11073     // lowered to ppc instructions by pattern matching instruction selector.
11074     SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other);
11075     SmallVector<SDValue, 4> Ops{
11076         N->getOperand(0),
11077         DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)};
11078     for (int I = 1, E = N->getNumOperands(); I < E; ++I)
11079       Ops.push_back(N->getOperand(I));
11080     SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys,
11081                                                 Ops, MemVT, N->getMemOperand());
11082     SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal);
11083     SDValue ValHi =
11084         DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1));
11085     ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi,
11086                         DAG.getConstant(64, dl, MVT::i32));
11087     SDValue Val =
11088         DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi});
11089     return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other},
11090                        {Val, LoadedVal.getValue(2)});
11091   }
11092   case ISD::ATOMIC_STORE: {
11093     // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be
11094     // lowered to ppc instructions by pattern matching instruction selector.
11095     SDVTList Tys = DAG.getVTList(MVT::Other);
11096     SmallVector<SDValue, 4> Ops{
11097         N->getOperand(0),
11098         DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)};
11099     SDValue Val = N->getOperand(1);
11100     SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val);
11101     SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val,
11102                                 DAG.getConstant(64, dl, MVT::i32));
11103     ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi);
11104     Ops.push_back(ValLo);
11105     Ops.push_back(ValHi);
11106     Ops.push_back(N->getOperand(2));
11107     return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT,
11108                                    N->getMemOperand());
11109   }
11110   default:
11111     llvm_unreachable("Unexpected atomic opcode");
11112   }
11113 }
11114 
getDataClassTest(SDValue Op,FPClassTest Mask,const SDLoc & Dl,SelectionDAG & DAG,const PPCSubtarget & Subtarget)11115 static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl,
11116                                 SelectionDAG &DAG,
11117                                 const PPCSubtarget &Subtarget) {
11118   assert(Mask <= fcAllFlags && "Invalid fp_class flags!");
11119 
11120   enum DataClassMask {
11121     DC_NAN = 1 << 6,
11122     DC_NEG_INF = 1 << 4,
11123     DC_POS_INF = 1 << 5,
11124     DC_NEG_ZERO = 1 << 2,
11125     DC_POS_ZERO = 1 << 3,
11126     DC_NEG_SUBNORM = 1,
11127     DC_POS_SUBNORM = 1 << 1,
11128   };
11129 
11130   EVT VT = Op.getValueType();
11131 
11132   unsigned TestOp = VT == MVT::f128  ? PPC::XSTSTDCQP
11133                     : VT == MVT::f64 ? PPC::XSTSTDCDP
11134                                      : PPC::XSTSTDCSP;
11135 
11136   if (Mask == fcAllFlags)
11137     return DAG.getBoolConstant(true, Dl, MVT::i1, VT);
11138   if (Mask == 0)
11139     return DAG.getBoolConstant(false, Dl, MVT::i1, VT);
11140 
11141   // When it's cheaper or necessary to test reverse flags.
11142   if ((Mask & fcNormal) == fcNormal || Mask == ~fcQNan || Mask == ~fcSNan) {
11143     SDValue Rev = getDataClassTest(Op, ~Mask, Dl, DAG, Subtarget);
11144     return DAG.getNOT(Dl, Rev, MVT::i1);
11145   }
11146 
11147   // Power doesn't support testing whether a value is 'normal'. Test the rest
11148   // first, and test if it's 'not not-normal' with expected sign.
11149   if (Mask & fcNormal) {
11150     SDValue Rev(DAG.getMachineNode(
11151                     TestOp, Dl, MVT::i32,
11152                     DAG.getTargetConstant(DC_NAN | DC_NEG_INF | DC_POS_INF |
11153                                               DC_NEG_ZERO | DC_POS_ZERO |
11154                                               DC_NEG_SUBNORM | DC_POS_SUBNORM,
11155                                           Dl, MVT::i32),
11156                     Op),
11157                 0);
11158     // Sign are stored in CR bit 0, result are in CR bit 2.
11159     SDValue Sign(
11160         DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev,
11161                            DAG.getTargetConstant(PPC::sub_lt, Dl, MVT::i32)),
11162         0);
11163     SDValue Normal(DAG.getNOT(
11164         Dl,
11165         SDValue(DAG.getMachineNode(
11166                     TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev,
11167                     DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)),
11168                 0),
11169         MVT::i1));
11170     if (Mask & fcPosNormal)
11171       Sign = DAG.getNOT(Dl, Sign, MVT::i1);
11172     SDValue Result = DAG.getNode(ISD::AND, Dl, MVT::i1, Sign, Normal);
11173     if (Mask == fcPosNormal || Mask == fcNegNormal)
11174       return Result;
11175 
11176     return DAG.getNode(
11177         ISD::OR, Dl, MVT::i1,
11178         getDataClassTest(Op, Mask & ~fcNormal, Dl, DAG, Subtarget), Result);
11179   }
11180 
11181   // The instruction doesn't differentiate between signaling or quiet NaN. Test
11182   // the rest first, and test if it 'is NaN and is signaling/quiet'.
11183   if ((Mask & fcNan) == fcQNan || (Mask & fcNan) == fcSNan) {
11184     bool IsQuiet = Mask & fcQNan;
11185     SDValue NanCheck = getDataClassTest(Op, fcNan, Dl, DAG, Subtarget);
11186 
11187     // Quietness is determined by the first bit in fraction field.
11188     uint64_t QuietMask = 0;
11189     SDValue HighWord;
11190     if (VT == MVT::f128) {
11191       HighWord = DAG.getNode(
11192           ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op),
11193           DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 3 : 0, Dl));
11194       QuietMask = 0x8000;
11195     } else if (VT == MVT::f64) {
11196       if (Subtarget.isPPC64()) {
11197         HighWord = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32,
11198                                DAG.getBitcast(MVT::i64, Op),
11199                                DAG.getConstant(1, Dl, MVT::i32));
11200       } else {
11201         SDValue Vec = DAG.getBitcast(
11202             MVT::v4i32, DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v2f64, Op));
11203         HighWord = DAG.getNode(
11204             ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, Vec,
11205             DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 1 : 0, Dl));
11206       }
11207       QuietMask = 0x80000;
11208     } else if (VT == MVT::f32) {
11209       HighWord = DAG.getBitcast(MVT::i32, Op);
11210       QuietMask = 0x400000;
11211     }
11212     SDValue NanRes = DAG.getSetCC(
11213         Dl, MVT::i1,
11214         DAG.getNode(ISD::AND, Dl, MVT::i32, HighWord,
11215                     DAG.getConstant(QuietMask, Dl, MVT::i32)),
11216         DAG.getConstant(0, Dl, MVT::i32), IsQuiet ? ISD::SETNE : ISD::SETEQ);
11217     NanRes = DAG.getNode(ISD::AND, Dl, MVT::i1, NanCheck, NanRes);
11218     if (Mask == fcQNan || Mask == fcSNan)
11219       return NanRes;
11220 
11221     return DAG.getNode(ISD::OR, Dl, MVT::i1,
11222                        getDataClassTest(Op, Mask & ~fcNan, Dl, DAG, Subtarget),
11223                        NanRes);
11224   }
11225 
11226   unsigned NativeMask = 0;
11227   if ((Mask & fcNan) == fcNan)
11228     NativeMask |= DC_NAN;
11229   if (Mask & fcNegInf)
11230     NativeMask |= DC_NEG_INF;
11231   if (Mask & fcPosInf)
11232     NativeMask |= DC_POS_INF;
11233   if (Mask & fcNegZero)
11234     NativeMask |= DC_NEG_ZERO;
11235   if (Mask & fcPosZero)
11236     NativeMask |= DC_POS_ZERO;
11237   if (Mask & fcNegSubnormal)
11238     NativeMask |= DC_NEG_SUBNORM;
11239   if (Mask & fcPosSubnormal)
11240     NativeMask |= DC_POS_SUBNORM;
11241   return SDValue(
11242       DAG.getMachineNode(
11243           TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1,
11244           SDValue(DAG.getMachineNode(
11245                       TestOp, Dl, MVT::i32,
11246                       DAG.getTargetConstant(NativeMask, Dl, MVT::i32), Op),
11247                   0),
11248           DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)),
11249       0);
11250 }
11251 
LowerIS_FPCLASS(SDValue Op,SelectionDAG & DAG) const11252 SDValue PPCTargetLowering::LowerIS_FPCLASS(SDValue Op,
11253                                            SelectionDAG &DAG) const {
11254   assert(Subtarget.hasP9Vector() && "Test data class requires Power9");
11255   SDValue LHS = Op.getOperand(0);
11256   const auto *RHS = cast<ConstantSDNode>(Op.getOperand(1));
11257   SDLoc Dl(Op);
11258   FPClassTest Category = static_cast<FPClassTest>(RHS->getZExtValue());
11259   return getDataClassTest(LHS, Category, Dl, DAG, Subtarget);
11260 }
11261 
LowerSCALAR_TO_VECTOR(SDValue Op,SelectionDAG & DAG) const11262 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
11263                                                  SelectionDAG &DAG) const {
11264   SDLoc dl(Op);
11265   // Create a stack slot that is 16-byte aligned.
11266   MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
11267   int FrameIdx = MFI.CreateStackObject(16, Align(16), false);
11268   EVT PtrVT = getPointerTy(DAG.getDataLayout());
11269   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
11270 
11271   // Store the input value into Value#0 of the stack slot.
11272   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx,
11273                                MachinePointerInfo());
11274   // Load it out.
11275   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo());
11276 }
11277 
LowerINSERT_VECTOR_ELT(SDValue Op,SelectionDAG & DAG) const11278 SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op,
11279                                                   SelectionDAG &DAG) const {
11280   assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT &&
11281          "Should only be called for ISD::INSERT_VECTOR_ELT");
11282 
11283   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(2));
11284 
11285   EVT VT = Op.getValueType();
11286   SDLoc dl(Op);
11287   SDValue V1 = Op.getOperand(0);
11288   SDValue V2 = Op.getOperand(1);
11289 
11290   if (VT == MVT::v2f64 && C)
11291     return Op;
11292 
11293   if (Subtarget.hasP9Vector()) {
11294     // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way
11295     // because on P10, it allows this specific insert_vector_elt load pattern to
11296     // utilize the refactored load and store infrastructure in order to exploit
11297     // prefixed loads.
11298     // On targets with inexpensive direct moves (Power9 and up), a
11299     // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer
11300     // load since a single precision load will involve conversion to double
11301     // precision on the load followed by another conversion to single precision.
11302     if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) &&
11303         (isa<LoadSDNode>(V2))) {
11304       SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1);
11305       SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2);
11306       SDValue InsVecElt =
11307           DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector,
11308                       BitcastLoad, Op.getOperand(2));
11309       return DAG.getBitcast(MVT::v4f32, InsVecElt);
11310     }
11311   }
11312 
11313   if (Subtarget.isISA3_1()) {
11314     if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64())
11315       return SDValue();
11316     // On P10, we have legal lowering for constant and variable indices for
11317     // all vectors.
11318     if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
11319         VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64)
11320       return Op;
11321   }
11322 
11323   // Before P10, we have legal lowering for constant indices but not for
11324   // variable ones.
11325   if (!C)
11326     return SDValue();
11327 
11328   // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types.
11329   if (VT == MVT::v8i16 || VT == MVT::v16i8) {
11330     SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2);
11331     unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8;
11332     unsigned InsertAtElement = C->getZExtValue();
11333     unsigned InsertAtByte = InsertAtElement * BytesInEachElement;
11334     if (Subtarget.isLittleEndian()) {
11335       InsertAtByte = (16 - BytesInEachElement) - InsertAtByte;
11336     }
11337     return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz,
11338                        DAG.getConstant(InsertAtByte, dl, MVT::i32));
11339   }
11340   return Op;
11341 }
11342 
LowerVectorLoad(SDValue Op,SelectionDAG & DAG) const11343 SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op,
11344                                            SelectionDAG &DAG) const {
11345   SDLoc dl(Op);
11346   LoadSDNode *LN = cast<LoadSDNode>(Op.getNode());
11347   SDValue LoadChain = LN->getChain();
11348   SDValue BasePtr = LN->getBasePtr();
11349   EVT VT = Op.getValueType();
11350 
11351   if (VT != MVT::v256i1 && VT != MVT::v512i1)
11352     return Op;
11353 
11354   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11355   // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in
11356   // 2 or 4 vsx registers.
11357   assert((VT != MVT::v512i1 || Subtarget.hasMMA()) &&
11358          "Type unsupported without MMA");
11359   assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11360          "Type unsupported without paired vector support");
11361   Align Alignment = LN->getAlign();
11362   SmallVector<SDValue, 4> Loads;
11363   SmallVector<SDValue, 4> LoadChains;
11364   unsigned NumVecs = VT.getSizeInBits() / 128;
11365   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11366     SDValue Load =
11367         DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr,
11368                     LN->getPointerInfo().getWithOffset(Idx * 16),
11369                     commonAlignment(Alignment, Idx * 16),
11370                     LN->getMemOperand()->getFlags(), LN->getAAInfo());
11371     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11372                           DAG.getConstant(16, dl, BasePtr.getValueType()));
11373     Loads.push_back(Load);
11374     LoadChains.push_back(Load.getValue(1));
11375   }
11376   if (Subtarget.isLittleEndian()) {
11377     std::reverse(Loads.begin(), Loads.end());
11378     std::reverse(LoadChains.begin(), LoadChains.end());
11379   }
11380   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
11381   SDValue Value =
11382       DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD,
11383                   dl, VT, Loads);
11384   SDValue RetOps[] = {Value, TF};
11385   return DAG.getMergeValues(RetOps, dl);
11386 }
11387 
LowerVectorStore(SDValue Op,SelectionDAG & DAG) const11388 SDValue PPCTargetLowering::LowerVectorStore(SDValue Op,
11389                                             SelectionDAG &DAG) const {
11390   SDLoc dl(Op);
11391   StoreSDNode *SN = cast<StoreSDNode>(Op.getNode());
11392   SDValue StoreChain = SN->getChain();
11393   SDValue BasePtr = SN->getBasePtr();
11394   SDValue Value = SN->getValue();
11395   SDValue Value2 = SN->getValue();
11396   EVT StoreVT = Value.getValueType();
11397 
11398   if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1)
11399     return Op;
11400 
11401   // Type v256i1 is used for pairs and v512i1 is used for accumulators.
11402   // Here we create 2 or 4 v16i8 stores to store the pair or accumulator
11403   // underlying registers individually.
11404   assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) &&
11405          "Type unsupported without MMA");
11406   assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) &&
11407          "Type unsupported without paired vector support");
11408   Align Alignment = SN->getAlign();
11409   SmallVector<SDValue, 4> Stores;
11410   unsigned NumVecs = 2;
11411   if (StoreVT == MVT::v512i1) {
11412     if (Subtarget.isISAFuture()) {
11413       EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1};
11414       MachineSDNode *ExtNode = DAG.getMachineNode(
11415           PPC::DMXXEXTFDMR512, dl, ArrayRef(ReturnTypes, 2), Op.getOperand(1));
11416 
11417       Value = SDValue(ExtNode, 0);
11418       Value2 = SDValue(ExtNode, 1);
11419     } else
11420       Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value);
11421     NumVecs = 4;
11422   }
11423   for (unsigned Idx = 0; Idx < NumVecs; ++Idx) {
11424     unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx;
11425     SDValue Elt;
11426     if (Subtarget.isISAFuture()) {
11427       VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2);
11428       Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8,
11429                         Idx > 1 ? Value2 : Value,
11430                         DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11431     } else
11432       Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value,
11433                         DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout())));
11434 
11435     SDValue Store =
11436         DAG.getStore(StoreChain, dl, Elt, BasePtr,
11437                      SN->getPointerInfo().getWithOffset(Idx * 16),
11438                      commonAlignment(Alignment, Idx * 16),
11439                      SN->getMemOperand()->getFlags(), SN->getAAInfo());
11440     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
11441                           DAG.getConstant(16, dl, BasePtr.getValueType()));
11442     Stores.push_back(Store);
11443   }
11444   SDValue TF = DAG.getTokenFactor(dl, Stores);
11445   return TF;
11446 }
11447 
LowerMUL(SDValue Op,SelectionDAG & DAG) const11448 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
11449   SDLoc dl(Op);
11450   if (Op.getValueType() == MVT::v4i32) {
11451     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11452 
11453     SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl);
11454     // +16 as shift amt.
11455     SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl);
11456     SDValue RHSSwap =   // = vrlw RHS, 16
11457       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
11458 
11459     // Shrinkify inputs to v8i16.
11460     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
11461     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
11462     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
11463 
11464     // Low parts multiplied together, generating 32-bit results (we ignore the
11465     // top parts).
11466     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
11467                                         LHS, RHS, DAG, dl, MVT::v4i32);
11468 
11469     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
11470                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
11471     // Shift the high parts up 16 bits.
11472     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
11473                               Neg16, DAG, dl);
11474     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
11475   } else if (Op.getValueType() == MVT::v16i8) {
11476     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
11477     bool isLittleEndian = Subtarget.isLittleEndian();
11478 
11479     // Multiply the even 8-bit parts, producing 16-bit sums.
11480     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
11481                                            LHS, RHS, DAG, dl, MVT::v8i16);
11482     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
11483 
11484     // Multiply the odd 8-bit parts, producing 16-bit sums.
11485     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
11486                                           LHS, RHS, DAG, dl, MVT::v8i16);
11487     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
11488 
11489     // Merge the results together.  Because vmuleub and vmuloub are
11490     // instructions with a big-endian bias, we must reverse the
11491     // element numbering and reverse the meaning of "odd" and "even"
11492     // when generating little endian code.
11493     int Ops[16];
11494     for (unsigned i = 0; i != 8; ++i) {
11495       if (isLittleEndian) {
11496         Ops[i*2  ] = 2*i;
11497         Ops[i*2+1] = 2*i+16;
11498       } else {
11499         Ops[i*2  ] = 2*i+1;
11500         Ops[i*2+1] = 2*i+1+16;
11501       }
11502     }
11503     if (isLittleEndian)
11504       return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops);
11505     else
11506       return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
11507   } else {
11508     llvm_unreachable("Unknown mul to lower!");
11509   }
11510 }
11511 
LowerFP_ROUND(SDValue Op,SelectionDAG & DAG) const11512 SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
11513   bool IsStrict = Op->isStrictFPOpcode();
11514   if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 &&
11515       !Subtarget.hasP9Vector())
11516     return SDValue();
11517 
11518   return Op;
11519 }
11520 
11521 // Custom lowering for fpext vf32 to v2f64
LowerFP_EXTEND(SDValue Op,SelectionDAG & DAG) const11522 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
11523 
11524   assert(Op.getOpcode() == ISD::FP_EXTEND &&
11525          "Should only be called for ISD::FP_EXTEND");
11526 
11527   // FIXME: handle extends from half precision float vectors on P9.
11528   // We only want to custom lower an extend from v2f32 to v2f64.
11529   if (Op.getValueType() != MVT::v2f64 ||
11530       Op.getOperand(0).getValueType() != MVT::v2f32)
11531     return SDValue();
11532 
11533   SDLoc dl(Op);
11534   SDValue Op0 = Op.getOperand(0);
11535 
11536   switch (Op0.getOpcode()) {
11537   default:
11538     return SDValue();
11539   case ISD::EXTRACT_SUBVECTOR: {
11540     assert(Op0.getNumOperands() == 2 &&
11541            isa<ConstantSDNode>(Op0->getOperand(1)) &&
11542            "Node should have 2 operands with second one being a constant!");
11543 
11544     if (Op0.getOperand(0).getValueType() != MVT::v4f32)
11545       return SDValue();
11546 
11547     // Custom lower is only done for high or low doubleword.
11548     int Idx = Op0.getConstantOperandVal(1);
11549     if (Idx % 2 != 0)
11550       return SDValue();
11551 
11552     // Since input is v4f32, at this point Idx is either 0 or 2.
11553     // Shift to get the doubleword position we want.
11554     int DWord = Idx >> 1;
11555 
11556     // High and low word positions are different on little endian.
11557     if (Subtarget.isLittleEndian())
11558       DWord ^= 0x1;
11559 
11560     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64,
11561                        Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32));
11562   }
11563   case ISD::FADD:
11564   case ISD::FMUL:
11565   case ISD::FSUB: {
11566     SDValue NewLoad[2];
11567     for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) {
11568       // Ensure both input are loads.
11569       SDValue LdOp = Op0.getOperand(i);
11570       if (LdOp.getOpcode() != ISD::LOAD)
11571         return SDValue();
11572       // Generate new load node.
11573       LoadSDNode *LD = cast<LoadSDNode>(LdOp);
11574       SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11575       NewLoad[i] = DAG.getMemIntrinsicNode(
11576           PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11577           LD->getMemoryVT(), LD->getMemOperand());
11578     }
11579     SDValue NewOp =
11580         DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0],
11581                     NewLoad[1], Op0.getNode()->getFlags());
11582     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp,
11583                        DAG.getConstant(0, dl, MVT::i32));
11584   }
11585   case ISD::LOAD: {
11586     LoadSDNode *LD = cast<LoadSDNode>(Op0);
11587     SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()};
11588     SDValue NewLd = DAG.getMemIntrinsicNode(
11589         PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps,
11590         LD->getMemoryVT(), LD->getMemOperand());
11591     return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd,
11592                        DAG.getConstant(0, dl, MVT::i32));
11593   }
11594   }
11595   llvm_unreachable("ERROR:Should return for all cases within swtich.");
11596 }
11597 
11598 /// LowerOperation - Provide custom lowering hooks for some operations.
11599 ///
LowerOperation(SDValue Op,SelectionDAG & DAG) const11600 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
11601   switch (Op.getOpcode()) {
11602   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
11603   case ISD::FPOW:               return lowerPow(Op, DAG);
11604   case ISD::FSIN:               return lowerSin(Op, DAG);
11605   case ISD::FCOS:               return lowerCos(Op, DAG);
11606   case ISD::FLOG:               return lowerLog(Op, DAG);
11607   case ISD::FLOG10:             return lowerLog10(Op, DAG);
11608   case ISD::FEXP:               return lowerExp(Op, DAG);
11609   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
11610   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
11611   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
11612   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG);
11613   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
11614   case ISD::STRICT_FSETCC:
11615   case ISD::STRICT_FSETCCS:
11616   case ISD::SETCC:              return LowerSETCC(Op, DAG);
11617   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
11618   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
11619 
11620   case ISD::INLINEASM:
11621   case ISD::INLINEASM_BR:       return LowerINLINEASM(Op, DAG);
11622   // Variable argument lowering.
11623   case ISD::VASTART:            return LowerVASTART(Op, DAG);
11624   case ISD::VAARG:              return LowerVAARG(Op, DAG);
11625   case ISD::VACOPY:             return LowerVACOPY(Op, DAG);
11626 
11627   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG);
11628   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
11629   case ISD::GET_DYNAMIC_AREA_OFFSET:
11630     return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG);
11631 
11632   // Exception handling lowering.
11633   case ISD::EH_DWARF_CFA:       return LowerEH_DWARF_CFA(Op, DAG);
11634   case ISD::EH_SJLJ_SETJMP:     return lowerEH_SJLJ_SETJMP(Op, DAG);
11635   case ISD::EH_SJLJ_LONGJMP:    return lowerEH_SJLJ_LONGJMP(Op, DAG);
11636 
11637   case ISD::LOAD:               return LowerLOAD(Op, DAG);
11638   case ISD::STORE:              return LowerSTORE(Op, DAG);
11639   case ISD::TRUNCATE:           return LowerTRUNCATE(Op, DAG);
11640   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
11641   case ISD::STRICT_FP_TO_UINT:
11642   case ISD::STRICT_FP_TO_SINT:
11643   case ISD::FP_TO_UINT:
11644   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG, SDLoc(Op));
11645   case ISD::STRICT_UINT_TO_FP:
11646   case ISD::STRICT_SINT_TO_FP:
11647   case ISD::UINT_TO_FP:
11648   case ISD::SINT_TO_FP:         return LowerINT_TO_FP(Op, DAG);
11649   case ISD::GET_ROUNDING:       return LowerGET_ROUNDING(Op, DAG);
11650 
11651   // Lower 64-bit shifts.
11652   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
11653   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
11654   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
11655 
11656   case ISD::FSHL:               return LowerFunnelShift(Op, DAG);
11657   case ISD::FSHR:               return LowerFunnelShift(Op, DAG);
11658 
11659   // Vector-related lowering.
11660   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
11661   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
11662   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
11663   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
11664   case ISD::INSERT_VECTOR_ELT:  return LowerINSERT_VECTOR_ELT(Op, DAG);
11665   case ISD::MUL:                return LowerMUL(Op, DAG);
11666   case ISD::FP_EXTEND:          return LowerFP_EXTEND(Op, DAG);
11667   case ISD::STRICT_FP_ROUND:
11668   case ISD::FP_ROUND:
11669     return LowerFP_ROUND(Op, DAG);
11670   case ISD::ROTL:               return LowerROTL(Op, DAG);
11671 
11672   // For counter-based loop handling.
11673   case ISD::INTRINSIC_W_CHAIN:  return SDValue();
11674 
11675   case ISD::BITCAST:            return LowerBITCAST(Op, DAG);
11676 
11677   // Frame & Return address.
11678   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
11679   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
11680 
11681   case ISD::INTRINSIC_VOID:
11682     return LowerINTRINSIC_VOID(Op, DAG);
11683   case ISD::BSWAP:
11684     return LowerBSWAP(Op, DAG);
11685   case ISD::ATOMIC_CMP_SWAP:
11686     return LowerATOMIC_CMP_SWAP(Op, DAG);
11687   case ISD::ATOMIC_STORE:
11688     return LowerATOMIC_LOAD_STORE(Op, DAG);
11689   case ISD::IS_FPCLASS:
11690     return LowerIS_FPCLASS(Op, DAG);
11691   }
11692 }
11693 
ReplaceNodeResults(SDNode * N,SmallVectorImpl<SDValue> & Results,SelectionDAG & DAG) const11694 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
11695                                            SmallVectorImpl<SDValue>&Results,
11696                                            SelectionDAG &DAG) const {
11697   SDLoc dl(N);
11698   switch (N->getOpcode()) {
11699   default:
11700     llvm_unreachable("Do not know how to custom type legalize this operation!");
11701   case ISD::ATOMIC_LOAD: {
11702     SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG);
11703     Results.push_back(Res);
11704     Results.push_back(Res.getValue(1));
11705     break;
11706   }
11707   case ISD::READCYCLECOUNTER: {
11708     SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other);
11709     SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0));
11710 
11711     Results.push_back(
11712         DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1)));
11713     Results.push_back(RTB.getValue(2));
11714     break;
11715   }
11716   case ISD::INTRINSIC_W_CHAIN: {
11717     if (N->getConstantOperandVal(1) != Intrinsic::loop_decrement)
11718       break;
11719 
11720     assert(N->getValueType(0) == MVT::i1 &&
11721            "Unexpected result type for CTR decrement intrinsic");
11722     EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
11723                                  N->getValueType(0));
11724     SDVTList VTs = DAG.getVTList(SVT, MVT::Other);
11725     SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0),
11726                                  N->getOperand(1));
11727 
11728     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt));
11729     Results.push_back(NewInt.getValue(1));
11730     break;
11731   }
11732   case ISD::INTRINSIC_WO_CHAIN: {
11733     switch (N->getConstantOperandVal(0)) {
11734     case Intrinsic::ppc_pack_longdouble:
11735       Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
11736                                     N->getOperand(2), N->getOperand(1)));
11737       break;
11738     case Intrinsic::ppc_maxfe:
11739     case Intrinsic::ppc_minfe:
11740     case Intrinsic::ppc_fnmsub:
11741     case Intrinsic::ppc_convert_f128_to_ppcf128:
11742       Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG));
11743       break;
11744     }
11745     break;
11746   }
11747   case ISD::VAARG: {
11748     if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64())
11749       return;
11750 
11751     EVT VT = N->getValueType(0);
11752 
11753     if (VT == MVT::i64) {
11754       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG);
11755 
11756       Results.push_back(NewNode);
11757       Results.push_back(NewNode.getValue(1));
11758     }
11759     return;
11760   }
11761   case ISD::STRICT_FP_TO_SINT:
11762   case ISD::STRICT_FP_TO_UINT:
11763   case ISD::FP_TO_SINT:
11764   case ISD::FP_TO_UINT: {
11765     // LowerFP_TO_INT() can only handle f32 and f64.
11766     if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() ==
11767         MVT::ppcf128)
11768       return;
11769     SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl);
11770     Results.push_back(LoweredValue);
11771     if (N->isStrictFPOpcode())
11772       Results.push_back(LoweredValue.getValue(1));
11773     return;
11774   }
11775   case ISD::TRUNCATE: {
11776     if (!N->getValueType(0).isVector())
11777       return;
11778     SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG);
11779     if (Lowered)
11780       Results.push_back(Lowered);
11781     return;
11782   }
11783   case ISD::FSHL:
11784   case ISD::FSHR:
11785     // Don't handle funnel shifts here.
11786     return;
11787   case ISD::BITCAST:
11788     // Don't handle bitcast here.
11789     return;
11790   case ISD::FP_EXTEND:
11791     SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG);
11792     if (Lowered)
11793       Results.push_back(Lowered);
11794     return;
11795   }
11796 }
11797 
11798 //===----------------------------------------------------------------------===//
11799 //  Other Lowering Code
11800 //===----------------------------------------------------------------------===//
11801 
callIntrinsic(IRBuilderBase & Builder,Intrinsic::ID Id)11802 static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) {
11803   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
11804   Function *Func = Intrinsic::getDeclaration(M, Id);
11805   return Builder.CreateCall(Func, {});
11806 }
11807 
11808 // The mappings for emitLeading/TrailingFence is taken from
11809 // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
emitLeadingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const11810 Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder,
11811                                                  Instruction *Inst,
11812                                                  AtomicOrdering Ord) const {
11813   if (Ord == AtomicOrdering::SequentiallyConsistent)
11814     return callIntrinsic(Builder, Intrinsic::ppc_sync);
11815   if (isReleaseOrStronger(Ord))
11816     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11817   return nullptr;
11818 }
11819 
emitTrailingFence(IRBuilderBase & Builder,Instruction * Inst,AtomicOrdering Ord) const11820 Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder,
11821                                                   Instruction *Inst,
11822                                                   AtomicOrdering Ord) const {
11823   if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) {
11824     // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and
11825     // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html
11826     // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification.
11827     if (isa<LoadInst>(Inst))
11828       return Builder.CreateCall(
11829           Intrinsic::getDeclaration(
11830               Builder.GetInsertBlock()->getParent()->getParent(),
11831               Intrinsic::ppc_cfence, {Inst->getType()}),
11832           {Inst});
11833     // FIXME: Can use isync for rmw operation.
11834     return callIntrinsic(Builder, Intrinsic::ppc_lwsync);
11835   }
11836   return nullptr;
11837 }
11838 
11839 MachineBasicBlock *
EmitAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,unsigned AtomicSize,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const11840 PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB,
11841                                     unsigned AtomicSize,
11842                                     unsigned BinOpcode,
11843                                     unsigned CmpOpcode,
11844                                     unsigned CmpPred) const {
11845   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
11846   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
11847 
11848   auto LoadMnemonic = PPC::LDARX;
11849   auto StoreMnemonic = PPC::STDCX;
11850   switch (AtomicSize) {
11851   default:
11852     llvm_unreachable("Unexpected size of atomic entity");
11853   case 1:
11854     LoadMnemonic = PPC::LBARX;
11855     StoreMnemonic = PPC::STBCX;
11856     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11857     break;
11858   case 2:
11859     LoadMnemonic = PPC::LHARX;
11860     StoreMnemonic = PPC::STHCX;
11861     assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4");
11862     break;
11863   case 4:
11864     LoadMnemonic = PPC::LWARX;
11865     StoreMnemonic = PPC::STWCX;
11866     break;
11867   case 8:
11868     LoadMnemonic = PPC::LDARX;
11869     StoreMnemonic = PPC::STDCX;
11870     break;
11871   }
11872 
11873   const BasicBlock *LLVM_BB = BB->getBasicBlock();
11874   MachineFunction *F = BB->getParent();
11875   MachineFunction::iterator It = ++BB->getIterator();
11876 
11877   Register dest = MI.getOperand(0).getReg();
11878   Register ptrA = MI.getOperand(1).getReg();
11879   Register ptrB = MI.getOperand(2).getReg();
11880   Register incr = MI.getOperand(3).getReg();
11881   DebugLoc dl = MI.getDebugLoc();
11882 
11883   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
11884   MachineBasicBlock *loop2MBB =
11885     CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
11886   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
11887   F->insert(It, loopMBB);
11888   if (CmpOpcode)
11889     F->insert(It, loop2MBB);
11890   F->insert(It, exitMBB);
11891   exitMBB->splice(exitMBB->begin(), BB,
11892                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
11893   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
11894 
11895   MachineRegisterInfo &RegInfo = F->getRegInfo();
11896   Register TmpReg = (!BinOpcode) ? incr :
11897     RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass
11898                                            : &PPC::GPRCRegClass);
11899 
11900   //  thisMBB:
11901   //   ...
11902   //   fallthrough --> loopMBB
11903   BB->addSuccessor(loopMBB);
11904 
11905   //  loopMBB:
11906   //   l[wd]arx dest, ptr
11907   //   add r0, dest, incr
11908   //   st[wd]cx. r0, ptr
11909   //   bne- loopMBB
11910   //   fallthrough --> exitMBB
11911 
11912   // For max/min...
11913   //  loopMBB:
11914   //   l[wd]arx dest, ptr
11915   //   cmpl?[wd] dest, incr
11916   //   bgt exitMBB
11917   //  loop2MBB:
11918   //   st[wd]cx. dest, ptr
11919   //   bne- loopMBB
11920   //   fallthrough --> exitMBB
11921 
11922   BB = loopMBB;
11923   BuildMI(BB, dl, TII->get(LoadMnemonic), dest)
11924     .addReg(ptrA).addReg(ptrB);
11925   if (BinOpcode)
11926     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
11927   if (CmpOpcode) {
11928     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
11929     // Signed comparisons of byte or halfword values must be sign-extended.
11930     if (CmpOpcode == PPC::CMPW && AtomicSize < 4) {
11931       Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
11932       BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH),
11933               ExtReg).addReg(dest);
11934       BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr);
11935     } else
11936       BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr);
11937 
11938     BuildMI(BB, dl, TII->get(PPC::BCC))
11939         .addImm(CmpPred)
11940         .addReg(CrReg)
11941         .addMBB(exitMBB);
11942     BB->addSuccessor(loop2MBB);
11943     BB->addSuccessor(exitMBB);
11944     BB = loop2MBB;
11945   }
11946   BuildMI(BB, dl, TII->get(StoreMnemonic))
11947     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
11948   BuildMI(BB, dl, TII->get(PPC::BCC))
11949     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
11950   BB->addSuccessor(loopMBB);
11951   BB->addSuccessor(exitMBB);
11952 
11953   //  exitMBB:
11954   //   ...
11955   BB = exitMBB;
11956   return BB;
11957 }
11958 
isSignExtended(MachineInstr & MI,const PPCInstrInfo * TII)11959 static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) {
11960   switch(MI.getOpcode()) {
11961   default:
11962     return false;
11963   case PPC::COPY:
11964     return TII->isSignExtended(MI.getOperand(1).getReg(),
11965                                &MI.getMF()->getRegInfo());
11966   case PPC::LHA:
11967   case PPC::LHA8:
11968   case PPC::LHAU:
11969   case PPC::LHAU8:
11970   case PPC::LHAUX:
11971   case PPC::LHAUX8:
11972   case PPC::LHAX:
11973   case PPC::LHAX8:
11974   case PPC::LWA:
11975   case PPC::LWAUX:
11976   case PPC::LWAX:
11977   case PPC::LWAX_32:
11978   case PPC::LWA_32:
11979   case PPC::PLHA:
11980   case PPC::PLHA8:
11981   case PPC::PLHA8pc:
11982   case PPC::PLHApc:
11983   case PPC::PLWA:
11984   case PPC::PLWA8:
11985   case PPC::PLWA8pc:
11986   case PPC::PLWApc:
11987   case PPC::EXTSB:
11988   case PPC::EXTSB8:
11989   case PPC::EXTSB8_32_64:
11990   case PPC::EXTSB8_rec:
11991   case PPC::EXTSB_rec:
11992   case PPC::EXTSH:
11993   case PPC::EXTSH8:
11994   case PPC::EXTSH8_32_64:
11995   case PPC::EXTSH8_rec:
11996   case PPC::EXTSH_rec:
11997   case PPC::EXTSW:
11998   case PPC::EXTSWSLI:
11999   case PPC::EXTSWSLI_32_64:
12000   case PPC::EXTSWSLI_32_64_rec:
12001   case PPC::EXTSWSLI_rec:
12002   case PPC::EXTSW_32:
12003   case PPC::EXTSW_32_64:
12004   case PPC::EXTSW_32_64_rec:
12005   case PPC::EXTSW_rec:
12006   case PPC::SRAW:
12007   case PPC::SRAWI:
12008   case PPC::SRAWI_rec:
12009   case PPC::SRAW_rec:
12010     return true;
12011   }
12012   return false;
12013 }
12014 
EmitPartwordAtomicBinary(MachineInstr & MI,MachineBasicBlock * BB,bool is8bit,unsigned BinOpcode,unsigned CmpOpcode,unsigned CmpPred) const12015 MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary(
12016     MachineInstr &MI, MachineBasicBlock *BB,
12017     bool is8bit, // operation
12018     unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const {
12019   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
12020   const PPCInstrInfo *TII = Subtarget.getInstrInfo();
12021 
12022   // If this is a signed comparison and the value being compared is not known
12023   // to be sign extended, sign extend it here.
12024   DebugLoc dl = MI.getDebugLoc();
12025   MachineFunction *F = BB->getParent();
12026   MachineRegisterInfo &RegInfo = F->getRegInfo();
12027   Register incr = MI.getOperand(3).getReg();
12028   bool IsSignExtended =
12029       incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII);
12030 
12031   if (CmpOpcode == PPC::CMPW && !IsSignExtended) {
12032     Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12033     BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg)
12034         .addReg(MI.getOperand(3).getReg());
12035     MI.getOperand(3).setReg(ValueReg);
12036     incr = ValueReg;
12037   }
12038   // If we support part-word atomic mnemonics, just use them
12039   if (Subtarget.hasPartwordAtomics())
12040     return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode,
12041                             CmpPred);
12042 
12043   // In 64 bit mode we have to use 64 bits for addresses, even though the
12044   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
12045   // registers without caring whether they're 32 or 64, but here we're
12046   // doing actual arithmetic on the addresses.
12047   bool is64bit = Subtarget.isPPC64();
12048   bool isLittleEndian = Subtarget.isLittleEndian();
12049   unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
12050 
12051   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12052   MachineFunction::iterator It = ++BB->getIterator();
12053 
12054   Register dest = MI.getOperand(0).getReg();
12055   Register ptrA = MI.getOperand(1).getReg();
12056   Register ptrB = MI.getOperand(2).getReg();
12057 
12058   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
12059   MachineBasicBlock *loop2MBB =
12060       CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr;
12061   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12062   F->insert(It, loopMBB);
12063   if (CmpOpcode)
12064     F->insert(It, loop2MBB);
12065   F->insert(It, exitMBB);
12066   exitMBB->splice(exitMBB->begin(), BB,
12067                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
12068   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12069 
12070   const TargetRegisterClass *RC =
12071       is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12072   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12073 
12074   Register PtrReg = RegInfo.createVirtualRegister(RC);
12075   Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
12076   Register ShiftReg =
12077       isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
12078   Register Incr2Reg = RegInfo.createVirtualRegister(GPRC);
12079   Register MaskReg = RegInfo.createVirtualRegister(GPRC);
12080   Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
12081   Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
12082   Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
12083   Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC);
12084   Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
12085   Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
12086   Register SrwDestReg = RegInfo.createVirtualRegister(GPRC);
12087   Register Ptr1Reg;
12088   Register TmpReg =
12089       (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC);
12090 
12091   //  thisMBB:
12092   //   ...
12093   //   fallthrough --> loopMBB
12094   BB->addSuccessor(loopMBB);
12095 
12096   // The 4-byte load must be aligned, while a char or short may be
12097   // anywhere in the word.  Hence all this nasty bookkeeping code.
12098   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
12099   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
12100   //   xori shift, shift1, 24 [16]
12101   //   rlwinm ptr, ptr1, 0, 0, 29
12102   //   slw incr2, incr, shift
12103   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
12104   //   slw mask, mask2, shift
12105   //  loopMBB:
12106   //   lwarx tmpDest, ptr
12107   //   add tmp, tmpDest, incr2
12108   //   andc tmp2, tmpDest, mask
12109   //   and tmp3, tmp, mask
12110   //   or tmp4, tmp3, tmp2
12111   //   stwcx. tmp4, ptr
12112   //   bne- loopMBB
12113   //   fallthrough --> exitMBB
12114   //   srw SrwDest, tmpDest, shift
12115   //   rlwinm SrwDest, SrwDest, 0, 24 [16], 31
12116   if (ptrA != ZeroReg) {
12117     Ptr1Reg = RegInfo.createVirtualRegister(RC);
12118     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
12119         .addReg(ptrA)
12120         .addReg(ptrB);
12121   } else {
12122     Ptr1Reg = ptrB;
12123   }
12124   // We need use 32-bit subregister to avoid mismatch register class in 64-bit
12125   // mode.
12126   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
12127       .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
12128       .addImm(3)
12129       .addImm(27)
12130       .addImm(is8bit ? 28 : 27);
12131   if (!isLittleEndian)
12132     BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
12133         .addReg(Shift1Reg)
12134         .addImm(is8bit ? 24 : 16);
12135   if (is64bit)
12136     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
12137         .addReg(Ptr1Reg)
12138         .addImm(0)
12139         .addImm(61);
12140   else
12141     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
12142         .addReg(Ptr1Reg)
12143         .addImm(0)
12144         .addImm(0)
12145         .addImm(29);
12146   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg);
12147   if (is8bit)
12148     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
12149   else {
12150     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
12151     BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
12152         .addReg(Mask3Reg)
12153         .addImm(65535);
12154   }
12155   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
12156       .addReg(Mask2Reg)
12157       .addReg(ShiftReg);
12158 
12159   BB = loopMBB;
12160   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
12161       .addReg(ZeroReg)
12162       .addReg(PtrReg);
12163   if (BinOpcode)
12164     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
12165         .addReg(Incr2Reg)
12166         .addReg(TmpDestReg);
12167   BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
12168       .addReg(TmpDestReg)
12169       .addReg(MaskReg);
12170   BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg);
12171   if (CmpOpcode) {
12172     // For unsigned comparisons, we can directly compare the shifted values.
12173     // For signed comparisons we shift and sign extend.
12174     Register SReg = RegInfo.createVirtualRegister(GPRC);
12175     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12176     BuildMI(BB, dl, TII->get(PPC::AND), SReg)
12177         .addReg(TmpDestReg)
12178         .addReg(MaskReg);
12179     unsigned ValueReg = SReg;
12180     unsigned CmpReg = Incr2Reg;
12181     if (CmpOpcode == PPC::CMPW) {
12182       ValueReg = RegInfo.createVirtualRegister(GPRC);
12183       BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg)
12184           .addReg(SReg)
12185           .addReg(ShiftReg);
12186       Register ValueSReg = RegInfo.createVirtualRegister(GPRC);
12187       BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg)
12188           .addReg(ValueReg);
12189       ValueReg = ValueSReg;
12190       CmpReg = incr;
12191     }
12192     BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg);
12193     BuildMI(BB, dl, TII->get(PPC::BCC))
12194         .addImm(CmpPred)
12195         .addReg(CrReg)
12196         .addMBB(exitMBB);
12197     BB->addSuccessor(loop2MBB);
12198     BB->addSuccessor(exitMBB);
12199     BB = loop2MBB;
12200   }
12201   BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg);
12202   BuildMI(BB, dl, TII->get(PPC::STWCX))
12203       .addReg(Tmp4Reg)
12204       .addReg(ZeroReg)
12205       .addReg(PtrReg);
12206   BuildMI(BB, dl, TII->get(PPC::BCC))
12207       .addImm(PPC::PRED_NE)
12208       .addReg(PPC::CR0)
12209       .addMBB(loopMBB);
12210   BB->addSuccessor(loopMBB);
12211   BB->addSuccessor(exitMBB);
12212 
12213   //  exitMBB:
12214   //   ...
12215   BB = exitMBB;
12216   // Since the shift amount is not a constant, we need to clear
12217   // the upper bits with a separate RLWINM.
12218   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest)
12219       .addReg(SrwDestReg)
12220       .addImm(0)
12221       .addImm(is8bit ? 24 : 16)
12222       .addImm(31);
12223   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg)
12224       .addReg(TmpDestReg)
12225       .addReg(ShiftReg);
12226   return BB;
12227 }
12228 
12229 llvm::MachineBasicBlock *
emitEHSjLjSetJmp(MachineInstr & MI,MachineBasicBlock * MBB) const12230 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI,
12231                                     MachineBasicBlock *MBB) const {
12232   DebugLoc DL = MI.getDebugLoc();
12233   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12234   const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo();
12235 
12236   MachineFunction *MF = MBB->getParent();
12237   MachineRegisterInfo &MRI = MF->getRegInfo();
12238 
12239   const BasicBlock *BB = MBB->getBasicBlock();
12240   MachineFunction::iterator I = ++MBB->getIterator();
12241 
12242   Register DstReg = MI.getOperand(0).getReg();
12243   const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
12244   assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!");
12245   Register mainDstReg = MRI.createVirtualRegister(RC);
12246   Register restoreDstReg = MRI.createVirtualRegister(RC);
12247 
12248   MVT PVT = getPointerTy(MF->getDataLayout());
12249   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
12250          "Invalid Pointer Size!");
12251   // For v = setjmp(buf), we generate
12252   //
12253   // thisMBB:
12254   //  SjLjSetup mainMBB
12255   //  bl mainMBB
12256   //  v_restore = 1
12257   //  b sinkMBB
12258   //
12259   // mainMBB:
12260   //  buf[LabelOffset] = LR
12261   //  v_main = 0
12262   //
12263   // sinkMBB:
12264   //  v = phi(main, restore)
12265   //
12266 
12267   MachineBasicBlock *thisMBB = MBB;
12268   MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
12269   MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
12270   MF->insert(I, mainMBB);
12271   MF->insert(I, sinkMBB);
12272 
12273   MachineInstrBuilder MIB;
12274 
12275   // Transfer the remainder of BB and its successor edges to sinkMBB.
12276   sinkMBB->splice(sinkMBB->begin(), MBB,
12277                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12278   sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
12279 
12280   // Note that the structure of the jmp_buf used here is not compatible
12281   // with that used by libc, and is not designed to be. Specifically, it
12282   // stores only those 'reserved' registers that LLVM does not otherwise
12283   // understand how to spill. Also, by convention, by the time this
12284   // intrinsic is called, Clang has already stored the frame address in the
12285   // first slot of the buffer and stack address in the third. Following the
12286   // X86 target code, we'll store the jump address in the second slot. We also
12287   // need to save the TOC pointer (R2) to handle jumps between shared
12288   // libraries, and that will be stored in the fourth slot. The thread
12289   // identifier (R13) is not affected.
12290 
12291   // thisMBB:
12292   const int64_t LabelOffset = 1 * PVT.getStoreSize();
12293   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
12294   const int64_t BPOffset    = 4 * PVT.getStoreSize();
12295 
12296   // Prepare IP either in reg.
12297   const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
12298   Register LabelReg = MRI.createVirtualRegister(PtrRC);
12299   Register BufReg = MI.getOperand(1).getReg();
12300 
12301   if (Subtarget.is64BitELFABI()) {
12302     setUsesTOCBasePtr(*MBB->getParent());
12303     MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
12304               .addReg(PPC::X2)
12305               .addImm(TOCOffset)
12306               .addReg(BufReg)
12307               .cloneMemRefs(MI);
12308   }
12309 
12310   // Naked functions never have a base pointer, and so we use r1. For all
12311   // other functions, this decision must be delayed until during PEI.
12312   unsigned BaseReg;
12313   if (MF->getFunction().hasFnAttribute(Attribute::Naked))
12314     BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1;
12315   else
12316     BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP;
12317 
12318   MIB = BuildMI(*thisMBB, MI, DL,
12319                 TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW))
12320             .addReg(BaseReg)
12321             .addImm(BPOffset)
12322             .addReg(BufReg)
12323             .cloneMemRefs(MI);
12324 
12325   // Setup
12326   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB);
12327   MIB.addRegMask(TRI->getNoPreservedMask());
12328 
12329   BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
12330 
12331   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
12332           .addMBB(mainMBB);
12333   MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
12334 
12335   thisMBB->addSuccessor(mainMBB, BranchProbability::getZero());
12336   thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne());
12337 
12338   // mainMBB:
12339   //  mainDstReg = 0
12340   MIB =
12341       BuildMI(mainMBB, DL,
12342               TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
12343 
12344   // Store IP
12345   if (Subtarget.isPPC64()) {
12346     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
12347             .addReg(LabelReg)
12348             .addImm(LabelOffset)
12349             .addReg(BufReg);
12350   } else {
12351     MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
12352             .addReg(LabelReg)
12353             .addImm(LabelOffset)
12354             .addReg(BufReg);
12355   }
12356   MIB.cloneMemRefs(MI);
12357 
12358   BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
12359   mainMBB->addSuccessor(sinkMBB);
12360 
12361   // sinkMBB:
12362   BuildMI(*sinkMBB, sinkMBB->begin(), DL,
12363           TII->get(PPC::PHI), DstReg)
12364     .addReg(mainDstReg).addMBB(mainMBB)
12365     .addReg(restoreDstReg).addMBB(thisMBB);
12366 
12367   MI.eraseFromParent();
12368   return sinkMBB;
12369 }
12370 
12371 MachineBasicBlock *
emitEHSjLjLongJmp(MachineInstr & MI,MachineBasicBlock * MBB) const12372 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI,
12373                                      MachineBasicBlock *MBB) const {
12374   DebugLoc DL = MI.getDebugLoc();
12375   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12376 
12377   MachineFunction *MF = MBB->getParent();
12378   MachineRegisterInfo &MRI = MF->getRegInfo();
12379 
12380   MVT PVT = getPointerTy(MF->getDataLayout());
12381   assert((PVT == MVT::i64 || PVT == MVT::i32) &&
12382          "Invalid Pointer Size!");
12383 
12384   const TargetRegisterClass *RC =
12385     (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
12386   Register Tmp = MRI.createVirtualRegister(RC);
12387   // Since FP is only updated here but NOT referenced, it's treated as GPR.
12388   unsigned FP  = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
12389   unsigned SP  = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
12390   unsigned BP =
12391       (PVT == MVT::i64)
12392           ? PPC::X30
12393           : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29
12394                                                               : PPC::R30);
12395 
12396   MachineInstrBuilder MIB;
12397 
12398   const int64_t LabelOffset = 1 * PVT.getStoreSize();
12399   const int64_t SPOffset    = 2 * PVT.getStoreSize();
12400   const int64_t TOCOffset   = 3 * PVT.getStoreSize();
12401   const int64_t BPOffset    = 4 * PVT.getStoreSize();
12402 
12403   Register BufReg = MI.getOperand(0).getReg();
12404 
12405   // Reload FP (the jumped-to function may not have had a
12406   // frame pointer, and if so, then its r31 will be restored
12407   // as necessary).
12408   if (PVT == MVT::i64) {
12409     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
12410             .addImm(0)
12411             .addReg(BufReg);
12412   } else {
12413     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
12414             .addImm(0)
12415             .addReg(BufReg);
12416   }
12417   MIB.cloneMemRefs(MI);
12418 
12419   // Reload IP
12420   if (PVT == MVT::i64) {
12421     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
12422             .addImm(LabelOffset)
12423             .addReg(BufReg);
12424   } else {
12425     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
12426             .addImm(LabelOffset)
12427             .addReg(BufReg);
12428   }
12429   MIB.cloneMemRefs(MI);
12430 
12431   // Reload SP
12432   if (PVT == MVT::i64) {
12433     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
12434             .addImm(SPOffset)
12435             .addReg(BufReg);
12436   } else {
12437     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
12438             .addImm(SPOffset)
12439             .addReg(BufReg);
12440   }
12441   MIB.cloneMemRefs(MI);
12442 
12443   // Reload BP
12444   if (PVT == MVT::i64) {
12445     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP)
12446             .addImm(BPOffset)
12447             .addReg(BufReg);
12448   } else {
12449     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP)
12450             .addImm(BPOffset)
12451             .addReg(BufReg);
12452   }
12453   MIB.cloneMemRefs(MI);
12454 
12455   // Reload TOC
12456   if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) {
12457     setUsesTOCBasePtr(*MBB->getParent());
12458     MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
12459               .addImm(TOCOffset)
12460               .addReg(BufReg)
12461               .cloneMemRefs(MI);
12462   }
12463 
12464   // Jump
12465   BuildMI(*MBB, MI, DL,
12466           TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
12467   BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
12468 
12469   MI.eraseFromParent();
12470   return MBB;
12471 }
12472 
hasInlineStackProbe(const MachineFunction & MF) const12473 bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const {
12474   // If the function specifically requests inline stack probes, emit them.
12475   if (MF.getFunction().hasFnAttribute("probe-stack"))
12476     return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() ==
12477            "inline-asm";
12478   return false;
12479 }
12480 
getStackProbeSize(const MachineFunction & MF) const12481 unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const {
12482   const TargetFrameLowering *TFI = Subtarget.getFrameLowering();
12483   unsigned StackAlign = TFI->getStackAlignment();
12484   assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) &&
12485          "Unexpected stack alignment");
12486   // The default stack probe size is 4096 if the function has no
12487   // stack-probe-size attribute.
12488   const Function &Fn = MF.getFunction();
12489   unsigned StackProbeSize =
12490       Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096);
12491   // Round down to the stack alignment.
12492   StackProbeSize &= ~(StackAlign - 1);
12493   return StackProbeSize ? StackProbeSize : StackAlign;
12494 }
12495 
12496 // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted
12497 // into three phases. In the first phase, it uses pseudo instruction
12498 // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and
12499 // FinalStackPtr. In the second phase, it generates a loop for probing blocks.
12500 // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of
12501 // MaxCallFrameSize so that it can calculate correct data area pointer.
12502 MachineBasicBlock *
emitProbedAlloca(MachineInstr & MI,MachineBasicBlock * MBB) const12503 PPCTargetLowering::emitProbedAlloca(MachineInstr &MI,
12504                                     MachineBasicBlock *MBB) const {
12505   const bool isPPC64 = Subtarget.isPPC64();
12506   MachineFunction *MF = MBB->getParent();
12507   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12508   DebugLoc DL = MI.getDebugLoc();
12509   const unsigned ProbeSize = getStackProbeSize(*MF);
12510   const BasicBlock *ProbedBB = MBB->getBasicBlock();
12511   MachineRegisterInfo &MRI = MF->getRegInfo();
12512   // The CFG of probing stack looks as
12513   //         +-----+
12514   //         | MBB |
12515   //         +--+--+
12516   //            |
12517   //       +----v----+
12518   //  +--->+ TestMBB +---+
12519   //  |    +----+----+   |
12520   //  |         |        |
12521   //  |   +-----v----+   |
12522   //  +---+ BlockMBB |   |
12523   //      +----------+   |
12524   //                     |
12525   //       +---------+   |
12526   //       | TailMBB +<--+
12527   //       +---------+
12528   // In MBB, calculate previous frame pointer and final stack pointer.
12529   // In TestMBB, test if sp is equal to final stack pointer, if so, jump to
12530   // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB.
12531   // TailMBB is spliced via \p MI.
12532   MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB);
12533   MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB);
12534   MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB);
12535 
12536   MachineFunction::iterator MBBIter = ++MBB->getIterator();
12537   MF->insert(MBBIter, TestMBB);
12538   MF->insert(MBBIter, BlockMBB);
12539   MF->insert(MBBIter, TailMBB);
12540 
12541   const TargetRegisterClass *G8RC = &PPC::G8RCRegClass;
12542   const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
12543 
12544   Register DstReg = MI.getOperand(0).getReg();
12545   Register NegSizeReg = MI.getOperand(1).getReg();
12546   Register SPReg = isPPC64 ? PPC::X1 : PPC::R1;
12547   Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12548   Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12549   Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12550 
12551   // Since value of NegSizeReg might be realigned in prologepilog, insert a
12552   // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and
12553   // NegSize.
12554   unsigned ProbeOpc;
12555   if (!MRI.hasOneNonDBGUse(NegSizeReg))
12556     ProbeOpc =
12557         isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32;
12558   else
12559     // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg
12560     // and NegSizeReg will be allocated in the same phyreg to avoid
12561     // redundant copy when NegSizeReg has only one use which is current MI and
12562     // will be replaced by PREPARE_PROBED_ALLOCA then.
12563     ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64
12564                        : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32;
12565   BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer)
12566       .addDef(ActualNegSizeReg)
12567       .addReg(NegSizeReg)
12568       .add(MI.getOperand(2))
12569       .add(MI.getOperand(3));
12570 
12571   // Calculate final stack pointer, which equals to SP + ActualNegSize.
12572   BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4),
12573           FinalStackPtr)
12574       .addReg(SPReg)
12575       .addReg(ActualNegSizeReg);
12576 
12577   // Materialize a scratch register for update.
12578   int64_t NegProbeSize = -(int64_t)ProbeSize;
12579   assert(isInt<32>(NegProbeSize) && "Unhandled probe size!");
12580   Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12581   if (!isInt<16>(NegProbeSize)) {
12582     Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12583     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg)
12584         .addImm(NegProbeSize >> 16);
12585     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI),
12586             ScratchReg)
12587         .addReg(TempReg)
12588         .addImm(NegProbeSize & 0xFFFF);
12589   } else
12590     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg)
12591         .addImm(NegProbeSize);
12592 
12593   {
12594     // Probing leading residual part.
12595     Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12596     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div)
12597         .addReg(ActualNegSizeReg)
12598         .addReg(ScratchReg);
12599     Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12600     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul)
12601         .addReg(Div)
12602         .addReg(ScratchReg);
12603     Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12604     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod)
12605         .addReg(Mul)
12606         .addReg(ActualNegSizeReg);
12607     BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12608         .addReg(FramePointer)
12609         .addReg(SPReg)
12610         .addReg(NegMod);
12611   }
12612 
12613   {
12614     // Remaining part should be multiple of ProbeSize.
12615     Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass);
12616     BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult)
12617         .addReg(SPReg)
12618         .addReg(FinalStackPtr);
12619     BuildMI(TestMBB, DL, TII->get(PPC::BCC))
12620         .addImm(PPC::PRED_EQ)
12621         .addReg(CmpResult)
12622         .addMBB(TailMBB);
12623     TestMBB->addSuccessor(BlockMBB);
12624     TestMBB->addSuccessor(TailMBB);
12625   }
12626 
12627   {
12628     // Touch the block.
12629     // |P...|P...|P...
12630     BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg)
12631         .addReg(FramePointer)
12632         .addReg(SPReg)
12633         .addReg(ScratchReg);
12634     BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB);
12635     BlockMBB->addSuccessor(TestMBB);
12636   }
12637 
12638   // Calculation of MaxCallFrameSize is deferred to prologepilog, use
12639   // DYNAREAOFFSET pseudo instruction to get the future result.
12640   Register MaxCallFrameSizeReg =
12641       MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC);
12642   BuildMI(TailMBB, DL,
12643           TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET),
12644           MaxCallFrameSizeReg)
12645       .add(MI.getOperand(2))
12646       .add(MI.getOperand(3));
12647   BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg)
12648       .addReg(SPReg)
12649       .addReg(MaxCallFrameSizeReg);
12650 
12651   // Splice instructions after MI to TailMBB.
12652   TailMBB->splice(TailMBB->end(), MBB,
12653                   std::next(MachineBasicBlock::iterator(MI)), MBB->end());
12654   TailMBB->transferSuccessorsAndUpdatePHIs(MBB);
12655   MBB->addSuccessor(TestMBB);
12656 
12657   // Delete the pseudo instruction.
12658   MI.eraseFromParent();
12659 
12660   ++NumDynamicAllocaProbed;
12661   return TailMBB;
12662 }
12663 
12664 MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr & MI,MachineBasicBlock * BB) const12665 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
12666                                                MachineBasicBlock *BB) const {
12667   if (MI.getOpcode() == TargetOpcode::STACKMAP ||
12668       MI.getOpcode() == TargetOpcode::PATCHPOINT) {
12669     if (Subtarget.is64BitELFABI() &&
12670         MI.getOpcode() == TargetOpcode::PATCHPOINT &&
12671         !Subtarget.isUsingPCRelativeCalls()) {
12672       // Call lowering should have added an r2 operand to indicate a dependence
12673       // on the TOC base pointer value. It can't however, because there is no
12674       // way to mark the dependence as implicit there, and so the stackmap code
12675       // will confuse it with a regular operand. Instead, add the dependence
12676       // here.
12677       MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true));
12678     }
12679 
12680     return emitPatchPoint(MI, BB);
12681   }
12682 
12683   if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 ||
12684       MI.getOpcode() == PPC::EH_SjLj_SetJmp64) {
12685     return emitEHSjLjSetJmp(MI, BB);
12686   } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 ||
12687              MI.getOpcode() == PPC::EH_SjLj_LongJmp64) {
12688     return emitEHSjLjLongJmp(MI, BB);
12689   }
12690 
12691   const TargetInstrInfo *TII = Subtarget.getInstrInfo();
12692 
12693   // To "insert" these instructions we actually have to insert their
12694   // control-flow patterns.
12695   const BasicBlock *LLVM_BB = BB->getBasicBlock();
12696   MachineFunction::iterator It = ++BB->getIterator();
12697 
12698   MachineFunction *F = BB->getParent();
12699   MachineRegisterInfo &MRI = F->getRegInfo();
12700 
12701   if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12702       MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 ||
12703       MI.getOpcode() == PPC::SELECT_I8) {
12704     SmallVector<MachineOperand, 2> Cond;
12705     if (MI.getOpcode() == PPC::SELECT_CC_I4 ||
12706         MI.getOpcode() == PPC::SELECT_CC_I8)
12707       Cond.push_back(MI.getOperand(4));
12708     else
12709       Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET));
12710     Cond.push_back(MI.getOperand(1));
12711 
12712     DebugLoc dl = MI.getDebugLoc();
12713     TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond,
12714                       MI.getOperand(2).getReg(), MI.getOperand(3).getReg());
12715   } else if (MI.getOpcode() == PPC::SELECT_CC_F4 ||
12716              MI.getOpcode() == PPC::SELECT_CC_F8 ||
12717              MI.getOpcode() == PPC::SELECT_CC_F16 ||
12718              MI.getOpcode() == PPC::SELECT_CC_VRRC ||
12719              MI.getOpcode() == PPC::SELECT_CC_VSFRC ||
12720              MI.getOpcode() == PPC::SELECT_CC_VSSRC ||
12721              MI.getOpcode() == PPC::SELECT_CC_VSRC ||
12722              MI.getOpcode() == PPC::SELECT_CC_SPE4 ||
12723              MI.getOpcode() == PPC::SELECT_CC_SPE ||
12724              MI.getOpcode() == PPC::SELECT_F4 ||
12725              MI.getOpcode() == PPC::SELECT_F8 ||
12726              MI.getOpcode() == PPC::SELECT_F16 ||
12727              MI.getOpcode() == PPC::SELECT_SPE ||
12728              MI.getOpcode() == PPC::SELECT_SPE4 ||
12729              MI.getOpcode() == PPC::SELECT_VRRC ||
12730              MI.getOpcode() == PPC::SELECT_VSFRC ||
12731              MI.getOpcode() == PPC::SELECT_VSSRC ||
12732              MI.getOpcode() == PPC::SELECT_VSRC) {
12733     // The incoming instruction knows the destination vreg to set, the
12734     // condition code register to branch on, the true/false values to
12735     // select between, and a branch opcode to use.
12736 
12737     //  thisMBB:
12738     //  ...
12739     //   TrueVal = ...
12740     //   cmpTY ccX, r1, r2
12741     //   bCC copy1MBB
12742     //   fallthrough --> copy0MBB
12743     MachineBasicBlock *thisMBB = BB;
12744     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
12745     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12746     DebugLoc dl = MI.getDebugLoc();
12747     F->insert(It, copy0MBB);
12748     F->insert(It, sinkMBB);
12749 
12750     // Transfer the remainder of BB and its successor edges to sinkMBB.
12751     sinkMBB->splice(sinkMBB->begin(), BB,
12752                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12753     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12754 
12755     // Next, add the true and fallthrough blocks as its successors.
12756     BB->addSuccessor(copy0MBB);
12757     BB->addSuccessor(sinkMBB);
12758 
12759     if (MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8 ||
12760         MI.getOpcode() == PPC::SELECT_F4 || MI.getOpcode() == PPC::SELECT_F8 ||
12761         MI.getOpcode() == PPC::SELECT_F16 ||
12762         MI.getOpcode() == PPC::SELECT_SPE4 ||
12763         MI.getOpcode() == PPC::SELECT_SPE ||
12764         MI.getOpcode() == PPC::SELECT_VRRC ||
12765         MI.getOpcode() == PPC::SELECT_VSFRC ||
12766         MI.getOpcode() == PPC::SELECT_VSSRC ||
12767         MI.getOpcode() == PPC::SELECT_VSRC) {
12768       BuildMI(BB, dl, TII->get(PPC::BC))
12769           .addReg(MI.getOperand(1).getReg())
12770           .addMBB(sinkMBB);
12771     } else {
12772       unsigned SelectPred = MI.getOperand(4).getImm();
12773       BuildMI(BB, dl, TII->get(PPC::BCC))
12774           .addImm(SelectPred)
12775           .addReg(MI.getOperand(1).getReg())
12776           .addMBB(sinkMBB);
12777     }
12778 
12779     //  copy0MBB:
12780     //   %FalseValue = ...
12781     //   # fallthrough to sinkMBB
12782     BB = copy0MBB;
12783 
12784     // Update machine-CFG edges
12785     BB->addSuccessor(sinkMBB);
12786 
12787     //  sinkMBB:
12788     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
12789     //  ...
12790     BB = sinkMBB;
12791     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg())
12792         .addReg(MI.getOperand(3).getReg())
12793         .addMBB(copy0MBB)
12794         .addReg(MI.getOperand(2).getReg())
12795         .addMBB(thisMBB);
12796   } else if (MI.getOpcode() == PPC::ReadTB) {
12797     // To read the 64-bit time-base register on a 32-bit target, we read the
12798     // two halves. Should the counter have wrapped while it was being read, we
12799     // need to try again.
12800     // ...
12801     // readLoop:
12802     // mfspr Rx,TBU # load from TBU
12803     // mfspr Ry,TB  # load from TB
12804     // mfspr Rz,TBU # load from TBU
12805     // cmpw crX,Rx,Rz # check if 'old'='new'
12806     // bne readLoop   # branch if they're not equal
12807     // ...
12808 
12809     MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB);
12810     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
12811     DebugLoc dl = MI.getDebugLoc();
12812     F->insert(It, readMBB);
12813     F->insert(It, sinkMBB);
12814 
12815     // Transfer the remainder of BB and its successor edges to sinkMBB.
12816     sinkMBB->splice(sinkMBB->begin(), BB,
12817                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12818     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
12819 
12820     BB->addSuccessor(readMBB);
12821     BB = readMBB;
12822 
12823     MachineRegisterInfo &RegInfo = F->getRegInfo();
12824     Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
12825     Register LoReg = MI.getOperand(0).getReg();
12826     Register HiReg = MI.getOperand(1).getReg();
12827 
12828     BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269);
12829     BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268);
12830     BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269);
12831 
12832     Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12833 
12834     BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg)
12835         .addReg(HiReg)
12836         .addReg(ReadAgainReg);
12837     BuildMI(BB, dl, TII->get(PPC::BCC))
12838         .addImm(PPC::PRED_NE)
12839         .addReg(CmpReg)
12840         .addMBB(readMBB);
12841 
12842     BB->addSuccessor(readMBB);
12843     BB->addSuccessor(sinkMBB);
12844   } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
12845     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
12846   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
12847     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
12848   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
12849     BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4);
12850   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
12851     BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8);
12852 
12853   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
12854     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
12855   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
12856     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
12857   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
12858     BB = EmitAtomicBinary(MI, BB, 4, PPC::AND);
12859   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
12860     BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8);
12861 
12862   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
12863     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
12864   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
12865     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
12866   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
12867     BB = EmitAtomicBinary(MI, BB, 4, PPC::OR);
12868   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
12869     BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8);
12870 
12871   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
12872     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
12873   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
12874     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
12875   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
12876     BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR);
12877   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
12878     BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8);
12879 
12880   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
12881     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND);
12882   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
12883     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND);
12884   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
12885     BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND);
12886   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
12887     BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8);
12888 
12889   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
12890     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
12891   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
12892     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
12893   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
12894     BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF);
12895   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
12896     BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8);
12897 
12898   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8)
12899     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT);
12900   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16)
12901     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT);
12902   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32)
12903     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT);
12904   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64)
12905     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT);
12906 
12907   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8)
12908     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT);
12909   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16)
12910     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT);
12911   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32)
12912     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT);
12913   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64)
12914     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT);
12915 
12916   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8)
12917     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT);
12918   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16)
12919     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT);
12920   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32)
12921     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT);
12922   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64)
12923     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT);
12924 
12925   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8)
12926     BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT);
12927   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16)
12928     BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT);
12929   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32)
12930     BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT);
12931   else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64)
12932     BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT);
12933 
12934   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8)
12935     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
12936   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16)
12937     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
12938   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32)
12939     BB = EmitAtomicBinary(MI, BB, 4, 0);
12940   else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64)
12941     BB = EmitAtomicBinary(MI, BB, 8, 0);
12942   else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
12943            MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 ||
12944            (Subtarget.hasPartwordAtomics() &&
12945             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) ||
12946            (Subtarget.hasPartwordAtomics() &&
12947             MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) {
12948     bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
12949 
12950     auto LoadMnemonic = PPC::LDARX;
12951     auto StoreMnemonic = PPC::STDCX;
12952     switch (MI.getOpcode()) {
12953     default:
12954       llvm_unreachable("Compare and swap of unknown size");
12955     case PPC::ATOMIC_CMP_SWAP_I8:
12956       LoadMnemonic = PPC::LBARX;
12957       StoreMnemonic = PPC::STBCX;
12958       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12959       break;
12960     case PPC::ATOMIC_CMP_SWAP_I16:
12961       LoadMnemonic = PPC::LHARX;
12962       StoreMnemonic = PPC::STHCX;
12963       assert(Subtarget.hasPartwordAtomics() && "No support partword atomics.");
12964       break;
12965     case PPC::ATOMIC_CMP_SWAP_I32:
12966       LoadMnemonic = PPC::LWARX;
12967       StoreMnemonic = PPC::STWCX;
12968       break;
12969     case PPC::ATOMIC_CMP_SWAP_I64:
12970       LoadMnemonic = PPC::LDARX;
12971       StoreMnemonic = PPC::STDCX;
12972       break;
12973     }
12974     MachineRegisterInfo &RegInfo = F->getRegInfo();
12975     Register dest = MI.getOperand(0).getReg();
12976     Register ptrA = MI.getOperand(1).getReg();
12977     Register ptrB = MI.getOperand(2).getReg();
12978     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
12979     Register oldval = MI.getOperand(3).getReg();
12980     Register newval = MI.getOperand(4).getReg();
12981     DebugLoc dl = MI.getDebugLoc();
12982 
12983     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
12984     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
12985     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
12986     F->insert(It, loop1MBB);
12987     F->insert(It, loop2MBB);
12988     F->insert(It, exitMBB);
12989     exitMBB->splice(exitMBB->begin(), BB,
12990                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
12991     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
12992 
12993     //  thisMBB:
12994     //   ...
12995     //   fallthrough --> loopMBB
12996     BB->addSuccessor(loop1MBB);
12997 
12998     // loop1MBB:
12999     //   l[bhwd]arx dest, ptr
13000     //   cmp[wd] dest, oldval
13001     //   bne- exitBB
13002     // loop2MBB:
13003     //   st[bhwd]cx. newval, ptr
13004     //   bne- loopMBB
13005     //   b exitBB
13006     // exitBB:
13007     BB = loop1MBB;
13008     BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB);
13009     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg)
13010         .addReg(dest)
13011         .addReg(oldval);
13012     BuildMI(BB, dl, TII->get(PPC::BCC))
13013         .addImm(PPC::PRED_NE)
13014         .addReg(CrReg)
13015         .addMBB(exitMBB);
13016     BB->addSuccessor(loop2MBB);
13017     BB->addSuccessor(exitMBB);
13018 
13019     BB = loop2MBB;
13020     BuildMI(BB, dl, TII->get(StoreMnemonic))
13021         .addReg(newval)
13022         .addReg(ptrA)
13023         .addReg(ptrB);
13024     BuildMI(BB, dl, TII->get(PPC::BCC))
13025         .addImm(PPC::PRED_NE)
13026         .addReg(PPC::CR0)
13027         .addMBB(loop1MBB);
13028     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
13029     BB->addSuccessor(loop1MBB);
13030     BB->addSuccessor(exitMBB);
13031 
13032     //  exitMBB:
13033     //   ...
13034     BB = exitMBB;
13035   } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
13036              MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
13037     // We must use 64-bit registers for addresses when targeting 64-bit,
13038     // since we're actually doing arithmetic on them.  Other registers
13039     // can be 32-bit.
13040     bool is64bit = Subtarget.isPPC64();
13041     bool isLittleEndian = Subtarget.isLittleEndian();
13042     bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
13043 
13044     Register dest = MI.getOperand(0).getReg();
13045     Register ptrA = MI.getOperand(1).getReg();
13046     Register ptrB = MI.getOperand(2).getReg();
13047     Register oldval = MI.getOperand(3).getReg();
13048     Register newval = MI.getOperand(4).getReg();
13049     DebugLoc dl = MI.getDebugLoc();
13050 
13051     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
13052     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
13053     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
13054     F->insert(It, loop1MBB);
13055     F->insert(It, loop2MBB);
13056     F->insert(It, exitMBB);
13057     exitMBB->splice(exitMBB->begin(), BB,
13058                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
13059     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
13060 
13061     MachineRegisterInfo &RegInfo = F->getRegInfo();
13062     const TargetRegisterClass *RC =
13063         is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
13064     const TargetRegisterClass *GPRC = &PPC::GPRCRegClass;
13065 
13066     Register PtrReg = RegInfo.createVirtualRegister(RC);
13067     Register Shift1Reg = RegInfo.createVirtualRegister(GPRC);
13068     Register ShiftReg =
13069         isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC);
13070     Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC);
13071     Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC);
13072     Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC);
13073     Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC);
13074     Register MaskReg = RegInfo.createVirtualRegister(GPRC);
13075     Register Mask2Reg = RegInfo.createVirtualRegister(GPRC);
13076     Register Mask3Reg = RegInfo.createVirtualRegister(GPRC);
13077     Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC);
13078     Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC);
13079     Register TmpDestReg = RegInfo.createVirtualRegister(GPRC);
13080     Register Ptr1Reg;
13081     Register TmpReg = RegInfo.createVirtualRegister(GPRC);
13082     Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
13083     Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
13084     //  thisMBB:
13085     //   ...
13086     //   fallthrough --> loopMBB
13087     BB->addSuccessor(loop1MBB);
13088 
13089     // The 4-byte load must be aligned, while a char or short may be
13090     // anywhere in the word.  Hence all this nasty bookkeeping code.
13091     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
13092     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
13093     //   xori shift, shift1, 24 [16]
13094     //   rlwinm ptr, ptr1, 0, 0, 29
13095     //   slw newval2, newval, shift
13096     //   slw oldval2, oldval,shift
13097     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
13098     //   slw mask, mask2, shift
13099     //   and newval3, newval2, mask
13100     //   and oldval3, oldval2, mask
13101     // loop1MBB:
13102     //   lwarx tmpDest, ptr
13103     //   and tmp, tmpDest, mask
13104     //   cmpw tmp, oldval3
13105     //   bne- exitBB
13106     // loop2MBB:
13107     //   andc tmp2, tmpDest, mask
13108     //   or tmp4, tmp2, newval3
13109     //   stwcx. tmp4, ptr
13110     //   bne- loop1MBB
13111     //   b exitBB
13112     // exitBB:
13113     //   srw dest, tmpDest, shift
13114     if (ptrA != ZeroReg) {
13115       Ptr1Reg = RegInfo.createVirtualRegister(RC);
13116       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
13117           .addReg(ptrA)
13118           .addReg(ptrB);
13119     } else {
13120       Ptr1Reg = ptrB;
13121     }
13122 
13123     // We need use 32-bit subregister to avoid mismatch register class in 64-bit
13124     // mode.
13125     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg)
13126         .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0)
13127         .addImm(3)
13128         .addImm(27)
13129         .addImm(is8bit ? 28 : 27);
13130     if (!isLittleEndian)
13131       BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg)
13132           .addReg(Shift1Reg)
13133           .addImm(is8bit ? 24 : 16);
13134     if (is64bit)
13135       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
13136           .addReg(Ptr1Reg)
13137           .addImm(0)
13138           .addImm(61);
13139     else
13140       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
13141           .addReg(Ptr1Reg)
13142           .addImm(0)
13143           .addImm(0)
13144           .addImm(29);
13145     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
13146         .addReg(newval)
13147         .addReg(ShiftReg);
13148     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
13149         .addReg(oldval)
13150         .addReg(ShiftReg);
13151     if (is8bit)
13152       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
13153     else {
13154       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
13155       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
13156           .addReg(Mask3Reg)
13157           .addImm(65535);
13158     }
13159     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
13160         .addReg(Mask2Reg)
13161         .addReg(ShiftReg);
13162     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
13163         .addReg(NewVal2Reg)
13164         .addReg(MaskReg);
13165     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
13166         .addReg(OldVal2Reg)
13167         .addReg(MaskReg);
13168 
13169     BB = loop1MBB;
13170     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
13171         .addReg(ZeroReg)
13172         .addReg(PtrReg);
13173     BuildMI(BB, dl, TII->get(PPC::AND), TmpReg)
13174         .addReg(TmpDestReg)
13175         .addReg(MaskReg);
13176     BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg)
13177         .addReg(TmpReg)
13178         .addReg(OldVal3Reg);
13179     BuildMI(BB, dl, TII->get(PPC::BCC))
13180         .addImm(PPC::PRED_NE)
13181         .addReg(CrReg)
13182         .addMBB(exitMBB);
13183     BB->addSuccessor(loop2MBB);
13184     BB->addSuccessor(exitMBB);
13185 
13186     BB = loop2MBB;
13187     BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg)
13188         .addReg(TmpDestReg)
13189         .addReg(MaskReg);
13190     BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg)
13191         .addReg(Tmp2Reg)
13192         .addReg(NewVal3Reg);
13193     BuildMI(BB, dl, TII->get(PPC::STWCX))
13194         .addReg(Tmp4Reg)
13195         .addReg(ZeroReg)
13196         .addReg(PtrReg);
13197     BuildMI(BB, dl, TII->get(PPC::BCC))
13198         .addImm(PPC::PRED_NE)
13199         .addReg(PPC::CR0)
13200         .addMBB(loop1MBB);
13201     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
13202     BB->addSuccessor(loop1MBB);
13203     BB->addSuccessor(exitMBB);
13204 
13205     //  exitMBB:
13206     //   ...
13207     BB = exitMBB;
13208     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest)
13209         .addReg(TmpReg)
13210         .addReg(ShiftReg);
13211   } else if (MI.getOpcode() == PPC::FADDrtz) {
13212     // This pseudo performs an FADD with rounding mode temporarily forced
13213     // to round-to-zero.  We emit this via custom inserter since the FPSCR
13214     // is not modeled at the SelectionDAG level.
13215     Register Dest = MI.getOperand(0).getReg();
13216     Register Src1 = MI.getOperand(1).getReg();
13217     Register Src2 = MI.getOperand(2).getReg();
13218     DebugLoc dl = MI.getDebugLoc();
13219 
13220     MachineRegisterInfo &RegInfo = F->getRegInfo();
13221     Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
13222 
13223     // Save FPSCR value.
13224     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
13225 
13226     // Set rounding mode to round-to-zero.
13227     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1))
13228         .addImm(31)
13229         .addReg(PPC::RM, RegState::ImplicitDefine);
13230 
13231     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0))
13232         .addImm(30)
13233         .addReg(PPC::RM, RegState::ImplicitDefine);
13234 
13235     // Perform addition.
13236     auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest)
13237                    .addReg(Src1)
13238                    .addReg(Src2);
13239     if (MI.getFlag(MachineInstr::NoFPExcept))
13240       MIB.setMIFlag(MachineInstr::NoFPExcept);
13241 
13242     // Restore FPSCR value.
13243     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg);
13244   } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
13245              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT ||
13246              MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
13247              MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) {
13248     unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 ||
13249                        MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8)
13250                           ? PPC::ANDI8_rec
13251                           : PPC::ANDI_rec;
13252     bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT ||
13253                  MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8);
13254 
13255     MachineRegisterInfo &RegInfo = F->getRegInfo();
13256     Register Dest = RegInfo.createVirtualRegister(
13257         Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass);
13258 
13259     DebugLoc Dl = MI.getDebugLoc();
13260     BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest)
13261         .addReg(MI.getOperand(1).getReg())
13262         .addImm(1);
13263     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
13264             MI.getOperand(0).getReg())
13265         .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT);
13266   } else if (MI.getOpcode() == PPC::TCHECK_RET) {
13267     DebugLoc Dl = MI.getDebugLoc();
13268     MachineRegisterInfo &RegInfo = F->getRegInfo();
13269     Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass);
13270     BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg);
13271     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
13272             MI.getOperand(0).getReg())
13273         .addReg(CRReg);
13274   } else if (MI.getOpcode() == PPC::TBEGIN_RET) {
13275     DebugLoc Dl = MI.getDebugLoc();
13276     unsigned Imm = MI.getOperand(1).getImm();
13277     BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm);
13278     BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY),
13279             MI.getOperand(0).getReg())
13280         .addReg(PPC::CR0EQ);
13281   } else if (MI.getOpcode() == PPC::SETRNDi) {
13282     DebugLoc dl = MI.getDebugLoc();
13283     Register OldFPSCRReg = MI.getOperand(0).getReg();
13284 
13285     // Save FPSCR value.
13286     if (MRI.use_empty(OldFPSCRReg))
13287       BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
13288     else
13289       BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
13290 
13291     // The floating point rounding mode is in the bits 62:63 of FPCSR, and has
13292     // the following settings:
13293     //   00 Round to nearest
13294     //   01 Round to 0
13295     //   10 Round to +inf
13296     //   11 Round to -inf
13297 
13298     // When the operand is immediate, using the two least significant bits of
13299     // the immediate to set the bits 62:63 of FPSCR.
13300     unsigned Mode = MI.getOperand(1).getImm();
13301     BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0))
13302         .addImm(31)
13303         .addReg(PPC::RM, RegState::ImplicitDefine);
13304 
13305     BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0))
13306         .addImm(30)
13307         .addReg(PPC::RM, RegState::ImplicitDefine);
13308   } else if (MI.getOpcode() == PPC::SETRND) {
13309     DebugLoc dl = MI.getDebugLoc();
13310 
13311     // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg
13312     // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg.
13313     // If the target doesn't have DirectMove, we should use stack to do the
13314     // conversion, because the target doesn't have the instructions like mtvsrd
13315     // or mfvsrd to do this conversion directly.
13316     auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) {
13317       if (Subtarget.hasDirectMove()) {
13318         BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg)
13319           .addReg(SrcReg);
13320       } else {
13321         // Use stack to do the register copy.
13322         unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD;
13323         MachineRegisterInfo &RegInfo = F->getRegInfo();
13324         const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg);
13325         if (RC == &PPC::F8RCRegClass) {
13326           // Copy register from F8RCRegClass to G8RCRegclass.
13327           assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) &&
13328                  "Unsupported RegClass.");
13329 
13330           StoreOp = PPC::STFD;
13331           LoadOp = PPC::LD;
13332         } else {
13333           // Copy register from G8RCRegClass to F8RCRegclass.
13334           assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) &&
13335                  (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) &&
13336                  "Unsupported RegClass.");
13337         }
13338 
13339         MachineFrameInfo &MFI = F->getFrameInfo();
13340         int FrameIdx = MFI.CreateStackObject(8, Align(8), false);
13341 
13342         MachineMemOperand *MMOStore = F->getMachineMemOperand(
13343             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13344             MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx),
13345             MFI.getObjectAlign(FrameIdx));
13346 
13347         // Store the SrcReg into the stack.
13348         BuildMI(*BB, MI, dl, TII->get(StoreOp))
13349           .addReg(SrcReg)
13350           .addImm(0)
13351           .addFrameIndex(FrameIdx)
13352           .addMemOperand(MMOStore);
13353 
13354         MachineMemOperand *MMOLoad = F->getMachineMemOperand(
13355             MachinePointerInfo::getFixedStack(*F, FrameIdx, 0),
13356             MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx),
13357             MFI.getObjectAlign(FrameIdx));
13358 
13359         // Load from the stack where SrcReg is stored, and save to DestReg,
13360         // so we have done the RegClass conversion from RegClass::SrcReg to
13361         // RegClass::DestReg.
13362         BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg)
13363           .addImm(0)
13364           .addFrameIndex(FrameIdx)
13365           .addMemOperand(MMOLoad);
13366       }
13367     };
13368 
13369     Register OldFPSCRReg = MI.getOperand(0).getReg();
13370 
13371     // Save FPSCR value.
13372     BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg);
13373 
13374     // When the operand is gprc register, use two least significant bits of the
13375     // register and mtfsf instruction to set the bits 62:63 of FPSCR.
13376     //
13377     // copy OldFPSCRTmpReg, OldFPSCRReg
13378     // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1)
13379     // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62
13380     // copy NewFPSCRReg, NewFPSCRTmpReg
13381     // mtfsf 255, NewFPSCRReg
13382     MachineOperand SrcOp = MI.getOperand(1);
13383     MachineRegisterInfo &RegInfo = F->getRegInfo();
13384     Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13385 
13386     copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg);
13387 
13388     Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13389     Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13390 
13391     // The first operand of INSERT_SUBREG should be a register which has
13392     // subregisters, we only care about its RegClass, so we should use an
13393     // IMPLICIT_DEF register.
13394     BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg);
13395     BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg)
13396       .addReg(ImDefReg)
13397       .add(SrcOp)
13398       .addImm(1);
13399 
13400     Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
13401     BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg)
13402       .addReg(OldFPSCRTmpReg)
13403       .addReg(ExtSrcReg)
13404       .addImm(0)
13405       .addImm(62);
13406 
13407     Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
13408     copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg);
13409 
13410     // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63
13411     // bits of FPSCR.
13412     BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF))
13413       .addImm(255)
13414       .addReg(NewFPSCRReg)
13415       .addImm(0)
13416       .addImm(0);
13417   } else if (MI.getOpcode() == PPC::SETFLM) {
13418     DebugLoc Dl = MI.getDebugLoc();
13419 
13420     // Result of setflm is previous FPSCR content, so we need to save it first.
13421     Register OldFPSCRReg = MI.getOperand(0).getReg();
13422     if (MRI.use_empty(OldFPSCRReg))
13423       BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg);
13424     else
13425       BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg);
13426 
13427     // Put bits in 32:63 to FPSCR.
13428     Register NewFPSCRReg = MI.getOperand(1).getReg();
13429     BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF))
13430         .addImm(255)
13431         .addReg(NewFPSCRReg)
13432         .addImm(0)
13433         .addImm(0);
13434   } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 ||
13435              MI.getOpcode() == PPC::PROBED_ALLOCA_64) {
13436     return emitProbedAlloca(MI, BB);
13437   } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) {
13438     DebugLoc DL = MI.getDebugLoc();
13439     Register Src = MI.getOperand(2).getReg();
13440     Register Lo = MI.getOperand(0).getReg();
13441     Register Hi = MI.getOperand(1).getReg();
13442     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13443         .addDef(Lo)
13444         .addUse(Src, 0, PPC::sub_gp8_x1);
13445     BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY))
13446         .addDef(Hi)
13447         .addUse(Src, 0, PPC::sub_gp8_x0);
13448   } else if (MI.getOpcode() == PPC::LQX_PSEUDO ||
13449              MI.getOpcode() == PPC::STQX_PSEUDO) {
13450     DebugLoc DL = MI.getDebugLoc();
13451     // Ptr is used as the ptr_rc_no_r0 part
13452     // of LQ/STQ's memory operand and adding result of RA and RB,
13453     // so it has to be g8rc_and_g8rc_nox0.
13454     Register Ptr =
13455         F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass);
13456     Register Val = MI.getOperand(0).getReg();
13457     Register RA = MI.getOperand(1).getReg();
13458     Register RB = MI.getOperand(2).getReg();
13459     BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB);
13460     BuildMI(*BB, MI, DL,
13461             MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ)
13462                                               : TII->get(PPC::STQ))
13463         .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0)
13464         .addImm(0)
13465         .addReg(Ptr);
13466   } else {
13467     llvm_unreachable("Unexpected instr type to insert");
13468   }
13469 
13470   MI.eraseFromParent(); // The pseudo instruction is gone now.
13471   return BB;
13472 }
13473 
13474 //===----------------------------------------------------------------------===//
13475 // Target Optimization Hooks
13476 //===----------------------------------------------------------------------===//
13477 
getEstimateRefinementSteps(EVT VT,const PPCSubtarget & Subtarget)13478 static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) {
13479   // For the estimates, convergence is quadratic, so we essentially double the
13480   // number of digits correct after every iteration. For both FRE and FRSQRTE,
13481   // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(),
13482   // this is 2^-14. IEEE float has 23 digits and double has 52 digits.
13483   int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3;
13484   if (VT.getScalarType() == MVT::f64)
13485     RefinementSteps++;
13486   return RefinementSteps;
13487 }
13488 
getSqrtInputTest(SDValue Op,SelectionDAG & DAG,const DenormalMode & Mode) const13489 SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG,
13490                                             const DenormalMode &Mode) const {
13491   // We only have VSX Vector Test for software Square Root.
13492   EVT VT = Op.getValueType();
13493   if (!isTypeLegal(MVT::i1) ||
13494       (VT != MVT::f64 &&
13495        ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())))
13496     return TargetLowering::getSqrtInputTest(Op, DAG, Mode);
13497 
13498   SDLoc DL(Op);
13499   // The output register of FTSQRT is CR field.
13500   SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op);
13501   // ftsqrt BF,FRB
13502   // Let e_b be the unbiased exponent of the double-precision
13503   // floating-point operand in register FRB.
13504   // fe_flag is set to 1 if either of the following conditions occurs.
13505   //   - The double-precision floating-point operand in register FRB is a zero,
13506   //     a NaN, or an infinity, or a negative value.
13507   //   - e_b is less than or equal to -970.
13508   // Otherwise fe_flag is set to 0.
13509   // Both VSX and non-VSX versions would set EQ bit in the CR if the number is
13510   // not eligible for iteration. (zero/negative/infinity/nan or unbiased
13511   // exponent is less than -970)
13512   SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32);
13513   return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1,
13514                                     FTSQRT, SRIdxVal),
13515                  0);
13516 }
13517 
13518 SDValue
getSqrtResultForDenormInput(SDValue Op,SelectionDAG & DAG) const13519 PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op,
13520                                                SelectionDAG &DAG) const {
13521   // We only have VSX Vector Square Root.
13522   EVT VT = Op.getValueType();
13523   if (VT != MVT::f64 &&
13524       ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))
13525     return TargetLowering::getSqrtResultForDenormInput(Op, DAG);
13526 
13527   return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op);
13528 }
13529 
getSqrtEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps,bool & UseOneConstNR,bool Reciprocal) const13530 SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
13531                                            int Enabled, int &RefinementSteps,
13532                                            bool &UseOneConstNR,
13533                                            bool Reciprocal) const {
13534   EVT VT = Operand.getValueType();
13535   if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) ||
13536       (VT == MVT::f64 && Subtarget.hasFRSQRTE()) ||
13537       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13538       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13539     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13540       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13541 
13542     // The Newton-Raphson computation with a single constant does not provide
13543     // enough accuracy on some CPUs.
13544     UseOneConstNR = !Subtarget.needsTwoConstNR();
13545     return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand);
13546   }
13547   return SDValue();
13548 }
13549 
getRecipEstimate(SDValue Operand,SelectionDAG & DAG,int Enabled,int & RefinementSteps) const13550 SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG,
13551                                             int Enabled,
13552                                             int &RefinementSteps) const {
13553   EVT VT = Operand.getValueType();
13554   if ((VT == MVT::f32 && Subtarget.hasFRES()) ||
13555       (VT == MVT::f64 && Subtarget.hasFRE()) ||
13556       (VT == MVT::v4f32 && Subtarget.hasAltivec()) ||
13557       (VT == MVT::v2f64 && Subtarget.hasVSX())) {
13558     if (RefinementSteps == ReciprocalEstimate::Unspecified)
13559       RefinementSteps = getEstimateRefinementSteps(VT, Subtarget);
13560     return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand);
13561   }
13562   return SDValue();
13563 }
13564 
combineRepeatedFPDivisors() const13565 unsigned PPCTargetLowering::combineRepeatedFPDivisors() const {
13566   // Note: This functionality is used only when unsafe-fp-math is enabled, and
13567   // on cores with reciprocal estimates (which are used when unsafe-fp-math is
13568   // enabled for division), this functionality is redundant with the default
13569   // combiner logic (once the division -> reciprocal/multiply transformation
13570   // has taken place). As a result, this matters more for older cores than for
13571   // newer ones.
13572 
13573   // Combine multiple FDIVs with the same divisor into multiple FMULs by the
13574   // reciprocal if there are two or more FDIVs (for embedded cores with only
13575   // one FP pipeline) for three or more FDIVs (for generic OOO cores).
13576   switch (Subtarget.getCPUDirective()) {
13577   default:
13578     return 3;
13579   case PPC::DIR_440:
13580   case PPC::DIR_A2:
13581   case PPC::DIR_E500:
13582   case PPC::DIR_E500mc:
13583   case PPC::DIR_E5500:
13584     return 2;
13585   }
13586 }
13587 
13588 // isConsecutiveLSLoc needs to work even if all adds have not yet been
13589 // collapsed, and so we need to look through chains of them.
getBaseWithConstantOffset(SDValue Loc,SDValue & Base,int64_t & Offset,SelectionDAG & DAG)13590 static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base,
13591                                      int64_t& Offset, SelectionDAG &DAG) {
13592   if (DAG.isBaseWithConstantOffset(Loc)) {
13593     Base = Loc.getOperand(0);
13594     Offset += cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue();
13595 
13596     // The base might itself be a base plus an offset, and if so, accumulate
13597     // that as well.
13598     getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG);
13599   }
13600 }
13601 
isConsecutiveLSLoc(SDValue Loc,EVT VT,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)13602 static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base,
13603                             unsigned Bytes, int Dist,
13604                             SelectionDAG &DAG) {
13605   if (VT.getSizeInBits() / 8 != Bytes)
13606     return false;
13607 
13608   SDValue BaseLoc = Base->getBasePtr();
13609   if (Loc.getOpcode() == ISD::FrameIndex) {
13610     if (BaseLoc.getOpcode() != ISD::FrameIndex)
13611       return false;
13612     const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
13613     int FI  = cast<FrameIndexSDNode>(Loc)->getIndex();
13614     int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
13615     int FS  = MFI.getObjectSize(FI);
13616     int BFS = MFI.getObjectSize(BFI);
13617     if (FS != BFS || FS != (int)Bytes) return false;
13618     return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes);
13619   }
13620 
13621   SDValue Base1 = Loc, Base2 = BaseLoc;
13622   int64_t Offset1 = 0, Offset2 = 0;
13623   getBaseWithConstantOffset(Loc, Base1, Offset1, DAG);
13624   getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG);
13625   if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes))
13626     return true;
13627 
13628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
13629   const GlobalValue *GV1 = nullptr;
13630   const GlobalValue *GV2 = nullptr;
13631   Offset1 = 0;
13632   Offset2 = 0;
13633   bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
13634   bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
13635   if (isGA1 && isGA2 && GV1 == GV2)
13636     return Offset1 == (Offset2 + Dist*Bytes);
13637   return false;
13638 }
13639 
13640 // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does
13641 // not enforce equality of the chain operands.
isConsecutiveLS(SDNode * N,LSBaseSDNode * Base,unsigned Bytes,int Dist,SelectionDAG & DAG)13642 static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base,
13643                             unsigned Bytes, int Dist,
13644                             SelectionDAG &DAG) {
13645   if (LSBaseSDNode *LS = dyn_cast<LSBaseSDNode>(N)) {
13646     EVT VT = LS->getMemoryVT();
13647     SDValue Loc = LS->getBasePtr();
13648     return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG);
13649   }
13650 
13651   if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
13652     EVT VT;
13653     switch (N->getConstantOperandVal(1)) {
13654     default: return false;
13655     case Intrinsic::ppc_altivec_lvx:
13656     case Intrinsic::ppc_altivec_lvxl:
13657     case Intrinsic::ppc_vsx_lxvw4x:
13658     case Intrinsic::ppc_vsx_lxvw4x_be:
13659       VT = MVT::v4i32;
13660       break;
13661     case Intrinsic::ppc_vsx_lxvd2x:
13662     case Intrinsic::ppc_vsx_lxvd2x_be:
13663       VT = MVT::v2f64;
13664       break;
13665     case Intrinsic::ppc_altivec_lvebx:
13666       VT = MVT::i8;
13667       break;
13668     case Intrinsic::ppc_altivec_lvehx:
13669       VT = MVT::i16;
13670       break;
13671     case Intrinsic::ppc_altivec_lvewx:
13672       VT = MVT::i32;
13673       break;
13674     }
13675 
13676     return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG);
13677   }
13678 
13679   if (N->getOpcode() == ISD::INTRINSIC_VOID) {
13680     EVT VT;
13681     switch (N->getConstantOperandVal(1)) {
13682     default: return false;
13683     case Intrinsic::ppc_altivec_stvx:
13684     case Intrinsic::ppc_altivec_stvxl:
13685     case Intrinsic::ppc_vsx_stxvw4x:
13686       VT = MVT::v4i32;
13687       break;
13688     case Intrinsic::ppc_vsx_stxvd2x:
13689       VT = MVT::v2f64;
13690       break;
13691     case Intrinsic::ppc_vsx_stxvw4x_be:
13692       VT = MVT::v4i32;
13693       break;
13694     case Intrinsic::ppc_vsx_stxvd2x_be:
13695       VT = MVT::v2f64;
13696       break;
13697     case Intrinsic::ppc_altivec_stvebx:
13698       VT = MVT::i8;
13699       break;
13700     case Intrinsic::ppc_altivec_stvehx:
13701       VT = MVT::i16;
13702       break;
13703     case Intrinsic::ppc_altivec_stvewx:
13704       VT = MVT::i32;
13705       break;
13706     }
13707 
13708     return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG);
13709   }
13710 
13711   return false;
13712 }
13713 
13714 // Return true is there is a nearyby consecutive load to the one provided
13715 // (regardless of alignment). We search up and down the chain, looking though
13716 // token factors and other loads (but nothing else). As a result, a true result
13717 // indicates that it is safe to create a new consecutive load adjacent to the
13718 // load provided.
findConsecutiveLoad(LoadSDNode * LD,SelectionDAG & DAG)13719 static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) {
13720   SDValue Chain = LD->getChain();
13721   EVT VT = LD->getMemoryVT();
13722 
13723   SmallSet<SDNode *, 16> LoadRoots;
13724   SmallVector<SDNode *, 8> Queue(1, Chain.getNode());
13725   SmallSet<SDNode *, 16> Visited;
13726 
13727   // First, search up the chain, branching to follow all token-factor operands.
13728   // If we find a consecutive load, then we're done, otherwise, record all
13729   // nodes just above the top-level loads and token factors.
13730   while (!Queue.empty()) {
13731     SDNode *ChainNext = Queue.pop_back_val();
13732     if (!Visited.insert(ChainNext).second)
13733       continue;
13734 
13735     if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(ChainNext)) {
13736       if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13737         return true;
13738 
13739       if (!Visited.count(ChainLD->getChain().getNode()))
13740         Queue.push_back(ChainLD->getChain().getNode());
13741     } else if (ChainNext->getOpcode() == ISD::TokenFactor) {
13742       for (const SDUse &O : ChainNext->ops())
13743         if (!Visited.count(O.getNode()))
13744           Queue.push_back(O.getNode());
13745     } else
13746       LoadRoots.insert(ChainNext);
13747   }
13748 
13749   // Second, search down the chain, starting from the top-level nodes recorded
13750   // in the first phase. These top-level nodes are the nodes just above all
13751   // loads and token factors. Starting with their uses, recursively look though
13752   // all loads (just the chain uses) and token factors to find a consecutive
13753   // load.
13754   Visited.clear();
13755   Queue.clear();
13756 
13757   for (SDNode *I : LoadRoots) {
13758     Queue.push_back(I);
13759 
13760     while (!Queue.empty()) {
13761       SDNode *LoadRoot = Queue.pop_back_val();
13762       if (!Visited.insert(LoadRoot).second)
13763         continue;
13764 
13765       if (MemSDNode *ChainLD = dyn_cast<MemSDNode>(LoadRoot))
13766         if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG))
13767           return true;
13768 
13769       for (SDNode *U : LoadRoot->uses())
13770         if (((isa<MemSDNode>(U) &&
13771               cast<MemSDNode>(U)->getChain().getNode() == LoadRoot) ||
13772              U->getOpcode() == ISD::TokenFactor) &&
13773             !Visited.count(U))
13774           Queue.push_back(U);
13775     }
13776   }
13777 
13778   return false;
13779 }
13780 
13781 /// This function is called when we have proved that a SETCC node can be replaced
13782 /// by subtraction (and other supporting instructions) so that the result of
13783 /// comparison is kept in a GPR instead of CR. This function is purely for
13784 /// codegen purposes and has some flags to guide the codegen process.
generateEquivalentSub(SDNode * N,int Size,bool Complement,bool Swap,SDLoc & DL,SelectionDAG & DAG)13785 static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement,
13786                                      bool Swap, SDLoc &DL, SelectionDAG &DAG) {
13787   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13788 
13789   // Zero extend the operands to the largest legal integer. Originally, they
13790   // must be of a strictly smaller size.
13791   auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0),
13792                          DAG.getConstant(Size, DL, MVT::i32));
13793   auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1),
13794                          DAG.getConstant(Size, DL, MVT::i32));
13795 
13796   // Swap if needed. Depends on the condition code.
13797   if (Swap)
13798     std::swap(Op0, Op1);
13799 
13800   // Subtract extended integers.
13801   auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1);
13802 
13803   // Move the sign bit to the least significant position and zero out the rest.
13804   // Now the least significant bit carries the result of original comparison.
13805   auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode,
13806                              DAG.getConstant(Size - 1, DL, MVT::i32));
13807   auto Final = Shifted;
13808 
13809   // Complement the result if needed. Based on the condition code.
13810   if (Complement)
13811     Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted,
13812                         DAG.getConstant(1, DL, MVT::i64));
13813 
13814   return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final);
13815 }
13816 
ConvertSETCCToSubtract(SDNode * N,DAGCombinerInfo & DCI) const13817 SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N,
13818                                                   DAGCombinerInfo &DCI) const {
13819   assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected.");
13820 
13821   SelectionDAG &DAG = DCI.DAG;
13822   SDLoc DL(N);
13823 
13824   // Size of integers being compared has a critical role in the following
13825   // analysis, so we prefer to do this when all types are legal.
13826   if (!DCI.isAfterLegalizeDAG())
13827     return SDValue();
13828 
13829   // If all users of SETCC extend its value to a legal integer type
13830   // then we replace SETCC with a subtraction
13831   for (const SDNode *U : N->uses())
13832     if (U->getOpcode() != ISD::ZERO_EXTEND)
13833       return SDValue();
13834 
13835   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
13836   auto OpSize = N->getOperand(0).getValueSizeInBits();
13837 
13838   unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits();
13839 
13840   if (OpSize < Size) {
13841     switch (CC) {
13842     default: break;
13843     case ISD::SETULT:
13844       return generateEquivalentSub(N, Size, false, false, DL, DAG);
13845     case ISD::SETULE:
13846       return generateEquivalentSub(N, Size, true, true, DL, DAG);
13847     case ISD::SETUGT:
13848       return generateEquivalentSub(N, Size, false, true, DL, DAG);
13849     case ISD::SETUGE:
13850       return generateEquivalentSub(N, Size, true, false, DL, DAG);
13851     }
13852   }
13853 
13854   return SDValue();
13855 }
13856 
DAGCombineTruncBoolExt(SDNode * N,DAGCombinerInfo & DCI) const13857 SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N,
13858                                                   DAGCombinerInfo &DCI) const {
13859   SelectionDAG &DAG = DCI.DAG;
13860   SDLoc dl(N);
13861 
13862   assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits");
13863   // If we're tracking CR bits, we need to be careful that we don't have:
13864   //   trunc(binary-ops(zext(x), zext(y)))
13865   // or
13866   //   trunc(binary-ops(binary-ops(zext(x), zext(y)), ...)
13867   // such that we're unnecessarily moving things into GPRs when it would be
13868   // better to keep them in CR bits.
13869 
13870   // Note that trunc here can be an actual i1 trunc, or can be the effective
13871   // truncation that comes from a setcc or select_cc.
13872   if (N->getOpcode() == ISD::TRUNCATE &&
13873       N->getValueType(0) != MVT::i1)
13874     return SDValue();
13875 
13876   if (N->getOperand(0).getValueType() != MVT::i32 &&
13877       N->getOperand(0).getValueType() != MVT::i64)
13878     return SDValue();
13879 
13880   if (N->getOpcode() == ISD::SETCC ||
13881       N->getOpcode() == ISD::SELECT_CC) {
13882     // If we're looking at a comparison, then we need to make sure that the
13883     // high bits (all except for the first) don't matter the result.
13884     ISD::CondCode CC =
13885       cast<CondCodeSDNode>(N->getOperand(
13886         N->getOpcode() == ISD::SETCC ? 2 : 4))->get();
13887     unsigned OpBits = N->getOperand(0).getValueSizeInBits();
13888 
13889     if (ISD::isSignedIntSetCC(CC)) {
13890       if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits ||
13891           DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits)
13892         return SDValue();
13893     } else if (ISD::isUnsignedIntSetCC(CC)) {
13894       if (!DAG.MaskedValueIsZero(N->getOperand(0),
13895                                  APInt::getHighBitsSet(OpBits, OpBits-1)) ||
13896           !DAG.MaskedValueIsZero(N->getOperand(1),
13897                                  APInt::getHighBitsSet(OpBits, OpBits-1)))
13898         return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI)
13899                                              : SDValue());
13900     } else {
13901       // This is neither a signed nor an unsigned comparison, just make sure
13902       // that the high bits are equal.
13903       KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0));
13904       KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1));
13905 
13906       // We don't really care about what is known about the first bit (if
13907       // anything), so pretend that it is known zero for both to ensure they can
13908       // be compared as constants.
13909       Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0);
13910       Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0);
13911 
13912       if (!Op1Known.isConstant() || !Op2Known.isConstant() ||
13913           Op1Known.getConstant() != Op2Known.getConstant())
13914         return SDValue();
13915     }
13916   }
13917 
13918   // We now know that the higher-order bits are irrelevant, we just need to
13919   // make sure that all of the intermediate operations are bit operations, and
13920   // all inputs are extensions.
13921   if (N->getOperand(0).getOpcode() != ISD::AND &&
13922       N->getOperand(0).getOpcode() != ISD::OR  &&
13923       N->getOperand(0).getOpcode() != ISD::XOR &&
13924       N->getOperand(0).getOpcode() != ISD::SELECT &&
13925       N->getOperand(0).getOpcode() != ISD::SELECT_CC &&
13926       N->getOperand(0).getOpcode() != ISD::TRUNCATE &&
13927       N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND &&
13928       N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND &&
13929       N->getOperand(0).getOpcode() != ISD::ANY_EXTEND)
13930     return SDValue();
13931 
13932   if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) &&
13933       N->getOperand(1).getOpcode() != ISD::AND &&
13934       N->getOperand(1).getOpcode() != ISD::OR  &&
13935       N->getOperand(1).getOpcode() != ISD::XOR &&
13936       N->getOperand(1).getOpcode() != ISD::SELECT &&
13937       N->getOperand(1).getOpcode() != ISD::SELECT_CC &&
13938       N->getOperand(1).getOpcode() != ISD::TRUNCATE &&
13939       N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND &&
13940       N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND &&
13941       N->getOperand(1).getOpcode() != ISD::ANY_EXTEND)
13942     return SDValue();
13943 
13944   SmallVector<SDValue, 4> Inputs;
13945   SmallVector<SDValue, 8> BinOps, PromOps;
13946   SmallPtrSet<SDNode *, 16> Visited;
13947 
13948   for (unsigned i = 0; i < 2; ++i) {
13949     if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13950           N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13951           N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13952           N->getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13953         isa<ConstantSDNode>(N->getOperand(i)))
13954       Inputs.push_back(N->getOperand(i));
13955     else
13956       BinOps.push_back(N->getOperand(i));
13957 
13958     if (N->getOpcode() == ISD::TRUNCATE)
13959       break;
13960   }
13961 
13962   // Visit all inputs, collect all binary operations (and, or, xor and
13963   // select) that are all fed by extensions.
13964   while (!BinOps.empty()) {
13965     SDValue BinOp = BinOps.pop_back_val();
13966 
13967     if (!Visited.insert(BinOp.getNode()).second)
13968       continue;
13969 
13970     PromOps.push_back(BinOp);
13971 
13972     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
13973       // The condition of the select is not promoted.
13974       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
13975         continue;
13976       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
13977         continue;
13978 
13979       if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13980             BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13981             BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) &&
13982            BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) ||
13983           isa<ConstantSDNode>(BinOp.getOperand(i))) {
13984         Inputs.push_back(BinOp.getOperand(i));
13985       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
13986                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
13987                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
13988                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
13989                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC ||
13990                  BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
13991                  BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND ||
13992                  BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND ||
13993                  BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) {
13994         BinOps.push_back(BinOp.getOperand(i));
13995       } else {
13996         // We have an input that is not an extension or another binary
13997         // operation; we'll abort this transformation.
13998         return SDValue();
13999       }
14000     }
14001   }
14002 
14003   // Make sure that this is a self-contained cluster of operations (which
14004   // is not quite the same thing as saying that everything has only one
14005   // use).
14006   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
14007     if (isa<ConstantSDNode>(Inputs[i]))
14008       continue;
14009 
14010     for (const SDNode *User : Inputs[i].getNode()->uses()) {
14011       if (User != N && !Visited.count(User))
14012         return SDValue();
14013 
14014       // Make sure that we're not going to promote the non-output-value
14015       // operand(s) or SELECT or SELECT_CC.
14016       // FIXME: Although we could sometimes handle this, and it does occur in
14017       // practice that one of the condition inputs to the select is also one of
14018       // the outputs, we currently can't deal with this.
14019       if (User->getOpcode() == ISD::SELECT) {
14020         if (User->getOperand(0) == Inputs[i])
14021           return SDValue();
14022       } else if (User->getOpcode() == ISD::SELECT_CC) {
14023         if (User->getOperand(0) == Inputs[i] ||
14024             User->getOperand(1) == Inputs[i])
14025           return SDValue();
14026       }
14027     }
14028   }
14029 
14030   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
14031     for (const SDNode *User : PromOps[i].getNode()->uses()) {
14032       if (User != N && !Visited.count(User))
14033         return SDValue();
14034 
14035       // Make sure that we're not going to promote the non-output-value
14036       // operand(s) or SELECT or SELECT_CC.
14037       // FIXME: Although we could sometimes handle this, and it does occur in
14038       // practice that one of the condition inputs to the select is also one of
14039       // the outputs, we currently can't deal with this.
14040       if (User->getOpcode() == ISD::SELECT) {
14041         if (User->getOperand(0) == PromOps[i])
14042           return SDValue();
14043       } else if (User->getOpcode() == ISD::SELECT_CC) {
14044         if (User->getOperand(0) == PromOps[i] ||
14045             User->getOperand(1) == PromOps[i])
14046           return SDValue();
14047       }
14048     }
14049   }
14050 
14051   // Replace all inputs with the extension operand.
14052   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
14053     // Constants may have users outside the cluster of to-be-promoted nodes,
14054     // and so we need to replace those as we do the promotions.
14055     if (isa<ConstantSDNode>(Inputs[i]))
14056       continue;
14057     else
14058       DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0));
14059   }
14060 
14061   std::list<HandleSDNode> PromOpHandles;
14062   for (auto &PromOp : PromOps)
14063     PromOpHandles.emplace_back(PromOp);
14064 
14065   // Replace all operations (these are all the same, but have a different
14066   // (i1) return type). DAG.getNode will validate that the types of
14067   // a binary operator match, so go through the list in reverse so that
14068   // we've likely promoted both operands first. Any intermediate truncations or
14069   // extensions disappear.
14070   while (!PromOpHandles.empty()) {
14071     SDValue PromOp = PromOpHandles.back().getValue();
14072     PromOpHandles.pop_back();
14073 
14074     if (PromOp.getOpcode() == ISD::TRUNCATE ||
14075         PromOp.getOpcode() == ISD::SIGN_EXTEND ||
14076         PromOp.getOpcode() == ISD::ZERO_EXTEND ||
14077         PromOp.getOpcode() == ISD::ANY_EXTEND) {
14078       if (!isa<ConstantSDNode>(PromOp.getOperand(0)) &&
14079           PromOp.getOperand(0).getValueType() != MVT::i1) {
14080         // The operand is not yet ready (see comment below).
14081         PromOpHandles.emplace_front(PromOp);
14082         continue;
14083       }
14084 
14085       SDValue RepValue = PromOp.getOperand(0);
14086       if (isa<ConstantSDNode>(RepValue))
14087         RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue);
14088 
14089       DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue);
14090       continue;
14091     }
14092 
14093     unsigned C;
14094     switch (PromOp.getOpcode()) {
14095     default:             C = 0; break;
14096     case ISD::SELECT:    C = 1; break;
14097     case ISD::SELECT_CC: C = 2; break;
14098     }
14099 
14100     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
14101          PromOp.getOperand(C).getValueType() != MVT::i1) ||
14102         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
14103          PromOp.getOperand(C+1).getValueType() != MVT::i1)) {
14104       // The to-be-promoted operands of this node have not yet been
14105       // promoted (this should be rare because we're going through the
14106       // list backward, but if one of the operands has several users in
14107       // this cluster of to-be-promoted nodes, it is possible).
14108       PromOpHandles.emplace_front(PromOp);
14109       continue;
14110     }
14111 
14112     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
14113                                 PromOp.getNode()->op_end());
14114 
14115     // If there are any constant inputs, make sure they're replaced now.
14116     for (unsigned i = 0; i < 2; ++i)
14117       if (isa<ConstantSDNode>(Ops[C+i]))
14118         Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]);
14119 
14120     DAG.ReplaceAllUsesOfValueWith(PromOp,
14121       DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops));
14122   }
14123 
14124   // Now we're left with the initial truncation itself.
14125   if (N->getOpcode() == ISD::TRUNCATE)
14126     return N->getOperand(0);
14127 
14128   // Otherwise, this is a comparison. The operands to be compared have just
14129   // changed type (to i1), but everything else is the same.
14130   return SDValue(N, 0);
14131 }
14132 
DAGCombineExtBoolTrunc(SDNode * N,DAGCombinerInfo & DCI) const14133 SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N,
14134                                                   DAGCombinerInfo &DCI) const {
14135   SelectionDAG &DAG = DCI.DAG;
14136   SDLoc dl(N);
14137 
14138   // If we're tracking CR bits, we need to be careful that we don't have:
14139   //   zext(binary-ops(trunc(x), trunc(y)))
14140   // or
14141   //   zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...)
14142   // such that we're unnecessarily moving things into CR bits that can more
14143   // efficiently stay in GPRs. Note that if we're not certain that the high
14144   // bits are set as required by the final extension, we still may need to do
14145   // some masking to get the proper behavior.
14146 
14147   // This same functionality is important on PPC64 when dealing with
14148   // 32-to-64-bit extensions; these occur often when 32-bit values are used as
14149   // the return values of functions. Because it is so similar, it is handled
14150   // here as well.
14151 
14152   if (N->getValueType(0) != MVT::i32 &&
14153       N->getValueType(0) != MVT::i64)
14154     return SDValue();
14155 
14156   if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) ||
14157         (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64())))
14158     return SDValue();
14159 
14160   if (N->getOperand(0).getOpcode() != ISD::AND &&
14161       N->getOperand(0).getOpcode() != ISD::OR  &&
14162       N->getOperand(0).getOpcode() != ISD::XOR &&
14163       N->getOperand(0).getOpcode() != ISD::SELECT &&
14164       N->getOperand(0).getOpcode() != ISD::SELECT_CC)
14165     return SDValue();
14166 
14167   SmallVector<SDValue, 4> Inputs;
14168   SmallVector<SDValue, 8> BinOps(1, N->getOperand(0)), PromOps;
14169   SmallPtrSet<SDNode *, 16> Visited;
14170 
14171   // Visit all inputs, collect all binary operations (and, or, xor and
14172   // select) that are all fed by truncations.
14173   while (!BinOps.empty()) {
14174     SDValue BinOp = BinOps.pop_back_val();
14175 
14176     if (!Visited.insert(BinOp.getNode()).second)
14177       continue;
14178 
14179     PromOps.push_back(BinOp);
14180 
14181     for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) {
14182       // The condition of the select is not promoted.
14183       if (BinOp.getOpcode() == ISD::SELECT && i == 0)
14184         continue;
14185       if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3)
14186         continue;
14187 
14188       if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE ||
14189           isa<ConstantSDNode>(BinOp.getOperand(i))) {
14190         Inputs.push_back(BinOp.getOperand(i));
14191       } else if (BinOp.getOperand(i).getOpcode() == ISD::AND ||
14192                  BinOp.getOperand(i).getOpcode() == ISD::OR  ||
14193                  BinOp.getOperand(i).getOpcode() == ISD::XOR ||
14194                  BinOp.getOperand(i).getOpcode() == ISD::SELECT ||
14195                  BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) {
14196         BinOps.push_back(BinOp.getOperand(i));
14197       } else {
14198         // We have an input that is not a truncation or another binary
14199         // operation; we'll abort this transformation.
14200         return SDValue();
14201       }
14202     }
14203   }
14204 
14205   // The operands of a select that must be truncated when the select is
14206   // promoted because the operand is actually part of the to-be-promoted set.
14207   DenseMap<SDNode *, EVT> SelectTruncOp[2];
14208 
14209   // Make sure that this is a self-contained cluster of operations (which
14210   // is not quite the same thing as saying that everything has only one
14211   // use).
14212   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
14213     if (isa<ConstantSDNode>(Inputs[i]))
14214       continue;
14215 
14216     for (SDNode *User : Inputs[i].getNode()->uses()) {
14217       if (User != N && !Visited.count(User))
14218         return SDValue();
14219 
14220       // If we're going to promote the non-output-value operand(s) or SELECT or
14221       // SELECT_CC, record them for truncation.
14222       if (User->getOpcode() == ISD::SELECT) {
14223         if (User->getOperand(0) == Inputs[i])
14224           SelectTruncOp[0].insert(std::make_pair(User,
14225                                     User->getOperand(0).getValueType()));
14226       } else if (User->getOpcode() == ISD::SELECT_CC) {
14227         if (User->getOperand(0) == Inputs[i])
14228           SelectTruncOp[0].insert(std::make_pair(User,
14229                                     User->getOperand(0).getValueType()));
14230         if (User->getOperand(1) == Inputs[i])
14231           SelectTruncOp[1].insert(std::make_pair(User,
14232                                     User->getOperand(1).getValueType()));
14233       }
14234     }
14235   }
14236 
14237   for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) {
14238     for (SDNode *User : PromOps[i].getNode()->uses()) {
14239       if (User != N && !Visited.count(User))
14240         return SDValue();
14241 
14242       // If we're going to promote the non-output-value operand(s) or SELECT or
14243       // SELECT_CC, record them for truncation.
14244       if (User->getOpcode() == ISD::SELECT) {
14245         if (User->getOperand(0) == PromOps[i])
14246           SelectTruncOp[0].insert(std::make_pair(User,
14247                                     User->getOperand(0).getValueType()));
14248       } else if (User->getOpcode() == ISD::SELECT_CC) {
14249         if (User->getOperand(0) == PromOps[i])
14250           SelectTruncOp[0].insert(std::make_pair(User,
14251                                     User->getOperand(0).getValueType()));
14252         if (User->getOperand(1) == PromOps[i])
14253           SelectTruncOp[1].insert(std::make_pair(User,
14254                                     User->getOperand(1).getValueType()));
14255       }
14256     }
14257   }
14258 
14259   unsigned PromBits = N->getOperand(0).getValueSizeInBits();
14260   bool ReallyNeedsExt = false;
14261   if (N->getOpcode() != ISD::ANY_EXTEND) {
14262     // If all of the inputs are not already sign/zero extended, then
14263     // we'll still need to do that at the end.
14264     for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
14265       if (isa<ConstantSDNode>(Inputs[i]))
14266         continue;
14267 
14268       unsigned OpBits =
14269         Inputs[i].getOperand(0).getValueSizeInBits();
14270       assert(PromBits < OpBits && "Truncation not to a smaller bit count?");
14271 
14272       if ((N->getOpcode() == ISD::ZERO_EXTEND &&
14273            !DAG.MaskedValueIsZero(Inputs[i].getOperand(0),
14274                                   APInt::getHighBitsSet(OpBits,
14275                                                         OpBits-PromBits))) ||
14276           (N->getOpcode() == ISD::SIGN_EXTEND &&
14277            DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) <
14278              (OpBits-(PromBits-1)))) {
14279         ReallyNeedsExt = true;
14280         break;
14281       }
14282     }
14283   }
14284 
14285   // Replace all inputs, either with the truncation operand, or a
14286   // truncation or extension to the final output type.
14287   for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) {
14288     // Constant inputs need to be replaced with the to-be-promoted nodes that
14289     // use them because they might have users outside of the cluster of
14290     // promoted nodes.
14291     if (isa<ConstantSDNode>(Inputs[i]))
14292       continue;
14293 
14294     SDValue InSrc = Inputs[i].getOperand(0);
14295     if (Inputs[i].getValueType() == N->getValueType(0))
14296       DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc);
14297     else if (N->getOpcode() == ISD::SIGN_EXTEND)
14298       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
14299         DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0)));
14300     else if (N->getOpcode() == ISD::ZERO_EXTEND)
14301       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
14302         DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0)));
14303     else
14304       DAG.ReplaceAllUsesOfValueWith(Inputs[i],
14305         DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0)));
14306   }
14307 
14308   std::list<HandleSDNode> PromOpHandles;
14309   for (auto &PromOp : PromOps)
14310     PromOpHandles.emplace_back(PromOp);
14311 
14312   // Replace all operations (these are all the same, but have a different
14313   // (promoted) return type). DAG.getNode will validate that the types of
14314   // a binary operator match, so go through the list in reverse so that
14315   // we've likely promoted both operands first.
14316   while (!PromOpHandles.empty()) {
14317     SDValue PromOp = PromOpHandles.back().getValue();
14318     PromOpHandles.pop_back();
14319 
14320     unsigned C;
14321     switch (PromOp.getOpcode()) {
14322     default:             C = 0; break;
14323     case ISD::SELECT:    C = 1; break;
14324     case ISD::SELECT_CC: C = 2; break;
14325     }
14326 
14327     if ((!isa<ConstantSDNode>(PromOp.getOperand(C)) &&
14328          PromOp.getOperand(C).getValueType() != N->getValueType(0)) ||
14329         (!isa<ConstantSDNode>(PromOp.getOperand(C+1)) &&
14330          PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) {
14331       // The to-be-promoted operands of this node have not yet been
14332       // promoted (this should be rare because we're going through the
14333       // list backward, but if one of the operands has several users in
14334       // this cluster of to-be-promoted nodes, it is possible).
14335       PromOpHandles.emplace_front(PromOp);
14336       continue;
14337     }
14338 
14339     // For SELECT and SELECT_CC nodes, we do a similar check for any
14340     // to-be-promoted comparison inputs.
14341     if (PromOp.getOpcode() == ISD::SELECT ||
14342         PromOp.getOpcode() == ISD::SELECT_CC) {
14343       if ((SelectTruncOp[0].count(PromOp.getNode()) &&
14344            PromOp.getOperand(0).getValueType() != N->getValueType(0)) ||
14345           (SelectTruncOp[1].count(PromOp.getNode()) &&
14346            PromOp.getOperand(1).getValueType() != N->getValueType(0))) {
14347         PromOpHandles.emplace_front(PromOp);
14348         continue;
14349       }
14350     }
14351 
14352     SmallVector<SDValue, 3> Ops(PromOp.getNode()->op_begin(),
14353                                 PromOp.getNode()->op_end());
14354 
14355     // If this node has constant inputs, then they'll need to be promoted here.
14356     for (unsigned i = 0; i < 2; ++i) {
14357       if (!isa<ConstantSDNode>(Ops[C+i]))
14358         continue;
14359       if (Ops[C+i].getValueType() == N->getValueType(0))
14360         continue;
14361 
14362       if (N->getOpcode() == ISD::SIGN_EXTEND)
14363         Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14364       else if (N->getOpcode() == ISD::ZERO_EXTEND)
14365         Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14366       else
14367         Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0));
14368     }
14369 
14370     // If we've promoted the comparison inputs of a SELECT or SELECT_CC,
14371     // truncate them again to the original value type.
14372     if (PromOp.getOpcode() == ISD::SELECT ||
14373         PromOp.getOpcode() == ISD::SELECT_CC) {
14374       auto SI0 = SelectTruncOp[0].find(PromOp.getNode());
14375       if (SI0 != SelectTruncOp[0].end())
14376         Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]);
14377       auto SI1 = SelectTruncOp[1].find(PromOp.getNode());
14378       if (SI1 != SelectTruncOp[1].end())
14379         Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]);
14380     }
14381 
14382     DAG.ReplaceAllUsesOfValueWith(PromOp,
14383       DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops));
14384   }
14385 
14386   // Now we're left with the initial extension itself.
14387   if (!ReallyNeedsExt)
14388     return N->getOperand(0);
14389 
14390   // To zero extend, just mask off everything except for the first bit (in the
14391   // i1 case).
14392   if (N->getOpcode() == ISD::ZERO_EXTEND)
14393     return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0),
14394                        DAG.getConstant(APInt::getLowBitsSet(
14395                                          N->getValueSizeInBits(0), PromBits),
14396                                        dl, N->getValueType(0)));
14397 
14398   assert(N->getOpcode() == ISD::SIGN_EXTEND &&
14399          "Invalid extension type");
14400   EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout());
14401   SDValue ShiftCst =
14402       DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy);
14403   return DAG.getNode(
14404       ISD::SRA, dl, N->getValueType(0),
14405       DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst),
14406       ShiftCst);
14407 }
14408 
combineSetCC(SDNode * N,DAGCombinerInfo & DCI) const14409 SDValue PPCTargetLowering::combineSetCC(SDNode *N,
14410                                         DAGCombinerInfo &DCI) const {
14411   assert(N->getOpcode() == ISD::SETCC &&
14412          "Should be called with a SETCC node");
14413 
14414   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
14415   if (CC == ISD::SETNE || CC == ISD::SETEQ) {
14416     SDValue LHS = N->getOperand(0);
14417     SDValue RHS = N->getOperand(1);
14418 
14419     // If there is a '0 - y' pattern, canonicalize the pattern to the RHS.
14420     if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) &&
14421         LHS.hasOneUse())
14422       std::swap(LHS, RHS);
14423 
14424     // x == 0-y --> x+y == 0
14425     // x != 0-y --> x+y != 0
14426     if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) &&
14427         RHS.hasOneUse()) {
14428       SDLoc DL(N);
14429       SelectionDAG &DAG = DCI.DAG;
14430       EVT VT = N->getValueType(0);
14431       EVT OpVT = LHS.getValueType();
14432       SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1));
14433       return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC);
14434     }
14435   }
14436 
14437   return DAGCombineTruncBoolExt(N, DCI);
14438 }
14439 
14440 // Is this an extending load from an f32 to an f64?
isFPExtLoad(SDValue Op)14441 static bool isFPExtLoad(SDValue Op) {
14442   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op.getNode()))
14443     return LD->getExtensionType() == ISD::EXTLOAD &&
14444       Op.getValueType() == MVT::f64;
14445   return false;
14446 }
14447 
14448 /// Reduces the number of fp-to-int conversion when building a vector.
14449 ///
14450 /// If this vector is built out of floating to integer conversions,
14451 /// transform it to a vector built out of floating point values followed by a
14452 /// single floating to integer conversion of the vector.
14453 /// Namely  (build_vector (fptosi $A), (fptosi $B), ...)
14454 /// becomes (fptosi (build_vector ($A, $B, ...)))
14455 SDValue PPCTargetLowering::
combineElementTruncationToVectorTruncation(SDNode * N,DAGCombinerInfo & DCI) const14456 combineElementTruncationToVectorTruncation(SDNode *N,
14457                                            DAGCombinerInfo &DCI) const {
14458   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14459          "Should be called with a BUILD_VECTOR node");
14460 
14461   SelectionDAG &DAG = DCI.DAG;
14462   SDLoc dl(N);
14463 
14464   SDValue FirstInput = N->getOperand(0);
14465   assert(FirstInput.getOpcode() == PPCISD::MFVSR &&
14466          "The input operand must be an fp-to-int conversion.");
14467 
14468   // This combine happens after legalization so the fp_to_[su]i nodes are
14469   // already converted to PPCSISD nodes.
14470   unsigned FirstConversion = FirstInput.getOperand(0).getOpcode();
14471   if (FirstConversion == PPCISD::FCTIDZ ||
14472       FirstConversion == PPCISD::FCTIDUZ ||
14473       FirstConversion == PPCISD::FCTIWZ ||
14474       FirstConversion == PPCISD::FCTIWUZ) {
14475     bool IsSplat = true;
14476     bool Is32Bit = FirstConversion == PPCISD::FCTIWZ ||
14477       FirstConversion == PPCISD::FCTIWUZ;
14478     EVT SrcVT = FirstInput.getOperand(0).getValueType();
14479     SmallVector<SDValue, 4> Ops;
14480     EVT TargetVT = N->getValueType(0);
14481     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14482       SDValue NextOp = N->getOperand(i);
14483       if (NextOp.getOpcode() != PPCISD::MFVSR)
14484         return SDValue();
14485       unsigned NextConversion = NextOp.getOperand(0).getOpcode();
14486       if (NextConversion != FirstConversion)
14487         return SDValue();
14488       // If we are converting to 32-bit integers, we need to add an FP_ROUND.
14489       // This is not valid if the input was originally double precision. It is
14490       // also not profitable to do unless this is an extending load in which
14491       // case doing this combine will allow us to combine consecutive loads.
14492       if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0)))
14493         return SDValue();
14494       if (N->getOperand(i) != FirstInput)
14495         IsSplat = false;
14496     }
14497 
14498     // If this is a splat, we leave it as-is since there will be only a single
14499     // fp-to-int conversion followed by a splat of the integer. This is better
14500     // for 32-bit and smaller ints and neutral for 64-bit ints.
14501     if (IsSplat)
14502       return SDValue();
14503 
14504     // Now that we know we have the right type of node, get its operands
14505     for (int i = 0, e = N->getNumOperands(); i < e; ++i) {
14506       SDValue In = N->getOperand(i).getOperand(0);
14507       if (Is32Bit) {
14508         // For 32-bit values, we need to add an FP_ROUND node (if we made it
14509         // here, we know that all inputs are extending loads so this is safe).
14510         if (In.isUndef())
14511           Ops.push_back(DAG.getUNDEF(SrcVT));
14512         else {
14513           SDValue Trunc =
14514               DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0),
14515                           DAG.getIntPtrConstant(1, dl, /*isTarget=*/true));
14516           Ops.push_back(Trunc);
14517         }
14518       } else
14519         Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0));
14520     }
14521 
14522     unsigned Opcode;
14523     if (FirstConversion == PPCISD::FCTIDZ ||
14524         FirstConversion == PPCISD::FCTIWZ)
14525       Opcode = ISD::FP_TO_SINT;
14526     else
14527       Opcode = ISD::FP_TO_UINT;
14528 
14529     EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32;
14530     SDValue BV = DAG.getBuildVector(NewVT, dl, Ops);
14531     return DAG.getNode(Opcode, dl, TargetVT, BV);
14532   }
14533   return SDValue();
14534 }
14535 
14536 /// Reduce the number of loads when building a vector.
14537 ///
14538 /// Building a vector out of multiple loads can be converted to a load
14539 /// of the vector type if the loads are consecutive. If the loads are
14540 /// consecutive but in descending order, a shuffle is added at the end
14541 /// to reorder the vector.
combineBVOfConsecutiveLoads(SDNode * N,SelectionDAG & DAG)14542 static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) {
14543   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14544          "Should be called with a BUILD_VECTOR node");
14545 
14546   SDLoc dl(N);
14547 
14548   // Return early for non byte-sized type, as they can't be consecutive.
14549   if (!N->getValueType(0).getVectorElementType().isByteSized())
14550     return SDValue();
14551 
14552   bool InputsAreConsecutiveLoads = true;
14553   bool InputsAreReverseConsecutive = true;
14554   unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize();
14555   SDValue FirstInput = N->getOperand(0);
14556   bool IsRoundOfExtLoad = false;
14557   LoadSDNode *FirstLoad = nullptr;
14558 
14559   if (FirstInput.getOpcode() == ISD::FP_ROUND &&
14560       FirstInput.getOperand(0).getOpcode() == ISD::LOAD) {
14561     FirstLoad = cast<LoadSDNode>(FirstInput.getOperand(0));
14562     IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD;
14563   }
14564   // Not a build vector of (possibly fp_rounded) loads.
14565   if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) ||
14566       N->getNumOperands() == 1)
14567     return SDValue();
14568 
14569   if (!IsRoundOfExtLoad)
14570     FirstLoad = cast<LoadSDNode>(FirstInput);
14571 
14572   SmallVector<LoadSDNode *, 4> InputLoads;
14573   InputLoads.push_back(FirstLoad);
14574   for (int i = 1, e = N->getNumOperands(); i < e; ++i) {
14575     // If any inputs are fp_round(extload), they all must be.
14576     if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND)
14577       return SDValue();
14578 
14579     SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) :
14580       N->getOperand(i);
14581     if (NextInput.getOpcode() != ISD::LOAD)
14582       return SDValue();
14583 
14584     SDValue PreviousInput =
14585       IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1);
14586     LoadSDNode *LD1 = cast<LoadSDNode>(PreviousInput);
14587     LoadSDNode *LD2 = cast<LoadSDNode>(NextInput);
14588 
14589     // If any inputs are fp_round(extload), they all must be.
14590     if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD)
14591       return SDValue();
14592 
14593     // We only care about regular loads. The PPC-specific load intrinsics
14594     // will not lead to a merge opportunity.
14595     if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1))
14596       InputsAreConsecutiveLoads = false;
14597     if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1))
14598       InputsAreReverseConsecutive = false;
14599 
14600     // Exit early if the loads are neither consecutive nor reverse consecutive.
14601     if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive)
14602       return SDValue();
14603     InputLoads.push_back(LD2);
14604   }
14605 
14606   assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) &&
14607          "The loads cannot be both consecutive and reverse consecutive.");
14608 
14609   SDValue WideLoad;
14610   SDValue ReturnSDVal;
14611   if (InputsAreConsecutiveLoads) {
14612     assert(FirstLoad && "Input needs to be a LoadSDNode.");
14613     WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(),
14614                            FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(),
14615                            FirstLoad->getAlign());
14616     ReturnSDVal = WideLoad;
14617   } else if (InputsAreReverseConsecutive) {
14618     LoadSDNode *LastLoad = InputLoads.back();
14619     assert(LastLoad && "Input needs to be a LoadSDNode.");
14620     WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(),
14621                            LastLoad->getBasePtr(), LastLoad->getPointerInfo(),
14622                            LastLoad->getAlign());
14623     SmallVector<int, 16> Ops;
14624     for (int i = N->getNumOperands() - 1; i >= 0; i--)
14625       Ops.push_back(i);
14626 
14627     ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad,
14628                                        DAG.getUNDEF(N->getValueType(0)), Ops);
14629   } else
14630     return SDValue();
14631 
14632   for (auto *LD : InputLoads)
14633     DAG.makeEquivalentMemoryOrdering(LD, WideLoad);
14634   return ReturnSDVal;
14635 }
14636 
14637 // This function adds the required vector_shuffle needed to get
14638 // the elements of the vector extract in the correct position
14639 // as specified by the CorrectElems encoding.
addShuffleForVecExtend(SDNode * N,SelectionDAG & DAG,SDValue Input,uint64_t Elems,uint64_t CorrectElems)14640 static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG,
14641                                       SDValue Input, uint64_t Elems,
14642                                       uint64_t CorrectElems) {
14643   SDLoc dl(N);
14644 
14645   unsigned NumElems = Input.getValueType().getVectorNumElements();
14646   SmallVector<int, 16> ShuffleMask(NumElems, -1);
14647 
14648   // Knowing the element indices being extracted from the original
14649   // vector and the order in which they're being inserted, just put
14650   // them at element indices required for the instruction.
14651   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14652     if (DAG.getDataLayout().isLittleEndian())
14653       ShuffleMask[CorrectElems & 0xF] = Elems & 0xF;
14654     else
14655       ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4;
14656     CorrectElems = CorrectElems >> 8;
14657     Elems = Elems >> 8;
14658   }
14659 
14660   SDValue Shuffle =
14661       DAG.getVectorShuffle(Input.getValueType(), dl, Input,
14662                            DAG.getUNDEF(Input.getValueType()), ShuffleMask);
14663 
14664   EVT VT = N->getValueType(0);
14665   SDValue Conv = DAG.getBitcast(VT, Shuffle);
14666 
14667   EVT ExtVT = EVT::getVectorVT(*DAG.getContext(),
14668                                Input.getValueType().getVectorElementType(),
14669                                VT.getVectorNumElements());
14670   return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv,
14671                      DAG.getValueType(ExtVT));
14672 }
14673 
14674 // Look for build vector patterns where input operands come from sign
14675 // extended vector_extract elements of specific indices. If the correct indices
14676 // aren't used, add a vector shuffle to fix up the indices and create
14677 // SIGN_EXTEND_INREG node which selects the vector sign extend instructions
14678 // during instruction selection.
combineBVOfVecSExt(SDNode * N,SelectionDAG & DAG)14679 static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) {
14680   // This array encodes the indices that the vector sign extend instructions
14681   // extract from when extending from one type to another for both BE and LE.
14682   // The right nibble of each byte corresponds to the LE incides.
14683   // and the left nibble of each byte corresponds to the BE incides.
14684   // For example: 0x3074B8FC  byte->word
14685   // For LE: the allowed indices are: 0x0,0x4,0x8,0xC
14686   // For BE: the allowed indices are: 0x3,0x7,0xB,0xF
14687   // For example: 0x000070F8  byte->double word
14688   // For LE: the allowed indices are: 0x0,0x8
14689   // For BE: the allowed indices are: 0x7,0xF
14690   uint64_t TargetElems[] = {
14691       0x3074B8FC, // b->w
14692       0x000070F8, // b->d
14693       0x10325476, // h->w
14694       0x00003074, // h->d
14695       0x00001032, // w->d
14696   };
14697 
14698   uint64_t Elems = 0;
14699   int Index;
14700   SDValue Input;
14701 
14702   auto isSExtOfVecExtract = [&](SDValue Op) -> bool {
14703     if (!Op)
14704       return false;
14705     if (Op.getOpcode() != ISD::SIGN_EXTEND &&
14706         Op.getOpcode() != ISD::SIGN_EXTEND_INREG)
14707       return false;
14708 
14709     // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value
14710     // of the right width.
14711     SDValue Extract = Op.getOperand(0);
14712     if (Extract.getOpcode() == ISD::ANY_EXTEND)
14713       Extract = Extract.getOperand(0);
14714     if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14715       return false;
14716 
14717     ConstantSDNode *ExtOp = dyn_cast<ConstantSDNode>(Extract.getOperand(1));
14718     if (!ExtOp)
14719       return false;
14720 
14721     Index = ExtOp->getZExtValue();
14722     if (Input && Input != Extract.getOperand(0))
14723       return false;
14724 
14725     if (!Input)
14726       Input = Extract.getOperand(0);
14727 
14728     Elems = Elems << 8;
14729     Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4;
14730     Elems |= Index;
14731 
14732     return true;
14733   };
14734 
14735   // If the build vector operands aren't sign extended vector extracts,
14736   // of the same input vector, then return.
14737   for (unsigned i = 0; i < N->getNumOperands(); i++) {
14738     if (!isSExtOfVecExtract(N->getOperand(i))) {
14739       return SDValue();
14740     }
14741   }
14742 
14743   // If the vector extract indicies are not correct, add the appropriate
14744   // vector_shuffle.
14745   int TgtElemArrayIdx;
14746   int InputSize = Input.getValueType().getScalarSizeInBits();
14747   int OutputSize = N->getValueType(0).getScalarSizeInBits();
14748   if (InputSize + OutputSize == 40)
14749     TgtElemArrayIdx = 0;
14750   else if (InputSize + OutputSize == 72)
14751     TgtElemArrayIdx = 1;
14752   else if (InputSize + OutputSize == 48)
14753     TgtElemArrayIdx = 2;
14754   else if (InputSize + OutputSize == 80)
14755     TgtElemArrayIdx = 3;
14756   else if (InputSize + OutputSize == 96)
14757     TgtElemArrayIdx = 4;
14758   else
14759     return SDValue();
14760 
14761   uint64_t CorrectElems = TargetElems[TgtElemArrayIdx];
14762   CorrectElems = DAG.getDataLayout().isLittleEndian()
14763                      ? CorrectElems & 0x0F0F0F0F0F0F0F0F
14764                      : CorrectElems & 0xF0F0F0F0F0F0F0F0;
14765   if (Elems != CorrectElems) {
14766     return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems);
14767   }
14768 
14769   // Regular lowering will catch cases where a shuffle is not needed.
14770   return SDValue();
14771 }
14772 
14773 // Look for the pattern of a load from a narrow width to i128, feeding
14774 // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node
14775 // (LXVRZX). This node represents a zero extending load that will be matched
14776 // to the Load VSX Vector Rightmost instructions.
combineBVZEXTLOAD(SDNode * N,SelectionDAG & DAG)14777 static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) {
14778   SDLoc DL(N);
14779 
14780   // This combine is only eligible for a BUILD_VECTOR of v1i128.
14781   if (N->getValueType(0) != MVT::v1i128)
14782     return SDValue();
14783 
14784   SDValue Operand = N->getOperand(0);
14785   // Proceed with the transformation if the operand to the BUILD_VECTOR
14786   // is a load instruction.
14787   if (Operand.getOpcode() != ISD::LOAD)
14788     return SDValue();
14789 
14790   auto *LD = cast<LoadSDNode>(Operand);
14791   EVT MemoryType = LD->getMemoryVT();
14792 
14793   // This transformation is only valid if the we are loading either a byte,
14794   // halfword, word, or doubleword.
14795   bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 ||
14796                      MemoryType == MVT::i32 || MemoryType == MVT::i64;
14797 
14798   // Ensure that the load from the narrow width is being zero extended to i128.
14799   if (!ValidLDType ||
14800       (LD->getExtensionType() != ISD::ZEXTLOAD &&
14801        LD->getExtensionType() != ISD::EXTLOAD))
14802     return SDValue();
14803 
14804   SDValue LoadOps[] = {
14805       LD->getChain(), LD->getBasePtr(),
14806       DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)};
14807 
14808   return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL,
14809                                  DAG.getVTList(MVT::v1i128, MVT::Other),
14810                                  LoadOps, MemoryType, LD->getMemOperand());
14811 }
14812 
DAGCombineBuildVector(SDNode * N,DAGCombinerInfo & DCI) const14813 SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N,
14814                                                  DAGCombinerInfo &DCI) const {
14815   assert(N->getOpcode() == ISD::BUILD_VECTOR &&
14816          "Should be called with a BUILD_VECTOR node");
14817 
14818   SelectionDAG &DAG = DCI.DAG;
14819   SDLoc dl(N);
14820 
14821   if (!Subtarget.hasVSX())
14822     return SDValue();
14823 
14824   // The target independent DAG combiner will leave a build_vector of
14825   // float-to-int conversions intact. We can generate MUCH better code for
14826   // a float-to-int conversion of a vector of floats.
14827   SDValue FirstInput = N->getOperand(0);
14828   if (FirstInput.getOpcode() == PPCISD::MFVSR) {
14829     SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI);
14830     if (Reduced)
14831       return Reduced;
14832   }
14833 
14834   // If we're building a vector out of consecutive loads, just load that
14835   // vector type.
14836   SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG);
14837   if (Reduced)
14838     return Reduced;
14839 
14840   // If we're building a vector out of extended elements from another vector
14841   // we have P9 vector integer extend instructions. The code assumes legal
14842   // input types (i.e. it can't handle things like v4i16) so do not run before
14843   // legalization.
14844   if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) {
14845     Reduced = combineBVOfVecSExt(N, DAG);
14846     if (Reduced)
14847       return Reduced;
14848   }
14849 
14850   // On Power10, the Load VSX Vector Rightmost instructions can be utilized
14851   // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR
14852   // is a load from <valid narrow width> to i128.
14853   if (Subtarget.isISA3_1()) {
14854     SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG);
14855     if (BVOfZLoad)
14856       return BVOfZLoad;
14857   }
14858 
14859   if (N->getValueType(0) != MVT::v2f64)
14860     return SDValue();
14861 
14862   // Looking for:
14863   // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1))
14864   if (FirstInput.getOpcode() != ISD::SINT_TO_FP &&
14865       FirstInput.getOpcode() != ISD::UINT_TO_FP)
14866     return SDValue();
14867   if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP &&
14868       N->getOperand(1).getOpcode() != ISD::UINT_TO_FP)
14869     return SDValue();
14870   if (FirstInput.getOpcode() != N->getOperand(1).getOpcode())
14871     return SDValue();
14872 
14873   SDValue Ext1 = FirstInput.getOperand(0);
14874   SDValue Ext2 = N->getOperand(1).getOperand(0);
14875   if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
14876      Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT)
14877     return SDValue();
14878 
14879   ConstantSDNode *Ext1Op = dyn_cast<ConstantSDNode>(Ext1.getOperand(1));
14880   ConstantSDNode *Ext2Op = dyn_cast<ConstantSDNode>(Ext2.getOperand(1));
14881   if (!Ext1Op || !Ext2Op)
14882     return SDValue();
14883   if (Ext1.getOperand(0).getValueType() != MVT::v4i32 ||
14884       Ext1.getOperand(0) != Ext2.getOperand(0))
14885     return SDValue();
14886 
14887   int FirstElem = Ext1Op->getZExtValue();
14888   int SecondElem = Ext2Op->getZExtValue();
14889   int SubvecIdx;
14890   if (FirstElem == 0 && SecondElem == 1)
14891     SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0;
14892   else if (FirstElem == 2 && SecondElem == 3)
14893     SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1;
14894   else
14895     return SDValue();
14896 
14897   SDValue SrcVec = Ext1.getOperand(0);
14898   auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ?
14899     PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP;
14900   return DAG.getNode(NodeType, dl, MVT::v2f64,
14901                      SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl));
14902 }
14903 
combineFPToIntToFP(SDNode * N,DAGCombinerInfo & DCI) const14904 SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N,
14905                                               DAGCombinerInfo &DCI) const {
14906   assert((N->getOpcode() == ISD::SINT_TO_FP ||
14907           N->getOpcode() == ISD::UINT_TO_FP) &&
14908          "Need an int -> FP conversion node here");
14909 
14910   if (useSoftFloat() || !Subtarget.has64BitSupport())
14911     return SDValue();
14912 
14913   SelectionDAG &DAG = DCI.DAG;
14914   SDLoc dl(N);
14915   SDValue Op(N, 0);
14916 
14917   // Don't handle ppc_fp128 here or conversions that are out-of-range capable
14918   // from the hardware.
14919   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
14920     return SDValue();
14921   if (!Op.getOperand(0).getValueType().isSimple())
14922     return SDValue();
14923   if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) ||
14924       Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64))
14925     return SDValue();
14926 
14927   SDValue FirstOperand(Op.getOperand(0));
14928   bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD &&
14929     (FirstOperand.getValueType() == MVT::i8 ||
14930      FirstOperand.getValueType() == MVT::i16);
14931   if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) {
14932     bool Signed = N->getOpcode() == ISD::SINT_TO_FP;
14933     bool DstDouble = Op.getValueType() == MVT::f64;
14934     unsigned ConvOp = Signed ?
14935       (DstDouble ? PPCISD::FCFID  : PPCISD::FCFIDS) :
14936       (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS);
14937     SDValue WidthConst =
14938       DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2,
14939                             dl, false);
14940     LoadSDNode *LDN = cast<LoadSDNode>(FirstOperand.getNode());
14941     SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst };
14942     SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl,
14943                                          DAG.getVTList(MVT::f64, MVT::Other),
14944                                          Ops, MVT::i8, LDN->getMemOperand());
14945     DAG.makeEquivalentMemoryOrdering(LDN, Ld);
14946 
14947     // For signed conversion, we need to sign-extend the value in the VSR
14948     if (Signed) {
14949       SDValue ExtOps[] = { Ld, WidthConst };
14950       SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps);
14951       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext);
14952     } else
14953       return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld);
14954   }
14955 
14956 
14957   // For i32 intermediate values, unfortunately, the conversion functions
14958   // leave the upper 32 bits of the value are undefined. Within the set of
14959   // scalar instructions, we have no method for zero- or sign-extending the
14960   // value. Thus, we cannot handle i32 intermediate values here.
14961   if (Op.getOperand(0).getValueType() == MVT::i32)
14962     return SDValue();
14963 
14964   assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) &&
14965          "UINT_TO_FP is supported only with FPCVT");
14966 
14967   // If we have FCFIDS, then use it when converting to single-precision.
14968   // Otherwise, convert to double-precision and then round.
14969   unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14970                        ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS
14971                                                             : PPCISD::FCFIDS)
14972                        : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU
14973                                                             : PPCISD::FCFID);
14974   MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32)
14975                   ? MVT::f32
14976                   : MVT::f64;
14977 
14978   // If we're converting from a float, to an int, and back to a float again,
14979   // then we don't need the store/load pair at all.
14980   if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT &&
14981        Subtarget.hasFPCVT()) ||
14982       (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) {
14983     SDValue Src = Op.getOperand(0).getOperand(0);
14984     if (Src.getValueType() == MVT::f32) {
14985       Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
14986       DCI.AddToWorklist(Src.getNode());
14987     } else if (Src.getValueType() != MVT::f64) {
14988       // Make sure that we don't pick up a ppc_fp128 source value.
14989       return SDValue();
14990     }
14991 
14992     unsigned FCTOp =
14993       Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ :
14994                                                         PPCISD::FCTIDUZ;
14995 
14996     SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src);
14997     SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp);
14998 
14999     if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) {
15000       FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP,
15001                        DAG.getIntPtrConstant(0, dl, /*isTarget=*/true));
15002       DCI.AddToWorklist(FP.getNode());
15003     }
15004 
15005     return FP;
15006   }
15007 
15008   return SDValue();
15009 }
15010 
15011 // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for
15012 // builtins) into loads with swaps.
expandVSXLoadForLE(SDNode * N,DAGCombinerInfo & DCI) const15013 SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N,
15014                                               DAGCombinerInfo &DCI) const {
15015   // Delay VSX load for LE combine until after LegalizeOps to prioritize other
15016   // load combines.
15017   if (DCI.isBeforeLegalizeOps())
15018     return SDValue();
15019 
15020   SelectionDAG &DAG = DCI.DAG;
15021   SDLoc dl(N);
15022   SDValue Chain;
15023   SDValue Base;
15024   MachineMemOperand *MMO;
15025 
15026   switch (N->getOpcode()) {
15027   default:
15028     llvm_unreachable("Unexpected opcode for little endian VSX load");
15029   case ISD::LOAD: {
15030     LoadSDNode *LD = cast<LoadSDNode>(N);
15031     Chain = LD->getChain();
15032     Base = LD->getBasePtr();
15033     MMO = LD->getMemOperand();
15034     // If the MMO suggests this isn't a load of a full vector, leave
15035     // things alone.  For a built-in, we have to make the change for
15036     // correctness, so if there is a size problem that will be a bug.
15037     if (MMO->getSize() < 16)
15038       return SDValue();
15039     break;
15040   }
15041   case ISD::INTRINSIC_W_CHAIN: {
15042     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
15043     Chain = Intrin->getChain();
15044     // Similarly to the store case below, Intrin->getBasePtr() doesn't get
15045     // us what we want. Get operand 2 instead.
15046     Base = Intrin->getOperand(2);
15047     MMO = Intrin->getMemOperand();
15048     break;
15049   }
15050   }
15051 
15052   MVT VecTy = N->getValueType(0).getSimpleVT();
15053 
15054   SDValue LoadOps[] = { Chain, Base };
15055   SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl,
15056                                          DAG.getVTList(MVT::v2f64, MVT::Other),
15057                                          LoadOps, MVT::v2f64, MMO);
15058 
15059   DCI.AddToWorklist(Load.getNode());
15060   Chain = Load.getValue(1);
15061   SDValue Swap = DAG.getNode(
15062       PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load);
15063   DCI.AddToWorklist(Swap.getNode());
15064 
15065   // Add a bitcast if the resulting load type doesn't match v2f64.
15066   if (VecTy != MVT::v2f64) {
15067     SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap);
15068     DCI.AddToWorklist(N.getNode());
15069     // Package {bitcast value, swap's chain} to match Load's shape.
15070     return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other),
15071                        N, Swap.getValue(1));
15072   }
15073 
15074   return Swap;
15075 }
15076 
15077 // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for
15078 // builtins) into stores with swaps.
expandVSXStoreForLE(SDNode * N,DAGCombinerInfo & DCI) const15079 SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N,
15080                                                DAGCombinerInfo &DCI) const {
15081   // Delay VSX store for LE combine until after LegalizeOps to prioritize other
15082   // store combines.
15083   if (DCI.isBeforeLegalizeOps())
15084     return SDValue();
15085 
15086   SelectionDAG &DAG = DCI.DAG;
15087   SDLoc dl(N);
15088   SDValue Chain;
15089   SDValue Base;
15090   unsigned SrcOpnd;
15091   MachineMemOperand *MMO;
15092 
15093   switch (N->getOpcode()) {
15094   default:
15095     llvm_unreachable("Unexpected opcode for little endian VSX store");
15096   case ISD::STORE: {
15097     StoreSDNode *ST = cast<StoreSDNode>(N);
15098     Chain = ST->getChain();
15099     Base = ST->getBasePtr();
15100     MMO = ST->getMemOperand();
15101     SrcOpnd = 1;
15102     // If the MMO suggests this isn't a store of a full vector, leave
15103     // things alone.  For a built-in, we have to make the change for
15104     // correctness, so if there is a size problem that will be a bug.
15105     if (MMO->getSize() < 16)
15106       return SDValue();
15107     break;
15108   }
15109   case ISD::INTRINSIC_VOID: {
15110     MemIntrinsicSDNode *Intrin = cast<MemIntrinsicSDNode>(N);
15111     Chain = Intrin->getChain();
15112     // Intrin->getBasePtr() oddly does not get what we want.
15113     Base = Intrin->getOperand(3);
15114     MMO = Intrin->getMemOperand();
15115     SrcOpnd = 2;
15116     break;
15117   }
15118   }
15119 
15120   SDValue Src = N->getOperand(SrcOpnd);
15121   MVT VecTy = Src.getValueType().getSimpleVT();
15122 
15123   // All stores are done as v2f64 and possible bit cast.
15124   if (VecTy != MVT::v2f64) {
15125     Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src);
15126     DCI.AddToWorklist(Src.getNode());
15127   }
15128 
15129   SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl,
15130                              DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src);
15131   DCI.AddToWorklist(Swap.getNode());
15132   Chain = Swap.getValue(1);
15133   SDValue StoreOps[] = { Chain, Swap, Base };
15134   SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl,
15135                                           DAG.getVTList(MVT::Other),
15136                                           StoreOps, VecTy, MMO);
15137   DCI.AddToWorklist(Store.getNode());
15138   return Store;
15139 }
15140 
15141 // Handle DAG combine for STORE (FP_TO_INT F).
combineStoreFPToInt(SDNode * N,DAGCombinerInfo & DCI) const15142 SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N,
15143                                                DAGCombinerInfo &DCI) const {
15144   SelectionDAG &DAG = DCI.DAG;
15145   SDLoc dl(N);
15146   unsigned Opcode = N->getOperand(1).getOpcode();
15147   (void)Opcode;
15148   bool Strict = N->getOperand(1)->isStrictFPOpcode();
15149 
15150   assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT ||
15151           Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT)
15152          && "Not a FP_TO_INT Instruction!");
15153 
15154   SDValue Val = N->getOperand(1).getOperand(Strict ? 1 : 0);
15155   EVT Op1VT = N->getOperand(1).getValueType();
15156   EVT ResVT = Val.getValueType();
15157 
15158   if (!Subtarget.hasVSX() || !Subtarget.hasFPCVT() || !isTypeLegal(ResVT))
15159     return SDValue();
15160 
15161   // Only perform combine for conversion to i64/i32 or power9 i16/i8.
15162   bool ValidTypeForStoreFltAsInt =
15163         (Op1VT == MVT::i32 || (Op1VT == MVT::i64 && Subtarget.isPPC64()) ||
15164          (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8)));
15165 
15166   // TODO: Lower conversion from f128 on all VSX targets
15167   if (ResVT == MVT::ppcf128 || (ResVT == MVT::f128 && !Subtarget.hasP9Vector()))
15168     return SDValue();
15169 
15170   if ((Op1VT != MVT::i64 && !Subtarget.hasP8Vector()) ||
15171       cast<StoreSDNode>(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt)
15172     return SDValue();
15173 
15174   Val = convertFPToInt(N->getOperand(1), DAG, Subtarget);
15175 
15176   // Set number of bytes being converted.
15177   unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8;
15178   SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2),
15179                    DAG.getIntPtrConstant(ByteSize, dl, false),
15180                    DAG.getValueType(Op1VT)};
15181 
15182   Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl,
15183           DAG.getVTList(MVT::Other), Ops,
15184           cast<StoreSDNode>(N)->getMemoryVT(),
15185           cast<StoreSDNode>(N)->getMemOperand());
15186 
15187   return Val;
15188 }
15189 
isAlternatingShuffMask(const ArrayRef<int> & Mask,int NumElts)15190 static bool isAlternatingShuffMask(const ArrayRef<int> &Mask, int NumElts) {
15191   // Check that the source of the element keeps flipping
15192   // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts).
15193   bool PrevElemFromFirstVec = Mask[0] < NumElts;
15194   for (int i = 1, e = Mask.size(); i < e; i++) {
15195     if (PrevElemFromFirstVec && Mask[i] < NumElts)
15196       return false;
15197     if (!PrevElemFromFirstVec && Mask[i] >= NumElts)
15198       return false;
15199     PrevElemFromFirstVec = !PrevElemFromFirstVec;
15200   }
15201   return true;
15202 }
15203 
isSplatBV(SDValue Op)15204 static bool isSplatBV(SDValue Op) {
15205   if (Op.getOpcode() != ISD::BUILD_VECTOR)
15206     return false;
15207   SDValue FirstOp;
15208 
15209   // Find first non-undef input.
15210   for (int i = 0, e = Op.getNumOperands(); i < e; i++) {
15211     FirstOp = Op.getOperand(i);
15212     if (!FirstOp.isUndef())
15213       break;
15214   }
15215 
15216   // All inputs are undef or the same as the first non-undef input.
15217   for (int i = 1, e = Op.getNumOperands(); i < e; i++)
15218     if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef())
15219       return false;
15220   return true;
15221 }
15222 
isScalarToVec(SDValue Op)15223 static SDValue isScalarToVec(SDValue Op) {
15224   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
15225     return Op;
15226   if (Op.getOpcode() != ISD::BITCAST)
15227     return SDValue();
15228   Op = Op.getOperand(0);
15229   if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR)
15230     return Op;
15231   return SDValue();
15232 }
15233 
15234 // Fix up the shuffle mask to account for the fact that the result of
15235 // scalar_to_vector is not in lane zero. This just takes all values in
15236 // the ranges specified by the min/max indices and adds the number of
15237 // elements required to ensure each element comes from the respective
15238 // position in the valid lane.
15239 // On little endian, that's just the corresponding element in the other
15240 // half of the vector. On big endian, it is in the same half but right
15241 // justified rather than left justified in that half.
fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> & ShuffV,int LHSMaxIdx,int RHSMinIdx,int RHSMaxIdx,int HalfVec,unsigned ValidLaneWidth,const PPCSubtarget & Subtarget)15242 static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl<int> &ShuffV,
15243                                             int LHSMaxIdx, int RHSMinIdx,
15244                                             int RHSMaxIdx, int HalfVec,
15245                                             unsigned ValidLaneWidth,
15246                                             const PPCSubtarget &Subtarget) {
15247   for (int i = 0, e = ShuffV.size(); i < e; i++) {
15248     int Idx = ShuffV[i];
15249     if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx))
15250       ShuffV[i] +=
15251           Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth;
15252   }
15253 }
15254 
15255 // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if
15256 // the original is:
15257 // (<n x Ty> (scalar_to_vector (Ty (extract_elt <n x Ty> %a, C))))
15258 // In such a case, just change the shuffle mask to extract the element
15259 // from the permuted index.
getSToVPermuted(SDValue OrigSToV,SelectionDAG & DAG,const PPCSubtarget & Subtarget)15260 static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG,
15261                                const PPCSubtarget &Subtarget) {
15262   SDLoc dl(OrigSToV);
15263   EVT VT = OrigSToV.getValueType();
15264   assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR &&
15265          "Expecting a SCALAR_TO_VECTOR here");
15266   SDValue Input = OrigSToV.getOperand(0);
15267 
15268   if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
15269     ConstantSDNode *Idx = dyn_cast<ConstantSDNode>(Input.getOperand(1));
15270     SDValue OrigVector = Input.getOperand(0);
15271 
15272     // Can't handle non-const element indices or different vector types
15273     // for the input to the extract and the output of the scalar_to_vector.
15274     if (Idx && VT == OrigVector.getValueType()) {
15275       unsigned NumElts = VT.getVectorNumElements();
15276       assert(
15277           NumElts > 1 &&
15278           "Cannot produce a permuted scalar_to_vector for one element vector");
15279       SmallVector<int, 16> NewMask(NumElts, -1);
15280       unsigned ResultInElt = NumElts / 2;
15281       ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1;
15282       NewMask[ResultInElt] = Idx->getZExtValue();
15283       return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask);
15284     }
15285   }
15286   return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT,
15287                      OrigSToV.getOperand(0));
15288 }
15289 
15290 // On little endian subtargets, combine shuffles such as:
15291 // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, <zero>, %b
15292 // into:
15293 // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, <zero>, %b
15294 // because the latter can be matched to a single instruction merge.
15295 // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute
15296 // to put the value into element zero. Adjust the shuffle mask so that the
15297 // vector can remain in permuted form (to prevent a swap prior to a shuffle).
15298 // On big endian targets, this is still useful for SCALAR_TO_VECTOR
15299 // nodes with elements smaller than doubleword because all the ways
15300 // of getting scalar data into a vector register put the value in the
15301 // rightmost element of the left half of the vector.
combineVectorShuffle(ShuffleVectorSDNode * SVN,SelectionDAG & DAG) const15302 SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN,
15303                                                 SelectionDAG &DAG) const {
15304   SDValue LHS = SVN->getOperand(0);
15305   SDValue RHS = SVN->getOperand(1);
15306   auto Mask = SVN->getMask();
15307   int NumElts = LHS.getValueType().getVectorNumElements();
15308   SDValue Res(SVN, 0);
15309   SDLoc dl(SVN);
15310   bool IsLittleEndian = Subtarget.isLittleEndian();
15311 
15312   // On big endian targets this is only useful for subtargets with direct moves.
15313   // On little endian targets it would be useful for all subtargets with VSX.
15314   // However adding special handling for LE subtargets without direct moves
15315   // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8)
15316   // which includes direct moves.
15317   if (!Subtarget.hasDirectMove())
15318     return Res;
15319 
15320   // If this is not a shuffle of a shuffle and the first element comes from
15321   // the second vector, canonicalize to the commuted form. This will make it
15322   // more likely to match one of the single instruction patterns.
15323   if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE &&
15324       RHS.getOpcode() != ISD::VECTOR_SHUFFLE) {
15325     std::swap(LHS, RHS);
15326     Res = DAG.getCommutedVectorShuffle(*SVN);
15327     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15328   }
15329 
15330   // Adjust the shuffle mask if either input vector comes from a
15331   // SCALAR_TO_VECTOR and keep the respective input vector in permuted
15332   // form (to prevent the need for a swap).
15333   SmallVector<int, 16> ShuffV(Mask);
15334   SDValue SToVLHS = isScalarToVec(LHS);
15335   SDValue SToVRHS = isScalarToVec(RHS);
15336   if (SToVLHS || SToVRHS) {
15337     // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the
15338     // same type and have differing element sizes, then do not perform
15339     // the following transformation. The current transformation for
15340     // SCALAR_TO_VECTOR assumes that both input vectors have the same
15341     // element size. This will be updated in the future to account for
15342     // differing sizes of the LHS and RHS.
15343     if (SToVLHS && SToVRHS &&
15344         (SToVLHS.getValueType().getScalarSizeInBits() !=
15345          SToVRHS.getValueType().getScalarSizeInBits()))
15346       return Res;
15347 
15348     int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements()
15349                             : SToVRHS.getValueType().getVectorNumElements();
15350     int NumEltsOut = ShuffV.size();
15351     // The width of the "valid lane" (i.e. the lane that contains the value that
15352     // is vectorized) needs to be expressed in terms of the number of elements
15353     // of the shuffle. It is thereby the ratio of the values before and after
15354     // any bitcast.
15355     unsigned ValidLaneWidth =
15356         SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() /
15357                       LHS.getValueType().getScalarSizeInBits()
15358                 : SToVRHS.getValueType().getScalarSizeInBits() /
15359                       RHS.getValueType().getScalarSizeInBits();
15360 
15361     // Initially assume that neither input is permuted. These will be adjusted
15362     // accordingly if either input is.
15363     int LHSMaxIdx = -1;
15364     int RHSMinIdx = -1;
15365     int RHSMaxIdx = -1;
15366     int HalfVec = LHS.getValueType().getVectorNumElements() / 2;
15367 
15368     // Get the permuted scalar to vector nodes for the source(s) that come from
15369     // ISD::SCALAR_TO_VECTOR.
15370     // On big endian systems, this only makes sense for element sizes smaller
15371     // than 64 bits since for 64-bit elements, all instructions already put
15372     // the value into element zero. Since scalar size of LHS and RHS may differ
15373     // after isScalarToVec, this should be checked using their own sizes.
15374     if (SToVLHS) {
15375       if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64)
15376         return Res;
15377       // Set up the values for the shuffle vector fixup.
15378       LHSMaxIdx = NumEltsOut / NumEltsIn;
15379       SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget);
15380       if (SToVLHS.getValueType() != LHS.getValueType())
15381         SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS);
15382       LHS = SToVLHS;
15383     }
15384     if (SToVRHS) {
15385       if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64)
15386         return Res;
15387       RHSMinIdx = NumEltsOut;
15388       RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx;
15389       SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget);
15390       if (SToVRHS.getValueType() != RHS.getValueType())
15391         SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS);
15392       RHS = SToVRHS;
15393     }
15394 
15395     // Fix up the shuffle mask to reflect where the desired element actually is.
15396     // The minimum and maximum indices that correspond to element zero for both
15397     // the LHS and RHS are computed and will control which shuffle mask entries
15398     // are to be changed. For example, if the RHS is permuted, any shuffle mask
15399     // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted.
15400     fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx,
15401                                     HalfVec, ValidLaneWidth, Subtarget);
15402     Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15403 
15404     // We may have simplified away the shuffle. We won't be able to do anything
15405     // further with it here.
15406     if (!isa<ShuffleVectorSDNode>(Res))
15407       return Res;
15408     Mask = cast<ShuffleVectorSDNode>(Res)->getMask();
15409   }
15410 
15411   SDValue TheSplat = IsLittleEndian ? RHS : LHS;
15412   // The common case after we commuted the shuffle is that the RHS is a splat
15413   // and we have elements coming in from the splat at indices that are not
15414   // conducive to using a merge.
15415   // Example:
15416   // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, <zero>
15417   if (!isSplatBV(TheSplat))
15418     return Res;
15419 
15420   // We are looking for a mask such that all even elements are from
15421   // one vector and all odd elements from the other.
15422   if (!isAlternatingShuffMask(Mask, NumElts))
15423     return Res;
15424 
15425   // Adjust the mask so we are pulling in the same index from the splat
15426   // as the index from the interesting vector in consecutive elements.
15427   if (IsLittleEndian) {
15428     // Example (even elements from first vector):
15429     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, <zero>
15430     if (Mask[0] < NumElts)
15431       for (int i = 1, e = Mask.size(); i < e; i += 2) {
15432         if (ShuffV[i] < 0)
15433           continue;
15434         // If element from non-splat is undef, pick first element from splat.
15435         ShuffV[i] = (ShuffV[i - 1] >= 0 ? ShuffV[i - 1] : 0) + NumElts;
15436       }
15437     // Example (odd elements from first vector):
15438     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, <zero>
15439     else
15440       for (int i = 0, e = Mask.size(); i < e; i += 2) {
15441         if (ShuffV[i] < 0)
15442           continue;
15443         // If element from non-splat is undef, pick first element from splat.
15444         ShuffV[i] = (ShuffV[i + 1] >= 0 ? ShuffV[i + 1] : 0) + NumElts;
15445       }
15446   } else {
15447     // Example (even elements from first vector):
15448     // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> <zero>, t1
15449     if (Mask[0] < NumElts)
15450       for (int i = 0, e = Mask.size(); i < e; i += 2) {
15451         if (ShuffV[i] < 0)
15452           continue;
15453         // If element from non-splat is undef, pick first element from splat.
15454         ShuffV[i] = ShuffV[i + 1] >= 0 ? ShuffV[i + 1] - NumElts : 0;
15455       }
15456     // Example (odd elements from first vector):
15457     // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> <zero>, t1
15458     else
15459       for (int i = 1, e = Mask.size(); i < e; i += 2) {
15460         if (ShuffV[i] < 0)
15461           continue;
15462         // If element from non-splat is undef, pick first element from splat.
15463         ShuffV[i] = ShuffV[i - 1] >= 0 ? ShuffV[i - 1] - NumElts : 0;
15464       }
15465   }
15466 
15467   // If the RHS has undefs, we need to remove them since we may have created
15468   // a shuffle that adds those instead of the splat value.
15469   SDValue SplatVal =
15470       cast<BuildVectorSDNode>(TheSplat.getNode())->getSplatValue();
15471   TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal);
15472 
15473   if (IsLittleEndian)
15474     RHS = TheSplat;
15475   else
15476     LHS = TheSplat;
15477   return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV);
15478 }
15479 
combineVReverseMemOP(ShuffleVectorSDNode * SVN,LSBaseSDNode * LSBase,DAGCombinerInfo & DCI) const15480 SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN,
15481                                                 LSBaseSDNode *LSBase,
15482                                                 DAGCombinerInfo &DCI) const {
15483   assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) &&
15484         "Not a reverse memop pattern!");
15485 
15486   auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool {
15487     auto Mask = SVN->getMask();
15488     int i = 0;
15489     auto I = Mask.rbegin();
15490     auto E = Mask.rend();
15491 
15492     for (; I != E; ++I) {
15493       if (*I != i)
15494         return false;
15495       i++;
15496     }
15497     return true;
15498   };
15499 
15500   SelectionDAG &DAG = DCI.DAG;
15501   EVT VT = SVN->getValueType(0);
15502 
15503   if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX())
15504     return SDValue();
15505 
15506   // Before P9, we have PPCVSXSwapRemoval pass to hack the element order.
15507   // See comment in PPCVSXSwapRemoval.cpp.
15508   // It is conflict with PPCVSXSwapRemoval opt. So we don't do it.
15509   if (!Subtarget.hasP9Vector())
15510     return SDValue();
15511 
15512   if(!IsElementReverse(SVN))
15513     return SDValue();
15514 
15515   if (LSBase->getOpcode() == ISD::LOAD) {
15516     // If the load return value 0 has more than one user except the
15517     // shufflevector instruction, it is not profitable to replace the
15518     // shufflevector with a reverse load.
15519     for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end();
15520          UI != UE; ++UI)
15521       if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE)
15522         return SDValue();
15523 
15524     SDLoc dl(LSBase);
15525     SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()};
15526     return DAG.getMemIntrinsicNode(
15527         PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps,
15528         LSBase->getMemoryVT(), LSBase->getMemOperand());
15529   }
15530 
15531   if (LSBase->getOpcode() == ISD::STORE) {
15532     // If there are other uses of the shuffle, the swap cannot be avoided.
15533     // Forcing the use of an X-Form (since swapped stores only have
15534     // X-Forms) without removing the swap is unprofitable.
15535     if (!SVN->hasOneUse())
15536       return SDValue();
15537 
15538     SDLoc dl(LSBase);
15539     SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0),
15540                           LSBase->getBasePtr()};
15541     return DAG.getMemIntrinsicNode(
15542         PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps,
15543         LSBase->getMemoryVT(), LSBase->getMemOperand());
15544   }
15545 
15546   llvm_unreachable("Expected a load or store node here");
15547 }
15548 
isStoreConditional(SDValue Intrin,unsigned & StoreWidth)15549 static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) {
15550   unsigned IntrinsicID = Intrin.getConstantOperandVal(1);
15551   if (IntrinsicID == Intrinsic::ppc_stdcx)
15552     StoreWidth = 8;
15553   else if (IntrinsicID == Intrinsic::ppc_stwcx)
15554     StoreWidth = 4;
15555   else if (IntrinsicID == Intrinsic::ppc_sthcx)
15556     StoreWidth = 2;
15557   else if (IntrinsicID == Intrinsic::ppc_stbcx)
15558     StoreWidth = 1;
15559   else
15560     return false;
15561   return true;
15562 }
15563 
PerformDAGCombine(SDNode * N,DAGCombinerInfo & DCI) const15564 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
15565                                              DAGCombinerInfo &DCI) const {
15566   SelectionDAG &DAG = DCI.DAG;
15567   SDLoc dl(N);
15568   switch (N->getOpcode()) {
15569   default: break;
15570   case ISD::ADD:
15571     return combineADD(N, DCI);
15572   case ISD::AND: {
15573     // We don't want (and (zext (shift...)), C) if C fits in the width of the
15574     // original input as that will prevent us from selecting optimal rotates.
15575     // This only matters if the input to the extend is i32 widened to i64.
15576     SDValue Op1 = N->getOperand(0);
15577     SDValue Op2 = N->getOperand(1);
15578     if ((Op1.getOpcode() != ISD::ZERO_EXTEND &&
15579          Op1.getOpcode() != ISD::ANY_EXTEND) ||
15580         !isa<ConstantSDNode>(Op2) || N->getValueType(0) != MVT::i64 ||
15581         Op1.getOperand(0).getValueType() != MVT::i32)
15582       break;
15583     SDValue NarrowOp = Op1.getOperand(0);
15584     if (NarrowOp.getOpcode() != ISD::SHL && NarrowOp.getOpcode() != ISD::SRL &&
15585         NarrowOp.getOpcode() != ISD::ROTL && NarrowOp.getOpcode() != ISD::ROTR)
15586       break;
15587 
15588     uint64_t Imm = Op2->getAsZExtVal();
15589     // Make sure that the constant is narrow enough to fit in the narrow type.
15590     if (!isUInt<32>(Imm))
15591       break;
15592     SDValue ConstOp = DAG.getConstant(Imm, dl, MVT::i32);
15593     SDValue NarrowAnd = DAG.getNode(ISD::AND, dl, MVT::i32, NarrowOp, ConstOp);
15594     return DAG.getZExtOrTrunc(NarrowAnd, dl, N->getValueType(0));
15595   }
15596   case ISD::SHL:
15597     return combineSHL(N, DCI);
15598   case ISD::SRA:
15599     return combineSRA(N, DCI);
15600   case ISD::SRL:
15601     return combineSRL(N, DCI);
15602   case ISD::MUL:
15603     return combineMUL(N, DCI);
15604   case ISD::FMA:
15605   case PPCISD::FNMSUB:
15606     return combineFMALike(N, DCI);
15607   case PPCISD::SHL:
15608     if (isNullConstant(N->getOperand(0))) // 0 << V -> 0.
15609         return N->getOperand(0);
15610     break;
15611   case PPCISD::SRL:
15612     if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0.
15613         return N->getOperand(0);
15614     break;
15615   case PPCISD::SRA:
15616     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
15617       if (C->isZero() ||  //  0 >>s V -> 0.
15618           C->isAllOnes()) // -1 >>s V -> -1.
15619         return N->getOperand(0);
15620     }
15621     break;
15622   case ISD::SIGN_EXTEND:
15623   case ISD::ZERO_EXTEND:
15624   case ISD::ANY_EXTEND:
15625     return DAGCombineExtBoolTrunc(N, DCI);
15626   case ISD::TRUNCATE:
15627     return combineTRUNCATE(N, DCI);
15628   case ISD::SETCC:
15629     if (SDValue CSCC = combineSetCC(N, DCI))
15630       return CSCC;
15631     [[fallthrough]];
15632   case ISD::SELECT_CC:
15633     return DAGCombineTruncBoolExt(N, DCI);
15634   case ISD::SINT_TO_FP:
15635   case ISD::UINT_TO_FP:
15636     return combineFPToIntToFP(N, DCI);
15637   case ISD::VECTOR_SHUFFLE:
15638     if (ISD::isNormalLoad(N->getOperand(0).getNode())) {
15639       LSBaseSDNode* LSBase = cast<LSBaseSDNode>(N->getOperand(0));
15640       return combineVReverseMemOP(cast<ShuffleVectorSDNode>(N), LSBase, DCI);
15641     }
15642     return combineVectorShuffle(cast<ShuffleVectorSDNode>(N), DCI.DAG);
15643   case ISD::STORE: {
15644 
15645     EVT Op1VT = N->getOperand(1).getValueType();
15646     unsigned Opcode = N->getOperand(1).getOpcode();
15647 
15648     if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT ||
15649         Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) {
15650       SDValue Val = combineStoreFPToInt(N, DCI);
15651       if (Val)
15652         return Val;
15653     }
15654 
15655     if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) {
15656       ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N->getOperand(1));
15657       SDValue Val= combineVReverseMemOP(SVN, cast<LSBaseSDNode>(N), DCI);
15658       if (Val)
15659         return Val;
15660     }
15661 
15662     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
15663     if (cast<StoreSDNode>(N)->isUnindexed() && Opcode == ISD::BSWAP &&
15664         N->getOperand(1).getNode()->hasOneUse() &&
15665         (Op1VT == MVT::i32 || Op1VT == MVT::i16 ||
15666          (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) {
15667 
15668       // STBRX can only handle simple types and it makes no sense to store less
15669       // two bytes in byte-reversed order.
15670       EVT mVT = cast<StoreSDNode>(N)->getMemoryVT();
15671       if (mVT.isExtended() || mVT.getSizeInBits() < 16)
15672         break;
15673 
15674       SDValue BSwapOp = N->getOperand(1).getOperand(0);
15675       // Do an any-extend to 32-bits if this is a half-word input.
15676       if (BSwapOp.getValueType() == MVT::i16)
15677         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
15678 
15679       // If the type of BSWAP operand is wider than stored memory width
15680       // it need to be shifted to the right side before STBRX.
15681       if (Op1VT.bitsGT(mVT)) {
15682         int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits();
15683         BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp,
15684                               DAG.getConstant(Shift, dl, MVT::i32));
15685         // Need to truncate if this is a bswap of i64 stored as i32/i16.
15686         if (Op1VT == MVT::i64)
15687           BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp);
15688       }
15689 
15690       SDValue Ops[] = {
15691         N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT)
15692       };
15693       return
15694         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
15695                                 Ops, cast<StoreSDNode>(N)->getMemoryVT(),
15696                                 cast<StoreSDNode>(N)->getMemOperand());
15697     }
15698 
15699     // STORE Constant:i32<0>  ->  STORE<trunc to i32> Constant:i64<0>
15700     // So it can increase the chance of CSE constant construction.
15701     if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() &&
15702         isa<ConstantSDNode>(N->getOperand(1)) && Op1VT == MVT::i32) {
15703       // Need to sign-extended to 64-bits to handle negative values.
15704       EVT MemVT = cast<StoreSDNode>(N)->getMemoryVT();
15705       uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1),
15706                                     MemVT.getSizeInBits());
15707       SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64);
15708 
15709       // DAG.getTruncStore() can't be used here because it doesn't accept
15710       // the general (base + offset) addressing mode.
15711       // So we use UpdateNodeOperands and setTruncatingStore instead.
15712       DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2),
15713                              N->getOperand(3));
15714       cast<StoreSDNode>(N)->setTruncatingStore(true);
15715       return SDValue(N, 0);
15716     }
15717 
15718     // For little endian, VSX stores require generating xxswapd/lxvd2x.
15719     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
15720     if (Op1VT.isSimple()) {
15721       MVT StoreVT = Op1VT.getSimpleVT();
15722       if (Subtarget.needsSwapsForVSXMemOps() &&
15723           (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 ||
15724            StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32))
15725         return expandVSXStoreForLE(N, DCI);
15726     }
15727     break;
15728   }
15729   case ISD::LOAD: {
15730     LoadSDNode *LD = cast<LoadSDNode>(N);
15731     EVT VT = LD->getValueType(0);
15732 
15733     // For little endian, VSX loads require generating lxvd2x/xxswapd.
15734     // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
15735     if (VT.isSimple()) {
15736       MVT LoadVT = VT.getSimpleVT();
15737       if (Subtarget.needsSwapsForVSXMemOps() &&
15738           (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 ||
15739            LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32))
15740         return expandVSXLoadForLE(N, DCI);
15741     }
15742 
15743     // We sometimes end up with a 64-bit integer load, from which we extract
15744     // two single-precision floating-point numbers. This happens with
15745     // std::complex<float>, and other similar structures, because of the way we
15746     // canonicalize structure copies. However, if we lack direct moves,
15747     // then the final bitcasts from the extracted integer values to the
15748     // floating-point numbers turn into store/load pairs. Even with direct moves,
15749     // just loading the two floating-point numbers is likely better.
15750     auto ReplaceTwoFloatLoad = [&]() {
15751       if (VT != MVT::i64)
15752         return false;
15753 
15754       if (LD->getExtensionType() != ISD::NON_EXTLOAD ||
15755           LD->isVolatile())
15756         return false;
15757 
15758       //  We're looking for a sequence like this:
15759       //  t13: i64,ch = load<LD8[%ref.tmp]> t0, t6, undef:i64
15760       //      t16: i64 = srl t13, Constant:i32<32>
15761       //    t17: i32 = truncate t16
15762       //  t18: f32 = bitcast t17
15763       //    t19: i32 = truncate t13
15764       //  t20: f32 = bitcast t19
15765 
15766       if (!LD->hasNUsesOfValue(2, 0))
15767         return false;
15768 
15769       auto UI = LD->use_begin();
15770       while (UI.getUse().getResNo() != 0) ++UI;
15771       SDNode *Trunc = *UI++;
15772       while (UI.getUse().getResNo() != 0) ++UI;
15773       SDNode *RightShift = *UI;
15774       if (Trunc->getOpcode() != ISD::TRUNCATE)
15775         std::swap(Trunc, RightShift);
15776 
15777       if (Trunc->getOpcode() != ISD::TRUNCATE ||
15778           Trunc->getValueType(0) != MVT::i32 ||
15779           !Trunc->hasOneUse())
15780         return false;
15781       if (RightShift->getOpcode() != ISD::SRL ||
15782           !isa<ConstantSDNode>(RightShift->getOperand(1)) ||
15783           RightShift->getConstantOperandVal(1) != 32 ||
15784           !RightShift->hasOneUse())
15785         return false;
15786 
15787       SDNode *Trunc2 = *RightShift->use_begin();
15788       if (Trunc2->getOpcode() != ISD::TRUNCATE ||
15789           Trunc2->getValueType(0) != MVT::i32 ||
15790           !Trunc2->hasOneUse())
15791         return false;
15792 
15793       SDNode *Bitcast = *Trunc->use_begin();
15794       SDNode *Bitcast2 = *Trunc2->use_begin();
15795 
15796       if (Bitcast->getOpcode() != ISD::BITCAST ||
15797           Bitcast->getValueType(0) != MVT::f32)
15798         return false;
15799       if (Bitcast2->getOpcode() != ISD::BITCAST ||
15800           Bitcast2->getValueType(0) != MVT::f32)
15801         return false;
15802 
15803       if (Subtarget.isLittleEndian())
15804         std::swap(Bitcast, Bitcast2);
15805 
15806       // Bitcast has the second float (in memory-layout order) and Bitcast2
15807       // has the first one.
15808 
15809       SDValue BasePtr = LD->getBasePtr();
15810       if (LD->isIndexed()) {
15811         assert(LD->getAddressingMode() == ISD::PRE_INC &&
15812                "Non-pre-inc AM on PPC?");
15813         BasePtr =
15814           DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
15815                       LD->getOffset());
15816       }
15817 
15818       auto MMOFlags =
15819           LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile;
15820       SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr,
15821                                       LD->getPointerInfo(), LD->getAlign(),
15822                                       MMOFlags, LD->getAAInfo());
15823       SDValue AddPtr =
15824         DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(),
15825                     BasePtr, DAG.getIntPtrConstant(4, dl));
15826       SDValue FloatLoad2 = DAG.getLoad(
15827           MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr,
15828           LD->getPointerInfo().getWithOffset(4),
15829           commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo());
15830 
15831       if (LD->isIndexed()) {
15832         // Note that DAGCombine should re-form any pre-increment load(s) from
15833         // what is produced here if that makes sense.
15834         DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr);
15835       }
15836 
15837       DCI.CombineTo(Bitcast2, FloatLoad);
15838       DCI.CombineTo(Bitcast, FloatLoad2);
15839 
15840       DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1),
15841                                     SDValue(FloatLoad2.getNode(), 1));
15842       return true;
15843     };
15844 
15845     if (ReplaceTwoFloatLoad())
15846       return SDValue(N, 0);
15847 
15848     EVT MemVT = LD->getMemoryVT();
15849     Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
15850     Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty);
15851     if (LD->isUnindexed() && VT.isVector() &&
15852         ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) &&
15853           // P8 and later hardware should just use LOAD.
15854           !Subtarget.hasP8Vector() &&
15855           (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 ||
15856            VT == MVT::v4f32))) &&
15857         LD->getAlign() < ABIAlignment) {
15858       // This is a type-legal unaligned Altivec load.
15859       SDValue Chain = LD->getChain();
15860       SDValue Ptr = LD->getBasePtr();
15861       bool isLittleEndian = Subtarget.isLittleEndian();
15862 
15863       // This implements the loading of unaligned vectors as described in
15864       // the venerable Apple Velocity Engine overview. Specifically:
15865       // https://developer.apple.com/hardwaredrivers/ve/alignment.html
15866       // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html
15867       //
15868       // The general idea is to expand a sequence of one or more unaligned
15869       // loads into an alignment-based permutation-control instruction (lvsl
15870       // or lvsr), a series of regular vector loads (which always truncate
15871       // their input address to an aligned address), and a series of
15872       // permutations.  The results of these permutations are the requested
15873       // loaded values.  The trick is that the last "extra" load is not taken
15874       // from the address you might suspect (sizeof(vector) bytes after the
15875       // last requested load), but rather sizeof(vector) - 1 bytes after the
15876       // last requested vector. The point of this is to avoid a page fault if
15877       // the base address happened to be aligned. This works because if the
15878       // base address is aligned, then adding less than a full vector length
15879       // will cause the last vector in the sequence to be (re)loaded.
15880       // Otherwise, the next vector will be fetched as you might suspect was
15881       // necessary.
15882 
15883       // We might be able to reuse the permutation generation from
15884       // a different base address offset from this one by an aligned amount.
15885       // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this
15886       // optimization later.
15887       Intrinsic::ID Intr, IntrLD, IntrPerm;
15888       MVT PermCntlTy, PermTy, LDTy;
15889       Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15890                             : Intrinsic::ppc_altivec_lvsl;
15891       IntrLD = Intrinsic::ppc_altivec_lvx;
15892       IntrPerm = Intrinsic::ppc_altivec_vperm;
15893       PermCntlTy = MVT::v16i8;
15894       PermTy = MVT::v4i32;
15895       LDTy = MVT::v4i32;
15896 
15897       SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy);
15898 
15899       // Create the new MMO for the new base load. It is like the original MMO,
15900       // but represents an area in memory almost twice the vector size centered
15901       // on the original address. If the address is unaligned, we might start
15902       // reading up to (sizeof(vector)-1) bytes below the address of the
15903       // original unaligned load.
15904       MachineFunction &MF = DAG.getMachineFunction();
15905       MachineMemOperand *BaseMMO =
15906         MF.getMachineMemOperand(LD->getMemOperand(),
15907                                 -(int64_t)MemVT.getStoreSize()+1,
15908                                 2*MemVT.getStoreSize()-1);
15909 
15910       // Create the new base load.
15911       SDValue LDXIntID =
15912           DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout()));
15913       SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr };
15914       SDValue BaseLoad =
15915         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15916                                 DAG.getVTList(PermTy, MVT::Other),
15917                                 BaseLoadOps, LDTy, BaseMMO);
15918 
15919       // Note that the value of IncOffset (which is provided to the next
15920       // load's pointer info offset value, and thus used to calculate the
15921       // alignment), and the value of IncValue (which is actually used to
15922       // increment the pointer value) are different! This is because we
15923       // require the next load to appear to be aligned, even though it
15924       // is actually offset from the base pointer by a lesser amount.
15925       int IncOffset = VT.getSizeInBits() / 8;
15926       int IncValue = IncOffset;
15927 
15928       // Walk (both up and down) the chain looking for another load at the real
15929       // (aligned) offset (the alignment of the other load does not matter in
15930       // this case). If found, then do not use the offset reduction trick, as
15931       // that will prevent the loads from being later combined (as they would
15932       // otherwise be duplicates).
15933       if (!findConsecutiveLoad(LD, DAG))
15934         --IncValue;
15935 
15936       SDValue Increment =
15937           DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout()));
15938       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
15939 
15940       MachineMemOperand *ExtraMMO =
15941         MF.getMachineMemOperand(LD->getMemOperand(),
15942                                 1, 2*MemVT.getStoreSize()-1);
15943       SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr };
15944       SDValue ExtraLoad =
15945         DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl,
15946                                 DAG.getVTList(PermTy, MVT::Other),
15947                                 ExtraLoadOps, LDTy, ExtraMMO);
15948 
15949       SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
15950         BaseLoad.getValue(1), ExtraLoad.getValue(1));
15951 
15952       // Because vperm has a big-endian bias, we must reverse the order
15953       // of the input vectors and complement the permute control vector
15954       // when generating little endian code.  We have already handled the
15955       // latter by using lvsr instead of lvsl, so just reverse BaseLoad
15956       // and ExtraLoad here.
15957       SDValue Perm;
15958       if (isLittleEndian)
15959         Perm = BuildIntrinsicOp(IntrPerm,
15960                                 ExtraLoad, BaseLoad, PermCntl, DAG, dl);
15961       else
15962         Perm = BuildIntrinsicOp(IntrPerm,
15963                                 BaseLoad, ExtraLoad, PermCntl, DAG, dl);
15964 
15965       if (VT != PermTy)
15966         Perm = Subtarget.hasAltivec()
15967                    ? DAG.getNode(ISD::BITCAST, dl, VT, Perm)
15968                    : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm,
15969                                  DAG.getTargetConstant(1, dl, MVT::i64));
15970                                // second argument is 1 because this rounding
15971                                // is always exact.
15972 
15973       // The output of the permutation is our loaded result, the TokenFactor is
15974       // our new chain.
15975       DCI.CombineTo(N, Perm, TF);
15976       return SDValue(N, 0);
15977     }
15978     }
15979     break;
15980     case ISD::INTRINSIC_WO_CHAIN: {
15981       bool isLittleEndian = Subtarget.isLittleEndian();
15982       unsigned IID = N->getConstantOperandVal(0);
15983       Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr
15984                                            : Intrinsic::ppc_altivec_lvsl);
15985       if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) {
15986         SDValue Add = N->getOperand(1);
15987 
15988         int Bits = 4 /* 16 byte alignment */;
15989 
15990         if (DAG.MaskedValueIsZero(Add->getOperand(1),
15991                                   APInt::getAllOnes(Bits /* alignment */)
15992                                       .zext(Add.getScalarValueSizeInBits()))) {
15993           SDNode *BasePtr = Add->getOperand(0).getNode();
15994           for (SDNode *U : BasePtr->uses()) {
15995           if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
15996               U->getConstantOperandVal(0) == IID) {
15997             // We've found another LVSL/LVSR, and this address is an aligned
15998             // multiple of that one. The results will be the same, so use the
15999             // one we've just found instead.
16000 
16001             return SDValue(U, 0);
16002           }
16003           }
16004         }
16005 
16006         if (isa<ConstantSDNode>(Add->getOperand(1))) {
16007           SDNode *BasePtr = Add->getOperand(0).getNode();
16008           for (SDNode *U : BasePtr->uses()) {
16009           if (U->getOpcode() == ISD::ADD &&
16010               isa<ConstantSDNode>(U->getOperand(1)) &&
16011               (Add->getConstantOperandVal(1) - U->getConstantOperandVal(1)) %
16012                       (1ULL << Bits) ==
16013                   0) {
16014             SDNode *OtherAdd = U;
16015             for (SDNode *V : OtherAdd->uses()) {
16016               if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
16017                   V->getConstantOperandVal(0) == IID) {
16018                 return SDValue(V, 0);
16019               }
16020             }
16021           }
16022           }
16023         }
16024       }
16025 
16026       // Combine vmaxsw/h/b(a, a's negation) to abs(a)
16027       // Expose the vabsduw/h/b opportunity for down stream
16028       if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() &&
16029           (IID == Intrinsic::ppc_altivec_vmaxsw ||
16030            IID == Intrinsic::ppc_altivec_vmaxsh ||
16031            IID == Intrinsic::ppc_altivec_vmaxsb)) {
16032         SDValue V1 = N->getOperand(1);
16033         SDValue V2 = N->getOperand(2);
16034         if ((V1.getSimpleValueType() == MVT::v4i32 ||
16035              V1.getSimpleValueType() == MVT::v8i16 ||
16036              V1.getSimpleValueType() == MVT::v16i8) &&
16037             V1.getSimpleValueType() == V2.getSimpleValueType()) {
16038           // (0-a, a)
16039           if (V1.getOpcode() == ISD::SUB &&
16040               ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) &&
16041               V1.getOperand(1) == V2) {
16042             return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2);
16043           }
16044           // (a, 0-a)
16045           if (V2.getOpcode() == ISD::SUB &&
16046               ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) &&
16047               V2.getOperand(1) == V1) {
16048             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
16049           }
16050           // (x-y, y-x)
16051           if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB &&
16052               V1.getOperand(0) == V2.getOperand(1) &&
16053               V1.getOperand(1) == V2.getOperand(0)) {
16054             return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1);
16055           }
16056         }
16057       }
16058     }
16059 
16060     break;
16061   case ISD::INTRINSIC_W_CHAIN:
16062       switch (N->getConstantOperandVal(1)) {
16063       default:
16064         break;
16065       case Intrinsic::ppc_altivec_vsum4sbs:
16066       case Intrinsic::ppc_altivec_vsum4shs:
16067       case Intrinsic::ppc_altivec_vsum4ubs: {
16068         // These sum-across intrinsics only have a chain due to the side effect
16069         // that they may set the SAT bit. If we know the SAT bit will not be set
16070         // for some inputs, we can replace any uses of their chain with the
16071         // input chain.
16072         if (BuildVectorSDNode *BVN =
16073                 dyn_cast<BuildVectorSDNode>(N->getOperand(3))) {
16074           APInt APSplatBits, APSplatUndef;
16075           unsigned SplatBitSize;
16076           bool HasAnyUndefs;
16077           bool BVNIsConstantSplat = BVN->isConstantSplat(
16078               APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0,
16079               !Subtarget.isLittleEndian());
16080           // If the constant splat vector is 0, the SAT bit will not be set.
16081           if (BVNIsConstantSplat && APSplatBits == 0)
16082             DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), N->getOperand(0));
16083         }
16084         return SDValue();
16085       }
16086     case Intrinsic::ppc_vsx_lxvw4x:
16087     case Intrinsic::ppc_vsx_lxvd2x:
16088       // For little endian, VSX loads require generating lxvd2x/xxswapd.
16089       // Not needed on ISA 3.0 based CPUs since we have a non-permuting load.
16090       if (Subtarget.needsSwapsForVSXMemOps())
16091         return expandVSXLoadForLE(N, DCI);
16092       break;
16093     }
16094     break;
16095   case ISD::INTRINSIC_VOID:
16096     // For little endian, VSX stores require generating xxswapd/stxvd2x.
16097     // Not needed on ISA 3.0 based CPUs since we have a non-permuting store.
16098     if (Subtarget.needsSwapsForVSXMemOps()) {
16099       switch (N->getConstantOperandVal(1)) {
16100       default:
16101         break;
16102       case Intrinsic::ppc_vsx_stxvw4x:
16103       case Intrinsic::ppc_vsx_stxvd2x:
16104         return expandVSXStoreForLE(N, DCI);
16105       }
16106     }
16107     break;
16108   case ISD::BSWAP: {
16109     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
16110     // For subtargets without LDBRX, we can still do better than the default
16111     // expansion even for 64-bit BSWAP (LOAD).
16112     bool Is64BitBswapOn64BitTgt =
16113         Subtarget.isPPC64() && N->getValueType(0) == MVT::i64;
16114     bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) &&
16115                                N->getOperand(0).hasOneUse();
16116     if (IsSingleUseNormalLd &&
16117         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
16118          (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) {
16119       SDValue Load = N->getOperand(0);
16120       LoadSDNode *LD = cast<LoadSDNode>(Load);
16121       // Create the byte-swapping load.
16122       SDValue Ops[] = {
16123         LD->getChain(),    // Chain
16124         LD->getBasePtr(),  // Ptr
16125         DAG.getValueType(N->getValueType(0)) // VT
16126       };
16127       SDValue BSLoad =
16128         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
16129                                 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
16130                                               MVT::i64 : MVT::i32, MVT::Other),
16131                                 Ops, LD->getMemoryVT(), LD->getMemOperand());
16132 
16133       // If this is an i16 load, insert the truncate.
16134       SDValue ResVal = BSLoad;
16135       if (N->getValueType(0) == MVT::i16)
16136         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
16137 
16138       // First, combine the bswap away.  This makes the value produced by the
16139       // load dead.
16140       DCI.CombineTo(N, ResVal);
16141 
16142       // Next, combine the load away, we give it a bogus result value but a real
16143       // chain result.  The result value is dead because the bswap is dead.
16144       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
16145 
16146       // Return N so it doesn't get rechecked!
16147       return SDValue(N, 0);
16148     }
16149     // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only
16150     // before legalization so that the BUILD_PAIR is handled correctly.
16151     if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt ||
16152         !IsSingleUseNormalLd)
16153       return SDValue();
16154     LoadSDNode *LD = cast<LoadSDNode>(N->getOperand(0));
16155 
16156     // Can't split volatile or atomic loads.
16157     if (!LD->isSimple())
16158       return SDValue();
16159     SDValue BasePtr = LD->getBasePtr();
16160     SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr,
16161                              LD->getPointerInfo(), LD->getAlign());
16162     Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo);
16163     BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr,
16164                           DAG.getIntPtrConstant(4, dl));
16165     MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand(
16166         LD->getMemOperand(), 4, 4);
16167     SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO);
16168     Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi);
16169     SDValue Res;
16170     if (Subtarget.isLittleEndian())
16171       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo);
16172     else
16173       Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
16174     SDValue TF =
16175         DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
16176                     Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1));
16177     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF);
16178     return Res;
16179   }
16180   case PPCISD::VCMP:
16181     // If a VCMP_rec node already exists with exactly the same operands as this
16182     // node, use its result instead of this node (VCMP_rec computes both a CR6
16183     // and a normal output).
16184     //
16185     if (!N->getOperand(0).hasOneUse() &&
16186         !N->getOperand(1).hasOneUse() &&
16187         !N->getOperand(2).hasOneUse()) {
16188 
16189       // Scan all of the users of the LHS, looking for VCMP_rec's that match.
16190       SDNode *VCMPrecNode = nullptr;
16191 
16192       SDNode *LHSN = N->getOperand(0).getNode();
16193       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
16194            UI != E; ++UI)
16195         if (UI->getOpcode() == PPCISD::VCMP_rec &&
16196             UI->getOperand(1) == N->getOperand(1) &&
16197             UI->getOperand(2) == N->getOperand(2) &&
16198             UI->getOperand(0) == N->getOperand(0)) {
16199           VCMPrecNode = *UI;
16200           break;
16201         }
16202 
16203       // If there is no VCMP_rec node, or if the flag value has a single use,
16204       // don't transform this.
16205       if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1))
16206         break;
16207 
16208       // Look at the (necessarily single) use of the flag value.  If it has a
16209       // chain, this transformation is more complex.  Note that multiple things
16210       // could use the value result, which we should ignore.
16211       SDNode *FlagUser = nullptr;
16212       for (SDNode::use_iterator UI = VCMPrecNode->use_begin();
16213            FlagUser == nullptr; ++UI) {
16214         assert(UI != VCMPrecNode->use_end() && "Didn't find user!");
16215         SDNode *User = *UI;
16216         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
16217           if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) {
16218             FlagUser = User;
16219             break;
16220           }
16221         }
16222       }
16223 
16224       // If the user is a MFOCRF instruction, we know this is safe.
16225       // Otherwise we give up for right now.
16226       if (FlagUser->getOpcode() == PPCISD::MFOCRF)
16227         return SDValue(VCMPrecNode, 0);
16228     }
16229     break;
16230   case ISD::BR_CC: {
16231     // If this is a branch on an altivec predicate comparison, lower this so
16232     // that we don't have to do a MFOCRF: instead, branch directly on CR6.  This
16233     // lowering is done pre-legalize, because the legalizer lowers the predicate
16234     // compare down to code that is difficult to reassemble.
16235     // This code also handles branches that depend on the result of a store
16236     // conditional.
16237     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
16238     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
16239 
16240     int CompareOpc;
16241     bool isDot;
16242 
16243     if (!isa<ConstantSDNode>(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE))
16244       break;
16245 
16246     // Since we are doing this pre-legalize, the RHS can be a constant of
16247     // arbitrary bitwidth which may cause issues when trying to get the value
16248     // from the underlying APInt.
16249     auto RHSAPInt = RHS->getAsAPIntVal();
16250     if (!RHSAPInt.isIntN(64))
16251       break;
16252 
16253     unsigned Val = RHSAPInt.getZExtValue();
16254     auto isImpossibleCompare = [&]() {
16255       // If this is a comparison against something other than 0/1, then we know
16256       // that the condition is never/always true.
16257       if (Val != 0 && Val != 1) {
16258         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
16259           return N->getOperand(0);
16260         // Always !=, turn it into an unconditional branch.
16261         return DAG.getNode(ISD::BR, dl, MVT::Other,
16262                            N->getOperand(0), N->getOperand(4));
16263       }
16264       return SDValue();
16265     };
16266     // Combine branches fed by store conditional instructions (st[bhwd]cx).
16267     unsigned StoreWidth = 0;
16268     if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN &&
16269         isStoreConditional(LHS, StoreWidth)) {
16270       if (SDValue Impossible = isImpossibleCompare())
16271         return Impossible;
16272       PPC::Predicate CompOpc;
16273       // eq 0 => ne
16274       // ne 0 => eq
16275       // eq 1 => eq
16276       // ne 1 => ne
16277       if (Val == 0)
16278         CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ;
16279       else
16280         CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE;
16281 
16282       SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3),
16283                        DAG.getConstant(StoreWidth, dl, MVT::i32)};
16284       auto *MemNode = cast<MemSDNode>(LHS);
16285       SDValue ConstSt = DAG.getMemIntrinsicNode(
16286           PPCISD::STORE_COND, dl,
16287           DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops,
16288           MemNode->getMemoryVT(), MemNode->getMemOperand());
16289 
16290       SDValue InChain;
16291       // Unchain the branch from the original store conditional.
16292       if (N->getOperand(0) == LHS.getValue(1))
16293         InChain = LHS.getOperand(0);
16294       else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) {
16295         SmallVector<SDValue, 4> InChains;
16296         SDValue InTF = N->getOperand(0);
16297         for (int i = 0, e = InTF.getNumOperands(); i < e; i++)
16298           if (InTF.getOperand(i) != LHS.getValue(1))
16299             InChains.push_back(InTF.getOperand(i));
16300         InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains);
16301       }
16302 
16303       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain,
16304                          DAG.getConstant(CompOpc, dl, MVT::i32),
16305                          DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4),
16306                          ConstSt.getValue(2));
16307     }
16308 
16309     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
16310         getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) {
16311       assert(isDot && "Can't compare against a vector result!");
16312 
16313       if (SDValue Impossible = isImpossibleCompare())
16314         return Impossible;
16315 
16316       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
16317       // Create the PPCISD altivec 'dot' comparison node.
16318       SDValue Ops[] = {
16319         LHS.getOperand(2),  // LHS of compare
16320         LHS.getOperand(3),  // RHS of compare
16321         DAG.getConstant(CompareOpc, dl, MVT::i32)
16322       };
16323       EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
16324       SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops);
16325 
16326       // Unpack the result based on how the target uses it.
16327       PPC::Predicate CompOpc;
16328       switch (LHS.getConstantOperandVal(1)) {
16329       default:  // Can't happen, don't crash on invalid number though.
16330       case 0:   // Branch on the value of the EQ bit of CR6.
16331         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
16332         break;
16333       case 1:   // Branch on the inverted value of the EQ bit of CR6.
16334         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
16335         break;
16336       case 2:   // Branch on the value of the LT bit of CR6.
16337         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
16338         break;
16339       case 3:   // Branch on the inverted value of the LT bit of CR6.
16340         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
16341         break;
16342       }
16343 
16344       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
16345                          DAG.getConstant(CompOpc, dl, MVT::i32),
16346                          DAG.getRegister(PPC::CR6, MVT::i32),
16347                          N->getOperand(4), CompNode.getValue(1));
16348     }
16349     break;
16350   }
16351   case ISD::BUILD_VECTOR:
16352     return DAGCombineBuildVector(N, DCI);
16353   }
16354 
16355   return SDValue();
16356 }
16357 
16358 SDValue
BuildSDIVPow2(SDNode * N,const APInt & Divisor,SelectionDAG & DAG,SmallVectorImpl<SDNode * > & Created) const16359 PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
16360                                  SelectionDAG &DAG,
16361                                  SmallVectorImpl<SDNode *> &Created) const {
16362   // fold (sdiv X, pow2)
16363   EVT VT = N->getValueType(0);
16364   if (VT == MVT::i64 && !Subtarget.isPPC64())
16365     return SDValue();
16366   if ((VT != MVT::i32 && VT != MVT::i64) ||
16367       !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2()))
16368     return SDValue();
16369 
16370   SDLoc DL(N);
16371   SDValue N0 = N->getOperand(0);
16372 
16373   bool IsNegPow2 = Divisor.isNegatedPowerOf2();
16374   unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countr_zero();
16375   SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT);
16376 
16377   SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt);
16378   Created.push_back(Op.getNode());
16379 
16380   if (IsNegPow2) {
16381     Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op);
16382     Created.push_back(Op.getNode());
16383   }
16384 
16385   return Op;
16386 }
16387 
16388 //===----------------------------------------------------------------------===//
16389 // Inline Assembly Support
16390 //===----------------------------------------------------------------------===//
16391 
computeKnownBitsForTargetNode(const SDValue Op,KnownBits & Known,const APInt & DemandedElts,const SelectionDAG & DAG,unsigned Depth) const16392 void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
16393                                                       KnownBits &Known,
16394                                                       const APInt &DemandedElts,
16395                                                       const SelectionDAG &DAG,
16396                                                       unsigned Depth) const {
16397   Known.resetAll();
16398   switch (Op.getOpcode()) {
16399   default: break;
16400   case PPCISD::LBRX: {
16401     // lhbrx is known to have the top bits cleared out.
16402     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
16403       Known.Zero = 0xFFFF0000;
16404     break;
16405   }
16406   case ISD::INTRINSIC_WO_CHAIN: {
16407     switch (Op.getConstantOperandVal(0)) {
16408     default: break;
16409     case Intrinsic::ppc_altivec_vcmpbfp_p:
16410     case Intrinsic::ppc_altivec_vcmpeqfp_p:
16411     case Intrinsic::ppc_altivec_vcmpequb_p:
16412     case Intrinsic::ppc_altivec_vcmpequh_p:
16413     case Intrinsic::ppc_altivec_vcmpequw_p:
16414     case Intrinsic::ppc_altivec_vcmpequd_p:
16415     case Intrinsic::ppc_altivec_vcmpequq_p:
16416     case Intrinsic::ppc_altivec_vcmpgefp_p:
16417     case Intrinsic::ppc_altivec_vcmpgtfp_p:
16418     case Intrinsic::ppc_altivec_vcmpgtsb_p:
16419     case Intrinsic::ppc_altivec_vcmpgtsh_p:
16420     case Intrinsic::ppc_altivec_vcmpgtsw_p:
16421     case Intrinsic::ppc_altivec_vcmpgtsd_p:
16422     case Intrinsic::ppc_altivec_vcmpgtsq_p:
16423     case Intrinsic::ppc_altivec_vcmpgtub_p:
16424     case Intrinsic::ppc_altivec_vcmpgtuh_p:
16425     case Intrinsic::ppc_altivec_vcmpgtuw_p:
16426     case Intrinsic::ppc_altivec_vcmpgtud_p:
16427     case Intrinsic::ppc_altivec_vcmpgtuq_p:
16428       Known.Zero = ~1U;  // All bits but the low one are known to be zero.
16429       break;
16430     }
16431     break;
16432   }
16433   case ISD::INTRINSIC_W_CHAIN: {
16434     switch (Op.getConstantOperandVal(1)) {
16435     default:
16436       break;
16437     case Intrinsic::ppc_load2r:
16438       // Top bits are cleared for load2r (which is the same as lhbrx).
16439       Known.Zero = 0xFFFF0000;
16440       break;
16441     }
16442     break;
16443   }
16444   }
16445 }
16446 
getPrefLoopAlignment(MachineLoop * ML) const16447 Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const {
16448   switch (Subtarget.getCPUDirective()) {
16449   default: break;
16450   case PPC::DIR_970:
16451   case PPC::DIR_PWR4:
16452   case PPC::DIR_PWR5:
16453   case PPC::DIR_PWR5X:
16454   case PPC::DIR_PWR6:
16455   case PPC::DIR_PWR6X:
16456   case PPC::DIR_PWR7:
16457   case PPC::DIR_PWR8:
16458   case PPC::DIR_PWR9:
16459   case PPC::DIR_PWR10:
16460   case PPC::DIR_PWR_FUTURE: {
16461     if (!ML)
16462       break;
16463 
16464     if (!DisableInnermostLoopAlign32) {
16465       // If the nested loop is an innermost loop, prefer to a 32-byte alignment,
16466       // so that we can decrease cache misses and branch-prediction misses.
16467       // Actual alignment of the loop will depend on the hotness check and other
16468       // logic in alignBlocks.
16469       if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty())
16470         return Align(32);
16471     }
16472 
16473     const PPCInstrInfo *TII = Subtarget.getInstrInfo();
16474 
16475     // For small loops (between 5 and 8 instructions), align to a 32-byte
16476     // boundary so that the entire loop fits in one instruction-cache line.
16477     uint64_t LoopSize = 0;
16478     for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I)
16479       for (const MachineInstr &J : **I) {
16480         LoopSize += TII->getInstSizeInBytes(J);
16481         if (LoopSize > 32)
16482           break;
16483       }
16484 
16485     if (LoopSize > 16 && LoopSize <= 32)
16486       return Align(32);
16487 
16488     break;
16489   }
16490   }
16491 
16492   return TargetLowering::getPrefLoopAlignment(ML);
16493 }
16494 
16495 /// getConstraintType - Given a constraint, return the type of
16496 /// constraint it is for this target.
16497 PPCTargetLowering::ConstraintType
getConstraintType(StringRef Constraint) const16498 PPCTargetLowering::getConstraintType(StringRef Constraint) const {
16499   if (Constraint.size() == 1) {
16500     switch (Constraint[0]) {
16501     default: break;
16502     case 'b':
16503     case 'r':
16504     case 'f':
16505     case 'd':
16506     case 'v':
16507     case 'y':
16508       return C_RegisterClass;
16509     case 'Z':
16510       // FIXME: While Z does indicate a memory constraint, it specifically
16511       // indicates an r+r address (used in conjunction with the 'y' modifier
16512       // in the replacement string). Currently, we're forcing the base
16513       // register to be r0 in the asm printer (which is interpreted as zero)
16514       // and forming the complete address in the second register. This is
16515       // suboptimal.
16516       return C_Memory;
16517     }
16518   } else if (Constraint == "wc") { // individual CR bits.
16519     return C_RegisterClass;
16520   } else if (Constraint == "wa" || Constraint == "wd" ||
16521              Constraint == "wf" || Constraint == "ws" ||
16522              Constraint == "wi" || Constraint == "ww") {
16523     return C_RegisterClass; // VSX registers.
16524   }
16525   return TargetLowering::getConstraintType(Constraint);
16526 }
16527 
16528 /// Examine constraint type and operand type and determine a weight value.
16529 /// This object must already have been set up with the operand type
16530 /// and the current alternative constraint selected.
16531 TargetLowering::ConstraintWeight
getSingleConstraintMatchWeight(AsmOperandInfo & info,const char * constraint) const16532 PPCTargetLowering::getSingleConstraintMatchWeight(
16533     AsmOperandInfo &info, const char *constraint) const {
16534   ConstraintWeight weight = CW_Invalid;
16535   Value *CallOperandVal = info.CallOperandVal;
16536     // If we don't have a value, we can't do a match,
16537     // but allow it at the lowest weight.
16538   if (!CallOperandVal)
16539     return CW_Default;
16540   Type *type = CallOperandVal->getType();
16541 
16542   // Look at the constraint type.
16543   if (StringRef(constraint) == "wc" && type->isIntegerTy(1))
16544     return CW_Register; // an individual CR bit.
16545   else if ((StringRef(constraint) == "wa" ||
16546             StringRef(constraint) == "wd" ||
16547             StringRef(constraint) == "wf") &&
16548            type->isVectorTy())
16549     return CW_Register;
16550   else if (StringRef(constraint) == "wi" && type->isIntegerTy(64))
16551     return CW_Register; // just hold 64-bit integers data.
16552   else if (StringRef(constraint) == "ws" && type->isDoubleTy())
16553     return CW_Register;
16554   else if (StringRef(constraint) == "ww" && type->isFloatTy())
16555     return CW_Register;
16556 
16557   switch (*constraint) {
16558   default:
16559     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
16560     break;
16561   case 'b':
16562     if (type->isIntegerTy())
16563       weight = CW_Register;
16564     break;
16565   case 'f':
16566     if (type->isFloatTy())
16567       weight = CW_Register;
16568     break;
16569   case 'd':
16570     if (type->isDoubleTy())
16571       weight = CW_Register;
16572     break;
16573   case 'v':
16574     if (type->isVectorTy())
16575       weight = CW_Register;
16576     break;
16577   case 'y':
16578     weight = CW_Register;
16579     break;
16580   case 'Z':
16581     weight = CW_Memory;
16582     break;
16583   }
16584   return weight;
16585 }
16586 
16587 std::pair<unsigned, const TargetRegisterClass *>
getRegForInlineAsmConstraint(const TargetRegisterInfo * TRI,StringRef Constraint,MVT VT) const16588 PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
16589                                                 StringRef Constraint,
16590                                                 MVT VT) const {
16591   if (Constraint.size() == 1) {
16592     // GCC RS6000 Constraint Letters
16593     switch (Constraint[0]) {
16594     case 'b':   // R1-R31
16595       if (VT == MVT::i64 && Subtarget.isPPC64())
16596         return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
16597       return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
16598     case 'r':   // R0-R31
16599       if (VT == MVT::i64 && Subtarget.isPPC64())
16600         return std::make_pair(0U, &PPC::G8RCRegClass);
16601       return std::make_pair(0U, &PPC::GPRCRegClass);
16602     // 'd' and 'f' constraints are both defined to be "the floating point
16603     // registers", where one is for 32-bit and the other for 64-bit. We don't
16604     // really care overly much here so just give them all the same reg classes.
16605     case 'd':
16606     case 'f':
16607       if (Subtarget.hasSPE()) {
16608         if (VT == MVT::f32 || VT == MVT::i32)
16609           return std::make_pair(0U, &PPC::GPRCRegClass);
16610         if (VT == MVT::f64 || VT == MVT::i64)
16611           return std::make_pair(0U, &PPC::SPERCRegClass);
16612       } else {
16613         if (VT == MVT::f32 || VT == MVT::i32)
16614           return std::make_pair(0U, &PPC::F4RCRegClass);
16615         if (VT == MVT::f64 || VT == MVT::i64)
16616           return std::make_pair(0U, &PPC::F8RCRegClass);
16617       }
16618       break;
16619     case 'v':
16620       if (Subtarget.hasAltivec() && VT.isVector())
16621         return std::make_pair(0U, &PPC::VRRCRegClass);
16622       else if (Subtarget.hasVSX())
16623         // Scalars in Altivec registers only make sense with VSX.
16624         return std::make_pair(0U, &PPC::VFRCRegClass);
16625       break;
16626     case 'y':   // crrc
16627       return std::make_pair(0U, &PPC::CRRCRegClass);
16628     }
16629   } else if (Constraint == "wc" && Subtarget.useCRBits()) {
16630     // An individual CR bit.
16631     return std::make_pair(0U, &PPC::CRBITRCRegClass);
16632   } else if ((Constraint == "wa" || Constraint == "wd" ||
16633              Constraint == "wf" || Constraint == "wi") &&
16634              Subtarget.hasVSX()) {
16635     // A VSX register for either a scalar (FP) or vector. There is no
16636     // support for single precision scalars on subtargets prior to Power8.
16637     if (VT.isVector())
16638       return std::make_pair(0U, &PPC::VSRCRegClass);
16639     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16640       return std::make_pair(0U, &PPC::VSSRCRegClass);
16641     return std::make_pair(0U, &PPC::VSFRCRegClass);
16642   } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) {
16643     if (VT == MVT::f32 && Subtarget.hasP8Vector())
16644       return std::make_pair(0U, &PPC::VSSRCRegClass);
16645     else
16646       return std::make_pair(0U, &PPC::VSFRCRegClass);
16647   } else if (Constraint == "lr") {
16648     if (VT == MVT::i64)
16649       return std::make_pair(0U, &PPC::LR8RCRegClass);
16650     else
16651       return std::make_pair(0U, &PPC::LRRCRegClass);
16652   }
16653 
16654   // Handle special cases of physical registers that are not properly handled
16655   // by the base class.
16656   if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') {
16657     // If we name a VSX register, we can't defer to the base class because it
16658     // will not recognize the correct register (their names will be VSL{0-31}
16659     // and V{0-31} so they won't match). So we match them here.
16660     if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') {
16661       int VSNum = atoi(Constraint.data() + 3);
16662       assert(VSNum >= 0 && VSNum <= 63 &&
16663              "Attempted to access a vsr out of range");
16664       if (VSNum < 32)
16665         return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass);
16666       return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass);
16667     }
16668 
16669     // For float registers, we can't defer to the base class as it will match
16670     // the SPILLTOVSRRC class.
16671     if (Constraint.size() > 3 && Constraint[1] == 'f') {
16672       int RegNum = atoi(Constraint.data() + 2);
16673       if (RegNum > 31 || RegNum < 0)
16674         report_fatal_error("Invalid floating point register number");
16675       if (VT == MVT::f32 || VT == MVT::i32)
16676         return Subtarget.hasSPE()
16677                    ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass)
16678                    : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass);
16679       if (VT == MVT::f64 || VT == MVT::i64)
16680         return Subtarget.hasSPE()
16681                    ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass)
16682                    : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass);
16683     }
16684   }
16685 
16686   std::pair<unsigned, const TargetRegisterClass *> R =
16687       TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
16688 
16689   // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers
16690   // (which we call X[0-9]+). If a 64-bit value has been requested, and a
16691   // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent
16692   // register.
16693   // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use
16694   // the AsmName field from *RegisterInfo.td, then this would not be necessary.
16695   if (R.first && VT == MVT::i64 && Subtarget.isPPC64() &&
16696       PPC::GPRCRegClass.contains(R.first))
16697     return std::make_pair(TRI->getMatchingSuperReg(R.first,
16698                             PPC::sub_32, &PPC::G8RCRegClass),
16699                           &PPC::G8RCRegClass);
16700 
16701   // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same.
16702   if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) {
16703     R.first = PPC::CR0;
16704     R.second = &PPC::CRRCRegClass;
16705   }
16706   // FIXME: This warning should ideally be emitted in the front end.
16707   const auto &TM = getTargetMachine();
16708   if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) {
16709     if (((R.first >= PPC::V20 && R.first <= PPC::V31) ||
16710          (R.first >= PPC::VF20 && R.first <= PPC::VF31)) &&
16711         (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass))
16712       errs() << "warning: vector registers 20 to 32 are reserved in the "
16713                 "default AIX AltiVec ABI and cannot be used\n";
16714   }
16715 
16716   return R;
16717 }
16718 
16719 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
16720 /// vector.  If it is invalid, don't add anything to Ops.
LowerAsmOperandForConstraint(SDValue Op,StringRef Constraint,std::vector<SDValue> & Ops,SelectionDAG & DAG) const16721 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
16722                                                      StringRef Constraint,
16723                                                      std::vector<SDValue> &Ops,
16724                                                      SelectionDAG &DAG) const {
16725   SDValue Result;
16726 
16727   // Only support length 1 constraints.
16728   if (Constraint.size() > 1)
16729     return;
16730 
16731   char Letter = Constraint[0];
16732   switch (Letter) {
16733   default: break;
16734   case 'I':
16735   case 'J':
16736   case 'K':
16737   case 'L':
16738   case 'M':
16739   case 'N':
16740   case 'O':
16741   case 'P': {
16742     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
16743     if (!CST) return; // Must be an immediate to match.
16744     SDLoc dl(Op);
16745     int64_t Value = CST->getSExtValue();
16746     EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative
16747                          // numbers are printed as such.
16748     switch (Letter) {
16749     default: llvm_unreachable("Unknown constraint letter!");
16750     case 'I':  // "I" is a signed 16-bit constant.
16751       if (isInt<16>(Value))
16752         Result = DAG.getTargetConstant(Value, dl, TCVT);
16753       break;
16754     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
16755       if (isShiftedUInt<16, 16>(Value))
16756         Result = DAG.getTargetConstant(Value, dl, TCVT);
16757       break;
16758     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
16759       if (isShiftedInt<16, 16>(Value))
16760         Result = DAG.getTargetConstant(Value, dl, TCVT);
16761       break;
16762     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
16763       if (isUInt<16>(Value))
16764         Result = DAG.getTargetConstant(Value, dl, TCVT);
16765       break;
16766     case 'M':  // "M" is a constant that is greater than 31.
16767       if (Value > 31)
16768         Result = DAG.getTargetConstant(Value, dl, TCVT);
16769       break;
16770     case 'N':  // "N" is a positive constant that is an exact power of two.
16771       if (Value > 0 && isPowerOf2_64(Value))
16772         Result = DAG.getTargetConstant(Value, dl, TCVT);
16773       break;
16774     case 'O':  // "O" is the constant zero.
16775       if (Value == 0)
16776         Result = DAG.getTargetConstant(Value, dl, TCVT);
16777       break;
16778     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
16779       if (isInt<16>(-Value))
16780         Result = DAG.getTargetConstant(Value, dl, TCVT);
16781       break;
16782     }
16783     break;
16784   }
16785   }
16786 
16787   if (Result.getNode()) {
16788     Ops.push_back(Result);
16789     return;
16790   }
16791 
16792   // Handle standard constraint letters.
16793   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
16794 }
16795 
CollectTargetIntrinsicOperands(const CallInst & I,SmallVectorImpl<SDValue> & Ops,SelectionDAG & DAG) const16796 void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I,
16797                                               SmallVectorImpl<SDValue> &Ops,
16798                                               SelectionDAG &DAG) const {
16799   if (I.getNumOperands() <= 1)
16800     return;
16801   if (!isa<ConstantSDNode>(Ops[1].getNode()))
16802     return;
16803   auto IntrinsicID = Ops[1].getNode()->getAsZExtVal();
16804   if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw &&
16805       IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap)
16806     return;
16807 
16808   if (I.hasMetadata("annotation")) {
16809     MDNode *MDN = I.getMetadata("annotation");
16810     Ops.push_back(DAG.getMDNode(MDN));
16811   }
16812 }
16813 
16814 // isLegalAddressingMode - Return true if the addressing mode represented
16815 // by AM is legal for this target, for a load/store of the specified type.
isLegalAddressingMode(const DataLayout & DL,const AddrMode & AM,Type * Ty,unsigned AS,Instruction * I) const16816 bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL,
16817                                               const AddrMode &AM, Type *Ty,
16818                                               unsigned AS,
16819                                               Instruction *I) const {
16820   // Vector type r+i form is supported since power9 as DQ form. We don't check
16821   // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC,
16822   // imm form is preferred and the offset can be adjusted to use imm form later
16823   // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and
16824   // max offset to check legal addressing mode, we should be a little aggressive
16825   // to contain other offsets for that LSRUse.
16826   if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector())
16827     return false;
16828 
16829   // PPC allows a sign-extended 16-bit immediate field.
16830   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
16831     return false;
16832 
16833   // No global is ever allowed as a base.
16834   if (AM.BaseGV)
16835     return false;
16836 
16837   // PPC only support r+r,
16838   switch (AM.Scale) {
16839   case 0:  // "r+i" or just "i", depending on HasBaseReg.
16840     break;
16841   case 1:
16842     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
16843       return false;
16844     // Otherwise we have r+r or r+i.
16845     break;
16846   case 2:
16847     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
16848       return false;
16849     // Allow 2*r as r+r.
16850     break;
16851   default:
16852     // No other scales are supported.
16853     return false;
16854   }
16855 
16856   return true;
16857 }
16858 
LowerRETURNADDR(SDValue Op,SelectionDAG & DAG) const16859 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
16860                                            SelectionDAG &DAG) const {
16861   MachineFunction &MF = DAG.getMachineFunction();
16862   MachineFrameInfo &MFI = MF.getFrameInfo();
16863   MFI.setReturnAddressIsTaken(true);
16864 
16865   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
16866     return SDValue();
16867 
16868   SDLoc dl(Op);
16869   unsigned Depth = Op.getConstantOperandVal(0);
16870 
16871   // Make sure the function does not optimize away the store of the RA to
16872   // the stack.
16873   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
16874   FuncInfo->setLRStoreRequired();
16875   bool isPPC64 = Subtarget.isPPC64();
16876   auto PtrVT = getPointerTy(MF.getDataLayout());
16877 
16878   if (Depth > 0) {
16879     // The link register (return address) is saved in the caller's frame
16880     // not the callee's stack frame. So we must get the caller's frame
16881     // address and load the return address at the LR offset from there.
16882     SDValue FrameAddr =
16883         DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16884                     LowerFRAMEADDR(Op, DAG), MachinePointerInfo());
16885     SDValue Offset =
16886         DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl,
16887                         isPPC64 ? MVT::i64 : MVT::i32);
16888     return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(),
16889                        DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset),
16890                        MachinePointerInfo());
16891   }
16892 
16893   // Just load the return address off the stack.
16894   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
16895   return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI,
16896                      MachinePointerInfo());
16897 }
16898 
LowerFRAMEADDR(SDValue Op,SelectionDAG & DAG) const16899 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
16900                                           SelectionDAG &DAG) const {
16901   SDLoc dl(Op);
16902   unsigned Depth = Op.getConstantOperandVal(0);
16903 
16904   MachineFunction &MF = DAG.getMachineFunction();
16905   MachineFrameInfo &MFI = MF.getFrameInfo();
16906   MFI.setFrameAddressIsTaken(true);
16907 
16908   EVT PtrVT = getPointerTy(MF.getDataLayout());
16909   bool isPPC64 = PtrVT == MVT::i64;
16910 
16911   // Naked functions never have a frame pointer, and so we use r1. For all
16912   // other functions, this decision must be delayed until during PEI.
16913   unsigned FrameReg;
16914   if (MF.getFunction().hasFnAttribute(Attribute::Naked))
16915     FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
16916   else
16917     FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
16918 
16919   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
16920                                          PtrVT);
16921   while (Depth--)
16922     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
16923                             FrameAddr, MachinePointerInfo());
16924   return FrameAddr;
16925 }
16926 
16927 // FIXME? Maybe this could be a TableGen attribute on some registers and
16928 // this table could be generated automatically from RegInfo.
getRegisterByName(const char * RegName,LLT VT,const MachineFunction & MF) const16929 Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT,
16930                                               const MachineFunction &MF) const {
16931   bool isPPC64 = Subtarget.isPPC64();
16932 
16933   bool is64Bit = isPPC64 && VT == LLT::scalar(64);
16934   if (!is64Bit && VT != LLT::scalar(32))
16935     report_fatal_error("Invalid register global variable type");
16936 
16937   Register Reg = StringSwitch<Register>(RegName)
16938                      .Case("r1", is64Bit ? PPC::X1 : PPC::R1)
16939                      .Case("r2", isPPC64 ? Register() : PPC::R2)
16940                      .Case("r13", (is64Bit ? PPC::X13 : PPC::R13))
16941                      .Default(Register());
16942 
16943   if (Reg)
16944     return Reg;
16945   report_fatal_error("Invalid register name global variable");
16946 }
16947 
isAccessedAsGotIndirect(SDValue GA) const16948 bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const {
16949   // 32-bit SVR4 ABI access everything as got-indirect.
16950   if (Subtarget.is32BitELFABI())
16951     return true;
16952 
16953   // AIX accesses everything indirectly through the TOC, which is similar to
16954   // the GOT.
16955   if (Subtarget.isAIXABI())
16956     return true;
16957 
16958   CodeModel::Model CModel = getTargetMachine().getCodeModel();
16959   // If it is small or large code model, module locals are accessed
16960   // indirectly by loading their address from .toc/.got.
16961   if (CModel == CodeModel::Small || CModel == CodeModel::Large)
16962     return true;
16963 
16964   // JumpTable and BlockAddress are accessed as got-indirect.
16965   if (isa<JumpTableSDNode>(GA) || isa<BlockAddressSDNode>(GA))
16966     return true;
16967 
16968   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(GA))
16969     return Subtarget.isGVIndirectSymbol(G->getGlobal());
16970 
16971   return false;
16972 }
16973 
16974 bool
isOffsetFoldingLegal(const GlobalAddressSDNode * GA) const16975 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
16976   // The PowerPC target isn't yet aware of offsets.
16977   return false;
16978 }
16979 
getTgtMemIntrinsic(IntrinsicInfo & Info,const CallInst & I,MachineFunction & MF,unsigned Intrinsic) const16980 bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
16981                                            const CallInst &I,
16982                                            MachineFunction &MF,
16983                                            unsigned Intrinsic) const {
16984   switch (Intrinsic) {
16985   case Intrinsic::ppc_atomicrmw_xchg_i128:
16986   case Intrinsic::ppc_atomicrmw_add_i128:
16987   case Intrinsic::ppc_atomicrmw_sub_i128:
16988   case Intrinsic::ppc_atomicrmw_nand_i128:
16989   case Intrinsic::ppc_atomicrmw_and_i128:
16990   case Intrinsic::ppc_atomicrmw_or_i128:
16991   case Intrinsic::ppc_atomicrmw_xor_i128:
16992   case Intrinsic::ppc_cmpxchg_i128:
16993     Info.opc = ISD::INTRINSIC_W_CHAIN;
16994     Info.memVT = MVT::i128;
16995     Info.ptrVal = I.getArgOperand(0);
16996     Info.offset = 0;
16997     Info.align = Align(16);
16998     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore |
16999                  MachineMemOperand::MOVolatile;
17000     return true;
17001   case Intrinsic::ppc_atomic_load_i128:
17002     Info.opc = ISD::INTRINSIC_W_CHAIN;
17003     Info.memVT = MVT::i128;
17004     Info.ptrVal = I.getArgOperand(0);
17005     Info.offset = 0;
17006     Info.align = Align(16);
17007     Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile;
17008     return true;
17009   case Intrinsic::ppc_atomic_store_i128:
17010     Info.opc = ISD::INTRINSIC_VOID;
17011     Info.memVT = MVT::i128;
17012     Info.ptrVal = I.getArgOperand(2);
17013     Info.offset = 0;
17014     Info.align = Align(16);
17015     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
17016     return true;
17017   case Intrinsic::ppc_altivec_lvx:
17018   case Intrinsic::ppc_altivec_lvxl:
17019   case Intrinsic::ppc_altivec_lvebx:
17020   case Intrinsic::ppc_altivec_lvehx:
17021   case Intrinsic::ppc_altivec_lvewx:
17022   case Intrinsic::ppc_vsx_lxvd2x:
17023   case Intrinsic::ppc_vsx_lxvw4x:
17024   case Intrinsic::ppc_vsx_lxvd2x_be:
17025   case Intrinsic::ppc_vsx_lxvw4x_be:
17026   case Intrinsic::ppc_vsx_lxvl:
17027   case Intrinsic::ppc_vsx_lxvll: {
17028     EVT VT;
17029     switch (Intrinsic) {
17030     case Intrinsic::ppc_altivec_lvebx:
17031       VT = MVT::i8;
17032       break;
17033     case Intrinsic::ppc_altivec_lvehx:
17034       VT = MVT::i16;
17035       break;
17036     case Intrinsic::ppc_altivec_lvewx:
17037       VT = MVT::i32;
17038       break;
17039     case Intrinsic::ppc_vsx_lxvd2x:
17040     case Intrinsic::ppc_vsx_lxvd2x_be:
17041       VT = MVT::v2f64;
17042       break;
17043     default:
17044       VT = MVT::v4i32;
17045       break;
17046     }
17047 
17048     Info.opc = ISD::INTRINSIC_W_CHAIN;
17049     Info.memVT = VT;
17050     Info.ptrVal = I.getArgOperand(0);
17051     Info.offset = -VT.getStoreSize()+1;
17052     Info.size = 2*VT.getStoreSize()-1;
17053     Info.align = Align(1);
17054     Info.flags = MachineMemOperand::MOLoad;
17055     return true;
17056   }
17057   case Intrinsic::ppc_altivec_stvx:
17058   case Intrinsic::ppc_altivec_stvxl:
17059   case Intrinsic::ppc_altivec_stvebx:
17060   case Intrinsic::ppc_altivec_stvehx:
17061   case Intrinsic::ppc_altivec_stvewx:
17062   case Intrinsic::ppc_vsx_stxvd2x:
17063   case Intrinsic::ppc_vsx_stxvw4x:
17064   case Intrinsic::ppc_vsx_stxvd2x_be:
17065   case Intrinsic::ppc_vsx_stxvw4x_be:
17066   case Intrinsic::ppc_vsx_stxvl:
17067   case Intrinsic::ppc_vsx_stxvll: {
17068     EVT VT;
17069     switch (Intrinsic) {
17070     case Intrinsic::ppc_altivec_stvebx:
17071       VT = MVT::i8;
17072       break;
17073     case Intrinsic::ppc_altivec_stvehx:
17074       VT = MVT::i16;
17075       break;
17076     case Intrinsic::ppc_altivec_stvewx:
17077       VT = MVT::i32;
17078       break;
17079     case Intrinsic::ppc_vsx_stxvd2x:
17080     case Intrinsic::ppc_vsx_stxvd2x_be:
17081       VT = MVT::v2f64;
17082       break;
17083     default:
17084       VT = MVT::v4i32;
17085       break;
17086     }
17087 
17088     Info.opc = ISD::INTRINSIC_VOID;
17089     Info.memVT = VT;
17090     Info.ptrVal = I.getArgOperand(1);
17091     Info.offset = -VT.getStoreSize()+1;
17092     Info.size = 2*VT.getStoreSize()-1;
17093     Info.align = Align(1);
17094     Info.flags = MachineMemOperand::MOStore;
17095     return true;
17096   }
17097   case Intrinsic::ppc_stdcx:
17098   case Intrinsic::ppc_stwcx:
17099   case Intrinsic::ppc_sthcx:
17100   case Intrinsic::ppc_stbcx: {
17101     EVT VT;
17102     auto Alignment = Align(8);
17103     switch (Intrinsic) {
17104     case Intrinsic::ppc_stdcx:
17105       VT = MVT::i64;
17106       break;
17107     case Intrinsic::ppc_stwcx:
17108       VT = MVT::i32;
17109       Alignment = Align(4);
17110       break;
17111     case Intrinsic::ppc_sthcx:
17112       VT = MVT::i16;
17113       Alignment = Align(2);
17114       break;
17115     case Intrinsic::ppc_stbcx:
17116       VT = MVT::i8;
17117       Alignment = Align(1);
17118       break;
17119     }
17120     Info.opc = ISD::INTRINSIC_W_CHAIN;
17121     Info.memVT = VT;
17122     Info.ptrVal = I.getArgOperand(0);
17123     Info.offset = 0;
17124     Info.align = Alignment;
17125     Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile;
17126     return true;
17127   }
17128   default:
17129     break;
17130   }
17131 
17132   return false;
17133 }
17134 
17135 /// It returns EVT::Other if the type should be determined using generic
17136 /// target-independent logic.
getOptimalMemOpType(const MemOp & Op,const AttributeList & FuncAttributes) const17137 EVT PPCTargetLowering::getOptimalMemOpType(
17138     const MemOp &Op, const AttributeList &FuncAttributes) const {
17139   if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None) {
17140     // We should use Altivec/VSX loads and stores when available. For unaligned
17141     // addresses, unaligned VSX loads are only fast starting with the P8.
17142     if (Subtarget.hasAltivec() && Op.size() >= 16) {
17143       if (Op.isMemset() && Subtarget.hasVSX()) {
17144         uint64_t TailSize = Op.size() % 16;
17145         // For memset lowering, EXTRACT_VECTOR_ELT tries to return constant
17146         // element if vector element type matches tail store. For tail size
17147         // 3/4, the tail store is i32, v4i32 cannot be used, need a legal one.
17148         if (TailSize > 2 && TailSize <= 4) {
17149           return MVT::v8i16;
17150         }
17151         return MVT::v4i32;
17152       }
17153       if (Op.isAligned(Align(16)) || Subtarget.hasP8Vector())
17154         return MVT::v4i32;
17155     }
17156   }
17157 
17158   if (Subtarget.isPPC64()) {
17159     return MVT::i64;
17160   }
17161 
17162   return MVT::i32;
17163 }
17164 
17165 /// Returns true if it is beneficial to convert a load of a constant
17166 /// to just the constant itself.
shouldConvertConstantLoadToIntImm(const APInt & Imm,Type * Ty) const17167 bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
17168                                                           Type *Ty) const {
17169   assert(Ty->isIntegerTy());
17170 
17171   unsigned BitSize = Ty->getPrimitiveSizeInBits();
17172   return !(BitSize == 0 || BitSize > 64);
17173 }
17174 
isTruncateFree(Type * Ty1,Type * Ty2) const17175 bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
17176   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
17177     return false;
17178   unsigned NumBits1 = Ty1->getPrimitiveSizeInBits();
17179   unsigned NumBits2 = Ty2->getPrimitiveSizeInBits();
17180   return NumBits1 == 64 && NumBits2 == 32;
17181 }
17182 
isTruncateFree(EVT VT1,EVT VT2) const17183 bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
17184   if (!VT1.isInteger() || !VT2.isInteger())
17185     return false;
17186   unsigned NumBits1 = VT1.getSizeInBits();
17187   unsigned NumBits2 = VT2.getSizeInBits();
17188   return NumBits1 == 64 && NumBits2 == 32;
17189 }
17190 
isZExtFree(SDValue Val,EVT VT2) const17191 bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
17192   // Generally speaking, zexts are not free, but they are free when they can be
17193   // folded with other operations.
17194   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Val)) {
17195     EVT MemVT = LD->getMemoryVT();
17196     if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 ||
17197          (Subtarget.isPPC64() && MemVT == MVT::i32)) &&
17198         (LD->getExtensionType() == ISD::NON_EXTLOAD ||
17199          LD->getExtensionType() == ISD::ZEXTLOAD))
17200       return true;
17201   }
17202 
17203   // FIXME: Add other cases...
17204   //  - 32-bit shifts with a zext to i64
17205   //  - zext after ctlz, bswap, etc.
17206   //  - zext after and by a constant mask
17207 
17208   return TargetLowering::isZExtFree(Val, VT2);
17209 }
17210 
isFPExtFree(EVT DestVT,EVT SrcVT) const17211 bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const {
17212   assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
17213          "invalid fpext types");
17214   // Extending to float128 is not free.
17215   if (DestVT == MVT::f128)
17216     return false;
17217   return true;
17218 }
17219 
isLegalICmpImmediate(int64_t Imm) const17220 bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
17221   return isInt<16>(Imm) || isUInt<16>(Imm);
17222 }
17223 
isLegalAddImmediate(int64_t Imm) const17224 bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const {
17225   return isInt<16>(Imm) || isUInt<16>(Imm);
17226 }
17227 
allowsMisalignedMemoryAccesses(EVT VT,unsigned,Align,MachineMemOperand::Flags,unsigned * Fast) const17228 bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align,
17229                                                        MachineMemOperand::Flags,
17230                                                        unsigned *Fast) const {
17231   if (DisablePPCUnaligned)
17232     return false;
17233 
17234   // PowerPC supports unaligned memory access for simple non-vector types.
17235   // Although accessing unaligned addresses is not as efficient as accessing
17236   // aligned addresses, it is generally more efficient than manual expansion,
17237   // and generally only traps for software emulation when crossing page
17238   // boundaries.
17239 
17240   if (!VT.isSimple())
17241     return false;
17242 
17243   if (VT.isFloatingPoint() && !VT.isVector() &&
17244       !Subtarget.allowsUnalignedFPAccess())
17245     return false;
17246 
17247   if (VT.getSimpleVT().isVector()) {
17248     if (Subtarget.hasVSX()) {
17249       if (VT != MVT::v2f64 && VT != MVT::v2i64 &&
17250           VT != MVT::v4f32 && VT != MVT::v4i32)
17251         return false;
17252     } else {
17253       return false;
17254     }
17255   }
17256 
17257   if (VT == MVT::ppcf128)
17258     return false;
17259 
17260   if (Fast)
17261     *Fast = 1;
17262 
17263   return true;
17264 }
17265 
decomposeMulByConstant(LLVMContext & Context,EVT VT,SDValue C) const17266 bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT,
17267                                                SDValue C) const {
17268   // Check integral scalar types.
17269   if (!VT.isScalarInteger())
17270     return false;
17271   if (auto *ConstNode = dyn_cast<ConstantSDNode>(C.getNode())) {
17272     if (!ConstNode->getAPIntValue().isSignedIntN(64))
17273       return false;
17274     // This transformation will generate >= 2 operations. But the following
17275     // cases will generate <= 2 instructions during ISEL. So exclude them.
17276     // 1. If the constant multiplier fits 16 bits, it can be handled by one
17277     // HW instruction, ie. MULLI
17278     // 2. If the multiplier after shifted fits 16 bits, an extra shift
17279     // instruction is needed than case 1, ie. MULLI and RLDICR
17280     int64_t Imm = ConstNode->getSExtValue();
17281     unsigned Shift = llvm::countr_zero<uint64_t>(Imm);
17282     Imm >>= Shift;
17283     if (isInt<16>(Imm))
17284       return false;
17285     uint64_t UImm = static_cast<uint64_t>(Imm);
17286     if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) ||
17287         isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm))
17288       return true;
17289   }
17290   return false;
17291 }
17292 
isFMAFasterThanFMulAndFAdd(const MachineFunction & MF,EVT VT) const17293 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF,
17294                                                    EVT VT) const {
17295   return isFMAFasterThanFMulAndFAdd(
17296       MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext()));
17297 }
17298 
isFMAFasterThanFMulAndFAdd(const Function & F,Type * Ty) const17299 bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F,
17300                                                    Type *Ty) const {
17301   if (Subtarget.hasSPE() || Subtarget.useSoftFloat())
17302     return false;
17303   switch (Ty->getScalarType()->getTypeID()) {
17304   case Type::FloatTyID:
17305   case Type::DoubleTyID:
17306     return true;
17307   case Type::FP128TyID:
17308     return Subtarget.hasP9Vector();
17309   default:
17310     return false;
17311   }
17312 }
17313 
17314 // FIXME: add more patterns which are not profitable to hoist.
isProfitableToHoist(Instruction * I) const17315 bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const {
17316   if (!I->hasOneUse())
17317     return true;
17318 
17319   Instruction *User = I->user_back();
17320   assert(User && "A single use instruction with no uses.");
17321 
17322   switch (I->getOpcode()) {
17323   case Instruction::FMul: {
17324     // Don't break FMA, PowerPC prefers FMA.
17325     if (User->getOpcode() != Instruction::FSub &&
17326         User->getOpcode() != Instruction::FAdd)
17327       return true;
17328 
17329     const TargetOptions &Options = getTargetMachine().Options;
17330     const Function *F = I->getFunction();
17331     const DataLayout &DL = F->getParent()->getDataLayout();
17332     Type *Ty = User->getOperand(0)->getType();
17333 
17334     return !(
17335         isFMAFasterThanFMulAndFAdd(*F, Ty) &&
17336         isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) &&
17337         (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath));
17338   }
17339   case Instruction::Load: {
17340     // Don't break "store (load float*)" pattern, this pattern will be combined
17341     // to "store (load int32)" in later InstCombine pass. See function
17342     // combineLoadToOperationType. On PowerPC, loading a float point takes more
17343     // cycles than loading a 32 bit integer.
17344     LoadInst *LI = cast<LoadInst>(I);
17345     // For the loads that combineLoadToOperationType does nothing, like
17346     // ordered load, it should be profitable to hoist them.
17347     // For swifterror load, it can only be used for pointer to pointer type, so
17348     // later type check should get rid of this case.
17349     if (!LI->isUnordered())
17350       return true;
17351 
17352     if (User->getOpcode() != Instruction::Store)
17353       return true;
17354 
17355     if (I->getType()->getTypeID() != Type::FloatTyID)
17356       return true;
17357 
17358     return false;
17359   }
17360   default:
17361     return true;
17362   }
17363   return true;
17364 }
17365 
17366 const MCPhysReg *
getScratchRegisters(CallingConv::ID) const17367 PPCTargetLowering::getScratchRegisters(CallingConv::ID) const {
17368   // LR is a callee-save register, but we must treat it as clobbered by any call
17369   // site. Hence we include LR in the scratch registers, which are in turn added
17370   // as implicit-defs for stackmaps and patchpoints. The same reasoning applies
17371   // to CTR, which is used by any indirect call.
17372   static const MCPhysReg ScratchRegs[] = {
17373     PPC::X12, PPC::LR8, PPC::CTR8, 0
17374   };
17375 
17376   return ScratchRegs;
17377 }
17378 
getExceptionPointerRegister(const Constant * PersonalityFn) const17379 Register PPCTargetLowering::getExceptionPointerRegister(
17380     const Constant *PersonalityFn) const {
17381   return Subtarget.isPPC64() ? PPC::X3 : PPC::R3;
17382 }
17383 
getExceptionSelectorRegister(const Constant * PersonalityFn) const17384 Register PPCTargetLowering::getExceptionSelectorRegister(
17385     const Constant *PersonalityFn) const {
17386   return Subtarget.isPPC64() ? PPC::X4 : PPC::R4;
17387 }
17388 
17389 bool
shouldExpandBuildVectorWithShuffles(EVT VT,unsigned DefinedValues) const17390 PPCTargetLowering::shouldExpandBuildVectorWithShuffles(
17391                      EVT VT , unsigned DefinedValues) const {
17392   if (VT == MVT::v2i64)
17393     return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves
17394 
17395   if (Subtarget.hasVSX())
17396     return true;
17397 
17398   return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues);
17399 }
17400 
getSchedulingPreference(SDNode * N) const17401 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
17402   if (DisableILPPref || Subtarget.enableMachineScheduler())
17403     return TargetLowering::getSchedulingPreference(N);
17404 
17405   return Sched::ILP;
17406 }
17407 
17408 // Create a fast isel object.
17409 FastISel *
createFastISel(FunctionLoweringInfo & FuncInfo,const TargetLibraryInfo * LibInfo) const17410 PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo,
17411                                   const TargetLibraryInfo *LibInfo) const {
17412   return PPC::createFastISel(FuncInfo, LibInfo);
17413 }
17414 
17415 // 'Inverted' means the FMA opcode after negating one multiplicand.
17416 // For example, (fma -a b c) = (fnmsub a b c)
invertFMAOpcode(unsigned Opc)17417 static unsigned invertFMAOpcode(unsigned Opc) {
17418   switch (Opc) {
17419   default:
17420     llvm_unreachable("Invalid FMA opcode for PowerPC!");
17421   case ISD::FMA:
17422     return PPCISD::FNMSUB;
17423   case PPCISD::FNMSUB:
17424     return ISD::FMA;
17425   }
17426 }
17427 
getNegatedExpression(SDValue Op,SelectionDAG & DAG,bool LegalOps,bool OptForSize,NegatibleCost & Cost,unsigned Depth) const17428 SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG,
17429                                                 bool LegalOps, bool OptForSize,
17430                                                 NegatibleCost &Cost,
17431                                                 unsigned Depth) const {
17432   if (Depth > SelectionDAG::MaxRecursionDepth)
17433     return SDValue();
17434 
17435   unsigned Opc = Op.getOpcode();
17436   EVT VT = Op.getValueType();
17437   SDNodeFlags Flags = Op.getNode()->getFlags();
17438 
17439   switch (Opc) {
17440   case PPCISD::FNMSUB:
17441     if (!Op.hasOneUse() || !isTypeLegal(VT))
17442       break;
17443 
17444     const TargetOptions &Options = getTargetMachine().Options;
17445     SDValue N0 = Op.getOperand(0);
17446     SDValue N1 = Op.getOperand(1);
17447     SDValue N2 = Op.getOperand(2);
17448     SDLoc Loc(Op);
17449 
17450     NegatibleCost N2Cost = NegatibleCost::Expensive;
17451     SDValue NegN2 =
17452         getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1);
17453 
17454     if (!NegN2)
17455       return SDValue();
17456 
17457     // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c))
17458     // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c))
17459     // These transformations may change sign of zeroes. For example,
17460     // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1.
17461     if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) {
17462       // Try and choose the cheaper one to negate.
17463       NegatibleCost N0Cost = NegatibleCost::Expensive;
17464       SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize,
17465                                            N0Cost, Depth + 1);
17466 
17467       NegatibleCost N1Cost = NegatibleCost::Expensive;
17468       SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize,
17469                                            N1Cost, Depth + 1);
17470 
17471       if (NegN0 && N0Cost <= N1Cost) {
17472         Cost = std::min(N0Cost, N2Cost);
17473         return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags);
17474       } else if (NegN1) {
17475         Cost = std::min(N1Cost, N2Cost);
17476         return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags);
17477       }
17478     }
17479 
17480     // (fneg (fnmsub a b c)) => (fma a b (fneg c))
17481     if (isOperationLegal(ISD::FMA, VT)) {
17482       Cost = N2Cost;
17483       return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags);
17484     }
17485 
17486     break;
17487   }
17488 
17489   return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize,
17490                                               Cost, Depth);
17491 }
17492 
17493 // Override to enable LOAD_STACK_GUARD lowering on Linux.
useLoadStackGuardNode() const17494 bool PPCTargetLowering::useLoadStackGuardNode() const {
17495   if (!Subtarget.isTargetLinux())
17496     return TargetLowering::useLoadStackGuardNode();
17497   return true;
17498 }
17499 
17500 // Override to disable global variable loading on Linux and insert AIX canary
17501 // word declaration.
insertSSPDeclarations(Module & M) const17502 void PPCTargetLowering::insertSSPDeclarations(Module &M) const {
17503   if (Subtarget.isAIXABI()) {
17504     M.getOrInsertGlobal(AIXSSPCanaryWordName,
17505                         PointerType::getUnqual(M.getContext()));
17506     return;
17507   }
17508   if (!Subtarget.isTargetLinux())
17509     return TargetLowering::insertSSPDeclarations(M);
17510 }
17511 
getSDagStackGuard(const Module & M) const17512 Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const {
17513   if (Subtarget.isAIXABI())
17514     return M.getGlobalVariable(AIXSSPCanaryWordName);
17515   return TargetLowering::getSDagStackGuard(M);
17516 }
17517 
isFPImmLegal(const APFloat & Imm,EVT VT,bool ForCodeSize) const17518 bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT,
17519                                      bool ForCodeSize) const {
17520   if (!VT.isSimple() || !Subtarget.hasVSX())
17521     return false;
17522 
17523   switch(VT.getSimpleVT().SimpleTy) {
17524   default:
17525     // For FP types that are currently not supported by PPC backend, return
17526     // false. Examples: f16, f80.
17527     return false;
17528   case MVT::f32:
17529   case MVT::f64: {
17530     if (Subtarget.hasPrefixInstrs()) {
17531       // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP.
17532       return true;
17533     }
17534     bool IsExact;
17535     APSInt IntResult(16, false);
17536     // The rounding mode doesn't really matter because we only care about floats
17537     // that can be converted to integers exactly.
17538     Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact);
17539     // For exact values in the range [-16, 15] we can materialize the float.
17540     if (IsExact && IntResult <= 15 && IntResult >= -16)
17541       return true;
17542     return Imm.isZero();
17543   }
17544   case MVT::ppcf128:
17545     return Imm.isPosZero();
17546   }
17547 }
17548 
17549 // For vector shift operation op, fold
17550 // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y)
stripModuloOnShift(const TargetLowering & TLI,SDNode * N,SelectionDAG & DAG)17551 static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N,
17552                                   SelectionDAG &DAG) {
17553   SDValue N0 = N->getOperand(0);
17554   SDValue N1 = N->getOperand(1);
17555   EVT VT = N0.getValueType();
17556   unsigned OpSizeInBits = VT.getScalarSizeInBits();
17557   unsigned Opcode = N->getOpcode();
17558   unsigned TargetOpcode;
17559 
17560   switch (Opcode) {
17561   default:
17562     llvm_unreachable("Unexpected shift operation");
17563   case ISD::SHL:
17564     TargetOpcode = PPCISD::SHL;
17565     break;
17566   case ISD::SRL:
17567     TargetOpcode = PPCISD::SRL;
17568     break;
17569   case ISD::SRA:
17570     TargetOpcode = PPCISD::SRA;
17571     break;
17572   }
17573 
17574   if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) &&
17575       N1->getOpcode() == ISD::AND)
17576     if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1)))
17577       if (Mask->getZExtValue() == OpSizeInBits - 1)
17578         return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0));
17579 
17580   return SDValue();
17581 }
17582 
combineSHL(SDNode * N,DAGCombinerInfo & DCI) const17583 SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const {
17584   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17585     return Value;
17586 
17587   SDValue N0 = N->getOperand(0);
17588   ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N->getOperand(1));
17589   if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() ||
17590       N0.getOpcode() != ISD::SIGN_EXTEND ||
17591       N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr ||
17592       N->getValueType(0) != MVT::i64)
17593     return SDValue();
17594 
17595   // We can't save an operation here if the value is already extended, and
17596   // the existing shift is easier to combine.
17597   SDValue ExtsSrc = N0.getOperand(0);
17598   if (ExtsSrc.getOpcode() == ISD::TRUNCATE &&
17599       ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext)
17600     return SDValue();
17601 
17602   SDLoc DL(N0);
17603   SDValue ShiftBy = SDValue(CN1, 0);
17604   // We want the shift amount to be i32 on the extswli, but the shift could
17605   // have an i64.
17606   if (ShiftBy.getValueType() == MVT::i64)
17607     ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32);
17608 
17609   return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0),
17610                          ShiftBy);
17611 }
17612 
combineSRA(SDNode * N,DAGCombinerInfo & DCI) const17613 SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const {
17614   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17615     return Value;
17616 
17617   return SDValue();
17618 }
17619 
combineSRL(SDNode * N,DAGCombinerInfo & DCI) const17620 SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const {
17621   if (auto Value = stripModuloOnShift(*this, N, DCI.DAG))
17622     return Value;
17623 
17624   return SDValue();
17625 }
17626 
17627 // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1))
17628 // Transform (add X, (zext(sete  Z, C))) -> (addze X, (subfic (addi Z, -C), 0))
17629 // When C is zero, the equation (addi Z, -C) can be simplified to Z
17630 // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types
combineADDToADDZE(SDNode * N,SelectionDAG & DAG,const PPCSubtarget & Subtarget)17631 static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG,
17632                                  const PPCSubtarget &Subtarget) {
17633   if (!Subtarget.isPPC64())
17634     return SDValue();
17635 
17636   SDValue LHS = N->getOperand(0);
17637   SDValue RHS = N->getOperand(1);
17638 
17639   auto isZextOfCompareWithConstant = [](SDValue Op) {
17640     if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() ||
17641         Op.getValueType() != MVT::i64)
17642       return false;
17643 
17644     SDValue Cmp = Op.getOperand(0);
17645     if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() ||
17646         Cmp.getOperand(0).getValueType() != MVT::i64)
17647       return false;
17648 
17649     if (auto *Constant = dyn_cast<ConstantSDNode>(Cmp.getOperand(1))) {
17650       int64_t NegConstant = 0 - Constant->getSExtValue();
17651       // Due to the limitations of the addi instruction,
17652       // -C is required to be [-32768, 32767].
17653       return isInt<16>(NegConstant);
17654     }
17655 
17656     return false;
17657   };
17658 
17659   bool LHSHasPattern = isZextOfCompareWithConstant(LHS);
17660   bool RHSHasPattern = isZextOfCompareWithConstant(RHS);
17661 
17662   // If there is a pattern, canonicalize a zext operand to the RHS.
17663   if (LHSHasPattern && !RHSHasPattern)
17664     std::swap(LHS, RHS);
17665   else if (!LHSHasPattern && !RHSHasPattern)
17666     return SDValue();
17667 
17668   SDLoc DL(N);
17669   SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue);
17670   SDValue Cmp = RHS.getOperand(0);
17671   SDValue Z = Cmp.getOperand(0);
17672   auto *Constant = cast<ConstantSDNode>(Cmp.getOperand(1));
17673   int64_t NegConstant = 0 - Constant->getSExtValue();
17674 
17675   switch(cast<CondCodeSDNode>(Cmp.getOperand(2))->get()) {
17676   default: break;
17677   case ISD::SETNE: {
17678     //                                 when C == 0
17679     //                             --> addze X, (addic Z, -1).carry
17680     //                            /
17681     // add X, (zext(setne Z, C))--
17682     //                            \    when -32768 <= -C <= 32767 && C != 0
17683     //                             --> addze X, (addic (addi Z, -C), -1).carry
17684     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17685                               DAG.getConstant(NegConstant, DL, MVT::i64));
17686     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17687     SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17688                                AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64));
17689     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17690                        SDValue(Addc.getNode(), 1));
17691     }
17692   case ISD::SETEQ: {
17693     //                                 when C == 0
17694     //                             --> addze X, (subfic Z, 0).carry
17695     //                            /
17696     // add X, (zext(sete  Z, C))--
17697     //                            \    when -32768 <= -C <= 32767 && C != 0
17698     //                             --> addze X, (subfic (addi Z, -C), 0).carry
17699     SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z,
17700                               DAG.getConstant(NegConstant, DL, MVT::i64));
17701     SDValue AddOrZ = NegConstant != 0 ? Add : Z;
17702     SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue),
17703                                DAG.getConstant(0, DL, MVT::i64), AddOrZ);
17704     return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64),
17705                        SDValue(Subc.getNode(), 1));
17706     }
17707   }
17708 
17709   return SDValue();
17710 }
17711 
17712 // Transform
17713 // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to
17714 // (MAT_PCREL_ADDR GlobalAddr+(C1+C2))
17715 // In this case both C1 and C2 must be known constants.
17716 // C1+C2 must fit into a 34 bit signed integer.
combineADDToMAT_PCREL_ADDR(SDNode * N,SelectionDAG & DAG,const PPCSubtarget & Subtarget)17717 static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG,
17718                                           const PPCSubtarget &Subtarget) {
17719   if (!Subtarget.isUsingPCRelativeCalls())
17720     return SDValue();
17721 
17722   // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node.
17723   // If we find that node try to cast the Global Address and the Constant.
17724   SDValue LHS = N->getOperand(0);
17725   SDValue RHS = N->getOperand(1);
17726 
17727   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17728     std::swap(LHS, RHS);
17729 
17730   if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR)
17731     return SDValue();
17732 
17733   // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node.
17734   GlobalAddressSDNode *GSDN = dyn_cast<GlobalAddressSDNode>(LHS.getOperand(0));
17735   ConstantSDNode* ConstNode = dyn_cast<ConstantSDNode>(RHS);
17736 
17737   // Check that both casts succeeded.
17738   if (!GSDN || !ConstNode)
17739     return SDValue();
17740 
17741   int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue();
17742   SDLoc DL(GSDN);
17743 
17744   // The signed int offset needs to fit in 34 bits.
17745   if (!isInt<34>(NewOffset))
17746     return SDValue();
17747 
17748   // The new global address is a copy of the old global address except
17749   // that it has the updated Offset.
17750   SDValue GA =
17751       DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0),
17752                                  NewOffset, GSDN->getTargetFlags());
17753   SDValue MatPCRel =
17754       DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA);
17755   return MatPCRel;
17756 }
17757 
combineADD(SDNode * N,DAGCombinerInfo & DCI) const17758 SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const {
17759   if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget))
17760     return Value;
17761 
17762   if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget))
17763     return Value;
17764 
17765   return SDValue();
17766 }
17767 
17768 // Detect TRUNCATE operations on bitcasts of float128 values.
17769 // What we are looking for here is the situtation where we extract a subset
17770 // of bits from a 128 bit float.
17771 // This can be of two forms:
17772 // 1) BITCAST of f128 feeding TRUNCATE
17773 // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE
17774 // The reason this is required is because we do not have a legal i128 type
17775 // and so we want to prevent having to store the f128 and then reload part
17776 // of it.
combineTRUNCATE(SDNode * N,DAGCombinerInfo & DCI) const17777 SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N,
17778                                            DAGCombinerInfo &DCI) const {
17779   // If we are using CRBits then try that first.
17780   if (Subtarget.useCRBits()) {
17781     // Check if CRBits did anything and return that if it did.
17782     if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI))
17783       return CRTruncValue;
17784   }
17785 
17786   SDLoc dl(N);
17787   SDValue Op0 = N->getOperand(0);
17788 
17789   // Looking for a truncate of i128 to i64.
17790   if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64)
17791     return SDValue();
17792 
17793   int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0;
17794 
17795   // SRL feeding TRUNCATE.
17796   if (Op0.getOpcode() == ISD::SRL) {
17797     ConstantSDNode *ConstNode = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
17798     // The right shift has to be by 64 bits.
17799     if (!ConstNode || ConstNode->getZExtValue() != 64)
17800       return SDValue();
17801 
17802     // Switch the element number to extract.
17803     EltToExtract = EltToExtract ? 0 : 1;
17804     // Update Op0 past the SRL.
17805     Op0 = Op0.getOperand(0);
17806   }
17807 
17808   // BITCAST feeding a TRUNCATE possibly via SRL.
17809   if (Op0.getOpcode() == ISD::BITCAST &&
17810       Op0.getValueType() == MVT::i128 &&
17811       Op0.getOperand(0).getValueType() == MVT::f128) {
17812     SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0));
17813     return DCI.DAG.getNode(
17814         ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast,
17815         DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32));
17816   }
17817   return SDValue();
17818 }
17819 
combineMUL(SDNode * N,DAGCombinerInfo & DCI) const17820 SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const {
17821   SelectionDAG &DAG = DCI.DAG;
17822 
17823   ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1));
17824   if (!ConstOpOrElement)
17825     return SDValue();
17826 
17827   // An imul is usually smaller than the alternative sequence for legal type.
17828   if (DAG.getMachineFunction().getFunction().hasMinSize() &&
17829       isOperationLegal(ISD::MUL, N->getValueType(0)))
17830     return SDValue();
17831 
17832   auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool {
17833     switch (this->Subtarget.getCPUDirective()) {
17834     default:
17835       // TODO: enhance the condition for subtarget before pwr8
17836       return false;
17837     case PPC::DIR_PWR8:
17838       //  type        mul     add    shl
17839       // scalar        4       1      1
17840       // vector        7       2      2
17841       return true;
17842     case PPC::DIR_PWR9:
17843     case PPC::DIR_PWR10:
17844     case PPC::DIR_PWR_FUTURE:
17845       //  type        mul     add    shl
17846       // scalar        5       2      2
17847       // vector        7       2      2
17848 
17849       // The cycle RATIO of related operations are showed as a table above.
17850       // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both
17851       // scalar and vector type. For 2 instrs patterns, add/sub + shl
17852       // are 4, it is always profitable; but for 3 instrs patterns
17853       // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6.
17854       // So we should only do it for vector type.
17855       return IsAddOne && IsNeg ? VT.isVector() : true;
17856     }
17857   };
17858 
17859   EVT VT = N->getValueType(0);
17860   SDLoc DL(N);
17861 
17862   const APInt &MulAmt = ConstOpOrElement->getAPIntValue();
17863   bool IsNeg = MulAmt.isNegative();
17864   APInt MulAmtAbs = MulAmt.abs();
17865 
17866   if ((MulAmtAbs - 1).isPowerOf2()) {
17867     // (mul x, 2^N + 1) => (add (shl x, N), x)
17868     // (mul x, -(2^N + 1)) => -(add (shl x, N), x)
17869 
17870     if (!IsProfitable(IsNeg, true, VT))
17871       return SDValue();
17872 
17873     SDValue Op0 = N->getOperand(0);
17874     SDValue Op1 =
17875         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17876                     DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT));
17877     SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1);
17878 
17879     if (!IsNeg)
17880       return Res;
17881 
17882     return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res);
17883   } else if ((MulAmtAbs + 1).isPowerOf2()) {
17884     // (mul x, 2^N - 1) => (sub (shl x, N), x)
17885     // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
17886 
17887     if (!IsProfitable(IsNeg, false, VT))
17888       return SDValue();
17889 
17890     SDValue Op0 = N->getOperand(0);
17891     SDValue Op1 =
17892         DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0),
17893                     DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT));
17894 
17895     if (!IsNeg)
17896       return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0);
17897     else
17898       return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1);
17899 
17900   } else {
17901     return SDValue();
17902   }
17903 }
17904 
17905 // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this
17906 // in combiner since we need to check SD flags and other subtarget features.
combineFMALike(SDNode * N,DAGCombinerInfo & DCI) const17907 SDValue PPCTargetLowering::combineFMALike(SDNode *N,
17908                                           DAGCombinerInfo &DCI) const {
17909   SDValue N0 = N->getOperand(0);
17910   SDValue N1 = N->getOperand(1);
17911   SDValue N2 = N->getOperand(2);
17912   SDNodeFlags Flags = N->getFlags();
17913   EVT VT = N->getValueType(0);
17914   SelectionDAG &DAG = DCI.DAG;
17915   const TargetOptions &Options = getTargetMachine().Options;
17916   unsigned Opc = N->getOpcode();
17917   bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize();
17918   bool LegalOps = !DCI.isBeforeLegalizeOps();
17919   SDLoc Loc(N);
17920 
17921   if (!isOperationLegal(ISD::FMA, VT))
17922     return SDValue();
17923 
17924   // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0
17925   // since (fnmsub a b c)=-0 while c-ab=+0.
17926   if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath)
17927     return SDValue();
17928 
17929   // (fma (fneg a) b c) => (fnmsub a b c)
17930   // (fnmsub (fneg a) b c) => (fma a b c)
17931   if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize))
17932     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags);
17933 
17934   // (fma a (fneg b) c) => (fnmsub a b c)
17935   // (fnmsub a (fneg b) c) => (fma a b c)
17936   if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize))
17937     return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags);
17938 
17939   return SDValue();
17940 }
17941 
mayBeEmittedAsTailCall(const CallInst * CI) const17942 bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
17943   // Only duplicate to increase tail-calls for the 64bit SysV ABIs.
17944   if (!Subtarget.is64BitELFABI())
17945     return false;
17946 
17947   // If not a tail call then no need to proceed.
17948   if (!CI->isTailCall())
17949     return false;
17950 
17951   // If sibling calls have been disabled and tail-calls aren't guaranteed
17952   // there is no reason to duplicate.
17953   auto &TM = getTargetMachine();
17954   if (!TM.Options.GuaranteedTailCallOpt && DisableSCO)
17955     return false;
17956 
17957   // Can't tail call a function called indirectly, or if it has variadic args.
17958   const Function *Callee = CI->getCalledFunction();
17959   if (!Callee || Callee->isVarArg())
17960     return false;
17961 
17962   // Make sure the callee and caller calling conventions are eligible for tco.
17963   const Function *Caller = CI->getParent()->getParent();
17964   if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(),
17965                                            CI->getCallingConv()))
17966       return false;
17967 
17968   // If the function is local then we have a good chance at tail-calling it
17969   return getTargetMachine().shouldAssumeDSOLocal(*Caller->getParent(), Callee);
17970 }
17971 
17972 bool PPCTargetLowering::
isMaskAndCmp0FoldingBeneficial(const Instruction & AndI) const17973 isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
17974   const Value *Mask = AndI.getOperand(1);
17975   // If the mask is suitable for andi. or andis. we should sink the and.
17976   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Mask)) {
17977     // Can't handle constants wider than 64-bits.
17978     if (CI->getBitWidth() > 64)
17979       return false;
17980     int64_t ConstVal = CI->getZExtValue();
17981     return isUInt<16>(ConstVal) ||
17982       (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF));
17983   }
17984 
17985   // For non-constant masks, we can always use the record-form and.
17986   return true;
17987 }
17988 
17989 /// getAddrModeForFlags - Based on the set of address flags, select the most
17990 /// optimal instruction format to match by.
getAddrModeForFlags(unsigned Flags) const17991 PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const {
17992   // This is not a node we should be handling here.
17993   if (Flags == PPC::MOF_None)
17994     return PPC::AM_None;
17995   // Unaligned D-Forms are tried first, followed by the aligned D-Forms.
17996   for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm))
17997     if ((Flags & FlagSet) == FlagSet)
17998       return PPC::AM_DForm;
17999   for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm))
18000     if ((Flags & FlagSet) == FlagSet)
18001       return PPC::AM_DSForm;
18002   for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm))
18003     if ((Flags & FlagSet) == FlagSet)
18004       return PPC::AM_DQForm;
18005   for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm))
18006     if ((Flags & FlagSet) == FlagSet)
18007       return PPC::AM_PrefixDForm;
18008   // If no other forms are selected, return an X-Form as it is the most
18009   // general addressing mode.
18010   return PPC::AM_XForm;
18011 }
18012 
18013 /// Set alignment flags based on whether or not the Frame Index is aligned.
18014 /// Utilized when computing flags for address computation when selecting
18015 /// load and store instructions.
setAlignFlagsForFI(SDValue N,unsigned & FlagSet,SelectionDAG & DAG)18016 static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet,
18017                                SelectionDAG &DAG) {
18018   bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR));
18019   FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(IsAdd ? N.getOperand(0) : N);
18020   if (!FI)
18021     return;
18022   const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
18023   unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value();
18024   // If this is (add $FI, $S16Imm), the alignment flags are already set
18025   // based on the immediate. We just need to clear the alignment flags
18026   // if the FI alignment is weaker.
18027   if ((FrameIndexAlign % 4) != 0)
18028     FlagSet &= ~PPC::MOF_RPlusSImm16Mult4;
18029   if ((FrameIndexAlign % 16) != 0)
18030     FlagSet &= ~PPC::MOF_RPlusSImm16Mult16;
18031   // If the address is a plain FrameIndex, set alignment flags based on
18032   // FI alignment.
18033   if (!IsAdd) {
18034     if ((FrameIndexAlign % 4) == 0)
18035       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
18036     if ((FrameIndexAlign % 16) == 0)
18037       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
18038   }
18039 }
18040 
18041 /// Given a node, compute flags that are used for address computation when
18042 /// selecting load and store instructions. The flags computed are stored in
18043 /// FlagSet. This function takes into account whether the node is a constant,
18044 /// an ADD, OR, or a constant, and computes the address flags accordingly.
computeFlagsForAddressComputation(SDValue N,unsigned & FlagSet,SelectionDAG & DAG)18045 static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet,
18046                                               SelectionDAG &DAG) {
18047   // Set the alignment flags for the node depending on if the node is
18048   // 4-byte or 16-byte aligned.
18049   auto SetAlignFlagsForImm = [&](uint64_t Imm) {
18050     if ((Imm & 0x3) == 0)
18051       FlagSet |= PPC::MOF_RPlusSImm16Mult4;
18052     if ((Imm & 0xf) == 0)
18053       FlagSet |= PPC::MOF_RPlusSImm16Mult16;
18054   };
18055 
18056   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
18057     // All 32-bit constants can be computed as LIS + Disp.
18058     const APInt &ConstImm = CN->getAPIntValue();
18059     if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants.
18060       FlagSet |= PPC::MOF_AddrIsSImm32;
18061       SetAlignFlagsForImm(ConstImm.getZExtValue());
18062       setAlignFlagsForFI(N, FlagSet, DAG);
18063     }
18064     if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants.
18065       FlagSet |= PPC::MOF_RPlusSImm34;
18066     else // Let constant materialization handle large constants.
18067       FlagSet |= PPC::MOF_NotAddNorCst;
18068   } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) {
18069     // This address can be represented as an addition of:
18070     // - Register + Imm16 (possibly a multiple of 4/16)
18071     // - Register + Imm34
18072     // - Register + PPCISD::Lo
18073     // - Register + Register
18074     // In any case, we won't have to match this as Base + Zero.
18075     SDValue RHS = N.getOperand(1);
18076     if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(RHS)) {
18077       const APInt &ConstImm = CN->getAPIntValue();
18078       if (ConstImm.isSignedIntN(16)) {
18079         FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates.
18080         SetAlignFlagsForImm(ConstImm.getZExtValue());
18081         setAlignFlagsForFI(N, FlagSet, DAG);
18082       }
18083       if (ConstImm.isSignedIntN(34))
18084         FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates.
18085       else
18086         FlagSet |= PPC::MOF_RPlusR; // Register.
18087     } else if (RHS.getOpcode() == PPCISD::Lo && !RHS.getConstantOperandVal(1))
18088       FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo.
18089     else
18090       FlagSet |= PPC::MOF_RPlusR;
18091   } else { // The address computation is not a constant or an addition.
18092     setAlignFlagsForFI(N, FlagSet, DAG);
18093     FlagSet |= PPC::MOF_NotAddNorCst;
18094   }
18095 }
18096 
isPCRelNode(SDValue N)18097 static bool isPCRelNode(SDValue N) {
18098   return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR ||
18099       isValidPCRelNode<ConstantPoolSDNode>(N) ||
18100       isValidPCRelNode<GlobalAddressSDNode>(N) ||
18101       isValidPCRelNode<JumpTableSDNode>(N) ||
18102       isValidPCRelNode<BlockAddressSDNode>(N));
18103 }
18104 
18105 /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute
18106 /// the address flags of the load/store instruction that is to be matched.
computeMOFlags(const SDNode * Parent,SDValue N,SelectionDAG & DAG) const18107 unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N,
18108                                            SelectionDAG &DAG) const {
18109   unsigned FlagSet = PPC::MOF_None;
18110 
18111   // Compute subtarget flags.
18112   if (!Subtarget.hasP9Vector())
18113     FlagSet |= PPC::MOF_SubtargetBeforeP9;
18114   else {
18115     FlagSet |= PPC::MOF_SubtargetP9;
18116     if (Subtarget.hasPrefixInstrs())
18117       FlagSet |= PPC::MOF_SubtargetP10;
18118   }
18119   if (Subtarget.hasSPE())
18120     FlagSet |= PPC::MOF_SubtargetSPE;
18121 
18122   // Check if we have a PCRel node and return early.
18123   if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N))
18124     return FlagSet;
18125 
18126   // If the node is the paired load/store intrinsics, compute flags for
18127   // address computation and return early.
18128   unsigned ParentOp = Parent->getOpcode();
18129   if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) ||
18130                                (ParentOp == ISD::INTRINSIC_VOID))) {
18131     unsigned ID = Parent->getConstantOperandVal(1);
18132     if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) {
18133       SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp)
18134                              ? Parent->getOperand(2)
18135                              : Parent->getOperand(3);
18136       computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG);
18137       FlagSet |= PPC::MOF_Vector;
18138       return FlagSet;
18139     }
18140   }
18141 
18142   // Mark this as something we don't want to handle here if it is atomic
18143   // or pre-increment instruction.
18144   if (const LSBaseSDNode *LSB = dyn_cast<LSBaseSDNode>(Parent))
18145     if (LSB->isIndexed())
18146       return PPC::MOF_None;
18147 
18148   // Compute in-memory type flags. This is based on if there are scalars,
18149   // floats or vectors.
18150   const MemSDNode *MN = dyn_cast<MemSDNode>(Parent);
18151   assert(MN && "Parent should be a MemSDNode!");
18152   EVT MemVT = MN->getMemoryVT();
18153   unsigned Size = MemVT.getSizeInBits();
18154   if (MemVT.isScalarInteger()) {
18155     assert(Size <= 128 &&
18156            "Not expecting scalar integers larger than 16 bytes!");
18157     if (Size < 32)
18158       FlagSet |= PPC::MOF_SubWordInt;
18159     else if (Size == 32)
18160       FlagSet |= PPC::MOF_WordInt;
18161     else
18162       FlagSet |= PPC::MOF_DoubleWordInt;
18163   } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors.
18164     if (Size == 128)
18165       FlagSet |= PPC::MOF_Vector;
18166     else if (Size == 256) {
18167       assert(Subtarget.pairedVectorMemops() &&
18168              "256-bit vectors are only available when paired vector memops is "
18169              "enabled!");
18170       FlagSet |= PPC::MOF_Vector;
18171     } else
18172       llvm_unreachable("Not expecting illegal vectors!");
18173   } else { // Floating point type: can be scalar, f128 or vector types.
18174     if (Size == 32 || Size == 64)
18175       FlagSet |= PPC::MOF_ScalarFloat;
18176     else if (MemVT == MVT::f128 || MemVT.isVector())
18177       FlagSet |= PPC::MOF_Vector;
18178     else
18179       llvm_unreachable("Not expecting illegal scalar floats!");
18180   }
18181 
18182   // Compute flags for address computation.
18183   computeFlagsForAddressComputation(N, FlagSet, DAG);
18184 
18185   // Compute type extension flags.
18186   if (const LoadSDNode *LN = dyn_cast<LoadSDNode>(Parent)) {
18187     switch (LN->getExtensionType()) {
18188     case ISD::SEXTLOAD:
18189       FlagSet |= PPC::MOF_SExt;
18190       break;
18191     case ISD::EXTLOAD:
18192     case ISD::ZEXTLOAD:
18193       FlagSet |= PPC::MOF_ZExt;
18194       break;
18195     case ISD::NON_EXTLOAD:
18196       FlagSet |= PPC::MOF_NoExt;
18197       break;
18198     }
18199   } else
18200     FlagSet |= PPC::MOF_NoExt;
18201 
18202   // For integers, no extension is the same as zero extension.
18203   // We set the extension mode to zero extension so we don't have
18204   // to add separate entries in AddrModesMap for loads and stores.
18205   if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) {
18206     FlagSet |= PPC::MOF_ZExt;
18207     FlagSet &= ~PPC::MOF_NoExt;
18208   }
18209 
18210   // If we don't have prefixed instructions, 34-bit constants should be
18211   // treated as PPC::MOF_NotAddNorCst so they can match D-Forms.
18212   bool IsNonP1034BitConst =
18213       ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) &
18214        FlagSet) == PPC::MOF_RPlusSImm34;
18215   if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR &&
18216       IsNonP1034BitConst)
18217     FlagSet |= PPC::MOF_NotAddNorCst;
18218 
18219   return FlagSet;
18220 }
18221 
18222 /// SelectForceXFormMode - Given the specified address, force it to be
18223 /// represented as an indexed [r+r] operation (an XForm instruction).
SelectForceXFormMode(SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG) const18224 PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp,
18225                                                       SDValue &Base,
18226                                                       SelectionDAG &DAG) const {
18227 
18228   PPC::AddrMode Mode = PPC::AM_XForm;
18229   int16_t ForceXFormImm = 0;
18230   if (provablyDisjointOr(DAG, N) &&
18231       !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) {
18232     Disp = N.getOperand(0);
18233     Base = N.getOperand(1);
18234     return Mode;
18235   }
18236 
18237   // If the address is the result of an add, we will utilize the fact that the
18238   // address calculation includes an implicit add.  However, we can reduce
18239   // register pressure if we do not materialize a constant just for use as the
18240   // index register.  We only get rid of the add if it is not an add of a
18241   // value and a 16-bit signed constant and both have a single use.
18242   if (N.getOpcode() == ISD::ADD &&
18243       (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) ||
18244        !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) {
18245     Disp = N.getOperand(0);
18246     Base = N.getOperand(1);
18247     return Mode;
18248   }
18249 
18250   // Otherwise, use R0 as the base register.
18251   Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18252                          N.getValueType());
18253   Base = N;
18254 
18255   return Mode;
18256 }
18257 
splitValueIntoRegisterParts(SelectionDAG & DAG,const SDLoc & DL,SDValue Val,SDValue * Parts,unsigned NumParts,MVT PartVT,std::optional<CallingConv::ID> CC) const18258 bool PPCTargetLowering::splitValueIntoRegisterParts(
18259     SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
18260     unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
18261   EVT ValVT = Val.getValueType();
18262   // If we are splitting a scalar integer into f64 parts (i.e. so they
18263   // can be placed into VFRC registers), we need to zero extend and
18264   // bitcast the values. This will ensure the value is placed into a
18265   // VSR using direct moves or stack operations as needed.
18266   if (PartVT == MVT::f64 &&
18267       (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) {
18268     Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val);
18269     Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val);
18270     Parts[0] = Val;
18271     return true;
18272   }
18273   return false;
18274 }
18275 
lowerToLibCall(const char * LibCallName,SDValue Op,SelectionDAG & DAG) const18276 SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op,
18277                                           SelectionDAG &DAG) const {
18278   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
18279   TargetLowering::CallLoweringInfo CLI(DAG);
18280   EVT RetVT = Op.getValueType();
18281   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
18282   SDValue Callee =
18283       DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout()));
18284   bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false);
18285   TargetLowering::ArgListTy Args;
18286   TargetLowering::ArgListEntry Entry;
18287   for (const SDValue &N : Op->op_values()) {
18288     EVT ArgVT = N.getValueType();
18289     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
18290     Entry.Node = N;
18291     Entry.Ty = ArgTy;
18292     Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend);
18293     Entry.IsZExt = !Entry.IsSExt;
18294     Args.push_back(Entry);
18295   }
18296 
18297   SDValue InChain = DAG.getEntryNode();
18298   SDValue TCChain = InChain;
18299   const Function &F = DAG.getMachineFunction().getFunction();
18300   bool isTailCall =
18301       TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) &&
18302       (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy());
18303   if (isTailCall)
18304     InChain = TCChain;
18305   CLI.setDebugLoc(SDLoc(Op))
18306       .setChain(InChain)
18307       .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args))
18308       .setTailCall(isTailCall)
18309       .setSExtResult(SignExtend)
18310       .setZExtResult(!SignExtend)
18311       .setIsPostTypeLegalization(true);
18312   return TLI.LowerCallTo(CLI).first;
18313 }
18314 
lowerLibCallBasedOnType(const char * LibCallFloatName,const char * LibCallDoubleName,SDValue Op,SelectionDAG & DAG) const18315 SDValue PPCTargetLowering::lowerLibCallBasedOnType(
18316     const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op,
18317     SelectionDAG &DAG) const {
18318   if (Op.getValueType() == MVT::f32)
18319     return lowerToLibCall(LibCallFloatName, Op, DAG);
18320 
18321   if (Op.getValueType() == MVT::f64)
18322     return lowerToLibCall(LibCallDoubleName, Op, DAG);
18323 
18324   return SDValue();
18325 }
18326 
isLowringToMASSFiniteSafe(SDValue Op) const18327 bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const {
18328   SDNodeFlags Flags = Op.getNode()->getFlags();
18329   return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() &&
18330          Flags.hasNoNaNs() && Flags.hasNoInfs();
18331 }
18332 
isLowringToMASSSafe(SDValue Op) const18333 bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const {
18334   return Op.getNode()->getFlags().hasApproximateFuncs();
18335 }
18336 
isScalarMASSConversionEnabled() const18337 bool PPCTargetLowering::isScalarMASSConversionEnabled() const {
18338   return getTargetMachine().Options.PPCGenScalarMASSEntries;
18339 }
18340 
lowerLibCallBase(const char * LibCallDoubleName,const char * LibCallFloatName,const char * LibCallDoubleNameFinite,const char * LibCallFloatNameFinite,SDValue Op,SelectionDAG & DAG) const18341 SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName,
18342                                             const char *LibCallFloatName,
18343                                             const char *LibCallDoubleNameFinite,
18344                                             const char *LibCallFloatNameFinite,
18345                                             SDValue Op,
18346                                             SelectionDAG &DAG) const {
18347   if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op))
18348     return SDValue();
18349 
18350   if (!isLowringToMASSFiniteSafe(Op))
18351     return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op,
18352                                    DAG);
18353 
18354   return lowerLibCallBasedOnType(LibCallFloatNameFinite,
18355                                  LibCallDoubleNameFinite, Op, DAG);
18356 }
18357 
lowerPow(SDValue Op,SelectionDAG & DAG) const18358 SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const {
18359   return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite",
18360                           "__xl_powf_finite", Op, DAG);
18361 }
18362 
lowerSin(SDValue Op,SelectionDAG & DAG) const18363 SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const {
18364   return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite",
18365                           "__xl_sinf_finite", Op, DAG);
18366 }
18367 
lowerCos(SDValue Op,SelectionDAG & DAG) const18368 SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const {
18369   return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite",
18370                           "__xl_cosf_finite", Op, DAG);
18371 }
18372 
lowerLog(SDValue Op,SelectionDAG & DAG) const18373 SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const {
18374   return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite",
18375                           "__xl_logf_finite", Op, DAG);
18376 }
18377 
lowerLog10(SDValue Op,SelectionDAG & DAG) const18378 SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const {
18379   return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite",
18380                           "__xl_log10f_finite", Op, DAG);
18381 }
18382 
lowerExp(SDValue Op,SelectionDAG & DAG) const18383 SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const {
18384   return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite",
18385                           "__xl_expf_finite", Op, DAG);
18386 }
18387 
18388 // If we happen to match to an aligned D-Form, check if the Frame Index is
18389 // adequately aligned. If it is not, reset the mode to match to X-Form.
setXFormForUnalignedFI(SDValue N,unsigned Flags,PPC::AddrMode & Mode)18390 static void setXFormForUnalignedFI(SDValue N, unsigned Flags,
18391                                    PPC::AddrMode &Mode) {
18392   if (!isa<FrameIndexSDNode>(N))
18393     return;
18394   if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) ||
18395       (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16)))
18396     Mode = PPC::AM_XForm;
18397 }
18398 
18399 /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode),
18400 /// compute the address flags of the node, get the optimal address mode based
18401 /// on the flags, and set the Base and Disp based on the address mode.
SelectOptimalAddrMode(const SDNode * Parent,SDValue N,SDValue & Disp,SDValue & Base,SelectionDAG & DAG,MaybeAlign Align) const18402 PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent,
18403                                                        SDValue N, SDValue &Disp,
18404                                                        SDValue &Base,
18405                                                        SelectionDAG &DAG,
18406                                                        MaybeAlign Align) const {
18407   SDLoc DL(Parent);
18408 
18409   // Compute the address flags.
18410   unsigned Flags = computeMOFlags(Parent, N, DAG);
18411 
18412   // Get the optimal address mode based on the Flags.
18413   PPC::AddrMode Mode = getAddrModeForFlags(Flags);
18414 
18415   // If the address mode is DS-Form or DQ-Form, check if the FI is aligned.
18416   // Select an X-Form load if it is not.
18417   setXFormForUnalignedFI(N, Flags, Mode);
18418 
18419   // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node.
18420   if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) {
18421     assert(Subtarget.isUsingPCRelativeCalls() &&
18422            "Must be using PC-Relative calls when a valid PC-Relative node is "
18423            "present!");
18424     Mode = PPC::AM_PCRel;
18425   }
18426 
18427   // Set Base and Disp accordingly depending on the address mode.
18428   switch (Mode) {
18429   case PPC::AM_DForm:
18430   case PPC::AM_DSForm:
18431   case PPC::AM_DQForm: {
18432     // This is a register plus a 16-bit immediate. The base will be the
18433     // register and the displacement will be the immediate unless it
18434     // isn't sufficiently aligned.
18435     if (Flags & PPC::MOF_RPlusSImm16) {
18436       SDValue Op0 = N.getOperand(0);
18437       SDValue Op1 = N.getOperand(1);
18438       int16_t Imm = Op1->getAsZExtVal();
18439       if (!Align || isAligned(*Align, Imm)) {
18440         Disp = DAG.getTargetConstant(Imm, DL, N.getValueType());
18441         Base = Op0;
18442         if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op0)) {
18443           Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18444           fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18445         }
18446         break;
18447       }
18448     }
18449     // This is a register plus the @lo relocation. The base is the register
18450     // and the displacement is the global address.
18451     else if (Flags & PPC::MOF_RPlusLo) {
18452       Disp = N.getOperand(1).getOperand(0); // The global address.
18453       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
18454              Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
18455              Disp.getOpcode() == ISD::TargetConstantPool ||
18456              Disp.getOpcode() == ISD::TargetJumpTable);
18457       Base = N.getOperand(0);
18458       break;
18459     }
18460     // This is a constant address at most 32 bits. The base will be
18461     // zero or load-immediate-shifted and the displacement will be
18462     // the low 16 bits of the address.
18463     else if (Flags & PPC::MOF_AddrIsSImm32) {
18464       auto *CN = cast<ConstantSDNode>(N);
18465       EVT CNType = CN->getValueType(0);
18466       uint64_t CNImm = CN->getZExtValue();
18467       // If this address fits entirely in a 16-bit sext immediate field, codegen
18468       // this as "d, 0".
18469       int16_t Imm;
18470       if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) {
18471         Disp = DAG.getTargetConstant(Imm, DL, CNType);
18472         Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18473                                CNType);
18474         break;
18475       }
18476       // Handle 32-bit sext immediate with LIS + Addr mode.
18477       if ((CNType == MVT::i32 || isInt<32>(CNImm)) &&
18478           (!Align || isAligned(*Align, CNImm))) {
18479         int32_t Addr = (int32_t)CNImm;
18480         // Otherwise, break this down into LIS + Disp.
18481         Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32);
18482         Base =
18483             DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32);
18484         uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8;
18485         Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0);
18486         break;
18487       }
18488     }
18489     // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable.
18490     Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout()));
18491     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N)) {
18492       Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18493       fixupFuncForFI(DAG, FI->getIndex(), N.getValueType());
18494     } else
18495       Base = N;
18496     break;
18497   }
18498   case PPC::AM_PrefixDForm: {
18499     int64_t Imm34 = 0;
18500     unsigned Opcode = N.getOpcode();
18501     if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) &&
18502         (isIntS34Immediate(N.getOperand(1), Imm34))) {
18503       // N is an Add/OR Node, and it's operand is a 34-bit signed immediate.
18504       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18505       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0)))
18506         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
18507       else
18508         Base = N.getOperand(0);
18509     } else if (isIntS34Immediate(N, Imm34)) {
18510       // The address is a 34-bit signed immediate.
18511       Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType());
18512       Base = DAG.getRegister(PPC::ZERO8, N.getValueType());
18513     }
18514     break;
18515   }
18516   case PPC::AM_PCRel: {
18517     // When selecting PC-Relative instructions, "Base" is not utilized as
18518     // we select the address as [PC+imm].
18519     Disp = N;
18520     break;
18521   }
18522   case PPC::AM_None:
18523     break;
18524   default: { // By default, X-Form is always available to be selected.
18525     // When a frame index is not aligned, we also match by XForm.
18526     FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N);
18527     Base = FI ? N : N.getOperand(1);
18528     Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
18529                                 N.getValueType())
18530               : N.getOperand(0);
18531     break;
18532   }
18533   }
18534   return Mode;
18535 }
18536 
ccAssignFnForCall(CallingConv::ID CC,bool Return,bool IsVarArg) const18537 CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC,
18538                                                  bool Return,
18539                                                  bool IsVarArg) const {
18540   switch (CC) {
18541   case CallingConv::Cold:
18542     return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF);
18543   default:
18544     return CC_PPC64_ELF;
18545   }
18546 }
18547 
shouldInlineQuadwordAtomics() const18548 bool PPCTargetLowering::shouldInlineQuadwordAtomics() const {
18549   return Subtarget.isPPC64() && Subtarget.hasQuadwordAtomics();
18550 }
18551 
18552 TargetLowering::AtomicExpansionKind
shouldExpandAtomicRMWInIR(AtomicRMWInst * AI) const18553 PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
18554   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
18555   if (shouldInlineQuadwordAtomics() && Size == 128)
18556     return AtomicExpansionKind::MaskedIntrinsic;
18557 
18558   switch (AI->getOperation()) {
18559   case AtomicRMWInst::UIncWrap:
18560   case AtomicRMWInst::UDecWrap:
18561     return AtomicExpansionKind::CmpXChg;
18562   default:
18563     return TargetLowering::shouldExpandAtomicRMWInIR(AI);
18564   }
18565 
18566   llvm_unreachable("unreachable atomicrmw operation");
18567 }
18568 
18569 TargetLowering::AtomicExpansionKind
shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst * AI) const18570 PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const {
18571   unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits();
18572   if (shouldInlineQuadwordAtomics() && Size == 128)
18573     return AtomicExpansionKind::MaskedIntrinsic;
18574   return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI);
18575 }
18576 
18577 static Intrinsic::ID
getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp)18578 getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) {
18579   switch (BinOp) {
18580   default:
18581     llvm_unreachable("Unexpected AtomicRMW BinOp");
18582   case AtomicRMWInst::Xchg:
18583     return Intrinsic::ppc_atomicrmw_xchg_i128;
18584   case AtomicRMWInst::Add:
18585     return Intrinsic::ppc_atomicrmw_add_i128;
18586   case AtomicRMWInst::Sub:
18587     return Intrinsic::ppc_atomicrmw_sub_i128;
18588   case AtomicRMWInst::And:
18589     return Intrinsic::ppc_atomicrmw_and_i128;
18590   case AtomicRMWInst::Or:
18591     return Intrinsic::ppc_atomicrmw_or_i128;
18592   case AtomicRMWInst::Xor:
18593     return Intrinsic::ppc_atomicrmw_xor_i128;
18594   case AtomicRMWInst::Nand:
18595     return Intrinsic::ppc_atomicrmw_nand_i128;
18596   }
18597 }
18598 
emitMaskedAtomicRMWIntrinsic(IRBuilderBase & Builder,AtomicRMWInst * AI,Value * AlignedAddr,Value * Incr,Value * Mask,Value * ShiftAmt,AtomicOrdering Ord) const18599 Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic(
18600     IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr,
18601     Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const {
18602   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18603   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18604   Type *ValTy = Incr->getType();
18605   assert(ValTy->getPrimitiveSizeInBits() == 128);
18606   Function *RMW = Intrinsic::getDeclaration(
18607       M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation()));
18608   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18609   Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo");
18610   Value *IncrHi =
18611       Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi");
18612   Value *LoHi = Builder.CreateCall(RMW, {AlignedAddr, IncrLo, IncrHi});
18613   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18614   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18615   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18616   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18617   return Builder.CreateOr(
18618       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18619 }
18620 
emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase & Builder,AtomicCmpXchgInst * CI,Value * AlignedAddr,Value * CmpVal,Value * NewVal,Value * Mask,AtomicOrdering Ord) const18621 Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic(
18622     IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
18623     Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
18624   assert(shouldInlineQuadwordAtomics() && "Only support quadword now");
18625   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
18626   Type *ValTy = CmpVal->getType();
18627   assert(ValTy->getPrimitiveSizeInBits() == 128);
18628   Function *IntCmpXchg =
18629       Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128);
18630   Type *Int64Ty = Type::getInt64Ty(M->getContext());
18631   Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo");
18632   Value *CmpHi =
18633       Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi");
18634   Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo");
18635   Value *NewHi =
18636       Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi");
18637   emitLeadingFence(Builder, CI, Ord);
18638   Value *LoHi =
18639       Builder.CreateCall(IntCmpXchg, {AlignedAddr, CmpLo, CmpHi, NewLo, NewHi});
18640   emitTrailingFence(Builder, CI, Ord);
18641   Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
18642   Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
18643   Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
18644   Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
18645   return Builder.CreateOr(
18646       Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64");
18647 }
18648