1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file.  This information is used for a variety of
11 // purposed, especially register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/RegisterBank.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/MC/LaneBitmask.h"
26 #include "llvm/MC/MCRegisterInfo.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 
33 namespace llvm {
34 
35 class BitVector;
36 class DIExpression;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
43 class LiveInterval;
44 
45 class TargetRegisterClass {
46 public:
47   using iterator = const MCPhysReg *;
48   using const_iterator = const MCPhysReg *;
49   using sc_iterator = const TargetRegisterClass* const *;
50 
51   // Instance variables filled by tablegen, do not use!
52   const MCRegisterClass *MC;
53   const uint32_t *SubClassMask;
54   const uint16_t *SuperRegIndices;
55   const LaneBitmask LaneMask;
56   /// Classes with a higher priority value are assigned first by register
57   /// allocators using a greedy heuristic. The value is in the range [0,31].
58   const uint8_t AllocationPriority;
59 
60   // Change allocation priority heuristic used by greedy.
61   const bool GlobalPriority;
62 
63   /// Configurable target specific flags.
64   const uint8_t TSFlags;
65   /// Whether the class supports two (or more) disjunct subregister indices.
66   const bool HasDisjunctSubRegs;
67   /// Whether a combination of subregisters can cover every register in the
68   /// class. See also the CoveredBySubRegs description in Target.td.
69   const bool CoveredBySubRegs;
70   const sc_iterator SuperClasses;
71   ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
72 
73   /// Return the register class ID number.
getID()74   unsigned getID() const { return MC->getID(); }
75 
76   /// begin/end - Return all of the registers in this class.
77   ///
begin()78   iterator       begin() const { return MC->begin(); }
end()79   iterator         end() const { return MC->end(); }
80 
81   /// Return the number of registers in this class.
getNumRegs()82   unsigned getNumRegs() const { return MC->getNumRegs(); }
83 
84   iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
getRegisters()85   getRegisters() const {
86     return make_range(MC->begin(), MC->end());
87   }
88 
89   /// Return the specified register in the class.
getRegister(unsigned i)90   MCRegister getRegister(unsigned i) const {
91     return MC->getRegister(i);
92   }
93 
94   /// Return true if the specified register is included in this register class.
95   /// This does not include virtual registers.
contains(Register Reg)96   bool contains(Register Reg) const {
97     /// FIXME: Historically this function has returned false when given vregs
98     ///        but it should probably only receive physical registers
99     if (!Reg.isPhysical())
100       return false;
101     return MC->contains(Reg.asMCReg());
102   }
103 
104   /// Return true if both registers are in this class.
contains(Register Reg1,Register Reg2)105   bool contains(Register Reg1, Register Reg2) const {
106     /// FIXME: Historically this function has returned false when given a vregs
107     ///        but it should probably only receive physical registers
108     if (!Reg1.isPhysical() || !Reg2.isPhysical())
109       return false;
110     return MC->contains(Reg1.asMCReg(), Reg2.asMCReg());
111   }
112 
113   /// Return the cost of copying a value between two registers in this class.
114   /// A negative number means the register class is very expensive
115   /// to copy e.g. status flag register classes.
getCopyCost()116   int getCopyCost() const { return MC->getCopyCost(); }
117 
118   /// Return true if this register class may be used to create virtual
119   /// registers.
isAllocatable()120   bool isAllocatable() const { return MC->isAllocatable(); }
121 
122   /// Return true if the specified TargetRegisterClass
123   /// is a proper sub-class of this TargetRegisterClass.
hasSubClass(const TargetRegisterClass * RC)124   bool hasSubClass(const TargetRegisterClass *RC) const {
125     return RC != this && hasSubClassEq(RC);
126   }
127 
128   /// Returns true if RC is a sub-class of or equal to this class.
hasSubClassEq(const TargetRegisterClass * RC)129   bool hasSubClassEq(const TargetRegisterClass *RC) const {
130     unsigned ID = RC->getID();
131     return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
132   }
133 
134   /// Return true if the specified TargetRegisterClass is a
135   /// proper super-class of this TargetRegisterClass.
hasSuperClass(const TargetRegisterClass * RC)136   bool hasSuperClass(const TargetRegisterClass *RC) const {
137     return RC->hasSubClass(this);
138   }
139 
140   /// Returns true if RC is a super-class of or equal to this class.
hasSuperClassEq(const TargetRegisterClass * RC)141   bool hasSuperClassEq(const TargetRegisterClass *RC) const {
142     return RC->hasSubClassEq(this);
143   }
144 
145   /// Returns a bit vector of subclasses, including this one.
146   /// The vector is indexed by class IDs.
147   ///
148   /// To use it, consider the returned array as a chunk of memory that
149   /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
150   /// contains a bitset of the ID of the subclasses in big-endian style.
151 
152   /// I.e., the representation of the memory from left to right at the
153   /// bit level looks like:
154   /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
155   ///                     [ XXX NumRegClasses NumRegClasses - 1 ... ]
156   /// Where the number represents the class ID and XXX bits that
157   /// should be ignored.
158   ///
159   /// See the implementation of hasSubClassEq for an example of how it
160   /// can be used.
getSubClassMask()161   const uint32_t *getSubClassMask() const {
162     return SubClassMask;
163   }
164 
165   /// Returns a 0-terminated list of sub-register indices that project some
166   /// super-register class into this register class. The list has an entry for
167   /// each Idx such that:
168   ///
169   ///   There exists SuperRC where:
170   ///     For all Reg in SuperRC:
171   ///       this->contains(Reg:Idx)
getSuperRegIndices()172   const uint16_t *getSuperRegIndices() const {
173     return SuperRegIndices;
174   }
175 
176   /// Returns a NULL-terminated list of super-classes.  The
177   /// classes are ordered by ID which is also a topological ordering from large
178   /// to small classes.  The list does NOT include the current class.
getSuperClasses()179   sc_iterator getSuperClasses() const {
180     return SuperClasses;
181   }
182 
183   /// Return true if this TargetRegisterClass is a subset
184   /// class of at least one other TargetRegisterClass.
isASubClass()185   bool isASubClass() const {
186     return SuperClasses[0] != nullptr;
187   }
188 
189   /// Returns the preferred order for allocating registers from this register
190   /// class in MF. The raw order comes directly from the .td file and may
191   /// include reserved registers that are not allocatable.
192   /// Register allocators should also make sure to allocate
193   /// callee-saved registers only after all the volatiles are used. The
194   /// RegisterClassInfo class provides filtered allocation orders with
195   /// callee-saved registers moved to the end.
196   ///
197   /// The MachineFunction argument can be used to tune the allocatable
198   /// registers based on the characteristics of the function, subtarget, or
199   /// other criteria.
200   ///
201   /// By default, this method returns all registers in the class.
getRawAllocationOrder(const MachineFunction & MF)202   ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
203     return OrderFunc ? OrderFunc(MF) : ArrayRef(begin(), getNumRegs());
204   }
205 
206   /// Returns the combination of all lane masks of register in this class.
207   /// The lane masks of the registers are the combination of all lane masks
208   /// of their subregisters. Returns 1 if there are no subregisters.
getLaneMask()209   LaneBitmask getLaneMask() const {
210     return LaneMask;
211   }
212 };
213 
214 /// Extra information, not in MCRegisterDesc, about registers.
215 /// These are used by codegen, not by MC.
216 struct TargetRegisterInfoDesc {
217   const uint8_t *CostPerUse; // Extra cost of instructions using register.
218   unsigned NumCosts; // Number of cost values associated with each register.
219   const bool
220       *InAllocatableClass; // Register belongs to an allocatable regclass.
221 };
222 
223 /// Each TargetRegisterClass has a per register weight, and weight
224 /// limit which must be less than the limits of its pressure sets.
225 struct RegClassWeight {
226   unsigned RegWeight;
227   unsigned WeightLimit;
228 };
229 
230 /// TargetRegisterInfo base class - We assume that the target defines a static
231 /// array of TargetRegisterDesc objects that represent all of the machine
232 /// registers that the target has.  As such, we simply have to track a pointer
233 /// to this array so that we can turn register number into a register
234 /// descriptor.
235 ///
236 class TargetRegisterInfo : public MCRegisterInfo {
237 public:
238   using regclass_iterator = const TargetRegisterClass * const *;
239   using vt_iterator = const MVT::SimpleValueType *;
240   struct RegClassInfo {
241     unsigned RegSize, SpillSize, SpillAlignment;
242     unsigned VTListOffset;
243   };
244 private:
245   const TargetRegisterInfoDesc *InfoDesc;     // Extra desc array for codegen
246   const char *const *SubRegIndexNames;        // Names of subreg indexes.
247   // Pointer to array of lane masks, one per sub-reg index.
248   const LaneBitmask *SubRegIndexLaneMasks;
249 
250   regclass_iterator RegClassBegin, RegClassEnd;   // List of regclasses
251   LaneBitmask CoveringLanes;
252   const RegClassInfo *const RCInfos;
253   const MVT::SimpleValueType *const RCVTLists;
254   unsigned HwMode;
255 
256 protected:
257   TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
258                      regclass_iterator RCB,
259                      regclass_iterator RCE,
260                      const char *const *SRINames,
261                      const LaneBitmask *SRILaneMasks,
262                      LaneBitmask CoveringLanes,
263                      const RegClassInfo *const RCIs,
264                      const MVT::SimpleValueType *const RCVTLists,
265                      unsigned Mode = 0);
266   virtual ~TargetRegisterInfo();
267 
268 public:
269   /// Return the number of registers for the function. (may overestimate)
getNumSupportedRegs(const MachineFunction &)270   virtual unsigned getNumSupportedRegs(const MachineFunction &) const {
271     return getNumRegs();
272   }
273 
274   // Register numbers can represent physical registers, virtual registers, and
275   // sometimes stack slots. The unsigned values are divided into these ranges:
276   //
277   //   0           Not a register, can be used as a sentinel.
278   //   [1;2^30)    Physical registers assigned by TableGen.
279   //   [2^30;2^31) Stack slots. (Rarely used.)
280   //   [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
281   //
282   // Further sentinels can be allocated from the small negative integers.
283   // DenseMapInfo<unsigned> uses -1u and -2u.
284 
285   /// Return the size in bits of a register from class RC.
getRegSizeInBits(const TargetRegisterClass & RC)286   TypeSize getRegSizeInBits(const TargetRegisterClass &RC) const {
287     return TypeSize::getFixed(getRegClassInfo(RC).RegSize);
288   }
289 
290   /// Return the size in bytes of the stack slot allocated to hold a spilled
291   /// copy of a register from class RC.
getSpillSize(const TargetRegisterClass & RC)292   unsigned getSpillSize(const TargetRegisterClass &RC) const {
293     return getRegClassInfo(RC).SpillSize / 8;
294   }
295 
296   /// Return the minimum required alignment in bytes for a spill slot for
297   /// a register of this class.
getSpillAlign(const TargetRegisterClass & RC)298   Align getSpillAlign(const TargetRegisterClass &RC) const {
299     return Align(getRegClassInfo(RC).SpillAlignment / 8);
300   }
301 
302   /// Return true if the given TargetRegisterClass has the ValueType T.
isTypeLegalForClass(const TargetRegisterClass & RC,MVT T)303   bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
304     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
305       if (MVT(*I) == T)
306         return true;
307     return false;
308   }
309 
310   /// Return true if the given TargetRegisterClass is compatible with LLT T.
isTypeLegalForClass(const TargetRegisterClass & RC,LLT T)311   bool isTypeLegalForClass(const TargetRegisterClass &RC, LLT T) const {
312     for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I) {
313       MVT VT(*I);
314       if (VT == MVT::Untyped)
315         return true;
316 
317       if (LLT(VT) == T)
318         return true;
319     }
320     return false;
321   }
322 
323   /// Loop over all of the value types that can be represented by values
324   /// in the given register class.
legalclasstypes_begin(const TargetRegisterClass & RC)325   vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
326     return &RCVTLists[getRegClassInfo(RC).VTListOffset];
327   }
328 
legalclasstypes_end(const TargetRegisterClass & RC)329   vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
330     vt_iterator I = legalclasstypes_begin(RC);
331     while (*I != MVT::Other)
332       ++I;
333     return I;
334   }
335 
336   /// Returns the Register Class of a physical register of the given type,
337   /// picking the most sub register class of the right type that contains this
338   /// physreg.
339   const TargetRegisterClass *getMinimalPhysRegClass(MCRegister Reg,
340                                                     MVT VT = MVT::Other) const;
341 
342   /// Returns the Register Class of a physical register of the given type,
343   /// picking the most sub register class of the right type that contains this
344   /// physreg. If there is no register class compatible with the given type,
345   /// returns nullptr.
346   const TargetRegisterClass *getMinimalPhysRegClassLLT(MCRegister Reg,
347                                                        LLT Ty = LLT()) const;
348 
349   /// Return the maximal subclass of the given register class that is
350   /// allocatable or NULL.
351   const TargetRegisterClass *
352     getAllocatableClass(const TargetRegisterClass *RC) const;
353 
354   /// Returns a bitset indexed by register number indicating if a register is
355   /// allocatable or not. If a register class is specified, returns the subset
356   /// for the class.
357   BitVector getAllocatableSet(const MachineFunction &MF,
358                               const TargetRegisterClass *RC = nullptr) const;
359 
360   /// Get a list of cost values for all registers that correspond to the index
361   /// returned by RegisterCostTableIndex.
getRegisterCosts(const MachineFunction & MF)362   ArrayRef<uint8_t> getRegisterCosts(const MachineFunction &MF) const {
363     unsigned Idx = getRegisterCostTableIndex(MF);
364     unsigned NumRegs = getNumRegs();
365     assert(Idx < InfoDesc->NumCosts && "CostPerUse index out of bounds");
366 
367     return ArrayRef(&InfoDesc->CostPerUse[Idx * NumRegs], NumRegs);
368   }
369 
370   /// Return true if the register is in the allocation of any register class.
isInAllocatableClass(MCRegister RegNo)371   bool isInAllocatableClass(MCRegister RegNo) const {
372     return InfoDesc->InAllocatableClass[RegNo];
373   }
374 
375   /// Return the human-readable symbolic target-specific
376   /// name for the specified SubRegIndex.
getSubRegIndexName(unsigned SubIdx)377   const char *getSubRegIndexName(unsigned SubIdx) const {
378     assert(SubIdx && SubIdx < getNumSubRegIndices() &&
379            "This is not a subregister index");
380     return SubRegIndexNames[SubIdx-1];
381   }
382 
383   /// Return a bitmask representing the parts of a register that are covered by
384   /// SubIdx \see LaneBitmask.
385   ///
386   /// SubIdx == 0 is allowed, it has the lane mask ~0u.
getSubRegIndexLaneMask(unsigned SubIdx)387   LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
388     assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
389     return SubRegIndexLaneMasks[SubIdx];
390   }
391 
392   /// Try to find one or more subregister indexes to cover \p LaneMask.
393   ///
394   /// If this is possible, returns true and appends the best matching set of
395   /// indexes to \p Indexes. If this is not possible, returns false.
396   bool getCoveringSubRegIndexes(const MachineRegisterInfo &MRI,
397                                 const TargetRegisterClass *RC,
398                                 LaneBitmask LaneMask,
399                                 SmallVectorImpl<unsigned> &Indexes) const;
400 
401   /// The lane masks returned by getSubRegIndexLaneMask() above can only be
402   /// used to determine if sub-registers overlap - they can't be used to
403   /// determine if a set of sub-registers completely cover another
404   /// sub-register.
405   ///
406   /// The X86 general purpose registers have two lanes corresponding to the
407   /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
408   /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
409   /// sub_32bit sub-register.
410   ///
411   /// On the other hand, the ARM NEON lanes fully cover their registers: The
412   /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
413   /// This is related to the CoveredBySubRegs property on register definitions.
414   ///
415   /// This function returns a bit mask of lanes that completely cover their
416   /// sub-registers. More precisely, given:
417   ///
418   ///   Covering = getCoveringLanes();
419   ///   MaskA = getSubRegIndexLaneMask(SubA);
420   ///   MaskB = getSubRegIndexLaneMask(SubB);
421   ///
422   /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
423   /// SubB.
getCoveringLanes()424   LaneBitmask getCoveringLanes() const { return CoveringLanes; }
425 
426   /// Returns true if the two registers are equal or alias each other.
427   /// The registers may be virtual registers.
regsOverlap(Register RegA,Register RegB)428   bool regsOverlap(Register RegA, Register RegB) const {
429     if (RegA == RegB)
430       return true;
431     if (RegA.isPhysical() && RegB.isPhysical())
432       return MCRegisterInfo::regsOverlap(RegA.asMCReg(), RegB.asMCReg());
433     return false;
434   }
435 
436   /// Returns true if Reg contains RegUnit.
hasRegUnit(MCRegister Reg,Register RegUnit)437   bool hasRegUnit(MCRegister Reg, Register RegUnit) const {
438     for (MCRegUnit Unit : regunits(Reg))
439       if (Register(Unit) == RegUnit)
440         return true;
441     return false;
442   }
443 
444   /// Returns the original SrcReg unless it is the target of a copy-like
445   /// operation, in which case we chain backwards through all such operations
446   /// to the ultimate source register.  If a physical register is encountered,
447   /// we stop the search.
448   virtual Register lookThruCopyLike(Register SrcReg,
449                                     const MachineRegisterInfo *MRI) const;
450 
451   /// Find the original SrcReg unless it is the target of a copy-like operation,
452   /// in which case we chain backwards through all such operations to the
453   /// ultimate source register. If a physical register is encountered, we stop
454   /// the search.
455   /// Return the original SrcReg if all the definitions in the chain only have
456   /// one user and not a physical register.
457   virtual Register
458   lookThruSingleUseCopyChain(Register SrcReg,
459                              const MachineRegisterInfo *MRI) const;
460 
461   /// Return a null-terminated list of all of the callee-saved registers on
462   /// this target. The register should be in the order of desired callee-save
463   /// stack frame offset. The first register is closest to the incoming stack
464   /// pointer if stack grows down, and vice versa.
465   /// Notice: This function does not take into account disabled CSRs.
466   ///         In most cases you will want to use instead the function
467   ///         getCalleeSavedRegs that is implemented in MachineRegisterInfo.
468   virtual const MCPhysReg*
469   getCalleeSavedRegs(const MachineFunction *MF) const = 0;
470 
471   /// Return a mask of call-preserved registers for the given calling convention
472   /// on the current function. The mask should include all call-preserved
473   /// aliases. This is used by the register allocator to determine which
474   /// registers can be live across a call.
475   ///
476   /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
477   /// A set bit indicates that all bits of the corresponding register are
478   /// preserved across the function call.  The bit mask is expected to be
479   /// sub-register complete, i.e. if A is preserved, so are all its
480   /// sub-registers.
481   ///
482   /// Bits are numbered from the LSB, so the bit for physical register Reg can
483   /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
484   ///
485   /// A NULL pointer means that no register mask will be used, and call
486   /// instructions should use implicit-def operands to indicate call clobbered
487   /// registers.
488   ///
getCallPreservedMask(const MachineFunction & MF,CallingConv::ID)489   virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
490                                                CallingConv::ID) const {
491     // The default mask clobbers everything.  All targets should override.
492     return nullptr;
493   }
494 
495   /// Return a register mask for the registers preserved by the unwinder,
496   /// or nullptr if no custom mask is needed.
497   virtual const uint32_t *
getCustomEHPadPreservedMask(const MachineFunction & MF)498   getCustomEHPadPreservedMask(const MachineFunction &MF) const {
499     return nullptr;
500   }
501 
502   /// Return a register mask that clobbers everything.
getNoPreservedMask()503   virtual const uint32_t *getNoPreservedMask() const {
504     llvm_unreachable("target does not provide no preserved mask");
505   }
506 
507   /// Return a list of all of the registers which are clobbered "inside" a call
508   /// to the given function. For example, these might be needed for PLT
509   /// sequences of long-branch veneers.
510   virtual ArrayRef<MCPhysReg>
getIntraCallClobberedRegs(const MachineFunction * MF)511   getIntraCallClobberedRegs(const MachineFunction *MF) const {
512     return {};
513   }
514 
515   /// Return true if all bits that are set in mask \p mask0 are also set in
516   /// \p mask1.
517   bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
518 
519   /// Return all the call-preserved register masks defined for this target.
520   virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
521   virtual ArrayRef<const char *> getRegMaskNames() const = 0;
522 
523   /// Returns a bitset indexed by physical register number indicating if a
524   /// register is a special register that has particular uses and should be
525   /// considered unavailable at all times, e.g. stack pointer, return address.
526   /// A reserved register:
527   /// - is not allocatable
528   /// - is considered always live
529   /// - is ignored by liveness tracking
530   /// It is often necessary to reserve the super registers of a reserved
531   /// register as well, to avoid them getting allocated indirectly. You may use
532   /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
533   virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
534 
535   /// Returns either a string explaining why the given register is reserved for
536   /// this function, or an empty optional if no explanation has been written.
537   /// The absence of an explanation does not mean that the register is not
538   /// reserved (meaning, you should check that PhysReg is in fact reserved
539   /// before calling this).
540   virtual std::optional<std::string>
explainReservedReg(const MachineFunction & MF,MCRegister PhysReg)541   explainReservedReg(const MachineFunction &MF, MCRegister PhysReg) const {
542     return {};
543   }
544 
545   /// Returns false if we can't guarantee that Physreg, specified as an IR asm
546   /// clobber constraint, will be preserved across the statement.
isAsmClobberable(const MachineFunction & MF,MCRegister PhysReg)547   virtual bool isAsmClobberable(const MachineFunction &MF,
548                                 MCRegister PhysReg) const {
549     return true;
550   }
551 
552   /// Returns true if PhysReg cannot be written to in inline asm statements.
isInlineAsmReadOnlyReg(const MachineFunction & MF,unsigned PhysReg)553   virtual bool isInlineAsmReadOnlyReg(const MachineFunction &MF,
554                                       unsigned PhysReg) const {
555     return false;
556   }
557 
558   /// Returns true if PhysReg is unallocatable and constant throughout the
559   /// function.  Used by MachineRegisterInfo::isConstantPhysReg().
isConstantPhysReg(MCRegister PhysReg)560   virtual bool isConstantPhysReg(MCRegister PhysReg) const { return false; }
561 
562   /// Returns true if the register class is considered divergent.
isDivergentRegClass(const TargetRegisterClass * RC)563   virtual bool isDivergentRegClass(const TargetRegisterClass *RC) const {
564     return false;
565   }
566 
567   /// Returns true if the register is considered uniform.
isUniformReg(const MachineRegisterInfo & MRI,const RegisterBankInfo & RBI,Register Reg)568   virtual bool isUniformReg(const MachineRegisterInfo &MRI,
569                             const RegisterBankInfo &RBI, Register Reg) const {
570     return false;
571   }
572 
573   /// Physical registers that may be modified within a function but are
574   /// guaranteed to be restored before any uses. This is useful for targets that
575   /// have call sequences where a GOT register may be updated by the caller
576   /// prior to a call and is guaranteed to be restored (also by the caller)
577   /// after the call.
isCallerPreservedPhysReg(MCRegister PhysReg,const MachineFunction & MF)578   virtual bool isCallerPreservedPhysReg(MCRegister PhysReg,
579                                         const MachineFunction &MF) const {
580     return false;
581   }
582 
583   /// This is a wrapper around getCallPreservedMask().
584   /// Return true if the register is preserved after the call.
585   virtual bool isCalleeSavedPhysReg(MCRegister PhysReg,
586                                     const MachineFunction &MF) const;
587 
588   /// Returns true if PhysReg can be used as an argument to a function.
isArgumentRegister(const MachineFunction & MF,MCRegister PhysReg)589   virtual bool isArgumentRegister(const MachineFunction &MF,
590                                   MCRegister PhysReg) const {
591     return false;
592   }
593 
594   /// Returns true if PhysReg is a fixed register.
isFixedRegister(const MachineFunction & MF,MCRegister PhysReg)595   virtual bool isFixedRegister(const MachineFunction &MF,
596                                MCRegister PhysReg) const {
597     return false;
598   }
599 
600   /// Returns true if PhysReg is a general purpose register.
isGeneralPurposeRegister(const MachineFunction & MF,MCRegister PhysReg)601   virtual bool isGeneralPurposeRegister(const MachineFunction &MF,
602                                         MCRegister PhysReg) const {
603     return false;
604   }
605 
606   /// Prior to adding the live-out mask to a stackmap or patchpoint
607   /// instruction, provide the target the opportunity to adjust it (mainly to
608   /// remove pseudo-registers that should be ignored).
adjustStackMapLiveOutMask(uint32_t * Mask)609   virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
610 
611   /// Return a super-register of the specified register
612   /// Reg so its sub-register of index SubIdx is Reg.
getMatchingSuperReg(MCRegister Reg,unsigned SubIdx,const TargetRegisterClass * RC)613   MCRegister getMatchingSuperReg(MCRegister Reg, unsigned SubIdx,
614                                  const TargetRegisterClass *RC) const {
615     return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
616   }
617 
618   /// Return a subclass of the specified register
619   /// class A so that each register in it has a sub-register of the
620   /// specified sub-register index which is in the specified register class B.
621   ///
622   /// TableGen will synthesize missing A sub-classes.
623   virtual const TargetRegisterClass *
624   getMatchingSuperRegClass(const TargetRegisterClass *A,
625                            const TargetRegisterClass *B, unsigned Idx) const;
626 
627   // For a copy-like instruction that defines a register of class DefRC with
628   // subreg index DefSubReg, reading from another source with class SrcRC and
629   // subregister SrcSubReg return true if this is a preferable copy
630   // instruction or an earlier use should be used.
631   virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
632                                     unsigned DefSubReg,
633                                     const TargetRegisterClass *SrcRC,
634                                     unsigned SrcSubReg) const;
635 
636   /// Returns the largest legal sub-class of RC that
637   /// supports the sub-register index Idx.
638   /// If no such sub-class exists, return NULL.
639   /// If all registers in RC already have an Idx sub-register, return RC.
640   ///
641   /// TableGen generates a version of this function that is good enough in most
642   /// cases.  Targets can override if they have constraints that TableGen
643   /// doesn't understand.  For example, the x86 sub_8bit sub-register index is
644   /// supported by the full GR32 register class in 64-bit mode, but only by the
645   /// GR32_ABCD regiister class in 32-bit mode.
646   ///
647   /// TableGen will synthesize missing RC sub-classes.
648   virtual const TargetRegisterClass *
getSubClassWithSubReg(const TargetRegisterClass * RC,unsigned Idx)649   getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
650     assert(Idx == 0 && "Target has no sub-registers");
651     return RC;
652   }
653 
654   /// Return a register class that can be used for a subregister copy from/into
655   /// \p SuperRC at \p SubRegIdx.
656   virtual const TargetRegisterClass *
getSubRegisterClass(const TargetRegisterClass * SuperRC,unsigned SubRegIdx)657   getSubRegisterClass(const TargetRegisterClass *SuperRC,
658                       unsigned SubRegIdx) const {
659     return nullptr;
660   }
661 
662   /// Return the subregister index you get from composing
663   /// two subregister indices.
664   ///
665   /// The special null sub-register index composes as the identity.
666   ///
667   /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
668   /// returns c. Note that composeSubRegIndices does not tell you about illegal
669   /// compositions. If R does not have a subreg a, or R:a does not have a subreg
670   /// b, composeSubRegIndices doesn't tell you.
671   ///
672   /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
673   /// ssub_0:S0 - ssub_3:S3 subregs.
674   /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
composeSubRegIndices(unsigned a,unsigned b)675   unsigned composeSubRegIndices(unsigned a, unsigned b) const {
676     if (!a) return b;
677     if (!b) return a;
678     return composeSubRegIndicesImpl(a, b);
679   }
680 
681   /// Transforms a LaneMask computed for one subregister to the lanemask that
682   /// would have been computed when composing the subsubregisters with IdxA
683   /// first. @sa composeSubRegIndices()
composeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask Mask)684   LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
685                                          LaneBitmask Mask) const {
686     if (!IdxA)
687       return Mask;
688     return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
689   }
690 
691   /// Transform a lanemask given for a virtual register to the corresponding
692   /// lanemask before using subregister with index \p IdxA.
693   /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
694   /// valie lane mask (no invalid bits set) the following holds:
695   /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
696   /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
697   /// => X1 == Mask
reverseComposeSubRegIndexLaneMask(unsigned IdxA,LaneBitmask LaneMask)698   LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
699                                                 LaneBitmask LaneMask) const {
700     if (!IdxA)
701       return LaneMask;
702     return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
703   }
704 
705   /// Debugging helper: dump register in human readable form to dbgs() stream.
706   static void dumpReg(Register Reg, unsigned SubRegIndex = 0,
707                       const TargetRegisterInfo *TRI = nullptr);
708 
709   /// Return target defined base register class for a physical register.
710   /// This is the register class with the lowest BaseClassOrder containing the
711   /// register.
712   /// Will be nullptr if the register is not in any base register class.
getPhysRegBaseClass(MCRegister Reg)713   virtual const TargetRegisterClass *getPhysRegBaseClass(MCRegister Reg) const {
714     return nullptr;
715   }
716 
717 protected:
718   /// Overridden by TableGen in targets that have sub-registers.
composeSubRegIndicesImpl(unsigned,unsigned)719   virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
720     llvm_unreachable("Target has no sub-registers");
721   }
722 
723   /// Overridden by TableGen in targets that have sub-registers.
724   virtual LaneBitmask
composeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)725   composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
726     llvm_unreachable("Target has no sub-registers");
727   }
728 
reverseComposeSubRegIndexLaneMaskImpl(unsigned,LaneBitmask)729   virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
730                                                             LaneBitmask) const {
731     llvm_unreachable("Target has no sub-registers");
732   }
733 
734   /// Return the register cost table index. This implementation is sufficient
735   /// for most architectures and can be overriden by targets in case there are
736   /// multiple cost values associated with each register.
getRegisterCostTableIndex(const MachineFunction & MF)737   virtual unsigned getRegisterCostTableIndex(const MachineFunction &MF) const {
738     return 0;
739   }
740 
741 public:
742   /// Find a common super-register class if it exists.
743   ///
744   /// Find a register class, SuperRC and two sub-register indices, PreA and
745   /// PreB, such that:
746   ///
747   ///   1. PreA + SubA == PreB + SubB  (using composeSubRegIndices()), and
748   ///
749   ///   2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
750   ///
751   ///   3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
752   ///
753   /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
754   /// requirements, and there is no register class with a smaller spill size
755   /// that satisfies the requirements.
756   ///
757   /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
758   ///
759   /// Either of the PreA and PreB sub-register indices may be returned as 0. In
760   /// that case, the returned register class will be a sub-class of the
761   /// corresponding argument register class.
762   ///
763   /// The function returns NULL if no register class can be found.
764   const TargetRegisterClass*
765   getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
766                          const TargetRegisterClass *RCB, unsigned SubB,
767                          unsigned &PreA, unsigned &PreB) const;
768 
769   //===--------------------------------------------------------------------===//
770   // Register Class Information
771   //
772 protected:
getRegClassInfo(const TargetRegisterClass & RC)773   const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
774     return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
775   }
776 
777 public:
778   /// Register class iterators
regclass_begin()779   regclass_iterator regclass_begin() const { return RegClassBegin; }
regclass_end()780   regclass_iterator regclass_end() const { return RegClassEnd; }
regclasses()781   iterator_range<regclass_iterator> regclasses() const {
782     return make_range(regclass_begin(), regclass_end());
783   }
784 
getNumRegClasses()785   unsigned getNumRegClasses() const {
786     return (unsigned)(regclass_end()-regclass_begin());
787   }
788 
789   /// Returns the register class associated with the enumeration value.
790   /// See class MCOperandInfo.
getRegClass(unsigned i)791   const TargetRegisterClass *getRegClass(unsigned i) const {
792     assert(i < getNumRegClasses() && "Register Class ID out of range");
793     return RegClassBegin[i];
794   }
795 
796   /// Returns the name of the register class.
getRegClassName(const TargetRegisterClass * Class)797   const char *getRegClassName(const TargetRegisterClass *Class) const {
798     return MCRegisterInfo::getRegClassName(Class->MC);
799   }
800 
801   /// Find the largest common subclass of A and B.
802   /// Return NULL if there is no common subclass.
803   const TargetRegisterClass *
804   getCommonSubClass(const TargetRegisterClass *A,
805                     const TargetRegisterClass *B) const;
806 
807   /// Returns a TargetRegisterClass used for pointer values.
808   /// If a target supports multiple different pointer register classes,
809   /// kind specifies which one is indicated.
810   virtual const TargetRegisterClass *
811   getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
812     llvm_unreachable("Target didn't implement getPointerRegClass!");
813   }
814 
815   /// Returns a legal register class to copy a register in the specified class
816   /// to or from. If it is possible to copy the register directly without using
817   /// a cross register class copy, return the specified RC. Returns NULL if it
818   /// is not possible to copy between two registers of the specified class.
819   virtual const TargetRegisterClass *
getCrossCopyRegClass(const TargetRegisterClass * RC)820   getCrossCopyRegClass(const TargetRegisterClass *RC) const {
821     return RC;
822   }
823 
824   /// Returns the largest super class of RC that is legal to use in the current
825   /// sub-target and has the same spill size.
826   /// The returned register class can be used to create virtual registers which
827   /// means that all its registers can be copied and spilled.
828   virtual const TargetRegisterClass *
getLargestLegalSuperClass(const TargetRegisterClass * RC,const MachineFunction &)829   getLargestLegalSuperClass(const TargetRegisterClass *RC,
830                             const MachineFunction &) const {
831     /// The default implementation is very conservative and doesn't allow the
832     /// register allocator to inflate register classes.
833     return RC;
834   }
835 
836   /// Return the register pressure "high water mark" for the specific register
837   /// class. The scheduler is in high register pressure mode (for the specific
838   /// register class) if it goes over the limit.
839   ///
840   /// Note: this is the old register pressure model that relies on a manually
841   /// specified representative register class per value type.
getRegPressureLimit(const TargetRegisterClass * RC,MachineFunction & MF)842   virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
843                                        MachineFunction &MF) const {
844     return 0;
845   }
846 
847   /// Return a heuristic for the machine scheduler to compare the profitability
848   /// of increasing one register pressure set versus another.  The scheduler
849   /// will prefer increasing the register pressure of the set which returns
850   /// the largest value for this function.
getRegPressureSetScore(const MachineFunction & MF,unsigned PSetID)851   virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
852                                           unsigned PSetID) const {
853     return PSetID;
854   }
855 
856   /// Get the weight in units of pressure for this register class.
857   virtual const RegClassWeight &getRegClassWeight(
858     const TargetRegisterClass *RC) const = 0;
859 
860   /// Returns size in bits of a phys/virtual/generic register.
861   TypeSize getRegSizeInBits(Register Reg, const MachineRegisterInfo &MRI) const;
862 
863   /// Get the weight in units of pressure for this register unit.
864   virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
865 
866   /// Get the number of dimensions of register pressure.
867   virtual unsigned getNumRegPressureSets() const = 0;
868 
869   /// Get the name of this register unit pressure set.
870   virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
871 
872   /// Get the register unit pressure limit for this dimension.
873   /// This limit must be adjusted dynamically for reserved registers.
874   virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
875                                           unsigned Idx) const = 0;
876 
877   /// Get the dimensions of register pressure impacted by this register class.
878   /// Returns a -1 terminated array of pressure set IDs.
879   virtual const int *getRegClassPressureSets(
880     const TargetRegisterClass *RC) const = 0;
881 
882   /// Get the dimensions of register pressure impacted by this register unit.
883   /// Returns a -1 terminated array of pressure set IDs.
884   virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
885 
886   /// Get a list of 'hint' registers that the register allocator should try
887   /// first when allocating a physical register for the virtual register
888   /// VirtReg. These registers are effectively moved to the front of the
889   /// allocation order. If true is returned, regalloc will try to only use
890   /// hints to the greatest extent possible even if it means spilling.
891   ///
892   /// The Order argument is the allocation order for VirtReg's register class
893   /// as returned from RegisterClassInfo::getOrder(). The hint registers must
894   /// come from Order, and they must not be reserved.
895   ///
896   /// The default implementation of this function will only add target
897   /// independent register allocation hints. Targets that override this
898   /// function should typically call this default implementation as well and
899   /// expect to see generic copy hints added.
900   virtual bool
901   getRegAllocationHints(Register VirtReg, ArrayRef<MCPhysReg> Order,
902                         SmallVectorImpl<MCPhysReg> &Hints,
903                         const MachineFunction &MF,
904                         const VirtRegMap *VRM = nullptr,
905                         const LiveRegMatrix *Matrix = nullptr) const;
906 
907   /// A callback to allow target a chance to update register allocation hints
908   /// when a register is "changed" (e.g. coalesced) to another register.
909   /// e.g. On ARM, some virtual registers should target register pairs,
910   /// if one of pair is coalesced to another register, the allocation hint of
911   /// the other half of the pair should be changed to point to the new register.
updateRegAllocHint(Register Reg,Register NewReg,MachineFunction & MF)912   virtual void updateRegAllocHint(Register Reg, Register NewReg,
913                                   MachineFunction &MF) const {
914     // Do nothing.
915   }
916 
917   /// Allow the target to reverse allocation order of local live ranges. This
918   /// will generally allocate shorter local live ranges first. For targets with
919   /// many registers, this could reduce regalloc compile time by a large
920   /// factor. It is disabled by default for three reasons:
921   /// (1) Top-down allocation is simpler and easier to debug for targets that
922   /// don't benefit from reversing the order.
923   /// (2) Bottom-up allocation could result in poor evicition decisions on some
924   /// targets affecting the performance of compiled code.
925   /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
reverseLocalAssignment()926   virtual bool reverseLocalAssignment() const { return false; }
927 
928   /// Allow the target to override the cost of using a callee-saved register for
929   /// the first time. Default value of 0 means we will use a callee-saved
930   /// register if it is available.
getCSRFirstUseCost()931   virtual unsigned getCSRFirstUseCost() const { return 0; }
932 
933   /// Returns true if the target requires (and can make use of) the register
934   /// scavenger.
requiresRegisterScavenging(const MachineFunction & MF)935   virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
936     return false;
937   }
938 
939   /// Returns true if the target wants to use frame pointer based accesses to
940   /// spill to the scavenger emergency spill slot.
useFPForScavengingIndex(const MachineFunction & MF)941   virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
942     return true;
943   }
944 
945   /// Returns true if the target requires post PEI scavenging of registers for
946   /// materializing frame index constants.
requiresFrameIndexScavenging(const MachineFunction & MF)947   virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
948     return false;
949   }
950 
951   /// Returns true if the target requires using the RegScavenger directly for
952   /// frame elimination despite using requiresFrameIndexScavenging.
requiresFrameIndexReplacementScavenging(const MachineFunction & MF)953   virtual bool requiresFrameIndexReplacementScavenging(
954       const MachineFunction &MF) const {
955     return false;
956   }
957 
958   /// Returns true if the target wants the LocalStackAllocation pass to be run
959   /// and virtual base registers used for more efficient stack access.
requiresVirtualBaseRegisters(const MachineFunction & MF)960   virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
961     return false;
962   }
963 
964   /// Return true if target has reserved a spill slot in the stack frame of
965   /// the given function for the specified register. e.g. On x86, if the frame
966   /// register is required, the first fixed stack object is reserved as its
967   /// spill slot. This tells PEI not to create a new stack frame
968   /// object for the given register. It should be called only after
969   /// determineCalleeSaves().
hasReservedSpillSlot(const MachineFunction & MF,Register Reg,int & FrameIdx)970   virtual bool hasReservedSpillSlot(const MachineFunction &MF, Register Reg,
971                                     int &FrameIdx) const {
972     return false;
973   }
974 
975   /// Returns true if the live-ins should be tracked after register allocation.
trackLivenessAfterRegAlloc(const MachineFunction & MF)976   virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
977     return true;
978   }
979 
980   /// True if the stack can be realigned for the target.
981   virtual bool canRealignStack(const MachineFunction &MF) const;
982 
983   /// True if storage within the function requires the stack pointer to be
984   /// aligned more than the normal calling convention calls for.
985   virtual bool shouldRealignStack(const MachineFunction &MF) const;
986 
987   /// True if stack realignment is required and still possible.
hasStackRealignment(const MachineFunction & MF)988   bool hasStackRealignment(const MachineFunction &MF) const {
989     return shouldRealignStack(MF) && canRealignStack(MF);
990   }
991 
992   /// Get the offset from the referenced frame index in the instruction,
993   /// if there is one.
getFrameIndexInstrOffset(const MachineInstr * MI,int Idx)994   virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
995                                            int Idx) const {
996     return 0;
997   }
998 
999   /// Returns true if the instruction's frame index reference would be better
1000   /// served by a base register other than FP or SP.
1001   /// Used by LocalStackFrameAllocation to determine which frame index
1002   /// references it should create new base registers for.
needsFrameBaseReg(MachineInstr * MI,int64_t Offset)1003   virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
1004     return false;
1005   }
1006 
1007   /// Insert defining instruction(s) for a pointer to FrameIdx before
1008   /// insertion point I. Return materialized frame pointer.
materializeFrameBaseRegister(MachineBasicBlock * MBB,int FrameIdx,int64_t Offset)1009   virtual Register materializeFrameBaseRegister(MachineBasicBlock *MBB,
1010                                                 int FrameIdx,
1011                                                 int64_t Offset) const {
1012     llvm_unreachable("materializeFrameBaseRegister does not exist on this "
1013                      "target");
1014   }
1015 
1016   /// Resolve a frame index operand of an instruction
1017   /// to reference the indicated base register plus offset instead.
resolveFrameIndex(MachineInstr & MI,Register BaseReg,int64_t Offset)1018   virtual void resolveFrameIndex(MachineInstr &MI, Register BaseReg,
1019                                  int64_t Offset) const {
1020     llvm_unreachable("resolveFrameIndex does not exist on this target");
1021   }
1022 
1023   /// Determine whether a given base register plus offset immediate is
1024   /// encodable to resolve a frame index.
isFrameOffsetLegal(const MachineInstr * MI,Register BaseReg,int64_t Offset)1025   virtual bool isFrameOffsetLegal(const MachineInstr *MI, Register BaseReg,
1026                                   int64_t Offset) const {
1027     llvm_unreachable("isFrameOffsetLegal does not exist on this target");
1028   }
1029 
1030   /// Gets the DWARF expression opcodes for \p Offset.
1031   virtual void getOffsetOpcodes(const StackOffset &Offset,
1032                                 SmallVectorImpl<uint64_t> &Ops) const;
1033 
1034   /// Prepends a DWARF expression for \p Offset to DIExpression \p Expr.
1035   DIExpression *
1036   prependOffsetExpression(const DIExpression *Expr, unsigned PrependFlags,
1037                           const StackOffset &Offset) const;
1038 
1039   /// Spill the register so it can be used by the register scavenger.
1040   /// Return true if the register was spilled, false otherwise.
1041   /// If this function does not spill the register, the scavenger
1042   /// will instead spill it to the emergency spill slot.
saveScavengerRegister(MachineBasicBlock & MBB,MachineBasicBlock::iterator I,MachineBasicBlock::iterator & UseMI,const TargetRegisterClass * RC,Register Reg)1043   virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
1044                                      MachineBasicBlock::iterator I,
1045                                      MachineBasicBlock::iterator &UseMI,
1046                                      const TargetRegisterClass *RC,
1047                                      Register Reg) const {
1048     return false;
1049   }
1050 
1051   /// Process frame indices in reverse block order. This changes the behavior of
1052   /// the RegScavenger passed to eliminateFrameIndex. If this is true targets
1053   /// should scavengeRegisterBackwards in eliminateFrameIndex. New targets
1054   /// should prefer reverse scavenging behavior.
1055   /// TODO: Remove this when all targets return true.
eliminateFrameIndicesBackwards()1056   virtual bool eliminateFrameIndicesBackwards() const { return true; }
1057 
1058   /// This method must be overriden to eliminate abstract frame indices from
1059   /// instructions which may use them. The instruction referenced by the
1060   /// iterator contains an MO_FrameIndex operand which must be eliminated by
1061   /// this method. This method may modify or replace the specified instruction,
1062   /// as long as it keeps the iterator pointing at the finished product.
1063   /// SPAdj is the SP adjustment due to call frame setup instruction.
1064   /// FIOperandNum is the FI operand number.
1065   /// Returns true if the current instruction was removed and the iterator
1066   /// is not longer valid
1067   virtual bool eliminateFrameIndex(MachineBasicBlock::iterator MI,
1068                                    int SPAdj, unsigned FIOperandNum,
1069                                    RegScavenger *RS = nullptr) const = 0;
1070 
1071   /// Return the assembly name for \p Reg.
getRegAsmName(MCRegister Reg)1072   virtual StringRef getRegAsmName(MCRegister Reg) const {
1073     // FIXME: We are assuming that the assembly name is equal to the TableGen
1074     // name converted to lower case
1075     //
1076     // The TableGen name is the name of the definition for this register in the
1077     // target's tablegen files.  For example, the TableGen name of
1078     // def EAX : Register <...>; is "EAX"
1079     return StringRef(getName(Reg));
1080   }
1081 
1082   //===--------------------------------------------------------------------===//
1083   /// Subtarget Hooks
1084 
1085   /// SrcRC and DstRC will be morphed into NewRC if this returns true.
shouldCoalesce(MachineInstr * MI,const TargetRegisterClass * SrcRC,unsigned SubReg,const TargetRegisterClass * DstRC,unsigned DstSubReg,const TargetRegisterClass * NewRC,LiveIntervals & LIS)1086   virtual bool shouldCoalesce(MachineInstr *MI,
1087                               const TargetRegisterClass *SrcRC,
1088                               unsigned SubReg,
1089                               const TargetRegisterClass *DstRC,
1090                               unsigned DstSubReg,
1091                               const TargetRegisterClass *NewRC,
1092                               LiveIntervals &LIS) const
1093   { return true; }
1094 
1095   /// Region split has a high compile time cost especially for large live range.
1096   /// This method is used to decide whether or not \p VirtReg should
1097   /// go through this expensive splitting heuristic.
1098   virtual bool shouldRegionSplitForVirtReg(const MachineFunction &MF,
1099                                            const LiveInterval &VirtReg) const;
1100 
1101   /// Last chance recoloring has a high compile time cost especially for
1102   /// targets with a lot of registers.
1103   /// This method is used to decide whether or not \p VirtReg should
1104   /// go through this expensive heuristic.
1105   /// When this target hook is hit, by returning false, there is a high
1106   /// chance that the register allocation will fail altogether (usually with
1107   /// "ran out of registers").
1108   /// That said, this error usually points to another problem in the
1109   /// optimization pipeline.
1110   virtual bool
shouldUseLastChanceRecoloringForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1111   shouldUseLastChanceRecoloringForVirtReg(const MachineFunction &MF,
1112                                           const LiveInterval &VirtReg) const {
1113     return true;
1114   }
1115 
1116   /// Deferred spilling delays the spill insertion of a virtual register
1117   /// after every other allocation. By deferring the spilling, it is
1118   /// sometimes possible to eliminate that spilling altogether because
1119   /// something else could have been eliminated, thus leaving some space
1120   /// for the virtual register.
1121   /// However, this comes with a compile time impact because it adds one
1122   /// more stage to the greedy register allocator.
1123   /// This method is used to decide whether \p VirtReg should use the deferred
1124   /// spilling stage instead of being spilled right away.
1125   virtual bool
shouldUseDeferredSpillingForVirtReg(const MachineFunction & MF,const LiveInterval & VirtReg)1126   shouldUseDeferredSpillingForVirtReg(const MachineFunction &MF,
1127                                       const LiveInterval &VirtReg) const {
1128     return false;
1129   }
1130 
1131   /// When prioritizing live ranges in register allocation, if this hook returns
1132   /// true then the AllocationPriority of the register class will be treated as
1133   /// more important than whether the range is local to a basic block or global.
1134   virtual bool
regClassPriorityTrumpsGlobalness(const MachineFunction & MF)1135   regClassPriorityTrumpsGlobalness(const MachineFunction &MF) const {
1136     return false;
1137   }
1138 
1139   //===--------------------------------------------------------------------===//
1140   /// Debug information queries.
1141 
1142   /// getFrameRegister - This method should return the register used as a base
1143   /// for values allocated in the current stack frame.
1144   virtual Register getFrameRegister(const MachineFunction &MF) const = 0;
1145 
1146   /// Mark a register and all its aliases as reserved in the given set.
1147   void markSuperRegs(BitVector &RegisterSet, MCRegister Reg) const;
1148 
1149   /// Returns true if for every register in the set all super registers are part
1150   /// of the set as well.
1151   bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
1152       ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
1153 
1154   virtual const TargetRegisterClass *
getConstrainedRegClassForOperand(const MachineOperand & MO,const MachineRegisterInfo & MRI)1155   getConstrainedRegClassForOperand(const MachineOperand &MO,
1156                                    const MachineRegisterInfo &MRI) const {
1157     return nullptr;
1158   }
1159 
1160   /// Returns the physical register number of sub-register "Index"
1161   /// for physical register RegNo. Return zero if the sub-register does not
1162   /// exist.
getSubReg(MCRegister Reg,unsigned Idx)1163   inline MCRegister getSubReg(MCRegister Reg, unsigned Idx) const {
1164     return static_cast<const MCRegisterInfo *>(this)->getSubReg(Reg, Idx);
1165   }
1166 
1167   /// Some targets have non-allocatable registers that aren't technically part
1168   /// of the explicit callee saved register list, but should be handled as such
1169   /// in certain cases.
isNonallocatableRegisterCalleeSave(MCRegister Reg)1170   virtual bool isNonallocatableRegisterCalleeSave(MCRegister Reg) const {
1171     return false;
1172   }
1173 };
1174 
1175 //===----------------------------------------------------------------------===//
1176 //                           SuperRegClassIterator
1177 //===----------------------------------------------------------------------===//
1178 //
1179 // Iterate over the possible super-registers for a given register class. The
1180 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1181 // possible classes of super-registers.
1182 //
1183 // Each bit mask will have at least one set bit, and each set bit in Mask
1184 // corresponds to a SuperRC such that:
1185 //
1186 //   For all Reg in SuperRC: Reg:Idx is in RC.
1187 //
1188 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1189 // also satisfies the above requirement, assuming Reg:0 == Reg.
1190 //
1191 class SuperRegClassIterator {
1192   const unsigned RCMaskWords;
1193   unsigned SubReg = 0;
1194   const uint16_t *Idx;
1195   const uint32_t *Mask;
1196 
1197 public:
1198   /// Create a SuperRegClassIterator that visits all the super-register classes
1199   /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1200   SuperRegClassIterator(const TargetRegisterClass *RC,
1201                         const TargetRegisterInfo *TRI,
1202                         bool IncludeSelf = false)
1203     : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1204       Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1205     if (!IncludeSelf)
1206       ++*this;
1207   }
1208 
1209   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1210   bool isValid() const { return Idx; }
1211 
1212   /// Returns the current sub-register index.
getSubReg()1213   unsigned getSubReg() const { return SubReg; }
1214 
1215   /// Returns the bit mask of register classes that getSubReg() projects into
1216   /// RC.
1217   /// See TargetRegisterClass::getSubClassMask() for how to use it.
getMask()1218   const uint32_t *getMask() const { return Mask; }
1219 
1220   /// Advance iterator to the next entry.
1221   void operator++() {
1222     assert(isValid() && "Cannot move iterator past end.");
1223     Mask += RCMaskWords;
1224     SubReg = *Idx++;
1225     if (!SubReg)
1226       Idx = nullptr;
1227   }
1228 };
1229 
1230 //===----------------------------------------------------------------------===//
1231 //                           BitMaskClassIterator
1232 //===----------------------------------------------------------------------===//
1233 /// This class encapuslates the logic to iterate over bitmask returned by
1234 /// the various RegClass related APIs.
1235 /// E.g., this class can be used to iterate over the subclasses provided by
1236 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1237 class BitMaskClassIterator {
1238   /// Total number of register classes.
1239   const unsigned NumRegClasses;
1240   /// Base index of CurrentChunk.
1241   /// In other words, the number of bit we read to get at the
1242   /// beginning of that chunck.
1243   unsigned Base = 0;
1244   /// Adjust base index of CurrentChunk.
1245   /// Base index + how many bit we read within CurrentChunk.
1246   unsigned Idx = 0;
1247   /// Current register class ID.
1248   unsigned ID = 0;
1249   /// Mask we are iterating over.
1250   const uint32_t *Mask;
1251   /// Current chunk of the Mask we are traversing.
1252   uint32_t CurrentChunk;
1253 
1254   /// Move ID to the next set bit.
moveToNextID()1255   void moveToNextID() {
1256     // If the current chunk of memory is empty, move to the next one,
1257     // while making sure we do not go pass the number of register
1258     // classes.
1259     while (!CurrentChunk) {
1260       // Move to the next chunk.
1261       Base += 32;
1262       if (Base >= NumRegClasses) {
1263         ID = NumRegClasses;
1264         return;
1265       }
1266       CurrentChunk = *++Mask;
1267       Idx = Base;
1268     }
1269     // Otherwise look for the first bit set from the right
1270     // (representation of the class ID is big endian).
1271     // See getSubClassMask for more details on the representation.
1272     unsigned Offset = llvm::countr_zero(CurrentChunk);
1273     // Add the Offset to the adjusted base number of this chunk: Idx.
1274     // This is the ID of the register class.
1275     ID = Idx + Offset;
1276 
1277     // Consume the zeros, if any, and the bit we just read
1278     // so that we are at the right spot for the next call.
1279     // Do not do Offset + 1 because Offset may be 31 and 32
1280     // will be UB for the shift, though in that case we could
1281     // have make the chunk being equal to 0, but that would
1282     // have introduced a if statement.
1283     moveNBits(Offset);
1284     moveNBits(1);
1285   }
1286 
1287   /// Move \p NumBits Bits forward in CurrentChunk.
moveNBits(unsigned NumBits)1288   void moveNBits(unsigned NumBits) {
1289     assert(NumBits < 32 && "Undefined behavior spotted!");
1290     // Consume the bit we read for the next call.
1291     CurrentChunk >>= NumBits;
1292     // Adjust the base for the chunk.
1293     Idx += NumBits;
1294   }
1295 
1296 public:
1297   /// Create a BitMaskClassIterator that visits all the register classes
1298   /// represented by \p Mask.
1299   ///
1300   /// \pre \p Mask != nullptr
BitMaskClassIterator(const uint32_t * Mask,const TargetRegisterInfo & TRI)1301   BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1302       : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1303     // Move to the first ID.
1304     moveToNextID();
1305   }
1306 
1307   /// Returns true if this iterator is still pointing at a valid entry.
isValid()1308   bool isValid() const { return getID() != NumRegClasses; }
1309 
1310   /// Returns the current register class ID.
getID()1311   unsigned getID() const { return ID; }
1312 
1313   /// Advance iterator to the next entry.
1314   void operator++() {
1315     assert(isValid() && "Cannot move iterator past end.");
1316     moveToNextID();
1317   }
1318 };
1319 
1320 // This is useful when building IndexedMaps keyed on virtual registers
1321 struct VirtReg2IndexFunctor {
1322   using argument_type = Register;
operatorVirtReg2IndexFunctor1323   unsigned operator()(Register Reg) const {
1324     return Register::virtReg2Index(Reg);
1325   }
1326 };
1327 
1328 /// Prints virtual and physical registers with or without a TRI instance.
1329 ///
1330 /// The format is:
1331 ///   %noreg          - NoRegister
1332 ///   %5              - a virtual register.
1333 ///   %5:sub_8bit     - a virtual register with sub-register index (with TRI).
1334 ///   %eax            - a physical register
1335 ///   %physreg17      - a physical register when no TRI instance given.
1336 ///
1337 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1338 Printable printReg(Register Reg, const TargetRegisterInfo *TRI = nullptr,
1339                    unsigned SubIdx = 0,
1340                    const MachineRegisterInfo *MRI = nullptr);
1341 
1342 /// Create Printable object to print register units on a \ref raw_ostream.
1343 ///
1344 /// Register units are named after their root registers:
1345 ///
1346 ///   al      - Single root.
1347 ///   fp0~st7 - Dual roots.
1348 ///
1349 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1350 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1351 
1352 /// Create Printable object to print virtual registers and physical
1353 /// registers on a \ref raw_ostream.
1354 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1355 
1356 /// Create Printable object to print register classes or register banks
1357 /// on a \ref raw_ostream.
1358 Printable printRegClassOrBank(Register Reg, const MachineRegisterInfo &RegInfo,
1359                               const TargetRegisterInfo *TRI);
1360 
1361 } // end namespace llvm
1362 
1363 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H
1364