xref: /netbsd/sys/altq/altq_hfsc.c (revision de6d88d5)
1 /*	$NetBSD: altq_hfsc.c,v 1.30 2021/09/21 14:30:15 christos Exp $	*/
2 /*	$KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $	*/
3 
4 /*
5  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this software and
8  * its documentation is hereby granted (including for commercial or
9  * for-profit use), provided that both the copyright notice and this
10  * permission notice appear in all copies of the software, derivative
11  * works, or modified versions, and any portions thereof.
12  *
13  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
14  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
15  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
16  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
21  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
25  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  *
28  * Carnegie Mellon encourages (but does not require) users of this
29  * software to return any improvements or extensions that they make,
30  * and to grant Carnegie Mellon the rights to redistribute these
31  * changes without encumbrance.
32  */
33 /*
34  * H-FSC is described in Proceedings of SIGCOMM'97,
35  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36  * Real-Time and Priority Service"
37  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38  *
39  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
40  * when a class has an upperlimit, the fit-time is computed from the
41  * upperlimit service curve.  the link-sharing scheduler does not schedule
42  * a class whose fit-time exceeds the current time.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.30 2021/09/21 14:30:15 christos Exp $");
47 
48 #ifdef _KERNEL_OPT
49 #include "opt_altq.h"
50 #include "opt_inet.h"
51 #include "pf.h"
52 #endif
53 
54 #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
55 
56 #include <sys/param.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/socket.h>
60 #include <sys/systm.h>
61 #include <sys/errno.h>
62 #include <sys/queue.h>
63 #if 1 /* ALTQ3_COMPAT */
64 #include <sys/sockio.h>
65 #include <sys/proc.h>
66 #include <sys/kernel.h>
67 #endif /* ALTQ3_COMPAT */
68 #include <sys/kauth.h>
69 
70 #include <net/if.h>
71 #include <netinet/in.h>
72 
73 #if NPF > 0
74 #include <net/pfvar.h>
75 #endif
76 #include <altq/altq.h>
77 #include <altq/altq_hfsc.h>
78 #ifdef ALTQ3_COMPAT
79 #include <altq/altq_conf.h>
80 #endif
81 
82 /*
83  * function prototypes
84  */
85 static int			 hfsc_clear_interface(struct hfsc_if *);
86 static int			 hfsc_request(struct ifaltq *, int, void *);
87 static void			 hfsc_purge(struct hfsc_if *);
88 static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
89     struct service_curve *, struct service_curve *, struct service_curve *,
90     struct hfsc_class *, int, int, int);
91 static int			 hfsc_class_destroy(struct hfsc_class *);
92 static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
93 static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *);
94 static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
95 
96 static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
97 static struct mbuf	*hfsc_getq(struct hfsc_class *);
98 static struct mbuf	*hfsc_pollq(struct hfsc_class *);
99 static void		 hfsc_purgeq(struct hfsc_class *);
100 
101 static void		 update_cfmin(struct hfsc_class *);
102 static void		 set_active(struct hfsc_class *, int);
103 static void		 set_passive(struct hfsc_class *);
104 
105 static void		 init_ed(struct hfsc_class *, int);
106 static void		 update_ed(struct hfsc_class *, int);
107 static void		 update_d(struct hfsc_class *, int);
108 static void		 init_vf(struct hfsc_class *, int);
109 static void		 update_vf(struct hfsc_class *, int, u_int64_t);
110 static ellist_t		*ellist_alloc(void);
111 static void		 ellist_destroy(ellist_t *);
112 static void		 ellist_insert(struct hfsc_class *);
113 static void		 ellist_remove(struct hfsc_class *);
114 static void		 ellist_update(struct hfsc_class *);
115 struct hfsc_class	*ellist_get_mindl(ellist_t *, u_int64_t);
116 static actlist_t	*actlist_alloc(void);
117 static void		 actlist_destroy(actlist_t *);
118 static void		 actlist_insert(struct hfsc_class *);
119 static void		 actlist_remove(struct hfsc_class *);
120 static void		 actlist_update(struct hfsc_class *);
121 
122 static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
123 				    u_int64_t);
124 
125 static inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
126 static inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
127 static inline u_int64_t	m2sm(u_int);
128 static inline u_int64_t	m2ism(u_int);
129 static inline u_int64_t	d2dx(u_int);
130 static u_int			sm2m(u_int64_t);
131 static u_int			dx2d(u_int64_t);
132 
133 static void		sc2isc(struct service_curve *, struct internal_sc *);
134 static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
135 			    u_int64_t, u_int64_t);
136 static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
137 static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
138 static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
139 			    u_int64_t, u_int64_t);
140 
141 static void			 get_class_stats(struct hfsc_classstats *,
142 				    struct hfsc_class *);
143 static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
144 
145 
146 #ifdef ALTQ3_COMPAT
147 static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
148 static void hfsc_detach(struct hfsc_if *);
149 static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
150     struct service_curve *, struct service_curve *);
151 
152 static int hfsccmd_if_attach(struct hfsc_attach *);
153 static int hfsccmd_if_detach(struct hfsc_interface *);
154 static int hfsccmd_add_class(struct hfsc_add_class *);
155 static int hfsccmd_delete_class(struct hfsc_delete_class *);
156 static int hfsccmd_modify_class(struct hfsc_modify_class *);
157 static int hfsccmd_add_filter(struct hfsc_add_filter *);
158 static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
159 static int hfsccmd_class_stats(struct hfsc_class_stats *);
160 
161 altqdev_decl(hfsc);
162 #endif /* ALTQ3_COMPAT */
163 
164 /*
165  * macros
166  */
167 #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
168 
169 #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
170 
171 #ifdef ALTQ3_COMPAT
172 /* hif_list keeps all hfsc_if's allocated. */
173 static struct hfsc_if *hif_list = NULL;
174 #endif /* ALTQ3_COMPAT */
175 
176 #if NPF > 0
177 int
hfsc_pfattach(struct pf_altq * a)178 hfsc_pfattach(struct pf_altq *a)
179 {
180 	struct ifnet *ifp;
181 	int s, error;
182 
183 	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
184 		return (EINVAL);
185 	s = splnet();
186 	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
187 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
188 	splx(s);
189 	return (error);
190 }
191 
192 int
hfsc_add_altq(struct pf_altq * a)193 hfsc_add_altq(struct pf_altq *a)
194 {
195 	struct hfsc_if *hif;
196 	struct ifnet *ifp;
197 
198 	if ((ifp = ifunit(a->ifname)) == NULL)
199 		return (EINVAL);
200 	if (!ALTQ_IS_READY(&ifp->if_snd))
201 		return (ENODEV);
202 
203 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
204 	if (hif == NULL)
205 		return (ENOMEM);
206 
207 	hif->hif_eligible = ellist_alloc();
208 	if (hif->hif_eligible == NULL) {
209 		free(hif, M_DEVBUF);
210 		return (ENOMEM);
211 	}
212 
213 	hif->hif_ifq = &ifp->if_snd;
214 
215 	/* keep the state in pf_altq */
216 	a->altq_disc = hif;
217 
218 	return (0);
219 }
220 
221 int
hfsc_remove_altq(struct pf_altq * a)222 hfsc_remove_altq(struct pf_altq *a)
223 {
224 	struct hfsc_if *hif;
225 
226 	if ((hif = a->altq_disc) == NULL)
227 		return (EINVAL);
228 	a->altq_disc = NULL;
229 
230 	(void)hfsc_clear_interface(hif);
231 	(void)hfsc_class_destroy(hif->hif_rootclass);
232 
233 	ellist_destroy(hif->hif_eligible);
234 
235 	free(hif, M_DEVBUF);
236 
237 	return (0);
238 }
239 
240 int
hfsc_add_queue(struct pf_altq * a)241 hfsc_add_queue(struct pf_altq *a)
242 {
243 	struct hfsc_if *hif;
244 	struct hfsc_class *cl, *parent;
245 	struct hfsc_opts *opts;
246 	struct service_curve rtsc, lssc, ulsc;
247 
248 	if ((hif = a->altq_disc) == NULL)
249 		return (EINVAL);
250 
251 	opts = &a->pq_u.hfsc_opts;
252 
253 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
254 	    hif->hif_rootclass == NULL)
255 		parent = NULL;
256 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
257 		return (EINVAL);
258 
259 	if (a->qid == 0)
260 		return (EINVAL);
261 
262 	if (clh_to_clp(hif, a->qid) != NULL)
263 		return (EBUSY);
264 
265 	rtsc.m1 = opts->rtsc_m1;
266 	rtsc.d  = opts->rtsc_d;
267 	rtsc.m2 = opts->rtsc_m2;
268 	lssc.m1 = opts->lssc_m1;
269 	lssc.d  = opts->lssc_d;
270 	lssc.m2 = opts->lssc_m2;
271 	ulsc.m1 = opts->ulsc_m1;
272 	ulsc.d  = opts->ulsc_d;
273 	ulsc.m2 = opts->ulsc_m2;
274 
275 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
276 	    parent, a->qlimit, opts->flags, a->qid);
277 	if (cl == NULL)
278 		return (ENOMEM);
279 
280 	return (0);
281 }
282 
283 int
hfsc_remove_queue(struct pf_altq * a)284 hfsc_remove_queue(struct pf_altq *a)
285 {
286 	struct hfsc_if *hif;
287 	struct hfsc_class *cl;
288 
289 	if ((hif = a->altq_disc) == NULL)
290 		return (EINVAL);
291 
292 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
293 		return (EINVAL);
294 
295 	return (hfsc_class_destroy(cl));
296 }
297 
298 int
hfsc_getqstats(struct pf_altq * a,void * ubuf,int * nbytes)299 hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
300 {
301 	struct hfsc_if *hif;
302 	struct hfsc_class *cl;
303 	struct hfsc_classstats stats;
304 	int error = 0;
305 
306 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
307 		return (EBADF);
308 
309 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
310 		return (EINVAL);
311 
312 	if (*nbytes < sizeof(stats))
313 		return (EINVAL);
314 
315 	memset(&stats, 0, sizeof(stats));
316 	get_class_stats(&stats, cl);
317 
318 	if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
319 		return (error);
320 	*nbytes = sizeof(stats);
321 	return (0);
322 }
323 #endif /* NPF > 0 */
324 
325 /*
326  * bring the interface back to the initial state by discarding
327  * all the filters and classes except the root class.
328  */
329 static int
hfsc_clear_interface(struct hfsc_if * hif)330 hfsc_clear_interface(struct hfsc_if *hif)
331 {
332 	struct hfsc_class	*cl;
333 
334 #ifdef ALTQ3_COMPAT
335 	/* free the filters for this interface */
336 	acc_discard_filters(&hif->hif_classifier, NULL, 1);
337 #endif
338 
339 	/* clear out the classes */
340 	while (hif->hif_rootclass != NULL &&
341 	    (cl = hif->hif_rootclass->cl_children) != NULL) {
342 		/*
343 		 * remove the first leaf class found in the hierarchy
344 		 * then start over
345 		 */
346 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
347 			if (!is_a_parent_class(cl)) {
348 				(void)hfsc_class_destroy(cl);
349 				break;
350 			}
351 		}
352 	}
353 
354 	return (0);
355 }
356 
357 static int
hfsc_request(struct ifaltq * ifq,int req,void * arg)358 hfsc_request(struct ifaltq *ifq, int req, void *arg)
359 {
360 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
361 
362 	switch (req) {
363 	case ALTRQ_PURGE:
364 		hfsc_purge(hif);
365 		break;
366 	}
367 	return (0);
368 }
369 
370 /* discard all the queued packets on the interface */
371 static void
hfsc_purge(struct hfsc_if * hif)372 hfsc_purge(struct hfsc_if *hif)
373 {
374 	struct hfsc_class *cl;
375 
376 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
377 		if (!qempty(cl->cl_q))
378 			hfsc_purgeq(cl);
379 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
380 		hif->hif_ifq->ifq_len = 0;
381 }
382 
383 struct hfsc_class *
hfsc_class_create(struct hfsc_if * hif,struct service_curve * rsc,struct service_curve * fsc,struct service_curve * usc,struct hfsc_class * parent,int qlimit,int flags,int qid)384 hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
385     struct service_curve *fsc, struct service_curve *usc,
386     struct hfsc_class *parent, int qlimit, int flags, int qid)
387 {
388 	struct hfsc_class *cl, *p;
389 	int i, s;
390 
391 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
392 		return (NULL);
393 
394 #ifndef ALTQ_RED
395 	if (flags & HFCF_RED) {
396 #ifdef ALTQ_DEBUG
397 		printf("hfsc_class_create: RED not configured for HFSC!\n");
398 #endif
399 		return (NULL);
400 	}
401 #endif
402 
403 	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
404 	if (cl == NULL)
405 		return (NULL);
406 
407 	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
408 	if (cl->cl_q == NULL)
409 		goto err_ret;
410 
411 	cl->cl_actc = actlist_alloc();
412 	if (cl->cl_actc == NULL)
413 		goto err_ret;
414 
415 	if (qlimit == 0)
416 		qlimit = 50;  /* use default */
417 	qlimit(cl->cl_q) = qlimit;
418 	qtype(cl->cl_q) = Q_DROPTAIL;
419 	qlen(cl->cl_q) = 0;
420 	cl->cl_flags = flags;
421 #ifdef ALTQ_RED
422 	if (flags & (HFCF_RED|HFCF_RIO)) {
423 		int red_flags, red_pkttime;
424 		u_int m2;
425 
426 		m2 = 0;
427 		if (rsc != NULL && rsc->m2 > m2)
428 			m2 = rsc->m2;
429 		if (fsc != NULL && fsc->m2 > m2)
430 			m2 = fsc->m2;
431 		if (usc != NULL && usc->m2 > m2)
432 			m2 = usc->m2;
433 
434 		red_flags = 0;
435 		if (flags & HFCF_ECN)
436 			red_flags |= REDF_ECN;
437 #ifdef ALTQ_RIO
438 		if (flags & HFCF_CLEARDSCP)
439 			red_flags |= RIOF_CLEARDSCP;
440 #endif
441 		if (m2 < 8)
442 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
443 		else
444 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
445 				* 1000 * 1000 * 1000 / (m2 / 8);
446 		if (flags & HFCF_RED) {
447 			cl->cl_red = red_alloc(0, 0,
448 			    qlimit(cl->cl_q) * 10/100,
449 			    qlimit(cl->cl_q) * 30/100,
450 			    red_flags, red_pkttime);
451 			if (cl->cl_red != NULL)
452 				qtype(cl->cl_q) = Q_RED;
453 		}
454 #ifdef ALTQ_RIO
455 		else {
456 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
457 			    red_flags, red_pkttime);
458 			if (cl->cl_red != NULL)
459 				qtype(cl->cl_q) = Q_RIO;
460 		}
461 #endif
462 	}
463 #endif /* ALTQ_RED */
464 
465 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
466 		cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
467 		    M_WAITOK|M_ZERO);
468 		if (cl->cl_rsc == NULL)
469 			goto err_ret;
470 		sc2isc(rsc, cl->cl_rsc);
471 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
472 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
473 	}
474 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
475 		cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
476 		    M_WAITOK|M_ZERO);
477 		if (cl->cl_fsc == NULL)
478 			goto err_ret;
479 		sc2isc(fsc, cl->cl_fsc);
480 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
481 	}
482 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
483 		cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
484 		    M_WAITOK|M_ZERO);
485 		if (cl->cl_usc == NULL)
486 			goto err_ret;
487 		sc2isc(usc, cl->cl_usc);
488 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
489 	}
490 
491 	cl->cl_id = hif->hif_classid++;
492 	cl->cl_handle = qid;
493 	cl->cl_hif = hif;
494 	cl->cl_parent = parent;
495 
496 	s = splnet();
497 	hif->hif_classes++;
498 
499 	/*
500 	 * find a free slot in the class table.  if the slot matching
501 	 * the lower bits of qid is free, use this slot.  otherwise,
502 	 * use the first free slot.
503 	 */
504 	i = qid % HFSC_MAX_CLASSES;
505 	if (hif->hif_class_tbl[i] == NULL)
506 		hif->hif_class_tbl[i] = cl;
507 	else {
508 		for (i = 0; i < HFSC_MAX_CLASSES; i++)
509 			if (hif->hif_class_tbl[i] == NULL) {
510 				hif->hif_class_tbl[i] = cl;
511 				break;
512 			}
513 		if (i == HFSC_MAX_CLASSES) {
514 			splx(s);
515 			goto err_ret;
516 		}
517 	}
518 
519 	if (flags & HFCF_DEFAULTCLASS)
520 		hif->hif_defaultclass = cl;
521 
522 	if (parent == NULL) {
523 		/* this is root class */
524 		hif->hif_rootclass = cl;
525 	} else {
526 		/* add this class to the children list of the parent */
527 		if ((p = parent->cl_children) == NULL)
528 			parent->cl_children = cl;
529 		else {
530 			while (p->cl_siblings != NULL)
531 				p = p->cl_siblings;
532 			p->cl_siblings = cl;
533 		}
534 	}
535 	splx(s);
536 
537 	return (cl);
538 
539  err_ret:
540 	if (cl->cl_actc != NULL)
541 		actlist_destroy(cl->cl_actc);
542 	if (cl->cl_red != NULL) {
543 #ifdef ALTQ_RIO
544 		if (q_is_rio(cl->cl_q))
545 			rio_destroy((rio_t *)cl->cl_red);
546 #endif
547 #ifdef ALTQ_RED
548 		if (q_is_red(cl->cl_q))
549 			red_destroy(cl->cl_red);
550 #endif
551 	}
552 	if (cl->cl_fsc != NULL)
553 		free(cl->cl_fsc, M_DEVBUF);
554 	if (cl->cl_rsc != NULL)
555 		free(cl->cl_rsc, M_DEVBUF);
556 	if (cl->cl_usc != NULL)
557 		free(cl->cl_usc, M_DEVBUF);
558 	if (cl->cl_q != NULL)
559 		free(cl->cl_q, M_DEVBUF);
560 	free(cl, M_DEVBUF);
561 	return (NULL);
562 }
563 
564 static int
hfsc_class_destroy(struct hfsc_class * cl)565 hfsc_class_destroy(struct hfsc_class *cl)
566 {
567 	int i, s;
568 
569 	if (cl == NULL)
570 		return (0);
571 
572 	if (is_a_parent_class(cl))
573 		return (EBUSY);
574 
575 	s = splnet();
576 
577 #ifdef ALTQ3_COMPAT
578 	/* delete filters referencing to this class */
579 	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
580 #endif /* ALTQ3_COMPAT */
581 
582 	if (!qempty(cl->cl_q))
583 		hfsc_purgeq(cl);
584 
585 	if (cl->cl_parent == NULL) {
586 		/* this is root class */
587 	} else {
588 		struct hfsc_class *p = cl->cl_parent->cl_children;
589 
590 		if (p == cl)
591 			cl->cl_parent->cl_children = cl->cl_siblings;
592 		else do {
593 			if (p->cl_siblings == cl) {
594 				p->cl_siblings = cl->cl_siblings;
595 				break;
596 			}
597 		} while ((p = p->cl_siblings) != NULL);
598 		ASSERT(p != NULL);
599 	}
600 
601 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
602 		if (cl->cl_hif->hif_class_tbl[i] == cl) {
603 			cl->cl_hif->hif_class_tbl[i] = NULL;
604 			break;
605 		}
606 
607 	cl->cl_hif->hif_classes--;
608 	splx(s);
609 
610 	actlist_destroy(cl->cl_actc);
611 
612 	if (cl->cl_red != NULL) {
613 #ifdef ALTQ_RIO
614 		if (q_is_rio(cl->cl_q))
615 			rio_destroy((rio_t *)cl->cl_red);
616 #endif
617 #ifdef ALTQ_RED
618 		if (q_is_red(cl->cl_q))
619 			red_destroy(cl->cl_red);
620 #endif
621 	}
622 
623 	if (cl == cl->cl_hif->hif_rootclass)
624 		cl->cl_hif->hif_rootclass = NULL;
625 	if (cl == cl->cl_hif->hif_defaultclass)
626 		cl->cl_hif->hif_defaultclass = NULL;
627 
628 	if (cl->cl_usc != NULL)
629 		free(cl->cl_usc, M_DEVBUF);
630 	if (cl->cl_fsc != NULL)
631 		free(cl->cl_fsc, M_DEVBUF);
632 	if (cl->cl_rsc != NULL)
633 		free(cl->cl_rsc, M_DEVBUF);
634 	free(cl->cl_q, M_DEVBUF);
635 	free(cl, M_DEVBUF);
636 
637 	return (0);
638 }
639 
640 /*
641  * hfsc_nextclass returns the next class in the tree.
642  *   usage:
643  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
644  *		do_something;
645  */
646 static struct hfsc_class *
hfsc_nextclass(struct hfsc_class * cl)647 hfsc_nextclass(struct hfsc_class *cl)
648 {
649 	if (cl->cl_children != NULL)
650 		cl = cl->cl_children;
651 	else if (cl->cl_siblings != NULL)
652 		cl = cl->cl_siblings;
653 	else {
654 		while ((cl = cl->cl_parent) != NULL)
655 			if (cl->cl_siblings) {
656 				cl = cl->cl_siblings;
657 				break;
658 			}
659 	}
660 
661 	return (cl);
662 }
663 
664 /*
665  * hfsc_enqueue is an enqueue function to be registered to
666  * (*altq_enqueue) in struct ifaltq.
667  */
668 static int
hfsc_enqueue(struct ifaltq * ifq,struct mbuf * m)669 hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m)
670 {
671 	struct altq_pktattr pktattr;
672 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
673 	struct hfsc_class *cl;
674 	struct m_tag *t;
675 	int len;
676 
677 	/* grab class set by classifier */
678 	if ((m->m_flags & M_PKTHDR) == 0) {
679 		/* should not happen */
680 		printf("altq: packet for %s does not have pkthdr\n",
681 		    ifq->altq_ifp->if_xname);
682 		m_freem(m);
683 		return (ENOBUFS);
684 	}
685 	cl = NULL;
686 	if ((t = m_tag_find(m, PACKET_TAG_ALTQ_QID)) != NULL)
687 		cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
688 #ifdef ALTQ3_COMPAT
689 	else if ((ifq->altq_flags & ALTQF_CLASSIFY))
690 		cl = m->m_pkthdr.pattr_class;
691 #endif
692 	if (cl == NULL || is_a_parent_class(cl)) {
693 		cl = hif->hif_defaultclass;
694 		if (cl == NULL) {
695 			m_freem(m);
696 			return (ENOBUFS);
697 		}
698 	}
699 #ifdef ALTQ3_COMPAT
700 	if (m->m_pkthdr.pattr_af != AF_UNSPEC) {
701 		pktattr.pattr_class = m->m_pkthdr.pattr_class;
702 		pktattr.pattr_af = m->m_pkthdr.pattr_af;
703 		pktattr.pattr_hdr = m->m_pkthdr.pattr_hdr;
704 
705 		cl->cl_pktattr = &pktattr;  /* save proto hdr used by ECN */
706 	} else
707 #endif
708 		cl->cl_pktattr = NULL;
709 	len = m_pktlen(m);
710 	if (hfsc_addq(cl, m) != 0) {
711 		/* drop occurred.  mbuf was freed in hfsc_addq. */
712 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
713 		return (ENOBUFS);
714 	}
715 	IFQ_INC_LEN(ifq);
716 	cl->cl_hif->hif_packets++;
717 
718 	/* successfully queued. */
719 	if (qlen(cl->cl_q) == 1)
720 		set_active(cl, m_pktlen(m));
721 
722 	return (0);
723 }
724 
725 /*
726  * hfsc_dequeue is a dequeue function to be registered to
727  * (*altq_dequeue) in struct ifaltq.
728  *
729  * note: ALTDQ_POLL returns the next packet without removing the packet
730  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
731  *	ALTDQ_REMOVE must return the same packet if called immediately
732  *	after ALTDQ_POLL.
733  */
734 static struct mbuf *
hfsc_dequeue(struct ifaltq * ifq,int op)735 hfsc_dequeue(struct ifaltq *ifq, int op)
736 {
737 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
738 	struct hfsc_class *cl;
739 	struct mbuf *m;
740 	int len, next_len;
741 	int realtime = 0;
742 	u_int64_t cur_time;
743 
744 	if (hif->hif_packets == 0)
745 		/* no packet in the tree */
746 		return (NULL);
747 
748 	cur_time = read_machclk();
749 
750 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
751 
752 		cl = hif->hif_pollcache;
753 		hif->hif_pollcache = NULL;
754 		/* check if the class was scheduled by real-time criteria */
755 		if (cl->cl_rsc != NULL)
756 			realtime = (cl->cl_e <= cur_time);
757 	} else {
758 		/*
759 		 * if there are eligible classes, use real-time criteria.
760 		 * find the class with the minimum deadline among
761 		 * the eligible classes.
762 		 */
763 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
764 		    != NULL) {
765 			realtime = 1;
766 		} else {
767 #ifdef ALTQ_DEBUG
768 			int fits = 0;
769 #endif
770 			/*
771 			 * use link-sharing criteria
772 			 * get the class with the minimum vt in the hierarchy
773 			 */
774 			cl = hif->hif_rootclass;
775 			while (is_a_parent_class(cl)) {
776 
777 				cl = actlist_firstfit(cl, cur_time);
778 				if (cl == NULL) {
779 #ifdef ALTQ_DEBUG
780 					if (fits > 0)
781 						printf("%d fit but none found\n",fits);
782 #endif
783 					return (NULL);
784 				}
785 				/*
786 				 * update parent's cl_cvtmin.
787 				 * don't update if the new vt is smaller.
788 				 */
789 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
790 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
791 #ifdef ALTQ_DEBUG
792 				fits++;
793 #endif
794 			}
795 		}
796 
797 		if (op == ALTDQ_POLL) {
798 			hif->hif_pollcache = cl;
799 			m = hfsc_pollq(cl);
800 			return (m);
801 		}
802 	}
803 
804 	m = hfsc_getq(cl);
805 	if (m == NULL)
806 		panic("hfsc_dequeue:");
807 	len = m_pktlen(m);
808 	cl->cl_hif->hif_packets--;
809 	IFQ_DEC_LEN(ifq);
810 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
811 
812 	update_vf(cl, len, cur_time);
813 	if (realtime)
814 		cl->cl_cumul += len;
815 
816 	if (!qempty(cl->cl_q)) {
817 		if (cl->cl_rsc != NULL) {
818 			/* update ed */
819 			next_len = m_pktlen(qhead(cl->cl_q));
820 
821 			if (realtime)
822 				update_ed(cl, next_len);
823 			else
824 				update_d(cl, next_len);
825 		}
826 	} else {
827 		/* the class becomes passive */
828 		set_passive(cl);
829 	}
830 
831 	return (m);
832 }
833 
834 static int
hfsc_addq(struct hfsc_class * cl,struct mbuf * m)835 hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
836 {
837 
838 #ifdef ALTQ_RIO
839 	if (q_is_rio(cl->cl_q))
840 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
841 				m, cl->cl_pktattr);
842 #endif
843 #ifdef ALTQ_RED
844 	if (q_is_red(cl->cl_q))
845 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
846 #endif
847 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
848 		m_freem(m);
849 		return (-1);
850 	}
851 
852 	if (cl->cl_flags & HFCF_CLEARDSCP)
853 		write_dsfield(m, cl->cl_pktattr, 0);
854 
855 	_addq(cl->cl_q, m);
856 
857 	return (0);
858 }
859 
860 static struct mbuf *
hfsc_getq(struct hfsc_class * cl)861 hfsc_getq(struct hfsc_class *cl)
862 {
863 #ifdef ALTQ_RIO
864 	if (q_is_rio(cl->cl_q))
865 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
866 #endif
867 #ifdef ALTQ_RED
868 	if (q_is_red(cl->cl_q))
869 		return red_getq(cl->cl_red, cl->cl_q);
870 #endif
871 	return _getq(cl->cl_q);
872 }
873 
874 static struct mbuf *
hfsc_pollq(struct hfsc_class * cl)875 hfsc_pollq(struct hfsc_class *cl)
876 {
877 	return qhead(cl->cl_q);
878 }
879 
880 static void
hfsc_purgeq(struct hfsc_class * cl)881 hfsc_purgeq(struct hfsc_class *cl)
882 {
883 	struct mbuf *m;
884 
885 	if (qempty(cl->cl_q))
886 		return;
887 
888 	while ((m = _getq(cl->cl_q)) != NULL) {
889 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
890 		m_freem(m);
891 		cl->cl_hif->hif_packets--;
892 		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
893 	}
894 	ASSERT(qlen(cl->cl_q) == 0);
895 
896 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
897 	set_passive(cl);
898 }
899 
900 static void
set_active(struct hfsc_class * cl,int len)901 set_active(struct hfsc_class *cl, int len)
902 {
903 	if (cl->cl_rsc != NULL)
904 		init_ed(cl, len);
905 	if (cl->cl_fsc != NULL)
906 		init_vf(cl, len);
907 
908 	cl->cl_stats.period++;
909 }
910 
911 static void
set_passive(struct hfsc_class * cl)912 set_passive(struct hfsc_class *cl)
913 {
914 	if (cl->cl_rsc != NULL)
915 		ellist_remove(cl);
916 
917 	/*
918 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
919 	 * needs to be called explicitly to remove a class from actlist
920 	 */
921 }
922 
923 static void
init_ed(struct hfsc_class * cl,int next_len)924 init_ed(struct hfsc_class *cl, int next_len)
925 {
926 	u_int64_t cur_time;
927 
928 	cur_time = read_machclk();
929 
930 	/* update the deadline curve */
931 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
932 
933 	/*
934 	 * update the eligible curve.
935 	 * for concave, it is equal to the deadline curve.
936 	 * for convex, it is a linear curve with slope m2.
937 	 */
938 	cl->cl_eligible = cl->cl_deadline;
939 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
940 		cl->cl_eligible.dx = 0;
941 		cl->cl_eligible.dy = 0;
942 	}
943 
944 	/* compute e and d */
945 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
946 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
947 
948 	ellist_insert(cl);
949 }
950 
951 static void
update_ed(struct hfsc_class * cl,int next_len)952 update_ed(struct hfsc_class *cl, int next_len)
953 {
954 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
955 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
956 
957 	ellist_update(cl);
958 }
959 
960 static void
update_d(struct hfsc_class * cl,int next_len)961 update_d(struct hfsc_class *cl, int next_len)
962 {
963 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
964 }
965 
966 static void
init_vf(struct hfsc_class * cl,int len)967 init_vf(struct hfsc_class *cl, int len)
968 {
969 	struct hfsc_class *max_cl, *p;
970 	u_int64_t vt, f, cur_time;
971 	int go_active;
972 
973 	cur_time = 0;
974 	go_active = 1;
975 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
976 
977 		if (go_active && cl->cl_nactive++ == 0)
978 			go_active = 1;
979 		else
980 			go_active = 0;
981 
982 		if (go_active) {
983 			max_cl = actlist_last(cl->cl_parent->cl_actc);
984 			if (max_cl != NULL) {
985 				/*
986 				 * set vt to the average of the min and max
987 				 * classes.  if the parent's period didn't
988 				 * change, don't decrease vt of the class.
989 				 */
990 				vt = max_cl->cl_vt;
991 				if (cl->cl_parent->cl_cvtmin != 0)
992 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
993 
994 				if (cl->cl_parent->cl_vtperiod !=
995 				    cl->cl_parentperiod || vt > cl->cl_vt)
996 					cl->cl_vt = vt;
997 			} else {
998 				/*
999 				 * first child for a new parent backlog period.
1000 				 * add parent's cvtmax to vtoff of children
1001 				 * to make a new vt (vtoff + vt) larger than
1002 				 * the vt in the last period for all children.
1003 				 */
1004 				vt = cl->cl_parent->cl_cvtmax;
1005 				for (p = cl->cl_parent->cl_children; p != NULL;
1006 				     p = p->cl_siblings)
1007 					p->cl_vtoff += vt;
1008 				cl->cl_vt = 0;
1009 				cl->cl_parent->cl_cvtmax = 0;
1010 				cl->cl_parent->cl_cvtmin = 0;
1011 			}
1012 			cl->cl_initvt = cl->cl_vt;
1013 
1014 			/* update the virtual curve */
1015 			vt = cl->cl_vt + cl->cl_vtoff;
1016 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1017 			if (cl->cl_virtual.x == vt) {
1018 				cl->cl_virtual.x -= cl->cl_vtoff;
1019 				cl->cl_vtoff = 0;
1020 			}
1021 			cl->cl_vtadj = 0;
1022 
1023 			cl->cl_vtperiod++;  /* increment vt period */
1024 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1025 			if (cl->cl_parent->cl_nactive == 0)
1026 				cl->cl_parentperiod++;
1027 			cl->cl_f = 0;
1028 
1029 			actlist_insert(cl);
1030 
1031 			if (cl->cl_usc != NULL) {
1032 				/* class has upper limit curve */
1033 				if (cur_time == 0)
1034 					cur_time = read_machclk();
1035 
1036 				/* update the ulimit curve */
1037 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1038 				    cl->cl_total);
1039 				/* compute myf */
1040 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1041 				    cl->cl_total);
1042 				cl->cl_myfadj = 0;
1043 			}
1044 		}
1045 
1046 		if (cl->cl_myf > cl->cl_cfmin)
1047 			f = cl->cl_myf;
1048 		else
1049 			f = cl->cl_cfmin;
1050 		if (f != cl->cl_f) {
1051 			cl->cl_f = f;
1052 			update_cfmin(cl->cl_parent);
1053 		}
1054 	}
1055 }
1056 
1057 static void
update_vf(struct hfsc_class * cl,int len,u_int64_t cur_time)1058 update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
1059 {
1060 	u_int64_t f, myf_bound, delta;
1061 	int go_passive;
1062 
1063 	go_passive = qempty(cl->cl_q);
1064 
1065 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1066 
1067 		cl->cl_total += len;
1068 
1069 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1070 			continue;
1071 
1072 		if (go_passive && --cl->cl_nactive == 0)
1073 			go_passive = 1;
1074 		else
1075 			go_passive = 0;
1076 
1077 		if (go_passive) {
1078 			/* no more active child, going passive */
1079 
1080 			/* update cvtmax of the parent class */
1081 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1082 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1083 
1084 			/* remove this class from the vt list */
1085 			actlist_remove(cl);
1086 
1087 			update_cfmin(cl->cl_parent);
1088 
1089 			continue;
1090 		}
1091 
1092 		/*
1093 		 * update vt and f
1094 		 */
1095 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1096 		    - cl->cl_vtoff + cl->cl_vtadj;
1097 
1098 		/*
1099 		 * if vt of the class is smaller than cvtmin,
1100 		 * the class was skipped in the past due to non-fit.
1101 		 * if so, we need to adjust vtadj.
1102 		 */
1103 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1104 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1105 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1106 		}
1107 
1108 		/* update the vt list */
1109 		actlist_update(cl);
1110 
1111 		if (cl->cl_usc != NULL) {
1112 			cl->cl_myf = cl->cl_myfadj
1113 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1114 
1115 			/*
1116 			 * if myf lags behind by more than one clock tick
1117 			 * from the current time, adjust myfadj to prevent
1118 			 * a rate-limited class from going greedy.
1119 			 * in a steady state under rate-limiting, myf
1120 			 * fluctuates within one clock tick.
1121 			 */
1122 			myf_bound = cur_time - machclk_per_tick;
1123 			if (cl->cl_myf < myf_bound) {
1124 				delta = cur_time - cl->cl_myf;
1125 				cl->cl_myfadj += delta;
1126 				cl->cl_myf += delta;
1127 			}
1128 		}
1129 
1130 		/* cl_f is max(cl_myf, cl_cfmin) */
1131 		if (cl->cl_myf > cl->cl_cfmin)
1132 			f = cl->cl_myf;
1133 		else
1134 			f = cl->cl_cfmin;
1135 		if (f != cl->cl_f) {
1136 			cl->cl_f = f;
1137 			update_cfmin(cl->cl_parent);
1138 		}
1139 	}
1140 }
1141 
1142 static void
update_cfmin(struct hfsc_class * cl)1143 update_cfmin(struct hfsc_class *cl)
1144 {
1145 	struct hfsc_class *p;
1146 	u_int64_t cfmin;
1147 
1148 	if (TAILQ_EMPTY(cl->cl_actc)) {
1149 		cl->cl_cfmin = 0;
1150 		return;
1151 	}
1152 	cfmin = HT_INFINITY;
1153 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1154 		if (p->cl_f == 0) {
1155 			cl->cl_cfmin = 0;
1156 			return;
1157 		}
1158 		if (p->cl_f < cfmin)
1159 			cfmin = p->cl_f;
1160 	}
1161 	cl->cl_cfmin = cfmin;
1162 }
1163 
1164 /*
1165  * TAILQ based ellist and actlist implementation
1166  * (ion wanted to make a calendar queue based implementation)
1167  */
1168 /*
1169  * eligible list holds backlogged classes being sorted by their eligible times.
1170  * there is one eligible list per interface.
1171  */
1172 
1173 static ellist_t *
ellist_alloc(void)1174 ellist_alloc(void)
1175 {
1176 	ellist_t *head;
1177 
1178 	head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
1179 	TAILQ_INIT(head);
1180 	return (head);
1181 }
1182 
1183 static void
ellist_destroy(ellist_t * head)1184 ellist_destroy(ellist_t *head)
1185 {
1186 	free(head, M_DEVBUF);
1187 }
1188 
1189 static void
ellist_insert(struct hfsc_class * cl)1190 ellist_insert(struct hfsc_class *cl)
1191 {
1192 	struct hfsc_if	*hif = cl->cl_hif;
1193 	struct hfsc_class *p;
1194 
1195 	/* check the last entry first */
1196 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1197 	    p->cl_e <= cl->cl_e) {
1198 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1199 		return;
1200 	}
1201 
1202 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1203 		if (cl->cl_e < p->cl_e) {
1204 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1205 			return;
1206 		}
1207 	}
1208 	ASSERT(0); /* should not reach here */
1209 }
1210 
1211 static void
ellist_remove(struct hfsc_class * cl)1212 ellist_remove(struct hfsc_class *cl)
1213 {
1214 	struct hfsc_if	*hif = cl->cl_hif;
1215 
1216 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1217 }
1218 
1219 static void
ellist_update(struct hfsc_class * cl)1220 ellist_update(struct hfsc_class *cl)
1221 {
1222 	struct hfsc_if	*hif = cl->cl_hif;
1223 	struct hfsc_class *p, *last;
1224 
1225 	/*
1226 	 * the eligible time of a class increases monotonically.
1227 	 * if the next entry has a larger eligible time, nothing to do.
1228 	 */
1229 	p = TAILQ_NEXT(cl, cl_ellist);
1230 	if (p == NULL || cl->cl_e <= p->cl_e)
1231 		return;
1232 
1233 	/* check the last entry */
1234 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1235 	ASSERT(last != NULL);
1236 	if (last->cl_e <= cl->cl_e) {
1237 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1238 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * the new position must be between the next entry
1244 	 * and the last entry
1245 	 */
1246 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1247 		if (cl->cl_e < p->cl_e) {
1248 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1249 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1250 			return;
1251 		}
1252 	}
1253 	ASSERT(0); /* should not reach here */
1254 }
1255 
1256 /* find the class with the minimum deadline among the eligible classes */
1257 struct hfsc_class *
ellist_get_mindl(ellist_t * head,u_int64_t cur_time)1258 ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
1259 {
1260 	struct hfsc_class *p, *cl = NULL;
1261 
1262 	TAILQ_FOREACH(p, head, cl_ellist) {
1263 		if (p->cl_e > cur_time)
1264 			break;
1265 		if (cl == NULL || p->cl_d < cl->cl_d)
1266 			cl = p;
1267 	}
1268 	return (cl);
1269 }
1270 
1271 /*
1272  * active children list holds backlogged child classes being sorted
1273  * by their virtual time.
1274  * each intermediate class has one active children list.
1275  */
1276 static actlist_t *
actlist_alloc(void)1277 actlist_alloc(void)
1278 {
1279 	actlist_t *head;
1280 
1281 	head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1282 	TAILQ_INIT(head);
1283 	return (head);
1284 }
1285 
1286 static void
actlist_destroy(actlist_t * head)1287 actlist_destroy(actlist_t *head)
1288 {
1289 	free(head, M_DEVBUF);
1290 }
1291 static void
actlist_insert(struct hfsc_class * cl)1292 actlist_insert(struct hfsc_class *cl)
1293 {
1294 	struct hfsc_class *p;
1295 
1296 	/* check the last entry first */
1297 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1298 	    || p->cl_vt <= cl->cl_vt) {
1299 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1300 		return;
1301 	}
1302 
1303 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1304 		if (cl->cl_vt < p->cl_vt) {
1305 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1306 			return;
1307 		}
1308 	}
1309 	ASSERT(0); /* should not reach here */
1310 }
1311 
1312 static void
actlist_remove(struct hfsc_class * cl)1313 actlist_remove(struct hfsc_class *cl)
1314 {
1315 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1316 }
1317 
1318 static void
actlist_update(struct hfsc_class * cl)1319 actlist_update(struct hfsc_class *cl)
1320 {
1321 	struct hfsc_class *p, *last;
1322 
1323 	/*
1324 	 * the virtual time of a class increases monotonically during its
1325 	 * backlogged period.
1326 	 * if the next entry has a larger virtual time, nothing to do.
1327 	 */
1328 	p = TAILQ_NEXT(cl, cl_actlist);
1329 	if (p == NULL || cl->cl_vt < p->cl_vt)
1330 		return;
1331 
1332 	/* check the last entry */
1333 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1334 	ASSERT(last != NULL);
1335 	if (last->cl_vt <= cl->cl_vt) {
1336 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1337 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1338 		return;
1339 	}
1340 
1341 	/*
1342 	 * the new position must be between the next entry
1343 	 * and the last entry
1344 	 */
1345 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1346 		if (cl->cl_vt < p->cl_vt) {
1347 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1348 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1349 			return;
1350 		}
1351 	}
1352 	ASSERT(0); /* should not reach here */
1353 }
1354 
1355 static struct hfsc_class *
actlist_firstfit(struct hfsc_class * cl,u_int64_t cur_time)1356 actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
1357 {
1358 	struct hfsc_class *p;
1359 
1360 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1361 		if (p->cl_f <= cur_time)
1362 			return (p);
1363 	}
1364 	return (NULL);
1365 }
1366 
1367 /*
1368  * service curve support functions
1369  *
1370  *  external service curve parameters
1371  *	m: bits/sec
1372  *	d: msec
1373  *  internal service curve parameters
1374  *	sm: (bytes/tsc_interval) << SM_SHIFT
1375  *	ism: (tsc_count/byte) << ISM_SHIFT
1376  *	dx: tsc_count
1377  *
1378  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1379  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1380  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1381  * digits in decimal using the following table.
1382  *
1383  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1384  *  ----------+-------------------------------------------------------
1385  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1386  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1387  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1388  *
1389  *  nsec/byte   80000      8000       800        80         8
1390  *  ism(500MHz) 40000      4000       400        40         4
1391  *  ism(200MHz) 16000      1600       160        16         1.6
1392  */
1393 #define	SM_SHIFT	24
1394 #define	ISM_SHIFT	10
1395 
1396 #define	SM_MASK		((1LL << SM_SHIFT) - 1)
1397 #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1398 
1399 static inline u_int64_t
seg_x2y(u_int64_t x,u_int64_t sm)1400 seg_x2y(u_int64_t x, u_int64_t sm)
1401 {
1402 	u_int64_t y;
1403 
1404 	/*
1405 	 * compute
1406 	 *	y = x * sm >> SM_SHIFT
1407 	 * but divide it for the upper and lower bits to avoid overflow
1408 	 */
1409 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1410 	return (y);
1411 }
1412 
1413 static inline u_int64_t
seg_y2x(u_int64_t y,u_int64_t ism)1414 seg_y2x(u_int64_t y, u_int64_t ism)
1415 {
1416 	u_int64_t x;
1417 
1418 	if (y == 0)
1419 		x = 0;
1420 	else if (ism == HT_INFINITY)
1421 		x = HT_INFINITY;
1422 	else {
1423 		x = (y >> ISM_SHIFT) * ism
1424 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1425 	}
1426 	return (x);
1427 }
1428 
1429 static inline u_int64_t
m2sm(u_int m)1430 m2sm(u_int m)
1431 {
1432 	u_int64_t sm;
1433 
1434 	sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1435 	return (sm);
1436 }
1437 
1438 static inline u_int64_t
m2ism(u_int m)1439 m2ism(u_int m)
1440 {
1441 	u_int64_t ism;
1442 
1443 	if (m == 0)
1444 		ism = HT_INFINITY;
1445 	else
1446 		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1447 	return (ism);
1448 }
1449 
1450 static inline u_int64_t
d2dx(u_int d)1451 d2dx(u_int d)
1452 {
1453 	u_int64_t dx;
1454 
1455 	dx = ((u_int64_t)d * machclk_freq) / 1000;
1456 	return (dx);
1457 }
1458 
1459 static u_int
sm2m(u_int64_t sm)1460 sm2m(u_int64_t sm)
1461 {
1462 	u_int64_t m;
1463 
1464 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1465 	return ((u_int)m);
1466 }
1467 
1468 static u_int
dx2d(u_int64_t dx)1469 dx2d(u_int64_t dx)
1470 {
1471 	u_int64_t d;
1472 
1473 	d = dx * 1000 / machclk_freq;
1474 	return ((u_int)d);
1475 }
1476 
1477 static void
sc2isc(struct service_curve * sc,struct internal_sc * isc)1478 sc2isc(struct service_curve *sc, struct internal_sc *isc)
1479 {
1480 	isc->sm1 = m2sm(sc->m1);
1481 	isc->ism1 = m2ism(sc->m1);
1482 	isc->dx = d2dx(sc->d);
1483 	isc->dy = seg_x2y(isc->dx, isc->sm1);
1484 	isc->sm2 = m2sm(sc->m2);
1485 	isc->ism2 = m2ism(sc->m2);
1486 }
1487 
1488 /*
1489  * initialize the runtime service curve with the given internal
1490  * service curve starting at (x, y).
1491  */
1492 static void
rtsc_init(struct runtime_sc * rtsc,struct internal_sc * isc,u_int64_t x,u_int64_t y)1493 rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
1494     u_int64_t y)
1495 {
1496 	rtsc->x =	x;
1497 	rtsc->y =	y;
1498 	rtsc->sm1 =	isc->sm1;
1499 	rtsc->ism1 =	isc->ism1;
1500 	rtsc->dx =	isc->dx;
1501 	rtsc->dy =	isc->dy;
1502 	rtsc->sm2 =	isc->sm2;
1503 	rtsc->ism2 =	isc->ism2;
1504 }
1505 
1506 /*
1507  * calculate the y-projection of the runtime service curve by the
1508  * given x-projection value
1509  */
1510 static u_int64_t
rtsc_y2x(struct runtime_sc * rtsc,u_int64_t y)1511 rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
1512 {
1513 	u_int64_t	x;
1514 
1515 	if (y < rtsc->y)
1516 		x = rtsc->x;
1517 	else if (y <= rtsc->y + rtsc->dy) {
1518 		/* x belongs to the 1st segment */
1519 		if (rtsc->dy == 0)
1520 			x = rtsc->x + rtsc->dx;
1521 		else
1522 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1523 	} else {
1524 		/* x belongs to the 2nd segment */
1525 		x = rtsc->x + rtsc->dx
1526 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1527 	}
1528 	return (x);
1529 }
1530 
1531 static u_int64_t
rtsc_x2y(struct runtime_sc * rtsc,u_int64_t x)1532 rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
1533 {
1534 	u_int64_t	y;
1535 
1536 	if (x <= rtsc->x)
1537 		y = rtsc->y;
1538 	else if (x <= rtsc->x + rtsc->dx)
1539 		/* y belongs to the 1st segment */
1540 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1541 	else
1542 		/* y belongs to the 2nd segment */
1543 		y = rtsc->y + rtsc->dy
1544 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1545 	return (y);
1546 }
1547 
1548 /*
1549  * update the runtime service curve by taking the minimum of the current
1550  * runtime service curve and the service curve starting at (x, y).
1551  */
1552 static void
rtsc_min(struct runtime_sc * rtsc,struct internal_sc * isc,u_int64_t x,u_int64_t y)1553 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
1554     u_int64_t y)
1555 {
1556 	u_int64_t	y1, y2, dx, dy;
1557 
1558 	if (isc->sm1 <= isc->sm2) {
1559 		/* service curve is convex */
1560 		y1 = rtsc_x2y(rtsc, x);
1561 		if (y1 < y)
1562 			/* the current rtsc is smaller */
1563 			return;
1564 		rtsc->x = x;
1565 		rtsc->y = y;
1566 		return;
1567 	}
1568 
1569 	/*
1570 	 * service curve is concave
1571 	 * compute the two y values of the current rtsc
1572 	 *	y1: at x
1573 	 *	y2: at (x + dx)
1574 	 */
1575 	y1 = rtsc_x2y(rtsc, x);
1576 	if (y1 <= y) {
1577 		/* rtsc is below isc, no change to rtsc */
1578 		return;
1579 	}
1580 
1581 	y2 = rtsc_x2y(rtsc, x + isc->dx);
1582 	if (y2 >= y + isc->dy) {
1583 		/* rtsc is above isc, replace rtsc by isc */
1584 		rtsc->x = x;
1585 		rtsc->y = y;
1586 		rtsc->dx = isc->dx;
1587 		rtsc->dy = isc->dy;
1588 		return;
1589 	}
1590 
1591 	/*
1592 	 * the two curves intersect
1593 	 * compute the offsets (dx, dy) using the reverse
1594 	 * function of seg_x2y()
1595 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1596 	 */
1597 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1598 	/*
1599 	 * check if (x, y1) belongs to the 1st segment of rtsc.
1600 	 * if so, add the offset.
1601 	 */
1602 	if (rtsc->x + rtsc->dx > x)
1603 		dx += rtsc->x + rtsc->dx - x;
1604 	dy = seg_x2y(dx, isc->sm1);
1605 
1606 	rtsc->x = x;
1607 	rtsc->y = y;
1608 	rtsc->dx = dx;
1609 	rtsc->dy = dy;
1610 	return;
1611 }
1612 
1613 static void
get_class_stats(struct hfsc_classstats * sp,struct hfsc_class * cl)1614 get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1615 {
1616 	sp->class_id = cl->cl_id;
1617 	sp->class_handle = cl->cl_handle;
1618 
1619 	if (cl->cl_rsc != NULL) {
1620 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1621 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1622 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1623 	} else {
1624 		sp->rsc.m1 = 0;
1625 		sp->rsc.d = 0;
1626 		sp->rsc.m2 = 0;
1627 	}
1628 	if (cl->cl_fsc != NULL) {
1629 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1630 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1631 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1632 	} else {
1633 		sp->fsc.m1 = 0;
1634 		sp->fsc.d = 0;
1635 		sp->fsc.m2 = 0;
1636 	}
1637 	if (cl->cl_usc != NULL) {
1638 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1639 		sp->usc.d = dx2d(cl->cl_usc->dx);
1640 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1641 	} else {
1642 		sp->usc.m1 = 0;
1643 		sp->usc.d = 0;
1644 		sp->usc.m2 = 0;
1645 	}
1646 
1647 	sp->total = cl->cl_total;
1648 	sp->cumul = cl->cl_cumul;
1649 
1650 	sp->d = cl->cl_d;
1651 	sp->e = cl->cl_e;
1652 	sp->vt = cl->cl_vt;
1653 	sp->f = cl->cl_f;
1654 
1655 	sp->initvt = cl->cl_initvt;
1656 	sp->vtperiod = cl->cl_vtperiod;
1657 	sp->parentperiod = cl->cl_parentperiod;
1658 	sp->nactive = cl->cl_nactive;
1659 	sp->vtoff = cl->cl_vtoff;
1660 	sp->cvtmax = cl->cl_cvtmax;
1661 	sp->myf = cl->cl_myf;
1662 	sp->cfmin = cl->cl_cfmin;
1663 	sp->cvtmin = cl->cl_cvtmin;
1664 	sp->myfadj = cl->cl_myfadj;
1665 	sp->vtadj = cl->cl_vtadj;
1666 
1667 	sp->cur_time = read_machclk();
1668 	sp->machclk_freq = machclk_freq;
1669 
1670 	sp->qlength = qlen(cl->cl_q);
1671 	sp->qlimit = qlimit(cl->cl_q);
1672 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1673 	sp->drop_cnt = cl->cl_stats.drop_cnt;
1674 	sp->period = cl->cl_stats.period;
1675 
1676 	sp->qtype = qtype(cl->cl_q);
1677 #ifdef ALTQ_RED
1678 	if (q_is_red(cl->cl_q))
1679 		red_getstats(cl->cl_red, &sp->red[0]);
1680 #endif
1681 #ifdef ALTQ_RIO
1682 	if (q_is_rio(cl->cl_q))
1683 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1684 #endif
1685 }
1686 
1687 /* convert a class handle to the corresponding class pointer */
1688 static struct hfsc_class *
clh_to_clp(struct hfsc_if * hif,u_int32_t chandle)1689 clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
1690 {
1691 	int i;
1692 	struct hfsc_class *cl;
1693 
1694 	if (chandle == 0)
1695 		return (NULL);
1696 	/*
1697 	 * first, try optimistically the slot matching the lower bits of
1698 	 * the handle.  if it fails, do the linear table search.
1699 	 */
1700 	i = chandle % HFSC_MAX_CLASSES;
1701 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1702 		return (cl);
1703 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1704 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1705 		    cl->cl_handle == chandle)
1706 			return (cl);
1707 	return (NULL);
1708 }
1709 
1710 #ifdef ALTQ3_COMPAT
1711 static struct hfsc_if *
hfsc_attach(struct ifaltq * ifq,u_int bandwidth)1712 hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
1713 {
1714 	struct hfsc_if *hif;
1715 
1716 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
1717 	if (hif == NULL)
1718 		return (NULL);
1719 
1720 	hif->hif_eligible = ellist_alloc();
1721 	if (hif->hif_eligible == NULL) {
1722 		free(hif, M_DEVBUF);
1723 		return NULL;
1724 	}
1725 
1726 	hif->hif_ifq = ifq;
1727 
1728 	/* add this state to the hfsc list */
1729 	hif->hif_next = hif_list;
1730 	hif_list = hif;
1731 
1732 	return (hif);
1733 }
1734 
1735 static void
hfsc_detach(struct hfsc_if * hif)1736 hfsc_detach(struct hfsc_if *hif)
1737 {
1738 	(void)hfsc_clear_interface(hif);
1739 	(void)hfsc_class_destroy(hif->hif_rootclass);
1740 
1741 	/* remove this interface from the hif list */
1742 	if (hif_list == hif)
1743 		hif_list = hif->hif_next;
1744 	else {
1745 		struct hfsc_if *h;
1746 
1747 		for (h = hif_list; h != NULL; h = h->hif_next)
1748 			if (h->hif_next == hif) {
1749 				h->hif_next = hif->hif_next;
1750 				break;
1751 			}
1752 		ASSERT(h != NULL);
1753 	}
1754 
1755 	ellist_destroy(hif->hif_eligible);
1756 
1757 	free(hif, M_DEVBUF);
1758 }
1759 
1760 static int
hfsc_class_modify(struct hfsc_class * cl,struct service_curve * rsc,struct service_curve * fsc,struct service_curve * usc)1761 hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
1762     struct service_curve *fsc, struct service_curve *usc)
1763 {
1764 	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
1765 	u_int64_t cur_time;
1766 	int s;
1767 
1768 	rsc_tmp = fsc_tmp = usc_tmp = NULL;
1769 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
1770 	    cl->cl_rsc == NULL) {
1771 		rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1772 		    M_WAITOK);
1773 		if (rsc_tmp == NULL)
1774 			return (ENOMEM);
1775 	}
1776 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
1777 	    cl->cl_fsc == NULL) {
1778 		fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1779 		    M_WAITOK);
1780 		if (fsc_tmp == NULL)
1781 			return (ENOMEM);
1782 	}
1783 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
1784 	    cl->cl_usc == NULL) {
1785 		usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1786 		    M_WAITOK);
1787 		if (usc_tmp == NULL)
1788 			return (ENOMEM);
1789 	}
1790 
1791 	cur_time = read_machclk();
1792 	s = splnet();
1793 
1794 	if (rsc != NULL) {
1795 		if (rsc->m1 == 0 && rsc->m2 == 0) {
1796 			if (cl->cl_rsc != NULL) {
1797 				if (!qempty(cl->cl_q))
1798 					hfsc_purgeq(cl);
1799 				free(cl->cl_rsc, M_DEVBUF);
1800 				cl->cl_rsc = NULL;
1801 			}
1802 		} else {
1803 			if (cl->cl_rsc == NULL)
1804 				cl->cl_rsc = rsc_tmp;
1805 			sc2isc(rsc, cl->cl_rsc);
1806 			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
1807 			    cl->cl_cumul);
1808 			cl->cl_eligible = cl->cl_deadline;
1809 			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
1810 				cl->cl_eligible.dx = 0;
1811 				cl->cl_eligible.dy = 0;
1812 			}
1813 		}
1814 	}
1815 
1816 	if (fsc != NULL) {
1817 		if (fsc->m1 == 0 && fsc->m2 == 0) {
1818 			if (cl->cl_fsc != NULL) {
1819 				if (!qempty(cl->cl_q))
1820 					hfsc_purgeq(cl);
1821 				free(cl->cl_fsc, M_DEVBUF);
1822 				cl->cl_fsc = NULL;
1823 			}
1824 		} else {
1825 			if (cl->cl_fsc == NULL)
1826 				cl->cl_fsc = fsc_tmp;
1827 			sc2isc(fsc, cl->cl_fsc);
1828 			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
1829 			    cl->cl_total);
1830 		}
1831 	}
1832 
1833 	if (usc != NULL) {
1834 		if (usc->m1 == 0 && usc->m2 == 0) {
1835 			if (cl->cl_usc != NULL) {
1836 				free(cl->cl_usc, M_DEVBUF);
1837 				cl->cl_usc = NULL;
1838 				cl->cl_myf = 0;
1839 			}
1840 		} else {
1841 			if (cl->cl_usc == NULL)
1842 				cl->cl_usc = usc_tmp;
1843 			sc2isc(usc, cl->cl_usc);
1844 			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
1845 			    cl->cl_total);
1846 		}
1847 	}
1848 
1849 	if (!qempty(cl->cl_q)) {
1850 		if (cl->cl_rsc != NULL)
1851 			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
1852 		if (cl->cl_fsc != NULL)
1853 			update_vf(cl, 0, cur_time);
1854 		/* is this enough? */
1855 	}
1856 
1857 	splx(s);
1858 
1859 	return (0);
1860 }
1861 
1862 /*
1863  * hfsc device interface
1864  */
1865 int
hfscopen(dev_t dev,int flag,int fmt,struct lwp * l)1866 hfscopen(dev_t dev, int flag, int fmt,
1867     struct lwp *l)
1868 {
1869 	if (machclk_freq == 0)
1870 		init_machclk();
1871 
1872 	if (machclk_freq == 0) {
1873 		printf("hfsc: no CPU clock available!\n");
1874 		return (ENXIO);
1875 	}
1876 
1877 	/* everything will be done when the queueing scheme is attached. */
1878 	return 0;
1879 }
1880 
1881 int
hfscclose(dev_t dev,int flag,int fmt,struct lwp * l)1882 hfscclose(dev_t dev, int flag, int fmt,
1883     struct lwp *l)
1884 {
1885 	struct hfsc_if *hif;
1886 
1887 	while ((hif = hif_list) != NULL) {
1888 		/* destroy all */
1889 		if (ALTQ_IS_ENABLED(hif->hif_ifq))
1890 			altq_disable(hif->hif_ifq);
1891 
1892 		int error = altq_detach(hif->hif_ifq);
1893 		switch (error) {
1894 		case 0:
1895 		case ENXIO:	/* already disabled */
1896 			break;
1897 		default:
1898 			return error;
1899 		}
1900 		hfsc_detach(hif);
1901 	}
1902 
1903 	return 0;
1904 }
1905 
1906 int
hfscioctl(dev_t dev,ioctlcmd_t cmd,void * addr,int flag,struct lwp * l)1907 hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
1908     struct lwp *l)
1909 {
1910 	struct hfsc_if *hif;
1911 	struct hfsc_interface *ifacep;
1912 	int	error = 0;
1913 
1914 	/* check super-user privilege */
1915 	switch (cmd) {
1916 	case HFSC_GETSTATS:
1917 		break;
1918 	default:
1919 		if ((error = kauth_authorize_network(l->l_cred,
1920 		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
1921 		    NULL, NULL)) != 0)
1922 			return (error);
1923 		break;
1924 	}
1925 
1926 	switch (cmd) {
1927 
1928 	case HFSC_IF_ATTACH:
1929 		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1930 		break;
1931 
1932 	case HFSC_IF_DETACH:
1933 		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1934 		break;
1935 
1936 	case HFSC_ENABLE:
1937 	case HFSC_DISABLE:
1938 	case HFSC_CLEAR_HIERARCHY:
1939 		ifacep = (struct hfsc_interface *)addr;
1940 		if ((hif = altq_lookup(ifacep->hfsc_ifname,
1941 				       ALTQT_HFSC)) == NULL) {
1942 			error = EBADF;
1943 			break;
1944 		}
1945 
1946 		switch (cmd) {
1947 
1948 		case HFSC_ENABLE:
1949 			if (hif->hif_defaultclass == NULL) {
1950 #ifdef ALTQ_DEBUG
1951 				printf("hfsc: no default class\n");
1952 #endif
1953 				error = EINVAL;
1954 				break;
1955 			}
1956 			error = altq_enable(hif->hif_ifq);
1957 			break;
1958 
1959 		case HFSC_DISABLE:
1960 			error = altq_disable(hif->hif_ifq);
1961 			break;
1962 
1963 		case HFSC_CLEAR_HIERARCHY:
1964 			hfsc_clear_interface(hif);
1965 			break;
1966 		}
1967 		break;
1968 
1969 	case HFSC_ADD_CLASS:
1970 		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1971 		break;
1972 
1973 	case HFSC_DEL_CLASS:
1974 		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1975 		break;
1976 
1977 	case HFSC_MOD_CLASS:
1978 		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1979 		break;
1980 
1981 	case HFSC_ADD_FILTER:
1982 		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1983 		break;
1984 
1985 	case HFSC_DEL_FILTER:
1986 		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1987 		break;
1988 
1989 	case HFSC_GETSTATS:
1990 		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1991 		break;
1992 
1993 	default:
1994 		error = EINVAL;
1995 		break;
1996 	}
1997 	return error;
1998 }
1999 
2000 static int
hfsccmd_if_attach(struct hfsc_attach * ap)2001 hfsccmd_if_attach(struct hfsc_attach *ap)
2002 {
2003 	struct hfsc_if *hif;
2004 	struct ifnet *ifp;
2005 	int error;
2006 
2007 	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
2008 		return (ENXIO);
2009 
2010 	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
2011 		return (ENOMEM);
2012 
2013 	/*
2014 	 * set HFSC to this ifnet structure.
2015 	 */
2016 	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
2017 				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
2018 				 &hif->hif_classifier, acc_classify)) != 0)
2019 		hfsc_detach(hif);
2020 
2021 	return (error);
2022 }
2023 
2024 static int
hfsccmd_if_detach(struct hfsc_interface * ap)2025 hfsccmd_if_detach(struct hfsc_interface *ap)
2026 {
2027 	struct hfsc_if *hif;
2028 	int error;
2029 
2030 	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
2031 		return (EBADF);
2032 
2033 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
2034 		altq_disable(hif->hif_ifq);
2035 
2036 	if ((error = altq_detach(hif->hif_ifq)))
2037 		return (error);
2038 
2039 	hfsc_detach(hif);
2040 	return 0;
2041 }
2042 
2043 static int
hfsccmd_add_class(struct hfsc_add_class * ap)2044 hfsccmd_add_class(struct hfsc_add_class *ap)
2045 {
2046 	struct hfsc_if *hif;
2047 	struct hfsc_class *cl, *parent;
2048 	int	i;
2049 
2050 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2051 		return (EBADF);
2052 
2053 	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
2054 	    hif->hif_rootclass == NULL)
2055 		parent = NULL;
2056 	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
2057 		return (EINVAL);
2058 
2059 	/* assign a class handle (use a free slot number for now) */
2060 	for (i = 1; i < HFSC_MAX_CLASSES; i++)
2061 		if (hif->hif_class_tbl[i] == NULL)
2062 			break;
2063 	if (i == HFSC_MAX_CLASSES)
2064 		return (EBUSY);
2065 
2066 	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
2067 	    parent, ap->qlimit, ap->flags, i)) == NULL)
2068 		return (ENOMEM);
2069 
2070 	/* return a class handle to the user */
2071 	ap->class_handle = i;
2072 
2073 	return (0);
2074 }
2075 
2076 static int
hfsccmd_delete_class(struct hfsc_delete_class * ap)2077 hfsccmd_delete_class(struct hfsc_delete_class *ap)
2078 {
2079 	struct hfsc_if *hif;
2080 	struct hfsc_class *cl;
2081 
2082 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2083 		return (EBADF);
2084 
2085 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2086 		return (EINVAL);
2087 
2088 	return hfsc_class_destroy(cl);
2089 }
2090 
2091 static int
hfsccmd_modify_class(struct hfsc_modify_class * ap)2092 hfsccmd_modify_class(struct hfsc_modify_class *ap)
2093 {
2094 	struct hfsc_if *hif;
2095 	struct hfsc_class *cl;
2096 	struct service_curve *rsc = NULL;
2097 	struct service_curve *fsc = NULL;
2098 	struct service_curve *usc = NULL;
2099 
2100 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2101 		return (EBADF);
2102 
2103 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2104 		return (EINVAL);
2105 
2106 	if (ap->sctype & HFSC_REALTIMESC)
2107 		rsc = &ap->service_curve;
2108 	if (ap->sctype & HFSC_LINKSHARINGSC)
2109 		fsc = &ap->service_curve;
2110 	if (ap->sctype & HFSC_UPPERLIMITSC)
2111 		usc = &ap->service_curve;
2112 
2113 	return hfsc_class_modify(cl, rsc, fsc, usc);
2114 }
2115 
2116 static int
hfsccmd_add_filter(struct hfsc_add_filter * ap)2117 hfsccmd_add_filter(struct hfsc_add_filter *ap)
2118 {
2119 	struct hfsc_if *hif;
2120 	struct hfsc_class *cl;
2121 
2122 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2123 		return (EBADF);
2124 
2125 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2126 		return (EINVAL);
2127 
2128 	if (is_a_parent_class(cl)) {
2129 #ifdef ALTQ_DEBUG
2130 		printf("hfsccmd_add_filter: not a leaf class!\n");
2131 #endif
2132 		return (EINVAL);
2133 	}
2134 
2135 	return acc_add_filter(&hif->hif_classifier, &ap->filter,
2136 			      cl, &ap->filter_handle);
2137 }
2138 
2139 static int
hfsccmd_delete_filter(struct hfsc_delete_filter * ap)2140 hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
2141 {
2142 	struct hfsc_if *hif;
2143 
2144 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2145 		return (EBADF);
2146 
2147 	return acc_delete_filter(&hif->hif_classifier,
2148 				 ap->filter_handle);
2149 }
2150 
2151 static int
hfsccmd_class_stats(struct hfsc_class_stats * ap)2152 hfsccmd_class_stats(struct hfsc_class_stats *ap)
2153 {
2154 	struct hfsc_if *hif;
2155 	struct hfsc_class *cl;
2156 	struct hfsc_classstats stats, *usp;
2157 	int	n, nclasses, error;
2158 
2159 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2160 		return (EBADF);
2161 
2162 	ap->cur_time = read_machclk();
2163 	ap->machclk_freq = machclk_freq;
2164 	ap->hif_classes = hif->hif_classes;
2165 	ap->hif_packets = hif->hif_packets;
2166 
2167 	/* skip the first N classes in the tree */
2168 	nclasses = ap->nskip;
2169 	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
2170 	     cl = hfsc_nextclass(cl), n++)
2171 		;
2172 	if (n != nclasses)
2173 		return (EINVAL);
2174 
2175 	/* then, read the next N classes in the tree */
2176 	nclasses = ap->nclasses;
2177 	usp = ap->stats;
2178 	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
2179 
2180 		memset(&stats, 0, sizeof(stats));
2181 		get_class_stats(&stats, cl);
2182 
2183 		if ((error = copyout((void *)&stats, (void *)usp++,
2184 				     sizeof(stats))) != 0)
2185 			return (error);
2186 	}
2187 
2188 	ap->nclasses = n;
2189 
2190 	return (0);
2191 }
2192 
2193 #ifdef KLD_MODULE
2194 
2195 static struct altqsw hfsc_sw =
2196 	{"hfsc", hfscopen, hfscclose, hfscioctl};
2197 
2198 ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
2199 MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
2200 MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
2201 
2202 #endif /* KLD_MODULE */
2203 #endif /* ALTQ3_COMPAT */
2204 
2205 #endif /* ALTQ_HFSC */
2206