1 /*	$NetBSD: altq_hfsc.c,v 1.26 2016/04/20 08:58:48 knakahara Exp $	*/
2 /*	$KAME: altq_hfsc.c,v 1.26 2005/04/13 03:44:24 suz Exp $	*/
3 
4 /*
5  * Copyright (c) 1997-1999 Carnegie Mellon University. All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this software and
8  * its documentation is hereby granted (including for commercial or
9  * for-profit use), provided that both the copyright notice and this
10  * permission notice appear in all copies of the software, derivative
11  * works, or modified versions, and any portions thereof.
12  *
13  * THIS SOFTWARE IS EXPERIMENTAL AND IS KNOWN TO HAVE BUGS, SOME OF
14  * WHICH MAY HAVE SERIOUS CONSEQUENCES.  CARNEGIE MELLON PROVIDES THIS
15  * SOFTWARE IN ITS ``AS IS'' CONDITION, AND ANY EXPRESS OR IMPLIED
16  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18  * DISCLAIMED.  IN NO EVENT SHALL CARNEGIE MELLON UNIVERSITY BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
21  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
22  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
25  * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
26  * DAMAGE.
27  *
28  * Carnegie Mellon encourages (but does not require) users of this
29  * software to return any improvements or extensions that they make,
30  * and to grant Carnegie Mellon the rights to redistribute these
31  * changes without encumbrance.
32  */
33 /*
34  * H-FSC is described in Proceedings of SIGCOMM'97,
35  * "A Hierarchical Fair Service Curve Algorithm for Link-Sharing,
36  * Real-Time and Priority Service"
37  * by Ion Stoica, Hui Zhang, and T. S. Eugene Ng.
38  *
39  * Oleg Cherevko <olwi@aq.ml.com.ua> added the upperlimit for link-sharing.
40  * when a class has an upperlimit, the fit-time is computed from the
41  * upperlimit service curve.  the link-sharing scheduler does not schedule
42  * a class whose fit-time exceeds the current time.
43  */
44 
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: altq_hfsc.c,v 1.26 2016/04/20 08:58:48 knakahara Exp $");
47 
48 #ifdef _KERNEL_OPT
49 #include "opt_altq.h"
50 #include "opt_inet.h"
51 #include "pf.h"
52 #endif
53 
54 #ifdef ALTQ_HFSC  /* hfsc is enabled by ALTQ_HFSC option in opt_altq.h */
55 
56 #include <sys/param.h>
57 #include <sys/malloc.h>
58 #include <sys/mbuf.h>
59 #include <sys/socket.h>
60 #include <sys/systm.h>
61 #include <sys/errno.h>
62 #include <sys/queue.h>
63 #if 1 /* ALTQ3_COMPAT */
64 #include <sys/sockio.h>
65 #include <sys/proc.h>
66 #include <sys/kernel.h>
67 #endif /* ALTQ3_COMPAT */
68 #include <sys/kauth.h>
69 
70 #include <net/if.h>
71 #include <netinet/in.h>
72 
73 #if NPF > 0
74 #include <net/pfvar.h>
75 #endif
76 #include <altq/altq.h>
77 #include <altq/altq_hfsc.h>
78 #ifdef ALTQ3_COMPAT
79 #include <altq/altq_conf.h>
80 #endif
81 
82 /*
83  * function prototypes
84  */
85 static int			 hfsc_clear_interface(struct hfsc_if *);
86 static int			 hfsc_request(struct ifaltq *, int, void *);
87 static void			 hfsc_purge(struct hfsc_if *);
88 static struct hfsc_class	*hfsc_class_create(struct hfsc_if *,
89     struct service_curve *, struct service_curve *, struct service_curve *,
90     struct hfsc_class *, int, int, int);
91 static int			 hfsc_class_destroy(struct hfsc_class *);
92 static struct hfsc_class	*hfsc_nextclass(struct hfsc_class *);
93 static int			 hfsc_enqueue(struct ifaltq *, struct mbuf *);
94 static struct mbuf		*hfsc_dequeue(struct ifaltq *, int);
95 
96 static int		 hfsc_addq(struct hfsc_class *, struct mbuf *);
97 static struct mbuf	*hfsc_getq(struct hfsc_class *);
98 static struct mbuf	*hfsc_pollq(struct hfsc_class *);
99 static void		 hfsc_purgeq(struct hfsc_class *);
100 
101 static void		 update_cfmin(struct hfsc_class *);
102 static void		 set_active(struct hfsc_class *, int);
103 static void		 set_passive(struct hfsc_class *);
104 
105 static void		 init_ed(struct hfsc_class *, int);
106 static void		 update_ed(struct hfsc_class *, int);
107 static void		 update_d(struct hfsc_class *, int);
108 static void		 init_vf(struct hfsc_class *, int);
109 static void		 update_vf(struct hfsc_class *, int, u_int64_t);
110 static ellist_t		*ellist_alloc(void);
111 static void		 ellist_destroy(ellist_t *);
112 static void		 ellist_insert(struct hfsc_class *);
113 static void		 ellist_remove(struct hfsc_class *);
114 static void		 ellist_update(struct hfsc_class *);
115 struct hfsc_class	*ellist_get_mindl(ellist_t *, u_int64_t);
116 static actlist_t	*actlist_alloc(void);
117 static void		 actlist_destroy(actlist_t *);
118 static void		 actlist_insert(struct hfsc_class *);
119 static void		 actlist_remove(struct hfsc_class *);
120 static void		 actlist_update(struct hfsc_class *);
121 
122 static struct hfsc_class	*actlist_firstfit(struct hfsc_class *,
123 				    u_int64_t);
124 
125 static inline u_int64_t	seg_x2y(u_int64_t, u_int64_t);
126 static inline u_int64_t	seg_y2x(u_int64_t, u_int64_t);
127 static inline u_int64_t	m2sm(u_int);
128 static inline u_int64_t	m2ism(u_int);
129 static inline u_int64_t	d2dx(u_int);
130 static u_int			sm2m(u_int64_t);
131 static u_int			dx2d(u_int64_t);
132 
133 static void		sc2isc(struct service_curve *, struct internal_sc *);
134 static void		rtsc_init(struct runtime_sc *, struct internal_sc *,
135 			    u_int64_t, u_int64_t);
136 static u_int64_t	rtsc_y2x(struct runtime_sc *, u_int64_t);
137 static u_int64_t	rtsc_x2y(struct runtime_sc *, u_int64_t);
138 static void		rtsc_min(struct runtime_sc *, struct internal_sc *,
139 			    u_int64_t, u_int64_t);
140 
141 static void			 get_class_stats(struct hfsc_classstats *,
142 				    struct hfsc_class *);
143 static struct hfsc_class	*clh_to_clp(struct hfsc_if *, u_int32_t);
144 
145 
146 #ifdef ALTQ3_COMPAT
147 static struct hfsc_if *hfsc_attach(struct ifaltq *, u_int);
148 static void hfsc_detach(struct hfsc_if *);
149 static int hfsc_class_modify(struct hfsc_class *, struct service_curve *,
150     struct service_curve *, struct service_curve *);
151 
152 static int hfsccmd_if_attach(struct hfsc_attach *);
153 static int hfsccmd_if_detach(struct hfsc_interface *);
154 static int hfsccmd_add_class(struct hfsc_add_class *);
155 static int hfsccmd_delete_class(struct hfsc_delete_class *);
156 static int hfsccmd_modify_class(struct hfsc_modify_class *);
157 static int hfsccmd_add_filter(struct hfsc_add_filter *);
158 static int hfsccmd_delete_filter(struct hfsc_delete_filter *);
159 static int hfsccmd_class_stats(struct hfsc_class_stats *);
160 
161 altqdev_decl(hfsc);
162 #endif /* ALTQ3_COMPAT */
163 
164 /*
165  * macros
166  */
167 #define	is_a_parent_class(cl)	((cl)->cl_children != NULL)
168 
169 #define	HT_INFINITY	0xffffffffffffffffLL	/* infinite time value */
170 
171 #ifdef ALTQ3_COMPAT
172 /* hif_list keeps all hfsc_if's allocated. */
173 static struct hfsc_if *hif_list = NULL;
174 #endif /* ALTQ3_COMPAT */
175 
176 #if NPF > 0
177 int
hfsc_pfattach(struct pf_altq * a)178 hfsc_pfattach(struct pf_altq *a)
179 {
180 	struct ifnet *ifp;
181 	int s, error;
182 
183 	if ((ifp = ifunit(a->ifname)) == NULL || a->altq_disc == NULL)
184 		return (EINVAL);
185 	s = splnet();
186 	error = altq_attach(&ifp->if_snd, ALTQT_HFSC, a->altq_disc,
187 	    hfsc_enqueue, hfsc_dequeue, hfsc_request, NULL, NULL);
188 	splx(s);
189 	return (error);
190 }
191 
192 int
hfsc_add_altq(struct pf_altq * a)193 hfsc_add_altq(struct pf_altq *a)
194 {
195 	struct hfsc_if *hif;
196 	struct ifnet *ifp;
197 
198 	if ((ifp = ifunit(a->ifname)) == NULL)
199 		return (EINVAL);
200 	if (!ALTQ_IS_READY(&ifp->if_snd))
201 		return (ENODEV);
202 
203 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
204 	if (hif == NULL)
205 		return (ENOMEM);
206 
207 	hif->hif_eligible = ellist_alloc();
208 	if (hif->hif_eligible == NULL) {
209 		free(hif, M_DEVBUF);
210 		return (ENOMEM);
211 	}
212 
213 	hif->hif_ifq = &ifp->if_snd;
214 
215 	/* keep the state in pf_altq */
216 	a->altq_disc = hif;
217 
218 	return (0);
219 }
220 
221 int
hfsc_remove_altq(struct pf_altq * a)222 hfsc_remove_altq(struct pf_altq *a)
223 {
224 	struct hfsc_if *hif;
225 
226 	if ((hif = a->altq_disc) == NULL)
227 		return (EINVAL);
228 	a->altq_disc = NULL;
229 
230 	(void)hfsc_clear_interface(hif);
231 	(void)hfsc_class_destroy(hif->hif_rootclass);
232 
233 	ellist_destroy(hif->hif_eligible);
234 
235 	free(hif, M_DEVBUF);
236 
237 	return (0);
238 }
239 
240 int
hfsc_add_queue(struct pf_altq * a)241 hfsc_add_queue(struct pf_altq *a)
242 {
243 	struct hfsc_if *hif;
244 	struct hfsc_class *cl, *parent;
245 	struct hfsc_opts *opts;
246 	struct service_curve rtsc, lssc, ulsc;
247 
248 	if ((hif = a->altq_disc) == NULL)
249 		return (EINVAL);
250 
251 	opts = &a->pq_u.hfsc_opts;
252 
253 	if (a->parent_qid == HFSC_NULLCLASS_HANDLE &&
254 	    hif->hif_rootclass == NULL)
255 		parent = NULL;
256 	else if ((parent = clh_to_clp(hif, a->parent_qid)) == NULL)
257 		return (EINVAL);
258 
259 	if (a->qid == 0)
260 		return (EINVAL);
261 
262 	if (clh_to_clp(hif, a->qid) != NULL)
263 		return (EBUSY);
264 
265 	rtsc.m1 = opts->rtsc_m1;
266 	rtsc.d  = opts->rtsc_d;
267 	rtsc.m2 = opts->rtsc_m2;
268 	lssc.m1 = opts->lssc_m1;
269 	lssc.d  = opts->lssc_d;
270 	lssc.m2 = opts->lssc_m2;
271 	ulsc.m1 = opts->ulsc_m1;
272 	ulsc.d  = opts->ulsc_d;
273 	ulsc.m2 = opts->ulsc_m2;
274 
275 	cl = hfsc_class_create(hif, &rtsc, &lssc, &ulsc,
276 	    parent, a->qlimit, opts->flags, a->qid);
277 	if (cl == NULL)
278 		return (ENOMEM);
279 
280 	return (0);
281 }
282 
283 int
hfsc_remove_queue(struct pf_altq * a)284 hfsc_remove_queue(struct pf_altq *a)
285 {
286 	struct hfsc_if *hif;
287 	struct hfsc_class *cl;
288 
289 	if ((hif = a->altq_disc) == NULL)
290 		return (EINVAL);
291 
292 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
293 		return (EINVAL);
294 
295 	return (hfsc_class_destroy(cl));
296 }
297 
298 int
hfsc_getqstats(struct pf_altq * a,void * ubuf,int * nbytes)299 hfsc_getqstats(struct pf_altq *a, void *ubuf, int *nbytes)
300 {
301 	struct hfsc_if *hif;
302 	struct hfsc_class *cl;
303 	struct hfsc_classstats stats;
304 	int error = 0;
305 
306 	if ((hif = altq_lookup(a->ifname, ALTQT_HFSC)) == NULL)
307 		return (EBADF);
308 
309 	if ((cl = clh_to_clp(hif, a->qid)) == NULL)
310 		return (EINVAL);
311 
312 	if (*nbytes < sizeof(stats))
313 		return (EINVAL);
314 
315 	get_class_stats(&stats, cl);
316 
317 	if ((error = copyout((void *)&stats, ubuf, sizeof(stats))) != 0)
318 		return (error);
319 	*nbytes = sizeof(stats);
320 	return (0);
321 }
322 #endif /* NPF > 0 */
323 
324 /*
325  * bring the interface back to the initial state by discarding
326  * all the filters and classes except the root class.
327  */
328 static int
hfsc_clear_interface(struct hfsc_if * hif)329 hfsc_clear_interface(struct hfsc_if *hif)
330 {
331 	struct hfsc_class	*cl;
332 
333 #ifdef ALTQ3_COMPAT
334 	/* free the filters for this interface */
335 	acc_discard_filters(&hif->hif_classifier, NULL, 1);
336 #endif
337 
338 	/* clear out the classes */
339 	while (hif->hif_rootclass != NULL &&
340 	    (cl = hif->hif_rootclass->cl_children) != NULL) {
341 		/*
342 		 * remove the first leaf class found in the hierarchy
343 		 * then start over
344 		 */
345 		for (; cl != NULL; cl = hfsc_nextclass(cl)) {
346 			if (!is_a_parent_class(cl)) {
347 				(void)hfsc_class_destroy(cl);
348 				break;
349 			}
350 		}
351 	}
352 
353 	return (0);
354 }
355 
356 static int
hfsc_request(struct ifaltq * ifq,int req,void * arg)357 hfsc_request(struct ifaltq *ifq, int req, void *arg)
358 {
359 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
360 
361 	switch (req) {
362 	case ALTRQ_PURGE:
363 		hfsc_purge(hif);
364 		break;
365 	}
366 	return (0);
367 }
368 
369 /* discard all the queued packets on the interface */
370 static void
hfsc_purge(struct hfsc_if * hif)371 hfsc_purge(struct hfsc_if *hif)
372 {
373 	struct hfsc_class *cl;
374 
375 	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
376 		if (!qempty(cl->cl_q))
377 			hfsc_purgeq(cl);
378 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
379 		hif->hif_ifq->ifq_len = 0;
380 }
381 
382 struct hfsc_class *
hfsc_class_create(struct hfsc_if * hif,struct service_curve * rsc,struct service_curve * fsc,struct service_curve * usc,struct hfsc_class * parent,int qlimit,int flags,int qid)383 hfsc_class_create(struct hfsc_if *hif, struct service_curve *rsc,
384     struct service_curve *fsc, struct service_curve *usc,
385     struct hfsc_class *parent, int qlimit, int flags, int qid)
386 {
387 	struct hfsc_class *cl, *p;
388 	int i, s;
389 
390 	if (hif->hif_classes >= HFSC_MAX_CLASSES)
391 		return (NULL);
392 
393 #ifndef ALTQ_RED
394 	if (flags & HFCF_RED) {
395 #ifdef ALTQ_DEBUG
396 		printf("hfsc_class_create: RED not configured for HFSC!\n");
397 #endif
398 		return (NULL);
399 	}
400 #endif
401 
402 	cl = malloc(sizeof(struct hfsc_class), M_DEVBUF, M_WAITOK|M_ZERO);
403 	if (cl == NULL)
404 		return (NULL);
405 
406 	cl->cl_q = malloc(sizeof(class_queue_t), M_DEVBUF, M_WAITOK|M_ZERO);
407 	if (cl->cl_q == NULL)
408 		goto err_ret;
409 
410 	cl->cl_actc = actlist_alloc();
411 	if (cl->cl_actc == NULL)
412 		goto err_ret;
413 
414 	if (qlimit == 0)
415 		qlimit = 50;  /* use default */
416 	qlimit(cl->cl_q) = qlimit;
417 	qtype(cl->cl_q) = Q_DROPTAIL;
418 	qlen(cl->cl_q) = 0;
419 	cl->cl_flags = flags;
420 #ifdef ALTQ_RED
421 	if (flags & (HFCF_RED|HFCF_RIO)) {
422 		int red_flags, red_pkttime;
423 		u_int m2;
424 
425 		m2 = 0;
426 		if (rsc != NULL && rsc->m2 > m2)
427 			m2 = rsc->m2;
428 		if (fsc != NULL && fsc->m2 > m2)
429 			m2 = fsc->m2;
430 		if (usc != NULL && usc->m2 > m2)
431 			m2 = usc->m2;
432 
433 		red_flags = 0;
434 		if (flags & HFCF_ECN)
435 			red_flags |= REDF_ECN;
436 #ifdef ALTQ_RIO
437 		if (flags & HFCF_CLEARDSCP)
438 			red_flags |= RIOF_CLEARDSCP;
439 #endif
440 		if (m2 < 8)
441 			red_pkttime = 1000 * 1000 * 1000; /* 1 sec */
442 		else
443 			red_pkttime = (int64_t)hif->hif_ifq->altq_ifp->if_mtu
444 				* 1000 * 1000 * 1000 / (m2 / 8);
445 		if (flags & HFCF_RED) {
446 			cl->cl_red = red_alloc(0, 0,
447 			    qlimit(cl->cl_q) * 10/100,
448 			    qlimit(cl->cl_q) * 30/100,
449 			    red_flags, red_pkttime);
450 			if (cl->cl_red != NULL)
451 				qtype(cl->cl_q) = Q_RED;
452 		}
453 #ifdef ALTQ_RIO
454 		else {
455 			cl->cl_red = (red_t *)rio_alloc(0, NULL,
456 			    red_flags, red_pkttime);
457 			if (cl->cl_red != NULL)
458 				qtype(cl->cl_q) = Q_RIO;
459 		}
460 #endif
461 	}
462 #endif /* ALTQ_RED */
463 
464 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0)) {
465 		cl->cl_rsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
466 		    M_WAITOK|M_ZERO);
467 		if (cl->cl_rsc == NULL)
468 			goto err_ret;
469 		sc2isc(rsc, cl->cl_rsc);
470 		rtsc_init(&cl->cl_deadline, cl->cl_rsc, 0, 0);
471 		rtsc_init(&cl->cl_eligible, cl->cl_rsc, 0, 0);
472 	}
473 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0)) {
474 		cl->cl_fsc = malloc(sizeof(struct internal_sc), M_DEVBUF,
475 		    M_WAITOK|M_ZERO);
476 		if (cl->cl_fsc == NULL)
477 			goto err_ret;
478 		sc2isc(fsc, cl->cl_fsc);
479 		rtsc_init(&cl->cl_virtual, cl->cl_fsc, 0, 0);
480 	}
481 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0)) {
482 		cl->cl_usc = malloc(sizeof(struct internal_sc), M_DEVBUF,
483 		    M_WAITOK|M_ZERO);
484 		if (cl->cl_usc == NULL)
485 			goto err_ret;
486 		sc2isc(usc, cl->cl_usc);
487 		rtsc_init(&cl->cl_ulimit, cl->cl_usc, 0, 0);
488 	}
489 
490 	cl->cl_id = hif->hif_classid++;
491 	cl->cl_handle = qid;
492 	cl->cl_hif = hif;
493 	cl->cl_parent = parent;
494 
495 	s = splnet();
496 	hif->hif_classes++;
497 
498 	/*
499 	 * find a free slot in the class table.  if the slot matching
500 	 * the lower bits of qid is free, use this slot.  otherwise,
501 	 * use the first free slot.
502 	 */
503 	i = qid % HFSC_MAX_CLASSES;
504 	if (hif->hif_class_tbl[i] == NULL)
505 		hif->hif_class_tbl[i] = cl;
506 	else {
507 		for (i = 0; i < HFSC_MAX_CLASSES; i++)
508 			if (hif->hif_class_tbl[i] == NULL) {
509 				hif->hif_class_tbl[i] = cl;
510 				break;
511 			}
512 		if (i == HFSC_MAX_CLASSES) {
513 			splx(s);
514 			goto err_ret;
515 		}
516 	}
517 
518 	if (flags & HFCF_DEFAULTCLASS)
519 		hif->hif_defaultclass = cl;
520 
521 	if (parent == NULL) {
522 		/* this is root class */
523 		hif->hif_rootclass = cl;
524 	} else {
525 		/* add this class to the children list of the parent */
526 		if ((p = parent->cl_children) == NULL)
527 			parent->cl_children = cl;
528 		else {
529 			while (p->cl_siblings != NULL)
530 				p = p->cl_siblings;
531 			p->cl_siblings = cl;
532 		}
533 	}
534 	splx(s);
535 
536 	return (cl);
537 
538  err_ret:
539 	if (cl->cl_actc != NULL)
540 		actlist_destroy(cl->cl_actc);
541 	if (cl->cl_red != NULL) {
542 #ifdef ALTQ_RIO
543 		if (q_is_rio(cl->cl_q))
544 			rio_destroy((rio_t *)cl->cl_red);
545 #endif
546 #ifdef ALTQ_RED
547 		if (q_is_red(cl->cl_q))
548 			red_destroy(cl->cl_red);
549 #endif
550 	}
551 	if (cl->cl_fsc != NULL)
552 		free(cl->cl_fsc, M_DEVBUF);
553 	if (cl->cl_rsc != NULL)
554 		free(cl->cl_rsc, M_DEVBUF);
555 	if (cl->cl_usc != NULL)
556 		free(cl->cl_usc, M_DEVBUF);
557 	if (cl->cl_q != NULL)
558 		free(cl->cl_q, M_DEVBUF);
559 	free(cl, M_DEVBUF);
560 	return (NULL);
561 }
562 
563 static int
hfsc_class_destroy(struct hfsc_class * cl)564 hfsc_class_destroy(struct hfsc_class *cl)
565 {
566 	int i, s;
567 
568 	if (cl == NULL)
569 		return (0);
570 
571 	if (is_a_parent_class(cl))
572 		return (EBUSY);
573 
574 	s = splnet();
575 
576 #ifdef ALTQ3_COMPAT
577 	/* delete filters referencing to this class */
578 	acc_discard_filters(&cl->cl_hif->hif_classifier, cl, 0);
579 #endif /* ALTQ3_COMPAT */
580 
581 	if (!qempty(cl->cl_q))
582 		hfsc_purgeq(cl);
583 
584 	if (cl->cl_parent == NULL) {
585 		/* this is root class */
586 	} else {
587 		struct hfsc_class *p = cl->cl_parent->cl_children;
588 
589 		if (p == cl)
590 			cl->cl_parent->cl_children = cl->cl_siblings;
591 		else do {
592 			if (p->cl_siblings == cl) {
593 				p->cl_siblings = cl->cl_siblings;
594 				break;
595 			}
596 		} while ((p = p->cl_siblings) != NULL);
597 		ASSERT(p != NULL);
598 	}
599 
600 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
601 		if (cl->cl_hif->hif_class_tbl[i] == cl) {
602 			cl->cl_hif->hif_class_tbl[i] = NULL;
603 			break;
604 		}
605 
606 	cl->cl_hif->hif_classes--;
607 	splx(s);
608 
609 	actlist_destroy(cl->cl_actc);
610 
611 	if (cl->cl_red != NULL) {
612 #ifdef ALTQ_RIO
613 		if (q_is_rio(cl->cl_q))
614 			rio_destroy((rio_t *)cl->cl_red);
615 #endif
616 #ifdef ALTQ_RED
617 		if (q_is_red(cl->cl_q))
618 			red_destroy(cl->cl_red);
619 #endif
620 	}
621 
622 	if (cl == cl->cl_hif->hif_rootclass)
623 		cl->cl_hif->hif_rootclass = NULL;
624 	if (cl == cl->cl_hif->hif_defaultclass)
625 		cl->cl_hif->hif_defaultclass = NULL;
626 
627 	if (cl->cl_usc != NULL)
628 		free(cl->cl_usc, M_DEVBUF);
629 	if (cl->cl_fsc != NULL)
630 		free(cl->cl_fsc, M_DEVBUF);
631 	if (cl->cl_rsc != NULL)
632 		free(cl->cl_rsc, M_DEVBUF);
633 	free(cl->cl_q, M_DEVBUF);
634 	free(cl, M_DEVBUF);
635 
636 	return (0);
637 }
638 
639 /*
640  * hfsc_nextclass returns the next class in the tree.
641  *   usage:
642  *	for (cl = hif->hif_rootclass; cl != NULL; cl = hfsc_nextclass(cl))
643  *		do_something;
644  */
645 static struct hfsc_class *
hfsc_nextclass(struct hfsc_class * cl)646 hfsc_nextclass(struct hfsc_class *cl)
647 {
648 	if (cl->cl_children != NULL)
649 		cl = cl->cl_children;
650 	else if (cl->cl_siblings != NULL)
651 		cl = cl->cl_siblings;
652 	else {
653 		while ((cl = cl->cl_parent) != NULL)
654 			if (cl->cl_siblings) {
655 				cl = cl->cl_siblings;
656 				break;
657 			}
658 	}
659 
660 	return (cl);
661 }
662 
663 /*
664  * hfsc_enqueue is an enqueue function to be registered to
665  * (*altq_enqueue) in struct ifaltq.
666  */
667 static int
hfsc_enqueue(struct ifaltq * ifq,struct mbuf * m)668 hfsc_enqueue(struct ifaltq *ifq, struct mbuf *m)
669 {
670 	struct altq_pktattr pktattr;
671 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
672 	struct hfsc_class *cl;
673 	struct m_tag *t;
674 	int len;
675 
676 	/* grab class set by classifier */
677 	if ((m->m_flags & M_PKTHDR) == 0) {
678 		/* should not happen */
679 		printf("altq: packet for %s does not have pkthdr\n",
680 		    ifq->altq_ifp->if_xname);
681 		m_freem(m);
682 		return (ENOBUFS);
683 	}
684 	cl = NULL;
685 	if ((t = m_tag_find(m, PACKET_TAG_ALTQ_QID, NULL)) != NULL)
686 		cl = clh_to_clp(hif, ((struct altq_tag *)(t+1))->qid);
687 #ifdef ALTQ3_COMPAT
688 	else if ((ifq->altq_flags & ALTQF_CLASSIFY))
689 		cl = m->m_pkthdr.pattr_class;
690 #endif
691 	if (cl == NULL || is_a_parent_class(cl)) {
692 		cl = hif->hif_defaultclass;
693 		if (cl == NULL) {
694 			m_freem(m);
695 			return (ENOBUFS);
696 		}
697 	}
698 #ifdef ALTQ3_COMPAT
699 	if (m->m_pkthdr.pattr_af != AF_UNSPEC) {
700 		pktattr.pattr_class = m->m_pkthdr.pattr_class;
701 		pktattr.pattr_af = m->m_pkthdr.pattr_af;
702 		pktattr.pattr_hdr = m->m_pkthdr.pattr_hdr;
703 
704 		cl->cl_pktattr = &pktattr;  /* save proto hdr used by ECN */
705 	} else
706 #endif
707 		cl->cl_pktattr = NULL;
708 	len = m_pktlen(m);
709 	if (hfsc_addq(cl, m) != 0) {
710 		/* drop occurred.  mbuf was freed in hfsc_addq. */
711 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, len);
712 		return (ENOBUFS);
713 	}
714 	IFQ_INC_LEN(ifq);
715 	cl->cl_hif->hif_packets++;
716 
717 	/* successfully queued. */
718 	if (qlen(cl->cl_q) == 1)
719 		set_active(cl, m_pktlen(m));
720 
721 	return (0);
722 }
723 
724 /*
725  * hfsc_dequeue is a dequeue function to be registered to
726  * (*altq_dequeue) in struct ifaltq.
727  *
728  * note: ALTDQ_POLL returns the next packet without removing the packet
729  *	from the queue.  ALTDQ_REMOVE is a normal dequeue operation.
730  *	ALTDQ_REMOVE must return the same packet if called immediately
731  *	after ALTDQ_POLL.
732  */
733 static struct mbuf *
hfsc_dequeue(struct ifaltq * ifq,int op)734 hfsc_dequeue(struct ifaltq *ifq, int op)
735 {
736 	struct hfsc_if	*hif = (struct hfsc_if *)ifq->altq_disc;
737 	struct hfsc_class *cl;
738 	struct mbuf *m;
739 	int len, next_len;
740 	int realtime = 0;
741 	u_int64_t cur_time;
742 
743 	if (hif->hif_packets == 0)
744 		/* no packet in the tree */
745 		return (NULL);
746 
747 	cur_time = read_machclk();
748 
749 	if (op == ALTDQ_REMOVE && hif->hif_pollcache != NULL) {
750 
751 		cl = hif->hif_pollcache;
752 		hif->hif_pollcache = NULL;
753 		/* check if the class was scheduled by real-time criteria */
754 		if (cl->cl_rsc != NULL)
755 			realtime = (cl->cl_e <= cur_time);
756 	} else {
757 		/*
758 		 * if there are eligible classes, use real-time criteria.
759 		 * find the class with the minimum deadline among
760 		 * the eligible classes.
761 		 */
762 		if ((cl = ellist_get_mindl(hif->hif_eligible, cur_time))
763 		    != NULL) {
764 			realtime = 1;
765 		} else {
766 #ifdef ALTQ_DEBUG
767 			int fits = 0;
768 #endif
769 			/*
770 			 * use link-sharing criteria
771 			 * get the class with the minimum vt in the hierarchy
772 			 */
773 			cl = hif->hif_rootclass;
774 			while (is_a_parent_class(cl)) {
775 
776 				cl = actlist_firstfit(cl, cur_time);
777 				if (cl == NULL) {
778 #ifdef ALTQ_DEBUG
779 					if (fits > 0)
780 						printf("%d fit but none found\n",fits);
781 #endif
782 					return (NULL);
783 				}
784 				/*
785 				 * update parent's cl_cvtmin.
786 				 * don't update if the new vt is smaller.
787 				 */
788 				if (cl->cl_parent->cl_cvtmin < cl->cl_vt)
789 					cl->cl_parent->cl_cvtmin = cl->cl_vt;
790 #ifdef ALTQ_DEBUG
791 				fits++;
792 #endif
793 			}
794 		}
795 
796 		if (op == ALTDQ_POLL) {
797 			hif->hif_pollcache = cl;
798 			m = hfsc_pollq(cl);
799 			return (m);
800 		}
801 	}
802 
803 	m = hfsc_getq(cl);
804 	if (m == NULL)
805 		panic("hfsc_dequeue:");
806 	len = m_pktlen(m);
807 	cl->cl_hif->hif_packets--;
808 	IFQ_DEC_LEN(ifq);
809 	PKTCNTR_ADD(&cl->cl_stats.xmit_cnt, len);
810 
811 	update_vf(cl, len, cur_time);
812 	if (realtime)
813 		cl->cl_cumul += len;
814 
815 	if (!qempty(cl->cl_q)) {
816 		if (cl->cl_rsc != NULL) {
817 			/* update ed */
818 			next_len = m_pktlen(qhead(cl->cl_q));
819 
820 			if (realtime)
821 				update_ed(cl, next_len);
822 			else
823 				update_d(cl, next_len);
824 		}
825 	} else {
826 		/* the class becomes passive */
827 		set_passive(cl);
828 	}
829 
830 	return (m);
831 }
832 
833 static int
hfsc_addq(struct hfsc_class * cl,struct mbuf * m)834 hfsc_addq(struct hfsc_class *cl, struct mbuf *m)
835 {
836 
837 #ifdef ALTQ_RIO
838 	if (q_is_rio(cl->cl_q))
839 		return rio_addq((rio_t *)cl->cl_red, cl->cl_q,
840 				m, cl->cl_pktattr);
841 #endif
842 #ifdef ALTQ_RED
843 	if (q_is_red(cl->cl_q))
844 		return red_addq(cl->cl_red, cl->cl_q, m, cl->cl_pktattr);
845 #endif
846 	if (qlen(cl->cl_q) >= qlimit(cl->cl_q)) {
847 		m_freem(m);
848 		return (-1);
849 	}
850 
851 	if (cl->cl_flags & HFCF_CLEARDSCP)
852 		write_dsfield(m, cl->cl_pktattr, 0);
853 
854 	_addq(cl->cl_q, m);
855 
856 	return (0);
857 }
858 
859 static struct mbuf *
hfsc_getq(struct hfsc_class * cl)860 hfsc_getq(struct hfsc_class *cl)
861 {
862 #ifdef ALTQ_RIO
863 	if (q_is_rio(cl->cl_q))
864 		return rio_getq((rio_t *)cl->cl_red, cl->cl_q);
865 #endif
866 #ifdef ALTQ_RED
867 	if (q_is_red(cl->cl_q))
868 		return red_getq(cl->cl_red, cl->cl_q);
869 #endif
870 	return _getq(cl->cl_q);
871 }
872 
873 static struct mbuf *
hfsc_pollq(struct hfsc_class * cl)874 hfsc_pollq(struct hfsc_class *cl)
875 {
876 	return qhead(cl->cl_q);
877 }
878 
879 static void
hfsc_purgeq(struct hfsc_class * cl)880 hfsc_purgeq(struct hfsc_class *cl)
881 {
882 	struct mbuf *m;
883 
884 	if (qempty(cl->cl_q))
885 		return;
886 
887 	while ((m = _getq(cl->cl_q)) != NULL) {
888 		PKTCNTR_ADD(&cl->cl_stats.drop_cnt, m_pktlen(m));
889 		m_freem(m);
890 		cl->cl_hif->hif_packets--;
891 		IFQ_DEC_LEN(cl->cl_hif->hif_ifq);
892 	}
893 	ASSERT(qlen(cl->cl_q) == 0);
894 
895 	update_vf(cl, 0, 0);	/* remove cl from the actlist */
896 	set_passive(cl);
897 }
898 
899 static void
set_active(struct hfsc_class * cl,int len)900 set_active(struct hfsc_class *cl, int len)
901 {
902 	if (cl->cl_rsc != NULL)
903 		init_ed(cl, len);
904 	if (cl->cl_fsc != NULL)
905 		init_vf(cl, len);
906 
907 	cl->cl_stats.period++;
908 }
909 
910 static void
set_passive(struct hfsc_class * cl)911 set_passive(struct hfsc_class *cl)
912 {
913 	if (cl->cl_rsc != NULL)
914 		ellist_remove(cl);
915 
916 	/*
917 	 * actlist is now handled in update_vf() so that update_vf(cl, 0, 0)
918 	 * needs to be called explicitly to remove a class from actlist
919 	 */
920 }
921 
922 static void
init_ed(struct hfsc_class * cl,int next_len)923 init_ed(struct hfsc_class *cl, int next_len)
924 {
925 	u_int64_t cur_time;
926 
927 	cur_time = read_machclk();
928 
929 	/* update the deadline curve */
930 	rtsc_min(&cl->cl_deadline, cl->cl_rsc, cur_time, cl->cl_cumul);
931 
932 	/*
933 	 * update the eligible curve.
934 	 * for concave, it is equal to the deadline curve.
935 	 * for convex, it is a linear curve with slope m2.
936 	 */
937 	cl->cl_eligible = cl->cl_deadline;
938 	if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
939 		cl->cl_eligible.dx = 0;
940 		cl->cl_eligible.dy = 0;
941 	}
942 
943 	/* compute e and d */
944 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
945 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
946 
947 	ellist_insert(cl);
948 }
949 
950 static void
update_ed(struct hfsc_class * cl,int next_len)951 update_ed(struct hfsc_class *cl, int next_len)
952 {
953 	cl->cl_e = rtsc_y2x(&cl->cl_eligible, cl->cl_cumul);
954 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
955 
956 	ellist_update(cl);
957 }
958 
959 static void
update_d(struct hfsc_class * cl,int next_len)960 update_d(struct hfsc_class *cl, int next_len)
961 {
962 	cl->cl_d = rtsc_y2x(&cl->cl_deadline, cl->cl_cumul + next_len);
963 }
964 
965 static void
init_vf(struct hfsc_class * cl,int len)966 init_vf(struct hfsc_class *cl, int len)
967 {
968 	struct hfsc_class *max_cl, *p;
969 	u_int64_t vt, f, cur_time;
970 	int go_active;
971 
972 	cur_time = 0;
973 	go_active = 1;
974 	for ( ; cl->cl_parent != NULL; cl = cl->cl_parent) {
975 
976 		if (go_active && cl->cl_nactive++ == 0)
977 			go_active = 1;
978 		else
979 			go_active = 0;
980 
981 		if (go_active) {
982 			max_cl = actlist_last(cl->cl_parent->cl_actc);
983 			if (max_cl != NULL) {
984 				/*
985 				 * set vt to the average of the min and max
986 				 * classes.  if the parent's period didn't
987 				 * change, don't decrease vt of the class.
988 				 */
989 				vt = max_cl->cl_vt;
990 				if (cl->cl_parent->cl_cvtmin != 0)
991 					vt = (cl->cl_parent->cl_cvtmin + vt)/2;
992 
993 				if (cl->cl_parent->cl_vtperiod !=
994 				    cl->cl_parentperiod || vt > cl->cl_vt)
995 					cl->cl_vt = vt;
996 			} else {
997 				/*
998 				 * first child for a new parent backlog period.
999 				 * add parent's cvtmax to vtoff of children
1000 				 * to make a new vt (vtoff + vt) larger than
1001 				 * the vt in the last period for all children.
1002 				 */
1003 				vt = cl->cl_parent->cl_cvtmax;
1004 				for (p = cl->cl_parent->cl_children; p != NULL;
1005 				     p = p->cl_siblings)
1006 					p->cl_vtoff += vt;
1007 				cl->cl_vt = 0;
1008 				cl->cl_parent->cl_cvtmax = 0;
1009 				cl->cl_parent->cl_cvtmin = 0;
1010 			}
1011 			cl->cl_initvt = cl->cl_vt;
1012 
1013 			/* update the virtual curve */
1014 			vt = cl->cl_vt + cl->cl_vtoff;
1015 			rtsc_min(&cl->cl_virtual, cl->cl_fsc, vt, cl->cl_total);
1016 			if (cl->cl_virtual.x == vt) {
1017 				cl->cl_virtual.x -= cl->cl_vtoff;
1018 				cl->cl_vtoff = 0;
1019 			}
1020 			cl->cl_vtadj = 0;
1021 
1022 			cl->cl_vtperiod++;  /* increment vt period */
1023 			cl->cl_parentperiod = cl->cl_parent->cl_vtperiod;
1024 			if (cl->cl_parent->cl_nactive == 0)
1025 				cl->cl_parentperiod++;
1026 			cl->cl_f = 0;
1027 
1028 			actlist_insert(cl);
1029 
1030 			if (cl->cl_usc != NULL) {
1031 				/* class has upper limit curve */
1032 				if (cur_time == 0)
1033 					cur_time = read_machclk();
1034 
1035 				/* update the ulimit curve */
1036 				rtsc_min(&cl->cl_ulimit, cl->cl_usc, cur_time,
1037 				    cl->cl_total);
1038 				/* compute myf */
1039 				cl->cl_myf = rtsc_y2x(&cl->cl_ulimit,
1040 				    cl->cl_total);
1041 				cl->cl_myfadj = 0;
1042 			}
1043 		}
1044 
1045 		if (cl->cl_myf > cl->cl_cfmin)
1046 			f = cl->cl_myf;
1047 		else
1048 			f = cl->cl_cfmin;
1049 		if (f != cl->cl_f) {
1050 			cl->cl_f = f;
1051 			update_cfmin(cl->cl_parent);
1052 		}
1053 	}
1054 }
1055 
1056 static void
update_vf(struct hfsc_class * cl,int len,u_int64_t cur_time)1057 update_vf(struct hfsc_class *cl, int len, u_int64_t cur_time)
1058 {
1059 	u_int64_t f, myf_bound, delta;
1060 	int go_passive;
1061 
1062 	go_passive = qempty(cl->cl_q);
1063 
1064 	for (; cl->cl_parent != NULL; cl = cl->cl_parent) {
1065 
1066 		cl->cl_total += len;
1067 
1068 		if (cl->cl_fsc == NULL || cl->cl_nactive == 0)
1069 			continue;
1070 
1071 		if (go_passive && --cl->cl_nactive == 0)
1072 			go_passive = 1;
1073 		else
1074 			go_passive = 0;
1075 
1076 		if (go_passive) {
1077 			/* no more active child, going passive */
1078 
1079 			/* update cvtmax of the parent class */
1080 			if (cl->cl_vt > cl->cl_parent->cl_cvtmax)
1081 				cl->cl_parent->cl_cvtmax = cl->cl_vt;
1082 
1083 			/* remove this class from the vt list */
1084 			actlist_remove(cl);
1085 
1086 			update_cfmin(cl->cl_parent);
1087 
1088 			continue;
1089 		}
1090 
1091 		/*
1092 		 * update vt and f
1093 		 */
1094 		cl->cl_vt = rtsc_y2x(&cl->cl_virtual, cl->cl_total)
1095 		    - cl->cl_vtoff + cl->cl_vtadj;
1096 
1097 		/*
1098 		 * if vt of the class is smaller than cvtmin,
1099 		 * the class was skipped in the past due to non-fit.
1100 		 * if so, we need to adjust vtadj.
1101 		 */
1102 		if (cl->cl_vt < cl->cl_parent->cl_cvtmin) {
1103 			cl->cl_vtadj += cl->cl_parent->cl_cvtmin - cl->cl_vt;
1104 			cl->cl_vt = cl->cl_parent->cl_cvtmin;
1105 		}
1106 
1107 		/* update the vt list */
1108 		actlist_update(cl);
1109 
1110 		if (cl->cl_usc != NULL) {
1111 			cl->cl_myf = cl->cl_myfadj
1112 			    + rtsc_y2x(&cl->cl_ulimit, cl->cl_total);
1113 
1114 			/*
1115 			 * if myf lags behind by more than one clock tick
1116 			 * from the current time, adjust myfadj to prevent
1117 			 * a rate-limited class from going greedy.
1118 			 * in a steady state under rate-limiting, myf
1119 			 * fluctuates within one clock tick.
1120 			 */
1121 			myf_bound = cur_time - machclk_per_tick;
1122 			if (cl->cl_myf < myf_bound) {
1123 				delta = cur_time - cl->cl_myf;
1124 				cl->cl_myfadj += delta;
1125 				cl->cl_myf += delta;
1126 			}
1127 		}
1128 
1129 		/* cl_f is max(cl_myf, cl_cfmin) */
1130 		if (cl->cl_myf > cl->cl_cfmin)
1131 			f = cl->cl_myf;
1132 		else
1133 			f = cl->cl_cfmin;
1134 		if (f != cl->cl_f) {
1135 			cl->cl_f = f;
1136 			update_cfmin(cl->cl_parent);
1137 		}
1138 	}
1139 }
1140 
1141 static void
update_cfmin(struct hfsc_class * cl)1142 update_cfmin(struct hfsc_class *cl)
1143 {
1144 	struct hfsc_class *p;
1145 	u_int64_t cfmin;
1146 
1147 	if (TAILQ_EMPTY(cl->cl_actc)) {
1148 		cl->cl_cfmin = 0;
1149 		return;
1150 	}
1151 	cfmin = HT_INFINITY;
1152 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1153 		if (p->cl_f == 0) {
1154 			cl->cl_cfmin = 0;
1155 			return;
1156 		}
1157 		if (p->cl_f < cfmin)
1158 			cfmin = p->cl_f;
1159 	}
1160 	cl->cl_cfmin = cfmin;
1161 }
1162 
1163 /*
1164  * TAILQ based ellist and actlist implementation
1165  * (ion wanted to make a calendar queue based implementation)
1166  */
1167 /*
1168  * eligible list holds backlogged classes being sorted by their eligible times.
1169  * there is one eligible list per interface.
1170  */
1171 
1172 static ellist_t *
ellist_alloc(void)1173 ellist_alloc(void)
1174 {
1175 	ellist_t *head;
1176 
1177 	head = malloc(sizeof(ellist_t), M_DEVBUF, M_WAITOK);
1178 	TAILQ_INIT(head);
1179 	return (head);
1180 }
1181 
1182 static void
ellist_destroy(ellist_t * head)1183 ellist_destroy(ellist_t *head)
1184 {
1185 	free(head, M_DEVBUF);
1186 }
1187 
1188 static void
ellist_insert(struct hfsc_class * cl)1189 ellist_insert(struct hfsc_class *cl)
1190 {
1191 	struct hfsc_if	*hif = cl->cl_hif;
1192 	struct hfsc_class *p;
1193 
1194 	/* check the last entry first */
1195 	if ((p = TAILQ_LAST(hif->hif_eligible, _eligible)) == NULL ||
1196 	    p->cl_e <= cl->cl_e) {
1197 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1198 		return;
1199 	}
1200 
1201 	TAILQ_FOREACH(p, hif->hif_eligible, cl_ellist) {
1202 		if (cl->cl_e < p->cl_e) {
1203 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1204 			return;
1205 		}
1206 	}
1207 	ASSERT(0); /* should not reach here */
1208 }
1209 
1210 static void
ellist_remove(struct hfsc_class * cl)1211 ellist_remove(struct hfsc_class *cl)
1212 {
1213 	struct hfsc_if	*hif = cl->cl_hif;
1214 
1215 	TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1216 }
1217 
1218 static void
ellist_update(struct hfsc_class * cl)1219 ellist_update(struct hfsc_class *cl)
1220 {
1221 	struct hfsc_if	*hif = cl->cl_hif;
1222 	struct hfsc_class *p, *last;
1223 
1224 	/*
1225 	 * the eligible time of a class increases monotonically.
1226 	 * if the next entry has a larger eligible time, nothing to do.
1227 	 */
1228 	p = TAILQ_NEXT(cl, cl_ellist);
1229 	if (p == NULL || cl->cl_e <= p->cl_e)
1230 		return;
1231 
1232 	/* check the last entry */
1233 	last = TAILQ_LAST(hif->hif_eligible, _eligible);
1234 	ASSERT(last != NULL);
1235 	if (last->cl_e <= cl->cl_e) {
1236 		TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1237 		TAILQ_INSERT_TAIL(hif->hif_eligible, cl, cl_ellist);
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * the new position must be between the next entry
1243 	 * and the last entry
1244 	 */
1245 	while ((p = TAILQ_NEXT(p, cl_ellist)) != NULL) {
1246 		if (cl->cl_e < p->cl_e) {
1247 			TAILQ_REMOVE(hif->hif_eligible, cl, cl_ellist);
1248 			TAILQ_INSERT_BEFORE(p, cl, cl_ellist);
1249 			return;
1250 		}
1251 	}
1252 	ASSERT(0); /* should not reach here */
1253 }
1254 
1255 /* find the class with the minimum deadline among the eligible classes */
1256 struct hfsc_class *
ellist_get_mindl(ellist_t * head,u_int64_t cur_time)1257 ellist_get_mindl(ellist_t *head, u_int64_t cur_time)
1258 {
1259 	struct hfsc_class *p, *cl = NULL;
1260 
1261 	TAILQ_FOREACH(p, head, cl_ellist) {
1262 		if (p->cl_e > cur_time)
1263 			break;
1264 		if (cl == NULL || p->cl_d < cl->cl_d)
1265 			cl = p;
1266 	}
1267 	return (cl);
1268 }
1269 
1270 /*
1271  * active children list holds backlogged child classes being sorted
1272  * by their virtual time.
1273  * each intermediate class has one active children list.
1274  */
1275 static actlist_t *
actlist_alloc(void)1276 actlist_alloc(void)
1277 {
1278 	actlist_t *head;
1279 
1280 	head = malloc(sizeof(actlist_t), M_DEVBUF, M_WAITOK);
1281 	TAILQ_INIT(head);
1282 	return (head);
1283 }
1284 
1285 static void
actlist_destroy(actlist_t * head)1286 actlist_destroy(actlist_t *head)
1287 {
1288 	free(head, M_DEVBUF);
1289 }
1290 static void
actlist_insert(struct hfsc_class * cl)1291 actlist_insert(struct hfsc_class *cl)
1292 {
1293 	struct hfsc_class *p;
1294 
1295 	/* check the last entry first */
1296 	if ((p = TAILQ_LAST(cl->cl_parent->cl_actc, _active)) == NULL
1297 	    || p->cl_vt <= cl->cl_vt) {
1298 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1299 		return;
1300 	}
1301 
1302 	TAILQ_FOREACH(p, cl->cl_parent->cl_actc, cl_actlist) {
1303 		if (cl->cl_vt < p->cl_vt) {
1304 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1305 			return;
1306 		}
1307 	}
1308 	ASSERT(0); /* should not reach here */
1309 }
1310 
1311 static void
actlist_remove(struct hfsc_class * cl)1312 actlist_remove(struct hfsc_class *cl)
1313 {
1314 	TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1315 }
1316 
1317 static void
actlist_update(struct hfsc_class * cl)1318 actlist_update(struct hfsc_class *cl)
1319 {
1320 	struct hfsc_class *p, *last;
1321 
1322 	/*
1323 	 * the virtual time of a class increases monotonically during its
1324 	 * backlogged period.
1325 	 * if the next entry has a larger virtual time, nothing to do.
1326 	 */
1327 	p = TAILQ_NEXT(cl, cl_actlist);
1328 	if (p == NULL || cl->cl_vt < p->cl_vt)
1329 		return;
1330 
1331 	/* check the last entry */
1332 	last = TAILQ_LAST(cl->cl_parent->cl_actc, _active);
1333 	ASSERT(last != NULL);
1334 	if (last->cl_vt <= cl->cl_vt) {
1335 		TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1336 		TAILQ_INSERT_TAIL(cl->cl_parent->cl_actc, cl, cl_actlist);
1337 		return;
1338 	}
1339 
1340 	/*
1341 	 * the new position must be between the next entry
1342 	 * and the last entry
1343 	 */
1344 	while ((p = TAILQ_NEXT(p, cl_actlist)) != NULL) {
1345 		if (cl->cl_vt < p->cl_vt) {
1346 			TAILQ_REMOVE(cl->cl_parent->cl_actc, cl, cl_actlist);
1347 			TAILQ_INSERT_BEFORE(p, cl, cl_actlist);
1348 			return;
1349 		}
1350 	}
1351 	ASSERT(0); /* should not reach here */
1352 }
1353 
1354 static struct hfsc_class *
actlist_firstfit(struct hfsc_class * cl,u_int64_t cur_time)1355 actlist_firstfit(struct hfsc_class *cl, u_int64_t cur_time)
1356 {
1357 	struct hfsc_class *p;
1358 
1359 	TAILQ_FOREACH(p, cl->cl_actc, cl_actlist) {
1360 		if (p->cl_f <= cur_time)
1361 			return (p);
1362 	}
1363 	return (NULL);
1364 }
1365 
1366 /*
1367  * service curve support functions
1368  *
1369  *  external service curve parameters
1370  *	m: bits/sec
1371  *	d: msec
1372  *  internal service curve parameters
1373  *	sm: (bytes/tsc_interval) << SM_SHIFT
1374  *	ism: (tsc_count/byte) << ISM_SHIFT
1375  *	dx: tsc_count
1376  *
1377  * SM_SHIFT and ISM_SHIFT are scaled in order to keep effective digits.
1378  * we should be able to handle 100K-1Gbps linkspeed with 200Hz-1GHz CPU
1379  * speed.  SM_SHIFT and ISM_SHIFT are selected to have at least 3 effective
1380  * digits in decimal using the following table.
1381  *
1382  *  bits/sec    100Kbps     1Mbps     10Mbps     100Mbps    1Gbps
1383  *  ----------+-------------------------------------------------------
1384  *  bytes/nsec  12.5e-6    125e-6     1250e-6    12500e-6   125000e-6
1385  *  sm(500MHz)  25.0e-6    250e-6     2500e-6    25000e-6   250000e-6
1386  *  sm(200MHz)  62.5e-6    625e-6     6250e-6    62500e-6   625000e-6
1387  *
1388  *  nsec/byte   80000      8000       800        80         8
1389  *  ism(500MHz) 40000      4000       400        40         4
1390  *  ism(200MHz) 16000      1600       160        16         1.6
1391  */
1392 #define	SM_SHIFT	24
1393 #define	ISM_SHIFT	10
1394 
1395 #define	SM_MASK		((1LL << SM_SHIFT) - 1)
1396 #define	ISM_MASK	((1LL << ISM_SHIFT) - 1)
1397 
1398 static inline u_int64_t
seg_x2y(u_int64_t x,u_int64_t sm)1399 seg_x2y(u_int64_t x, u_int64_t sm)
1400 {
1401 	u_int64_t y;
1402 
1403 	/*
1404 	 * compute
1405 	 *	y = x * sm >> SM_SHIFT
1406 	 * but divide it for the upper and lower bits to avoid overflow
1407 	 */
1408 	y = (x >> SM_SHIFT) * sm + (((x & SM_MASK) * sm) >> SM_SHIFT);
1409 	return (y);
1410 }
1411 
1412 static inline u_int64_t
seg_y2x(u_int64_t y,u_int64_t ism)1413 seg_y2x(u_int64_t y, u_int64_t ism)
1414 {
1415 	u_int64_t x;
1416 
1417 	if (y == 0)
1418 		x = 0;
1419 	else if (ism == HT_INFINITY)
1420 		x = HT_INFINITY;
1421 	else {
1422 		x = (y >> ISM_SHIFT) * ism
1423 		    + (((y & ISM_MASK) * ism) >> ISM_SHIFT);
1424 	}
1425 	return (x);
1426 }
1427 
1428 static inline u_int64_t
m2sm(u_int m)1429 m2sm(u_int m)
1430 {
1431 	u_int64_t sm;
1432 
1433 	sm = ((u_int64_t)m << SM_SHIFT) / 8 / machclk_freq;
1434 	return (sm);
1435 }
1436 
1437 static inline u_int64_t
m2ism(u_int m)1438 m2ism(u_int m)
1439 {
1440 	u_int64_t ism;
1441 
1442 	if (m == 0)
1443 		ism = HT_INFINITY;
1444 	else
1445 		ism = ((u_int64_t)machclk_freq << ISM_SHIFT) * 8 / m;
1446 	return (ism);
1447 }
1448 
1449 static inline u_int64_t
d2dx(u_int d)1450 d2dx(u_int d)
1451 {
1452 	u_int64_t dx;
1453 
1454 	dx = ((u_int64_t)d * machclk_freq) / 1000;
1455 	return (dx);
1456 }
1457 
1458 static u_int
sm2m(u_int64_t sm)1459 sm2m(u_int64_t sm)
1460 {
1461 	u_int64_t m;
1462 
1463 	m = (sm * 8 * machclk_freq) >> SM_SHIFT;
1464 	return ((u_int)m);
1465 }
1466 
1467 static u_int
dx2d(u_int64_t dx)1468 dx2d(u_int64_t dx)
1469 {
1470 	u_int64_t d;
1471 
1472 	d = dx * 1000 / machclk_freq;
1473 	return ((u_int)d);
1474 }
1475 
1476 static void
sc2isc(struct service_curve * sc,struct internal_sc * isc)1477 sc2isc(struct service_curve *sc, struct internal_sc *isc)
1478 {
1479 	isc->sm1 = m2sm(sc->m1);
1480 	isc->ism1 = m2ism(sc->m1);
1481 	isc->dx = d2dx(sc->d);
1482 	isc->dy = seg_x2y(isc->dx, isc->sm1);
1483 	isc->sm2 = m2sm(sc->m2);
1484 	isc->ism2 = m2ism(sc->m2);
1485 }
1486 
1487 /*
1488  * initialize the runtime service curve with the given internal
1489  * service curve starting at (x, y).
1490  */
1491 static void
rtsc_init(struct runtime_sc * rtsc,struct internal_sc * isc,u_int64_t x,u_int64_t y)1492 rtsc_init(struct runtime_sc *rtsc, struct internal_sc * isc, u_int64_t x,
1493     u_int64_t y)
1494 {
1495 	rtsc->x =	x;
1496 	rtsc->y =	y;
1497 	rtsc->sm1 =	isc->sm1;
1498 	rtsc->ism1 =	isc->ism1;
1499 	rtsc->dx =	isc->dx;
1500 	rtsc->dy =	isc->dy;
1501 	rtsc->sm2 =	isc->sm2;
1502 	rtsc->ism2 =	isc->ism2;
1503 }
1504 
1505 /*
1506  * calculate the y-projection of the runtime service curve by the
1507  * given x-projection value
1508  */
1509 static u_int64_t
rtsc_y2x(struct runtime_sc * rtsc,u_int64_t y)1510 rtsc_y2x(struct runtime_sc *rtsc, u_int64_t y)
1511 {
1512 	u_int64_t	x;
1513 
1514 	if (y < rtsc->y)
1515 		x = rtsc->x;
1516 	else if (y <= rtsc->y + rtsc->dy) {
1517 		/* x belongs to the 1st segment */
1518 		if (rtsc->dy == 0)
1519 			x = rtsc->x + rtsc->dx;
1520 		else
1521 			x = rtsc->x + seg_y2x(y - rtsc->y, rtsc->ism1);
1522 	} else {
1523 		/* x belongs to the 2nd segment */
1524 		x = rtsc->x + rtsc->dx
1525 		    + seg_y2x(y - rtsc->y - rtsc->dy, rtsc->ism2);
1526 	}
1527 	return (x);
1528 }
1529 
1530 static u_int64_t
rtsc_x2y(struct runtime_sc * rtsc,u_int64_t x)1531 rtsc_x2y(struct runtime_sc *rtsc, u_int64_t x)
1532 {
1533 	u_int64_t	y;
1534 
1535 	if (x <= rtsc->x)
1536 		y = rtsc->y;
1537 	else if (x <= rtsc->x + rtsc->dx)
1538 		/* y belongs to the 1st segment */
1539 		y = rtsc->y + seg_x2y(x - rtsc->x, rtsc->sm1);
1540 	else
1541 		/* y belongs to the 2nd segment */
1542 		y = rtsc->y + rtsc->dy
1543 		    + seg_x2y(x - rtsc->x - rtsc->dx, rtsc->sm2);
1544 	return (y);
1545 }
1546 
1547 /*
1548  * update the runtime service curve by taking the minimum of the current
1549  * runtime service curve and the service curve starting at (x, y).
1550  */
1551 static void
rtsc_min(struct runtime_sc * rtsc,struct internal_sc * isc,u_int64_t x,u_int64_t y)1552 rtsc_min(struct runtime_sc *rtsc, struct internal_sc *isc, u_int64_t x,
1553     u_int64_t y)
1554 {
1555 	u_int64_t	y1, y2, dx, dy;
1556 
1557 	if (isc->sm1 <= isc->sm2) {
1558 		/* service curve is convex */
1559 		y1 = rtsc_x2y(rtsc, x);
1560 		if (y1 < y)
1561 			/* the current rtsc is smaller */
1562 			return;
1563 		rtsc->x = x;
1564 		rtsc->y = y;
1565 		return;
1566 	}
1567 
1568 	/*
1569 	 * service curve is concave
1570 	 * compute the two y values of the current rtsc
1571 	 *	y1: at x
1572 	 *	y2: at (x + dx)
1573 	 */
1574 	y1 = rtsc_x2y(rtsc, x);
1575 	if (y1 <= y) {
1576 		/* rtsc is below isc, no change to rtsc */
1577 		return;
1578 	}
1579 
1580 	y2 = rtsc_x2y(rtsc, x + isc->dx);
1581 	if (y2 >= y + isc->dy) {
1582 		/* rtsc is above isc, replace rtsc by isc */
1583 		rtsc->x = x;
1584 		rtsc->y = y;
1585 		rtsc->dx = isc->dx;
1586 		rtsc->dy = isc->dy;
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * the two curves intersect
1592 	 * compute the offsets (dx, dy) using the reverse
1593 	 * function of seg_x2y()
1594 	 *	seg_x2y(dx, sm1) == seg_x2y(dx, sm2) + (y1 - y)
1595 	 */
1596 	dx = ((y1 - y) << SM_SHIFT) / (isc->sm1 - isc->sm2);
1597 	/*
1598 	 * check if (x, y1) belongs to the 1st segment of rtsc.
1599 	 * if so, add the offset.
1600 	 */
1601 	if (rtsc->x + rtsc->dx > x)
1602 		dx += rtsc->x + rtsc->dx - x;
1603 	dy = seg_x2y(dx, isc->sm1);
1604 
1605 	rtsc->x = x;
1606 	rtsc->y = y;
1607 	rtsc->dx = dx;
1608 	rtsc->dy = dy;
1609 	return;
1610 }
1611 
1612 static void
get_class_stats(struct hfsc_classstats * sp,struct hfsc_class * cl)1613 get_class_stats(struct hfsc_classstats *sp, struct hfsc_class *cl)
1614 {
1615 	sp->class_id = cl->cl_id;
1616 	sp->class_handle = cl->cl_handle;
1617 
1618 	if (cl->cl_rsc != NULL) {
1619 		sp->rsc.m1 = sm2m(cl->cl_rsc->sm1);
1620 		sp->rsc.d = dx2d(cl->cl_rsc->dx);
1621 		sp->rsc.m2 = sm2m(cl->cl_rsc->sm2);
1622 	} else {
1623 		sp->rsc.m1 = 0;
1624 		sp->rsc.d = 0;
1625 		sp->rsc.m2 = 0;
1626 	}
1627 	if (cl->cl_fsc != NULL) {
1628 		sp->fsc.m1 = sm2m(cl->cl_fsc->sm1);
1629 		sp->fsc.d = dx2d(cl->cl_fsc->dx);
1630 		sp->fsc.m2 = sm2m(cl->cl_fsc->sm2);
1631 	} else {
1632 		sp->fsc.m1 = 0;
1633 		sp->fsc.d = 0;
1634 		sp->fsc.m2 = 0;
1635 	}
1636 	if (cl->cl_usc != NULL) {
1637 		sp->usc.m1 = sm2m(cl->cl_usc->sm1);
1638 		sp->usc.d = dx2d(cl->cl_usc->dx);
1639 		sp->usc.m2 = sm2m(cl->cl_usc->sm2);
1640 	} else {
1641 		sp->usc.m1 = 0;
1642 		sp->usc.d = 0;
1643 		sp->usc.m2 = 0;
1644 	}
1645 
1646 	sp->total = cl->cl_total;
1647 	sp->cumul = cl->cl_cumul;
1648 
1649 	sp->d = cl->cl_d;
1650 	sp->e = cl->cl_e;
1651 	sp->vt = cl->cl_vt;
1652 	sp->f = cl->cl_f;
1653 
1654 	sp->initvt = cl->cl_initvt;
1655 	sp->vtperiod = cl->cl_vtperiod;
1656 	sp->parentperiod = cl->cl_parentperiod;
1657 	sp->nactive = cl->cl_nactive;
1658 	sp->vtoff = cl->cl_vtoff;
1659 	sp->cvtmax = cl->cl_cvtmax;
1660 	sp->myf = cl->cl_myf;
1661 	sp->cfmin = cl->cl_cfmin;
1662 	sp->cvtmin = cl->cl_cvtmin;
1663 	sp->myfadj = cl->cl_myfadj;
1664 	sp->vtadj = cl->cl_vtadj;
1665 
1666 	sp->cur_time = read_machclk();
1667 	sp->machclk_freq = machclk_freq;
1668 
1669 	sp->qlength = qlen(cl->cl_q);
1670 	sp->qlimit = qlimit(cl->cl_q);
1671 	sp->xmit_cnt = cl->cl_stats.xmit_cnt;
1672 	sp->drop_cnt = cl->cl_stats.drop_cnt;
1673 	sp->period = cl->cl_stats.period;
1674 
1675 	sp->qtype = qtype(cl->cl_q);
1676 #ifdef ALTQ_RED
1677 	if (q_is_red(cl->cl_q))
1678 		red_getstats(cl->cl_red, &sp->red[0]);
1679 #endif
1680 #ifdef ALTQ_RIO
1681 	if (q_is_rio(cl->cl_q))
1682 		rio_getstats((rio_t *)cl->cl_red, &sp->red[0]);
1683 #endif
1684 }
1685 
1686 /* convert a class handle to the corresponding class pointer */
1687 static struct hfsc_class *
clh_to_clp(struct hfsc_if * hif,u_int32_t chandle)1688 clh_to_clp(struct hfsc_if *hif, u_int32_t chandle)
1689 {
1690 	int i;
1691 	struct hfsc_class *cl;
1692 
1693 	if (chandle == 0)
1694 		return (NULL);
1695 	/*
1696 	 * first, try optimistically the slot matching the lower bits of
1697 	 * the handle.  if it fails, do the linear table search.
1698 	 */
1699 	i = chandle % HFSC_MAX_CLASSES;
1700 	if ((cl = hif->hif_class_tbl[i]) != NULL && cl->cl_handle == chandle)
1701 		return (cl);
1702 	for (i = 0; i < HFSC_MAX_CLASSES; i++)
1703 		if ((cl = hif->hif_class_tbl[i]) != NULL &&
1704 		    cl->cl_handle == chandle)
1705 			return (cl);
1706 	return (NULL);
1707 }
1708 
1709 #ifdef ALTQ3_COMPAT
1710 static struct hfsc_if *
hfsc_attach(struct ifaltq * ifq,u_int bandwidth)1711 hfsc_attach(struct ifaltq *ifq, u_int bandwidth)
1712 {
1713 	struct hfsc_if *hif;
1714 
1715 	hif = malloc(sizeof(struct hfsc_if), M_DEVBUF, M_WAITOK|M_ZERO);
1716 	if (hif == NULL)
1717 		return (NULL);
1718 
1719 	hif->hif_eligible = ellist_alloc();
1720 	if (hif->hif_eligible == NULL) {
1721 		free(hif, M_DEVBUF);
1722 		return NULL;
1723 	}
1724 
1725 	hif->hif_ifq = ifq;
1726 
1727 	/* add this state to the hfsc list */
1728 	hif->hif_next = hif_list;
1729 	hif_list = hif;
1730 
1731 	return (hif);
1732 }
1733 
1734 static void
hfsc_detach(struct hfsc_if * hif)1735 hfsc_detach(struct hfsc_if *hif)
1736 {
1737 	(void)hfsc_clear_interface(hif);
1738 	(void)hfsc_class_destroy(hif->hif_rootclass);
1739 
1740 	/* remove this interface from the hif list */
1741 	if (hif_list == hif)
1742 		hif_list = hif->hif_next;
1743 	else {
1744 		struct hfsc_if *h;
1745 
1746 		for (h = hif_list; h != NULL; h = h->hif_next)
1747 			if (h->hif_next == hif) {
1748 				h->hif_next = hif->hif_next;
1749 				break;
1750 			}
1751 		ASSERT(h != NULL);
1752 	}
1753 
1754 	ellist_destroy(hif->hif_eligible);
1755 
1756 	free(hif, M_DEVBUF);
1757 }
1758 
1759 static int
hfsc_class_modify(struct hfsc_class * cl,struct service_curve * rsc,struct service_curve * fsc,struct service_curve * usc)1760 hfsc_class_modify(struct hfsc_class *cl, struct service_curve *rsc,
1761     struct service_curve *fsc, struct service_curve *usc)
1762 {
1763 	struct internal_sc *rsc_tmp, *fsc_tmp, *usc_tmp;
1764 	u_int64_t cur_time;
1765 	int s;
1766 
1767 	rsc_tmp = fsc_tmp = usc_tmp = NULL;
1768 	if (rsc != NULL && (rsc->m1 != 0 || rsc->m2 != 0) &&
1769 	    cl->cl_rsc == NULL) {
1770 		rsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1771 		    M_WAITOK);
1772 		if (rsc_tmp == NULL)
1773 			return (ENOMEM);
1774 	}
1775 	if (fsc != NULL && (fsc->m1 != 0 || fsc->m2 != 0) &&
1776 	    cl->cl_fsc == NULL) {
1777 		fsc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1778 		    M_WAITOK);
1779 		if (fsc_tmp == NULL)
1780 			return (ENOMEM);
1781 	}
1782 	if (usc != NULL && (usc->m1 != 0 || usc->m2 != 0) &&
1783 	    cl->cl_usc == NULL) {
1784 		usc_tmp = malloc(sizeof(struct internal_sc), M_DEVBUF,
1785 		    M_WAITOK);
1786 		if (usc_tmp == NULL)
1787 			return (ENOMEM);
1788 	}
1789 
1790 	cur_time = read_machclk();
1791 	s = splnet();
1792 
1793 	if (rsc != NULL) {
1794 		if (rsc->m1 == 0 && rsc->m2 == 0) {
1795 			if (cl->cl_rsc != NULL) {
1796 				if (!qempty(cl->cl_q))
1797 					hfsc_purgeq(cl);
1798 				free(cl->cl_rsc, M_DEVBUF);
1799 				cl->cl_rsc = NULL;
1800 			}
1801 		} else {
1802 			if (cl->cl_rsc == NULL)
1803 				cl->cl_rsc = rsc_tmp;
1804 			sc2isc(rsc, cl->cl_rsc);
1805 			rtsc_init(&cl->cl_deadline, cl->cl_rsc, cur_time,
1806 			    cl->cl_cumul);
1807 			cl->cl_eligible = cl->cl_deadline;
1808 			if (cl->cl_rsc->sm1 <= cl->cl_rsc->sm2) {
1809 				cl->cl_eligible.dx = 0;
1810 				cl->cl_eligible.dy = 0;
1811 			}
1812 		}
1813 	}
1814 
1815 	if (fsc != NULL) {
1816 		if (fsc->m1 == 0 && fsc->m2 == 0) {
1817 			if (cl->cl_fsc != NULL) {
1818 				if (!qempty(cl->cl_q))
1819 					hfsc_purgeq(cl);
1820 				free(cl->cl_fsc, M_DEVBUF);
1821 				cl->cl_fsc = NULL;
1822 			}
1823 		} else {
1824 			if (cl->cl_fsc == NULL)
1825 				cl->cl_fsc = fsc_tmp;
1826 			sc2isc(fsc, cl->cl_fsc);
1827 			rtsc_init(&cl->cl_virtual, cl->cl_fsc, cl->cl_vt,
1828 			    cl->cl_total);
1829 		}
1830 	}
1831 
1832 	if (usc != NULL) {
1833 		if (usc->m1 == 0 && usc->m2 == 0) {
1834 			if (cl->cl_usc != NULL) {
1835 				free(cl->cl_usc, M_DEVBUF);
1836 				cl->cl_usc = NULL;
1837 				cl->cl_myf = 0;
1838 			}
1839 		} else {
1840 			if (cl->cl_usc == NULL)
1841 				cl->cl_usc = usc_tmp;
1842 			sc2isc(usc, cl->cl_usc);
1843 			rtsc_init(&cl->cl_ulimit, cl->cl_usc, cur_time,
1844 			    cl->cl_total);
1845 		}
1846 	}
1847 
1848 	if (!qempty(cl->cl_q)) {
1849 		if (cl->cl_rsc != NULL)
1850 			update_ed(cl, m_pktlen(qhead(cl->cl_q)));
1851 		if (cl->cl_fsc != NULL)
1852 			update_vf(cl, 0, cur_time);
1853 		/* is this enough? */
1854 	}
1855 
1856 	splx(s);
1857 
1858 	return (0);
1859 }
1860 
1861 /*
1862  * hfsc device interface
1863  */
1864 int
hfscopen(dev_t dev,int flag,int fmt,struct lwp * l)1865 hfscopen(dev_t dev, int flag, int fmt,
1866     struct lwp *l)
1867 {
1868 	if (machclk_freq == 0)
1869 		init_machclk();
1870 
1871 	if (machclk_freq == 0) {
1872 		printf("hfsc: no CPU clock available!\n");
1873 		return (ENXIO);
1874 	}
1875 
1876 	/* everything will be done when the queueing scheme is attached. */
1877 	return 0;
1878 }
1879 
1880 int
hfscclose(dev_t dev,int flag,int fmt,struct lwp * l)1881 hfscclose(dev_t dev, int flag, int fmt,
1882     struct lwp *l)
1883 {
1884 	struct hfsc_if *hif;
1885 
1886 	while ((hif = hif_list) != NULL) {
1887 		/* destroy all */
1888 		if (ALTQ_IS_ENABLED(hif->hif_ifq))
1889 			altq_disable(hif->hif_ifq);
1890 
1891 		int error = altq_detach(hif->hif_ifq);
1892 		switch (error) {
1893 		case 0:
1894 		case ENXIO:	/* already disabled */
1895 			break;
1896 		default:
1897 			return error;
1898 		}
1899 		hfsc_detach(hif);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 int
hfscioctl(dev_t dev,ioctlcmd_t cmd,void * addr,int flag,struct lwp * l)1906 hfscioctl(dev_t dev, ioctlcmd_t cmd, void *addr, int flag,
1907     struct lwp *l)
1908 {
1909 	struct hfsc_if *hif;
1910 	struct hfsc_interface *ifacep;
1911 	int	error = 0;
1912 
1913 	/* check super-user privilege */
1914 	switch (cmd) {
1915 	case HFSC_GETSTATS:
1916 		break;
1917 	default:
1918 #if (__FreeBSD_version > 400000)
1919 		if ((error = suser(p)) != 0)
1920 			return (error);
1921 #else
1922 		if ((error = kauth_authorize_network(l->l_cred,
1923 		    KAUTH_NETWORK_ALTQ, KAUTH_REQ_NETWORK_ALTQ_HFSC, NULL,
1924 		    NULL, NULL)) != 0)
1925 			return (error);
1926 #endif
1927 		break;
1928 	}
1929 
1930 	switch (cmd) {
1931 
1932 	case HFSC_IF_ATTACH:
1933 		error = hfsccmd_if_attach((struct hfsc_attach *)addr);
1934 		break;
1935 
1936 	case HFSC_IF_DETACH:
1937 		error = hfsccmd_if_detach((struct hfsc_interface *)addr);
1938 		break;
1939 
1940 	case HFSC_ENABLE:
1941 	case HFSC_DISABLE:
1942 	case HFSC_CLEAR_HIERARCHY:
1943 		ifacep = (struct hfsc_interface *)addr;
1944 		if ((hif = altq_lookup(ifacep->hfsc_ifname,
1945 				       ALTQT_HFSC)) == NULL) {
1946 			error = EBADF;
1947 			break;
1948 		}
1949 
1950 		switch (cmd) {
1951 
1952 		case HFSC_ENABLE:
1953 			if (hif->hif_defaultclass == NULL) {
1954 #ifdef ALTQ_DEBUG
1955 				printf("hfsc: no default class\n");
1956 #endif
1957 				error = EINVAL;
1958 				break;
1959 			}
1960 			error = altq_enable(hif->hif_ifq);
1961 			break;
1962 
1963 		case HFSC_DISABLE:
1964 			error = altq_disable(hif->hif_ifq);
1965 			break;
1966 
1967 		case HFSC_CLEAR_HIERARCHY:
1968 			hfsc_clear_interface(hif);
1969 			break;
1970 		}
1971 		break;
1972 
1973 	case HFSC_ADD_CLASS:
1974 		error = hfsccmd_add_class((struct hfsc_add_class *)addr);
1975 		break;
1976 
1977 	case HFSC_DEL_CLASS:
1978 		error = hfsccmd_delete_class((struct hfsc_delete_class *)addr);
1979 		break;
1980 
1981 	case HFSC_MOD_CLASS:
1982 		error = hfsccmd_modify_class((struct hfsc_modify_class *)addr);
1983 		break;
1984 
1985 	case HFSC_ADD_FILTER:
1986 		error = hfsccmd_add_filter((struct hfsc_add_filter *)addr);
1987 		break;
1988 
1989 	case HFSC_DEL_FILTER:
1990 		error = hfsccmd_delete_filter((struct hfsc_delete_filter *)addr);
1991 		break;
1992 
1993 	case HFSC_GETSTATS:
1994 		error = hfsccmd_class_stats((struct hfsc_class_stats *)addr);
1995 		break;
1996 
1997 	default:
1998 		error = EINVAL;
1999 		break;
2000 	}
2001 	return error;
2002 }
2003 
2004 static int
hfsccmd_if_attach(struct hfsc_attach * ap)2005 hfsccmd_if_attach(struct hfsc_attach *ap)
2006 {
2007 	struct hfsc_if *hif;
2008 	struct ifnet *ifp;
2009 	int error;
2010 
2011 	if ((ifp = ifunit(ap->iface.hfsc_ifname)) == NULL)
2012 		return (ENXIO);
2013 
2014 	if ((hif = hfsc_attach(&ifp->if_snd, ap->bandwidth)) == NULL)
2015 		return (ENOMEM);
2016 
2017 	/*
2018 	 * set HFSC to this ifnet structure.
2019 	 */
2020 	if ((error = altq_attach(&ifp->if_snd, ALTQT_HFSC, hif,
2021 				 hfsc_enqueue, hfsc_dequeue, hfsc_request,
2022 				 &hif->hif_classifier, acc_classify)) != 0)
2023 		hfsc_detach(hif);
2024 
2025 	return (error);
2026 }
2027 
2028 static int
hfsccmd_if_detach(struct hfsc_interface * ap)2029 hfsccmd_if_detach(struct hfsc_interface *ap)
2030 {
2031 	struct hfsc_if *hif;
2032 	int error;
2033 
2034 	if ((hif = altq_lookup(ap->hfsc_ifname, ALTQT_HFSC)) == NULL)
2035 		return (EBADF);
2036 
2037 	if (ALTQ_IS_ENABLED(hif->hif_ifq))
2038 		altq_disable(hif->hif_ifq);
2039 
2040 	if ((error = altq_detach(hif->hif_ifq)))
2041 		return (error);
2042 
2043 	hfsc_detach(hif);
2044 	return 0;
2045 }
2046 
2047 static int
hfsccmd_add_class(struct hfsc_add_class * ap)2048 hfsccmd_add_class(struct hfsc_add_class *ap)
2049 {
2050 	struct hfsc_if *hif;
2051 	struct hfsc_class *cl, *parent;
2052 	int	i;
2053 
2054 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2055 		return (EBADF);
2056 
2057 	if (ap->parent_handle == HFSC_NULLCLASS_HANDLE &&
2058 	    hif->hif_rootclass == NULL)
2059 		parent = NULL;
2060 	else if ((parent = clh_to_clp(hif, ap->parent_handle)) == NULL)
2061 		return (EINVAL);
2062 
2063 	/* assign a class handle (use a free slot number for now) */
2064 	for (i = 1; i < HFSC_MAX_CLASSES; i++)
2065 		if (hif->hif_class_tbl[i] == NULL)
2066 			break;
2067 	if (i == HFSC_MAX_CLASSES)
2068 		return (EBUSY);
2069 
2070 	if ((cl = hfsc_class_create(hif, &ap->service_curve, NULL, NULL,
2071 	    parent, ap->qlimit, ap->flags, i)) == NULL)
2072 		return (ENOMEM);
2073 
2074 	/* return a class handle to the user */
2075 	ap->class_handle = i;
2076 
2077 	return (0);
2078 }
2079 
2080 static int
hfsccmd_delete_class(struct hfsc_delete_class * ap)2081 hfsccmd_delete_class(struct hfsc_delete_class *ap)
2082 {
2083 	struct hfsc_if *hif;
2084 	struct hfsc_class *cl;
2085 
2086 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2087 		return (EBADF);
2088 
2089 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2090 		return (EINVAL);
2091 
2092 	return hfsc_class_destroy(cl);
2093 }
2094 
2095 static int
hfsccmd_modify_class(struct hfsc_modify_class * ap)2096 hfsccmd_modify_class(struct hfsc_modify_class *ap)
2097 {
2098 	struct hfsc_if *hif;
2099 	struct hfsc_class *cl;
2100 	struct service_curve *rsc = NULL;
2101 	struct service_curve *fsc = NULL;
2102 	struct service_curve *usc = NULL;
2103 
2104 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2105 		return (EBADF);
2106 
2107 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2108 		return (EINVAL);
2109 
2110 	if (ap->sctype & HFSC_REALTIMESC)
2111 		rsc = &ap->service_curve;
2112 	if (ap->sctype & HFSC_LINKSHARINGSC)
2113 		fsc = &ap->service_curve;
2114 	if (ap->sctype & HFSC_UPPERLIMITSC)
2115 		usc = &ap->service_curve;
2116 
2117 	return hfsc_class_modify(cl, rsc, fsc, usc);
2118 }
2119 
2120 static int
hfsccmd_add_filter(struct hfsc_add_filter * ap)2121 hfsccmd_add_filter(struct hfsc_add_filter *ap)
2122 {
2123 	struct hfsc_if *hif;
2124 	struct hfsc_class *cl;
2125 
2126 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2127 		return (EBADF);
2128 
2129 	if ((cl = clh_to_clp(hif, ap->class_handle)) == NULL)
2130 		return (EINVAL);
2131 
2132 	if (is_a_parent_class(cl)) {
2133 #ifdef ALTQ_DEBUG
2134 		printf("hfsccmd_add_filter: not a leaf class!\n");
2135 #endif
2136 		return (EINVAL);
2137 	}
2138 
2139 	return acc_add_filter(&hif->hif_classifier, &ap->filter,
2140 			      cl, &ap->filter_handle);
2141 }
2142 
2143 static int
hfsccmd_delete_filter(struct hfsc_delete_filter * ap)2144 hfsccmd_delete_filter(struct hfsc_delete_filter *ap)
2145 {
2146 	struct hfsc_if *hif;
2147 
2148 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2149 		return (EBADF);
2150 
2151 	return acc_delete_filter(&hif->hif_classifier,
2152 				 ap->filter_handle);
2153 }
2154 
2155 static int
hfsccmd_class_stats(struct hfsc_class_stats * ap)2156 hfsccmd_class_stats(struct hfsc_class_stats *ap)
2157 {
2158 	struct hfsc_if *hif;
2159 	struct hfsc_class *cl;
2160 	struct hfsc_classstats stats, *usp;
2161 	int	n, nclasses, error;
2162 
2163 	if ((hif = altq_lookup(ap->iface.hfsc_ifname, ALTQT_HFSC)) == NULL)
2164 		return (EBADF);
2165 
2166 	ap->cur_time = read_machclk();
2167 	ap->machclk_freq = machclk_freq;
2168 	ap->hif_classes = hif->hif_classes;
2169 	ap->hif_packets = hif->hif_packets;
2170 
2171 	/* skip the first N classes in the tree */
2172 	nclasses = ap->nskip;
2173 	for (cl = hif->hif_rootclass, n = 0; cl != NULL && n < nclasses;
2174 	     cl = hfsc_nextclass(cl), n++)
2175 		;
2176 	if (n != nclasses)
2177 		return (EINVAL);
2178 
2179 	/* then, read the next N classes in the tree */
2180 	nclasses = ap->nclasses;
2181 	usp = ap->stats;
2182 	for (n = 0; cl != NULL && n < nclasses; cl = hfsc_nextclass(cl), n++) {
2183 
2184 		get_class_stats(&stats, cl);
2185 
2186 		if ((error = copyout((void *)&stats, (void *)usp++,
2187 				     sizeof(stats))) != 0)
2188 			return (error);
2189 	}
2190 
2191 	ap->nclasses = n;
2192 
2193 	return (0);
2194 }
2195 
2196 #ifdef KLD_MODULE
2197 
2198 static struct altqsw hfsc_sw =
2199 	{"hfsc", hfscopen, hfscclose, hfscioctl};
2200 
2201 ALTQ_MODULE(altq_hfsc, ALTQT_HFSC, &hfsc_sw);
2202 MODULE_DEPEND(altq_hfsc, altq_red, 1, 1, 1);
2203 MODULE_DEPEND(altq_hfsc, altq_rio, 1, 1, 1);
2204 
2205 #endif /* KLD_MODULE */
2206 #endif /* ALTQ3_COMPAT */
2207 
2208 #endif /* ALTQ_HFSC */
2209