1 /*
2 * Copyright 2015 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: AMD
23 */
24
25 #include "dm_services.h"
26
27 #include "amdgpu.h"
28
29 #include "dc.h"
30
31 #include "core_status.h"
32 #include "core_types.h"
33 #include "hw_sequencer.h"
34 #include "dce/dce_hwseq.h"
35
36 #include "resource.h"
37 #include "dc_state.h"
38 #include "dc_state_priv.h"
39 #include "dc_plane_priv.h"
40
41 #include "gpio_service_interface.h"
42 #include "clk_mgr.h"
43 #include "clock_source.h"
44 #include "dc_bios_types.h"
45
46 #include "bios_parser_interface.h"
47 #include "bios/bios_parser_helper.h"
48 #include "include/irq_service_interface.h"
49 #include "transform.h"
50 #include "dmcu.h"
51 #include "dpp.h"
52 #include "timing_generator.h"
53 #include "abm.h"
54 #include "virtual/virtual_link_encoder.h"
55 #include "hubp.h"
56
57 #include "link_hwss.h"
58 #include "link_encoder.h"
59 #include "link_enc_cfg.h"
60
61 #include "link.h"
62 #include "dm_helpers.h"
63 #include "mem_input.h"
64
65 #include "dc_dmub_srv.h"
66
67 #include "dsc.h"
68
69 #include "vm_helper.h"
70
71 #include "dce/dce_i2c.h"
72
73 #include "dmub/dmub_srv.h"
74
75 #include "dce/dmub_psr.h"
76
77 #include "dce/dmub_hw_lock_mgr.h"
78
79 #include "dc_trace.h"
80
81 #include "hw_sequencer_private.h"
82
83 #if defined(CONFIG_DRM_AMD_DC_FP)
84 #include "dml2/dml2_internal_types.h"
85 #endif
86
87 #include "dce/dmub_outbox.h"
88
89 #define CTX \
90 dc->ctx
91
92 #define DC_LOGGER \
93 dc->ctx->logger
94
95 static const char DC_BUILD_ID[] = "production-build";
96
97 /**
98 * DOC: Overview
99 *
100 * DC is the OS-agnostic component of the amdgpu DC driver.
101 *
102 * DC maintains and validates a set of structs representing the state of the
103 * driver and writes that state to AMD hardware
104 *
105 * Main DC HW structs:
106 *
107 * struct dc - The central struct. One per driver. Created on driver load,
108 * destroyed on driver unload.
109 *
110 * struct dc_context - One per driver.
111 * Used as a backpointer by most other structs in dc.
112 *
113 * struct dc_link - One per connector (the physical DP, HDMI, miniDP, or eDP
114 * plugpoints). Created on driver load, destroyed on driver unload.
115 *
116 * struct dc_sink - One per display. Created on boot or hotplug.
117 * Destroyed on shutdown or hotunplug. A dc_link can have a local sink
118 * (the display directly attached). It may also have one or more remote
119 * sinks (in the Multi-Stream Transport case)
120 *
121 * struct resource_pool - One per driver. Represents the hw blocks not in the
122 * main pipeline. Not directly accessible by dm.
123 *
124 * Main dc state structs:
125 *
126 * These structs can be created and destroyed as needed. There is a full set of
127 * these structs in dc->current_state representing the currently programmed state.
128 *
129 * struct dc_state - The global DC state to track global state information,
130 * such as bandwidth values.
131 *
132 * struct dc_stream_state - Represents the hw configuration for the pipeline from
133 * a framebuffer to a display. Maps one-to-one with dc_sink.
134 *
135 * struct dc_plane_state - Represents a framebuffer. Each stream has at least one,
136 * and may have more in the Multi-Plane Overlay case.
137 *
138 * struct resource_context - Represents the programmable state of everything in
139 * the resource_pool. Not directly accessible by dm.
140 *
141 * struct pipe_ctx - A member of struct resource_context. Represents the
142 * internal hardware pipeline components. Each dc_plane_state has either
143 * one or two (in the pipe-split case).
144 */
145
146 /* Private functions */
147
elevate_update_type(enum surface_update_type * original,enum surface_update_type new)148 static inline void elevate_update_type(enum surface_update_type *original, enum surface_update_type new)
149 {
150 if (new > *original)
151 *original = new;
152 }
153
destroy_links(struct dc * dc)154 static void destroy_links(struct dc *dc)
155 {
156 uint32_t i;
157
158 for (i = 0; i < dc->link_count; i++) {
159 if (NULL != dc->links[i])
160 dc->link_srv->destroy_link(&dc->links[i]);
161 }
162 }
163
get_num_of_internal_disp(struct dc_link ** links,uint32_t num_links)164 static uint32_t get_num_of_internal_disp(struct dc_link **links, uint32_t num_links)
165 {
166 int i;
167 uint32_t count = 0;
168
169 for (i = 0; i < num_links; i++) {
170 if (links[i]->connector_signal == SIGNAL_TYPE_EDP ||
171 links[i]->is_internal_display)
172 count++;
173 }
174
175 return count;
176 }
177
get_seamless_boot_stream_count(struct dc_state * ctx)178 static int get_seamless_boot_stream_count(struct dc_state *ctx)
179 {
180 uint8_t i;
181 uint8_t seamless_boot_stream_count = 0;
182
183 for (i = 0; i < ctx->stream_count; i++)
184 if (ctx->streams[i]->apply_seamless_boot_optimization)
185 seamless_boot_stream_count++;
186
187 return seamless_boot_stream_count;
188 }
189
create_links(struct dc * dc,uint32_t num_virtual_links)190 static bool create_links(
191 struct dc *dc,
192 uint32_t num_virtual_links)
193 {
194 int i;
195 int connectors_num;
196 struct dc_bios *bios = dc->ctx->dc_bios;
197
198 dc->link_count = 0;
199
200 connectors_num = bios->funcs->get_connectors_number(bios);
201
202 DC_LOG_DC("BIOS object table - number of connectors: %d", connectors_num);
203
204 if (connectors_num > ENUM_ID_COUNT) {
205 dm_error(
206 "DC: Number of connectors %d exceeds maximum of %d!\n",
207 connectors_num,
208 ENUM_ID_COUNT);
209 return false;
210 }
211
212 dm_output_to_console(
213 "DC: %s: connectors_num: physical:%d, virtual:%d\n",
214 __func__,
215 connectors_num,
216 num_virtual_links);
217
218 // condition loop on link_count to allow skipping invalid indices
219 for (i = 0; dc->link_count < connectors_num && i < MAX_LINKS; i++) {
220 struct link_init_data link_init_params = {0};
221 struct dc_link *link;
222
223 DC_LOG_DC("BIOS object table - printing link object info for connector number: %d, link_index: %d", i, dc->link_count);
224
225 link_init_params.ctx = dc->ctx;
226 /* next BIOS object table connector */
227 link_init_params.connector_index = i;
228 link_init_params.link_index = dc->link_count;
229 link_init_params.dc = dc;
230 link = dc->link_srv->create_link(&link_init_params);
231
232 if (link) {
233 dc->links[dc->link_count] = link;
234 link->dc = dc;
235 ++dc->link_count;
236 }
237 }
238
239 DC_LOG_DC("BIOS object table - end");
240
241 /* Create a link for each usb4 dpia port */
242 for (i = 0; i < dc->res_pool->usb4_dpia_count; i++) {
243 struct link_init_data link_init_params = {0};
244 struct dc_link *link;
245
246 link_init_params.ctx = dc->ctx;
247 link_init_params.connector_index = i;
248 link_init_params.link_index = dc->link_count;
249 link_init_params.dc = dc;
250 link_init_params.is_dpia_link = true;
251
252 link = dc->link_srv->create_link(&link_init_params);
253 if (link) {
254 dc->links[dc->link_count] = link;
255 link->dc = dc;
256 ++dc->link_count;
257 }
258 }
259
260 for (i = 0; i < num_virtual_links; i++) {
261 struct dc_link *link = kzalloc(sizeof(*link), GFP_KERNEL);
262 struct encoder_init_data enc_init = {0};
263
264 if (link == NULL) {
265 BREAK_TO_DEBUGGER();
266 goto failed_alloc;
267 }
268
269 link->link_index = dc->link_count;
270 dc->links[dc->link_count] = link;
271 dc->link_count++;
272
273 link->ctx = dc->ctx;
274 link->dc = dc;
275 link->connector_signal = SIGNAL_TYPE_VIRTUAL;
276 link->link_id.type = OBJECT_TYPE_CONNECTOR;
277 link->link_id.id = CONNECTOR_ID_VIRTUAL;
278 link->link_id.enum_id = ENUM_ID_1;
279 link->link_enc = kzalloc(sizeof(*link->link_enc), GFP_KERNEL);
280
281 if (!link->link_enc) {
282 BREAK_TO_DEBUGGER();
283 goto failed_alloc;
284 }
285
286 link->link_status.dpcd_caps = &link->dpcd_caps;
287
288 enc_init.ctx = dc->ctx;
289 enc_init.channel = CHANNEL_ID_UNKNOWN;
290 enc_init.hpd_source = HPD_SOURCEID_UNKNOWN;
291 enc_init.transmitter = TRANSMITTER_UNKNOWN;
292 enc_init.connector = link->link_id;
293 enc_init.encoder.type = OBJECT_TYPE_ENCODER;
294 enc_init.encoder.id = ENCODER_ID_INTERNAL_VIRTUAL;
295 enc_init.encoder.enum_id = ENUM_ID_1;
296 virtual_link_encoder_construct(link->link_enc, &enc_init);
297 }
298
299 dc->caps.num_of_internal_disp = get_num_of_internal_disp(dc->links, dc->link_count);
300
301 return true;
302
303 failed_alloc:
304 return false;
305 }
306
307 /* Create additional DIG link encoder objects if fewer than the platform
308 * supports were created during link construction. This can happen if the
309 * number of physical connectors is less than the number of DIGs.
310 */
create_link_encoders(struct dc * dc)311 static bool create_link_encoders(struct dc *dc)
312 {
313 bool res = true;
314 unsigned int num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
315 unsigned int num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
316 int i;
317
318 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
319 * link encoders and physical display endpoints and does not require
320 * additional link encoder objects.
321 */
322 if (num_usb4_dpia == 0)
323 return res;
324
325 /* Create as many link encoder objects as the platform supports. DPIA
326 * endpoints can be programmably mapped to any DIG.
327 */
328 if (num_dig_link_enc > dc->res_pool->dig_link_enc_count) {
329 for (i = 0; i < num_dig_link_enc; i++) {
330 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
331
332 if (!link_enc && dc->res_pool->funcs->link_enc_create_minimal) {
333 link_enc = dc->res_pool->funcs->link_enc_create_minimal(dc->ctx,
334 (enum engine_id)(ENGINE_ID_DIGA + i));
335 if (link_enc) {
336 dc->res_pool->link_encoders[i] = link_enc;
337 dc->res_pool->dig_link_enc_count++;
338 } else {
339 res = false;
340 }
341 }
342 }
343 }
344
345 return res;
346 }
347
348 /* Destroy any additional DIG link encoder objects created by
349 * create_link_encoders().
350 * NB: Must only be called after destroy_links().
351 */
destroy_link_encoders(struct dc * dc)352 static void destroy_link_encoders(struct dc *dc)
353 {
354 unsigned int num_usb4_dpia;
355 unsigned int num_dig_link_enc;
356 int i;
357
358 if (!dc->res_pool)
359 return;
360
361 num_usb4_dpia = dc->res_pool->res_cap->num_usb4_dpia;
362 num_dig_link_enc = dc->res_pool->res_cap->num_dig_link_enc;
363
364 /* A platform without USB4 DPIA endpoints has a fixed mapping between DIG
365 * link encoders and physical display endpoints and does not require
366 * additional link encoder objects.
367 */
368 if (num_usb4_dpia == 0)
369 return;
370
371 for (i = 0; i < num_dig_link_enc; i++) {
372 struct link_encoder *link_enc = dc->res_pool->link_encoders[i];
373
374 if (link_enc) {
375 link_enc->funcs->destroy(&link_enc);
376 dc->res_pool->link_encoders[i] = NULL;
377 dc->res_pool->dig_link_enc_count--;
378 }
379 }
380 }
381
dc_perf_trace_create(void)382 static struct dc_perf_trace *dc_perf_trace_create(void)
383 {
384 return kzalloc(sizeof(struct dc_perf_trace), GFP_KERNEL);
385 }
386
dc_perf_trace_destroy(struct dc_perf_trace ** perf_trace)387 static void dc_perf_trace_destroy(struct dc_perf_trace **perf_trace)
388 {
389 kfree(*perf_trace);
390 *perf_trace = NULL;
391 }
392
set_long_vtotal(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)393 static bool set_long_vtotal(struct dc *dc, struct dc_stream_state *stream, struct dc_crtc_timing_adjust *adjust)
394 {
395 if (!dc || !stream || !adjust)
396 return false;
397
398 if (!dc->current_state)
399 return false;
400
401 int i;
402
403 for (i = 0; i < MAX_PIPES; i++) {
404 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
405
406 if (pipe->stream == stream && pipe->stream_res.tg) {
407 if (dc->hwss.set_long_vtotal)
408 dc->hwss.set_long_vtotal(&pipe, 1, adjust->v_total_min, adjust->v_total_max);
409
410 return true;
411 }
412 }
413
414 return false;
415 }
416
417 /**
418 * dc_stream_adjust_vmin_vmax - look up pipe context & update parts of DRR
419 * @dc: dc reference
420 * @stream: Initial dc stream state
421 * @adjust: Updated parameters for vertical_total_min and vertical_total_max
422 *
423 * Looks up the pipe context of dc_stream_state and updates the
424 * vertical_total_min and vertical_total_max of the DRR, Dynamic Refresh
425 * Rate, which is a power-saving feature that targets reducing panel
426 * refresh rate while the screen is static
427 *
428 * Return: %true if the pipe context is found and adjusted;
429 * %false if the pipe context is not found.
430 */
dc_stream_adjust_vmin_vmax(struct dc * dc,struct dc_stream_state * stream,struct dc_crtc_timing_adjust * adjust)431 bool dc_stream_adjust_vmin_vmax(struct dc *dc,
432 struct dc_stream_state *stream,
433 struct dc_crtc_timing_adjust *adjust)
434 {
435 int i;
436
437 /*
438 * Don't adjust DRR while there's bandwidth optimizations pending to
439 * avoid conflicting with firmware updates.
440 */
441 if (dc->ctx->dce_version > DCE_VERSION_MAX)
442 if (dc->optimized_required || dc->wm_optimized_required)
443 return false;
444
445 dc_exit_ips_for_hw_access(dc);
446
447 stream->adjust.v_total_max = adjust->v_total_max;
448 stream->adjust.v_total_mid = adjust->v_total_mid;
449 stream->adjust.v_total_mid_frame_num = adjust->v_total_mid_frame_num;
450 stream->adjust.v_total_min = adjust->v_total_min;
451 stream->adjust.allow_otg_v_count_halt = adjust->allow_otg_v_count_halt;
452
453 if (dc->caps.max_v_total != 0 &&
454 (adjust->v_total_max > dc->caps.max_v_total || adjust->v_total_min > dc->caps.max_v_total)) {
455 if (adjust->allow_otg_v_count_halt)
456 return set_long_vtotal(dc, stream, adjust);
457 else
458 return false;
459 }
460
461 for (i = 0; i < MAX_PIPES; i++) {
462 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
463
464 if (pipe->stream == stream && pipe->stream_res.tg) {
465 dc->hwss.set_drr(&pipe,
466 1,
467 *adjust);
468
469 return true;
470 }
471 }
472 return false;
473 }
474
475 /**
476 * dc_stream_get_last_used_drr_vtotal - Looks up the pipe context of
477 * dc_stream_state and gets the last VTOTAL used by DRR (Dynamic Refresh Rate)
478 *
479 * @dc: [in] dc reference
480 * @stream: [in] Initial dc stream state
481 * @refresh_rate: [in] new refresh_rate
482 *
483 * Return: %true if the pipe context is found and there is an associated
484 * timing_generator for the DC;
485 * %false if the pipe context is not found or there is no
486 * timing_generator for the DC.
487 */
dc_stream_get_last_used_drr_vtotal(struct dc * dc,struct dc_stream_state * stream,uint32_t * refresh_rate)488 bool dc_stream_get_last_used_drr_vtotal(struct dc *dc,
489 struct dc_stream_state *stream,
490 uint32_t *refresh_rate)
491 {
492 bool status = false;
493
494 int i = 0;
495
496 dc_exit_ips_for_hw_access(dc);
497
498 for (i = 0; i < MAX_PIPES; i++) {
499 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
500
501 if (pipe->stream == stream && pipe->stream_res.tg) {
502 /* Only execute if a function pointer has been defined for
503 * the DC version in question
504 */
505 if (pipe->stream_res.tg->funcs->get_last_used_drr_vtotal) {
506 pipe->stream_res.tg->funcs->get_last_used_drr_vtotal(pipe->stream_res.tg, refresh_rate);
507
508 status = true;
509
510 break;
511 }
512 }
513 }
514
515 return status;
516 }
517
dc_stream_get_crtc_position(struct dc * dc,struct dc_stream_state ** streams,int num_streams,unsigned int * v_pos,unsigned int * nom_v_pos)518 bool dc_stream_get_crtc_position(struct dc *dc,
519 struct dc_stream_state **streams, int num_streams,
520 unsigned int *v_pos, unsigned int *nom_v_pos)
521 {
522 /* TODO: Support multiple streams */
523 const struct dc_stream_state *stream = streams[0];
524 int i;
525 bool ret = false;
526 struct crtc_position position;
527
528 dc_exit_ips_for_hw_access(dc);
529
530 for (i = 0; i < MAX_PIPES; i++) {
531 struct pipe_ctx *pipe =
532 &dc->current_state->res_ctx.pipe_ctx[i];
533
534 if (pipe->stream == stream && pipe->stream_res.stream_enc) {
535 dc->hwss.get_position(&pipe, 1, &position);
536
537 *v_pos = position.vertical_count;
538 *nom_v_pos = position.nominal_vcount;
539 ret = true;
540 }
541 }
542 return ret;
543 }
544
545 #if defined(CONFIG_DRM_AMD_SECURE_DISPLAY)
546 static inline void
dc_stream_forward_dmub_crc_window(struct dc_dmub_srv * dmub_srv,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)547 dc_stream_forward_dmub_crc_window(struct dc_dmub_srv *dmub_srv,
548 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
549 {
550 union dmub_rb_cmd cmd = {0};
551
552 cmd.secure_display.roi_info.phy_id = mux_mapping->phy_output_num;
553 cmd.secure_display.roi_info.otg_id = mux_mapping->otg_output_num;
554
555 if (is_stop) {
556 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
557 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_STOP_UPDATE;
558 } else {
559 cmd.secure_display.header.type = DMUB_CMD__SECURE_DISPLAY;
560 cmd.secure_display.header.sub_type = DMUB_CMD__SECURE_DISPLAY_CRC_WIN_NOTIFY;
561 cmd.secure_display.roi_info.x_start = rect->x;
562 cmd.secure_display.roi_info.y_start = rect->y;
563 cmd.secure_display.roi_info.x_end = rect->x + rect->width;
564 cmd.secure_display.roi_info.y_end = rect->y + rect->height;
565 }
566
567 dc_wake_and_execute_dmub_cmd(dmub_srv->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
568 }
569
570 static inline void
dc_stream_forward_dmcu_crc_window(struct dmcu * dmcu,struct rect * rect,struct otg_phy_mux * mux_mapping,bool is_stop)571 dc_stream_forward_dmcu_crc_window(struct dmcu *dmcu,
572 struct rect *rect, struct otg_phy_mux *mux_mapping, bool is_stop)
573 {
574 if (is_stop)
575 dmcu->funcs->stop_crc_win_update(dmcu, mux_mapping);
576 else
577 dmcu->funcs->forward_crc_window(dmcu, rect, mux_mapping);
578 }
579
580 bool
dc_stream_forward_crc_window(struct dc_stream_state * stream,struct rect * rect,bool is_stop)581 dc_stream_forward_crc_window(struct dc_stream_state *stream,
582 struct rect *rect, bool is_stop)
583 {
584 struct dmcu *dmcu;
585 struct dc_dmub_srv *dmub_srv;
586 struct otg_phy_mux mux_mapping;
587 struct pipe_ctx *pipe;
588 int i;
589 struct dc *dc = stream->ctx->dc;
590
591 for (i = 0; i < MAX_PIPES; i++) {
592 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
593 if (pipe->stream == stream && !pipe->top_pipe && !pipe->prev_odm_pipe)
594 break;
595 }
596
597 /* Stream not found */
598 if (i == MAX_PIPES)
599 return false;
600
601 mux_mapping.phy_output_num = stream->link->link_enc_hw_inst;
602 mux_mapping.otg_output_num = pipe->stream_res.tg->inst;
603
604 dmcu = dc->res_pool->dmcu;
605 dmub_srv = dc->ctx->dmub_srv;
606
607 /* forward to dmub */
608 if (dmub_srv)
609 dc_stream_forward_dmub_crc_window(dmub_srv, rect, &mux_mapping, is_stop);
610 /* forward to dmcu */
611 else if (dmcu && dmcu->funcs->is_dmcu_initialized(dmcu))
612 dc_stream_forward_dmcu_crc_window(dmcu, rect, &mux_mapping, is_stop);
613 else
614 return false;
615
616 return true;
617 }
618 #endif /* CONFIG_DRM_AMD_SECURE_DISPLAY */
619
620 /**
621 * dc_stream_configure_crc() - Configure CRC capture for the given stream.
622 * @dc: DC Object
623 * @stream: The stream to configure CRC on.
624 * @enable: Enable CRC if true, disable otherwise.
625 * @crc_window: CRC window (x/y start/end) information
626 * @continuous: Capture CRC on every frame if true. Otherwise, only capture
627 * once.
628 *
629 * By default, only CRC0 is configured, and the entire frame is used to
630 * calculate the CRC.
631 *
632 * Return: %false if the stream is not found or CRC capture is not supported;
633 * %true if the stream has been configured.
634 */
dc_stream_configure_crc(struct dc * dc,struct dc_stream_state * stream,struct crc_params * crc_window,bool enable,bool continuous)635 bool dc_stream_configure_crc(struct dc *dc, struct dc_stream_state *stream,
636 struct crc_params *crc_window, bool enable, bool continuous)
637 {
638 struct pipe_ctx *pipe;
639 struct crc_params param;
640 struct timing_generator *tg;
641
642 pipe = resource_get_otg_master_for_stream(
643 &dc->current_state->res_ctx, stream);
644
645 /* Stream not found */
646 if (pipe == NULL)
647 return false;
648
649 dc_exit_ips_for_hw_access(dc);
650
651 /* By default, capture the full frame */
652 param.windowa_x_start = 0;
653 param.windowa_y_start = 0;
654 param.windowa_x_end = pipe->stream->timing.h_addressable;
655 param.windowa_y_end = pipe->stream->timing.v_addressable;
656 param.windowb_x_start = 0;
657 param.windowb_y_start = 0;
658 param.windowb_x_end = pipe->stream->timing.h_addressable;
659 param.windowb_y_end = pipe->stream->timing.v_addressable;
660
661 if (crc_window) {
662 param.windowa_x_start = crc_window->windowa_x_start;
663 param.windowa_y_start = crc_window->windowa_y_start;
664 param.windowa_x_end = crc_window->windowa_x_end;
665 param.windowa_y_end = crc_window->windowa_y_end;
666 param.windowb_x_start = crc_window->windowb_x_start;
667 param.windowb_y_start = crc_window->windowb_y_start;
668 param.windowb_x_end = crc_window->windowb_x_end;
669 param.windowb_y_end = crc_window->windowb_y_end;
670 }
671
672 param.dsc_mode = pipe->stream->timing.flags.DSC ? 1:0;
673 param.odm_mode = pipe->next_odm_pipe ? 1:0;
674
675 /* Default to the union of both windows */
676 param.selection = UNION_WINDOW_A_B;
677 param.continuous_mode = continuous;
678 param.enable = enable;
679
680 tg = pipe->stream_res.tg;
681
682 /* Only call if supported */
683 if (tg->funcs->configure_crc)
684 return tg->funcs->configure_crc(tg, ¶m);
685 DC_LOG_WARNING("CRC capture not supported.");
686 return false;
687 }
688
689 /**
690 * dc_stream_get_crc() - Get CRC values for the given stream.
691 *
692 * @dc: DC object.
693 * @stream: The DC stream state of the stream to get CRCs from.
694 * @r_cr: CRC value for the red component.
695 * @g_y: CRC value for the green component.
696 * @b_cb: CRC value for the blue component.
697 *
698 * dc_stream_configure_crc needs to be called beforehand to enable CRCs.
699 *
700 * Return:
701 * %false if stream is not found, or if CRCs are not enabled.
702 */
dc_stream_get_crc(struct dc * dc,struct dc_stream_state * stream,uint32_t * r_cr,uint32_t * g_y,uint32_t * b_cb)703 bool dc_stream_get_crc(struct dc *dc, struct dc_stream_state *stream,
704 uint32_t *r_cr, uint32_t *g_y, uint32_t *b_cb)
705 {
706 int i;
707 struct pipe_ctx *pipe;
708 struct timing_generator *tg;
709
710 dc_exit_ips_for_hw_access(dc);
711
712 for (i = 0; i < MAX_PIPES; i++) {
713 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
714 if (pipe->stream == stream)
715 break;
716 }
717 /* Stream not found */
718 if (i == MAX_PIPES)
719 return false;
720
721 tg = pipe->stream_res.tg;
722
723 if (tg->funcs->get_crc)
724 return tg->funcs->get_crc(tg, r_cr, g_y, b_cb);
725 DC_LOG_WARNING("CRC capture not supported.");
726 return false;
727 }
728
dc_stream_set_dyn_expansion(struct dc * dc,struct dc_stream_state * stream,enum dc_dynamic_expansion option)729 void dc_stream_set_dyn_expansion(struct dc *dc, struct dc_stream_state *stream,
730 enum dc_dynamic_expansion option)
731 {
732 /* OPP FMT dyn expansion updates*/
733 int i;
734 struct pipe_ctx *pipe_ctx;
735
736 dc_exit_ips_for_hw_access(dc);
737
738 for (i = 0; i < MAX_PIPES; i++) {
739 if (dc->current_state->res_ctx.pipe_ctx[i].stream
740 == stream) {
741 pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
742 pipe_ctx->stream_res.opp->dyn_expansion = option;
743 pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
744 pipe_ctx->stream_res.opp,
745 COLOR_SPACE_YCBCR601,
746 stream->timing.display_color_depth,
747 stream->signal);
748 }
749 }
750 }
751
dc_stream_set_dither_option(struct dc_stream_state * stream,enum dc_dither_option option)752 void dc_stream_set_dither_option(struct dc_stream_state *stream,
753 enum dc_dither_option option)
754 {
755 struct bit_depth_reduction_params params;
756 struct dc_link *link = stream->link;
757 struct pipe_ctx *pipes = NULL;
758 int i;
759
760 for (i = 0; i < MAX_PIPES; i++) {
761 if (link->dc->current_state->res_ctx.pipe_ctx[i].stream ==
762 stream) {
763 pipes = &link->dc->current_state->res_ctx.pipe_ctx[i];
764 break;
765 }
766 }
767
768 if (!pipes)
769 return;
770 if (option > DITHER_OPTION_MAX)
771 return;
772
773 dc_exit_ips_for_hw_access(stream->ctx->dc);
774
775 stream->dither_option = option;
776
777 memset(¶ms, 0, sizeof(params));
778 resource_build_bit_depth_reduction_params(stream, ¶ms);
779 stream->bit_depth_params = params;
780
781 if (pipes->plane_res.xfm &&
782 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth) {
783 pipes->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
784 pipes->plane_res.xfm,
785 pipes->plane_res.scl_data.lb_params.depth,
786 &stream->bit_depth_params);
787 }
788
789 pipes->stream_res.opp->funcs->
790 opp_program_bit_depth_reduction(pipes->stream_res.opp, ¶ms);
791 }
792
dc_stream_set_gamut_remap(struct dc * dc,const struct dc_stream_state * stream)793 bool dc_stream_set_gamut_remap(struct dc *dc, const struct dc_stream_state *stream)
794 {
795 int i;
796 bool ret = false;
797 struct pipe_ctx *pipes;
798
799 dc_exit_ips_for_hw_access(dc);
800
801 for (i = 0; i < MAX_PIPES; i++) {
802 if (dc->current_state->res_ctx.pipe_ctx[i].stream == stream) {
803 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
804 dc->hwss.program_gamut_remap(pipes);
805 ret = true;
806 }
807 }
808
809 return ret;
810 }
811
dc_stream_program_csc_matrix(struct dc * dc,struct dc_stream_state * stream)812 bool dc_stream_program_csc_matrix(struct dc *dc, struct dc_stream_state *stream)
813 {
814 int i;
815 bool ret = false;
816 struct pipe_ctx *pipes;
817
818 dc_exit_ips_for_hw_access(dc);
819
820 for (i = 0; i < MAX_PIPES; i++) {
821 if (dc->current_state->res_ctx.pipe_ctx[i].stream
822 == stream) {
823
824 pipes = &dc->current_state->res_ctx.pipe_ctx[i];
825 dc->hwss.program_output_csc(dc,
826 pipes,
827 stream->output_color_space,
828 stream->csc_color_matrix.matrix,
829 pipes->stream_res.opp->inst);
830 ret = true;
831 }
832 }
833
834 return ret;
835 }
836
dc_stream_set_static_screen_params(struct dc * dc,struct dc_stream_state ** streams,int num_streams,const struct dc_static_screen_params * params)837 void dc_stream_set_static_screen_params(struct dc *dc,
838 struct dc_stream_state **streams,
839 int num_streams,
840 const struct dc_static_screen_params *params)
841 {
842 int i, j;
843 struct pipe_ctx *pipes_affected[MAX_PIPES];
844 int num_pipes_affected = 0;
845
846 dc_exit_ips_for_hw_access(dc);
847
848 for (i = 0; i < num_streams; i++) {
849 struct dc_stream_state *stream = streams[i];
850
851 for (j = 0; j < MAX_PIPES; j++) {
852 if (dc->current_state->res_ctx.pipe_ctx[j].stream
853 == stream) {
854 pipes_affected[num_pipes_affected++] =
855 &dc->current_state->res_ctx.pipe_ctx[j];
856 }
857 }
858 }
859
860 dc->hwss.set_static_screen_control(pipes_affected, num_pipes_affected, params);
861 }
862
dc_destruct(struct dc * dc)863 static void dc_destruct(struct dc *dc)
864 {
865 // reset link encoder assignment table on destruct
866 if (dc->res_pool && dc->res_pool->funcs->link_encs_assign)
867 link_enc_cfg_init(dc, dc->current_state);
868
869 if (dc->current_state) {
870 dc_state_release(dc->current_state);
871 dc->current_state = NULL;
872 }
873
874 destroy_links(dc);
875
876 destroy_link_encoders(dc);
877
878 if (dc->clk_mgr) {
879 dc_destroy_clk_mgr(dc->clk_mgr);
880 dc->clk_mgr = NULL;
881 }
882
883 dc_destroy_resource_pool(dc);
884
885 if (dc->link_srv)
886 link_destroy_link_service(&dc->link_srv);
887
888 if (dc->ctx->gpio_service)
889 dal_gpio_service_destroy(&dc->ctx->gpio_service);
890
891 if (dc->ctx->created_bios)
892 dal_bios_parser_destroy(&dc->ctx->dc_bios);
893
894 kfree(dc->ctx->logger);
895 dc_perf_trace_destroy(&dc->ctx->perf_trace);
896
897 kfree(dc->ctx);
898 dc->ctx = NULL;
899
900 kfree(dc->bw_vbios);
901 dc->bw_vbios = NULL;
902
903 kfree(dc->bw_dceip);
904 dc->bw_dceip = NULL;
905
906 kfree(dc->dcn_soc);
907 dc->dcn_soc = NULL;
908
909 kfree(dc->dcn_ip);
910 dc->dcn_ip = NULL;
911
912 kfree(dc->vm_helper);
913 dc->vm_helper = NULL;
914
915 }
916
dc_construct_ctx(struct dc * dc,const struct dc_init_data * init_params)917 static bool dc_construct_ctx(struct dc *dc,
918 const struct dc_init_data *init_params)
919 {
920 struct dc_context *dc_ctx;
921
922 dc_ctx = kzalloc(sizeof(*dc_ctx), GFP_KERNEL);
923 if (!dc_ctx)
924 return false;
925
926 dc_ctx->cgs_device = init_params->cgs_device;
927 dc_ctx->driver_context = init_params->driver;
928 dc_ctx->dc = dc;
929 dc_ctx->asic_id = init_params->asic_id;
930 dc_ctx->dc_sink_id_count = 0;
931 dc_ctx->dc_stream_id_count = 0;
932 dc_ctx->dce_environment = init_params->dce_environment;
933 dc_ctx->dcn_reg_offsets = init_params->dcn_reg_offsets;
934 dc_ctx->nbio_reg_offsets = init_params->nbio_reg_offsets;
935 dc_ctx->clk_reg_offsets = init_params->clk_reg_offsets;
936
937 /* Create logger */
938 dc_ctx->logger = kmalloc(sizeof(*dc_ctx->logger), GFP_KERNEL);
939
940 if (!dc_ctx->logger) {
941 kfree(dc_ctx);
942 return false;
943 }
944
945 dc_ctx->logger->dev = adev_to_drm(init_params->driver);
946 dc->dml.logger = dc_ctx->logger;
947
948 dc_ctx->dce_version = resource_parse_asic_id(init_params->asic_id);
949
950 dc_ctx->perf_trace = dc_perf_trace_create();
951 if (!dc_ctx->perf_trace) {
952 kfree(dc_ctx);
953 ASSERT_CRITICAL(false);
954 return false;
955 }
956
957 dc->ctx = dc_ctx;
958
959 dc->link_srv = link_create_link_service();
960 if (!dc->link_srv)
961 return false;
962
963 return true;
964 }
965
dc_construct(struct dc * dc,const struct dc_init_data * init_params)966 static bool dc_construct(struct dc *dc,
967 const struct dc_init_data *init_params)
968 {
969 struct dc_context *dc_ctx;
970 struct bw_calcs_dceip *dc_dceip;
971 struct bw_calcs_vbios *dc_vbios;
972 struct dcn_soc_bounding_box *dcn_soc;
973 struct dcn_ip_params *dcn_ip;
974
975 dc->config = init_params->flags;
976
977 // Allocate memory for the vm_helper
978 dc->vm_helper = kzalloc(sizeof(struct vm_helper), GFP_KERNEL);
979 if (!dc->vm_helper) {
980 dm_error("%s: failed to create dc->vm_helper\n", __func__);
981 goto fail;
982 }
983
984 memcpy(&dc->bb_overrides, &init_params->bb_overrides, sizeof(dc->bb_overrides));
985
986 dc_dceip = kzalloc(sizeof(*dc_dceip), GFP_KERNEL);
987 if (!dc_dceip) {
988 dm_error("%s: failed to create dceip\n", __func__);
989 goto fail;
990 }
991
992 dc->bw_dceip = dc_dceip;
993
994 dc_vbios = kzalloc(sizeof(*dc_vbios), GFP_KERNEL);
995 if (!dc_vbios) {
996 dm_error("%s: failed to create vbios\n", __func__);
997 goto fail;
998 }
999
1000 dc->bw_vbios = dc_vbios;
1001 dcn_soc = kzalloc(sizeof(*dcn_soc), GFP_KERNEL);
1002 if (!dcn_soc) {
1003 dm_error("%s: failed to create dcn_soc\n", __func__);
1004 goto fail;
1005 }
1006
1007 dc->dcn_soc = dcn_soc;
1008
1009 dcn_ip = kzalloc(sizeof(*dcn_ip), GFP_KERNEL);
1010 if (!dcn_ip) {
1011 dm_error("%s: failed to create dcn_ip\n", __func__);
1012 goto fail;
1013 }
1014
1015 dc->dcn_ip = dcn_ip;
1016
1017 if (init_params->bb_from_dmub)
1018 dc->dml2_options.bb_from_dmub = init_params->bb_from_dmub;
1019 else
1020 dc->dml2_options.bb_from_dmub = NULL;
1021
1022 if (!dc_construct_ctx(dc, init_params)) {
1023 dm_error("%s: failed to create ctx\n", __func__);
1024 goto fail;
1025 }
1026
1027 dc_ctx = dc->ctx;
1028
1029 /* Resource should construct all asic specific resources.
1030 * This should be the only place where we need to parse the asic id
1031 */
1032 if (init_params->vbios_override)
1033 dc_ctx->dc_bios = init_params->vbios_override;
1034 else {
1035 /* Create BIOS parser */
1036 struct bp_init_data bp_init_data;
1037
1038 bp_init_data.ctx = dc_ctx;
1039 bp_init_data.bios = init_params->asic_id.atombios_base_address;
1040
1041 dc_ctx->dc_bios = dal_bios_parser_create(
1042 &bp_init_data, dc_ctx->dce_version);
1043
1044 if (!dc_ctx->dc_bios) {
1045 ASSERT_CRITICAL(false);
1046 goto fail;
1047 }
1048
1049 dc_ctx->created_bios = true;
1050 }
1051
1052 dc->vendor_signature = init_params->vendor_signature;
1053
1054 /* Create GPIO service */
1055 dc_ctx->gpio_service = dal_gpio_service_create(
1056 dc_ctx->dce_version,
1057 dc_ctx->dce_environment,
1058 dc_ctx);
1059
1060 if (!dc_ctx->gpio_service) {
1061 ASSERT_CRITICAL(false);
1062 goto fail;
1063 }
1064
1065 dc->res_pool = dc_create_resource_pool(dc, init_params, dc_ctx->dce_version);
1066 if (!dc->res_pool)
1067 goto fail;
1068
1069 /* set i2c speed if not done by the respective dcnxxx__resource.c */
1070 if (dc->caps.i2c_speed_in_khz_hdcp == 0)
1071 dc->caps.i2c_speed_in_khz_hdcp = dc->caps.i2c_speed_in_khz;
1072 if (dc->caps.max_optimizable_video_width == 0)
1073 dc->caps.max_optimizable_video_width = 5120;
1074 dc->clk_mgr = dc_clk_mgr_create(dc->ctx, dc->res_pool->pp_smu, dc->res_pool->dccg);
1075 if (!dc->clk_mgr)
1076 goto fail;
1077 #ifdef CONFIG_DRM_AMD_DC_FP
1078 dc->clk_mgr->force_smu_not_present = init_params->force_smu_not_present;
1079
1080 if (dc->res_pool->funcs->update_bw_bounding_box) {
1081 DC_FP_START();
1082 dc->res_pool->funcs->update_bw_bounding_box(dc, dc->clk_mgr->bw_params);
1083 DC_FP_END();
1084 }
1085 #endif
1086
1087 if (!create_links(dc, init_params->num_virtual_links))
1088 goto fail;
1089
1090 /* Create additional DIG link encoder objects if fewer than the platform
1091 * supports were created during link construction.
1092 */
1093 if (!create_link_encoders(dc))
1094 goto fail;
1095
1096 /* Creation of current_state must occur after dc->dml
1097 * is initialized in dc_create_resource_pool because
1098 * on creation it copies the contents of dc->dml
1099 */
1100 dc->current_state = dc_state_create(dc, NULL);
1101
1102 if (!dc->current_state) {
1103 dm_error("%s: failed to create validate ctx\n", __func__);
1104 goto fail;
1105 }
1106
1107 return true;
1108
1109 fail:
1110 return false;
1111 }
1112
disable_all_writeback_pipes_for_stream(const struct dc * dc,struct dc_stream_state * stream,struct dc_state * context)1113 static void disable_all_writeback_pipes_for_stream(
1114 const struct dc *dc,
1115 struct dc_stream_state *stream,
1116 struct dc_state *context)
1117 {
1118 int i;
1119
1120 for (i = 0; i < stream->num_wb_info; i++)
1121 stream->writeback_info[i].wb_enabled = false;
1122 }
1123
apply_ctx_interdependent_lock(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,bool lock)1124 static void apply_ctx_interdependent_lock(struct dc *dc,
1125 struct dc_state *context,
1126 struct dc_stream_state *stream,
1127 bool lock)
1128 {
1129 int i;
1130
1131 /* Checks if interdependent update function pointer is NULL or not, takes care of DCE110 case */
1132 if (dc->hwss.interdependent_update_lock)
1133 dc->hwss.interdependent_update_lock(dc, context, lock);
1134 else {
1135 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1136 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1137 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
1138
1139 // Copied conditions that were previously in dce110_apply_ctx_for_surface
1140 if (stream == pipe_ctx->stream) {
1141 if (resource_is_pipe_type(pipe_ctx, OPP_HEAD) &&
1142 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
1143 dc->hwss.pipe_control_lock(dc, pipe_ctx, lock);
1144 }
1145 }
1146 }
1147 }
1148
dc_update_visual_confirm_color(struct dc * dc,struct dc_state * context,struct pipe_ctx * pipe_ctx)1149 static void dc_update_visual_confirm_color(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe_ctx)
1150 {
1151 if (dc->ctx->dce_version >= DCN_VERSION_1_0) {
1152 memset(&pipe_ctx->visual_confirm_color, 0, sizeof(struct tg_color));
1153
1154 if (dc->debug.visual_confirm == VISUAL_CONFIRM_HDR)
1155 get_hdr_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1156 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1157 get_surface_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1158 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SWIZZLE)
1159 get_surface_tile_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1160 else {
1161 if (dc->ctx->dce_version < DCN_VERSION_2_0)
1162 color_space_to_black_color(
1163 dc, pipe_ctx->stream->output_color_space, &(pipe_ctx->visual_confirm_color));
1164 }
1165 if (dc->ctx->dce_version >= DCN_VERSION_2_0) {
1166 if (dc->debug.visual_confirm == VISUAL_CONFIRM_MPCTREE)
1167 get_mpctree_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1168 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP)
1169 get_subvp_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1170 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH)
1171 get_mclk_switch_visual_confirm_color(pipe_ctx, &(pipe_ctx->visual_confirm_color));
1172 else if (dc->debug.visual_confirm == VISUAL_CONFIRM_FAMS2)
1173 get_fams2_visual_confirm_color(dc, context, pipe_ctx, &(pipe_ctx->visual_confirm_color));
1174 }
1175 }
1176 }
1177
disable_dangling_plane(struct dc * dc,struct dc_state * context)1178 static void disable_dangling_plane(struct dc *dc, struct dc_state *context)
1179 {
1180 int i, j;
1181 struct dc_state *dangling_context = dc_state_create_current_copy(dc);
1182 struct dc_state *current_ctx;
1183 struct pipe_ctx *pipe;
1184 struct timing_generator *tg;
1185
1186 if (dangling_context == NULL)
1187 return;
1188
1189 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1190 struct dc_stream_state *old_stream =
1191 dc->current_state->res_ctx.pipe_ctx[i].stream;
1192 bool should_disable = true;
1193 bool pipe_split_change = false;
1194
1195 if ((context->res_ctx.pipe_ctx[i].top_pipe) &&
1196 (dc->current_state->res_ctx.pipe_ctx[i].top_pipe))
1197 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe->pipe_idx !=
1198 dc->current_state->res_ctx.pipe_ctx[i].top_pipe->pipe_idx;
1199 else
1200 pipe_split_change = context->res_ctx.pipe_ctx[i].top_pipe !=
1201 dc->current_state->res_ctx.pipe_ctx[i].top_pipe;
1202
1203 for (j = 0; j < context->stream_count; j++) {
1204 if (old_stream == context->streams[j]) {
1205 should_disable = false;
1206 break;
1207 }
1208 }
1209 if (!should_disable && pipe_split_change &&
1210 dc->current_state->stream_count != context->stream_count)
1211 should_disable = true;
1212
1213 if (old_stream && !dc->current_state->res_ctx.pipe_ctx[i].top_pipe &&
1214 !dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe) {
1215 struct pipe_ctx *old_pipe, *new_pipe;
1216
1217 old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1218 new_pipe = &context->res_ctx.pipe_ctx[i];
1219
1220 if (old_pipe->plane_state && !new_pipe->plane_state)
1221 should_disable = true;
1222 }
1223
1224 if (should_disable && old_stream) {
1225 bool is_phantom = dc_state_get_stream_subvp_type(dc->current_state, old_stream) == SUBVP_PHANTOM;
1226 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1227 tg = pipe->stream_res.tg;
1228 /* When disabling plane for a phantom pipe, we must turn on the
1229 * phantom OTG so the disable programming gets the double buffer
1230 * update. Otherwise the pipe will be left in a partially disabled
1231 * state that can result in underflow or hang when enabling it
1232 * again for different use.
1233 */
1234 if (is_phantom) {
1235 if (tg->funcs->enable_crtc) {
1236 int main_pipe_width = 0, main_pipe_height = 0;
1237 struct dc_stream_state *old_paired_stream = dc_state_get_paired_subvp_stream(dc->current_state, old_stream);
1238
1239 if (old_paired_stream) {
1240 main_pipe_width = old_paired_stream->dst.width;
1241 main_pipe_height = old_paired_stream->dst.height;
1242 }
1243
1244 if (dc->hwss.blank_phantom)
1245 dc->hwss.blank_phantom(dc, tg, main_pipe_width, main_pipe_height);
1246 tg->funcs->enable_crtc(tg);
1247 }
1248 }
1249
1250 if (is_phantom)
1251 dc_state_rem_all_phantom_planes_for_stream(dc, old_stream, dangling_context, true);
1252 else
1253 dc_state_rem_all_planes_for_stream(dc, old_stream, dangling_context);
1254 disable_all_writeback_pipes_for_stream(dc, old_stream, dangling_context);
1255
1256 if (pipe->stream && pipe->plane_state) {
1257 if (!dc->debug.using_dml2)
1258 set_p_state_switch_method(dc, context, pipe);
1259 dc_update_visual_confirm_color(dc, context, pipe);
1260 }
1261
1262 if (dc->hwss.apply_ctx_for_surface) {
1263 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, true);
1264 dc->hwss.apply_ctx_for_surface(dc, old_stream, 0, dangling_context);
1265 apply_ctx_interdependent_lock(dc, dc->current_state, old_stream, false);
1266 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1267 }
1268
1269 if (dc->res_pool->funcs->prepare_mcache_programming)
1270 dc->res_pool->funcs->prepare_mcache_programming(dc, dangling_context);
1271 if (dc->hwss.program_front_end_for_ctx) {
1272 dc->hwss.interdependent_update_lock(dc, dc->current_state, true);
1273 dc->hwss.program_front_end_for_ctx(dc, dangling_context);
1274 dc->hwss.interdependent_update_lock(dc, dc->current_state, false);
1275 dc->hwss.post_unlock_program_front_end(dc, dangling_context);
1276 }
1277 /* We need to put the phantom OTG back into it's default (disabled) state or we
1278 * can get corruption when transition from one SubVP config to a different one.
1279 * The OTG is set to disable on falling edge of VUPDATE so the plane disable
1280 * will still get it's double buffer update.
1281 */
1282 if (is_phantom) {
1283 if (tg->funcs->disable_phantom_crtc)
1284 tg->funcs->disable_phantom_crtc(tg);
1285 }
1286 }
1287 }
1288
1289 current_ctx = dc->current_state;
1290 dc->current_state = dangling_context;
1291 dc_state_release(current_ctx);
1292 }
1293
disable_vbios_mode_if_required(struct dc * dc,struct dc_state * context)1294 static void disable_vbios_mode_if_required(
1295 struct dc *dc,
1296 struct dc_state *context)
1297 {
1298 unsigned int i, j;
1299
1300 /* check if timing_changed, disable stream*/
1301 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1302 struct dc_stream_state *stream = NULL;
1303 struct dc_link *link = NULL;
1304 struct pipe_ctx *pipe = NULL;
1305
1306 pipe = &context->res_ctx.pipe_ctx[i];
1307 stream = pipe->stream;
1308 if (stream == NULL)
1309 continue;
1310
1311 if (stream->apply_seamless_boot_optimization)
1312 continue;
1313
1314 // only looking for first odm pipe
1315 if (pipe->prev_odm_pipe)
1316 continue;
1317
1318 if (stream->link->local_sink &&
1319 stream->link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1320 link = stream->link;
1321 }
1322
1323 if (link != NULL && link->link_enc->funcs->is_dig_enabled(link->link_enc)) {
1324 unsigned int enc_inst, tg_inst = 0;
1325 unsigned int pix_clk_100hz = 0;
1326
1327 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1328 if (enc_inst != ENGINE_ID_UNKNOWN) {
1329 for (j = 0; j < dc->res_pool->stream_enc_count; j++) {
1330 if (dc->res_pool->stream_enc[j]->id == enc_inst) {
1331 tg_inst = dc->res_pool->stream_enc[j]->funcs->dig_source_otg(
1332 dc->res_pool->stream_enc[j]);
1333 break;
1334 }
1335 }
1336
1337 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1338 dc->res_pool->dp_clock_source,
1339 tg_inst, &pix_clk_100hz);
1340
1341 if (link->link_status.link_active) {
1342 uint32_t requested_pix_clk_100hz =
1343 pipe->stream_res.pix_clk_params.requested_pix_clk_100hz;
1344
1345 if (pix_clk_100hz != requested_pix_clk_100hz) {
1346 dc->link_srv->set_dpms_off(pipe);
1347 pipe->stream->dpms_off = false;
1348 }
1349 }
1350 }
1351 }
1352 }
1353 }
1354
1355 /* Public functions */
1356
dc_create(const struct dc_init_data * init_params)1357 struct dc *dc_create(const struct dc_init_data *init_params)
1358 {
1359 struct dc *dc = kzalloc(sizeof(*dc), GFP_KERNEL);
1360 unsigned int full_pipe_count;
1361
1362 if (!dc)
1363 return NULL;
1364
1365 if (init_params->dce_environment == DCE_ENV_VIRTUAL_HW) {
1366 dc->caps.linear_pitch_alignment = 64;
1367 if (!dc_construct_ctx(dc, init_params))
1368 goto destruct_dc;
1369 } else {
1370 if (!dc_construct(dc, init_params))
1371 goto destruct_dc;
1372
1373 full_pipe_count = dc->res_pool->pipe_count;
1374 if (dc->res_pool->underlay_pipe_index != NO_UNDERLAY_PIPE)
1375 full_pipe_count--;
1376 dc->caps.max_streams = min(
1377 full_pipe_count,
1378 dc->res_pool->stream_enc_count);
1379
1380 dc->caps.max_links = dc->link_count;
1381 dc->caps.max_audios = dc->res_pool->audio_count;
1382 dc->caps.linear_pitch_alignment = 64;
1383
1384 dc->caps.max_dp_protocol_version = DP_VERSION_1_4;
1385
1386 dc->caps.max_otg_num = dc->res_pool->res_cap->num_timing_generator;
1387
1388 if (dc->res_pool->dmcu != NULL)
1389 dc->versions.dmcu_version = dc->res_pool->dmcu->dmcu_version;
1390 }
1391
1392 dc->dcn_reg_offsets = init_params->dcn_reg_offsets;
1393 dc->nbio_reg_offsets = init_params->nbio_reg_offsets;
1394 dc->clk_reg_offsets = init_params->clk_reg_offsets;
1395
1396 /* Populate versioning information */
1397 dc->versions.dc_ver = DC_VER;
1398
1399 dc->build_id = DC_BUILD_ID;
1400
1401 DC_LOG_DC("Display Core initialized\n");
1402
1403 return dc;
1404
1405 destruct_dc:
1406 dc_destruct(dc);
1407 kfree(dc);
1408 return NULL;
1409 }
1410
detect_edp_presence(struct dc * dc)1411 static void detect_edp_presence(struct dc *dc)
1412 {
1413 struct dc_link *edp_links[MAX_NUM_EDP];
1414 struct dc_link *edp_link = NULL;
1415 enum dc_connection_type type;
1416 int i;
1417 int edp_num;
1418
1419 dc_get_edp_links(dc, edp_links, &edp_num);
1420 if (!edp_num)
1421 return;
1422
1423 for (i = 0; i < edp_num; i++) {
1424 edp_link = edp_links[i];
1425 if (dc->config.edp_not_connected) {
1426 edp_link->edp_sink_present = false;
1427 } else {
1428 dc_link_detect_connection_type(edp_link, &type);
1429 edp_link->edp_sink_present = (type != dc_connection_none);
1430 }
1431 }
1432 }
1433
dc_hardware_init(struct dc * dc)1434 void dc_hardware_init(struct dc *dc)
1435 {
1436
1437 detect_edp_presence(dc);
1438 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW)
1439 dc->hwss.init_hw(dc);
1440 }
1441
dc_init_callbacks(struct dc * dc,const struct dc_callback_init * init_params)1442 void dc_init_callbacks(struct dc *dc,
1443 const struct dc_callback_init *init_params)
1444 {
1445 dc->ctx->cp_psp = init_params->cp_psp;
1446 }
1447
dc_deinit_callbacks(struct dc * dc)1448 void dc_deinit_callbacks(struct dc *dc)
1449 {
1450 memset(&dc->ctx->cp_psp, 0, sizeof(dc->ctx->cp_psp));
1451 }
1452
dc_destroy(struct dc ** dc)1453 void dc_destroy(struct dc **dc)
1454 {
1455 dc_destruct(*dc);
1456 kfree(*dc);
1457 *dc = NULL;
1458 }
1459
enable_timing_multisync(struct dc * dc,struct dc_state * ctx)1460 static void enable_timing_multisync(
1461 struct dc *dc,
1462 struct dc_state *ctx)
1463 {
1464 int i, multisync_count = 0;
1465 int pipe_count = dc->res_pool->pipe_count;
1466 struct pipe_ctx *multisync_pipes[MAX_PIPES] = { NULL };
1467
1468 for (i = 0; i < pipe_count; i++) {
1469 if (!ctx->res_ctx.pipe_ctx[i].stream ||
1470 !ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.enabled)
1471 continue;
1472 if (ctx->res_ctx.pipe_ctx[i].stream == ctx->res_ctx.pipe_ctx[i].stream->triggered_crtc_reset.event_source)
1473 continue;
1474 multisync_pipes[multisync_count] = &ctx->res_ctx.pipe_ctx[i];
1475 multisync_count++;
1476 }
1477
1478 if (multisync_count > 0) {
1479 dc->hwss.enable_per_frame_crtc_position_reset(
1480 dc, multisync_count, multisync_pipes);
1481 }
1482 }
1483
program_timing_sync(struct dc * dc,struct dc_state * ctx)1484 static void program_timing_sync(
1485 struct dc *dc,
1486 struct dc_state *ctx)
1487 {
1488 int i, j, k;
1489 int group_index = 0;
1490 int num_group = 0;
1491 int pipe_count = dc->res_pool->pipe_count;
1492 struct pipe_ctx *unsynced_pipes[MAX_PIPES] = { NULL };
1493
1494 for (i = 0; i < pipe_count; i++) {
1495 if (!ctx->res_ctx.pipe_ctx[i].stream
1496 || ctx->res_ctx.pipe_ctx[i].top_pipe
1497 || ctx->res_ctx.pipe_ctx[i].prev_odm_pipe)
1498 continue;
1499
1500 unsynced_pipes[i] = &ctx->res_ctx.pipe_ctx[i];
1501 }
1502
1503 for (i = 0; i < pipe_count; i++) {
1504 int group_size = 1;
1505 enum timing_synchronization_type sync_type = NOT_SYNCHRONIZABLE;
1506 struct pipe_ctx *pipe_set[MAX_PIPES];
1507
1508 if (!unsynced_pipes[i])
1509 continue;
1510
1511 pipe_set[0] = unsynced_pipes[i];
1512 unsynced_pipes[i] = NULL;
1513
1514 /* Add tg to the set, search rest of the tg's for ones with
1515 * same timing, add all tgs with same timing to the group
1516 */
1517 for (j = i + 1; j < pipe_count; j++) {
1518 if (!unsynced_pipes[j])
1519 continue;
1520 if (sync_type != TIMING_SYNCHRONIZABLE &&
1521 dc->hwss.enable_vblanks_synchronization &&
1522 unsynced_pipes[j]->stream_res.tg->funcs->align_vblanks &&
1523 resource_are_vblanks_synchronizable(
1524 unsynced_pipes[j]->stream,
1525 pipe_set[0]->stream)) {
1526 sync_type = VBLANK_SYNCHRONIZABLE;
1527 pipe_set[group_size] = unsynced_pipes[j];
1528 unsynced_pipes[j] = NULL;
1529 group_size++;
1530 } else
1531 if (sync_type != VBLANK_SYNCHRONIZABLE &&
1532 resource_are_streams_timing_synchronizable(
1533 unsynced_pipes[j]->stream,
1534 pipe_set[0]->stream)) {
1535 sync_type = TIMING_SYNCHRONIZABLE;
1536 pipe_set[group_size] = unsynced_pipes[j];
1537 unsynced_pipes[j] = NULL;
1538 group_size++;
1539 }
1540 }
1541
1542 /* set first unblanked pipe as master */
1543 for (j = 0; j < group_size; j++) {
1544 bool is_blanked;
1545
1546 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1547 is_blanked =
1548 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1549 else
1550 is_blanked =
1551 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1552 if (!is_blanked) {
1553 if (j == 0)
1554 break;
1555
1556 swap(pipe_set[0], pipe_set[j]);
1557 break;
1558 }
1559 }
1560
1561 for (k = 0; k < group_size; k++) {
1562 struct dc_stream_status *status = dc_state_get_stream_status(ctx, pipe_set[k]->stream);
1563
1564 if (!status)
1565 continue;
1566
1567 status->timing_sync_info.group_id = num_group;
1568 status->timing_sync_info.group_size = group_size;
1569 if (k == 0)
1570 status->timing_sync_info.master = true;
1571 else
1572 status->timing_sync_info.master = false;
1573
1574 }
1575
1576 /* remove any other unblanked pipes as they have already been synced */
1577 if (dc->config.use_pipe_ctx_sync_logic) {
1578 /* check pipe's syncd to decide which pipe to be removed */
1579 for (j = 1; j < group_size; j++) {
1580 if (pipe_set[j]->pipe_idx_syncd == pipe_set[0]->pipe_idx_syncd) {
1581 group_size--;
1582 pipe_set[j] = pipe_set[group_size];
1583 j--;
1584 } else
1585 /* link slave pipe's syncd with master pipe */
1586 pipe_set[j]->pipe_idx_syncd = pipe_set[0]->pipe_idx_syncd;
1587 }
1588 } else {
1589 /* remove any other pipes by checking valid plane */
1590 for (j = j + 1; j < group_size; j++) {
1591 bool is_blanked;
1592
1593 if (pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked)
1594 is_blanked =
1595 pipe_set[j]->stream_res.opp->funcs->dpg_is_blanked(pipe_set[j]->stream_res.opp);
1596 else
1597 is_blanked =
1598 pipe_set[j]->stream_res.tg->funcs->is_blanked(pipe_set[j]->stream_res.tg);
1599 if (!is_blanked) {
1600 group_size--;
1601 pipe_set[j] = pipe_set[group_size];
1602 j--;
1603 }
1604 }
1605 }
1606
1607 if (group_size > 1) {
1608 if (sync_type == TIMING_SYNCHRONIZABLE) {
1609 dc->hwss.enable_timing_synchronization(
1610 dc, ctx, group_index, group_size, pipe_set);
1611 } else
1612 if (sync_type == VBLANK_SYNCHRONIZABLE) {
1613 dc->hwss.enable_vblanks_synchronization(
1614 dc, group_index, group_size, pipe_set);
1615 }
1616 group_index++;
1617 }
1618 num_group++;
1619 }
1620 }
1621
streams_changed(struct dc * dc,struct dc_stream_state * streams[],uint8_t stream_count)1622 static bool streams_changed(struct dc *dc,
1623 struct dc_stream_state *streams[],
1624 uint8_t stream_count)
1625 {
1626 uint8_t i;
1627
1628 if (stream_count != dc->current_state->stream_count)
1629 return true;
1630
1631 for (i = 0; i < dc->current_state->stream_count; i++) {
1632 if (dc->current_state->streams[i] != streams[i])
1633 return true;
1634 if (!streams[i]->link->link_state_valid)
1635 return true;
1636 }
1637
1638 return false;
1639 }
1640
dc_validate_boot_timing(const struct dc * dc,const struct dc_sink * sink,struct dc_crtc_timing * crtc_timing)1641 bool dc_validate_boot_timing(const struct dc *dc,
1642 const struct dc_sink *sink,
1643 struct dc_crtc_timing *crtc_timing)
1644 {
1645 struct timing_generator *tg;
1646 struct stream_encoder *se = NULL;
1647
1648 struct dc_crtc_timing hw_crtc_timing = {0};
1649
1650 struct dc_link *link = sink->link;
1651 unsigned int i, enc_inst, tg_inst = 0;
1652
1653 /* Support seamless boot on EDP displays only */
1654 if (sink->sink_signal != SIGNAL_TYPE_EDP) {
1655 return false;
1656 }
1657
1658 if (dc->debug.force_odm_combine)
1659 return false;
1660
1661 /* Check for enabled DIG to identify enabled display */
1662 if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
1663 return false;
1664
1665 enc_inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
1666
1667 if (enc_inst == ENGINE_ID_UNKNOWN)
1668 return false;
1669
1670 for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1671 if (dc->res_pool->stream_enc[i]->id == enc_inst) {
1672
1673 se = dc->res_pool->stream_enc[i];
1674
1675 tg_inst = dc->res_pool->stream_enc[i]->funcs->dig_source_otg(
1676 dc->res_pool->stream_enc[i]);
1677 break;
1678 }
1679 }
1680
1681 // tg_inst not found
1682 if (i == dc->res_pool->stream_enc_count)
1683 return false;
1684
1685 if (tg_inst >= dc->res_pool->timing_generator_count)
1686 return false;
1687
1688 if (tg_inst != link->link_enc->preferred_engine)
1689 return false;
1690
1691 tg = dc->res_pool->timing_generators[tg_inst];
1692
1693 if (!tg->funcs->get_hw_timing)
1694 return false;
1695
1696 if (!tg->funcs->get_hw_timing(tg, &hw_crtc_timing))
1697 return false;
1698
1699 if (crtc_timing->h_total != hw_crtc_timing.h_total)
1700 return false;
1701
1702 if (crtc_timing->h_border_left != hw_crtc_timing.h_border_left)
1703 return false;
1704
1705 if (crtc_timing->h_addressable != hw_crtc_timing.h_addressable)
1706 return false;
1707
1708 if (crtc_timing->h_border_right != hw_crtc_timing.h_border_right)
1709 return false;
1710
1711 if (crtc_timing->h_front_porch != hw_crtc_timing.h_front_porch)
1712 return false;
1713
1714 if (crtc_timing->h_sync_width != hw_crtc_timing.h_sync_width)
1715 return false;
1716
1717 if (crtc_timing->v_total != hw_crtc_timing.v_total)
1718 return false;
1719
1720 if (crtc_timing->v_border_top != hw_crtc_timing.v_border_top)
1721 return false;
1722
1723 if (crtc_timing->v_addressable != hw_crtc_timing.v_addressable)
1724 return false;
1725
1726 if (crtc_timing->v_border_bottom != hw_crtc_timing.v_border_bottom)
1727 return false;
1728
1729 if (crtc_timing->v_front_porch != hw_crtc_timing.v_front_porch)
1730 return false;
1731
1732 if (crtc_timing->v_sync_width != hw_crtc_timing.v_sync_width)
1733 return false;
1734
1735 /* block DSC for now, as VBIOS does not currently support DSC timings */
1736 if (crtc_timing->flags.DSC)
1737 return false;
1738
1739 if (dc_is_dp_signal(link->connector_signal)) {
1740 unsigned int pix_clk_100hz = 0;
1741 uint32_t numOdmPipes = 1;
1742 uint32_t id_src[4] = {0};
1743
1744 dc->res_pool->dp_clock_source->funcs->get_pixel_clk_frequency_100hz(
1745 dc->res_pool->dp_clock_source,
1746 tg_inst, &pix_clk_100hz);
1747
1748 if (tg->funcs->get_optc_source)
1749 tg->funcs->get_optc_source(tg,
1750 &numOdmPipes, &id_src[0], &id_src[1]);
1751
1752 if (numOdmPipes == 2) {
1753 pix_clk_100hz *= 2;
1754 } else if (numOdmPipes == 4) {
1755 pix_clk_100hz *= 4;
1756 } else if (se && se->funcs->get_pixels_per_cycle) {
1757 uint32_t pixels_per_cycle = se->funcs->get_pixels_per_cycle(se);
1758
1759 if (pixels_per_cycle != 1 && !dc->debug.enable_dp_dig_pixel_rate_div_policy)
1760 return false;
1761
1762 pix_clk_100hz *= pixels_per_cycle;
1763 }
1764
1765 // Note: In rare cases, HW pixclk may differ from crtc's pixclk
1766 // slightly due to rounding issues in 10 kHz units.
1767 if (crtc_timing->pix_clk_100hz != pix_clk_100hz)
1768 return false;
1769
1770 if (!se || !se->funcs->dp_get_pixel_format)
1771 return false;
1772
1773 if (!se->funcs->dp_get_pixel_format(
1774 se,
1775 &hw_crtc_timing.pixel_encoding,
1776 &hw_crtc_timing.display_color_depth))
1777 return false;
1778
1779 if (hw_crtc_timing.display_color_depth != crtc_timing->display_color_depth)
1780 return false;
1781
1782 if (hw_crtc_timing.pixel_encoding != crtc_timing->pixel_encoding)
1783 return false;
1784 }
1785
1786 if (link->dpcd_caps.dprx_feature.bits.VSC_SDP_COLORIMETRY_SUPPORTED) {
1787 return false;
1788 }
1789
1790 if (link->dpcd_caps.channel_coding_cap.bits.DP_128b_132b_SUPPORTED)
1791 return false;
1792
1793 if (dc->link_srv->edp_is_ilr_optimization_required(link, crtc_timing)) {
1794 DC_LOG_EVENT_LINK_TRAINING("Seamless boot disabled to optimize eDP link rate\n");
1795 return false;
1796 }
1797
1798 return true;
1799 }
1800
should_update_pipe_for_stream(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_stream_state * stream)1801 static inline bool should_update_pipe_for_stream(
1802 struct dc_state *context,
1803 struct pipe_ctx *pipe_ctx,
1804 struct dc_stream_state *stream)
1805 {
1806 return (pipe_ctx->stream && pipe_ctx->stream == stream);
1807 }
1808
should_update_pipe_for_plane(struct dc_state * context,struct pipe_ctx * pipe_ctx,struct dc_plane_state * plane_state)1809 static inline bool should_update_pipe_for_plane(
1810 struct dc_state *context,
1811 struct pipe_ctx *pipe_ctx,
1812 struct dc_plane_state *plane_state)
1813 {
1814 return (pipe_ctx->plane_state == plane_state);
1815 }
1816
dc_enable_stereo(struct dc * dc,struct dc_state * context,struct dc_stream_state * streams[],uint8_t stream_count)1817 void dc_enable_stereo(
1818 struct dc *dc,
1819 struct dc_state *context,
1820 struct dc_stream_state *streams[],
1821 uint8_t stream_count)
1822 {
1823 int i, j;
1824 struct pipe_ctx *pipe;
1825
1826 dc_exit_ips_for_hw_access(dc);
1827
1828 for (i = 0; i < MAX_PIPES; i++) {
1829 if (context != NULL) {
1830 pipe = &context->res_ctx.pipe_ctx[i];
1831 } else {
1832 context = dc->current_state;
1833 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1834 }
1835
1836 for (j = 0; pipe && j < stream_count; j++) {
1837 if (should_update_pipe_for_stream(context, pipe, streams[j]) &&
1838 dc->hwss.setup_stereo)
1839 dc->hwss.setup_stereo(pipe, dc);
1840 }
1841 }
1842 }
1843
dc_trigger_sync(struct dc * dc,struct dc_state * context)1844 void dc_trigger_sync(struct dc *dc, struct dc_state *context)
1845 {
1846 if (context->stream_count > 1 && !dc->debug.disable_timing_sync) {
1847 dc_exit_ips_for_hw_access(dc);
1848
1849 enable_timing_multisync(dc, context);
1850 program_timing_sync(dc, context);
1851 }
1852 }
1853
get_stream_mask(struct dc * dc,struct dc_state * context)1854 static uint8_t get_stream_mask(struct dc *dc, struct dc_state *context)
1855 {
1856 int i;
1857 unsigned int stream_mask = 0;
1858
1859 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1860 if (context->res_ctx.pipe_ctx[i].stream)
1861 stream_mask |= 1 << i;
1862 }
1863
1864 return stream_mask;
1865 }
1866
dc_z10_restore(const struct dc * dc)1867 void dc_z10_restore(const struct dc *dc)
1868 {
1869 if (dc->hwss.z10_restore)
1870 dc->hwss.z10_restore(dc);
1871 }
1872
dc_z10_save_init(struct dc * dc)1873 void dc_z10_save_init(struct dc *dc)
1874 {
1875 if (dc->hwss.z10_save_init)
1876 dc->hwss.z10_save_init(dc);
1877 }
1878
1879 /**
1880 * dc_commit_state_no_check - Apply context to the hardware
1881 *
1882 * @dc: DC object with the current status to be updated
1883 * @context: New state that will become the current status at the end of this function
1884 *
1885 * Applies given context to the hardware and copy it into current context.
1886 * It's up to the user to release the src context afterwards.
1887 *
1888 * Return: an enum dc_status result code for the operation
1889 */
dc_commit_state_no_check(struct dc * dc,struct dc_state * context)1890 static enum dc_status dc_commit_state_no_check(struct dc *dc, struct dc_state *context)
1891 {
1892 struct dc_bios *dcb = dc->ctx->dc_bios;
1893 enum dc_status result = DC_ERROR_UNEXPECTED;
1894 struct pipe_ctx *pipe;
1895 int i, k, l;
1896 struct dc_stream_state *dc_streams[MAX_STREAMS] = {0};
1897 struct dc_state *old_state;
1898 bool subvp_prev_use = false;
1899
1900 dc_z10_restore(dc);
1901 dc_allow_idle_optimizations(dc, false);
1902
1903 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1904 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
1905
1906 /* Check old context for SubVP */
1907 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
1908 if (subvp_prev_use)
1909 break;
1910 }
1911
1912 for (i = 0; i < context->stream_count; i++)
1913 dc_streams[i] = context->streams[i];
1914
1915 if (!dcb->funcs->is_accelerated_mode(dcb)) {
1916 disable_vbios_mode_if_required(dc, context);
1917 dc->hwss.enable_accelerated_mode(dc, context);
1918 }
1919
1920 if (context->stream_count > get_seamless_boot_stream_count(context) ||
1921 context->stream_count == 0)
1922 dc->hwss.prepare_bandwidth(dc, context);
1923
1924 /* When SubVP is active, all HW programming must be done while
1925 * SubVP lock is acquired
1926 */
1927 if (dc->hwss.subvp_pipe_control_lock)
1928 dc->hwss.subvp_pipe_control_lock(dc, context, true, true, NULL, subvp_prev_use);
1929 if (dc->hwss.fams2_global_control_lock)
1930 dc->hwss.fams2_global_control_lock(dc, context, true);
1931
1932 if (dc->hwss.update_dsc_pg)
1933 dc->hwss.update_dsc_pg(dc, context, false);
1934
1935 disable_dangling_plane(dc, context);
1936 /* re-program planes for existing stream, in case we need to
1937 * free up plane resource for later use
1938 */
1939 if (dc->hwss.apply_ctx_for_surface) {
1940 for (i = 0; i < context->stream_count; i++) {
1941 if (context->streams[i]->mode_changed)
1942 continue;
1943 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
1944 dc->hwss.apply_ctx_for_surface(
1945 dc, context->streams[i],
1946 context->stream_status[i].plane_count,
1947 context); /* use new pipe config in new context */
1948 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
1949 dc->hwss.post_unlock_program_front_end(dc, context);
1950 }
1951 }
1952
1953 /* Program hardware */
1954 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1955 pipe = &context->res_ctx.pipe_ctx[i];
1956 dc->hwss.wait_for_mpcc_disconnect(dc, dc->res_pool, pipe);
1957 }
1958
1959 result = dc->hwss.apply_ctx_to_hw(dc, context);
1960
1961 if (result != DC_OK) {
1962 /* Application of dc_state to hardware stopped. */
1963 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
1964 return result;
1965 }
1966
1967 dc_trigger_sync(dc, context);
1968
1969 /* Full update should unconditionally be triggered when dc_commit_state_no_check is called */
1970 for (i = 0; i < context->stream_count; i++) {
1971 uint32_t prev_dsc_changed = context->streams[i]->update_flags.bits.dsc_changed;
1972
1973 context->streams[i]->update_flags.raw = 0xFFFFFFFF;
1974 context->streams[i]->update_flags.bits.dsc_changed = prev_dsc_changed;
1975 }
1976
1977 /* Program all planes within new context*/
1978 if (dc->res_pool->funcs->prepare_mcache_programming)
1979 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
1980 if (dc->hwss.program_front_end_for_ctx) {
1981 dc->hwss.interdependent_update_lock(dc, context, true);
1982 dc->hwss.program_front_end_for_ctx(dc, context);
1983 dc->hwss.interdependent_update_lock(dc, context, false);
1984 dc->hwss.post_unlock_program_front_end(dc, context);
1985 }
1986
1987 if (dc->hwss.commit_subvp_config)
1988 dc->hwss.commit_subvp_config(dc, context);
1989 if (dc->hwss.subvp_pipe_control_lock)
1990 dc->hwss.subvp_pipe_control_lock(dc, context, false, true, NULL, subvp_prev_use);
1991 if (dc->hwss.fams2_global_control_lock)
1992 dc->hwss.fams2_global_control_lock(dc, context, false);
1993
1994 for (i = 0; i < context->stream_count; i++) {
1995 const struct dc_link *link = context->streams[i]->link;
1996
1997 if (!context->streams[i]->mode_changed)
1998 continue;
1999
2000 if (dc->hwss.apply_ctx_for_surface) {
2001 apply_ctx_interdependent_lock(dc, context, context->streams[i], true);
2002 dc->hwss.apply_ctx_for_surface(
2003 dc, context->streams[i],
2004 context->stream_status[i].plane_count,
2005 context);
2006 apply_ctx_interdependent_lock(dc, context, context->streams[i], false);
2007 dc->hwss.post_unlock_program_front_end(dc, context);
2008 }
2009
2010 /*
2011 * enable stereo
2012 * TODO rework dc_enable_stereo call to work with validation sets?
2013 */
2014 for (k = 0; k < MAX_PIPES; k++) {
2015 pipe = &context->res_ctx.pipe_ctx[k];
2016
2017 for (l = 0 ; pipe && l < context->stream_count; l++) {
2018 if (context->streams[l] &&
2019 context->streams[l] == pipe->stream &&
2020 dc->hwss.setup_stereo)
2021 dc->hwss.setup_stereo(pipe, dc);
2022 }
2023 }
2024
2025 CONN_MSG_MODE(link, "{%dx%d, %dx%d@%dKhz}",
2026 context->streams[i]->timing.h_addressable,
2027 context->streams[i]->timing.v_addressable,
2028 context->streams[i]->timing.h_total,
2029 context->streams[i]->timing.v_total,
2030 context->streams[i]->timing.pix_clk_100hz / 10);
2031 }
2032
2033 dc_enable_stereo(dc, context, dc_streams, context->stream_count);
2034
2035 if (context->stream_count > get_seamless_boot_stream_count(context) ||
2036 context->stream_count == 0) {
2037 /* Must wait for no flips to be pending before doing optimize bw */
2038 hwss_wait_for_no_pipes_pending(dc, context);
2039 /*
2040 * optimized dispclk depends on ODM setup. Need to wait for ODM
2041 * update pending complete before optimizing bandwidth.
2042 */
2043 hwss_wait_for_odm_update_pending_complete(dc, context);
2044 /* pplib is notified if disp_num changed */
2045 dc->hwss.optimize_bandwidth(dc, context);
2046 /* Need to do otg sync again as otg could be out of sync due to otg
2047 * workaround applied during clock update
2048 */
2049 dc_trigger_sync(dc, context);
2050 }
2051
2052 if (dc->hwss.update_dsc_pg)
2053 dc->hwss.update_dsc_pg(dc, context, true);
2054
2055 if (dc->ctx->dce_version >= DCE_VERSION_MAX)
2056 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2057 else
2058 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2059
2060 context->stream_mask = get_stream_mask(dc, context);
2061
2062 if (context->stream_mask != dc->current_state->stream_mask)
2063 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, context->stream_mask);
2064
2065 for (i = 0; i < context->stream_count; i++)
2066 context->streams[i]->mode_changed = false;
2067
2068 /* Clear update flags that were set earlier to avoid redundant programming */
2069 for (i = 0; i < context->stream_count; i++) {
2070 context->streams[i]->update_flags.raw = 0x0;
2071 }
2072
2073 old_state = dc->current_state;
2074 dc->current_state = context;
2075
2076 dc_state_release(old_state);
2077
2078 dc_state_retain(dc->current_state);
2079
2080 return result;
2081 }
2082
2083 static bool commit_minimal_transition_state(struct dc *dc,
2084 struct dc_state *transition_base_context);
2085
2086 /**
2087 * dc_commit_streams - Commit current stream state
2088 *
2089 * @dc: DC object with the commit state to be configured in the hardware
2090 * @params: Parameters for the commit, including the streams to be committed
2091 *
2092 * Function responsible for commit streams change to the hardware.
2093 *
2094 * Return:
2095 * Return DC_OK if everything work as expected, otherwise, return a dc_status
2096 * code.
2097 */
dc_commit_streams(struct dc * dc,struct dc_commit_streams_params * params)2098 enum dc_status dc_commit_streams(struct dc *dc, struct dc_commit_streams_params *params)
2099 {
2100 int i, j;
2101 struct dc_state *context;
2102 enum dc_status res = DC_OK;
2103 struct dc_validation_set set[MAX_STREAMS] = {0};
2104 struct pipe_ctx *pipe;
2105 bool handle_exit_odm2to1 = false;
2106
2107 if (!params)
2108 return DC_ERROR_UNEXPECTED;
2109
2110 if (dc->ctx->dce_environment == DCE_ENV_VIRTUAL_HW)
2111 return res;
2112
2113 if (!streams_changed(dc, params->streams, params->stream_count) &&
2114 dc->current_state->power_source == params->power_source)
2115 return res;
2116
2117 dc_exit_ips_for_hw_access(dc);
2118
2119 DC_LOG_DC("%s: %d streams\n", __func__, params->stream_count);
2120
2121 for (i = 0; i < params->stream_count; i++) {
2122 struct dc_stream_state *stream = params->streams[i];
2123 struct dc_stream_status *status = dc_stream_get_status(stream);
2124
2125 dc_stream_log(dc, stream);
2126
2127 set[i].stream = stream;
2128
2129 if (status) {
2130 set[i].plane_count = status->plane_count;
2131 for (j = 0; j < status->plane_count; j++)
2132 set[i].plane_states[j] = status->plane_states[j];
2133 }
2134 }
2135
2136 /* ODM Combine 2:1 power optimization is only applied for single stream
2137 * scenario, it uses extra pipes than needed to reduce power consumption
2138 * We need to switch off this feature to make room for new streams.
2139 */
2140 if (params->stream_count > dc->current_state->stream_count &&
2141 dc->current_state->stream_count == 1) {
2142 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2143 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2144 if (pipe->next_odm_pipe)
2145 handle_exit_odm2to1 = true;
2146 }
2147 }
2148
2149 if (handle_exit_odm2to1)
2150 res = commit_minimal_transition_state(dc, dc->current_state);
2151
2152 context = dc_state_create_current_copy(dc);
2153 if (!context)
2154 goto context_alloc_fail;
2155
2156 context->power_source = params->power_source;
2157
2158 res = dc_validate_with_context(dc, set, params->stream_count, context, false);
2159 if (res != DC_OK) {
2160 BREAK_TO_DEBUGGER();
2161 goto fail;
2162 }
2163
2164 res = dc_commit_state_no_check(dc, context);
2165
2166 for (i = 0; i < params->stream_count; i++) {
2167 for (j = 0; j < context->stream_count; j++) {
2168 if (params->streams[i]->stream_id == context->streams[j]->stream_id)
2169 params->streams[i]->out.otg_offset = context->stream_status[j].primary_otg_inst;
2170
2171 if (dc_is_embedded_signal(params->streams[i]->signal)) {
2172 struct dc_stream_status *status = dc_state_get_stream_status(context, params->streams[i]);
2173
2174 if (!status)
2175 continue;
2176
2177 if (dc->hwss.is_abm_supported)
2178 status->is_abm_supported = dc->hwss.is_abm_supported(dc, context, params->streams[i]);
2179 else
2180 status->is_abm_supported = true;
2181 }
2182 }
2183 }
2184
2185 fail:
2186 dc_state_release(context);
2187
2188 context_alloc_fail:
2189
2190 DC_LOG_DC("%s Finished.\n", __func__);
2191
2192 return res;
2193 }
2194
dc_acquire_release_mpc_3dlut(struct dc * dc,bool acquire,struct dc_stream_state * stream,struct dc_3dlut ** lut,struct dc_transfer_func ** shaper)2195 bool dc_acquire_release_mpc_3dlut(
2196 struct dc *dc, bool acquire,
2197 struct dc_stream_state *stream,
2198 struct dc_3dlut **lut,
2199 struct dc_transfer_func **shaper)
2200 {
2201 int pipe_idx;
2202 bool ret = false;
2203 bool found_pipe_idx = false;
2204 const struct resource_pool *pool = dc->res_pool;
2205 struct resource_context *res_ctx = &dc->current_state->res_ctx;
2206 int mpcc_id = 0;
2207
2208 if (pool && res_ctx) {
2209 if (acquire) {
2210 /*find pipe idx for the given stream*/
2211 for (pipe_idx = 0; pipe_idx < pool->pipe_count; pipe_idx++) {
2212 if (res_ctx->pipe_ctx[pipe_idx].stream == stream) {
2213 found_pipe_idx = true;
2214 mpcc_id = res_ctx->pipe_ctx[pipe_idx].plane_res.hubp->inst;
2215 break;
2216 }
2217 }
2218 } else
2219 found_pipe_idx = true;/*for release pipe_idx is not required*/
2220
2221 if (found_pipe_idx) {
2222 if (acquire && pool->funcs->acquire_post_bldn_3dlut)
2223 ret = pool->funcs->acquire_post_bldn_3dlut(res_ctx, pool, mpcc_id, lut, shaper);
2224 else if (!acquire && pool->funcs->release_post_bldn_3dlut)
2225 ret = pool->funcs->release_post_bldn_3dlut(res_ctx, pool, lut, shaper);
2226 }
2227 }
2228 return ret;
2229 }
2230
is_flip_pending_in_pipes(struct dc * dc,struct dc_state * context)2231 static bool is_flip_pending_in_pipes(struct dc *dc, struct dc_state *context)
2232 {
2233 int i;
2234 struct pipe_ctx *pipe;
2235
2236 for (i = 0; i < MAX_PIPES; i++) {
2237 pipe = &context->res_ctx.pipe_ctx[i];
2238
2239 // Don't check flip pending on phantom pipes
2240 if (!pipe->plane_state || (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM))
2241 continue;
2242
2243 /* Must set to false to start with, due to OR in update function */
2244 pipe->plane_state->status.is_flip_pending = false;
2245 dc->hwss.update_pending_status(pipe);
2246 if (pipe->plane_state->status.is_flip_pending)
2247 return true;
2248 }
2249 return false;
2250 }
2251
2252 /* Perform updates here which need to be deferred until next vupdate
2253 *
2254 * i.e. blnd lut, 3dlut, and shaper lut bypass regs are double buffered
2255 * but forcing lut memory to shutdown state is immediate. This causes
2256 * single frame corruption as lut gets disabled mid-frame unless shutdown
2257 * is deferred until after entering bypass.
2258 */
process_deferred_updates(struct dc * dc)2259 static void process_deferred_updates(struct dc *dc)
2260 {
2261 int i = 0;
2262
2263 if (dc->debug.enable_mem_low_power.bits.cm) {
2264 ASSERT(dc->dcn_ip->max_num_dpp);
2265 for (i = 0; i < dc->dcn_ip->max_num_dpp; i++)
2266 if (dc->res_pool->dpps[i]->funcs->dpp_deferred_update)
2267 dc->res_pool->dpps[i]->funcs->dpp_deferred_update(dc->res_pool->dpps[i]);
2268 }
2269 }
2270
dc_post_update_surfaces_to_stream(struct dc * dc)2271 void dc_post_update_surfaces_to_stream(struct dc *dc)
2272 {
2273 int i;
2274 struct dc_state *context = dc->current_state;
2275
2276 if ((!dc->optimized_required) || get_seamless_boot_stream_count(context) > 0)
2277 return;
2278
2279 post_surface_trace(dc);
2280
2281 /*
2282 * Only relevant for DCN behavior where we can guarantee the optimization
2283 * is safe to apply - retain the legacy behavior for DCE.
2284 */
2285
2286 if (dc->ctx->dce_version < DCE_VERSION_MAX)
2287 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
2288 else {
2289 TRACE_DCN_CLOCK_STATE(&context->bw_ctx.bw.dcn.clk);
2290
2291 if (is_flip_pending_in_pipes(dc, context))
2292 return;
2293
2294 for (i = 0; i < dc->res_pool->pipe_count; i++)
2295 if (context->res_ctx.pipe_ctx[i].stream == NULL ||
2296 context->res_ctx.pipe_ctx[i].plane_state == NULL) {
2297 context->res_ctx.pipe_ctx[i].pipe_idx = i;
2298 dc->hwss.disable_plane(dc, context, &context->res_ctx.pipe_ctx[i]);
2299 }
2300
2301 process_deferred_updates(dc);
2302
2303 dc->hwss.optimize_bandwidth(dc, context);
2304
2305 if (dc->hwss.update_dsc_pg)
2306 dc->hwss.update_dsc_pg(dc, context, true);
2307 }
2308
2309 dc->optimized_required = false;
2310 dc->wm_optimized_required = false;
2311 }
2312
dc_set_generic_gpio_for_stereo(bool enable,struct gpio_service * gpio_service)2313 bool dc_set_generic_gpio_for_stereo(bool enable,
2314 struct gpio_service *gpio_service)
2315 {
2316 enum gpio_result gpio_result = GPIO_RESULT_NON_SPECIFIC_ERROR;
2317 struct gpio_pin_info pin_info;
2318 struct gpio *generic;
2319 struct gpio_generic_mux_config *config = kzalloc(sizeof(struct gpio_generic_mux_config),
2320 GFP_KERNEL);
2321
2322 if (!config)
2323 return false;
2324 pin_info = dal_gpio_get_generic_pin_info(gpio_service, GPIO_ID_GENERIC, 0);
2325
2326 if (pin_info.mask == 0xFFFFFFFF || pin_info.offset == 0xFFFFFFFF) {
2327 kfree(config);
2328 return false;
2329 } else {
2330 generic = dal_gpio_service_create_generic_mux(
2331 gpio_service,
2332 pin_info.offset,
2333 pin_info.mask);
2334 }
2335
2336 if (!generic) {
2337 kfree(config);
2338 return false;
2339 }
2340
2341 gpio_result = dal_gpio_open(generic, GPIO_MODE_OUTPUT);
2342
2343 config->enable_output_from_mux = enable;
2344 config->mux_select = GPIO_SIGNAL_SOURCE_PASS_THROUGH_STEREO_SYNC;
2345
2346 if (gpio_result == GPIO_RESULT_OK)
2347 gpio_result = dal_mux_setup_config(generic, config);
2348
2349 if (gpio_result == GPIO_RESULT_OK) {
2350 dal_gpio_close(generic);
2351 dal_gpio_destroy_generic_mux(&generic);
2352 kfree(config);
2353 return true;
2354 } else {
2355 dal_gpio_close(generic);
2356 dal_gpio_destroy_generic_mux(&generic);
2357 kfree(config);
2358 return false;
2359 }
2360 }
2361
is_surface_in_context(const struct dc_state * context,const struct dc_plane_state * plane_state)2362 static bool is_surface_in_context(
2363 const struct dc_state *context,
2364 const struct dc_plane_state *plane_state)
2365 {
2366 int j;
2367
2368 for (j = 0; j < MAX_PIPES; j++) {
2369 const struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
2370
2371 if (plane_state == pipe_ctx->plane_state) {
2372 return true;
2373 }
2374 }
2375
2376 return false;
2377 }
2378
get_plane_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2379 static enum surface_update_type get_plane_info_update_type(const struct dc *dc, const struct dc_surface_update *u)
2380 {
2381 union surface_update_flags *update_flags = &u->surface->update_flags;
2382 enum surface_update_type update_type = UPDATE_TYPE_FAST;
2383
2384 if (!u->plane_info)
2385 return UPDATE_TYPE_FAST;
2386
2387 if (u->plane_info->color_space != u->surface->color_space) {
2388 update_flags->bits.color_space_change = 1;
2389 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2390 }
2391
2392 if (u->plane_info->horizontal_mirror != u->surface->horizontal_mirror) {
2393 update_flags->bits.horizontal_mirror_change = 1;
2394 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2395 }
2396
2397 if (u->plane_info->rotation != u->surface->rotation) {
2398 update_flags->bits.rotation_change = 1;
2399 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2400 }
2401
2402 if (u->plane_info->format != u->surface->format) {
2403 update_flags->bits.pixel_format_change = 1;
2404 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2405 }
2406
2407 if (u->plane_info->stereo_format != u->surface->stereo_format) {
2408 update_flags->bits.stereo_format_change = 1;
2409 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2410 }
2411
2412 if (u->plane_info->per_pixel_alpha != u->surface->per_pixel_alpha) {
2413 update_flags->bits.per_pixel_alpha_change = 1;
2414 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2415 }
2416
2417 if (u->plane_info->global_alpha_value != u->surface->global_alpha_value) {
2418 update_flags->bits.global_alpha_change = 1;
2419 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2420 }
2421
2422 if (u->plane_info->dcc.enable != u->surface->dcc.enable
2423 || u->plane_info->dcc.dcc_ind_blk != u->surface->dcc.dcc_ind_blk
2424 || u->plane_info->dcc.meta_pitch != u->surface->dcc.meta_pitch) {
2425 /* During DCC on/off, stutter period is calculated before
2426 * DCC has fully transitioned. This results in incorrect
2427 * stutter period calculation. Triggering a full update will
2428 * recalculate stutter period.
2429 */
2430 update_flags->bits.dcc_change = 1;
2431 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2432 }
2433
2434 if (resource_pixel_format_to_bpp(u->plane_info->format) !=
2435 resource_pixel_format_to_bpp(u->surface->format)) {
2436 /* different bytes per element will require full bandwidth
2437 * and DML calculation
2438 */
2439 update_flags->bits.bpp_change = 1;
2440 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2441 }
2442
2443 if (u->plane_info->plane_size.surface_pitch != u->surface->plane_size.surface_pitch
2444 || u->plane_info->plane_size.chroma_pitch != u->surface->plane_size.chroma_pitch) {
2445 update_flags->bits.plane_size_change = 1;
2446 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2447 }
2448
2449
2450 if (memcmp(&u->plane_info->tiling_info, &u->surface->tiling_info,
2451 sizeof(union dc_tiling_info)) != 0) {
2452 update_flags->bits.swizzle_change = 1;
2453 elevate_update_type(&update_type, UPDATE_TYPE_MED);
2454
2455 /* todo: below are HW dependent, we should add a hook to
2456 * DCE/N resource and validated there.
2457 */
2458 if (!dc->debug.skip_full_updated_if_possible) {
2459 /* swizzled mode requires RQ to be setup properly,
2460 * thus need to run DML to calculate RQ settings
2461 */
2462 update_flags->bits.bandwidth_change = 1;
2463 elevate_update_type(&update_type, UPDATE_TYPE_FULL);
2464 }
2465 }
2466
2467 /* This should be UPDATE_TYPE_FAST if nothing has changed. */
2468 return update_type;
2469 }
2470
get_scaling_info_update_type(const struct dc * dc,const struct dc_surface_update * u)2471 static enum surface_update_type get_scaling_info_update_type(
2472 const struct dc *dc,
2473 const struct dc_surface_update *u)
2474 {
2475 union surface_update_flags *update_flags = &u->surface->update_flags;
2476
2477 if (!u->scaling_info)
2478 return UPDATE_TYPE_FAST;
2479
2480 if (u->scaling_info->dst_rect.width != u->surface->dst_rect.width
2481 || u->scaling_info->dst_rect.height != u->surface->dst_rect.height
2482 || u->scaling_info->scaling_quality.integer_scaling !=
2483 u->surface->scaling_quality.integer_scaling
2484 ) {
2485 update_flags->bits.scaling_change = 1;
2486
2487 if ((u->scaling_info->dst_rect.width < u->surface->dst_rect.width
2488 || u->scaling_info->dst_rect.height < u->surface->dst_rect.height)
2489 && (u->scaling_info->dst_rect.width < u->surface->src_rect.width
2490 || u->scaling_info->dst_rect.height < u->surface->src_rect.height))
2491 /* Making dst rect smaller requires a bandwidth change */
2492 update_flags->bits.bandwidth_change = 1;
2493 }
2494
2495 if (u->scaling_info->src_rect.width != u->surface->src_rect.width
2496 || u->scaling_info->src_rect.height != u->surface->src_rect.height) {
2497
2498 update_flags->bits.scaling_change = 1;
2499 if (u->scaling_info->src_rect.width > u->surface->src_rect.width
2500 || u->scaling_info->src_rect.height > u->surface->src_rect.height)
2501 /* Making src rect bigger requires a bandwidth change */
2502 update_flags->bits.clock_change = 1;
2503 }
2504
2505 if (u->scaling_info->src_rect.width > dc->caps.max_optimizable_video_width &&
2506 (u->scaling_info->clip_rect.width > u->surface->clip_rect.width ||
2507 u->scaling_info->clip_rect.height > u->surface->clip_rect.height))
2508 /* Changing clip size of a large surface may result in MPC slice count change */
2509 update_flags->bits.bandwidth_change = 1;
2510
2511 if (u->scaling_info->clip_rect.width != u->surface->clip_rect.width ||
2512 u->scaling_info->clip_rect.height != u->surface->clip_rect.height)
2513 update_flags->bits.clip_size_change = 1;
2514
2515 if (u->scaling_info->src_rect.x != u->surface->src_rect.x
2516 || u->scaling_info->src_rect.y != u->surface->src_rect.y
2517 || u->scaling_info->clip_rect.x != u->surface->clip_rect.x
2518 || u->scaling_info->clip_rect.y != u->surface->clip_rect.y
2519 || u->scaling_info->dst_rect.x != u->surface->dst_rect.x
2520 || u->scaling_info->dst_rect.y != u->surface->dst_rect.y)
2521 update_flags->bits.position_change = 1;
2522
2523 if (update_flags->bits.clock_change
2524 || update_flags->bits.bandwidth_change
2525 || update_flags->bits.scaling_change)
2526 return UPDATE_TYPE_FULL;
2527
2528 if (update_flags->bits.position_change ||
2529 update_flags->bits.clip_size_change)
2530 return UPDATE_TYPE_MED;
2531
2532 return UPDATE_TYPE_FAST;
2533 }
2534
det_surface_update(const struct dc * dc,const struct dc_surface_update * u)2535 static enum surface_update_type det_surface_update(const struct dc *dc,
2536 const struct dc_surface_update *u)
2537 {
2538 const struct dc_state *context = dc->current_state;
2539 enum surface_update_type type;
2540 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2541 union surface_update_flags *update_flags = &u->surface->update_flags;
2542
2543 if (!is_surface_in_context(context, u->surface) || u->surface->force_full_update) {
2544 update_flags->raw = 0xFFFFFFFF;
2545 return UPDATE_TYPE_FULL;
2546 }
2547
2548 update_flags->raw = 0; // Reset all flags
2549
2550 type = get_plane_info_update_type(dc, u);
2551 elevate_update_type(&overall_type, type);
2552
2553 type = get_scaling_info_update_type(dc, u);
2554 elevate_update_type(&overall_type, type);
2555
2556 if (u->flip_addr) {
2557 update_flags->bits.addr_update = 1;
2558 if (u->flip_addr->address.tmz_surface != u->surface->address.tmz_surface) {
2559 update_flags->bits.tmz_changed = 1;
2560 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2561 }
2562 }
2563 if (u->in_transfer_func)
2564 update_flags->bits.in_transfer_func_change = 1;
2565
2566 if (u->input_csc_color_matrix)
2567 update_flags->bits.input_csc_change = 1;
2568
2569 if (u->coeff_reduction_factor)
2570 update_flags->bits.coeff_reduction_change = 1;
2571
2572 if (u->gamut_remap_matrix)
2573 update_flags->bits.gamut_remap_change = 1;
2574
2575 if (u->blend_tf)
2576 update_flags->bits.gamma_change = 1;
2577
2578 if (u->gamma) {
2579 enum surface_pixel_format format = SURFACE_PIXEL_FORMAT_GRPH_BEGIN;
2580
2581 if (u->plane_info)
2582 format = u->plane_info->format;
2583 else
2584 format = u->surface->format;
2585
2586 if (dce_use_lut(format))
2587 update_flags->bits.gamma_change = 1;
2588 }
2589
2590 if (u->lut3d_func || u->func_shaper)
2591 update_flags->bits.lut_3d = 1;
2592
2593 if (u->hdr_mult.value)
2594 if (u->hdr_mult.value != u->surface->hdr_mult.value) {
2595 update_flags->bits.hdr_mult = 1;
2596 elevate_update_type(&overall_type, UPDATE_TYPE_MED);
2597 }
2598
2599 if (u->sdr_white_level_nits)
2600 if (u->sdr_white_level_nits != u->surface->sdr_white_level_nits) {
2601 update_flags->bits.sdr_white_level_nits = 1;
2602 elevate_update_type(&overall_type, UPDATE_TYPE_FULL);
2603 }
2604
2605 if (u->cm2_params) {
2606 if ((u->cm2_params->component_settings.shaper_3dlut_setting
2607 != u->surface->mcm_shaper_3dlut_setting)
2608 || (u->cm2_params->component_settings.lut1d_enable
2609 != u->surface->mcm_lut1d_enable))
2610 update_flags->bits.mcm_transfer_function_enable_change = 1;
2611 if (u->cm2_params->cm2_luts.lut3d_data.lut3d_src
2612 != u->surface->mcm_luts.lut3d_data.lut3d_src)
2613 update_flags->bits.mcm_transfer_function_enable_change = 1;
2614 }
2615 if (update_flags->bits.in_transfer_func_change) {
2616 type = UPDATE_TYPE_MED;
2617 elevate_update_type(&overall_type, type);
2618 }
2619
2620 if (update_flags->bits.lut_3d) {
2621 type = UPDATE_TYPE_FULL;
2622 elevate_update_type(&overall_type, type);
2623 }
2624 if (update_flags->bits.mcm_transfer_function_enable_change) {
2625 type = UPDATE_TYPE_FULL;
2626 elevate_update_type(&overall_type, type);
2627 }
2628
2629 if (dc->debug.enable_legacy_fast_update &&
2630 (update_flags->bits.gamma_change ||
2631 update_flags->bits.gamut_remap_change ||
2632 update_flags->bits.input_csc_change ||
2633 update_flags->bits.coeff_reduction_change)) {
2634 type = UPDATE_TYPE_FULL;
2635 elevate_update_type(&overall_type, type);
2636 }
2637 return overall_type;
2638 }
2639
check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2640 static enum surface_update_type check_update_surfaces_for_stream(
2641 struct dc *dc,
2642 struct dc_surface_update *updates,
2643 int surface_count,
2644 struct dc_stream_update *stream_update,
2645 const struct dc_stream_status *stream_status)
2646 {
2647 int i;
2648 enum surface_update_type overall_type = UPDATE_TYPE_FAST;
2649
2650 if (dc->idle_optimizations_allowed)
2651 overall_type = UPDATE_TYPE_FULL;
2652
2653 if (stream_status == NULL || stream_status->plane_count != surface_count)
2654 overall_type = UPDATE_TYPE_FULL;
2655
2656 if (stream_update && stream_update->pending_test_pattern) {
2657 overall_type = UPDATE_TYPE_FULL;
2658 }
2659
2660 if (stream_update && stream_update->hw_cursor_req) {
2661 overall_type = UPDATE_TYPE_FULL;
2662 }
2663
2664 /* some stream updates require passive update */
2665 if (stream_update) {
2666 union stream_update_flags *su_flags = &stream_update->stream->update_flags;
2667
2668 if ((stream_update->src.height != 0 && stream_update->src.width != 0) ||
2669 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
2670 stream_update->integer_scaling_update)
2671 su_flags->bits.scaling = 1;
2672
2673 if (dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2674 su_flags->bits.out_tf = 1;
2675
2676 if (stream_update->abm_level)
2677 su_flags->bits.abm_level = 1;
2678
2679 if (stream_update->dpms_off)
2680 su_flags->bits.dpms_off = 1;
2681
2682 if (stream_update->gamut_remap)
2683 su_flags->bits.gamut_remap = 1;
2684
2685 if (stream_update->wb_update)
2686 su_flags->bits.wb_update = 1;
2687
2688 if (stream_update->dsc_config)
2689 su_flags->bits.dsc_changed = 1;
2690
2691 if (stream_update->mst_bw_update)
2692 su_flags->bits.mst_bw = 1;
2693
2694 if (stream_update->stream->freesync_on_desktop &&
2695 (stream_update->vrr_infopacket || stream_update->allow_freesync ||
2696 stream_update->vrr_active_variable || stream_update->vrr_active_fixed))
2697 su_flags->bits.fams_changed = 1;
2698
2699 if (stream_update->scaler_sharpener_update)
2700 su_flags->bits.scaler_sharpener = 1;
2701
2702 if (su_flags->raw != 0)
2703 overall_type = UPDATE_TYPE_FULL;
2704
2705 if (stream_update->output_csc_transform || stream_update->output_color_space)
2706 su_flags->bits.out_csc = 1;
2707
2708 /* Output transfer function changes do not require bandwidth recalculation,
2709 * so don't trigger a full update
2710 */
2711 if (!dc->debug.enable_legacy_fast_update && stream_update->out_transfer_func)
2712 su_flags->bits.out_tf = 1;
2713 }
2714
2715 for (i = 0 ; i < surface_count; i++) {
2716 enum surface_update_type type =
2717 det_surface_update(dc, &updates[i]);
2718
2719 elevate_update_type(&overall_type, type);
2720 }
2721
2722 return overall_type;
2723 }
2724
2725 /*
2726 * dc_check_update_surfaces_for_stream() - Determine update type (fast, med, or full)
2727 *
2728 * See :c:type:`enum surface_update_type <surface_update_type>` for explanation of update types
2729 */
dc_check_update_surfaces_for_stream(struct dc * dc,struct dc_surface_update * updates,int surface_count,struct dc_stream_update * stream_update,const struct dc_stream_status * stream_status)2730 enum surface_update_type dc_check_update_surfaces_for_stream(
2731 struct dc *dc,
2732 struct dc_surface_update *updates,
2733 int surface_count,
2734 struct dc_stream_update *stream_update,
2735 const struct dc_stream_status *stream_status)
2736 {
2737 int i;
2738 enum surface_update_type type;
2739
2740 if (stream_update)
2741 stream_update->stream->update_flags.raw = 0;
2742 for (i = 0; i < surface_count; i++)
2743 updates[i].surface->update_flags.raw = 0;
2744
2745 type = check_update_surfaces_for_stream(dc, updates, surface_count, stream_update, stream_status);
2746 if (type == UPDATE_TYPE_FULL) {
2747 if (stream_update) {
2748 uint32_t dsc_changed = stream_update->stream->update_flags.bits.dsc_changed;
2749 stream_update->stream->update_flags.raw = 0xFFFFFFFF;
2750 stream_update->stream->update_flags.bits.dsc_changed = dsc_changed;
2751 }
2752 for (i = 0; i < surface_count; i++)
2753 updates[i].surface->update_flags.raw = 0xFFFFFFFF;
2754 }
2755
2756 if (type == UPDATE_TYPE_FAST) {
2757 // If there's an available clock comparator, we use that.
2758 if (dc->clk_mgr->funcs->are_clock_states_equal) {
2759 if (!dc->clk_mgr->funcs->are_clock_states_equal(&dc->clk_mgr->clks, &dc->current_state->bw_ctx.bw.dcn.clk))
2760 dc->optimized_required = true;
2761 // Else we fallback to mem compare.
2762 } else if (memcmp(&dc->current_state->bw_ctx.bw.dcn.clk, &dc->clk_mgr->clks, offsetof(struct dc_clocks, prev_p_state_change_support)) != 0) {
2763 dc->optimized_required = true;
2764 }
2765
2766 dc->optimized_required |= dc->wm_optimized_required;
2767 }
2768
2769 return type;
2770 }
2771
stream_get_status(struct dc_state * ctx,struct dc_stream_state * stream)2772 static struct dc_stream_status *stream_get_status(
2773 struct dc_state *ctx,
2774 struct dc_stream_state *stream)
2775 {
2776 uint8_t i;
2777
2778 for (i = 0; i < ctx->stream_count; i++) {
2779 if (stream == ctx->streams[i]) {
2780 return &ctx->stream_status[i];
2781 }
2782 }
2783
2784 return NULL;
2785 }
2786
2787 static const enum surface_update_type update_surface_trace_level = UPDATE_TYPE_FULL;
2788
copy_surface_update_to_plane(struct dc_plane_state * surface,struct dc_surface_update * srf_update)2789 static void copy_surface_update_to_plane(
2790 struct dc_plane_state *surface,
2791 struct dc_surface_update *srf_update)
2792 {
2793 if (srf_update->flip_addr) {
2794 surface->address = srf_update->flip_addr->address;
2795 surface->flip_immediate =
2796 srf_update->flip_addr->flip_immediate;
2797 surface->time.time_elapsed_in_us[surface->time.index] =
2798 srf_update->flip_addr->flip_timestamp_in_us -
2799 surface->time.prev_update_time_in_us;
2800 surface->time.prev_update_time_in_us =
2801 srf_update->flip_addr->flip_timestamp_in_us;
2802 surface->time.index++;
2803 if (surface->time.index >= DC_PLANE_UPDATE_TIMES_MAX)
2804 surface->time.index = 0;
2805
2806 surface->triplebuffer_flips = srf_update->flip_addr->triplebuffer_flips;
2807 }
2808
2809 if (srf_update->scaling_info) {
2810 surface->scaling_quality =
2811 srf_update->scaling_info->scaling_quality;
2812 surface->dst_rect =
2813 srf_update->scaling_info->dst_rect;
2814 surface->src_rect =
2815 srf_update->scaling_info->src_rect;
2816 surface->clip_rect =
2817 srf_update->scaling_info->clip_rect;
2818 }
2819
2820 if (srf_update->plane_info) {
2821 surface->color_space =
2822 srf_update->plane_info->color_space;
2823 surface->format =
2824 srf_update->plane_info->format;
2825 surface->plane_size =
2826 srf_update->plane_info->plane_size;
2827 surface->rotation =
2828 srf_update->plane_info->rotation;
2829 surface->horizontal_mirror =
2830 srf_update->plane_info->horizontal_mirror;
2831 surface->stereo_format =
2832 srf_update->plane_info->stereo_format;
2833 surface->tiling_info =
2834 srf_update->plane_info->tiling_info;
2835 surface->visible =
2836 srf_update->plane_info->visible;
2837 surface->per_pixel_alpha =
2838 srf_update->plane_info->per_pixel_alpha;
2839 surface->global_alpha =
2840 srf_update->plane_info->global_alpha;
2841 surface->global_alpha_value =
2842 srf_update->plane_info->global_alpha_value;
2843 surface->dcc =
2844 srf_update->plane_info->dcc;
2845 surface->layer_index =
2846 srf_update->plane_info->layer_index;
2847 }
2848
2849 if (srf_update->gamma) {
2850 memcpy(&surface->gamma_correction.entries,
2851 &srf_update->gamma->entries,
2852 sizeof(struct dc_gamma_entries));
2853 surface->gamma_correction.is_identity =
2854 srf_update->gamma->is_identity;
2855 surface->gamma_correction.num_entries =
2856 srf_update->gamma->num_entries;
2857 surface->gamma_correction.type =
2858 srf_update->gamma->type;
2859 }
2860
2861 if (srf_update->in_transfer_func) {
2862 surface->in_transfer_func.sdr_ref_white_level =
2863 srf_update->in_transfer_func->sdr_ref_white_level;
2864 surface->in_transfer_func.tf =
2865 srf_update->in_transfer_func->tf;
2866 surface->in_transfer_func.type =
2867 srf_update->in_transfer_func->type;
2868 memcpy(&surface->in_transfer_func.tf_pts,
2869 &srf_update->in_transfer_func->tf_pts,
2870 sizeof(struct dc_transfer_func_distributed_points));
2871 }
2872
2873 if (srf_update->func_shaper)
2874 memcpy(&surface->in_shaper_func, srf_update->func_shaper,
2875 sizeof(surface->in_shaper_func));
2876
2877 if (srf_update->lut3d_func)
2878 memcpy(&surface->lut3d_func, srf_update->lut3d_func,
2879 sizeof(surface->lut3d_func));
2880
2881 if (srf_update->hdr_mult.value)
2882 surface->hdr_mult =
2883 srf_update->hdr_mult;
2884
2885 if (srf_update->sdr_white_level_nits)
2886 surface->sdr_white_level_nits =
2887 srf_update->sdr_white_level_nits;
2888
2889 if (srf_update->blend_tf)
2890 memcpy(&surface->blend_tf, srf_update->blend_tf,
2891 sizeof(surface->blend_tf));
2892
2893 if (srf_update->input_csc_color_matrix)
2894 surface->input_csc_color_matrix =
2895 *srf_update->input_csc_color_matrix;
2896
2897 if (srf_update->coeff_reduction_factor)
2898 surface->coeff_reduction_factor =
2899 *srf_update->coeff_reduction_factor;
2900
2901 if (srf_update->gamut_remap_matrix)
2902 surface->gamut_remap_matrix =
2903 *srf_update->gamut_remap_matrix;
2904 if (srf_update->cm2_params) {
2905 surface->mcm_shaper_3dlut_setting = srf_update->cm2_params->component_settings.shaper_3dlut_setting;
2906 surface->mcm_lut1d_enable = srf_update->cm2_params->component_settings.lut1d_enable;
2907 surface->mcm_luts = srf_update->cm2_params->cm2_luts;
2908 }
2909 if (srf_update->cursor_csc_color_matrix)
2910 surface->cursor_csc_color_matrix =
2911 *srf_update->cursor_csc_color_matrix;
2912 }
2913
copy_stream_update_to_stream(struct dc * dc,struct dc_state * context,struct dc_stream_state * stream,struct dc_stream_update * update)2914 static void copy_stream_update_to_stream(struct dc *dc,
2915 struct dc_state *context,
2916 struct dc_stream_state *stream,
2917 struct dc_stream_update *update)
2918 {
2919 struct dc_context *dc_ctx = dc->ctx;
2920
2921 if (update == NULL || stream == NULL)
2922 return;
2923
2924 if (update->src.height && update->src.width)
2925 stream->src = update->src;
2926
2927 if (update->dst.height && update->dst.width)
2928 stream->dst = update->dst;
2929
2930 if (update->out_transfer_func) {
2931 stream->out_transfer_func.sdr_ref_white_level =
2932 update->out_transfer_func->sdr_ref_white_level;
2933 stream->out_transfer_func.tf = update->out_transfer_func->tf;
2934 stream->out_transfer_func.type =
2935 update->out_transfer_func->type;
2936 memcpy(&stream->out_transfer_func.tf_pts,
2937 &update->out_transfer_func->tf_pts,
2938 sizeof(struct dc_transfer_func_distributed_points));
2939 }
2940
2941 if (update->hdr_static_metadata)
2942 stream->hdr_static_metadata = *update->hdr_static_metadata;
2943
2944 if (update->abm_level)
2945 stream->abm_level = *update->abm_level;
2946
2947 if (update->periodic_interrupt)
2948 stream->periodic_interrupt = *update->periodic_interrupt;
2949
2950 if (update->gamut_remap)
2951 stream->gamut_remap_matrix = *update->gamut_remap;
2952
2953 /* Note: this being updated after mode set is currently not a use case
2954 * however if it arises OCSC would need to be reprogrammed at the
2955 * minimum
2956 */
2957 if (update->output_color_space)
2958 stream->output_color_space = *update->output_color_space;
2959
2960 if (update->output_csc_transform)
2961 stream->csc_color_matrix = *update->output_csc_transform;
2962
2963 if (update->vrr_infopacket)
2964 stream->vrr_infopacket = *update->vrr_infopacket;
2965
2966 if (update->hw_cursor_req)
2967 stream->hw_cursor_req = *update->hw_cursor_req;
2968
2969 if (update->allow_freesync)
2970 stream->allow_freesync = *update->allow_freesync;
2971
2972 if (update->vrr_active_variable)
2973 stream->vrr_active_variable = *update->vrr_active_variable;
2974
2975 if (update->vrr_active_fixed)
2976 stream->vrr_active_fixed = *update->vrr_active_fixed;
2977
2978 if (update->crtc_timing_adjust)
2979 stream->adjust = *update->crtc_timing_adjust;
2980
2981 if (update->dpms_off)
2982 stream->dpms_off = *update->dpms_off;
2983
2984 if (update->hfvsif_infopacket)
2985 stream->hfvsif_infopacket = *update->hfvsif_infopacket;
2986
2987 if (update->vtem_infopacket)
2988 stream->vtem_infopacket = *update->vtem_infopacket;
2989
2990 if (update->vsc_infopacket)
2991 stream->vsc_infopacket = *update->vsc_infopacket;
2992
2993 if (update->vsp_infopacket)
2994 stream->vsp_infopacket = *update->vsp_infopacket;
2995
2996 if (update->adaptive_sync_infopacket)
2997 stream->adaptive_sync_infopacket = *update->adaptive_sync_infopacket;
2998
2999 if (update->dither_option)
3000 stream->dither_option = *update->dither_option;
3001
3002 if (update->pending_test_pattern)
3003 stream->test_pattern = *update->pending_test_pattern;
3004 /* update current stream with writeback info */
3005 if (update->wb_update) {
3006 int i;
3007
3008 stream->num_wb_info = update->wb_update->num_wb_info;
3009 ASSERT(stream->num_wb_info <= MAX_DWB_PIPES);
3010 for (i = 0; i < stream->num_wb_info; i++)
3011 stream->writeback_info[i] =
3012 update->wb_update->writeback_info[i];
3013 }
3014 if (update->dsc_config) {
3015 struct dc_dsc_config old_dsc_cfg = stream->timing.dsc_cfg;
3016 uint32_t old_dsc_enabled = stream->timing.flags.DSC;
3017 uint32_t enable_dsc = (update->dsc_config->num_slices_h != 0 &&
3018 update->dsc_config->num_slices_v != 0);
3019
3020 /* Use temporarry context for validating new DSC config */
3021 struct dc_state *dsc_validate_context = dc_state_create_copy(dc->current_state);
3022
3023 if (dsc_validate_context) {
3024 stream->timing.dsc_cfg = *update->dsc_config;
3025 stream->timing.flags.DSC = enable_dsc;
3026 if (!dc->res_pool->funcs->validate_bandwidth(dc, dsc_validate_context, true)) {
3027 stream->timing.dsc_cfg = old_dsc_cfg;
3028 stream->timing.flags.DSC = old_dsc_enabled;
3029 update->dsc_config = NULL;
3030 }
3031
3032 dc_state_release(dsc_validate_context);
3033 } else {
3034 DC_ERROR("Failed to allocate new validate context for DSC change\n");
3035 update->dsc_config = NULL;
3036 }
3037 }
3038 if (update->scaler_sharpener_update)
3039 stream->scaler_sharpener_update = *update->scaler_sharpener_update;
3040 }
3041
backup_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3042 static void backup_planes_and_stream_state(
3043 struct dc_scratch_space *scratch,
3044 struct dc_stream_state *stream)
3045 {
3046 int i;
3047 struct dc_stream_status *status = dc_stream_get_status(stream);
3048
3049 if (!status)
3050 return;
3051
3052 for (i = 0; i < status->plane_count; i++) {
3053 scratch->plane_states[i] = *status->plane_states[i];
3054 }
3055 scratch->stream_state = *stream;
3056 }
3057
restore_planes_and_stream_state(struct dc_scratch_space * scratch,struct dc_stream_state * stream)3058 static void restore_planes_and_stream_state(
3059 struct dc_scratch_space *scratch,
3060 struct dc_stream_state *stream)
3061 {
3062 int i;
3063 struct dc_stream_status *status = dc_stream_get_status(stream);
3064
3065 if (!status)
3066 return;
3067
3068 for (i = 0; i < status->plane_count; i++) {
3069 *status->plane_states[i] = scratch->plane_states[i];
3070 }
3071 *stream = scratch->stream_state;
3072 }
3073
3074 /**
3075 * update_seamless_boot_flags() - Helper function for updating seamless boot flags
3076 *
3077 * @dc: Current DC state
3078 * @context: New DC state to be programmed
3079 * @surface_count: Number of surfaces that have an updated
3080 * @stream: Corresponding stream to be updated in the current flip
3081 *
3082 * Updating seamless boot flags do not need to be part of the commit sequence. This
3083 * helper function will update the seamless boot flags on each flip (if required)
3084 * outside of the HW commit sequence (fast or slow).
3085 *
3086 * Return: void
3087 */
update_seamless_boot_flags(struct dc * dc,struct dc_state * context,int surface_count,struct dc_stream_state * stream)3088 static void update_seamless_boot_flags(struct dc *dc,
3089 struct dc_state *context,
3090 int surface_count,
3091 struct dc_stream_state *stream)
3092 {
3093 if (get_seamless_boot_stream_count(context) > 0 && surface_count > 0) {
3094 /* Optimize seamless boot flag keeps clocks and watermarks high until
3095 * first flip. After first flip, optimization is required to lower
3096 * bandwidth. Important to note that it is expected UEFI will
3097 * only light up a single display on POST, therefore we only expect
3098 * one stream with seamless boot flag set.
3099 */
3100 if (stream->apply_seamless_boot_optimization) {
3101 stream->apply_seamless_boot_optimization = false;
3102
3103 if (get_seamless_boot_stream_count(context) == 0)
3104 dc->optimized_required = true;
3105 }
3106 }
3107 }
3108
3109 /**
3110 * update_planes_and_stream_state() - The function takes planes and stream
3111 * updates as inputs and determines the appropriate update type. If update type
3112 * is FULL, the function allocates a new context, populates and validates it.
3113 * Otherwise, it updates current dc context. The function will return both
3114 * new_context and new_update_type back to the caller. The function also backs
3115 * up both current and new contexts into corresponding dc state scratch memory.
3116 * TODO: The function does too many things, and even conditionally allocates dc
3117 * context memory implicitly. We should consider to break it down.
3118 *
3119 * @dc: Current DC state
3120 * @srf_updates: an array of surface updates
3121 * @surface_count: surface update count
3122 * @stream: Corresponding stream to be updated
3123 * @stream_update: stream update
3124 * @new_update_type: [out] determined update type by the function
3125 * @new_context: [out] new context allocated and validated if update type is
3126 * FULL, reference to current context if update type is less than FULL.
3127 *
3128 * Return: true if a valid update is populated into new_context, false
3129 * otherwise.
3130 */
update_planes_and_stream_state(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type * new_update_type,struct dc_state ** new_context)3131 static bool update_planes_and_stream_state(struct dc *dc,
3132 struct dc_surface_update *srf_updates, int surface_count,
3133 struct dc_stream_state *stream,
3134 struct dc_stream_update *stream_update,
3135 enum surface_update_type *new_update_type,
3136 struct dc_state **new_context)
3137 {
3138 struct dc_state *context;
3139 int i, j;
3140 enum surface_update_type update_type;
3141 const struct dc_stream_status *stream_status;
3142 struct dc_context *dc_ctx = dc->ctx;
3143
3144 stream_status = dc_stream_get_status(stream);
3145
3146 if (!stream_status) {
3147 if (surface_count) /* Only an error condition if surf_count non-zero*/
3148 ASSERT(false);
3149
3150 return false; /* Cannot commit surface to stream that is not committed */
3151 }
3152
3153 context = dc->current_state;
3154 update_type = dc_check_update_surfaces_for_stream(
3155 dc, srf_updates, surface_count, stream_update, stream_status);
3156 if (update_type == UPDATE_TYPE_FULL)
3157 backup_planes_and_stream_state(&dc->scratch.current_state, stream);
3158
3159 /* update current stream with the new updates */
3160 copy_stream_update_to_stream(dc, context, stream, stream_update);
3161
3162 /* do not perform surface update if surface has invalid dimensions
3163 * (all zero) and no scaling_info is provided
3164 */
3165 if (surface_count > 0) {
3166 for (i = 0; i < surface_count; i++) {
3167 if ((srf_updates[i].surface->src_rect.width == 0 ||
3168 srf_updates[i].surface->src_rect.height == 0 ||
3169 srf_updates[i].surface->dst_rect.width == 0 ||
3170 srf_updates[i].surface->dst_rect.height == 0) &&
3171 (!srf_updates[i].scaling_info ||
3172 srf_updates[i].scaling_info->src_rect.width == 0 ||
3173 srf_updates[i].scaling_info->src_rect.height == 0 ||
3174 srf_updates[i].scaling_info->dst_rect.width == 0 ||
3175 srf_updates[i].scaling_info->dst_rect.height == 0)) {
3176 DC_ERROR("Invalid src/dst rects in surface update!\n");
3177 return false;
3178 }
3179 }
3180 }
3181
3182 if (update_type >= update_surface_trace_level)
3183 update_surface_trace(dc, srf_updates, surface_count);
3184
3185 for (i = 0; i < surface_count; i++)
3186 copy_surface_update_to_plane(srf_updates[i].surface, &srf_updates[i]);
3187
3188 if (update_type >= UPDATE_TYPE_FULL) {
3189 struct dc_plane_state *new_planes[MAX_SURFACES] = {0};
3190
3191 for (i = 0; i < surface_count; i++)
3192 new_planes[i] = srf_updates[i].surface;
3193
3194 /* initialize scratch memory for building context */
3195 context = dc_state_create_copy(dc->current_state);
3196 if (context == NULL) {
3197 DC_ERROR("Failed to allocate new validate context!\n");
3198 return false;
3199 }
3200
3201 /* For each full update, remove all existing phantom pipes first.
3202 * Ensures that we have enough pipes for newly added MPO planes
3203 */
3204 dc_state_remove_phantom_streams_and_planes(dc, context);
3205 dc_state_release_phantom_streams_and_planes(dc, context);
3206
3207 /*remove old surfaces from context */
3208 if (!dc_state_rem_all_planes_for_stream(dc, stream, context)) {
3209
3210 BREAK_TO_DEBUGGER();
3211 goto fail;
3212 }
3213
3214 /* add surface to context */
3215 if (!dc_state_add_all_planes_for_stream(dc, stream, new_planes, surface_count, context)) {
3216
3217 BREAK_TO_DEBUGGER();
3218 goto fail;
3219 }
3220 }
3221
3222 /* save update parameters into surface */
3223 for (i = 0; i < surface_count; i++) {
3224 struct dc_plane_state *surface = srf_updates[i].surface;
3225
3226 if (update_type != UPDATE_TYPE_MED)
3227 continue;
3228 if (surface->update_flags.bits.clip_size_change ||
3229 surface->update_flags.bits.position_change) {
3230 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3231 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3232
3233 if (pipe_ctx->plane_state != surface)
3234 continue;
3235
3236 resource_build_scaling_params(pipe_ctx);
3237 }
3238 }
3239 }
3240
3241 if (update_type == UPDATE_TYPE_FULL) {
3242 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
3243 BREAK_TO_DEBUGGER();
3244 goto fail;
3245 }
3246 }
3247 update_seamless_boot_flags(dc, context, surface_count, stream);
3248
3249 *new_context = context;
3250 *new_update_type = update_type;
3251 if (update_type == UPDATE_TYPE_FULL)
3252 backup_planes_and_stream_state(&dc->scratch.new_state, stream);
3253
3254 return true;
3255
3256 fail:
3257 dc_state_release(context);
3258
3259 return false;
3260
3261 }
3262
commit_planes_do_stream_update(struct dc * dc,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3263 static void commit_planes_do_stream_update(struct dc *dc,
3264 struct dc_stream_state *stream,
3265 struct dc_stream_update *stream_update,
3266 enum surface_update_type update_type,
3267 struct dc_state *context)
3268 {
3269 int j;
3270
3271 // Stream updates
3272 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3273 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3274
3275 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) && pipe_ctx->stream == stream) {
3276
3277 if (stream_update->periodic_interrupt && dc->hwss.setup_periodic_interrupt)
3278 dc->hwss.setup_periodic_interrupt(dc, pipe_ctx);
3279
3280 if ((stream_update->hdr_static_metadata && !stream->use_dynamic_meta) ||
3281 stream_update->vrr_infopacket ||
3282 stream_update->vsc_infopacket ||
3283 stream_update->vsp_infopacket ||
3284 stream_update->hfvsif_infopacket ||
3285 stream_update->adaptive_sync_infopacket ||
3286 stream_update->vtem_infopacket) {
3287 resource_build_info_frame(pipe_ctx);
3288 dc->hwss.update_info_frame(pipe_ctx);
3289
3290 if (dc_is_dp_signal(pipe_ctx->stream->signal))
3291 dc->link_srv->dp_trace_source_sequence(
3292 pipe_ctx->stream->link,
3293 DPCD_SOURCE_SEQ_AFTER_UPDATE_INFO_FRAME);
3294 }
3295
3296 if (stream_update->hdr_static_metadata &&
3297 stream->use_dynamic_meta &&
3298 dc->hwss.set_dmdata_attributes &&
3299 pipe_ctx->stream->dmdata_address.quad_part != 0)
3300 dc->hwss.set_dmdata_attributes(pipe_ctx);
3301
3302 if (stream_update->gamut_remap)
3303 dc_stream_set_gamut_remap(dc, stream);
3304
3305 if (stream_update->output_csc_transform)
3306 dc_stream_program_csc_matrix(dc, stream);
3307
3308 if (stream_update->dither_option) {
3309 struct pipe_ctx *odm_pipe = pipe_ctx->next_odm_pipe;
3310 resource_build_bit_depth_reduction_params(pipe_ctx->stream,
3311 &pipe_ctx->stream->bit_depth_params);
3312 pipe_ctx->stream_res.opp->funcs->opp_program_fmt(pipe_ctx->stream_res.opp,
3313 &stream->bit_depth_params,
3314 &stream->clamping);
3315 while (odm_pipe) {
3316 odm_pipe->stream_res.opp->funcs->opp_program_fmt(odm_pipe->stream_res.opp,
3317 &stream->bit_depth_params,
3318 &stream->clamping);
3319 odm_pipe = odm_pipe->next_odm_pipe;
3320 }
3321 }
3322
3323 if (stream_update->cursor_attributes)
3324 program_cursor_attributes(dc, stream);
3325
3326 if (stream_update->cursor_position)
3327 program_cursor_position(dc, stream);
3328
3329 /* Full fe update*/
3330 if (update_type == UPDATE_TYPE_FAST)
3331 continue;
3332
3333 if (stream_update->dsc_config)
3334 dc->link_srv->update_dsc_config(pipe_ctx);
3335
3336 if (stream_update->mst_bw_update) {
3337 if (stream_update->mst_bw_update->is_increase)
3338 dc->link_srv->increase_mst_payload(pipe_ctx,
3339 stream_update->mst_bw_update->mst_stream_bw);
3340 else
3341 dc->link_srv->reduce_mst_payload(pipe_ctx,
3342 stream_update->mst_bw_update->mst_stream_bw);
3343 }
3344
3345 if (stream_update->pending_test_pattern) {
3346 /*
3347 * test pattern params depends on ODM topology
3348 * changes that we could be applying to front
3349 * end. Since at the current stage front end
3350 * changes are not yet applied. We can only
3351 * apply test pattern in hw based on current
3352 * state and populate the final test pattern
3353 * params in new state. If current and new test
3354 * pattern params are different as result of
3355 * different ODM topology being used, it will be
3356 * detected and handle during front end
3357 * programming update.
3358 */
3359 dc->link_srv->dp_set_test_pattern(stream->link,
3360 stream->test_pattern.type,
3361 stream->test_pattern.color_space,
3362 stream->test_pattern.p_link_settings,
3363 stream->test_pattern.p_custom_pattern,
3364 stream->test_pattern.cust_pattern_size);
3365 resource_build_test_pattern_params(&context->res_ctx, pipe_ctx);
3366 }
3367
3368 if (stream_update->dpms_off) {
3369 if (*stream_update->dpms_off) {
3370 dc->link_srv->set_dpms_off(pipe_ctx);
3371 /* for dpms, keep acquired resources*/
3372 if (pipe_ctx->stream_res.audio && !dc->debug.az_endpoint_mute_only)
3373 pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
3374
3375 dc->optimized_required = true;
3376
3377 } else {
3378 if (get_seamless_boot_stream_count(context) == 0)
3379 dc->hwss.prepare_bandwidth(dc, dc->current_state);
3380 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3381 }
3382 } else if (pipe_ctx->stream->link->wa_flags.blank_stream_on_ocs_change && stream_update->output_color_space
3383 && !stream->dpms_off && dc_is_dp_signal(pipe_ctx->stream->signal)) {
3384 /*
3385 * Workaround for firmware issue in some receivers where they don't pick up
3386 * correct output color space unless DP link is disabled/re-enabled
3387 */
3388 dc->link_srv->set_dpms_on(dc->current_state, pipe_ctx);
3389 }
3390
3391 if (stream_update->abm_level && pipe_ctx->stream_res.abm) {
3392 bool should_program_abm = true;
3393
3394 // if otg funcs defined check if blanked before programming
3395 if (pipe_ctx->stream_res.tg->funcs->is_blanked)
3396 if (pipe_ctx->stream_res.tg->funcs->is_blanked(pipe_ctx->stream_res.tg))
3397 should_program_abm = false;
3398
3399 if (should_program_abm) {
3400 if (*stream_update->abm_level == ABM_LEVEL_IMMEDIATE_DISABLE) {
3401 dc->hwss.set_abm_immediate_disable(pipe_ctx);
3402 } else {
3403 pipe_ctx->stream_res.abm->funcs->set_abm_level(
3404 pipe_ctx->stream_res.abm, stream->abm_level);
3405 }
3406 }
3407 }
3408 }
3409 }
3410 }
3411
dc_dmub_should_send_dirty_rect_cmd(struct dc * dc,struct dc_stream_state * stream)3412 static bool dc_dmub_should_send_dirty_rect_cmd(struct dc *dc, struct dc_stream_state *stream)
3413 {
3414 if ((stream->link->psr_settings.psr_version == DC_PSR_VERSION_SU_1
3415 || stream->link->psr_settings.psr_version == DC_PSR_VERSION_1)
3416 && stream->ctx->dce_version >= DCN_VERSION_3_1)
3417 return true;
3418
3419 if (stream->link->replay_settings.config.replay_supported)
3420 return true;
3421
3422 if (stream->ctx->dce_version >= DCN_VERSION_3_5 && stream->abm_level)
3423 return true;
3424
3425 return false;
3426 }
3427
dc_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context)3428 void dc_dmub_update_dirty_rect(struct dc *dc,
3429 int surface_count,
3430 struct dc_stream_state *stream,
3431 struct dc_surface_update *srf_updates,
3432 struct dc_state *context)
3433 {
3434 union dmub_rb_cmd cmd;
3435 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3436 unsigned int i, j;
3437 unsigned int panel_inst = 0;
3438
3439 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3440 return;
3441
3442 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3443 return;
3444
3445 memset(&cmd, 0x0, sizeof(cmd));
3446 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3447 cmd.update_dirty_rect.header.sub_type = 0;
3448 cmd.update_dirty_rect.header.payload_bytes =
3449 sizeof(cmd.update_dirty_rect) -
3450 sizeof(cmd.update_dirty_rect.header);
3451 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3452 for (i = 0; i < surface_count; i++) {
3453 struct dc_plane_state *plane_state = srf_updates[i].surface;
3454 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3455
3456 if (!srf_updates[i].surface || !flip_addr)
3457 continue;
3458 /* Do not send in immediate flip mode */
3459 if (srf_updates[i].surface->flip_immediate)
3460 continue;
3461
3462 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3463 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3464 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3465 sizeof(flip_addr->dirty_rects));
3466 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3467 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3468
3469 if (pipe_ctx->stream != stream)
3470 continue;
3471 if (pipe_ctx->plane_state != plane_state)
3472 continue;
3473
3474 update_dirty_rect->panel_inst = panel_inst;
3475 update_dirty_rect->pipe_idx = j;
3476 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_NO_WAIT);
3477 }
3478 }
3479 }
3480
build_dmub_update_dirty_rect(struct dc * dc,int surface_count,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3481 static void build_dmub_update_dirty_rect(
3482 struct dc *dc,
3483 int surface_count,
3484 struct dc_stream_state *stream,
3485 struct dc_surface_update *srf_updates,
3486 struct dc_state *context,
3487 struct dc_dmub_cmd dc_dmub_cmd[],
3488 unsigned int *dmub_cmd_count)
3489 {
3490 union dmub_rb_cmd cmd;
3491 struct dmub_cmd_update_dirty_rect_data *update_dirty_rect;
3492 unsigned int i, j;
3493 unsigned int panel_inst = 0;
3494
3495 if (!dc_dmub_should_send_dirty_rect_cmd(dc, stream))
3496 return;
3497
3498 if (!dc_get_edp_link_panel_inst(dc, stream->link, &panel_inst))
3499 return;
3500
3501 memset(&cmd, 0x0, sizeof(cmd));
3502 cmd.update_dirty_rect.header.type = DMUB_CMD__UPDATE_DIRTY_RECT;
3503 cmd.update_dirty_rect.header.sub_type = 0;
3504 cmd.update_dirty_rect.header.payload_bytes =
3505 sizeof(cmd.update_dirty_rect) -
3506 sizeof(cmd.update_dirty_rect.header);
3507 update_dirty_rect = &cmd.update_dirty_rect.update_dirty_rect_data;
3508 for (i = 0; i < surface_count; i++) {
3509 struct dc_plane_state *plane_state = srf_updates[i].surface;
3510 const struct dc_flip_addrs *flip_addr = srf_updates[i].flip_addr;
3511
3512 if (!srf_updates[i].surface || !flip_addr)
3513 continue;
3514 /* Do not send in immediate flip mode */
3515 if (srf_updates[i].surface->flip_immediate)
3516 continue;
3517 update_dirty_rect->cmd_version = DMUB_CMD_PSR_CONTROL_VERSION_1;
3518 update_dirty_rect->dirty_rect_count = flip_addr->dirty_rect_count;
3519 memcpy(update_dirty_rect->src_dirty_rects, flip_addr->dirty_rects,
3520 sizeof(flip_addr->dirty_rects));
3521 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3522 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3523
3524 if (pipe_ctx->stream != stream)
3525 continue;
3526 if (pipe_ctx->plane_state != plane_state)
3527 continue;
3528 update_dirty_rect->panel_inst = panel_inst;
3529 update_dirty_rect->pipe_idx = j;
3530 dc_dmub_cmd[*dmub_cmd_count].dmub_cmd = cmd;
3531 dc_dmub_cmd[*dmub_cmd_count].wait_type = DM_DMUB_WAIT_TYPE_NO_WAIT;
3532 (*dmub_cmd_count)++;
3533 }
3534 }
3535 }
3536
check_address_only_update(union surface_update_flags update_flags)3537 static bool check_address_only_update(union surface_update_flags update_flags)
3538 {
3539 union surface_update_flags addr_only_update_flags;
3540 addr_only_update_flags.raw = 0;
3541 addr_only_update_flags.bits.addr_update = 1;
3542
3543 return update_flags.bits.addr_update &&
3544 !(update_flags.raw & ~addr_only_update_flags.raw);
3545 }
3546
3547 /**
3548 * build_dmub_cmd_list() - Build an array of DMCUB commands to be sent to DMCUB
3549 *
3550 * @dc: Current DC state
3551 * @srf_updates: Array of surface updates
3552 * @surface_count: Number of surfaces that have an updated
3553 * @stream: Corresponding stream to be updated in the current flip
3554 * @context: New DC state to be programmed
3555 *
3556 * @dc_dmub_cmd: Array of DMCUB commands to be sent to DMCUB
3557 * @dmub_cmd_count: Count indicating the number of DMCUB commands in dc_dmub_cmd array
3558 *
3559 * This function builds an array of DMCUB commands to be sent to DMCUB. This function is required
3560 * to build an array of commands and have them sent while the OTG lock is acquired.
3561 *
3562 * Return: void
3563 */
build_dmub_cmd_list(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context,struct dc_dmub_cmd dc_dmub_cmd[],unsigned int * dmub_cmd_count)3564 static void build_dmub_cmd_list(struct dc *dc,
3565 struct dc_surface_update *srf_updates,
3566 int surface_count,
3567 struct dc_stream_state *stream,
3568 struct dc_state *context,
3569 struct dc_dmub_cmd dc_dmub_cmd[],
3570 unsigned int *dmub_cmd_count)
3571 {
3572 // Initialize cmd count to 0
3573 *dmub_cmd_count = 0;
3574 build_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context, dc_dmub_cmd, dmub_cmd_count);
3575 }
3576
commit_plane_for_stream_offload_fams2_flip(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_state * context)3577 static void commit_plane_for_stream_offload_fams2_flip(struct dc *dc,
3578 struct dc_surface_update *srf_updates,
3579 int surface_count,
3580 struct dc_stream_state *stream,
3581 struct dc_state *context)
3582 {
3583 int i, j;
3584
3585 /* update dirty rect for PSR */
3586 dc_dmub_update_dirty_rect(dc, surface_count, stream,
3587 srf_updates, context);
3588
3589 /* Perform requested Updates */
3590 for (i = 0; i < surface_count; i++) {
3591 struct dc_plane_state *plane_state = srf_updates[i].surface;
3592
3593 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3594 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3595
3596 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3597 continue;
3598
3599 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3600 continue;
3601
3602 /* update pipe context for plane */
3603 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
3604 dc->hwss.update_plane_addr(dc, pipe_ctx);
3605 }
3606 }
3607
3608 /* Send commands to DMCUB */
3609 dc_dmub_srv_fams2_passthrough_flip(dc,
3610 context,
3611 stream,
3612 srf_updates,
3613 surface_count);
3614 }
3615
commit_planes_for_stream_fast(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3616 static void commit_planes_for_stream_fast(struct dc *dc,
3617 struct dc_surface_update *srf_updates,
3618 int surface_count,
3619 struct dc_stream_state *stream,
3620 struct dc_stream_update *stream_update,
3621 enum surface_update_type update_type,
3622 struct dc_state *context)
3623 {
3624 int i, j;
3625 struct pipe_ctx *top_pipe_to_program = NULL;
3626 struct dc_stream_status *stream_status = NULL;
3627 bool should_offload_fams2_flip = false;
3628
3629 if (dc->debug.fams2_config.bits.enable &&
3630 dc->debug.fams2_config.bits.enable_offload_flip &&
3631 dc_state_is_fams2_in_use(dc, context)) {
3632 /* if not offloading to HWFQ, offload to FAMS2 if needed */
3633 should_offload_fams2_flip = true;
3634 for (i = 0; i < surface_count; i++) {
3635 if (srf_updates[i].surface &&
3636 srf_updates[i].surface->update_flags.raw &&
3637 !check_address_only_update(srf_updates[i].surface->update_flags)) {
3638 /* more than address update, need to acquire FAMS2 lock */
3639 should_offload_fams2_flip = false;
3640 break;
3641 }
3642 }
3643 if (stream_update) {
3644 /* more than address update, need to acquire FAMS2 lock */
3645 should_offload_fams2_flip = false;
3646 }
3647 }
3648
3649 dc_exit_ips_for_hw_access(dc);
3650
3651 dc_z10_restore(dc);
3652
3653 top_pipe_to_program = resource_get_otg_master_for_stream(
3654 &context->res_ctx,
3655 stream);
3656
3657 if (!top_pipe_to_program)
3658 return;
3659
3660 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3661 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3662
3663 if (pipe->stream && pipe->plane_state) {
3664 if (!dc->debug.using_dml2)
3665 set_p_state_switch_method(dc, context, pipe);
3666
3667 if (dc->debug.visual_confirm)
3668 dc_update_visual_confirm_color(dc, context, pipe);
3669 }
3670 }
3671
3672 for (i = 0; i < surface_count; i++) {
3673 struct dc_plane_state *plane_state = srf_updates[i].surface;
3674 /*set logical flag for lock/unlock use*/
3675 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3676 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3677
3678 if (!pipe_ctx->plane_state)
3679 continue;
3680 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3681 continue;
3682 pipe_ctx->plane_state->triplebuffer_flips = false;
3683 if (update_type == UPDATE_TYPE_FAST &&
3684 dc->hwss.program_triplebuffer != NULL &&
3685 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3686 /*triple buffer for VUpdate only*/
3687 pipe_ctx->plane_state->triplebuffer_flips = true;
3688 }
3689 }
3690 }
3691
3692 stream_status = dc_state_get_stream_status(context, stream);
3693
3694 if (should_offload_fams2_flip) {
3695 commit_plane_for_stream_offload_fams2_flip(dc,
3696 srf_updates,
3697 surface_count,
3698 stream,
3699 context);
3700 } else if (stream_status) {
3701 build_dmub_cmd_list(dc,
3702 srf_updates,
3703 surface_count,
3704 stream,
3705 context,
3706 context->dc_dmub_cmd,
3707 &(context->dmub_cmd_count));
3708 hwss_build_fast_sequence(dc,
3709 context->dc_dmub_cmd,
3710 context->dmub_cmd_count,
3711 context->block_sequence,
3712 &(context->block_sequence_steps),
3713 top_pipe_to_program,
3714 stream_status,
3715 context);
3716 hwss_execute_sequence(dc,
3717 context->block_sequence,
3718 context->block_sequence_steps);
3719 }
3720
3721 /* Clear update flags so next flip doesn't have redundant programming
3722 * (if there's no stream update, the update flags are not cleared).
3723 * Surface updates are cleared unconditionally at the beginning of each flip,
3724 * so no need to clear here.
3725 */
3726 if (top_pipe_to_program->stream)
3727 top_pipe_to_program->stream->update_flags.raw = 0;
3728 }
3729
commit_planes_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * context)3730 static void commit_planes_for_stream(struct dc *dc,
3731 struct dc_surface_update *srf_updates,
3732 int surface_count,
3733 struct dc_stream_state *stream,
3734 struct dc_stream_update *stream_update,
3735 enum surface_update_type update_type,
3736 struct dc_state *context)
3737 {
3738 int i, j;
3739 struct pipe_ctx *top_pipe_to_program = NULL;
3740 bool should_lock_all_pipes = (update_type != UPDATE_TYPE_FAST);
3741 bool subvp_prev_use = false;
3742 bool subvp_curr_use = false;
3743 uint8_t current_stream_mask = 0;
3744
3745 // Once we apply the new subvp context to hardware it won't be in the
3746 // dc->current_state anymore, so we have to cache it before we apply
3747 // the new SubVP context
3748 subvp_prev_use = false;
3749 dc_exit_ips_for_hw_access(dc);
3750
3751 dc_z10_restore(dc);
3752 if (update_type == UPDATE_TYPE_FULL)
3753 hwss_process_outstanding_hw_updates(dc, dc->current_state);
3754
3755 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3756 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3757
3758 if (pipe->stream && pipe->plane_state) {
3759 if (!dc->debug.using_dml2)
3760 set_p_state_switch_method(dc, context, pipe);
3761
3762 if (dc->debug.visual_confirm)
3763 dc_update_visual_confirm_color(dc, context, pipe);
3764 }
3765 }
3766
3767 if (update_type == UPDATE_TYPE_FULL) {
3768 dc_allow_idle_optimizations(dc, false);
3769
3770 if (get_seamless_boot_stream_count(context) == 0)
3771 dc->hwss.prepare_bandwidth(dc, context);
3772
3773 if (dc->hwss.update_dsc_pg)
3774 dc->hwss.update_dsc_pg(dc, context, false);
3775
3776 context_clock_trace(dc, context);
3777 }
3778
3779 top_pipe_to_program = resource_get_otg_master_for_stream(
3780 &context->res_ctx,
3781 stream);
3782 ASSERT(top_pipe_to_program != NULL);
3783 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3784 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
3785
3786 // Check old context for SubVP
3787 subvp_prev_use |= (dc_state_get_pipe_subvp_type(dc->current_state, old_pipe) == SUBVP_PHANTOM);
3788 if (subvp_prev_use)
3789 break;
3790 }
3791
3792 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3793 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3794
3795 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
3796 subvp_curr_use = true;
3797 break;
3798 }
3799 }
3800
3801 if (stream->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE) {
3802 struct pipe_ctx *mpcc_pipe;
3803 struct pipe_ctx *odm_pipe;
3804
3805 for (mpcc_pipe = top_pipe_to_program; mpcc_pipe; mpcc_pipe = mpcc_pipe->bottom_pipe)
3806 for (odm_pipe = mpcc_pipe; odm_pipe; odm_pipe = odm_pipe->next_odm_pipe)
3807 odm_pipe->ttu_regs.min_ttu_vblank = MAX_TTU;
3808 }
3809
3810 if (update_type != UPDATE_TYPE_FAST && dc->res_pool->funcs->prepare_mcache_programming)
3811 dc->res_pool->funcs->prepare_mcache_programming(dc, context);
3812
3813 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
3814 if (top_pipe_to_program &&
3815 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
3816 if (should_use_dmub_lock(stream->link)) {
3817 union dmub_hw_lock_flags hw_locks = { 0 };
3818 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
3819
3820 hw_locks.bits.lock_dig = 1;
3821 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
3822
3823 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
3824 true,
3825 &hw_locks,
3826 &inst_flags);
3827 } else
3828 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable(
3829 top_pipe_to_program->stream_res.tg);
3830 }
3831
3832 if (dc->hwss.wait_for_dcc_meta_propagation) {
3833 dc->hwss.wait_for_dcc_meta_propagation(dc, top_pipe_to_program);
3834 }
3835
3836 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3837 if (dc->hwss.subvp_pipe_control_lock)
3838 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, NULL, subvp_prev_use);
3839
3840 if (dc->hwss.fams2_global_control_lock)
3841 dc->hwss.fams2_global_control_lock(dc, context, true);
3842
3843 dc->hwss.interdependent_update_lock(dc, context, true);
3844 } else {
3845 if (dc->hwss.subvp_pipe_control_lock)
3846 dc->hwss.subvp_pipe_control_lock(dc, context, true, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
3847
3848 if (dc->hwss.fams2_global_control_lock)
3849 dc->hwss.fams2_global_control_lock(dc, context, true);
3850
3851 /* Lock the top pipe while updating plane addrs, since freesync requires
3852 * plane addr update event triggers to be synchronized.
3853 * top_pipe_to_program is expected to never be NULL
3854 */
3855 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, true);
3856 }
3857
3858 dc_dmub_update_dirty_rect(dc, surface_count, stream, srf_updates, context);
3859
3860 // Stream updates
3861 if (stream_update)
3862 commit_planes_do_stream_update(dc, stream, stream_update, update_type, context);
3863
3864 if (surface_count == 0) {
3865 /*
3866 * In case of turning off screen, no need to program front end a second time.
3867 * just return after program blank.
3868 */
3869 if (dc->hwss.apply_ctx_for_surface)
3870 dc->hwss.apply_ctx_for_surface(dc, stream, 0, context);
3871 if (dc->hwss.program_front_end_for_ctx)
3872 dc->hwss.program_front_end_for_ctx(dc, context);
3873
3874 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
3875 dc->hwss.interdependent_update_lock(dc, context, false);
3876 } else {
3877 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
3878 }
3879 dc->hwss.post_unlock_program_front_end(dc, context);
3880
3881 if (update_type != UPDATE_TYPE_FAST)
3882 if (dc->hwss.commit_subvp_config)
3883 dc->hwss.commit_subvp_config(dc, context);
3884
3885 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
3886 * move the SubVP lock to after the phantom pipes have been setup
3887 */
3888 if (dc->hwss.subvp_pipe_control_lock)
3889 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes,
3890 NULL, subvp_prev_use);
3891
3892 if (dc->hwss.fams2_global_control_lock)
3893 dc->hwss.fams2_global_control_lock(dc, context, false);
3894
3895 return;
3896 }
3897
3898 if (update_type != UPDATE_TYPE_FAST) {
3899 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3900 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3901
3902 if ((dc->debug.visual_confirm == VISUAL_CONFIRM_SUBVP ||
3903 dc->debug.visual_confirm == VISUAL_CONFIRM_MCLK_SWITCH) &&
3904 pipe_ctx->stream && pipe_ctx->plane_state) {
3905 /* Only update visual confirm for SUBVP and Mclk switching here.
3906 * The bar appears on all pipes, so we need to update the bar on all displays,
3907 * so the information doesn't get stale.
3908 */
3909 dc->hwss.update_visual_confirm_color(dc, pipe_ctx,
3910 pipe_ctx->plane_res.hubp->inst);
3911 }
3912 }
3913 }
3914
3915 for (i = 0; i < surface_count; i++) {
3916 struct dc_plane_state *plane_state = srf_updates[i].surface;
3917
3918 /*set logical flag for lock/unlock use*/
3919 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3920 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3921 if (!pipe_ctx->plane_state)
3922 continue;
3923 if (should_update_pipe_for_plane(context, pipe_ctx, plane_state))
3924 continue;
3925 pipe_ctx->plane_state->triplebuffer_flips = false;
3926 if (update_type == UPDATE_TYPE_FAST &&
3927 dc->hwss.program_triplebuffer != NULL &&
3928 !pipe_ctx->plane_state->flip_immediate && dc->debug.enable_tri_buf) {
3929 /*triple buffer for VUpdate only*/
3930 pipe_ctx->plane_state->triplebuffer_flips = true;
3931 }
3932 }
3933 if (update_type == UPDATE_TYPE_FULL) {
3934 /* force vsync flip when reconfiguring pipes to prevent underflow */
3935 plane_state->flip_immediate = false;
3936 }
3937 }
3938
3939 // Update Type FULL, Surface updates
3940 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3941 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3942
3943 if (!pipe_ctx->top_pipe &&
3944 !pipe_ctx->prev_odm_pipe &&
3945 should_update_pipe_for_stream(context, pipe_ctx, stream)) {
3946 struct dc_stream_status *stream_status = NULL;
3947
3948 if (!pipe_ctx->plane_state)
3949 continue;
3950
3951 /* Full fe update*/
3952 if (update_type == UPDATE_TYPE_FAST)
3953 continue;
3954
3955 ASSERT(!pipe_ctx->plane_state->triplebuffer_flips);
3956
3957 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
3958 /*turn off triple buffer for full update*/
3959 dc->hwss.program_triplebuffer(
3960 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
3961 }
3962 stream_status =
3963 stream_get_status(context, pipe_ctx->stream);
3964
3965 if (dc->hwss.apply_ctx_for_surface && stream_status)
3966 dc->hwss.apply_ctx_for_surface(
3967 dc, pipe_ctx->stream, stream_status->plane_count, context);
3968 }
3969 }
3970 if (dc->hwss.program_front_end_for_ctx && update_type != UPDATE_TYPE_FAST) {
3971 dc->hwss.program_front_end_for_ctx(dc, context);
3972 if (dc->debug.validate_dml_output) {
3973 for (i = 0; i < dc->res_pool->pipe_count; i++) {
3974 struct pipe_ctx *cur_pipe = &context->res_ctx.pipe_ctx[i];
3975 if (cur_pipe->stream == NULL)
3976 continue;
3977
3978 cur_pipe->plane_res.hubp->funcs->validate_dml_output(
3979 cur_pipe->plane_res.hubp, dc->ctx,
3980 &context->res_ctx.pipe_ctx[i].rq_regs,
3981 &context->res_ctx.pipe_ctx[i].dlg_regs,
3982 &context->res_ctx.pipe_ctx[i].ttu_regs);
3983 }
3984 }
3985 }
3986
3987 // Update Type FAST, Surface updates
3988 if (update_type == UPDATE_TYPE_FAST) {
3989 if (dc->hwss.set_flip_control_gsl)
3990 for (i = 0; i < surface_count; i++) {
3991 struct dc_plane_state *plane_state = srf_updates[i].surface;
3992
3993 for (j = 0; j < dc->res_pool->pipe_count; j++) {
3994 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
3995
3996 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
3997 continue;
3998
3999 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4000 continue;
4001
4002 // GSL has to be used for flip immediate
4003 dc->hwss.set_flip_control_gsl(pipe_ctx,
4004 pipe_ctx->plane_state->flip_immediate);
4005 }
4006 }
4007
4008 /* Perform requested Updates */
4009 for (i = 0; i < surface_count; i++) {
4010 struct dc_plane_state *plane_state = srf_updates[i].surface;
4011
4012 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4013 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4014
4015 if (!should_update_pipe_for_stream(context, pipe_ctx, stream))
4016 continue;
4017
4018 if (!should_update_pipe_for_plane(context, pipe_ctx, plane_state))
4019 continue;
4020
4021 if (srf_updates[i].cm2_params &&
4022 srf_updates[i].cm2_params->cm2_luts.lut3d_data.lut3d_src ==
4023 DC_CM2_TRANSFER_FUNC_SOURCE_VIDMEM &&
4024 srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting ==
4025 DC_CM2_SHAPER_3DLUT_SETTING_ENABLE_SHAPER_3DLUT &&
4026 dc->hwss.trigger_3dlut_dma_load)
4027 dc->hwss.trigger_3dlut_dma_load(dc, pipe_ctx);
4028
4029 /*program triple buffer after lock based on flip type*/
4030 if (dc->hwss.program_triplebuffer != NULL && dc->debug.enable_tri_buf) {
4031 /*only enable triplebuffer for fast_update*/
4032 dc->hwss.program_triplebuffer(
4033 dc, pipe_ctx, pipe_ctx->plane_state->triplebuffer_flips);
4034 }
4035 if (pipe_ctx->plane_state->update_flags.bits.addr_update)
4036 dc->hwss.update_plane_addr(dc, pipe_ctx);
4037 }
4038 }
4039 }
4040
4041 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4042 dc->hwss.interdependent_update_lock(dc, context, false);
4043 } else {
4044 dc->hwss.pipe_control_lock(dc, top_pipe_to_program, false);
4045 }
4046
4047 if ((update_type != UPDATE_TYPE_FAST) && stream->update_flags.bits.dsc_changed)
4048 if (top_pipe_to_program &&
4049 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_enable) {
4050 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4051 top_pipe_to_program->stream_res.tg,
4052 CRTC_STATE_VACTIVE);
4053 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4054 top_pipe_to_program->stream_res.tg,
4055 CRTC_STATE_VBLANK);
4056 top_pipe_to_program->stream_res.tg->funcs->wait_for_state(
4057 top_pipe_to_program->stream_res.tg,
4058 CRTC_STATE_VACTIVE);
4059
4060 if (should_use_dmub_lock(stream->link)) {
4061 union dmub_hw_lock_flags hw_locks = { 0 };
4062 struct dmub_hw_lock_inst_flags inst_flags = { 0 };
4063
4064 hw_locks.bits.lock_dig = 1;
4065 inst_flags.dig_inst = top_pipe_to_program->stream_res.tg->inst;
4066
4067 dmub_hw_lock_mgr_cmd(dc->ctx->dmub_srv,
4068 false,
4069 &hw_locks,
4070 &inst_flags);
4071 } else
4072 top_pipe_to_program->stream_res.tg->funcs->lock_doublebuffer_disable(
4073 top_pipe_to_program->stream_res.tg);
4074 }
4075
4076 if (subvp_curr_use) {
4077 /* If enabling subvp or transitioning from subvp->subvp, enable the
4078 * phantom streams before we program front end for the phantom pipes.
4079 */
4080 if (update_type != UPDATE_TYPE_FAST) {
4081 if (dc->hwss.enable_phantom_streams)
4082 dc->hwss.enable_phantom_streams(dc, context);
4083 }
4084 }
4085
4086 if (update_type != UPDATE_TYPE_FAST)
4087 dc->hwss.post_unlock_program_front_end(dc, context);
4088
4089 if (subvp_prev_use && !subvp_curr_use) {
4090 /* If disabling subvp, disable phantom streams after front end
4091 * programming has completed (we turn on phantom OTG in order
4092 * to complete the plane disable for phantom pipes).
4093 */
4094
4095 if (dc->hwss.disable_phantom_streams)
4096 dc->hwss.disable_phantom_streams(dc, context);
4097 }
4098
4099 if (update_type != UPDATE_TYPE_FAST)
4100 if (dc->hwss.commit_subvp_config)
4101 dc->hwss.commit_subvp_config(dc, context);
4102 /* Since phantom pipe programming is moved to post_unlock_program_front_end,
4103 * move the SubVP lock to after the phantom pipes have been setup
4104 */
4105 if (should_lock_all_pipes && dc->hwss.interdependent_update_lock) {
4106 if (dc->hwss.subvp_pipe_control_lock)
4107 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, NULL, subvp_prev_use);
4108 if (dc->hwss.fams2_global_control_lock)
4109 dc->hwss.fams2_global_control_lock(dc, context, false);
4110 } else {
4111 if (dc->hwss.subvp_pipe_control_lock)
4112 dc->hwss.subvp_pipe_control_lock(dc, context, false, should_lock_all_pipes, top_pipe_to_program, subvp_prev_use);
4113 if (dc->hwss.fams2_global_control_lock)
4114 dc->hwss.fams2_global_control_lock(dc, context, false);
4115 }
4116
4117 // Fire manual trigger only when bottom plane is flipped
4118 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4119 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[j];
4120
4121 if (!pipe_ctx->plane_state)
4122 continue;
4123
4124 if (pipe_ctx->bottom_pipe || pipe_ctx->next_odm_pipe ||
4125 !pipe_ctx->stream || !should_update_pipe_for_stream(context, pipe_ctx, stream) ||
4126 !pipe_ctx->plane_state->update_flags.bits.addr_update ||
4127 pipe_ctx->plane_state->skip_manual_trigger)
4128 continue;
4129
4130 if (pipe_ctx->stream_res.tg->funcs->program_manual_trigger)
4131 pipe_ctx->stream_res.tg->funcs->program_manual_trigger(pipe_ctx->stream_res.tg);
4132 }
4133
4134 current_stream_mask = get_stream_mask(dc, context);
4135 if (current_stream_mask != context->stream_mask) {
4136 context->stream_mask = current_stream_mask;
4137 dc_dmub_srv_notify_stream_mask(dc->ctx->dmub_srv, current_stream_mask);
4138 }
4139 }
4140
4141 /**
4142 * could_mpcc_tree_change_for_active_pipes - Check if an OPP associated with MPCC might change
4143 *
4144 * @dc: Used to get the current state status
4145 * @stream: Target stream, which we want to remove the attached planes
4146 * @srf_updates: Array of surface updates
4147 * @surface_count: Number of surface update
4148 * @is_plane_addition: [in] Fill out with true if it is a plane addition case
4149 *
4150 * DCN32x and newer support a feature named Dynamic ODM which can conflict with
4151 * the MPO if used simultaneously in some specific configurations (e.g.,
4152 * 4k@144). This function checks if the incoming context requires applying a
4153 * transition state with unnecessary pipe splitting and ODM disabled to
4154 * circumvent our hardware limitations to prevent this edge case. If the OPP
4155 * associated with an MPCC might change due to plane additions, this function
4156 * returns true.
4157 *
4158 * Return:
4159 * Return true if OPP and MPCC might change, otherwise, return false.
4160 */
could_mpcc_tree_change_for_active_pipes(struct dc * dc,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count,bool * is_plane_addition)4161 static bool could_mpcc_tree_change_for_active_pipes(struct dc *dc,
4162 struct dc_stream_state *stream,
4163 struct dc_surface_update *srf_updates,
4164 int surface_count,
4165 bool *is_plane_addition)
4166 {
4167
4168 struct dc_stream_status *cur_stream_status = stream_get_status(dc->current_state, stream);
4169 bool force_minimal_pipe_splitting = false;
4170 bool subvp_active = false;
4171 uint32_t i;
4172
4173 *is_plane_addition = false;
4174
4175 if (cur_stream_status &&
4176 dc->current_state->stream_count > 0 &&
4177 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID) {
4178 /* determine if minimal transition is required due to MPC*/
4179 if (surface_count > 0) {
4180 if (cur_stream_status->plane_count > surface_count) {
4181 force_minimal_pipe_splitting = true;
4182 } else if (cur_stream_status->plane_count < surface_count) {
4183 force_minimal_pipe_splitting = true;
4184 *is_plane_addition = true;
4185 }
4186 }
4187 }
4188
4189 if (cur_stream_status &&
4190 dc->current_state->stream_count == 1 &&
4191 dc->debug.enable_single_display_2to1_odm_policy) {
4192 /* determine if minimal transition is required due to dynamic ODM*/
4193 if (surface_count > 0) {
4194 if (cur_stream_status->plane_count > 2 && cur_stream_status->plane_count > surface_count) {
4195 force_minimal_pipe_splitting = true;
4196 } else if (surface_count > 2 && cur_stream_status->plane_count < surface_count) {
4197 force_minimal_pipe_splitting = true;
4198 *is_plane_addition = true;
4199 }
4200 }
4201 }
4202
4203 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4204 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4205
4206 if (dc_state_get_pipe_subvp_type(dc->current_state, pipe) != SUBVP_NONE) {
4207 subvp_active = true;
4208 break;
4209 }
4210 }
4211
4212 /* For SubVP when adding or removing planes we need to add a minimal transition
4213 * (even when disabling all planes). Whenever disabling a phantom pipe, we
4214 * must use the minimal transition path to disable the pipe correctly.
4215 *
4216 * We want to use the minimal transition whenever subvp is active, not only if
4217 * a plane is being added / removed from a subvp stream (MPO plane can be added
4218 * to a DRR pipe of SubVP + DRR config, in which case we still want to run through
4219 * a min transition to disable subvp.
4220 */
4221 if (cur_stream_status && subvp_active) {
4222 /* determine if minimal transition is required due to SubVP*/
4223 if (cur_stream_status->plane_count > surface_count) {
4224 force_minimal_pipe_splitting = true;
4225 } else if (cur_stream_status->plane_count < surface_count) {
4226 force_minimal_pipe_splitting = true;
4227 *is_plane_addition = true;
4228 }
4229 }
4230
4231 return force_minimal_pipe_splitting;
4232 }
4233
4234 struct pipe_split_policy_backup {
4235 bool dynamic_odm_policy;
4236 bool subvp_policy;
4237 enum pipe_split_policy mpc_policy;
4238 char force_odm[MAX_PIPES];
4239 };
4240
backup_and_set_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4241 static void backup_and_set_minimal_pipe_split_policy(struct dc *dc,
4242 struct dc_state *context,
4243 struct pipe_split_policy_backup *policy)
4244 {
4245 int i;
4246
4247 if (!dc->config.is_vmin_only_asic) {
4248 policy->mpc_policy = dc->debug.pipe_split_policy;
4249 dc->debug.pipe_split_policy = MPC_SPLIT_AVOID;
4250 }
4251 policy->dynamic_odm_policy = dc->debug.enable_single_display_2to1_odm_policy;
4252 dc->debug.enable_single_display_2to1_odm_policy = false;
4253 policy->subvp_policy = dc->debug.force_disable_subvp;
4254 dc->debug.force_disable_subvp = true;
4255 for (i = 0; i < context->stream_count; i++) {
4256 policy->force_odm[i] = context->streams[i]->debug.force_odm_combine_segments;
4257 if (context->streams[i]->debug.allow_transition_for_forced_odm)
4258 context->streams[i]->debug.force_odm_combine_segments = 0;
4259 }
4260 }
4261
restore_minimal_pipe_split_policy(struct dc * dc,struct dc_state * context,struct pipe_split_policy_backup * policy)4262 static void restore_minimal_pipe_split_policy(struct dc *dc,
4263 struct dc_state *context,
4264 struct pipe_split_policy_backup *policy)
4265 {
4266 uint8_t i;
4267
4268 if (!dc->config.is_vmin_only_asic)
4269 dc->debug.pipe_split_policy = policy->mpc_policy;
4270 dc->debug.enable_single_display_2to1_odm_policy =
4271 policy->dynamic_odm_policy;
4272 dc->debug.force_disable_subvp = policy->subvp_policy;
4273 for (i = 0; i < context->stream_count; i++)
4274 context->streams[i]->debug.force_odm_combine_segments = policy->force_odm[i];
4275 }
4276
release_minimal_transition_state(struct dc * dc,struct dc_state * minimal_transition_context,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4277 static void release_minimal_transition_state(struct dc *dc,
4278 struct dc_state *minimal_transition_context,
4279 struct dc_state *base_context,
4280 struct pipe_split_policy_backup *policy)
4281 {
4282 restore_minimal_pipe_split_policy(dc, base_context, policy);
4283 dc_state_release(minimal_transition_context);
4284 }
4285
force_vsync_flip_in_minimal_transition_context(struct dc_state * context)4286 static void force_vsync_flip_in_minimal_transition_context(struct dc_state *context)
4287 {
4288 uint8_t i;
4289 int j;
4290 struct dc_stream_status *stream_status;
4291
4292 for (i = 0; i < context->stream_count; i++) {
4293 stream_status = &context->stream_status[i];
4294
4295 for (j = 0; j < stream_status->plane_count; j++)
4296 stream_status->plane_states[j]->flip_immediate = false;
4297 }
4298 }
4299
create_minimal_transition_state(struct dc * dc,struct dc_state * base_context,struct pipe_split_policy_backup * policy)4300 static struct dc_state *create_minimal_transition_state(struct dc *dc,
4301 struct dc_state *base_context, struct pipe_split_policy_backup *policy)
4302 {
4303 struct dc_state *minimal_transition_context = NULL;
4304
4305 minimal_transition_context = dc_state_create_copy(base_context);
4306 if (!minimal_transition_context)
4307 return NULL;
4308
4309 backup_and_set_minimal_pipe_split_policy(dc, base_context, policy);
4310 /* commit minimal state */
4311 if (dc->res_pool->funcs->validate_bandwidth(dc, minimal_transition_context, false)) {
4312 /* prevent underflow and corruption when reconfiguring pipes */
4313 force_vsync_flip_in_minimal_transition_context(minimal_transition_context);
4314 } else {
4315 /*
4316 * This should never happen, minimal transition state should
4317 * always be validated first before adding pipe split features.
4318 */
4319 release_minimal_transition_state(dc, minimal_transition_context, base_context, policy);
4320 BREAK_TO_DEBUGGER();
4321 minimal_transition_context = NULL;
4322 }
4323 return minimal_transition_context;
4324 }
4325
is_pipe_topology_transition_seamless_with_intermediate_step(struct dc * dc,struct dc_state * initial_state,struct dc_state * intermediate_state,struct dc_state * final_state)4326 static bool is_pipe_topology_transition_seamless_with_intermediate_step(
4327 struct dc *dc,
4328 struct dc_state *initial_state,
4329 struct dc_state *intermediate_state,
4330 struct dc_state *final_state)
4331 {
4332 return dc->hwss.is_pipe_topology_transition_seamless(dc, initial_state,
4333 intermediate_state) &&
4334 dc->hwss.is_pipe_topology_transition_seamless(dc,
4335 intermediate_state, final_state);
4336 }
4337
swap_and_release_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4338 static void swap_and_release_current_context(struct dc *dc,
4339 struct dc_state *new_context, struct dc_stream_state *stream)
4340 {
4341
4342 int i;
4343 struct dc_state *old = dc->current_state;
4344 struct pipe_ctx *pipe_ctx;
4345
4346 /* Since memory free requires elevated IRQ, an interrupt
4347 * request is generated by mem free. If this happens
4348 * between freeing and reassigning the context, our vsync
4349 * interrupt will call into dc and cause a memory
4350 * corruption. Hence, we first reassign the context,
4351 * then free the old context.
4352 */
4353 dc->current_state = new_context;
4354 dc_state_release(old);
4355
4356 // clear any forced full updates
4357 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4358 pipe_ctx = &new_context->res_ctx.pipe_ctx[i];
4359
4360 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4361 pipe_ctx->plane_state->force_full_update = false;
4362 }
4363 }
4364
initialize_empty_surface_updates(struct dc_stream_state * stream,struct dc_surface_update * srf_updates)4365 static int initialize_empty_surface_updates(
4366 struct dc_stream_state *stream,
4367 struct dc_surface_update *srf_updates)
4368 {
4369 struct dc_stream_status *status = dc_stream_get_status(stream);
4370 int i;
4371
4372 if (!status)
4373 return 0;
4374
4375 for (i = 0; i < status->plane_count; i++)
4376 srf_updates[i].surface = status->plane_states[i];
4377
4378 return status->plane_count;
4379 }
4380
commit_minimal_transition_based_on_new_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4381 static bool commit_minimal_transition_based_on_new_context(struct dc *dc,
4382 struct dc_state *new_context,
4383 struct dc_stream_state *stream,
4384 struct dc_surface_update *srf_updates,
4385 int surface_count)
4386 {
4387 bool success = false;
4388 struct pipe_split_policy_backup policy;
4389 struct dc_state *intermediate_context =
4390 create_minimal_transition_state(dc, new_context,
4391 &policy);
4392
4393 if (intermediate_context) {
4394 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4395 dc,
4396 dc->current_state,
4397 intermediate_context,
4398 new_context)) {
4399 DC_LOG_DC("commit minimal transition state: base = new state\n");
4400 commit_planes_for_stream(dc, srf_updates,
4401 surface_count, stream, NULL,
4402 UPDATE_TYPE_FULL, intermediate_context);
4403 swap_and_release_current_context(
4404 dc, intermediate_context, stream);
4405 dc_state_retain(dc->current_state);
4406 success = true;
4407 }
4408 release_minimal_transition_state(
4409 dc, intermediate_context, new_context, &policy);
4410 }
4411 return success;
4412 }
4413
commit_minimal_transition_based_on_current_context(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream)4414 static bool commit_minimal_transition_based_on_current_context(struct dc *dc,
4415 struct dc_state *new_context, struct dc_stream_state *stream)
4416 {
4417 bool success = false;
4418 struct pipe_split_policy_backup policy;
4419 struct dc_state *intermediate_context;
4420 struct dc_state *old_current_state = dc->current_state;
4421 struct dc_surface_update srf_updates[MAX_SURFACE_NUM] = {0};
4422 int surface_count;
4423
4424 /*
4425 * Both current and new contexts share the same stream and plane state
4426 * pointers. When new context is validated, stream and planes get
4427 * populated with new updates such as new plane addresses. This makes
4428 * the current context no longer valid because stream and planes are
4429 * modified from the original. We backup current stream and plane states
4430 * into scratch space whenever we are populating new context. So we can
4431 * restore the original values back by calling the restore function now.
4432 * This restores back the original stream and plane states associated
4433 * with the current state.
4434 */
4435 restore_planes_and_stream_state(&dc->scratch.current_state, stream);
4436 dc_state_retain(old_current_state);
4437 intermediate_context = create_minimal_transition_state(dc,
4438 old_current_state, &policy);
4439
4440 if (intermediate_context) {
4441 if (is_pipe_topology_transition_seamless_with_intermediate_step(
4442 dc,
4443 dc->current_state,
4444 intermediate_context,
4445 new_context)) {
4446 DC_LOG_DC("commit minimal transition state: base = current state\n");
4447 surface_count = initialize_empty_surface_updates(
4448 stream, srf_updates);
4449 commit_planes_for_stream(dc, srf_updates,
4450 surface_count, stream, NULL,
4451 UPDATE_TYPE_FULL, intermediate_context);
4452 swap_and_release_current_context(
4453 dc, intermediate_context, stream);
4454 dc_state_retain(dc->current_state);
4455 success = true;
4456 }
4457 release_minimal_transition_state(dc, intermediate_context,
4458 old_current_state, &policy);
4459 }
4460 dc_state_release(old_current_state);
4461 /*
4462 * Restore stream and plane states back to the values associated with
4463 * new context.
4464 */
4465 restore_planes_and_stream_state(&dc->scratch.new_state, stream);
4466 return success;
4467 }
4468
4469 /**
4470 * commit_minimal_transition_state_in_dc_update - Commit a minimal state based
4471 * on current or new context
4472 *
4473 * @dc: DC structure, used to get the current state
4474 * @new_context: New context
4475 * @stream: Stream getting the update for the flip
4476 * @srf_updates: Surface updates
4477 * @surface_count: Number of surfaces
4478 *
4479 * The function takes in current state and new state and determine a minimal
4480 * transition state as the intermediate step which could make the transition
4481 * between current and new states seamless. If found, it will commit the minimal
4482 * transition state and update current state to this minimal transition state
4483 * and return true, if not, it will return false.
4484 *
4485 * Return:
4486 * Return True if the minimal transition succeeded, false otherwise
4487 */
commit_minimal_transition_state_in_dc_update(struct dc * dc,struct dc_state * new_context,struct dc_stream_state * stream,struct dc_surface_update * srf_updates,int surface_count)4488 static bool commit_minimal_transition_state_in_dc_update(struct dc *dc,
4489 struct dc_state *new_context,
4490 struct dc_stream_state *stream,
4491 struct dc_surface_update *srf_updates,
4492 int surface_count)
4493 {
4494 bool success = commit_minimal_transition_based_on_new_context(
4495 dc, new_context, stream, srf_updates,
4496 surface_count);
4497 if (!success)
4498 success = commit_minimal_transition_based_on_current_context(dc,
4499 new_context, stream);
4500 if (!success)
4501 DC_LOG_ERROR("Fail to commit a seamless minimal transition state between current and new states.\nThis pipe topology update is non-seamless!\n");
4502 return success;
4503 }
4504
4505 /**
4506 * commit_minimal_transition_state - Create a transition pipe split state
4507 *
4508 * @dc: Used to get the current state status
4509 * @transition_base_context: New transition state
4510 *
4511 * In some specific configurations, such as pipe split on multi-display with
4512 * MPO and/or Dynamic ODM, removing a plane may cause unsupported pipe
4513 * programming when moving to new planes. To mitigate those types of problems,
4514 * this function adds a transition state that minimizes pipe usage before
4515 * programming the new configuration. When adding a new plane, the current
4516 * state requires the least pipes, so it is applied without splitting. When
4517 * removing a plane, the new state requires the least pipes, so it is applied
4518 * without splitting.
4519 *
4520 * Return:
4521 * Return false if something is wrong in the transition state.
4522 */
commit_minimal_transition_state(struct dc * dc,struct dc_state * transition_base_context)4523 static bool commit_minimal_transition_state(struct dc *dc,
4524 struct dc_state *transition_base_context)
4525 {
4526 struct dc_state *transition_context;
4527 struct pipe_split_policy_backup policy;
4528 enum dc_status ret = DC_ERROR_UNEXPECTED;
4529 unsigned int i, j;
4530 unsigned int pipe_in_use = 0;
4531 bool subvp_in_use = false;
4532 bool odm_in_use = false;
4533
4534 /* check current pipes in use*/
4535 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4536 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4537
4538 if (pipe->plane_state)
4539 pipe_in_use++;
4540 }
4541
4542 /* If SubVP is enabled and we are adding or removing planes from any main subvp
4543 * pipe, we must use the minimal transition.
4544 */
4545 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4546 struct pipe_ctx *pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4547
4548 if (pipe->stream && dc_state_get_pipe_subvp_type(dc->current_state, pipe) == SUBVP_PHANTOM) {
4549 subvp_in_use = true;
4550 break;
4551 }
4552 }
4553
4554 /* If ODM is enabled and we are adding or removing planes from any ODM
4555 * pipe, we must use the minimal transition.
4556 */
4557 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4558 struct pipe_ctx *pipe = &transition_base_context->res_ctx.pipe_ctx[i];
4559
4560 if (resource_is_pipe_type(pipe, OTG_MASTER)) {
4561 odm_in_use = resource_get_odm_slice_count(pipe) > 1;
4562 break;
4563 }
4564 }
4565
4566 /* When the OS add a new surface if we have been used all of pipes with odm combine
4567 * and mpc split feature, it need use commit_minimal_transition_state to transition safely.
4568 * After OS exit MPO, it will back to use odm and mpc split with all of pipes, we need
4569 * call it again. Otherwise return true to skip.
4570 *
4571 * Reduce the scenarios to use dc_commit_state_no_check in the stage of flip. Especially
4572 * enter/exit MPO when DCN still have enough resources.
4573 */
4574 if (pipe_in_use != dc->res_pool->pipe_count && !subvp_in_use && !odm_in_use)
4575 return true;
4576
4577 DC_LOG_DC("%s base = %s state, reason = %s\n", __func__,
4578 dc->current_state == transition_base_context ? "current" : "new",
4579 subvp_in_use ? "Subvp In Use" :
4580 odm_in_use ? "ODM in Use" :
4581 dc->debug.pipe_split_policy != MPC_SPLIT_AVOID ? "MPC in Use" :
4582 "Unknown");
4583
4584 dc_state_retain(transition_base_context);
4585 transition_context = create_minimal_transition_state(dc,
4586 transition_base_context, &policy);
4587 if (transition_context) {
4588 ret = dc_commit_state_no_check(dc, transition_context);
4589 release_minimal_transition_state(dc, transition_context, transition_base_context, &policy);
4590 }
4591 dc_state_release(transition_base_context);
4592
4593 if (ret != DC_OK) {
4594 /* this should never happen */
4595 BREAK_TO_DEBUGGER();
4596 return false;
4597 }
4598
4599 /* force full surface update */
4600 for (i = 0; i < dc->current_state->stream_count; i++) {
4601 for (j = 0; j < dc->current_state->stream_status[i].plane_count; j++) {
4602 dc->current_state->stream_status[i].plane_states[j]->update_flags.raw = 0xFFFFFFFF;
4603 }
4604 }
4605
4606 return true;
4607 }
4608
populate_fast_updates(struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update)4609 void populate_fast_updates(struct dc_fast_update *fast_update,
4610 struct dc_surface_update *srf_updates,
4611 int surface_count,
4612 struct dc_stream_update *stream_update)
4613 {
4614 int i = 0;
4615
4616 if (stream_update) {
4617 fast_update[0].out_transfer_func = stream_update->out_transfer_func;
4618 fast_update[0].output_csc_transform = stream_update->output_csc_transform;
4619 } else {
4620 fast_update[0].out_transfer_func = NULL;
4621 fast_update[0].output_csc_transform = NULL;
4622 }
4623
4624 for (i = 0; i < surface_count; i++) {
4625 fast_update[i].flip_addr = srf_updates[i].flip_addr;
4626 fast_update[i].gamma = srf_updates[i].gamma;
4627 fast_update[i].gamut_remap_matrix = srf_updates[i].gamut_remap_matrix;
4628 fast_update[i].input_csc_color_matrix = srf_updates[i].input_csc_color_matrix;
4629 fast_update[i].coeff_reduction_factor = srf_updates[i].coeff_reduction_factor;
4630 fast_update[i].cursor_csc_color_matrix = srf_updates[i].cursor_csc_color_matrix;
4631 }
4632 }
4633
fast_updates_exist(struct dc_fast_update * fast_update,int surface_count)4634 static bool fast_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4635 {
4636 int i;
4637
4638 if (fast_update[0].out_transfer_func ||
4639 fast_update[0].output_csc_transform)
4640 return true;
4641
4642 for (i = 0; i < surface_count; i++) {
4643 if (fast_update[i].flip_addr ||
4644 fast_update[i].gamma ||
4645 fast_update[i].gamut_remap_matrix ||
4646 fast_update[i].input_csc_color_matrix ||
4647 fast_update[i].cursor_csc_color_matrix ||
4648 fast_update[i].coeff_reduction_factor)
4649 return true;
4650 }
4651
4652 return false;
4653 }
4654
fast_nonaddr_updates_exist(struct dc_fast_update * fast_update,int surface_count)4655 bool fast_nonaddr_updates_exist(struct dc_fast_update *fast_update, int surface_count)
4656 {
4657 int i;
4658
4659 if (fast_update[0].out_transfer_func ||
4660 fast_update[0].output_csc_transform)
4661 return true;
4662
4663 for (i = 0; i < surface_count; i++) {
4664 if (fast_update[i].input_csc_color_matrix ||
4665 fast_update[i].gamma ||
4666 fast_update[i].gamut_remap_matrix ||
4667 fast_update[i].coeff_reduction_factor ||
4668 fast_update[i].cursor_csc_color_matrix)
4669 return true;
4670 }
4671
4672 return false;
4673 }
4674
full_update_required(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4675 static bool full_update_required(struct dc *dc,
4676 struct dc_surface_update *srf_updates,
4677 int surface_count,
4678 struct dc_stream_update *stream_update,
4679 struct dc_stream_state *stream)
4680 {
4681
4682 int i;
4683 struct dc_stream_status *stream_status;
4684 const struct dc_state *context = dc->current_state;
4685
4686 for (i = 0; i < surface_count; i++) {
4687 if (srf_updates &&
4688 (srf_updates[i].plane_info ||
4689 srf_updates[i].scaling_info ||
4690 (srf_updates[i].hdr_mult.value &&
4691 srf_updates[i].hdr_mult.value != srf_updates->surface->hdr_mult.value) ||
4692 (srf_updates[i].sdr_white_level_nits &&
4693 srf_updates[i].sdr_white_level_nits != srf_updates->surface->sdr_white_level_nits) ||
4694 srf_updates[i].in_transfer_func ||
4695 srf_updates[i].func_shaper ||
4696 srf_updates[i].lut3d_func ||
4697 srf_updates[i].surface->force_full_update ||
4698 (srf_updates[i].flip_addr &&
4699 srf_updates[i].flip_addr->address.tmz_surface != srf_updates[i].surface->address.tmz_surface) ||
4700 (srf_updates[i].cm2_params &&
4701 (srf_updates[i].cm2_params->component_settings.shaper_3dlut_setting != srf_updates[i].surface->mcm_shaper_3dlut_setting ||
4702 srf_updates[i].cm2_params->component_settings.lut1d_enable != srf_updates[i].surface->mcm_lut1d_enable)) ||
4703 !is_surface_in_context(context, srf_updates[i].surface)))
4704 return true;
4705 }
4706
4707 if (stream_update &&
4708 (((stream_update->src.height != 0 && stream_update->src.width != 0) ||
4709 (stream_update->dst.height != 0 && stream_update->dst.width != 0) ||
4710 stream_update->integer_scaling_update) ||
4711 stream_update->hdr_static_metadata ||
4712 stream_update->abm_level ||
4713 stream_update->periodic_interrupt ||
4714 stream_update->vrr_infopacket ||
4715 stream_update->vsc_infopacket ||
4716 stream_update->vsp_infopacket ||
4717 stream_update->hfvsif_infopacket ||
4718 stream_update->vtem_infopacket ||
4719 stream_update->adaptive_sync_infopacket ||
4720 stream_update->dpms_off ||
4721 stream_update->allow_freesync ||
4722 stream_update->vrr_active_variable ||
4723 stream_update->vrr_active_fixed ||
4724 stream_update->gamut_remap ||
4725 stream_update->output_color_space ||
4726 stream_update->dither_option ||
4727 stream_update->wb_update ||
4728 stream_update->dsc_config ||
4729 stream_update->mst_bw_update ||
4730 stream_update->func_shaper ||
4731 stream_update->lut3d_func ||
4732 stream_update->pending_test_pattern ||
4733 stream_update->crtc_timing_adjust ||
4734 stream_update->scaler_sharpener_update))
4735 return true;
4736
4737 if (stream) {
4738 stream_status = dc_stream_get_status(stream);
4739 if (stream_status == NULL || stream_status->plane_count != surface_count)
4740 return true;
4741 }
4742 if (dc->idle_optimizations_allowed)
4743 return true;
4744
4745 return false;
4746 }
4747
fast_update_only(struct dc * dc,struct dc_fast_update * fast_update,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_update * stream_update,struct dc_stream_state * stream)4748 static bool fast_update_only(struct dc *dc,
4749 struct dc_fast_update *fast_update,
4750 struct dc_surface_update *srf_updates,
4751 int surface_count,
4752 struct dc_stream_update *stream_update,
4753 struct dc_stream_state *stream)
4754 {
4755 return fast_updates_exist(fast_update, surface_count)
4756 && !full_update_required(dc, srf_updates, surface_count, stream_update, stream);
4757 }
4758
update_planes_and_stream_v1(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)4759 static bool update_planes_and_stream_v1(struct dc *dc,
4760 struct dc_surface_update *srf_updates, int surface_count,
4761 struct dc_stream_state *stream,
4762 struct dc_stream_update *stream_update,
4763 struct dc_state *state)
4764 {
4765 const struct dc_stream_status *stream_status;
4766 enum surface_update_type update_type;
4767 struct dc_state *context;
4768 struct dc_context *dc_ctx = dc->ctx;
4769 int i, j;
4770 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4771
4772 dc_exit_ips_for_hw_access(dc);
4773
4774 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4775 stream_status = dc_stream_get_status(stream);
4776 context = dc->current_state;
4777
4778 update_type = dc_check_update_surfaces_for_stream(
4779 dc, srf_updates, surface_count, stream_update, stream_status);
4780
4781 if (update_type >= UPDATE_TYPE_FULL) {
4782
4783 /* initialize scratch memory for building context */
4784 context = dc_state_create_copy(state);
4785 if (context == NULL) {
4786 DC_ERROR("Failed to allocate new validate context!\n");
4787 return false;
4788 }
4789
4790 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4791 struct pipe_ctx *new_pipe = &context->res_ctx.pipe_ctx[i];
4792 struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
4793
4794 if (new_pipe->plane_state && new_pipe->plane_state != old_pipe->plane_state)
4795 new_pipe->plane_state->force_full_update = true;
4796 }
4797 } else if (update_type == UPDATE_TYPE_FAST) {
4798 /*
4799 * Previous frame finished and HW is ready for optimization.
4800 */
4801 dc_post_update_surfaces_to_stream(dc);
4802 }
4803
4804 for (i = 0; i < surface_count; i++) {
4805 struct dc_plane_state *surface = srf_updates[i].surface;
4806
4807 copy_surface_update_to_plane(surface, &srf_updates[i]);
4808
4809 if (update_type >= UPDATE_TYPE_MED) {
4810 for (j = 0; j < dc->res_pool->pipe_count; j++) {
4811 struct pipe_ctx *pipe_ctx =
4812 &context->res_ctx.pipe_ctx[j];
4813
4814 if (pipe_ctx->plane_state != surface)
4815 continue;
4816
4817 resource_build_scaling_params(pipe_ctx);
4818 }
4819 }
4820 }
4821
4822 copy_stream_update_to_stream(dc, context, stream, stream_update);
4823
4824 if (update_type >= UPDATE_TYPE_FULL) {
4825 if (!dc->res_pool->funcs->validate_bandwidth(dc, context, false)) {
4826 DC_ERROR("Mode validation failed for stream update!\n");
4827 dc_state_release(context);
4828 return false;
4829 }
4830 }
4831
4832 TRACE_DC_PIPE_STATE(pipe_ctx, i, MAX_PIPES);
4833
4834 if (fast_update_only(dc, fast_update, srf_updates, surface_count, stream_update, stream) &&
4835 !dc->debug.enable_legacy_fast_update) {
4836 commit_planes_for_stream_fast(dc,
4837 srf_updates,
4838 surface_count,
4839 stream,
4840 stream_update,
4841 update_type,
4842 context);
4843 } else {
4844 commit_planes_for_stream(
4845 dc,
4846 srf_updates,
4847 surface_count,
4848 stream,
4849 stream_update,
4850 update_type,
4851 context);
4852 }
4853 /*update current_State*/
4854 if (dc->current_state != context) {
4855
4856 struct dc_state *old = dc->current_state;
4857
4858 dc->current_state = context;
4859 dc_state_release(old);
4860
4861 for (i = 0; i < dc->res_pool->pipe_count; i++) {
4862 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
4863
4864 if (pipe_ctx->plane_state && pipe_ctx->stream == stream)
4865 pipe_ctx->plane_state->force_full_update = false;
4866 }
4867 }
4868
4869 /* Legacy optimization path for DCE. */
4870 if (update_type >= UPDATE_TYPE_FULL && dc_ctx->dce_version < DCE_VERSION_MAX) {
4871 dc_post_update_surfaces_to_stream(dc);
4872 TRACE_DCE_CLOCK_STATE(&context->bw_ctx.bw.dce);
4873 }
4874 return true;
4875 }
4876
update_planes_and_stream_v2(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)4877 static bool update_planes_and_stream_v2(struct dc *dc,
4878 struct dc_surface_update *srf_updates, int surface_count,
4879 struct dc_stream_state *stream,
4880 struct dc_stream_update *stream_update)
4881 {
4882 struct dc_state *context;
4883 enum surface_update_type update_type;
4884 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4885
4886 /* In cases where MPO and split or ODM are used transitions can
4887 * cause underflow. Apply stream configuration with minimal pipe
4888 * split first to avoid unsupported transitions for active pipes.
4889 */
4890 bool force_minimal_pipe_splitting = 0;
4891 bool is_plane_addition = 0;
4892 bool is_fast_update_only;
4893
4894 populate_fast_updates(fast_update, srf_updates, surface_count, stream_update);
4895 is_fast_update_only = fast_update_only(dc, fast_update, srf_updates,
4896 surface_count, stream_update, stream);
4897 force_minimal_pipe_splitting = could_mpcc_tree_change_for_active_pipes(
4898 dc,
4899 stream,
4900 srf_updates,
4901 surface_count,
4902 &is_plane_addition);
4903
4904 /* on plane addition, minimal state is the current one */
4905 if (force_minimal_pipe_splitting && is_plane_addition &&
4906 !commit_minimal_transition_state(dc, dc->current_state))
4907 return false;
4908
4909 if (!update_planes_and_stream_state(
4910 dc,
4911 srf_updates,
4912 surface_count,
4913 stream,
4914 stream_update,
4915 &update_type,
4916 &context))
4917 return false;
4918
4919 /* on plane removal, minimal state is the new one */
4920 if (force_minimal_pipe_splitting && !is_plane_addition) {
4921 if (!commit_minimal_transition_state(dc, context)) {
4922 dc_state_release(context);
4923 return false;
4924 }
4925 update_type = UPDATE_TYPE_FULL;
4926 }
4927
4928 if (dc->hwss.is_pipe_topology_transition_seamless &&
4929 !dc->hwss.is_pipe_topology_transition_seamless(
4930 dc, dc->current_state, context))
4931 commit_minimal_transition_state_in_dc_update(dc, context, stream,
4932 srf_updates, surface_count);
4933
4934 if (is_fast_update_only && !dc->debug.enable_legacy_fast_update) {
4935 commit_planes_for_stream_fast(dc,
4936 srf_updates,
4937 surface_count,
4938 stream,
4939 stream_update,
4940 update_type,
4941 context);
4942 } else {
4943 if (!stream_update &&
4944 dc->hwss.is_pipe_topology_transition_seamless &&
4945 !dc->hwss.is_pipe_topology_transition_seamless(
4946 dc, dc->current_state, context)) {
4947 DC_LOG_ERROR("performing non-seamless pipe topology transition with surface only update!\n");
4948 BREAK_TO_DEBUGGER();
4949 }
4950 commit_planes_for_stream(
4951 dc,
4952 srf_updates,
4953 surface_count,
4954 stream,
4955 stream_update,
4956 update_type,
4957 context);
4958 }
4959 if (dc->current_state != context)
4960 swap_and_release_current_context(dc, context, stream);
4961 return true;
4962 }
4963
commit_planes_and_stream_update_on_current_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type)4964 static void commit_planes_and_stream_update_on_current_context(struct dc *dc,
4965 struct dc_surface_update *srf_updates, int surface_count,
4966 struct dc_stream_state *stream,
4967 struct dc_stream_update *stream_update,
4968 enum surface_update_type update_type)
4969 {
4970 struct dc_fast_update fast_update[MAX_SURFACES] = {0};
4971
4972 ASSERT(update_type < UPDATE_TYPE_FULL);
4973 populate_fast_updates(fast_update, srf_updates, surface_count,
4974 stream_update);
4975 if (fast_update_only(dc, fast_update, srf_updates, surface_count,
4976 stream_update, stream) &&
4977 !dc->debug.enable_legacy_fast_update)
4978 commit_planes_for_stream_fast(dc,
4979 srf_updates,
4980 surface_count,
4981 stream,
4982 stream_update,
4983 update_type,
4984 dc->current_state);
4985 else
4986 commit_planes_for_stream(
4987 dc,
4988 srf_updates,
4989 surface_count,
4990 stream,
4991 stream_update,
4992 update_type,
4993 dc->current_state);
4994 }
4995
commit_planes_and_stream_update_with_new_context(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,enum surface_update_type update_type,struct dc_state * new_context)4996 static void commit_planes_and_stream_update_with_new_context(struct dc *dc,
4997 struct dc_surface_update *srf_updates, int surface_count,
4998 struct dc_stream_state *stream,
4999 struct dc_stream_update *stream_update,
5000 enum surface_update_type update_type,
5001 struct dc_state *new_context)
5002 {
5003 ASSERT(update_type >= UPDATE_TYPE_FULL);
5004 if (!dc->hwss.is_pipe_topology_transition_seamless(dc,
5005 dc->current_state, new_context))
5006 /*
5007 * It is required by the feature design that all pipe topologies
5008 * using extra free pipes for power saving purposes such as
5009 * dynamic ODM or SubVp shall only be enabled when it can be
5010 * transitioned seamlessly to AND from its minimal transition
5011 * state. A minimal transition state is defined as the same dc
5012 * state but with all power saving features disabled. So it uses
5013 * the minimum pipe topology. When we can't seamlessly
5014 * transition from state A to state B, we will insert the
5015 * minimal transition state A' or B' in between so seamless
5016 * transition between A and B can be made possible.
5017 */
5018 commit_minimal_transition_state_in_dc_update(dc, new_context,
5019 stream, srf_updates, surface_count);
5020
5021 commit_planes_for_stream(
5022 dc,
5023 srf_updates,
5024 surface_count,
5025 stream,
5026 stream_update,
5027 update_type,
5028 new_context);
5029 }
5030
update_planes_and_stream_v3(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5031 static bool update_planes_and_stream_v3(struct dc *dc,
5032 struct dc_surface_update *srf_updates, int surface_count,
5033 struct dc_stream_state *stream,
5034 struct dc_stream_update *stream_update)
5035 {
5036 struct dc_state *new_context;
5037 enum surface_update_type update_type;
5038
5039 /*
5040 * When this function returns true and new_context is not equal to
5041 * current state, the function allocates and validates a new dc state
5042 * and assigns it to new_context. The function expects that the caller
5043 * is responsible to free this memory when new_context is no longer
5044 * used. We swap current with new context and free current instead. So
5045 * new_context's memory will live until the next full update after it is
5046 * replaced by a newer context. Refer to the use of
5047 * swap_and_free_current_context below.
5048 */
5049 if (!update_planes_and_stream_state(dc, srf_updates, surface_count,
5050 stream, stream_update, &update_type,
5051 &new_context))
5052 return false;
5053
5054 if (new_context == dc->current_state) {
5055 commit_planes_and_stream_update_on_current_context(dc,
5056 srf_updates, surface_count, stream,
5057 stream_update, update_type);
5058 } else {
5059 commit_planes_and_stream_update_with_new_context(dc,
5060 srf_updates, surface_count, stream,
5061 stream_update, update_type, new_context);
5062 swap_and_release_current_context(dc, new_context, stream);
5063 }
5064
5065 return true;
5066 }
5067
clear_update_flags(struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream)5068 static void clear_update_flags(struct dc_surface_update *srf_updates,
5069 int surface_count, struct dc_stream_state *stream)
5070 {
5071 int i;
5072
5073 if (stream)
5074 stream->update_flags.raw = 0;
5075
5076 for (i = 0; i < surface_count; i++)
5077 if (srf_updates[i].surface)
5078 srf_updates[i].surface->update_flags.raw = 0;
5079 }
5080
dc_update_planes_and_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update)5081 bool dc_update_planes_and_stream(struct dc *dc,
5082 struct dc_surface_update *srf_updates, int surface_count,
5083 struct dc_stream_state *stream,
5084 struct dc_stream_update *stream_update)
5085 {
5086 bool ret = false;
5087
5088 dc_exit_ips_for_hw_access(dc);
5089 /*
5090 * update planes and stream version 3 separates FULL and FAST updates
5091 * to their own sequences. It aims to clean up frequent checks for
5092 * update type resulting unnecessary branching in logic flow. It also
5093 * adds a new commit minimal transition sequence, which detects the need
5094 * for minimal transition based on the actual comparison of current and
5095 * new states instead of "predicting" it based on per feature software
5096 * policy.i.e could_mpcc_tree_change_for_active_pipes. The new commit
5097 * minimal transition sequence is made universal to any power saving
5098 * features that would use extra free pipes such as Dynamic ODM/MPC
5099 * Combine, MPO or SubVp. Therefore there is no longer a need to
5100 * specially handle compatibility problems with transitions among those
5101 * features as they are now transparent to the new sequence.
5102 */
5103 if (dc->ctx->dce_version >= DCN_VERSION_4_01)
5104 ret = update_planes_and_stream_v3(dc, srf_updates,
5105 surface_count, stream, stream_update);
5106 else
5107 ret = update_planes_and_stream_v2(dc, srf_updates,
5108 surface_count, stream, stream_update);
5109
5110 if (ret)
5111 clear_update_flags(srf_updates, surface_count, stream);
5112
5113 return ret;
5114 }
5115
dc_commit_updates_for_stream(struct dc * dc,struct dc_surface_update * srf_updates,int surface_count,struct dc_stream_state * stream,struct dc_stream_update * stream_update,struct dc_state * state)5116 void dc_commit_updates_for_stream(struct dc *dc,
5117 struct dc_surface_update *srf_updates,
5118 int surface_count,
5119 struct dc_stream_state *stream,
5120 struct dc_stream_update *stream_update,
5121 struct dc_state *state)
5122 {
5123 bool ret = false;
5124
5125 dc_exit_ips_for_hw_access(dc);
5126 /* TODO: Since change commit sequence can have a huge impact,
5127 * we decided to only enable it for DCN3x. However, as soon as
5128 * we get more confident about this change we'll need to enable
5129 * the new sequence for all ASICs.
5130 */
5131 if (dc->ctx->dce_version >= DCN_VERSION_4_01) {
5132 ret = update_planes_and_stream_v3(dc, srf_updates, surface_count,
5133 stream, stream_update);
5134 } else if (dc->ctx->dce_version >= DCN_VERSION_3_2) {
5135 ret = update_planes_and_stream_v2(dc, srf_updates, surface_count,
5136 stream, stream_update);
5137 } else
5138 ret = update_planes_and_stream_v1(dc, srf_updates, surface_count, stream,
5139 stream_update, state);
5140
5141 if (ret)
5142 clear_update_flags(srf_updates, surface_count, stream);
5143 }
5144
dc_get_current_stream_count(struct dc * dc)5145 uint8_t dc_get_current_stream_count(struct dc *dc)
5146 {
5147 return dc->current_state->stream_count;
5148 }
5149
dc_get_stream_at_index(struct dc * dc,uint8_t i)5150 struct dc_stream_state *dc_get_stream_at_index(struct dc *dc, uint8_t i)
5151 {
5152 if (i < dc->current_state->stream_count)
5153 return dc->current_state->streams[i];
5154 return NULL;
5155 }
5156
dc_interrupt_to_irq_source(struct dc * dc,uint32_t src_id,uint32_t ext_id)5157 enum dc_irq_source dc_interrupt_to_irq_source(
5158 struct dc *dc,
5159 uint32_t src_id,
5160 uint32_t ext_id)
5161 {
5162 return dal_irq_service_to_irq_source(dc->res_pool->irqs, src_id, ext_id);
5163 }
5164
5165 /*
5166 * dc_interrupt_set() - Enable/disable an AMD hw interrupt source
5167 */
dc_interrupt_set(struct dc * dc,enum dc_irq_source src,bool enable)5168 bool dc_interrupt_set(struct dc *dc, enum dc_irq_source src, bool enable)
5169 {
5170
5171 if (dc == NULL)
5172 return false;
5173
5174 return dal_irq_service_set(dc->res_pool->irqs, src, enable);
5175 }
5176
dc_interrupt_ack(struct dc * dc,enum dc_irq_source src)5177 void dc_interrupt_ack(struct dc *dc, enum dc_irq_source src)
5178 {
5179 dal_irq_service_ack(dc->res_pool->irqs, src);
5180 }
5181
dc_power_down_on_boot(struct dc * dc)5182 void dc_power_down_on_boot(struct dc *dc)
5183 {
5184 if (dc->ctx->dce_environment != DCE_ENV_VIRTUAL_HW &&
5185 dc->hwss.power_down_on_boot) {
5186 if (dc->caps.ips_support)
5187 dc_exit_ips_for_hw_access(dc);
5188 dc->hwss.power_down_on_boot(dc);
5189 }
5190 }
5191
dc_set_power_state(struct dc * dc,enum dc_acpi_cm_power_state power_state)5192 void dc_set_power_state(struct dc *dc, enum dc_acpi_cm_power_state power_state)
5193 {
5194 if (!dc->current_state)
5195 return;
5196
5197 switch (power_state) {
5198 case DC_ACPI_CM_POWER_STATE_D0:
5199 dc_state_construct(dc, dc->current_state);
5200
5201 dc_exit_ips_for_hw_access(dc);
5202
5203 dc_z10_restore(dc);
5204
5205 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5206
5207 dc->hwss.init_hw(dc);
5208
5209 if (dc->hwss.init_sys_ctx != NULL &&
5210 dc->vm_pa_config.valid) {
5211 dc->hwss.init_sys_ctx(dc->hwseq, dc, &dc->vm_pa_config);
5212 }
5213
5214 break;
5215 default:
5216 ASSERT(dc->current_state->stream_count == 0);
5217
5218 dc_dmub_srv_notify_fw_dc_power_state(dc->ctx->dmub_srv, power_state);
5219
5220 dc_state_destruct(dc->current_state);
5221
5222 break;
5223 }
5224 }
5225
dc_resume(struct dc * dc)5226 void dc_resume(struct dc *dc)
5227 {
5228 uint32_t i;
5229
5230 for (i = 0; i < dc->link_count; i++)
5231 dc->link_srv->resume(dc->links[i]);
5232 }
5233
dc_is_dmcu_initialized(struct dc * dc)5234 bool dc_is_dmcu_initialized(struct dc *dc)
5235 {
5236 struct dmcu *dmcu = dc->res_pool->dmcu;
5237
5238 if (dmcu)
5239 return dmcu->funcs->is_dmcu_initialized(dmcu);
5240 return false;
5241 }
5242
get_clock_requirements_for_state(struct dc_state * state,struct AsicStateEx * info)5243 void get_clock_requirements_for_state(struct dc_state *state, struct AsicStateEx *info)
5244 {
5245 info->displayClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dispclk_khz;
5246 info->engineClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_khz;
5247 info->memoryClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dramclk_khz;
5248 info->maxSupportedDppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz;
5249 info->dppClock = (unsigned int)state->bw_ctx.bw.dcn.clk.dppclk_khz;
5250 info->socClock = (unsigned int)state->bw_ctx.bw.dcn.clk.socclk_khz;
5251 info->dcfClockDeepSleep = (unsigned int)state->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz;
5252 info->fClock = (unsigned int)state->bw_ctx.bw.dcn.clk.fclk_khz;
5253 info->phyClock = (unsigned int)state->bw_ctx.bw.dcn.clk.phyclk_khz;
5254 }
dc_set_clock(struct dc * dc,enum dc_clock_type clock_type,uint32_t clk_khz,uint32_t stepping)5255 enum dc_status dc_set_clock(struct dc *dc, enum dc_clock_type clock_type, uint32_t clk_khz, uint32_t stepping)
5256 {
5257 if (dc->hwss.set_clock)
5258 return dc->hwss.set_clock(dc, clock_type, clk_khz, stepping);
5259 return DC_ERROR_UNEXPECTED;
5260 }
dc_get_clock(struct dc * dc,enum dc_clock_type clock_type,struct dc_clock_config * clock_cfg)5261 void dc_get_clock(struct dc *dc, enum dc_clock_type clock_type, struct dc_clock_config *clock_cfg)
5262 {
5263 if (dc->hwss.get_clock)
5264 dc->hwss.get_clock(dc, clock_type, clock_cfg);
5265 }
5266
5267 /* enable/disable eDP PSR without specify stream for eDP */
dc_set_psr_allow_active(struct dc * dc,bool enable)5268 bool dc_set_psr_allow_active(struct dc *dc, bool enable)
5269 {
5270 int i;
5271 bool allow_active;
5272
5273 for (i = 0; i < dc->current_state->stream_count ; i++) {
5274 struct dc_link *link;
5275 struct dc_stream_state *stream = dc->current_state->streams[i];
5276
5277 link = stream->link;
5278 if (!link)
5279 continue;
5280
5281 if (link->psr_settings.psr_feature_enabled) {
5282 if (enable && !link->psr_settings.psr_allow_active) {
5283 allow_active = true;
5284 if (!dc_link_set_psr_allow_active(link, &allow_active, false, false, NULL))
5285 return false;
5286 } else if (!enable && link->psr_settings.psr_allow_active) {
5287 allow_active = false;
5288 if (!dc_link_set_psr_allow_active(link, &allow_active, true, false, NULL))
5289 return false;
5290 }
5291 }
5292 }
5293
5294 return true;
5295 }
5296
5297 /* enable/disable eDP Replay without specify stream for eDP */
dc_set_replay_allow_active(struct dc * dc,bool active)5298 bool dc_set_replay_allow_active(struct dc *dc, bool active)
5299 {
5300 int i;
5301 bool allow_active;
5302
5303 for (i = 0; i < dc->current_state->stream_count; i++) {
5304 struct dc_link *link;
5305 struct dc_stream_state *stream = dc->current_state->streams[i];
5306
5307 link = stream->link;
5308 if (!link)
5309 continue;
5310
5311 if (link->replay_settings.replay_feature_enabled) {
5312 if (active && !link->replay_settings.replay_allow_active) {
5313 allow_active = true;
5314 if (!dc_link_set_replay_allow_active(link, &allow_active,
5315 false, false, NULL))
5316 return false;
5317 } else if (!active && link->replay_settings.replay_allow_active) {
5318 allow_active = false;
5319 if (!dc_link_set_replay_allow_active(link, &allow_active,
5320 true, false, NULL))
5321 return false;
5322 }
5323 }
5324 }
5325
5326 return true;
5327 }
5328
5329 /* set IPS disable state */
dc_set_ips_disable(struct dc * dc,unsigned int disable_ips)5330 bool dc_set_ips_disable(struct dc *dc, unsigned int disable_ips)
5331 {
5332 dc_exit_ips_for_hw_access(dc);
5333
5334 dc->config.disable_ips = disable_ips;
5335
5336 return true;
5337 }
5338
dc_allow_idle_optimizations_internal(struct dc * dc,bool allow,char const * caller_name)5339 void dc_allow_idle_optimizations_internal(struct dc *dc, bool allow, char const *caller_name)
5340 {
5341 if (dc->debug.disable_idle_power_optimizations)
5342 return;
5343
5344 if (allow != dc->idle_optimizations_allowed)
5345 DC_LOG_IPS("%s: allow_idle old=%d new=%d (caller=%s)\n", __func__,
5346 dc->idle_optimizations_allowed, allow, caller_name);
5347
5348 if (dc->caps.ips_support && (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5349 return;
5350
5351 if (dc->clk_mgr != NULL && dc->clk_mgr->funcs->is_smu_present)
5352 if (!dc->clk_mgr->funcs->is_smu_present(dc->clk_mgr))
5353 return;
5354
5355 if (allow == dc->idle_optimizations_allowed)
5356 return;
5357
5358 if (dc->hwss.apply_idle_power_optimizations && dc->clk_mgr != NULL &&
5359 dc->hwss.apply_idle_power_optimizations(dc, allow))
5360 dc->idle_optimizations_allowed = allow;
5361 }
5362
dc_exit_ips_for_hw_access_internal(struct dc * dc,const char * caller_name)5363 void dc_exit_ips_for_hw_access_internal(struct dc *dc, const char *caller_name)
5364 {
5365 if (dc->caps.ips_support)
5366 dc_allow_idle_optimizations_internal(dc, false, caller_name);
5367 }
5368
dc_dmub_is_ips_idle_state(struct dc * dc)5369 bool dc_dmub_is_ips_idle_state(struct dc *dc)
5370 {
5371 if (dc->debug.disable_idle_power_optimizations)
5372 return false;
5373
5374 if (!dc->caps.ips_support || (dc->config.disable_ips == DMUB_IPS_DISABLE_ALL))
5375 return false;
5376
5377 if (!dc->ctx->dmub_srv)
5378 return false;
5379
5380 return dc->ctx->dmub_srv->idle_allowed;
5381 }
5382
5383 /* set min and max memory clock to lowest and highest DPM level, respectively */
dc_unlock_memory_clock_frequency(struct dc * dc)5384 void dc_unlock_memory_clock_frequency(struct dc *dc)
5385 {
5386 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5387 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, false);
5388
5389 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5390 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5391 }
5392
5393 /* set min memory clock to the min required for current mode, max to maxDPM */
dc_lock_memory_clock_frequency(struct dc * dc)5394 void dc_lock_memory_clock_frequency(struct dc *dc)
5395 {
5396 if (dc->clk_mgr->funcs->get_memclk_states_from_smu)
5397 dc->clk_mgr->funcs->get_memclk_states_from_smu(dc->clk_mgr);
5398
5399 if (dc->clk_mgr->funcs->set_hard_min_memclk)
5400 dc->clk_mgr->funcs->set_hard_min_memclk(dc->clk_mgr, true);
5401
5402 if (dc->clk_mgr->funcs->set_hard_max_memclk)
5403 dc->clk_mgr->funcs->set_hard_max_memclk(dc->clk_mgr);
5404 }
5405
blank_and_force_memclk(struct dc * dc,bool apply,unsigned int memclk_mhz)5406 static void blank_and_force_memclk(struct dc *dc, bool apply, unsigned int memclk_mhz)
5407 {
5408 struct dc_state *context = dc->current_state;
5409 struct hubp *hubp;
5410 struct pipe_ctx *pipe;
5411 int i;
5412
5413 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5414 pipe = &context->res_ctx.pipe_ctx[i];
5415
5416 if (pipe->stream != NULL) {
5417 dc->hwss.disable_pixel_data(dc, pipe, true);
5418
5419 // wait for double buffer
5420 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5421 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VBLANK);
5422 pipe->stream_res.tg->funcs->wait_for_state(pipe->stream_res.tg, CRTC_STATE_VACTIVE);
5423
5424 hubp = pipe->plane_res.hubp;
5425 hubp->funcs->set_blank_regs(hubp, true);
5426 }
5427 }
5428 if (dc->clk_mgr->funcs->set_max_memclk)
5429 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, memclk_mhz);
5430 if (dc->clk_mgr->funcs->set_min_memclk)
5431 dc->clk_mgr->funcs->set_min_memclk(dc->clk_mgr, memclk_mhz);
5432
5433 for (i = 0; i < dc->res_pool->pipe_count; i++) {
5434 pipe = &context->res_ctx.pipe_ctx[i];
5435
5436 if (pipe->stream != NULL) {
5437 dc->hwss.disable_pixel_data(dc, pipe, false);
5438
5439 hubp = pipe->plane_res.hubp;
5440 hubp->funcs->set_blank_regs(hubp, false);
5441 }
5442 }
5443 }
5444
5445
5446 /**
5447 * dc_enable_dcmode_clk_limit() - lower clocks in dc (battery) mode
5448 * @dc: pointer to dc of the dm calling this
5449 * @enable: True = transition to DC mode, false = transition back to AC mode
5450 *
5451 * Some SoCs define additional clock limits when in DC mode, DM should
5452 * invoke this function when the platform undergoes a power source transition
5453 * so DC can apply/unapply the limit. This interface may be disruptive to
5454 * the onscreen content.
5455 *
5456 * Context: Triggered by OS through DM interface, or manually by escape calls.
5457 * Need to hold a dclock when doing so.
5458 *
5459 * Return: none (void function)
5460 *
5461 */
dc_enable_dcmode_clk_limit(struct dc * dc,bool enable)5462 void dc_enable_dcmode_clk_limit(struct dc *dc, bool enable)
5463 {
5464 unsigned int softMax = 0, maxDPM = 0, funcMin = 0, i;
5465 bool p_state_change_support;
5466
5467 if (!dc->config.dc_mode_clk_limit_support)
5468 return;
5469
5470 softMax = dc->clk_mgr->bw_params->dc_mode_softmax_memclk;
5471 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries; i++) {
5472 if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz > maxDPM)
5473 maxDPM = dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
5474 }
5475 funcMin = (dc->clk_mgr->clks.dramclk_khz + 999) / 1000;
5476 p_state_change_support = dc->clk_mgr->clks.p_state_change_support;
5477
5478 if (enable && !dc->clk_mgr->dc_mode_softmax_enabled) {
5479 if (p_state_change_support) {
5480 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5481 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, softMax);
5482 // else: No-Op
5483 } else {
5484 if (funcMin <= softMax)
5485 blank_and_force_memclk(dc, true, softMax);
5486 // else: No-Op
5487 }
5488 } else if (!enable && dc->clk_mgr->dc_mode_softmax_enabled) {
5489 if (p_state_change_support) {
5490 if (funcMin <= softMax && dc->clk_mgr->funcs->set_max_memclk)
5491 dc->clk_mgr->funcs->set_max_memclk(dc->clk_mgr, maxDPM);
5492 // else: No-Op
5493 } else {
5494 if (funcMin <= softMax)
5495 blank_and_force_memclk(dc, true, maxDPM);
5496 // else: No-Op
5497 }
5498 }
5499 dc->clk_mgr->dc_mode_softmax_enabled = enable;
5500 }
dc_is_plane_eligible_for_idle_optimizations(struct dc * dc,unsigned int pitch,unsigned int height,enum surface_pixel_format format,struct dc_cursor_attributes * cursor_attr)5501 bool dc_is_plane_eligible_for_idle_optimizations(struct dc *dc,
5502 unsigned int pitch,
5503 unsigned int height,
5504 enum surface_pixel_format format,
5505 struct dc_cursor_attributes *cursor_attr)
5506 {
5507 if (dc->hwss.does_plane_fit_in_mall && dc->hwss.does_plane_fit_in_mall(dc, pitch, height, format, cursor_attr))
5508 return true;
5509 return false;
5510 }
5511
5512 /* cleanup on driver unload */
dc_hardware_release(struct dc * dc)5513 void dc_hardware_release(struct dc *dc)
5514 {
5515 dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(dc);
5516
5517 if (dc->hwss.hardware_release)
5518 dc->hwss.hardware_release(dc);
5519 }
5520
dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc * dc)5521 void dc_mclk_switch_using_fw_based_vblank_stretch_shut_down(struct dc *dc)
5522 {
5523 if (dc->current_state)
5524 dc->current_state->bw_ctx.bw.dcn.clk.fw_based_mclk_switching_shut_down = true;
5525 }
5526
5527 /**
5528 * dc_is_dmub_outbox_supported - Check if DMUB firmware support outbox notification
5529 *
5530 * @dc: [in] dc structure
5531 *
5532 * Checks whether DMUB FW supports outbox notifications, if supported DM
5533 * should register outbox interrupt prior to actually enabling interrupts
5534 * via dc_enable_dmub_outbox
5535 *
5536 * Return:
5537 * True if DMUB FW supports outbox notifications, False otherwise
5538 */
dc_is_dmub_outbox_supported(struct dc * dc)5539 bool dc_is_dmub_outbox_supported(struct dc *dc)
5540 {
5541 if (!dc->caps.dmcub_support)
5542 return false;
5543
5544 switch (dc->ctx->asic_id.chip_family) {
5545
5546 case FAMILY_YELLOW_CARP:
5547 /* DCN31 B0 USB4 DPIA needs dmub notifications for interrupts */
5548 if (dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0 &&
5549 !dc->debug.dpia_debug.bits.disable_dpia)
5550 return true;
5551 break;
5552
5553 case AMDGPU_FAMILY_GC_11_0_1:
5554 case AMDGPU_FAMILY_GC_11_5_0:
5555 if (!dc->debug.dpia_debug.bits.disable_dpia)
5556 return true;
5557 break;
5558
5559 default:
5560 break;
5561 }
5562
5563 /* dmub aux needs dmub notifications to be enabled */
5564 return dc->debug.enable_dmub_aux_for_legacy_ddc;
5565
5566 }
5567
5568 /**
5569 * dc_enable_dmub_notifications - Check if dmub fw supports outbox
5570 *
5571 * @dc: [in] dc structure
5572 *
5573 * Calls dc_is_dmub_outbox_supported to check if dmub fw supports outbox
5574 * notifications. All DMs shall switch to dc_is_dmub_outbox_supported. This
5575 * API shall be removed after switching.
5576 *
5577 * Return:
5578 * True if DMUB FW supports outbox notifications, False otherwise
5579 */
dc_enable_dmub_notifications(struct dc * dc)5580 bool dc_enable_dmub_notifications(struct dc *dc)
5581 {
5582 return dc_is_dmub_outbox_supported(dc);
5583 }
5584
5585 /**
5586 * dc_enable_dmub_outbox - Enables DMUB unsolicited notification
5587 *
5588 * @dc: [in] dc structure
5589 *
5590 * Enables DMUB unsolicited notifications to x86 via outbox.
5591 */
dc_enable_dmub_outbox(struct dc * dc)5592 void dc_enable_dmub_outbox(struct dc *dc)
5593 {
5594 struct dc_context *dc_ctx = dc->ctx;
5595
5596 dmub_enable_outbox_notification(dc_ctx->dmub_srv);
5597 DC_LOG_DC("%s: dmub outbox notifications enabled\n", __func__);
5598 }
5599
5600 /**
5601 * dc_process_dmub_aux_transfer_async - Submits aux command to dmub via inbox message
5602 * Sets port index appropriately for legacy DDC
5603 * @dc: dc structure
5604 * @link_index: link index
5605 * @payload: aux payload
5606 *
5607 * Returns: True if successful, False if failure
5608 */
dc_process_dmub_aux_transfer_async(struct dc * dc,uint32_t link_index,struct aux_payload * payload)5609 bool dc_process_dmub_aux_transfer_async(struct dc *dc,
5610 uint32_t link_index,
5611 struct aux_payload *payload)
5612 {
5613 uint8_t action;
5614 union dmub_rb_cmd cmd = {0};
5615
5616 ASSERT(payload->length <= 16);
5617
5618 cmd.dp_aux_access.header.type = DMUB_CMD__DP_AUX_ACCESS;
5619 cmd.dp_aux_access.header.payload_bytes = 0;
5620 /* For dpia, ddc_pin is set to NULL */
5621 if (!dc->links[link_index]->ddc->ddc_pin)
5622 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_DPIA;
5623 else
5624 cmd.dp_aux_access.aux_control.type = AUX_CHANNEL_LEGACY_DDC;
5625
5626 cmd.dp_aux_access.aux_control.instance = dc->links[link_index]->ddc_hw_inst;
5627 cmd.dp_aux_access.aux_control.sw_crc_enabled = 0;
5628 cmd.dp_aux_access.aux_control.timeout = 0;
5629 cmd.dp_aux_access.aux_control.dpaux.address = payload->address;
5630 cmd.dp_aux_access.aux_control.dpaux.is_i2c_over_aux = payload->i2c_over_aux;
5631 cmd.dp_aux_access.aux_control.dpaux.length = payload->length;
5632
5633 /* set aux action */
5634 if (payload->i2c_over_aux) {
5635 if (payload->write) {
5636 if (payload->mot)
5637 action = DP_AUX_REQ_ACTION_I2C_WRITE_MOT;
5638 else
5639 action = DP_AUX_REQ_ACTION_I2C_WRITE;
5640 } else {
5641 if (payload->mot)
5642 action = DP_AUX_REQ_ACTION_I2C_READ_MOT;
5643 else
5644 action = DP_AUX_REQ_ACTION_I2C_READ;
5645 }
5646 } else {
5647 if (payload->write)
5648 action = DP_AUX_REQ_ACTION_DPCD_WRITE;
5649 else
5650 action = DP_AUX_REQ_ACTION_DPCD_READ;
5651 }
5652
5653 cmd.dp_aux_access.aux_control.dpaux.action = action;
5654
5655 if (payload->length && payload->write) {
5656 memcpy(cmd.dp_aux_access.aux_control.dpaux.data,
5657 payload->data,
5658 payload->length
5659 );
5660 }
5661
5662 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5663
5664 return true;
5665 }
5666
get_link_index_from_dpia_port_index(const struct dc * dc,uint8_t dpia_port_index)5667 uint8_t get_link_index_from_dpia_port_index(const struct dc *dc,
5668 uint8_t dpia_port_index)
5669 {
5670 uint8_t index, link_index = 0xFF;
5671
5672 for (index = 0; index < dc->link_count; index++) {
5673 /* ddc_hw_inst has dpia port index for dpia links
5674 * and ddc instance for legacy links
5675 */
5676 if (!dc->links[index]->ddc->ddc_pin) {
5677 if (dc->links[index]->ddc_hw_inst == dpia_port_index) {
5678 link_index = index;
5679 break;
5680 }
5681 }
5682 }
5683 ASSERT(link_index != 0xFF);
5684 return link_index;
5685 }
5686
5687 /**
5688 * dc_process_dmub_set_config_async - Submits set_config command
5689 *
5690 * @dc: [in] dc structure
5691 * @link_index: [in] link_index: link index
5692 * @payload: [in] aux payload
5693 * @notify: [out] set_config immediate reply
5694 *
5695 * Submits set_config command to dmub via inbox message.
5696 *
5697 * Return:
5698 * True if successful, False if failure
5699 */
dc_process_dmub_set_config_async(struct dc * dc,uint32_t link_index,struct set_config_cmd_payload * payload,struct dmub_notification * notify)5700 bool dc_process_dmub_set_config_async(struct dc *dc,
5701 uint32_t link_index,
5702 struct set_config_cmd_payload *payload,
5703 struct dmub_notification *notify)
5704 {
5705 union dmub_rb_cmd cmd = {0};
5706 bool is_cmd_complete = true;
5707
5708 /* prepare SET_CONFIG command */
5709 cmd.set_config_access.header.type = DMUB_CMD__DPIA;
5710 cmd.set_config_access.header.sub_type = DMUB_CMD__DPIA_SET_CONFIG_ACCESS;
5711
5712 cmd.set_config_access.set_config_control.instance = dc->links[link_index]->ddc_hw_inst;
5713 cmd.set_config_access.set_config_control.cmd_pkt.msg_type = payload->msg_type;
5714 cmd.set_config_access.set_config_control.cmd_pkt.msg_data = payload->msg_data;
5715
5716 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY)) {
5717 /* command is not processed by dmub */
5718 notify->sc_status = SET_CONFIG_UNKNOWN_ERROR;
5719 return is_cmd_complete;
5720 }
5721
5722 /* command processed by dmub, if ret_status is 1, it is completed instantly */
5723 if (cmd.set_config_access.header.ret_status == 1)
5724 notify->sc_status = cmd.set_config_access.set_config_control.immed_status;
5725 else
5726 /* cmd pending, will receive notification via outbox */
5727 is_cmd_complete = false;
5728
5729 return is_cmd_complete;
5730 }
5731
5732 /**
5733 * dc_process_dmub_set_mst_slots - Submits MST solt allocation
5734 *
5735 * @dc: [in] dc structure
5736 * @link_index: [in] link index
5737 * @mst_alloc_slots: [in] mst slots to be allotted
5738 * @mst_slots_in_use: [out] mst slots in use returned in failure case
5739 *
5740 * Submits mst slot allocation command to dmub via inbox message
5741 *
5742 * Return:
5743 * DC_OK if successful, DC_ERROR if failure
5744 */
dc_process_dmub_set_mst_slots(const struct dc * dc,uint32_t link_index,uint8_t mst_alloc_slots,uint8_t * mst_slots_in_use)5745 enum dc_status dc_process_dmub_set_mst_slots(const struct dc *dc,
5746 uint32_t link_index,
5747 uint8_t mst_alloc_slots,
5748 uint8_t *mst_slots_in_use)
5749 {
5750 union dmub_rb_cmd cmd = {0};
5751
5752 /* prepare MST_ALLOC_SLOTS command */
5753 cmd.set_mst_alloc_slots.header.type = DMUB_CMD__DPIA;
5754 cmd.set_mst_alloc_slots.header.sub_type = DMUB_CMD__DPIA_MST_ALLOC_SLOTS;
5755
5756 cmd.set_mst_alloc_slots.mst_slots_control.instance = dc->links[link_index]->ddc_hw_inst;
5757 cmd.set_mst_alloc_slots.mst_slots_control.mst_alloc_slots = mst_alloc_slots;
5758
5759 if (!dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT_WITH_REPLY))
5760 /* command is not processed by dmub */
5761 return DC_ERROR_UNEXPECTED;
5762
5763 /* command processed by dmub, if ret_status is 1 */
5764 if (cmd.set_config_access.header.ret_status != 1)
5765 /* command processing error */
5766 return DC_ERROR_UNEXPECTED;
5767
5768 /* command processed and we have a status of 2, mst not enabled in dpia */
5769 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 2)
5770 return DC_FAIL_UNSUPPORTED_1;
5771
5772 /* previously configured mst alloc and used slots did not match */
5773 if (cmd.set_mst_alloc_slots.mst_slots_control.immed_status == 3) {
5774 *mst_slots_in_use = cmd.set_mst_alloc_slots.mst_slots_control.mst_slots_in_use;
5775 return DC_NOT_SUPPORTED;
5776 }
5777
5778 return DC_OK;
5779 }
5780
5781 /**
5782 * dc_process_dmub_dpia_set_tps_notification - Submits tps notification
5783 *
5784 * @dc: [in] dc structure
5785 * @link_index: [in] link index
5786 * @tps: [in] request tps
5787 *
5788 * Submits set_tps_notification command to dmub via inbox message
5789 */
dc_process_dmub_dpia_set_tps_notification(const struct dc * dc,uint32_t link_index,uint8_t tps)5790 void dc_process_dmub_dpia_set_tps_notification(const struct dc *dc, uint32_t link_index, uint8_t tps)
5791 {
5792 union dmub_rb_cmd cmd = {0};
5793
5794 cmd.set_tps_notification.header.type = DMUB_CMD__DPIA;
5795 cmd.set_tps_notification.header.sub_type = DMUB_CMD__DPIA_SET_TPS_NOTIFICATION;
5796 cmd.set_tps_notification.tps_notification.instance = dc->links[link_index]->ddc_hw_inst;
5797 cmd.set_tps_notification.tps_notification.tps = tps;
5798
5799 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5800 }
5801
5802 /**
5803 * dc_process_dmub_dpia_hpd_int_enable - Submits DPIA DPD interruption
5804 *
5805 * @dc: [in] dc structure
5806 * @hpd_int_enable: [in] 1 for hpd int enable, 0 to disable
5807 *
5808 * Submits dpia hpd int enable command to dmub via inbox message
5809 */
dc_process_dmub_dpia_hpd_int_enable(const struct dc * dc,uint32_t hpd_int_enable)5810 void dc_process_dmub_dpia_hpd_int_enable(const struct dc *dc,
5811 uint32_t hpd_int_enable)
5812 {
5813 union dmub_rb_cmd cmd = {0};
5814
5815 cmd.dpia_hpd_int_enable.header.type = DMUB_CMD__DPIA_HPD_INT_ENABLE;
5816 cmd.dpia_hpd_int_enable.enable = hpd_int_enable;
5817
5818 dc_wake_and_execute_dmub_cmd(dc->ctx, &cmd, DM_DMUB_WAIT_TYPE_WAIT);
5819
5820 DC_LOG_DEBUG("%s: hpd_int_enable(%d)\n", __func__, hpd_int_enable);
5821 }
5822
5823 /**
5824 * dc_print_dmub_diagnostic_data - Print DMUB diagnostic data for debugging
5825 *
5826 * @dc: [in] dc structure
5827 *
5828 *
5829 */
dc_print_dmub_diagnostic_data(const struct dc * dc)5830 void dc_print_dmub_diagnostic_data(const struct dc *dc)
5831 {
5832 dc_dmub_srv_log_diagnostic_data(dc->ctx->dmub_srv);
5833 }
5834
5835 /**
5836 * dc_disable_accelerated_mode - disable accelerated mode
5837 * @dc: dc structure
5838 */
dc_disable_accelerated_mode(struct dc * dc)5839 void dc_disable_accelerated_mode(struct dc *dc)
5840 {
5841 bios_set_scratch_acc_mode_change(dc->ctx->dc_bios, 0);
5842 }
5843
5844
5845 /**
5846 * dc_notify_vsync_int_state - notifies vsync enable/disable state
5847 * @dc: dc structure
5848 * @stream: stream where vsync int state changed
5849 * @enable: whether vsync is enabled or disabled
5850 *
5851 * Called when vsync is enabled/disabled Will notify DMUB to start/stop ABM
5852 * interrupts after steady state is reached.
5853 */
dc_notify_vsync_int_state(struct dc * dc,struct dc_stream_state * stream,bool enable)5854 void dc_notify_vsync_int_state(struct dc *dc, struct dc_stream_state *stream, bool enable)
5855 {
5856 int i;
5857 int edp_num;
5858 struct pipe_ctx *pipe = NULL;
5859 struct dc_link *link = stream->sink->link;
5860 struct dc_link *edp_links[MAX_NUM_EDP];
5861
5862
5863 if (link->psr_settings.psr_feature_enabled)
5864 return;
5865
5866 if (link->replay_settings.replay_feature_enabled)
5867 return;
5868
5869 /*find primary pipe associated with stream*/
5870 for (i = 0; i < MAX_PIPES; i++) {
5871 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5872
5873 if (pipe->stream == stream && pipe->stream_res.tg)
5874 break;
5875 }
5876
5877 if (i == MAX_PIPES) {
5878 ASSERT(0);
5879 return;
5880 }
5881
5882 dc_get_edp_links(dc, edp_links, &edp_num);
5883
5884 /* Determine panel inst */
5885 for (i = 0; i < edp_num; i++) {
5886 if (edp_links[i] == link)
5887 break;
5888 }
5889
5890 if (i == edp_num) {
5891 return;
5892 }
5893
5894 if (pipe->stream_res.abm && pipe->stream_res.abm->funcs->set_abm_pause)
5895 pipe->stream_res.abm->funcs->set_abm_pause(pipe->stream_res.abm, !enable, i, pipe->stream_res.tg->inst);
5896 }
5897
5898 /*****************************************************************************
5899 * dc_abm_save_restore() - Interface to DC for save+pause and restore+un-pause
5900 * ABM
5901 * @dc: dc structure
5902 * @stream: stream where vsync int state changed
5903 * @pData: abm hw states
5904 *
5905 ****************************************************************************/
dc_abm_save_restore(struct dc * dc,struct dc_stream_state * stream,struct abm_save_restore * pData)5906 bool dc_abm_save_restore(
5907 struct dc *dc,
5908 struct dc_stream_state *stream,
5909 struct abm_save_restore *pData)
5910 {
5911 int i;
5912 int edp_num;
5913 struct pipe_ctx *pipe = NULL;
5914 struct dc_link *link = stream->sink->link;
5915 struct dc_link *edp_links[MAX_NUM_EDP];
5916
5917 if (link->replay_settings.replay_feature_enabled)
5918 return false;
5919
5920 /*find primary pipe associated with stream*/
5921 for (i = 0; i < MAX_PIPES; i++) {
5922 pipe = &dc->current_state->res_ctx.pipe_ctx[i];
5923
5924 if (pipe->stream == stream && pipe->stream_res.tg)
5925 break;
5926 }
5927
5928 if (i == MAX_PIPES) {
5929 ASSERT(0);
5930 return false;
5931 }
5932
5933 dc_get_edp_links(dc, edp_links, &edp_num);
5934
5935 /* Determine panel inst */
5936 for (i = 0; i < edp_num; i++)
5937 if (edp_links[i] == link)
5938 break;
5939
5940 if (i == edp_num)
5941 return false;
5942
5943 if (pipe->stream_res.abm &&
5944 pipe->stream_res.abm->funcs->save_restore)
5945 return pipe->stream_res.abm->funcs->save_restore(
5946 pipe->stream_res.abm,
5947 i,
5948 pData);
5949 return false;
5950 }
5951
dc_query_current_properties(struct dc * dc,struct dc_current_properties * properties)5952 void dc_query_current_properties(struct dc *dc, struct dc_current_properties *properties)
5953 {
5954 unsigned int i;
5955 bool subvp_sw_cursor_req = false;
5956
5957 for (i = 0; i < dc->current_state->stream_count; i++) {
5958 if (check_subvp_sw_cursor_fallback_req(dc, dc->current_state->streams[i])) {
5959 subvp_sw_cursor_req = true;
5960 break;
5961 }
5962 }
5963 properties->cursor_size_limit = subvp_sw_cursor_req ? 64 : dc->caps.max_cursor_size;
5964 }
5965
5966 /**
5967 * dc_set_edp_power() - DM controls eDP power to be ON/OFF
5968 *
5969 * Called when DM wants to power on/off eDP.
5970 * Only work on links with flag skip_implict_edp_power_control is set.
5971 *
5972 * @dc: Current DC state
5973 * @edp_link: a link with eDP connector signal type
5974 * @powerOn: power on/off eDP
5975 *
5976 * Return: void
5977 */
dc_set_edp_power(const struct dc * dc,struct dc_link * edp_link,bool powerOn)5978 void dc_set_edp_power(const struct dc *dc, struct dc_link *edp_link,
5979 bool powerOn)
5980 {
5981 if (edp_link->connector_signal != SIGNAL_TYPE_EDP)
5982 return;
5983
5984 if (edp_link->skip_implict_edp_power_control == false)
5985 return;
5986
5987 edp_link->dc->link_srv->edp_set_panel_power(edp_link, powerOn);
5988 }
5989
5990 /*
5991 *****************************************************************************
5992 * dc_get_power_profile_for_dc_state() - extracts power profile from dc state
5993 *
5994 * Called when DM wants to make power policy decisions based on dc_state
5995 *
5996 *****************************************************************************
5997 */
dc_get_power_profile_for_dc_state(const struct dc_state * context)5998 struct dc_power_profile dc_get_power_profile_for_dc_state(const struct dc_state *context)
5999 {
6000 struct dc_power_profile profile = { 0 };
6001
6002 profile.power_level += !context->bw_ctx.bw.dcn.clk.p_state_change_support;
6003
6004 return profile;
6005 }
6006