1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "dwarf2-frame.h"
39 #include "trad-frame.h"
40 #include "frame-unwind.h"
41 #include "frame-base.h"
42
43 #include "gdbcore.h"
44 #include "gdbcmd.h"
45 #include "objfiles.h"
46 #include "hppa-tdep.h"
47
48 static int hppa_debug = 0;
49
50 /* Some local constants. */
51 static const int hppa32_num_regs = 128;
52 static const int hppa64_num_regs = 96;
53
54 /* hppa-specific object data -- unwind and solib info.
55 TODO/maybe: think about splitting this into two parts; the unwind data is
56 common to all hppa targets, but is only used in this file; we can register
57 that separately and make this static. The solib data is probably hpux-
58 specific, so we can create a separate extern objfile_data that is registered
59 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
60 const struct objfile_data *hppa_objfile_priv_data = NULL;
61
62 /* Get at various relevent fields of an instruction word. */
63 #define MASK_5 0x1f
64 #define MASK_11 0x7ff
65 #define MASK_14 0x3fff
66 #define MASK_21 0x1fffff
67
68 /* Sizes (in bytes) of the native unwind entries. */
69 #define UNWIND_ENTRY_SIZE 16
70 #define STUB_UNWIND_ENTRY_SIZE 8
71
72 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
73 following functions static, once we hppa is partially multiarched. */
74 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
75 int hppa_instruction_nullified (void);
76
77 /* Handle 32/64-bit struct return conventions. */
78
79 static enum return_value_convention
hppa32_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * readbuf,const void * writebuf)80 hppa32_return_value (struct gdbarch *gdbarch,
81 struct type *type, struct regcache *regcache,
82 void *readbuf, const void *writebuf)
83 {
84 if (TYPE_LENGTH (type) <= 2 * 4)
85 {
86 /* The value always lives in the right hand end of the register
87 (or register pair)? */
88 int b;
89 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
90 int part = TYPE_LENGTH (type) % 4;
91 /* The left hand register contains only part of the value,
92 transfer that first so that the rest can be xfered as entire
93 4-byte registers. */
94 if (part > 0)
95 {
96 if (readbuf != NULL)
97 regcache_cooked_read_part (regcache, reg, 4 - part,
98 part, readbuf);
99 if (writebuf != NULL)
100 regcache_cooked_write_part (regcache, reg, 4 - part,
101 part, writebuf);
102 reg++;
103 }
104 /* Now transfer the remaining register values. */
105 for (b = part; b < TYPE_LENGTH (type); b += 4)
106 {
107 if (readbuf != NULL)
108 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
109 if (writebuf != NULL)
110 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
111 reg++;
112 }
113 return RETURN_VALUE_REGISTER_CONVENTION;
114 }
115 else
116 return RETURN_VALUE_STRUCT_CONVENTION;
117 }
118
119 static enum return_value_convention
hppa64_return_value(struct gdbarch * gdbarch,struct type * type,struct regcache * regcache,void * readbuf,const void * writebuf)120 hppa64_return_value (struct gdbarch *gdbarch,
121 struct type *type, struct regcache *regcache,
122 void *readbuf, const void *writebuf)
123 {
124 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
125 are in r28, padded on the left. Aggregates less that 65 bits are
126 in r28, right padded. Aggregates upto 128 bits are in r28 and
127 r29, right padded. */
128 if (TYPE_CODE (type) == TYPE_CODE_FLT
129 && TYPE_LENGTH (type) <= 8)
130 {
131 /* Floats are right aligned? */
132 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
133 if (readbuf != NULL)
134 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
135 TYPE_LENGTH (type), readbuf);
136 if (writebuf != NULL)
137 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
138 TYPE_LENGTH (type), writebuf);
139 return RETURN_VALUE_REGISTER_CONVENTION;
140 }
141 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
142 {
143 /* Integrals are right aligned. */
144 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
145 if (readbuf != NULL)
146 regcache_cooked_read_part (regcache, 28, offset,
147 TYPE_LENGTH (type), readbuf);
148 if (writebuf != NULL)
149 regcache_cooked_write_part (regcache, 28, offset,
150 TYPE_LENGTH (type), writebuf);
151 return RETURN_VALUE_REGISTER_CONVENTION;
152 }
153 else if (TYPE_LENGTH (type) <= 2 * 8)
154 {
155 /* Composite values are left aligned. */
156 int b;
157 for (b = 0; b < TYPE_LENGTH (type); b += 8)
158 {
159 int part = min (8, TYPE_LENGTH (type) - b);
160 if (readbuf != NULL)
161 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
162 (char *) readbuf + b);
163 if (writebuf != NULL)
164 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
165 (const char *) writebuf + b);
166 }
167 return RETURN_VALUE_REGISTER_CONVENTION;
168 }
169 else
170 return RETURN_VALUE_STRUCT_CONVENTION;
171 }
172
173 /* Routines to extract various sized constants out of hppa
174 instructions. */
175
176 /* This assumes that no garbage lies outside of the lower bits of
177 value. */
178
179 int
hppa_sign_extend(unsigned val,unsigned bits)180 hppa_sign_extend (unsigned val, unsigned bits)
181 {
182 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
183 }
184
185 /* For many immediate values the sign bit is the low bit! */
186
187 int
hppa_low_hppa_sign_extend(unsigned val,unsigned bits)188 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
189 {
190 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
191 }
192
193 /* Extract the bits at positions between FROM and TO, using HP's numbering
194 (MSB = 0). */
195
196 int
hppa_get_field(unsigned word,int from,int to)197 hppa_get_field (unsigned word, int from, int to)
198 {
199 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
200 }
201
202 /* extract the immediate field from a ld{bhw}s instruction */
203
204 int
hppa_extract_5_load(unsigned word)205 hppa_extract_5_load (unsigned word)
206 {
207 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
208 }
209
210 /* extract the immediate field from a break instruction */
211
212 unsigned
hppa_extract_5r_store(unsigned word)213 hppa_extract_5r_store (unsigned word)
214 {
215 return (word & MASK_5);
216 }
217
218 /* extract the immediate field from a {sr}sm instruction */
219
220 unsigned
hppa_extract_5R_store(unsigned word)221 hppa_extract_5R_store (unsigned word)
222 {
223 return (word >> 16 & MASK_5);
224 }
225
226 /* extract a 14 bit immediate field */
227
228 int
hppa_extract_14(unsigned word)229 hppa_extract_14 (unsigned word)
230 {
231 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
232 }
233
234 /* extract a 21 bit constant */
235
236 int
hppa_extract_21(unsigned word)237 hppa_extract_21 (unsigned word)
238 {
239 int val;
240
241 word &= MASK_21;
242 word <<= 11;
243 val = hppa_get_field (word, 20, 20);
244 val <<= 11;
245 val |= hppa_get_field (word, 9, 19);
246 val <<= 2;
247 val |= hppa_get_field (word, 5, 6);
248 val <<= 5;
249 val |= hppa_get_field (word, 0, 4);
250 val <<= 2;
251 val |= hppa_get_field (word, 7, 8);
252 return hppa_sign_extend (val, 21) << 11;
253 }
254
255 /* extract a 17 bit constant from branch instructions, returning the
256 19 bit signed value. */
257
258 int
hppa_extract_17(unsigned word)259 hppa_extract_17 (unsigned word)
260 {
261 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
262 hppa_get_field (word, 29, 29) << 10 |
263 hppa_get_field (word, 11, 15) << 11 |
264 (word & 0x1) << 16, 17) << 2;
265 }
266
267 CORE_ADDR
hppa_symbol_address(const char * sym)268 hppa_symbol_address(const char *sym)
269 {
270 struct minimal_symbol *minsym;
271
272 minsym = lookup_minimal_symbol (sym, NULL, NULL);
273 if (minsym)
274 return SYMBOL_VALUE_ADDRESS (minsym);
275 else
276 return (CORE_ADDR)-1;
277 }
278
279
280 /* Compare the start address for two unwind entries returning 1 if
281 the first address is larger than the second, -1 if the second is
282 larger than the first, and zero if they are equal. */
283
284 static int
compare_unwind_entries(const void * arg1,const void * arg2)285 compare_unwind_entries (const void *arg1, const void *arg2)
286 {
287 const struct unwind_table_entry *a = arg1;
288 const struct unwind_table_entry *b = arg2;
289
290 if (a->region_start > b->region_start)
291 return 1;
292 else if (a->region_start < b->region_start)
293 return -1;
294 else
295 return 0;
296 }
297
298 static void
record_text_segment_lowaddr(bfd * abfd,asection * section,void * data)299 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
300 {
301 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
302 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
303 {
304 bfd_vma value = section->vma - section->filepos;
305 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
306
307 if (value < *low_text_segment_address)
308 *low_text_segment_address = value;
309 }
310 }
311
312 static void
internalize_unwinds(struct objfile * objfile,struct unwind_table_entry * table,asection * section,unsigned int entries,unsigned int size,CORE_ADDR text_offset)313 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
314 asection *section, unsigned int entries, unsigned int size,
315 CORE_ADDR text_offset)
316 {
317 /* We will read the unwind entries into temporary memory, then
318 fill in the actual unwind table. */
319
320 if (size > 0)
321 {
322 unsigned long tmp;
323 unsigned i;
324 char *buf = alloca (size);
325 CORE_ADDR low_text_segment_address;
326
327 /* For ELF targets, then unwinds are supposed to
328 be segment relative offsets instead of absolute addresses.
329
330 Note that when loading a shared library (text_offset != 0) the
331 unwinds are already relative to the text_offset that will be
332 passed in. */
333 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
334 {
335 low_text_segment_address = -1;
336
337 bfd_map_over_sections (objfile->obfd,
338 record_text_segment_lowaddr,
339 &low_text_segment_address);
340
341 text_offset = low_text_segment_address;
342 }
343
344 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
345
346 /* Now internalize the information being careful to handle host/target
347 endian issues. */
348 for (i = 0; i < entries; i++)
349 {
350 table[i].region_start = bfd_get_32 (objfile->obfd,
351 (bfd_byte *) buf);
352 table[i].region_start += text_offset;
353 buf += 4;
354 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
355 table[i].region_end += text_offset;
356 buf += 4;
357 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
358 buf += 4;
359 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
360 table[i].Millicode = (tmp >> 30) & 0x1;
361 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
362 table[i].Region_description = (tmp >> 27) & 0x3;
363 table[i].reserved1 = (tmp >> 26) & 0x1;
364 table[i].Entry_SR = (tmp >> 25) & 0x1;
365 table[i].Entry_FR = (tmp >> 21) & 0xf;
366 table[i].Entry_GR = (tmp >> 16) & 0x1f;
367 table[i].Args_stored = (tmp >> 15) & 0x1;
368 table[i].Variable_Frame = (tmp >> 14) & 0x1;
369 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
370 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
371 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
372 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
373 table[i].Ada_Region = (tmp >> 9) & 0x1;
374 table[i].cxx_info = (tmp >> 8) & 0x1;
375 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
376 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
377 table[i].reserved2 = (tmp >> 5) & 0x1;
378 table[i].Save_SP = (tmp >> 4) & 0x1;
379 table[i].Save_RP = (tmp >> 3) & 0x1;
380 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
381 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
382 table[i].Cleanup_defined = tmp & 0x1;
383 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
384 buf += 4;
385 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
386 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
387 table[i].Large_frame = (tmp >> 29) & 0x1;
388 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
389 table[i].reserved4 = (tmp >> 27) & 0x1;
390 table[i].Total_frame_size = tmp & 0x7ffffff;
391
392 /* Stub unwinds are handled elsewhere. */
393 table[i].stub_unwind.stub_type = 0;
394 table[i].stub_unwind.padding = 0;
395 }
396 }
397 }
398
399 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
400 the object file. This info is used mainly by find_unwind_entry() to find
401 out the stack frame size and frame pointer used by procedures. We put
402 everything on the psymbol obstack in the objfile so that it automatically
403 gets freed when the objfile is destroyed. */
404
405 static void
read_unwind_info(struct objfile * objfile)406 read_unwind_info (struct objfile *objfile)
407 {
408 asection *unwind_sec, *stub_unwind_sec;
409 unsigned unwind_size, stub_unwind_size, total_size;
410 unsigned index, unwind_entries;
411 unsigned stub_entries, total_entries;
412 CORE_ADDR text_offset;
413 struct hppa_unwind_info *ui;
414 struct hppa_objfile_private *obj_private;
415
416 text_offset = ANOFFSET (objfile->section_offsets, 0);
417 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
418 sizeof (struct hppa_unwind_info));
419
420 ui->table = NULL;
421 ui->cache = NULL;
422 ui->last = -1;
423
424 /* For reasons unknown the HP PA64 tools generate multiple unwinder
425 sections in a single executable. So we just iterate over every
426 section in the BFD looking for unwinder sections intead of trying
427 to do a lookup with bfd_get_section_by_name.
428
429 First determine the total size of the unwind tables so that we
430 can allocate memory in a nice big hunk. */
431 total_entries = 0;
432 for (unwind_sec = objfile->obfd->sections;
433 unwind_sec;
434 unwind_sec = unwind_sec->next)
435 {
436 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
437 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
438 {
439 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
440 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
441
442 total_entries += unwind_entries;
443 }
444 }
445
446 /* Now compute the size of the stub unwinds. Note the ELF tools do not
447 use stub unwinds at the curren time. */
448 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
449
450 if (stub_unwind_sec)
451 {
452 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
453 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
454 }
455 else
456 {
457 stub_unwind_size = 0;
458 stub_entries = 0;
459 }
460
461 /* Compute total number of unwind entries and their total size. */
462 total_entries += stub_entries;
463 total_size = total_entries * sizeof (struct unwind_table_entry);
464
465 /* Allocate memory for the unwind table. */
466 ui->table = (struct unwind_table_entry *)
467 obstack_alloc (&objfile->objfile_obstack, total_size);
468 ui->last = total_entries - 1;
469
470 /* Now read in each unwind section and internalize the standard unwind
471 entries. */
472 index = 0;
473 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec;
475 unwind_sec = unwind_sec->next)
476 {
477 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
478 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 {
480 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
481 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
482
483 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
484 unwind_entries, unwind_size, text_offset);
485 index += unwind_entries;
486 }
487 }
488
489 /* Now read in and internalize the stub unwind entries. */
490 if (stub_unwind_size > 0)
491 {
492 unsigned int i;
493 char *buf = alloca (stub_unwind_size);
494
495 /* Read in the stub unwind entries. */
496 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
497 0, stub_unwind_size);
498
499 /* Now convert them into regular unwind entries. */
500 for (i = 0; i < stub_entries; i++, index++)
501 {
502 /* Clear out the next unwind entry. */
503 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
504
505 /* Convert offset & size into region_start and region_end.
506 Stuff away the stub type into "reserved" fields. */
507 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
508 (bfd_byte *) buf);
509 ui->table[index].region_start += text_offset;
510 buf += 4;
511 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
512 (bfd_byte *) buf);
513 buf += 2;
514 ui->table[index].region_end
515 = ui->table[index].region_start + 4 *
516 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
517 buf += 2;
518 }
519
520 }
521
522 /* Unwind table needs to be kept sorted. */
523 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
524 compare_unwind_entries);
525
526 /* Keep a pointer to the unwind information. */
527 obj_private = (struct hppa_objfile_private *)
528 objfile_data (objfile, hppa_objfile_priv_data);
529 if (obj_private == NULL)
530 {
531 obj_private = (struct hppa_objfile_private *)
532 obstack_alloc (&objfile->objfile_obstack,
533 sizeof (struct hppa_objfile_private));
534 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
535 obj_private->unwind_info = NULL;
536 obj_private->so_info = NULL;
537 obj_private->dp = 0;
538 }
539 obj_private->unwind_info = ui;
540 }
541
542 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
543 of the objfiles seeking the unwind table entry for this PC. Each objfile
544 contains a sorted list of struct unwind_table_entry. Since we do a binary
545 search of the unwind tables, we depend upon them to be sorted. */
546
547 struct unwind_table_entry *
find_unwind_entry(CORE_ADDR pc)548 find_unwind_entry (CORE_ADDR pc)
549 {
550 int first, middle, last;
551 struct objfile *objfile;
552 struct hppa_objfile_private *priv;
553
554 if (hppa_debug)
555 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
556 paddr_nz (pc));
557
558 /* A function at address 0? Not in HP-UX! */
559 if (pc == (CORE_ADDR) 0)
560 {
561 if (hppa_debug)
562 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
563 return NULL;
564 }
565
566 ALL_OBJFILES (objfile)
567 {
568 struct hppa_unwind_info *ui;
569 ui = NULL;
570 priv = objfile_data (objfile, hppa_objfile_priv_data);
571 if (priv)
572 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
573
574 if (!ui)
575 {
576 read_unwind_info (objfile);
577 priv = objfile_data (objfile, hppa_objfile_priv_data);
578 if (priv == NULL)
579 error ("Internal error reading unwind information.");
580 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
581 }
582
583 /* First, check the cache */
584
585 if (ui->cache
586 && pc >= ui->cache->region_start
587 && pc <= ui->cache->region_end)
588 {
589 if (hppa_debug)
590 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
591 paddr_nz ((CORE_ADDR) ui->cache));
592 return ui->cache;
593 }
594
595 /* Not in the cache, do a binary search */
596
597 first = 0;
598 last = ui->last;
599
600 while (first <= last)
601 {
602 middle = (first + last) / 2;
603 if (pc >= ui->table[middle].region_start
604 && pc <= ui->table[middle].region_end)
605 {
606 ui->cache = &ui->table[middle];
607 if (hppa_debug)
608 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
609 paddr_nz ((CORE_ADDR) ui->cache));
610 return &ui->table[middle];
611 }
612
613 if (pc < ui->table[middle].region_start)
614 last = middle - 1;
615 else
616 first = middle + 1;
617 }
618 } /* ALL_OBJFILES() */
619
620 if (hppa_debug)
621 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
622
623 return NULL;
624 }
625
626 static const unsigned char *
hppa_breakpoint_from_pc(CORE_ADDR * pc,int * len)627 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
628 {
629 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
630 (*len) = sizeof (breakpoint);
631 return breakpoint;
632 }
633
634 /* Return the name of a register. */
635
636 const char *
hppa32_register_name(int i)637 hppa32_register_name (int i)
638 {
639 static char *names[] = {
640 "flags", "r1", "rp", "r3",
641 "r4", "r5", "r6", "r7",
642 "r8", "r9", "r10", "r11",
643 "r12", "r13", "r14", "r15",
644 "r16", "r17", "r18", "r19",
645 "r20", "r21", "r22", "r23",
646 "r24", "r25", "r26", "dp",
647 "ret0", "ret1", "sp", "r31",
648 "sar", "pcoqh", "pcsqh", "pcoqt",
649 "pcsqt", "eiem", "iir", "isr",
650 "ior", "ipsw", "goto", "sr4",
651 "sr0", "sr1", "sr2", "sr3",
652 "sr5", "sr6", "sr7", "cr0",
653 "cr8", "cr9", "ccr", "cr12",
654 "cr13", "cr24", "cr25", "cr26",
655 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
656 "fpsr", "fpe1", "fpe2", "fpe3",
657 "fpe4", "fpe5", "fpe6", "fpe7",
658 "fr4", "fr4R", "fr5", "fr5R",
659 "fr6", "fr6R", "fr7", "fr7R",
660 "fr8", "fr8R", "fr9", "fr9R",
661 "fr10", "fr10R", "fr11", "fr11R",
662 "fr12", "fr12R", "fr13", "fr13R",
663 "fr14", "fr14R", "fr15", "fr15R",
664 "fr16", "fr16R", "fr17", "fr17R",
665 "fr18", "fr18R", "fr19", "fr19R",
666 "fr20", "fr20R", "fr21", "fr21R",
667 "fr22", "fr22R", "fr23", "fr23R",
668 "fr24", "fr24R", "fr25", "fr25R",
669 "fr26", "fr26R", "fr27", "fr27R",
670 "fr28", "fr28R", "fr29", "fr29R",
671 "fr30", "fr30R", "fr31", "fr31R"
672 };
673 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
674 return NULL;
675 else
676 return names[i];
677 }
678
679 const char *
hppa64_register_name(int i)680 hppa64_register_name (int i)
681 {
682 static char *names[] = {
683 "flags", "r1", "rp", "r3",
684 "r4", "r5", "r6", "r7",
685 "r8", "r9", "r10", "r11",
686 "r12", "r13", "r14", "r15",
687 "r16", "r17", "r18", "r19",
688 "r20", "r21", "r22", "r23",
689 "r24", "r25", "r26", "dp",
690 "ret0", "ret1", "sp", "r31",
691 "sar", "pcoqh", "pcsqh", "pcoqt",
692 "pcsqt", "eiem", "iir", "isr",
693 "ior", "ipsw", "goto", "sr4",
694 "sr0", "sr1", "sr2", "sr3",
695 "sr5", "sr6", "sr7", "cr0",
696 "cr8", "cr9", "ccr", "cr12",
697 "cr13", "cr24", "cr25", "cr26",
698 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
699 "fpsr", "fpe1", "fpe2", "fpe3",
700 "fr4", "fr5", "fr6", "fr7",
701 "fr8", "fr9", "fr10", "fr11",
702 "fr12", "fr13", "fr14", "fr15",
703 "fr16", "fr17", "fr18", "fr19",
704 "fr20", "fr21", "fr22", "fr23",
705 "fr24", "fr25", "fr26", "fr27",
706 "fr28", "fr29", "fr30", "fr31"
707 };
708 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
709 return NULL;
710 else
711 return names[i];
712 }
713
714 /* This function pushes a stack frame with arguments as part of the
715 inferior function calling mechanism.
716
717 This is the version of the function for the 32-bit PA machines, in
718 which later arguments appear at lower addresses. (The stack always
719 grows towards higher addresses.)
720
721 We simply allocate the appropriate amount of stack space and put
722 arguments into their proper slots. */
723
724 CORE_ADDR
hppa32_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)725 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
726 struct regcache *regcache, CORE_ADDR bp_addr,
727 int nargs, struct value **args, CORE_ADDR sp,
728 int struct_return, CORE_ADDR struct_addr)
729 {
730 /* Stack base address at which any pass-by-reference parameters are
731 stored. */
732 CORE_ADDR struct_end = 0;
733 /* Stack base address at which the first parameter is stored. */
734 CORE_ADDR param_end = 0;
735
736 /* The inner most end of the stack after all the parameters have
737 been pushed. */
738 CORE_ADDR new_sp = 0;
739
740 /* Two passes. First pass computes the location of everything,
741 second pass writes the bytes out. */
742 int write_pass;
743
744 /* Global pointer (r19) of the function we are trying to call. */
745 CORE_ADDR gp;
746
747 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
748
749 for (write_pass = 0; write_pass < 2; write_pass++)
750 {
751 CORE_ADDR struct_ptr = 0;
752 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
753 struct_ptr is adjusted for each argument below, so the first
754 argument will end up at sp-36. */
755 CORE_ADDR param_ptr = 32;
756 int i;
757 int small_struct = 0;
758
759 for (i = 0; i < nargs; i++)
760 {
761 struct value *arg = args[i];
762 struct type *type = check_typedef (VALUE_TYPE (arg));
763 /* The corresponding parameter that is pushed onto the
764 stack, and [possibly] passed in a register. */
765 char param_val[8];
766 int param_len;
767 memset (param_val, 0, sizeof param_val);
768 if (TYPE_LENGTH (type) > 8)
769 {
770 /* Large parameter, pass by reference. Store the value
771 in "struct" area and then pass its address. */
772 param_len = 4;
773 struct_ptr += align_up (TYPE_LENGTH (type), 8);
774 if (write_pass)
775 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
776 TYPE_LENGTH (type));
777 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
778 }
779 else if (TYPE_CODE (type) == TYPE_CODE_INT
780 || TYPE_CODE (type) == TYPE_CODE_ENUM)
781 {
782 /* Integer value store, right aligned. "unpack_long"
783 takes care of any sign-extension problems. */
784 param_len = align_up (TYPE_LENGTH (type), 4);
785 store_unsigned_integer (param_val, param_len,
786 unpack_long (type,
787 VALUE_CONTENTS (arg)));
788 }
789 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
790 {
791 /* Floating point value store, right aligned. */
792 param_len = align_up (TYPE_LENGTH (type), 4);
793 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
794 }
795 else
796 {
797 param_len = align_up (TYPE_LENGTH (type), 4);
798
799 /* Small struct value are stored right-aligned. */
800 memcpy (param_val + param_len - TYPE_LENGTH (type),
801 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
802
803 /* Structures of size 5, 6 and 7 bytes are special in that
804 the higher-ordered word is stored in the lower-ordered
805 argument, and even though it is a 8-byte quantity the
806 registers need not be 8-byte aligned. */
807 if (param_len > 4 && param_len < 8)
808 small_struct = 1;
809 }
810
811 param_ptr += param_len;
812 if (param_len == 8 && !small_struct)
813 param_ptr = align_up (param_ptr, 8);
814
815 /* First 4 non-FP arguments are passed in gr26-gr23.
816 First 4 32-bit FP arguments are passed in fr4L-fr7L.
817 First 2 64-bit FP arguments are passed in fr5 and fr7.
818
819 The rest go on the stack, starting at sp-36, towards lower
820 addresses. 8-byte arguments must be aligned to a 8-byte
821 stack boundary. */
822 if (write_pass)
823 {
824 write_memory (param_end - param_ptr, param_val, param_len);
825
826 /* There are some cases when we don't know the type
827 expected by the callee (e.g. for variadic functions), so
828 pass the parameters in both general and fp regs. */
829 if (param_ptr <= 48)
830 {
831 int grreg = 26 - (param_ptr - 36) / 4;
832 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
833 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
834
835 regcache_cooked_write (regcache, grreg, param_val);
836 regcache_cooked_write (regcache, fpLreg, param_val);
837
838 if (param_len > 4)
839 {
840 regcache_cooked_write (regcache, grreg + 1,
841 param_val + 4);
842
843 regcache_cooked_write (regcache, fpreg, param_val);
844 regcache_cooked_write (regcache, fpreg + 1,
845 param_val + 4);
846 }
847 }
848 }
849 }
850
851 /* Update the various stack pointers. */
852 if (!write_pass)
853 {
854 struct_end = sp + align_up (struct_ptr, 64);
855 /* PARAM_PTR already accounts for all the arguments passed
856 by the user. However, the ABI mandates minimum stack
857 space allocations for outgoing arguments. The ABI also
858 mandates minimum stack alignments which we must
859 preserve. */
860 param_end = struct_end + align_up (param_ptr, 64);
861 }
862 }
863
864 /* If a structure has to be returned, set up register 28 to hold its
865 address */
866 if (struct_return)
867 write_register (28, struct_addr);
868
869 gp = tdep->find_global_pointer (function);
870
871 if (gp != 0)
872 write_register (19, gp);
873
874 /* Set the return address. */
875 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
876
877 /* Update the Stack Pointer. */
878 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
879
880 return param_end;
881 }
882
883 /* This function pushes a stack frame with arguments as part of the
884 inferior function calling mechanism.
885
886 This is the version for the PA64, in which later arguments appear
887 at higher addresses. (The stack always grows towards higher
888 addresses.)
889
890 We simply allocate the appropriate amount of stack space and put
891 arguments into their proper slots.
892
893 This ABI also requires that the caller provide an argument pointer
894 to the callee, so we do that too. */
895
896 CORE_ADDR
hppa64_push_dummy_call(struct gdbarch * gdbarch,struct value * function,struct regcache * regcache,CORE_ADDR bp_addr,int nargs,struct value ** args,CORE_ADDR sp,int struct_return,CORE_ADDR struct_addr)897 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
898 struct regcache *regcache, CORE_ADDR bp_addr,
899 int nargs, struct value **args, CORE_ADDR sp,
900 int struct_return, CORE_ADDR struct_addr)
901 {
902 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
903 reverse engineering testsuite failures. */
904
905 /* Stack base address at which any pass-by-reference parameters are
906 stored. */
907 CORE_ADDR struct_end = 0;
908 /* Stack base address at which the first parameter is stored. */
909 CORE_ADDR param_end = 0;
910
911 /* The inner most end of the stack after all the parameters have
912 been pushed. */
913 CORE_ADDR new_sp = 0;
914
915 /* Two passes. First pass computes the location of everything,
916 second pass writes the bytes out. */
917 int write_pass;
918 for (write_pass = 0; write_pass < 2; write_pass++)
919 {
920 CORE_ADDR struct_ptr = 0;
921 CORE_ADDR param_ptr = 0;
922 int i;
923 for (i = 0; i < nargs; i++)
924 {
925 struct value *arg = args[i];
926 struct type *type = check_typedef (VALUE_TYPE (arg));
927 if ((TYPE_CODE (type) == TYPE_CODE_INT
928 || TYPE_CODE (type) == TYPE_CODE_ENUM)
929 && TYPE_LENGTH (type) <= 8)
930 {
931 /* Integer value store, right aligned. "unpack_long"
932 takes care of any sign-extension problems. */
933 param_ptr += 8;
934 if (write_pass)
935 {
936 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
937 int reg = 27 - param_ptr / 8;
938 write_memory_unsigned_integer (param_end - param_ptr,
939 val, 8);
940 if (reg >= 19)
941 regcache_cooked_write_unsigned (regcache, reg, val);
942 }
943 }
944 else
945 {
946 /* Small struct value, store left aligned? */
947 int reg;
948 if (TYPE_LENGTH (type) > 8)
949 {
950 param_ptr = align_up (param_ptr, 16);
951 reg = 26 - param_ptr / 8;
952 param_ptr += align_up (TYPE_LENGTH (type), 16);
953 }
954 else
955 {
956 param_ptr = align_up (param_ptr, 8);
957 reg = 26 - param_ptr / 8;
958 param_ptr += align_up (TYPE_LENGTH (type), 8);
959 }
960 if (write_pass)
961 {
962 int byte;
963 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
964 TYPE_LENGTH (type));
965 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
966 {
967 if (reg >= 19)
968 {
969 int len = min (8, TYPE_LENGTH (type) - byte);
970 regcache_cooked_write_part (regcache, reg, 0, len,
971 VALUE_CONTENTS (arg) + byte);
972 }
973 reg--;
974 }
975 }
976 }
977 }
978 /* Update the various stack pointers. */
979 if (!write_pass)
980 {
981 struct_end = sp + struct_ptr;
982 /* PARAM_PTR already accounts for all the arguments passed
983 by the user. However, the ABI mandates minimum stack
984 space allocations for outgoing arguments. The ABI also
985 mandates minimum stack alignments which we must
986 preserve. */
987 param_end = struct_end + max (align_up (param_ptr, 16), 64);
988 }
989 }
990
991 /* If a structure has to be returned, set up register 28 to hold its
992 address */
993 if (struct_return)
994 write_register (28, struct_addr);
995
996 /* Set the return address. */
997 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
998
999 /* Update the Stack Pointer. */
1000 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1001
1002 /* The stack will have 32 bytes of additional space for a frame marker. */
1003 return param_end + 64;
1004 }
1005
1006 static CORE_ADDR
hppa32_convert_from_func_ptr_addr(struct gdbarch * gdbarch,CORE_ADDR addr,struct target_ops * targ)1007 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1008 CORE_ADDR addr,
1009 struct target_ops *targ)
1010 {
1011 if (addr & 2)
1012 {
1013 CORE_ADDR plabel;
1014
1015 plabel = addr & ~3;
1016 target_read_memory(plabel, (char *)&addr, 4);
1017 }
1018
1019 return addr;
1020 }
1021
1022 static CORE_ADDR
hppa32_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)1023 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1024 {
1025 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1026 and not _bit_)! */
1027 return align_up (addr, 64);
1028 }
1029
1030 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1031
1032 static CORE_ADDR
hppa64_frame_align(struct gdbarch * gdbarch,CORE_ADDR addr)1033 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1034 {
1035 /* Just always 16-byte align. */
1036 return align_up (addr, 16);
1037 }
1038
1039
1040 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1041 bits. */
1042
1043 static CORE_ADDR
hppa_target_read_pc(ptid_t ptid)1044 hppa_target_read_pc (ptid_t ptid)
1045 {
1046 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1047
1048 /* The following test does not belong here. It is OS-specific, and belongs
1049 in native code. */
1050 /* Test SS_INSYSCALL */
1051 if (flags & 2)
1052 return read_register_pid (31, ptid) & ~0x3;
1053
1054 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1055 }
1056
1057 /* Write out the PC. If currently in a syscall, then also write the new
1058 PC value into %r31. */
1059
1060 static void
hppa_target_write_pc(CORE_ADDR v,ptid_t ptid)1061 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1062 {
1063 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1064
1065 /* The following test does not belong here. It is OS-specific, and belongs
1066 in native code. */
1067 /* If in a syscall, then set %r31. Also make sure to get the
1068 privilege bits set correctly. */
1069 /* Test SS_INSYSCALL */
1070 if (flags & 2)
1071 write_register_pid (31, v | 0x3, ptid);
1072
1073 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1074 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1075 }
1076
1077 /* return the alignment of a type in bytes. Structures have the maximum
1078 alignment required by their fields. */
1079
1080 static int
hppa_alignof(struct type * type)1081 hppa_alignof (struct type *type)
1082 {
1083 int max_align, align, i;
1084 CHECK_TYPEDEF (type);
1085 switch (TYPE_CODE (type))
1086 {
1087 case TYPE_CODE_PTR:
1088 case TYPE_CODE_INT:
1089 case TYPE_CODE_FLT:
1090 return TYPE_LENGTH (type);
1091 case TYPE_CODE_ARRAY:
1092 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1093 case TYPE_CODE_STRUCT:
1094 case TYPE_CODE_UNION:
1095 max_align = 1;
1096 for (i = 0; i < TYPE_NFIELDS (type); i++)
1097 {
1098 /* Bit fields have no real alignment. */
1099 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1100 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1101 {
1102 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1103 max_align = max (max_align, align);
1104 }
1105 }
1106 return max_align;
1107 default:
1108 return 4;
1109 }
1110 }
1111
1112 /* For the given instruction (INST), return any adjustment it makes
1113 to the stack pointer or zero for no adjustment.
1114
1115 This only handles instructions commonly found in prologues. */
1116
1117 static int
prologue_inst_adjust_sp(unsigned long inst)1118 prologue_inst_adjust_sp (unsigned long inst)
1119 {
1120 /* This must persist across calls. */
1121 static int save_high21;
1122
1123 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1124 if ((inst & 0xffffc000) == 0x37de0000)
1125 return hppa_extract_14 (inst);
1126
1127 /* stwm X,D(sp) */
1128 if ((inst & 0xffe00000) == 0x6fc00000)
1129 return hppa_extract_14 (inst);
1130
1131 /* std,ma X,D(sp) */
1132 if ((inst & 0xffe00008) == 0x73c00008)
1133 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1134
1135 /* addil high21,%r1; ldo low11,(%r1),%r30)
1136 save high bits in save_high21 for later use. */
1137 if ((inst & 0xffe00000) == 0x28200000)
1138 {
1139 save_high21 = hppa_extract_21 (inst);
1140 return 0;
1141 }
1142
1143 if ((inst & 0xffff0000) == 0x343e0000)
1144 return save_high21 + hppa_extract_14 (inst);
1145
1146 /* fstws as used by the HP compilers. */
1147 if ((inst & 0xffffffe0) == 0x2fd01220)
1148 return hppa_extract_5_load (inst);
1149
1150 /* No adjustment. */
1151 return 0;
1152 }
1153
1154 /* Return nonzero if INST is a branch of some kind, else return zero. */
1155
1156 static int
is_branch(unsigned long inst)1157 is_branch (unsigned long inst)
1158 {
1159 switch (inst >> 26)
1160 {
1161 case 0x20:
1162 case 0x21:
1163 case 0x22:
1164 case 0x23:
1165 case 0x27:
1166 case 0x28:
1167 case 0x29:
1168 case 0x2a:
1169 case 0x2b:
1170 case 0x2f:
1171 case 0x30:
1172 case 0x31:
1173 case 0x32:
1174 case 0x33:
1175 case 0x38:
1176 case 0x39:
1177 case 0x3a:
1178 case 0x3b:
1179 return 1;
1180
1181 default:
1182 return 0;
1183 }
1184 }
1185
1186 /* Return the register number for a GR which is saved by INST or
1187 zero it INST does not save a GR. */
1188
1189 static int
inst_saves_gr(unsigned long inst)1190 inst_saves_gr (unsigned long inst)
1191 {
1192 /* Does it look like a stw? */
1193 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1194 || (inst >> 26) == 0x1f
1195 || ((inst >> 26) == 0x1f
1196 && ((inst >> 6) == 0xa)))
1197 return hppa_extract_5R_store (inst);
1198
1199 /* Does it look like a std? */
1200 if ((inst >> 26) == 0x1c
1201 || ((inst >> 26) == 0x03
1202 && ((inst >> 6) & 0xf) == 0xb))
1203 return hppa_extract_5R_store (inst);
1204
1205 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1206 if ((inst >> 26) == 0x1b)
1207 return hppa_extract_5R_store (inst);
1208
1209 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1210 too. */
1211 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1212 || ((inst >> 26) == 0x3
1213 && (((inst >> 6) & 0xf) == 0x8
1214 || (inst >> 6) & 0xf) == 0x9))
1215 return hppa_extract_5R_store (inst);
1216
1217 return 0;
1218 }
1219
1220 /* Return the register number for a FR which is saved by INST or
1221 zero it INST does not save a FR.
1222
1223 Note we only care about full 64bit register stores (that's the only
1224 kind of stores the prologue will use).
1225
1226 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1227
1228 static int
inst_saves_fr(unsigned long inst)1229 inst_saves_fr (unsigned long inst)
1230 {
1231 /* is this an FSTD ? */
1232 if ((inst & 0xfc00dfc0) == 0x2c001200)
1233 return hppa_extract_5r_store (inst);
1234 if ((inst & 0xfc000002) == 0x70000002)
1235 return hppa_extract_5R_store (inst);
1236 /* is this an FSTW ? */
1237 if ((inst & 0xfc00df80) == 0x24001200)
1238 return hppa_extract_5r_store (inst);
1239 if ((inst & 0xfc000002) == 0x7c000000)
1240 return hppa_extract_5R_store (inst);
1241 return 0;
1242 }
1243
1244 /* Advance PC across any function entry prologue instructions
1245 to reach some "real" code.
1246
1247 Use information in the unwind table to determine what exactly should
1248 be in the prologue. */
1249
1250
1251 CORE_ADDR
skip_prologue_hard_way(CORE_ADDR pc)1252 skip_prologue_hard_way (CORE_ADDR pc)
1253 {
1254 char buf[4];
1255 CORE_ADDR orig_pc = pc;
1256 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1257 unsigned long args_stored, status, i, restart_gr, restart_fr;
1258 struct unwind_table_entry *u;
1259
1260 restart_gr = 0;
1261 restart_fr = 0;
1262
1263 restart:
1264 u = find_unwind_entry (pc);
1265 if (!u)
1266 return pc;
1267
1268 /* If we are not at the beginning of a function, then return now. */
1269 if ((pc & ~0x3) != u->region_start)
1270 return pc;
1271
1272 /* This is how much of a frame adjustment we need to account for. */
1273 stack_remaining = u->Total_frame_size << 3;
1274
1275 /* Magic register saves we want to know about. */
1276 save_rp = u->Save_RP;
1277 save_sp = u->Save_SP;
1278
1279 /* An indication that args may be stored into the stack. Unfortunately
1280 the HPUX compilers tend to set this in cases where no args were
1281 stored too!. */
1282 args_stored = 1;
1283
1284 /* Turn the Entry_GR field into a bitmask. */
1285 save_gr = 0;
1286 for (i = 3; i < u->Entry_GR + 3; i++)
1287 {
1288 /* Frame pointer gets saved into a special location. */
1289 if (u->Save_SP && i == HPPA_FP_REGNUM)
1290 continue;
1291
1292 save_gr |= (1 << i);
1293 }
1294 save_gr &= ~restart_gr;
1295
1296 /* Turn the Entry_FR field into a bitmask too. */
1297 save_fr = 0;
1298 for (i = 12; i < u->Entry_FR + 12; i++)
1299 save_fr |= (1 << i);
1300 save_fr &= ~restart_fr;
1301
1302 /* Loop until we find everything of interest or hit a branch.
1303
1304 For unoptimized GCC code and for any HP CC code this will never ever
1305 examine any user instructions.
1306
1307 For optimzied GCC code we're faced with problems. GCC will schedule
1308 its prologue and make prologue instructions available for delay slot
1309 filling. The end result is user code gets mixed in with the prologue
1310 and a prologue instruction may be in the delay slot of the first branch
1311 or call.
1312
1313 Some unexpected things are expected with debugging optimized code, so
1314 we allow this routine to walk past user instructions in optimized
1315 GCC code. */
1316 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1317 || args_stored)
1318 {
1319 unsigned int reg_num;
1320 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1321 unsigned long old_save_rp, old_save_sp, next_inst;
1322
1323 /* Save copies of all the triggers so we can compare them later
1324 (only for HPC). */
1325 old_save_gr = save_gr;
1326 old_save_fr = save_fr;
1327 old_save_rp = save_rp;
1328 old_save_sp = save_sp;
1329 old_stack_remaining = stack_remaining;
1330
1331 status = deprecated_read_memory_nobpt (pc, buf, 4);
1332 inst = extract_unsigned_integer (buf, 4);
1333
1334 /* Yow! */
1335 if (status != 0)
1336 return pc;
1337
1338 /* Note the interesting effects of this instruction. */
1339 stack_remaining -= prologue_inst_adjust_sp (inst);
1340
1341 /* There are limited ways to store the return pointer into the
1342 stack. */
1343 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1344 save_rp = 0;
1345
1346 /* These are the only ways we save SP into the stack. At this time
1347 the HP compilers never bother to save SP into the stack. */
1348 if ((inst & 0xffffc000) == 0x6fc10000
1349 || (inst & 0xffffc00c) == 0x73c10008)
1350 save_sp = 0;
1351
1352 /* Are we loading some register with an offset from the argument
1353 pointer? */
1354 if ((inst & 0xffe00000) == 0x37a00000
1355 || (inst & 0xffffffe0) == 0x081d0240)
1356 {
1357 pc += 4;
1358 continue;
1359 }
1360
1361 /* Account for general and floating-point register saves. */
1362 reg_num = inst_saves_gr (inst);
1363 save_gr &= ~(1 << reg_num);
1364
1365 /* Ugh. Also account for argument stores into the stack.
1366 Unfortunately args_stored only tells us that some arguments
1367 where stored into the stack. Not how many or what kind!
1368
1369 This is a kludge as on the HP compiler sets this bit and it
1370 never does prologue scheduling. So once we see one, skip past
1371 all of them. We have similar code for the fp arg stores below.
1372
1373 FIXME. Can still die if we have a mix of GR and FR argument
1374 stores! */
1375 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1376 {
1377 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1378 {
1379 pc += 4;
1380 status = deprecated_read_memory_nobpt (pc, buf, 4);
1381 inst = extract_unsigned_integer (buf, 4);
1382 if (status != 0)
1383 return pc;
1384 reg_num = inst_saves_gr (inst);
1385 }
1386 args_stored = 0;
1387 continue;
1388 }
1389
1390 reg_num = inst_saves_fr (inst);
1391 save_fr &= ~(1 << reg_num);
1392
1393 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1394 next_inst = extract_unsigned_integer (buf, 4);
1395
1396 /* Yow! */
1397 if (status != 0)
1398 return pc;
1399
1400 /* We've got to be read to handle the ldo before the fp register
1401 save. */
1402 if ((inst & 0xfc000000) == 0x34000000
1403 && inst_saves_fr (next_inst) >= 4
1404 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1405 {
1406 /* So we drop into the code below in a reasonable state. */
1407 reg_num = inst_saves_fr (next_inst);
1408 pc -= 4;
1409 }
1410
1411 /* Ugh. Also account for argument stores into the stack.
1412 This is a kludge as on the HP compiler sets this bit and it
1413 never does prologue scheduling. So once we see one, skip past
1414 all of them. */
1415 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1416 {
1417 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1418 {
1419 pc += 8;
1420 status = deprecated_read_memory_nobpt (pc, buf, 4);
1421 inst = extract_unsigned_integer (buf, 4);
1422 if (status != 0)
1423 return pc;
1424 if ((inst & 0xfc000000) != 0x34000000)
1425 break;
1426 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1427 next_inst = extract_unsigned_integer (buf, 4);
1428 if (status != 0)
1429 return pc;
1430 reg_num = inst_saves_fr (next_inst);
1431 }
1432 args_stored = 0;
1433 continue;
1434 }
1435
1436 /* Quit if we hit any kind of branch. This can happen if a prologue
1437 instruction is in the delay slot of the first call/branch. */
1438 if (is_branch (inst))
1439 break;
1440
1441 /* What a crock. The HP compilers set args_stored even if no
1442 arguments were stored into the stack (boo hiss). This could
1443 cause this code to then skip a bunch of user insns (up to the
1444 first branch).
1445
1446 To combat this we try to identify when args_stored was bogusly
1447 set and clear it. We only do this when args_stored is nonzero,
1448 all other resources are accounted for, and nothing changed on
1449 this pass. */
1450 if (args_stored
1451 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1452 && old_save_gr == save_gr && old_save_fr == save_fr
1453 && old_save_rp == save_rp && old_save_sp == save_sp
1454 && old_stack_remaining == stack_remaining)
1455 break;
1456
1457 /* Bump the PC. */
1458 pc += 4;
1459 }
1460
1461 /* We've got a tenative location for the end of the prologue. However
1462 because of limitations in the unwind descriptor mechanism we may
1463 have went too far into user code looking for the save of a register
1464 that does not exist. So, if there registers we expected to be saved
1465 but never were, mask them out and restart.
1466
1467 This should only happen in optimized code, and should be very rare. */
1468 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1469 {
1470 pc = orig_pc;
1471 restart_gr = save_gr;
1472 restart_fr = save_fr;
1473 goto restart;
1474 }
1475
1476 return pc;
1477 }
1478
1479
1480 /* Return the address of the PC after the last prologue instruction if
1481 we can determine it from the debug symbols. Else return zero. */
1482
1483 static CORE_ADDR
after_prologue(CORE_ADDR pc)1484 after_prologue (CORE_ADDR pc)
1485 {
1486 struct symtab_and_line sal;
1487 CORE_ADDR func_addr, func_end;
1488 struct symbol *f;
1489
1490 /* If we can not find the symbol in the partial symbol table, then
1491 there is no hope we can determine the function's start address
1492 with this code. */
1493 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1494 return 0;
1495
1496 /* Get the line associated with FUNC_ADDR. */
1497 sal = find_pc_line (func_addr, 0);
1498
1499 /* There are only two cases to consider. First, the end of the source line
1500 is within the function bounds. In that case we return the end of the
1501 source line. Second is the end of the source line extends beyond the
1502 bounds of the current function. We need to use the slow code to
1503 examine instructions in that case.
1504
1505 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1506 the wrong thing to do. In fact, it should be entirely possible for this
1507 function to always return zero since the slow instruction scanning code
1508 is supposed to *always* work. If it does not, then it is a bug. */
1509 if (sal.end < func_end)
1510 return sal.end;
1511 else
1512 return 0;
1513 }
1514
1515 /* To skip prologues, I use this predicate. Returns either PC itself
1516 if the code at PC does not look like a function prologue; otherwise
1517 returns an address that (if we're lucky) follows the prologue. If
1518 LENIENT, then we must skip everything which is involved in setting
1519 up the frame (it's OK to skip more, just so long as we don't skip
1520 anything which might clobber the registers which are being saved.
1521 Currently we must not skip more on the alpha, but we might the lenient
1522 stuff some day. */
1523
1524 static CORE_ADDR
hppa_skip_prologue(CORE_ADDR pc)1525 hppa_skip_prologue (CORE_ADDR pc)
1526 {
1527 unsigned long inst;
1528 int offset;
1529 CORE_ADDR post_prologue_pc;
1530 char buf[4];
1531
1532 /* See if we can determine the end of the prologue via the symbol table.
1533 If so, then return either PC, or the PC after the prologue, whichever
1534 is greater. */
1535
1536 post_prologue_pc = after_prologue (pc);
1537
1538 /* If after_prologue returned a useful address, then use it. Else
1539 fall back on the instruction skipping code.
1540
1541 Some folks have claimed this causes problems because the breakpoint
1542 may be the first instruction of the prologue. If that happens, then
1543 the instruction skipping code has a bug that needs to be fixed. */
1544 if (post_prologue_pc != 0)
1545 return max (pc, post_prologue_pc);
1546 else
1547 return (skip_prologue_hard_way (pc));
1548 }
1549
1550 struct hppa_frame_cache
1551 {
1552 CORE_ADDR base;
1553 struct trad_frame_saved_reg *saved_regs;
1554 };
1555
1556 static struct hppa_frame_cache *
hppa_frame_cache(struct frame_info * next_frame,void ** this_cache)1557 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1558 {
1559 struct hppa_frame_cache *cache;
1560 long saved_gr_mask;
1561 long saved_fr_mask;
1562 CORE_ADDR this_sp;
1563 long frame_size;
1564 struct unwind_table_entry *u;
1565 CORE_ADDR prologue_end;
1566 int i;
1567
1568 if (hppa_debug)
1569 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1570 frame_relative_level(next_frame));
1571
1572 if ((*this_cache) != NULL)
1573 {
1574 if (hppa_debug)
1575 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1576 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1577 return (*this_cache);
1578 }
1579 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1580 (*this_cache) = cache;
1581 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1582
1583 /* Yow! */
1584 u = find_unwind_entry (frame_pc_unwind (next_frame));
1585 if (!u)
1586 {
1587 if (hppa_debug)
1588 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1589 return (*this_cache);
1590 }
1591
1592 /* Turn the Entry_GR field into a bitmask. */
1593 saved_gr_mask = 0;
1594 for (i = 3; i < u->Entry_GR + 3; i++)
1595 {
1596 /* Frame pointer gets saved into a special location. */
1597 if (u->Save_SP && i == HPPA_FP_REGNUM)
1598 continue;
1599
1600 saved_gr_mask |= (1 << i);
1601 }
1602
1603 /* Turn the Entry_FR field into a bitmask too. */
1604 saved_fr_mask = 0;
1605 for (i = 12; i < u->Entry_FR + 12; i++)
1606 saved_fr_mask |= (1 << i);
1607
1608 /* Loop until we find everything of interest or hit a branch.
1609
1610 For unoptimized GCC code and for any HP CC code this will never ever
1611 examine any user instructions.
1612
1613 For optimized GCC code we're faced with problems. GCC will schedule
1614 its prologue and make prologue instructions available for delay slot
1615 filling. The end result is user code gets mixed in with the prologue
1616 and a prologue instruction may be in the delay slot of the first branch
1617 or call.
1618
1619 Some unexpected things are expected with debugging optimized code, so
1620 we allow this routine to walk past user instructions in optimized
1621 GCC code. */
1622 {
1623 int final_iteration = 0;
1624 CORE_ADDR pc, end_pc;
1625 int looking_for_sp = u->Save_SP;
1626 int looking_for_rp = u->Save_RP;
1627 int fp_loc = -1;
1628
1629 /* We have to use hppa_skip_prologue instead of just
1630 skip_prologue_using_sal, in case we stepped into a function without
1631 symbol information. hppa_skip_prologue also bounds the returned
1632 pc by the passed in pc, so it will not return a pc in the next
1633 function. */
1634
1635 /* We used to use frame_func_unwind () to locate the beginning of the
1636 function to pass to skip_prologue (). However, when objects are
1637 compiled without debug symbols, frame_func_unwind can return the wrong
1638 function (or 0). We can do better than that by using unwind records. */
1639
1640 prologue_end = hppa_skip_prologue (u->region_start);
1641 end_pc = frame_pc_unwind (next_frame);
1642
1643 if (prologue_end != 0 && end_pc > prologue_end)
1644 end_pc = prologue_end;
1645
1646 frame_size = 0;
1647
1648 for (pc = u->region_start;
1649 ((saved_gr_mask || saved_fr_mask
1650 || looking_for_sp || looking_for_rp
1651 || frame_size < (u->Total_frame_size << 3))
1652 && pc < end_pc);
1653 pc += 4)
1654 {
1655 int reg;
1656 char buf4[4];
1657 long status = deprecated_read_memory_nobpt (pc, buf4, sizeof buf4);
1658 long inst = extract_unsigned_integer (buf4, sizeof buf4);
1659
1660 /* Note the interesting effects of this instruction. */
1661 frame_size += prologue_inst_adjust_sp (inst);
1662
1663 /* There are limited ways to store the return pointer into the
1664 stack. */
1665 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1666 {
1667 looking_for_rp = 0;
1668 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1669 }
1670 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1671 {
1672 looking_for_rp = 0;
1673 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1674 }
1675 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1676 {
1677 looking_for_rp = 0;
1678 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1679 }
1680
1681 /* Check to see if we saved SP into the stack. This also
1682 happens to indicate the location of the saved frame
1683 pointer. */
1684 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1685 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1686 {
1687 looking_for_sp = 0;
1688 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1689 }
1690
1691 /* Account for general and floating-point register saves. */
1692 reg = inst_saves_gr (inst);
1693 if (reg >= 3 && reg <= 18
1694 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1695 {
1696 saved_gr_mask &= ~(1 << reg);
1697 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1698 /* stwm with a positive displacement is a _post_
1699 _modify_. */
1700 cache->saved_regs[reg].addr = 0;
1701 else if ((inst & 0xfc00000c) == 0x70000008)
1702 /* A std has explicit post_modify forms. */
1703 cache->saved_regs[reg].addr = 0;
1704 else
1705 {
1706 CORE_ADDR offset;
1707
1708 if ((inst >> 26) == 0x1c)
1709 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1710 else if ((inst >> 26) == 0x03)
1711 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1712 else
1713 offset = hppa_extract_14 (inst);
1714
1715 /* Handle code with and without frame pointers. */
1716 if (u->Save_SP)
1717 cache->saved_regs[reg].addr = offset;
1718 else
1719 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1720 }
1721 }
1722
1723 /* GCC handles callee saved FP regs a little differently.
1724
1725 It emits an instruction to put the value of the start of
1726 the FP store area into %r1. It then uses fstds,ma with a
1727 basereg of %r1 for the stores.
1728
1729 HP CC emits them at the current stack pointer modifying the
1730 stack pointer as it stores each register. */
1731
1732 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1733 if ((inst & 0xffffc000) == 0x34610000
1734 || (inst & 0xffffc000) == 0x37c10000)
1735 fp_loc = hppa_extract_14 (inst);
1736
1737 reg = inst_saves_fr (inst);
1738 if (reg >= 12 && reg <= 21)
1739 {
1740 /* Note +4 braindamage below is necessary because the FP
1741 status registers are internally 8 registers rather than
1742 the expected 4 registers. */
1743 saved_fr_mask &= ~(1 << reg);
1744 if (fp_loc == -1)
1745 {
1746 /* 1st HP CC FP register store. After this
1747 instruction we've set enough state that the GCC and
1748 HPCC code are both handled in the same manner. */
1749 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1750 fp_loc = 8;
1751 }
1752 else
1753 {
1754 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1755 fp_loc += 8;
1756 }
1757 }
1758
1759 /* Quit if we hit any kind of branch the previous iteration. */
1760 if (final_iteration)
1761 break;
1762 /* We want to look precisely one instruction beyond the branch
1763 if we have not found everything yet. */
1764 if (is_branch (inst))
1765 final_iteration = 1;
1766 }
1767 }
1768
1769 {
1770 /* The frame base always represents the value of %sp at entry to
1771 the current function (and is thus equivalent to the "saved"
1772 stack pointer. */
1773 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1774 CORE_ADDR fp;
1775
1776 if (hppa_debug)
1777 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1778 "prologue_end=0x%s) ",
1779 paddr_nz (this_sp),
1780 paddr_nz (frame_pc_unwind (next_frame)),
1781 paddr_nz (prologue_end));
1782
1783 /* Check to see if a frame pointer is available, and use it for
1784 frame unwinding if it is.
1785
1786 There are some situations where we need to rely on the frame
1787 pointer to do stack unwinding. For example, if a function calls
1788 alloca (), the stack pointer can get adjusted inside the body of
1789 the function. In this case, the ABI requires that the compiler
1790 maintain a frame pointer for the function.
1791
1792 The unwind record has a flag (alloca_frame) that indicates that
1793 a function has a variable frame; unfortunately, gcc/binutils
1794 does not set this flag. Instead, whenever a frame pointer is used
1795 and saved on the stack, the Save_SP flag is set. We use this to
1796 decide whether to use the frame pointer for unwinding.
1797
1798 fp may be zero if it is not available in an inner frame because
1799 it has been modified by not yet saved.
1800
1801 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1802 instead of Save_SP. */
1803
1804 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1805
1806 if (frame_pc_unwind (next_frame) >= prologue_end
1807 && u->Save_SP && fp != 0)
1808 {
1809 cache->base = fp;
1810
1811 if (hppa_debug)
1812 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1813 paddr_nz (cache->base));
1814 }
1815 else if (u->Save_SP
1816 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1817 {
1818 /* Both we're expecting the SP to be saved and the SP has been
1819 saved. The entry SP value is saved at this frame's SP
1820 address. */
1821 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1822
1823 if (hppa_debug)
1824 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1825 paddr_nz (cache->base));
1826 }
1827 else
1828 {
1829 /* The prologue has been slowly allocating stack space. Adjust
1830 the SP back. */
1831 cache->base = this_sp - frame_size;
1832 if (hppa_debug)
1833 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1834 paddr_nz (cache->base));
1835
1836 }
1837 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1838 }
1839
1840 /* The PC is found in the "return register", "Millicode" uses "r31"
1841 as the return register while normal code uses "rp". */
1842 if (u->Millicode)
1843 {
1844 if (trad_frame_addr_p (cache->saved_regs, 31))
1845 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1846 else
1847 {
1848 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1849 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1850 }
1851 }
1852 else
1853 {
1854 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1855 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1856 else
1857 {
1858 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1859 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1860 }
1861 }
1862
1863 /* If the frame pointer was not saved in this frame, but we should be saving
1864 it, set it to an invalid value so that another frame will not pick up the
1865 wrong frame pointer. This can happen if we start unwinding after the
1866 frame pointer has been modified, but before we've saved it to the
1867 stack. */
1868 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM))
1869 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, 0);
1870
1871 {
1872 /* Convert all the offsets into addresses. */
1873 int reg;
1874 for (reg = 0; reg < NUM_REGS; reg++)
1875 {
1876 if (trad_frame_addr_p (cache->saved_regs, reg))
1877 cache->saved_regs[reg].addr += cache->base;
1878 }
1879 }
1880
1881 if (hppa_debug)
1882 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1883 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1884 return (*this_cache);
1885 }
1886
1887 static void
hppa_frame_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)1888 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1889 struct frame_id *this_id)
1890 {
1891 struct hppa_frame_cache *info;
1892 CORE_ADDR pc = frame_pc_unwind (next_frame);
1893 struct unwind_table_entry *u;
1894
1895 info = hppa_frame_cache (next_frame, this_cache);
1896 u = find_unwind_entry (pc);
1897
1898 (*this_id) = frame_id_build (info->base, u->region_start);
1899 }
1900
1901 static void
hppa_frame_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)1902 hppa_frame_prev_register (struct frame_info *next_frame,
1903 void **this_cache,
1904 int regnum, int *optimizedp,
1905 enum lval_type *lvalp, CORE_ADDR *addrp,
1906 int *realnump, void *valuep)
1907 {
1908 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1909 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1910 optimizedp, lvalp, addrp, realnump, valuep);
1911 }
1912
1913 static const struct frame_unwind hppa_frame_unwind =
1914 {
1915 NORMAL_FRAME,
1916 hppa_frame_this_id,
1917 hppa_frame_prev_register
1918 };
1919
1920 static const struct frame_unwind *
hppa_frame_unwind_sniffer(struct frame_info * next_frame)1921 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1922 {
1923 CORE_ADDR pc = frame_pc_unwind (next_frame);
1924
1925 if (find_unwind_entry (pc))
1926 return &hppa_frame_unwind;
1927
1928 return NULL;
1929 }
1930
1931 /* This is a generic fallback frame unwinder that kicks in if we fail all
1932 the other ones. Normally we would expect the stub and regular unwinder
1933 to work, but in some cases we might hit a function that just doesn't
1934 have any unwind information available. In this case we try to do
1935 unwinding solely based on code reading. This is obviously going to be
1936 slow, so only use this as a last resort. Currently this will only
1937 identify the stack and pc for the frame. */
1938
1939 static struct hppa_frame_cache *
hppa_fallback_frame_cache(struct frame_info * next_frame,void ** this_cache)1940 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1941 {
1942 struct hppa_frame_cache *cache;
1943 unsigned int frame_size;
1944 int found_rp;
1945 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1946
1947 if (hppa_debug)
1948 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1949 frame_relative_level(next_frame));
1950
1951 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1952 (*this_cache) = cache;
1953 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1954
1955 pc = frame_func_unwind (next_frame);
1956 cur_pc = frame_pc_unwind (next_frame);
1957 frame_size = 0;
1958 found_rp = 0;
1959
1960 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1961
1962 if (start_pc == 0 || end_pc == 0)
1963 {
1964 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1965 "fail.", paddr_nz (pc));
1966 return cache;
1967 }
1968
1969 if (end_pc > cur_pc)
1970 end_pc = cur_pc;
1971
1972 for (pc = start_pc; pc < end_pc; pc += 4)
1973 {
1974 unsigned int insn;
1975
1976 insn = read_memory_unsigned_integer (pc, 4);
1977
1978 frame_size += prologue_inst_adjust_sp (insn);
1979
1980 /* There are limited ways to store the return pointer into the
1981 stack. */
1982 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1983 {
1984 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1985 found_rp = 1;
1986 }
1987 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1988 {
1989 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1990 found_rp = 1;
1991 }
1992 }
1993
1994 if (hppa_debug)
1995 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
1996 frame_size, found_rp);
1997
1998 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
1999 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2000
2001 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2002 {
2003 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2004 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2005 }
2006 else
2007 {
2008 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2009 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2010 }
2011
2012 return cache;
2013 }
2014
2015 static void
hppa_fallback_frame_this_id(struct frame_info * next_frame,void ** this_cache,struct frame_id * this_id)2016 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2017 struct frame_id *this_id)
2018 {
2019 struct hppa_frame_cache *info =
2020 hppa_fallback_frame_cache (next_frame, this_cache);
2021 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2022 }
2023
2024 static void
hppa_fallback_frame_prev_register(struct frame_info * next_frame,void ** this_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)2025 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2026 void **this_cache,
2027 int regnum, int *optimizedp,
2028 enum lval_type *lvalp, CORE_ADDR *addrp,
2029 int *realnump, void *valuep)
2030 {
2031 struct hppa_frame_cache *info =
2032 hppa_fallback_frame_cache (next_frame, this_cache);
2033 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2034 optimizedp, lvalp, addrp, realnump, valuep);
2035 }
2036
2037 static const struct frame_unwind hppa_fallback_frame_unwind =
2038 {
2039 NORMAL_FRAME,
2040 hppa_fallback_frame_this_id,
2041 hppa_fallback_frame_prev_register
2042 };
2043
2044 static const struct frame_unwind *
hppa_fallback_unwind_sniffer(struct frame_info * next_frame)2045 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2046 {
2047 return &hppa_fallback_frame_unwind;
2048 }
2049
2050 /* Stub frames, used for all kinds of call stubs. */
2051 struct hppa_stub_unwind_cache
2052 {
2053 CORE_ADDR base;
2054 struct trad_frame_saved_reg *saved_regs;
2055 };
2056
2057 static struct hppa_stub_unwind_cache *
hppa_stub_frame_unwind_cache(struct frame_info * next_frame,void ** this_cache)2058 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2059 void **this_cache)
2060 {
2061 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2062 struct hppa_stub_unwind_cache *info;
2063 struct unwind_table_entry *u;
2064
2065 if (*this_cache)
2066 return *this_cache;
2067
2068 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2069 *this_cache = info;
2070 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2071
2072 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2073
2074 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2075 {
2076 /* HPUX uses export stubs in function calls; the export stub clobbers
2077 the return value of the caller, and, later restores it from the
2078 stack. */
2079 u = find_unwind_entry (frame_pc_unwind (next_frame));
2080
2081 if (u && u->stub_unwind.stub_type == EXPORT)
2082 {
2083 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2084
2085 return info;
2086 }
2087 }
2088
2089 /* By default we assume that stubs do not change the rp. */
2090 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2091
2092 return info;
2093 }
2094
2095 static void
hppa_stub_frame_this_id(struct frame_info * next_frame,void ** this_prologue_cache,struct frame_id * this_id)2096 hppa_stub_frame_this_id (struct frame_info *next_frame,
2097 void **this_prologue_cache,
2098 struct frame_id *this_id)
2099 {
2100 struct hppa_stub_unwind_cache *info
2101 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2102 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2103 }
2104
2105 static void
hppa_stub_frame_prev_register(struct frame_info * next_frame,void ** this_prologue_cache,int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)2106 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2107 void **this_prologue_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
2110 int *realnump, void *valuep)
2111 {
2112 struct hppa_stub_unwind_cache *info
2113 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2114 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2115 optimizedp, lvalp, addrp, realnump, valuep);
2116 }
2117
2118 static const struct frame_unwind hppa_stub_frame_unwind = {
2119 NORMAL_FRAME,
2120 hppa_stub_frame_this_id,
2121 hppa_stub_frame_prev_register
2122 };
2123
2124 static const struct frame_unwind *
hppa_stub_unwind_sniffer(struct frame_info * next_frame)2125 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2126 {
2127 CORE_ADDR pc = frame_pc_unwind (next_frame);
2128
2129 if (pc == 0
2130 || IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2131 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2132 return &hppa_stub_frame_unwind;
2133 return NULL;
2134 }
2135
2136 static struct frame_id
hppa_unwind_dummy_id(struct gdbarch * gdbarch,struct frame_info * next_frame)2137 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2138 {
2139 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2140 HPPA_SP_REGNUM),
2141 frame_pc_unwind (next_frame));
2142 }
2143
2144 static CORE_ADDR
hppa_unwind_pc(struct gdbarch * gdbarch,struct frame_info * next_frame)2145 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2146 {
2147 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2148 }
2149
2150 /* Instead of this nasty cast, add a method pvoid() that prints out a
2151 host VOID data type (remember %p isn't portable). */
2152
2153 static CORE_ADDR
hppa_pointer_to_address_hack(void * ptr)2154 hppa_pointer_to_address_hack (void *ptr)
2155 {
2156 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2157 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2158 }
2159
2160 static void
unwind_command(char * exp,int from_tty)2161 unwind_command (char *exp, int from_tty)
2162 {
2163 CORE_ADDR address;
2164 struct unwind_table_entry *u;
2165
2166 /* If we have an expression, evaluate it and use it as the address. */
2167
2168 if (exp != 0 && *exp != 0)
2169 address = parse_and_eval_address (exp);
2170 else
2171 return;
2172
2173 u = find_unwind_entry (address);
2174
2175 if (!u)
2176 {
2177 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2178 return;
2179 }
2180
2181 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2182 paddr_nz (hppa_pointer_to_address_hack (u)));
2183
2184 printf_unfiltered ("\tregion_start = ");
2185 print_address (u->region_start, gdb_stdout);
2186 gdb_flush (gdb_stdout);
2187
2188 printf_unfiltered ("\n\tregion_end = ");
2189 print_address (u->region_end, gdb_stdout);
2190 gdb_flush (gdb_stdout);
2191
2192 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2193
2194 printf_unfiltered ("\n\tflags =");
2195 pif (Cannot_unwind);
2196 pif (Millicode);
2197 pif (Millicode_save_sr0);
2198 pif (Entry_SR);
2199 pif (Args_stored);
2200 pif (Variable_Frame);
2201 pif (Separate_Package_Body);
2202 pif (Frame_Extension_Millicode);
2203 pif (Stack_Overflow_Check);
2204 pif (Two_Instruction_SP_Increment);
2205 pif (Ada_Region);
2206 pif (Save_SP);
2207 pif (Save_RP);
2208 pif (Save_MRP_in_frame);
2209 pif (extn_ptr_defined);
2210 pif (Cleanup_defined);
2211 pif (MPE_XL_interrupt_marker);
2212 pif (HP_UX_interrupt_marker);
2213 pif (Large_frame);
2214
2215 putchar_unfiltered ('\n');
2216
2217 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2218
2219 pin (Region_description);
2220 pin (Entry_FR);
2221 pin (Entry_GR);
2222 pin (Total_frame_size);
2223 }
2224
2225 void
hppa_skip_permanent_breakpoint(void)2226 hppa_skip_permanent_breakpoint (void)
2227 {
2228 /* To step over a breakpoint instruction on the PA takes some
2229 fiddling with the instruction address queue.
2230
2231 When we stop at a breakpoint, the IA queue front (the instruction
2232 we're executing now) points at the breakpoint instruction, and
2233 the IA queue back (the next instruction to execute) points to
2234 whatever instruction we would execute after the breakpoint, if it
2235 were an ordinary instruction. This is the case even if the
2236 breakpoint is in the delay slot of a branch instruction.
2237
2238 Clearly, to step past the breakpoint, we need to set the queue
2239 front to the back. But what do we put in the back? What
2240 instruction comes after that one? Because of the branch delay
2241 slot, the next insn is always at the back + 4. */
2242 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2243 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2244
2245 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2246 /* We can leave the tail's space the same, since there's no jump. */
2247 }
2248
2249 int
hppa_pc_requires_run_before_use(CORE_ADDR pc)2250 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2251 {
2252 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2253
2254 An example of this occurs when an a.out is linked against a foo.sl.
2255 The foo.sl defines a global bar(), and the a.out declares a signature
2256 for bar(). However, the a.out doesn't directly call bar(), but passes
2257 its address in another call.
2258
2259 If you have this scenario and attempt to "break bar" before running,
2260 gdb will find a minimal symbol for bar() in the a.out. But that
2261 symbol's address will be negative. What this appears to denote is
2262 an index backwards from the base of the procedure linkage table (PLT)
2263 into the data linkage table (DLT), the end of which is contiguous
2264 with the start of the PLT. This is clearly not a valid address for
2265 us to set a breakpoint on.
2266
2267 Note that one must be careful in how one checks for a negative address.
2268 0xc0000000 is a legitimate address of something in a shared text
2269 segment, for example. Since I don't know what the possible range
2270 is of these "really, truly negative" addresses that come from the
2271 minimal symbols, I'm resorting to the gross hack of checking the
2272 top byte of the address for all 1's. Sigh. */
2273
2274 return (!target_has_stack && (pc & 0xFF000000));
2275 }
2276
2277 int
hppa_instruction_nullified(void)2278 hppa_instruction_nullified (void)
2279 {
2280 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2281 avoid the type cast. I'm leaving it as is for now as I'm doing
2282 semi-mechanical multiarching-related changes. */
2283 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2284 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2285
2286 return ((ipsw & 0x00200000) && !(flags & 0x2));
2287 }
2288
2289 /* Return the GDB type object for the "standard" data type of data
2290 in register N. */
2291
2292 static struct type *
hppa32_register_type(struct gdbarch * gdbarch,int reg_nr)2293 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2294 {
2295 if (reg_nr < HPPA_FP4_REGNUM)
2296 return builtin_type_uint32;
2297 else
2298 return builtin_type_ieee_single_big;
2299 }
2300
2301 /* Return the GDB type object for the "standard" data type of data
2302 in register N. hppa64 version. */
2303
2304 static struct type *
hppa64_register_type(struct gdbarch * gdbarch,int reg_nr)2305 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2306 {
2307 if (reg_nr < HPPA_FP4_REGNUM)
2308 return builtin_type_uint64;
2309 else
2310 return builtin_type_ieee_double_big;
2311 }
2312
2313 /* Return True if REGNUM is not a register available to the user
2314 through ptrace(). */
2315
2316 static int
hppa_cannot_store_register(int regnum)2317 hppa_cannot_store_register (int regnum)
2318 {
2319 return (regnum == 0
2320 || regnum == HPPA_PCSQ_HEAD_REGNUM
2321 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2322 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2323
2324 }
2325
2326 static CORE_ADDR
hppa_smash_text_address(CORE_ADDR addr)2327 hppa_smash_text_address (CORE_ADDR addr)
2328 {
2329 /* The low two bits of the PC on the PA contain the privilege level.
2330 Some genius implementing a (non-GCC) compiler apparently decided
2331 this means that "addresses" in a text section therefore include a
2332 privilege level, and thus symbol tables should contain these bits.
2333 This seems like a bonehead thing to do--anyway, it seems to work
2334 for our purposes to just ignore those bits. */
2335
2336 return (addr &= ~0x3);
2337 }
2338
2339 /* Get the ith function argument for the current function. */
2340 CORE_ADDR
hppa_fetch_pointer_argument(struct frame_info * frame,int argi,struct type * type)2341 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2342 struct type *type)
2343 {
2344 CORE_ADDR addr;
2345 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2346 return addr;
2347 }
2348
2349 static void
hppa_pseudo_register_read(struct gdbarch * gdbarch,struct regcache * regcache,int regnum,void * buf)2350 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2351 int regnum, void *buf)
2352 {
2353 ULONGEST tmp;
2354
2355 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2356 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2357 tmp &= ~0x3;
2358 store_unsigned_integer (buf, sizeof(tmp), tmp);
2359 }
2360
2361 static CORE_ADDR
hppa_find_global_pointer(struct value * function)2362 hppa_find_global_pointer (struct value *function)
2363 {
2364 return 0;
2365 }
2366
2367 void
hppa_frame_prev_register_helper(struct frame_info * next_frame,struct trad_frame_saved_reg saved_regs[],int regnum,int * optimizedp,enum lval_type * lvalp,CORE_ADDR * addrp,int * realnump,void * valuep)2368 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2369 struct trad_frame_saved_reg saved_regs[],
2370 int regnum, int *optimizedp,
2371 enum lval_type *lvalp, CORE_ADDR *addrp,
2372 int *realnump, void *valuep)
2373 {
2374 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2375 {
2376 if (valuep)
2377 {
2378 CORE_ADDR pc;
2379
2380 trad_frame_get_prev_register (next_frame, saved_regs,
2381 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2382 lvalp, addrp, realnump, valuep);
2383
2384 pc = extract_unsigned_integer (valuep, 4);
2385 store_unsigned_integer (valuep, 4, pc + 4);
2386 }
2387
2388 /* It's a computed value. */
2389 *optimizedp = 0;
2390 *lvalp = not_lval;
2391 *addrp = 0;
2392 *realnump = -1;
2393 return;
2394 }
2395
2396 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2397 optimizedp, lvalp, addrp, realnump, valuep);
2398 }
2399
2400 static void
hppa_dwarf2_frame_init_reg(struct gdbarch * gdbarch,int regnum,struct dwarf2_frame_state_reg * reg)2401 hppa_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
2402 struct dwarf2_frame_state_reg *reg)
2403 {
2404 if (regnum == HPPA_PCOQ_HEAD_REGNUM)
2405 reg->how = DWARF2_FRAME_REG_RA;
2406 else if (regnum == HPPA_SP_REGNUM)
2407 reg->how = DWARF2_FRAME_REG_CFA;
2408 }
2409
2410
2411 /* Here is a table of C type sizes on hppa with various compiles
2412 and options. I measured this on PA 9000/800 with HP-UX 11.11
2413 and these compilers:
2414
2415 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2416 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2417 /opt/aCC/bin/aCC B3910B A.03.45
2418 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2419
2420 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2421 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2422 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2423 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2424 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2425 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2426 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2427 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2428
2429 Each line is:
2430
2431 compiler and options
2432 char, short, int, long, long long
2433 float, double, long double
2434 char *, void (*)()
2435
2436 So all these compilers use either ILP32 or LP64 model.
2437 TODO: gcc has more options so it needs more investigation.
2438
2439 For floating point types, see:
2440
2441 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2442 HP-UX floating-point guide, hpux 11.00
2443
2444 -- chastain 2003-12-18 */
2445
2446 static struct gdbarch *
hppa_gdbarch_init(struct gdbarch_info info,struct gdbarch_list * arches)2447 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2448 {
2449 struct gdbarch_tdep *tdep;
2450 struct gdbarch *gdbarch;
2451
2452 /* Try to determine the ABI of the object we are loading. */
2453 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2454 {
2455 /* If it's a SOM file, assume it's HP/UX SOM. */
2456 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2457 info.osabi = GDB_OSABI_HPUX_SOM;
2458 }
2459
2460 /* find a candidate among the list of pre-declared architectures. */
2461 arches = gdbarch_list_lookup_by_info (arches, &info);
2462 if (arches != NULL)
2463 return (arches->gdbarch);
2464
2465 /* If none found, then allocate and initialize one. */
2466 tdep = XZALLOC (struct gdbarch_tdep);
2467 gdbarch = gdbarch_alloc (&info, tdep);
2468
2469 /* Determine from the bfd_arch_info structure if we are dealing with
2470 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2471 then default to a 32bit machine. */
2472 if (info.bfd_arch_info != NULL)
2473 tdep->bytes_per_address =
2474 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2475 else
2476 tdep->bytes_per_address = 4;
2477
2478 tdep->find_global_pointer = hppa_find_global_pointer;
2479
2480 /* Some parts of the gdbarch vector depend on whether we are running
2481 on a 32 bits or 64 bits target. */
2482 switch (tdep->bytes_per_address)
2483 {
2484 case 4:
2485 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2486 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2487 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2488 break;
2489 case 8:
2490 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2491 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2492 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2493 break;
2494 default:
2495 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2496 tdep->bytes_per_address);
2497 }
2498
2499 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2500 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2501
2502 /* The following gdbarch vector elements are the same in both ILP32
2503 and LP64, but might show differences some day. */
2504 set_gdbarch_long_long_bit (gdbarch, 64);
2505 set_gdbarch_long_double_bit (gdbarch, 128);
2506 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2507
2508 /* The following gdbarch vector elements do not depend on the address
2509 size, or in any other gdbarch element previously set. */
2510 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2511 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2512 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2513 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2514 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2515 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2516 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2517 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2518 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2519 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2520 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2521
2522 /* Helper for function argument information. */
2523 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2524
2525 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2526
2527 /* When a hardware watchpoint triggers, we'll move the inferior past
2528 it by removing all eventpoints; stepping past the instruction
2529 that caused the trigger; reinserting eventpoints; and checking
2530 whether any watched location changed. */
2531 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2532
2533 /* Inferior function call methods. */
2534 switch (tdep->bytes_per_address)
2535 {
2536 case 4:
2537 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2538 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2539 set_gdbarch_convert_from_func_ptr_addr
2540 (gdbarch, hppa32_convert_from_func_ptr_addr);
2541 break;
2542 case 8:
2543 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2544 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2545 break;
2546 default:
2547 internal_error (__FILE__, __LINE__, "bad switch");
2548 }
2549
2550 /* Struct return methods. */
2551 switch (tdep->bytes_per_address)
2552 {
2553 case 4:
2554 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2555 break;
2556 case 8:
2557 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2558 break;
2559 default:
2560 internal_error (__FILE__, __LINE__, "bad switch");
2561 }
2562
2563 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2564 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2565
2566 /* Frame unwind methods. */
2567 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2568 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2569
2570 /* Hook in ABI-specific overrides, if they have been registered. */
2571 gdbarch_init_osabi (info, gdbarch);
2572
2573 /* Hook in the DWARF CFI frame unwinder. */
2574 dwarf2_frame_set_init_reg (gdbarch, hppa_dwarf2_frame_init_reg);
2575 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2576
2577 /* Hook in the default unwinders. */
2578 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2579 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2580 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2581
2582 return gdbarch;
2583 }
2584
2585 static void
hppa_dump_tdep(struct gdbarch * current_gdbarch,struct ui_file * file)2586 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2587 {
2588 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2589
2590 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2591 tdep->bytes_per_address);
2592 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2593 }
2594
2595 void
_initialize_hppa_tdep(void)2596 _initialize_hppa_tdep (void)
2597 {
2598 struct cmd_list_element *c;
2599 void break_at_finish_command (char *arg, int from_tty);
2600 void tbreak_at_finish_command (char *arg, int from_tty);
2601 void break_at_finish_at_depth_command (char *arg, int from_tty);
2602
2603 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2604
2605 hppa_objfile_priv_data = register_objfile_data ();
2606
2607 add_cmd ("unwind", class_maintenance, unwind_command,
2608 "Print unwind table entry at given address.",
2609 &maintenanceprintlist);
2610
2611 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2612 break_at_finish_command,
2613 concat ("Set breakpoint at procedure exit. \n\
2614 Argument may be function name, or \"*\" and an address.\n\
2615 If function is specified, break at end of code for that function.\n\
2616 If an address is specified, break at the end of the function that contains \n\
2617 that exact address.\n",
2618 "With no arg, uses current execution address of selected stack frame.\n\
2619 This is useful for breaking on return to a stack frame.\n\
2620 \n\
2621 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2622 \n\
2623 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2624 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2625 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2626 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2627 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2628
2629 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2630 tbreak_at_finish_command,
2631 "Set temporary breakpoint at procedure exit. Either there should\n\
2632 be no argument or the argument must be a depth.\n"), NULL);
2633 set_cmd_completer (c, location_completer);
2634
2635 if (xdb_commands)
2636 deprecate_cmd (add_com ("bx", class_breakpoint,
2637 break_at_finish_at_depth_command,
2638 "Set breakpoint at procedure exit. Either there should\n\
2639 be no argument or the argument must be a depth.\n"), NULL);
2640
2641 /* Debug this files internals. */
2642 deprecated_add_show_from_set
2643 (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2644 &hppa_debug, "Set hppa debugging.\n\
2645 When non-zero, hppa specific debugging is enabled.", &setdebuglist),
2646 &showdebuglist);
2647 }
2648