1 /*	$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $	*/
2 
3 /*
4  * Copyright © 2008-2015 Intel Corporation
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
22  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
23  * IN THE SOFTWARE.
24  *
25  */
26 
27 #include <sys/cdefs.h>
28 __KERNEL_RCSID(0, "$NetBSD: i915_request.c,v 1.17 2022/07/11 18:56:00 riastradh Exp $");
29 
30 #include <linux/dma-fence-array.h>
31 #include <linux/irq_work.h>
32 #include <linux/prefetch.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <linux/sched/signal.h>
36 
37 #include "gem/i915_gem_context.h"
38 #include "gt/intel_context.h"
39 #include "gt/intel_ring.h"
40 #include "gt/intel_rps.h"
41 
42 #include "i915_active.h"
43 #include "i915_drv.h"
44 #include "i915_globals.h"
45 #include "i915_trace.h"
46 #include "intel_pm.h"
47 
48 struct execute_cb {
49 	struct list_head link;
50 	struct irq_work work;
51 	struct i915_sw_fence *fence;
52 	void (*hook)(struct i915_request *rq, struct dma_fence *signal);
53 	struct i915_request *signal;
54 };
55 
56 static struct i915_global_request {
57 	struct i915_global base;
58 	struct kmem_cache *slab_requests;
59 	struct kmem_cache *slab_dependencies;
60 	struct kmem_cache *slab_execute_cbs;
61 } global;
62 
i915_fence_get_driver_name(struct dma_fence * fence)63 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
64 {
65 	return dev_name(to_request(fence)->i915->drm.dev);
66 }
67 
i915_fence_get_timeline_name(struct dma_fence * fence)68 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
69 {
70 	const struct i915_gem_context *ctx;
71 
72 	/*
73 	 * The timeline struct (as part of the ppgtt underneath a context)
74 	 * may be freed when the request is no longer in use by the GPU.
75 	 * We could extend the life of a context to beyond that of all
76 	 * fences, possibly keeping the hw resource around indefinitely,
77 	 * or we just give them a false name. Since
78 	 * dma_fence_ops.get_timeline_name is a debug feature, the occasional
79 	 * lie seems justifiable.
80 	 */
81 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
82 		return "signaled";
83 
84 	ctx = i915_request_gem_context(to_request(fence));
85 	if (!ctx)
86 		return "[" DRIVER_NAME "]";
87 
88 	return ctx->name;
89 }
90 
i915_fence_signaled(struct dma_fence * fence)91 static bool i915_fence_signaled(struct dma_fence *fence)
92 {
93 	return i915_request_completed(to_request(fence));
94 }
95 
i915_fence_enable_signaling(struct dma_fence * fence)96 static bool i915_fence_enable_signaling(struct dma_fence *fence)
97 {
98 	return i915_request_enable_breadcrumb(to_request(fence));
99 }
100 
i915_fence_wait(struct dma_fence * fence,bool interruptible,signed long timeout)101 static signed long i915_fence_wait(struct dma_fence *fence,
102 				   bool interruptible,
103 				   signed long timeout)
104 {
105 	return i915_request_wait(to_request(fence),
106 				 interruptible | I915_WAIT_PRIORITY,
107 				 timeout);
108 }
109 
i915_fence_release(struct dma_fence * fence)110 static void i915_fence_release(struct dma_fence *fence)
111 {
112 	struct i915_request *rq = to_request(fence);
113 
114 	/*
115 	 * The request is put onto a RCU freelist (i.e. the address
116 	 * is immediately reused), mark the fences as being freed now.
117 	 * Otherwise the debugobjects for the fences are only marked as
118 	 * freed when the slab cache itself is freed, and so we would get
119 	 * caught trying to reuse dead objects.
120 	 */
121 #ifndef __NetBSD__
122 	i915_sw_fence_fini(&rq->submit);
123 	i915_sw_fence_fini(&rq->semaphore);
124 #endif
125 
126 	kmem_cache_free(global.slab_requests, rq);
127 }
128 
129 const struct dma_fence_ops i915_fence_ops = {
130 	.get_driver_name = i915_fence_get_driver_name,
131 	.get_timeline_name = i915_fence_get_timeline_name,
132 	.enable_signaling = i915_fence_enable_signaling,
133 	.signaled = i915_fence_signaled,
134 	.wait = i915_fence_wait,
135 	.release = i915_fence_release,
136 };
137 
irq_execute_cb(struct irq_work * wrk)138 static void irq_execute_cb(struct irq_work *wrk)
139 {
140 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
141 
142 	i915_sw_fence_complete(cb->fence);
143 	kmem_cache_free(global.slab_execute_cbs, cb);
144 }
145 
irq_execute_cb_hook(struct irq_work * wrk)146 static void irq_execute_cb_hook(struct irq_work *wrk)
147 {
148 	struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
149 
150 	cb->hook(container_of(cb->fence, struct i915_request, submit),
151 		 &cb->signal->fence);
152 	i915_request_put(cb->signal);
153 
154 	irq_execute_cb(wrk);
155 }
156 
__notify_execute_cb(struct i915_request * rq)157 static void __notify_execute_cb(struct i915_request *rq)
158 {
159 	struct execute_cb *cb;
160 
161 	lockdep_assert_held(&rq->lock);
162 
163 	if (list_empty(&rq->execute_cb))
164 		return;
165 
166 	list_for_each_entry(cb, &rq->execute_cb, link)
167 		irq_work_queue(&cb->work);
168 
169 	/*
170 	 * XXX Rollback on __i915_request_unsubmit()
171 	 *
172 	 * In the future, perhaps when we have an active time-slicing scheduler,
173 	 * it will be interesting to unsubmit parallel execution and remove
174 	 * busywaits from the GPU until their master is restarted. This is
175 	 * quite hairy, we have to carefully rollback the fence and do a
176 	 * preempt-to-idle cycle on the target engine, all the while the
177 	 * master execute_cb may refire.
178 	 */
179 	INIT_LIST_HEAD(&rq->execute_cb);
180 }
181 
182 static inline void
remove_from_client(struct i915_request * request)183 remove_from_client(struct i915_request *request)
184 {
185 	struct drm_i915_file_private *file_priv;
186 
187 	if (!READ_ONCE(request->file_priv))
188 		return;
189 
190 	rcu_read_lock();
191 	file_priv = xchg(&request->file_priv, NULL);
192 	if (file_priv) {
193 		spin_lock(&file_priv->mm.lock);
194 		list_del(&request->client_link);
195 		spin_unlock(&file_priv->mm.lock);
196 	}
197 	rcu_read_unlock();
198 }
199 
free_capture_list(struct i915_request * request)200 static void free_capture_list(struct i915_request *request)
201 {
202 	struct i915_capture_list *capture;
203 
204 	capture = fetch_and_zero(&request->capture_list);
205 	while (capture) {
206 		struct i915_capture_list *next = capture->next;
207 
208 		kfree(capture);
209 		capture = next;
210 	}
211 }
212 
remove_from_engine(struct i915_request * rq)213 static void remove_from_engine(struct i915_request *rq)
214 {
215 	struct intel_engine_cs *engine, *locked;
216 
217 	/*
218 	 * Virtual engines complicate acquiring the engine timeline lock,
219 	 * as their rq->engine pointer is not stable until under that
220 	 * engine lock. The simple ploy we use is to take the lock then
221 	 * check that the rq still belongs to the newly locked engine.
222 	 */
223 	locked = READ_ONCE(rq->engine);
224 	spin_lock_irq(&locked->active.lock);
225 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
226 		spin_unlock(&locked->active.lock);
227 		spin_lock(&engine->active.lock);
228 		locked = engine;
229 	}
230 	list_del_init(&rq->sched.link);
231 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
232 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
233 	spin_unlock_irq(&locked->active.lock);
234 }
235 
i915_request_retire(struct i915_request * rq)236 bool i915_request_retire(struct i915_request *rq)
237 {
238 	if (!i915_request_completed(rq))
239 		return false;
240 
241 	RQ_TRACE(rq, "\n");
242 
243 	GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
244 	trace_i915_request_retire(rq);
245 
246 	/*
247 	 * We know the GPU must have read the request to have
248 	 * sent us the seqno + interrupt, so use the position
249 	 * of tail of the request to update the last known position
250 	 * of the GPU head.
251 	 *
252 	 * Note this requires that we are always called in request
253 	 * completion order.
254 	 */
255 	GEM_BUG_ON(!list_is_first(&rq->link,
256 				  &i915_request_timeline(rq)->requests));
257 	rq->ring->head = rq->postfix;
258 
259 	/*
260 	 * We only loosely track inflight requests across preemption,
261 	 * and so we may find ourselves attempting to retire a _completed_
262 	 * request that we have removed from the HW and put back on a run
263 	 * queue.
264 	 */
265 	remove_from_engine(rq);
266 
267 	spin_lock_irq(&rq->lock);
268 	i915_request_mark_complete(rq);
269 	if (!i915_request_signaled(rq))
270 		dma_fence_signal_locked(&rq->fence);
271 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
272 		i915_request_cancel_breadcrumb(rq);
273 	if (i915_request_has_waitboost(rq)) {
274 		GEM_BUG_ON(!atomic_read(&rq->engine->gt->rps.num_waiters));
275 		atomic_dec(&rq->engine->gt->rps.num_waiters);
276 	}
277 	if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags)) {
278 		set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
279 		__notify_execute_cb(rq);
280 	}
281 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
282 	spin_unlock_irq(&rq->lock);
283 
284 	remove_from_client(rq);
285 	list_del(&rq->link);
286 
287 	intel_context_exit(rq->context);
288 	intel_context_unpin(rq->context);
289 
290 	free_capture_list(rq);
291 	i915_sched_node_fini(&rq->sched);
292 	i915_request_put(rq);
293 
294 	return true;
295 }
296 
i915_request_retire_upto(struct i915_request * rq)297 void i915_request_retire_upto(struct i915_request *rq)
298 {
299 	struct intel_timeline * const tl = i915_request_timeline(rq);
300 	struct i915_request *tmp;
301 
302 	RQ_TRACE(rq, "\n");
303 
304 	GEM_BUG_ON(!i915_request_completed(rq));
305 
306 	do {
307 		tmp = list_first_entry(&tl->requests, typeof(*tmp), link);
308 	} while (i915_request_retire(tmp) && tmp != rq);
309 }
310 
311 static int
__await_execution(struct i915_request * rq,struct i915_request * signal,void (* hook)(struct i915_request * rq,struct dma_fence * signal),gfp_t gfp)312 __await_execution(struct i915_request *rq,
313 		  struct i915_request *signal,
314 		  void (*hook)(struct i915_request *rq,
315 			       struct dma_fence *signal),
316 		  gfp_t gfp)
317 {
318 	struct execute_cb *cb;
319 
320 	if (i915_request_is_active(signal)) {
321 		if (hook)
322 			hook(rq, &signal->fence);
323 		return 0;
324 	}
325 
326 	cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
327 	if (!cb)
328 		return -ENOMEM;
329 
330 	cb->fence = &rq->submit;
331 	i915_sw_fence_await(cb->fence);
332 	init_irq_work(&cb->work, irq_execute_cb);
333 
334 	if (hook) {
335 		cb->hook = hook;
336 		cb->signal = i915_request_get(signal);
337 		cb->work.func = irq_execute_cb_hook;
338 	}
339 
340 	spin_lock_irq(&signal->lock);
341 	if (i915_request_is_active(signal)) {
342 		if (hook) {
343 			hook(rq, &signal->fence);
344 			i915_request_put(signal);
345 		}
346 		i915_sw_fence_complete(cb->fence);
347 		kmem_cache_free(global.slab_execute_cbs, cb);
348 	} else {
349 		list_add_tail(&cb->link, &signal->execute_cb);
350 	}
351 	spin_unlock_irq(&signal->lock);
352 
353 	/* Copy across semaphore status as we need the same behaviour */
354 	rq->sched.flags |= signal->sched.flags;
355 	return 0;
356 }
357 
__i915_request_submit(struct i915_request * request)358 bool __i915_request_submit(struct i915_request *request)
359 {
360 	struct intel_engine_cs *engine = request->engine;
361 	bool result = false;
362 
363 	RQ_TRACE(request, "\n");
364 
365 	GEM_BUG_ON(!irqs_disabled());
366 	lockdep_assert_held(&engine->active.lock);
367 
368 	/*
369 	 * With the advent of preempt-to-busy, we frequently encounter
370 	 * requests that we have unsubmitted from HW, but left running
371 	 * until the next ack and so have completed in the meantime. On
372 	 * resubmission of that completed request, we can skip
373 	 * updating the payload, and execlists can even skip submitting
374 	 * the request.
375 	 *
376 	 * We must remove the request from the caller's priority queue,
377 	 * and the caller must only call us when the request is in their
378 	 * priority queue, under the active.lock. This ensures that the
379 	 * request has *not* yet been retired and we can safely move
380 	 * the request into the engine->active.list where it will be
381 	 * dropped upon retiring. (Otherwise if resubmit a *retired*
382 	 * request, this would be a horrible use-after-free.)
383 	 */
384 	if (i915_request_completed(request))
385 		goto xfer;
386 
387 	if (intel_context_is_banned(request->context))
388 		i915_request_skip(request, -EIO);
389 
390 	/*
391 	 * Are we using semaphores when the gpu is already saturated?
392 	 *
393 	 * Using semaphores incurs a cost in having the GPU poll a
394 	 * memory location, busywaiting for it to change. The continual
395 	 * memory reads can have a noticeable impact on the rest of the
396 	 * system with the extra bus traffic, stalling the cpu as it too
397 	 * tries to access memory across the bus (perf stat -e bus-cycles).
398 	 *
399 	 * If we installed a semaphore on this request and we only submit
400 	 * the request after the signaler completed, that indicates the
401 	 * system is overloaded and using semaphores at this time only
402 	 * increases the amount of work we are doing. If so, we disable
403 	 * further use of semaphores until we are idle again, whence we
404 	 * optimistically try again.
405 	 */
406 	if (request->sched.semaphores &&
407 	    i915_sw_fence_signaled(&request->semaphore))
408 		engine->saturated |= request->sched.semaphores;
409 
410 	engine->emit_fini_breadcrumb(request,
411 				     request->ring->vaddr + request->postfix);
412 
413 	trace_i915_request_execute(request);
414 	engine->serial++;
415 	result = true;
416 
417 xfer:	/* We may be recursing from the signal callback of another i915 fence */
418 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
419 
420 	if (!test_and_set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags)) {
421 		list_move_tail(&request->sched.link, &engine->active.requests);
422 		clear_bit(I915_FENCE_FLAG_PQUEUE, &request->fence.flags);
423 	}
424 
425 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
426 	    !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
427 	    !i915_request_enable_breadcrumb(request))
428 		intel_engine_signal_breadcrumbs(engine);
429 
430 	__notify_execute_cb(request);
431 
432 	spin_unlock(&request->lock);
433 
434 	return result;
435 }
436 
i915_request_submit(struct i915_request * request)437 void i915_request_submit(struct i915_request *request)
438 {
439 	struct intel_engine_cs *engine = request->engine;
440 	unsigned long flags;
441 
442 	/* Will be called from irq-context when using foreign fences. */
443 	spin_lock_irqsave(&engine->active.lock, flags);
444 
445 	__i915_request_submit(request);
446 
447 	spin_unlock_irqrestore(&engine->active.lock, flags);
448 }
449 
__i915_request_unsubmit(struct i915_request * request)450 void __i915_request_unsubmit(struct i915_request *request)
451 {
452 	struct intel_engine_cs *engine __lockdep_used = request->engine;
453 
454 	RQ_TRACE(request, "\n");
455 
456 	GEM_BUG_ON(!irqs_disabled());
457 	lockdep_assert_held(&engine->active.lock);
458 
459 	/*
460 	 * Only unwind in reverse order, required so that the per-context list
461 	 * is kept in seqno/ring order.
462 	 */
463 
464 	/* We may be recursing from the signal callback of another i915 fence */
465 	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
466 
467 	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
468 		i915_request_cancel_breadcrumb(request);
469 
470 	GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
471 	clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
472 
473 	spin_unlock(&request->lock);
474 
475 	/* We've already spun, don't charge on resubmitting. */
476 	if (request->sched.semaphores && i915_request_started(request)) {
477 		request->sched.attr.priority |= I915_PRIORITY_NOSEMAPHORE;
478 		request->sched.semaphores = 0;
479 	}
480 
481 	/*
482 	 * We don't need to wake_up any waiters on request->execute, they
483 	 * will get woken by any other event or us re-adding this request
484 	 * to the engine timeline (__i915_request_submit()). The waiters
485 	 * should be quite adapt at finding that the request now has a new
486 	 * global_seqno to the one they went to sleep on.
487 	 */
488 }
489 
i915_request_unsubmit(struct i915_request * request)490 void i915_request_unsubmit(struct i915_request *request)
491 {
492 	struct intel_engine_cs *engine = request->engine;
493 	unsigned long flags;
494 
495 	/* Will be called from irq-context when using foreign fences. */
496 	spin_lock_irqsave(&engine->active.lock, flags);
497 
498 	__i915_request_unsubmit(request);
499 
500 	spin_unlock_irqrestore(&engine->active.lock, flags);
501 }
502 
503 static int __i915_sw_fence_call
submit_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)504 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
505 {
506 	struct i915_request *request =
507 		container_of(fence, typeof(*request), submit);
508 
509 	switch (state) {
510 	case FENCE_COMPLETE:
511 		trace_i915_request_submit(request);
512 
513 		if (unlikely(fence->error))
514 			i915_request_skip(request, fence->error);
515 
516 		/*
517 		 * We need to serialize use of the submit_request() callback
518 		 * with its hotplugging performed during an emergency
519 		 * i915_gem_set_wedged().  We use the RCU mechanism to mark the
520 		 * critical section in order to force i915_gem_set_wedged() to
521 		 * wait until the submit_request() is completed before
522 		 * proceeding.
523 		 */
524 		rcu_read_lock();
525 		request->engine->submit_request(request);
526 		rcu_read_unlock();
527 		break;
528 
529 	case FENCE_FREE:
530 		i915_request_put(request);
531 		break;
532 	}
533 
534 	return NOTIFY_DONE;
535 }
536 
537 static int __i915_sw_fence_call
semaphore_notify(struct i915_sw_fence * fence,enum i915_sw_fence_notify state)538 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
539 {
540 	struct i915_request *request =
541 		container_of(fence, typeof(*request), semaphore);
542 
543 	switch (state) {
544 	case FENCE_COMPLETE:
545 		i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
546 		break;
547 
548 	case FENCE_FREE:
549 		i915_request_put(request);
550 		break;
551 	}
552 
553 	return NOTIFY_DONE;
554 }
555 
retire_requests(struct intel_timeline * tl)556 static void retire_requests(struct intel_timeline *tl)
557 {
558 	struct i915_request *rq, *rn;
559 
560 	list_for_each_entry_safe(rq, rn, &tl->requests, link)
561 		if (!i915_request_retire(rq))
562 			break;
563 }
564 
565 static noinline struct i915_request *
request_alloc_slow(struct intel_timeline * tl,gfp_t gfp)566 request_alloc_slow(struct intel_timeline *tl, gfp_t gfp)
567 {
568 	struct i915_request *rq;
569 
570 	if (list_empty(&tl->requests))
571 		goto out;
572 
573 	if (!gfpflags_allow_blocking(gfp))
574 		goto out;
575 
576 	/* Move our oldest request to the slab-cache (if not in use!) */
577 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
578 	i915_request_retire(rq);
579 
580 	rq = kmem_cache_alloc(global.slab_requests,
581 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
582 	if (rq)
583 		return rq;
584 
585 	/* Ratelimit ourselves to prevent oom from malicious clients */
586 	rq = list_last_entry(&tl->requests, typeof(*rq), link);
587 	cond_synchronize_rcu(rq->rcustate);
588 
589 	/* Retire our old requests in the hope that we free some */
590 	retire_requests(tl);
591 
592 out:
593 	return kmem_cache_alloc(global.slab_requests, gfp);
594 }
595 
__i915_request_ctor(void * arg)596 static void __i915_request_ctor(void *arg)
597 {
598 	struct i915_request *rq = arg;
599 
600 	spin_lock_init(&rq->lock);
601 	i915_sched_node_init(&rq->sched);
602 	i915_sw_fence_init(&rq->submit, submit_notify);
603 	i915_sw_fence_init(&rq->semaphore, semaphore_notify);
604 
605 	dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
606 
607 	rq->file_priv = NULL;
608 	rq->capture_list = NULL;
609 
610 	INIT_LIST_HEAD(&rq->execute_cb);
611 }
612 
__i915_request_dtor(void * arg)613 static void __i915_request_dtor(void *arg)
614 {
615 	struct i915_request *rq = arg;
616 
617 	dma_fence_destroy(&rq->fence);
618 #ifdef __NetBSD__
619 	i915_sw_fence_fini(&rq->submit);
620 	i915_sw_fence_fini(&rq->semaphore);
621 #endif
622 	spin_lock_destroy(&rq->lock);
623 }
624 
625 struct i915_request *
__i915_request_create(struct intel_context * ce,gfp_t gfp)626 __i915_request_create(struct intel_context *ce, gfp_t gfp)
627 {
628 	struct intel_timeline *tl = ce->timeline;
629 	struct i915_request *rq;
630 	u32 seqno;
631 	int ret;
632 
633 	might_sleep_if(gfpflags_allow_blocking(gfp));
634 
635 	/* Check that the caller provided an already pinned context */
636 	__intel_context_pin(ce);
637 
638 	/*
639 	 * Beware: Dragons be flying overhead.
640 	 *
641 	 * We use RCU to look up requests in flight. The lookups may
642 	 * race with the request being allocated from the slab freelist.
643 	 * That is the request we are writing to here, may be in the process
644 	 * of being read by __i915_active_request_get_rcu(). As such,
645 	 * we have to be very careful when overwriting the contents. During
646 	 * the RCU lookup, we change chase the request->engine pointer,
647 	 * read the request->global_seqno and increment the reference count.
648 	 *
649 	 * The reference count is incremented atomically. If it is zero,
650 	 * the lookup knows the request is unallocated and complete. Otherwise,
651 	 * it is either still in use, or has been reallocated and reset
652 	 * with dma_fence_init(). This increment is safe for release as we
653 	 * check that the request we have a reference to and matches the active
654 	 * request.
655 	 *
656 	 * Before we increment the refcount, we chase the request->engine
657 	 * pointer. We must not call kmem_cache_zalloc() or else we set
658 	 * that pointer to NULL and cause a crash during the lookup. If
659 	 * we see the request is completed (based on the value of the
660 	 * old engine and seqno), the lookup is complete and reports NULL.
661 	 * If we decide the request is not completed (new engine or seqno),
662 	 * then we grab a reference and double check that it is still the
663 	 * active request - which it won't be and restart the lookup.
664 	 *
665 	 * Do not use kmem_cache_zalloc() here!
666 	 */
667 	rq = kmem_cache_alloc(global.slab_requests,
668 			      gfp | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
669 	if (unlikely(!rq)) {
670 		rq = request_alloc_slow(tl, gfp);
671 		if (!rq) {
672 			ret = -ENOMEM;
673 			goto err_unreserve;
674 		}
675 	}
676 
677 	rq->i915 = ce->engine->i915;
678 	rq->context = ce;
679 	rq->engine = ce->engine;
680 	rq->ring = ce->ring;
681 	rq->execution_mask = ce->engine->mask;
682 
683 #ifdef __NetBSD__
684 	dma_fence_reset(&rq->fence, &i915_fence_ops, &rq->lock, 0, 0);
685 #else
686 	kref_init(&rq->fence.refcount);
687 	rq->fence.flags = 0;
688 	rq->fence.error = 0;
689 	INIT_LIST_HEAD(&rq->fence.cb_list);
690 #endif
691 
692 	ret = intel_timeline_get_seqno(tl, rq, &seqno);
693 	if (ret)
694 		goto err_free;
695 
696 	rq->fence.context = tl->fence_context;
697 	rq->fence.seqno = seqno;
698 
699 	RCU_INIT_POINTER(rq->timeline, tl);
700 	RCU_INIT_POINTER(rq->hwsp_cacheline, tl->hwsp_cacheline);
701 	rq->hwsp_seqno = tl->hwsp_seqno;
702 
703 	rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
704 
705 	/* We bump the ref for the fence chain */
706 	i915_sw_fence_reinit(&i915_request_get(rq)->submit);
707 	i915_sw_fence_reinit(&i915_request_get(rq)->semaphore);
708 
709 	i915_sched_node_reinit(&rq->sched);
710 
711 	/* No zalloc, everything must be cleared after use */
712 	rq->batch = NULL;
713 	GEM_BUG_ON(rq->file_priv);
714 	GEM_BUG_ON(rq->capture_list);
715 	GEM_BUG_ON(!list_empty(&rq->execute_cb));
716 
717 	/*
718 	 * Reserve space in the ring buffer for all the commands required to
719 	 * eventually emit this request. This is to guarantee that the
720 	 * i915_request_add() call can't fail. Note that the reserve may need
721 	 * to be redone if the request is not actually submitted straight
722 	 * away, e.g. because a GPU scheduler has deferred it.
723 	 *
724 	 * Note that due to how we add reserved_space to intel_ring_begin()
725 	 * we need to double our request to ensure that if we need to wrap
726 	 * around inside i915_request_add() there is sufficient space at
727 	 * the beginning of the ring as well.
728 	 */
729 	rq->reserved_space =
730 		2 * rq->engine->emit_fini_breadcrumb_dw * sizeof(u32);
731 
732 	/*
733 	 * Record the position of the start of the request so that
734 	 * should we detect the updated seqno part-way through the
735 	 * GPU processing the request, we never over-estimate the
736 	 * position of the head.
737 	 */
738 	rq->head = rq->ring->emit;
739 
740 	ret = rq->engine->request_alloc(rq);
741 	if (ret)
742 		goto err_unwind;
743 
744 	rq->infix = rq->ring->emit; /* end of header; start of user payload */
745 
746 	intel_context_mark_active(ce);
747 	return rq;
748 
749 err_unwind:
750 	ce->ring->emit = rq->head;
751 
752 	/* Make sure we didn't add ourselves to external state before freeing */
753 	GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
754 	GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
755 
756 err_free:
757 	kmem_cache_free(global.slab_requests, rq);
758 err_unreserve:
759 	intel_context_unpin(ce);
760 	return ERR_PTR(ret);
761 }
762 
763 struct i915_request *
i915_request_create(struct intel_context * ce)764 i915_request_create(struct intel_context *ce)
765 {
766 	struct i915_request *rq;
767 	struct intel_timeline *tl;
768 
769 	tl = intel_context_timeline_lock(ce);
770 	if (IS_ERR(tl))
771 		return ERR_CAST(tl);
772 
773 	/* Move our oldest request to the slab-cache (if not in use!) */
774 	rq = list_first_entry(&tl->requests, typeof(*rq), link);
775 	if (!list_is_last(&rq->link, &tl->requests))
776 		i915_request_retire(rq);
777 
778 	intel_context_enter(ce);
779 	rq = __i915_request_create(ce, GFP_KERNEL);
780 	intel_context_exit(ce); /* active reference transferred to request */
781 	if (IS_ERR(rq))
782 		goto err_unlock;
783 
784 	/* Check that we do not interrupt ourselves with a new request */
785 	rq->cookie = lockdep_pin_lock(&tl->mutex);
786 
787 	return rq;
788 
789 err_unlock:
790 	intel_context_timeline_unlock(tl);
791 	return rq;
792 }
793 
794 static int
i915_request_await_start(struct i915_request * rq,struct i915_request * signal)795 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
796 {
797 	struct dma_fence *fence;
798 	int err;
799 
800 	GEM_BUG_ON(i915_request_timeline(rq) ==
801 		   rcu_access_pointer(signal->timeline));
802 
803 	fence = NULL;
804 	rcu_read_lock();
805 	spin_lock_irq(&signal->lock);
806 	if (!i915_request_started(signal) &&
807 	    !list_is_first(&signal->link,
808 			   &rcu_dereference(signal->timeline)->requests)) {
809 		struct i915_request *prev = list_prev_entry(signal, link);
810 
811 		/*
812 		 * Peek at the request before us in the timeline. That
813 		 * request will only be valid before it is retired, so
814 		 * after acquiring a reference to it, confirm that it is
815 		 * still part of the signaler's timeline.
816 		 */
817 		if (i915_request_get_rcu(prev)) {
818 			if (list_next_entry(prev, link) == signal)
819 				fence = &prev->fence;
820 			else
821 				i915_request_put(prev);
822 		}
823 	}
824 	spin_unlock_irq(&signal->lock);
825 	rcu_read_unlock();
826 	if (!fence)
827 		return 0;
828 
829 	err = 0;
830 	if (intel_timeline_sync_is_later(i915_request_timeline(rq), fence))
831 		err = i915_sw_fence_await_dma_fence(&rq->submit,
832 						    fence, 0,
833 						    I915_FENCE_GFP);
834 	dma_fence_put(fence);
835 
836 	return err;
837 }
838 
839 static intel_engine_mask_t
already_busywaiting(struct i915_request * rq)840 already_busywaiting(struct i915_request *rq)
841 {
842 	/*
843 	 * Polling a semaphore causes bus traffic, delaying other users of
844 	 * both the GPU and CPU. We want to limit the impact on others,
845 	 * while taking advantage of early submission to reduce GPU
846 	 * latency. Therefore we restrict ourselves to not using more
847 	 * than one semaphore from each source, and not using a semaphore
848 	 * if we have detected the engine is saturated (i.e. would not be
849 	 * submitted early and cause bus traffic reading an already passed
850 	 * semaphore).
851 	 *
852 	 * See the are-we-too-late? check in __i915_request_submit().
853 	 */
854 	return rq->sched.semaphores | rq->engine->saturated;
855 }
856 
857 static int
__emit_semaphore_wait(struct i915_request * to,struct i915_request * from,u32 seqno)858 __emit_semaphore_wait(struct i915_request *to,
859 		      struct i915_request *from,
860 		      u32 seqno)
861 {
862 	const int has_token = INTEL_GEN(to->i915) >= 12;
863 	u32 hwsp_offset;
864 	int len, err;
865 	u32 *cs;
866 
867 	GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
868 
869 	/* We need to pin the signaler's HWSP until we are finished reading. */
870 	err = intel_timeline_read_hwsp(from, to, &hwsp_offset);
871 	if (err)
872 		return err;
873 
874 	len = 4;
875 	if (has_token)
876 		len += 2;
877 
878 	cs = intel_ring_begin(to, len);
879 	if (IS_ERR(cs))
880 		return PTR_ERR(cs);
881 
882 	/*
883 	 * Using greater-than-or-equal here means we have to worry
884 	 * about seqno wraparound. To side step that issue, we swap
885 	 * the timeline HWSP upon wrapping, so that everyone listening
886 	 * for the old (pre-wrap) values do not see the much smaller
887 	 * (post-wrap) values than they were expecting (and so wait
888 	 * forever).
889 	 */
890 	*cs++ = (MI_SEMAPHORE_WAIT |
891 		 MI_SEMAPHORE_GLOBAL_GTT |
892 		 MI_SEMAPHORE_POLL |
893 		 MI_SEMAPHORE_SAD_GTE_SDD) +
894 		has_token;
895 	*cs++ = seqno;
896 	*cs++ = hwsp_offset;
897 	*cs++ = 0;
898 	if (has_token) {
899 		*cs++ = 0;
900 		*cs++ = MI_NOOP;
901 	}
902 
903 	intel_ring_advance(to, cs);
904 	return 0;
905 }
906 
907 static int
emit_semaphore_wait(struct i915_request * to,struct i915_request * from,gfp_t gfp)908 emit_semaphore_wait(struct i915_request *to,
909 		    struct i915_request *from,
910 		    gfp_t gfp)
911 {
912 	/* Just emit the first semaphore we see as request space is limited. */
913 	if (already_busywaiting(to) & from->engine->mask)
914 		goto await_fence;
915 
916 	if (i915_request_await_start(to, from) < 0)
917 		goto await_fence;
918 
919 	/* Only submit our spinner after the signaler is running! */
920 	if (__await_execution(to, from, NULL, gfp))
921 		goto await_fence;
922 
923 	if (__emit_semaphore_wait(to, from, from->fence.seqno))
924 		goto await_fence;
925 
926 	to->sched.semaphores |= from->engine->mask;
927 	to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
928 	return 0;
929 
930 await_fence:
931 	return i915_sw_fence_await_dma_fence(&to->submit,
932 					     &from->fence, 0,
933 					     I915_FENCE_GFP);
934 }
935 
936 static int
i915_request_await_request(struct i915_request * to,struct i915_request * from)937 i915_request_await_request(struct i915_request *to, struct i915_request *from)
938 {
939 	int ret;
940 
941 	GEM_BUG_ON(to == from);
942 	GEM_BUG_ON(to->timeline == from->timeline);
943 
944 	if (i915_request_completed(from))
945 		return 0;
946 
947 	if (to->engine->schedule) {
948 		ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
949 		if (ret < 0)
950 			return ret;
951 	}
952 
953 	if (to->engine == from->engine)
954 		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
955 						       &from->submit,
956 						       I915_FENCE_GFP);
957 	else if (intel_context_use_semaphores(to->context))
958 		ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
959 	else
960 		ret = i915_sw_fence_await_dma_fence(&to->submit,
961 						    &from->fence, 0,
962 						    I915_FENCE_GFP);
963 	if (ret < 0)
964 		return ret;
965 
966 	if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
967 		ret = i915_sw_fence_await_dma_fence(&to->semaphore,
968 						    &from->fence, 0,
969 						    I915_FENCE_GFP);
970 		if (ret < 0)
971 			return ret;
972 	}
973 
974 	return 0;
975 }
976 
977 int
i915_request_await_dma_fence(struct i915_request * rq,struct dma_fence * fence)978 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
979 {
980 	struct dma_fence **child = &fence;
981 	unsigned int nchild = 1;
982 	int ret;
983 
984 	/*
985 	 * Note that if the fence-array was created in signal-on-any mode,
986 	 * we should *not* decompose it into its individual fences. However,
987 	 * we don't currently store which mode the fence-array is operating
988 	 * in. Fortunately, the only user of signal-on-any is private to
989 	 * amdgpu and we should not see any incoming fence-array from
990 	 * sync-file being in signal-on-any mode.
991 	 */
992 	if (dma_fence_is_array(fence)) {
993 		struct dma_fence_array *array = to_dma_fence_array(fence);
994 
995 		child = array->fences;
996 		nchild = array->num_fences;
997 		GEM_BUG_ON(!nchild);
998 	}
999 
1000 	do {
1001 		fence = *child++;
1002 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1003 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1004 			continue;
1005 		}
1006 
1007 		/*
1008 		 * Requests on the same timeline are explicitly ordered, along
1009 		 * with their dependencies, by i915_request_add() which ensures
1010 		 * that requests are submitted in-order through each ring.
1011 		 */
1012 		if (fence->context == rq->fence.context)
1013 			continue;
1014 
1015 		/* Squash repeated waits to the same timelines */
1016 		if (fence->context &&
1017 		    intel_timeline_sync_is_later(i915_request_timeline(rq),
1018 						 fence))
1019 			continue;
1020 
1021 		if (dma_fence_is_i915(fence))
1022 			ret = i915_request_await_request(rq, to_request(fence));
1023 		else
1024 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1025 							    fence->context ? I915_FENCE_TIMEOUT : 0,
1026 							    I915_FENCE_GFP);
1027 		if (ret < 0)
1028 			return ret;
1029 
1030 		/* Record the latest fence used against each timeline */
1031 		if (fence->context)
1032 			intel_timeline_sync_set(i915_request_timeline(rq),
1033 						fence);
1034 	} while (--nchild);
1035 
1036 	return 0;
1037 }
1038 
intel_timeline_sync_has_start(struct intel_timeline * tl,struct dma_fence * fence)1039 static bool intel_timeline_sync_has_start(struct intel_timeline *tl,
1040 					  struct dma_fence *fence)
1041 {
1042 	return __intel_timeline_sync_is_later(tl,
1043 					      fence->context,
1044 					      fence->seqno - 1);
1045 }
1046 
intel_timeline_sync_set_start(struct intel_timeline * tl,const struct dma_fence * fence)1047 static int intel_timeline_sync_set_start(struct intel_timeline *tl,
1048 					 const struct dma_fence *fence)
1049 {
1050 	return __intel_timeline_sync_set(tl, fence->context, fence->seqno - 1);
1051 }
1052 
1053 static int
__i915_request_await_execution(struct i915_request * to,struct i915_request * from,void (* hook)(struct i915_request * rq,struct dma_fence * signal))1054 __i915_request_await_execution(struct i915_request *to,
1055 			       struct i915_request *from,
1056 			       void (*hook)(struct i915_request *rq,
1057 					    struct dma_fence *signal))
1058 {
1059 	int err;
1060 
1061 	/* Submit both requests at the same time */
1062 	err = __await_execution(to, from, hook, I915_FENCE_GFP);
1063 	if (err)
1064 		return err;
1065 
1066 	/* Squash repeated depenendices to the same timelines */
1067 	if (intel_timeline_sync_has_start(i915_request_timeline(to),
1068 					  &from->fence))
1069 		return 0;
1070 
1071 	/* Ensure both start together [after all semaphores in signal] */
1072 	if (intel_engine_has_semaphores(to->engine))
1073 		err = __emit_semaphore_wait(to, from, from->fence.seqno - 1);
1074 	else
1075 		err = i915_request_await_start(to, from);
1076 	if (err < 0)
1077 		return err;
1078 
1079 	/* Couple the dependency tree for PI on this exposed to->fence */
1080 	if (to->engine->schedule) {
1081 		err = i915_sched_node_add_dependency(&to->sched, &from->sched);
1082 		if (err < 0)
1083 			return err;
1084 	}
1085 
1086 	return intel_timeline_sync_set_start(i915_request_timeline(to),
1087 					     &from->fence);
1088 }
1089 
1090 int
i915_request_await_execution(struct i915_request * rq,struct dma_fence * fence,void (* hook)(struct i915_request * rq,struct dma_fence * signal))1091 i915_request_await_execution(struct i915_request *rq,
1092 			     struct dma_fence *fence,
1093 			     void (*hook)(struct i915_request *rq,
1094 					  struct dma_fence *signal))
1095 {
1096 	struct dma_fence **child = &fence;
1097 	unsigned int nchild = 1;
1098 	int ret;
1099 
1100 	if (dma_fence_is_array(fence)) {
1101 		struct dma_fence_array *array = to_dma_fence_array(fence);
1102 
1103 		/* XXX Error for signal-on-any fence arrays */
1104 
1105 		child = array->fences;
1106 		nchild = array->num_fences;
1107 		GEM_BUG_ON(!nchild);
1108 	}
1109 
1110 	do {
1111 		fence = *child++;
1112 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
1113 			i915_sw_fence_set_error_once(&rq->submit, fence->error);
1114 			continue;
1115 		}
1116 
1117 		/*
1118 		 * We don't squash repeated fence dependencies here as we
1119 		 * want to run our callback in all cases.
1120 		 */
1121 
1122 		if (dma_fence_is_i915(fence))
1123 			ret = __i915_request_await_execution(rq,
1124 							     to_request(fence),
1125 							     hook);
1126 		else
1127 			ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
1128 							    I915_FENCE_TIMEOUT,
1129 							    GFP_KERNEL);
1130 		if (ret < 0)
1131 			return ret;
1132 	} while (--nchild);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * i915_request_await_object - set this request to (async) wait upon a bo
1139  * @to: request we are wishing to use
1140  * @obj: object which may be in use on another ring.
1141  * @write: whether the wait is on behalf of a writer
1142  *
1143  * This code is meant to abstract object synchronization with the GPU.
1144  * Conceptually we serialise writes between engines inside the GPU.
1145  * We only allow one engine to write into a buffer at any time, but
1146  * multiple readers. To ensure each has a coherent view of memory, we must:
1147  *
1148  * - If there is an outstanding write request to the object, the new
1149  *   request must wait for it to complete (either CPU or in hw, requests
1150  *   on the same ring will be naturally ordered).
1151  *
1152  * - If we are a write request (pending_write_domain is set), the new
1153  *   request must wait for outstanding read requests to complete.
1154  *
1155  * Returns 0 if successful, else propagates up the lower layer error.
1156  */
1157 int
i915_request_await_object(struct i915_request * to,struct drm_i915_gem_object * obj,bool write)1158 i915_request_await_object(struct i915_request *to,
1159 			  struct drm_i915_gem_object *obj,
1160 			  bool write)
1161 {
1162 	struct dma_fence *excl;
1163 	int ret = 0;
1164 
1165 	if (write) {
1166 		struct dma_fence **shared;
1167 		unsigned int count, i;
1168 
1169 		ret = dma_resv_get_fences_rcu(obj->base.resv,
1170 							&excl, &count, &shared);
1171 		if (ret)
1172 			return ret;
1173 
1174 		for (i = 0; i < count; i++) {
1175 			ret = i915_request_await_dma_fence(to, shared[i]);
1176 			if (ret)
1177 				break;
1178 
1179 			dma_fence_put(shared[i]);
1180 		}
1181 
1182 		for (; i < count; i++)
1183 			dma_fence_put(shared[i]);
1184 		kfree(shared);
1185 	} else {
1186 		excl = dma_resv_get_excl_rcu(obj->base.resv);
1187 	}
1188 
1189 	if (excl) {
1190 		if (ret == 0)
1191 			ret = i915_request_await_dma_fence(to, excl);
1192 
1193 		dma_fence_put(excl);
1194 	}
1195 
1196 	return ret;
1197 }
1198 
i915_request_skip(struct i915_request * rq,int error)1199 void i915_request_skip(struct i915_request *rq, int error)
1200 {
1201 	void *vaddr = rq->ring->vaddr;
1202 	u32 head;
1203 
1204 	GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1205 	dma_fence_set_error(&rq->fence, error);
1206 
1207 	if (rq->infix == rq->postfix)
1208 		return;
1209 
1210 	/*
1211 	 * As this request likely depends on state from the lost
1212 	 * context, clear out all the user operations leaving the
1213 	 * breadcrumb at the end (so we get the fence notifications).
1214 	 */
1215 	head = rq->infix;
1216 	if (rq->postfix < head) {
1217 		memset(vaddr + head, 0, rq->ring->size - head);
1218 		head = 0;
1219 	}
1220 	memset(vaddr + head, 0, rq->postfix - head);
1221 	rq->infix = rq->postfix;
1222 }
1223 
1224 static struct i915_request *
__i915_request_add_to_timeline(struct i915_request * rq)1225 __i915_request_add_to_timeline(struct i915_request *rq)
1226 {
1227 	struct intel_timeline *timeline = i915_request_timeline(rq);
1228 	struct i915_request *prev;
1229 
1230 	/*
1231 	 * Dependency tracking and request ordering along the timeline
1232 	 * is special cased so that we can eliminate redundant ordering
1233 	 * operations while building the request (we know that the timeline
1234 	 * itself is ordered, and here we guarantee it).
1235 	 *
1236 	 * As we know we will need to emit tracking along the timeline,
1237 	 * we embed the hooks into our request struct -- at the cost of
1238 	 * having to have specialised no-allocation interfaces (which will
1239 	 * be beneficial elsewhere).
1240 	 *
1241 	 * A second benefit to open-coding i915_request_await_request is
1242 	 * that we can apply a slight variant of the rules specialised
1243 	 * for timelines that jump between engines (such as virtual engines).
1244 	 * If we consider the case of virtual engine, we must emit a dma-fence
1245 	 * to prevent scheduling of the second request until the first is
1246 	 * complete (to maximise our greedy late load balancing) and this
1247 	 * precludes optimising to use semaphores serialisation of a single
1248 	 * timeline across engines.
1249 	 */
1250 	prev = to_request(__i915_active_fence_set(&timeline->last_request,
1251 						  &rq->fence));
1252 	if (prev && !i915_request_completed(prev)) {
1253 		if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1254 			i915_sw_fence_await_sw_fence(&rq->submit,
1255 						     &prev->submit,
1256 						     &rq->submitq);
1257 		else
1258 			__i915_sw_fence_await_dma_fence(&rq->submit,
1259 							&prev->fence,
1260 							&rq->dmaq);
1261 		if (rq->engine->schedule)
1262 			__i915_sched_node_add_dependency(&rq->sched,
1263 							 &prev->sched,
1264 							 &rq->dep,
1265 							 0);
1266 	}
1267 
1268 	list_add_tail(&rq->link, &timeline->requests);
1269 
1270 	/*
1271 	 * Make sure that no request gazumped us - if it was allocated after
1272 	 * our i915_request_alloc() and called __i915_request_add() before
1273 	 * us, the timeline will hold its seqno which is later than ours.
1274 	 */
1275 	GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1276 
1277 	return prev;
1278 }
1279 
1280 /*
1281  * NB: This function is not allowed to fail. Doing so would mean the the
1282  * request is not being tracked for completion but the work itself is
1283  * going to happen on the hardware. This would be a Bad Thing(tm).
1284  */
__i915_request_commit(struct i915_request * rq)1285 struct i915_request *__i915_request_commit(struct i915_request *rq)
1286 {
1287 	struct intel_engine_cs *engine = rq->engine;
1288 	struct intel_ring *ring = rq->ring;
1289 	u32 *cs;
1290 
1291 	RQ_TRACE(rq, "\n");
1292 
1293 	/*
1294 	 * To ensure that this call will not fail, space for its emissions
1295 	 * should already have been reserved in the ring buffer. Let the ring
1296 	 * know that it is time to use that space up.
1297 	 */
1298 	GEM_BUG_ON(rq->reserved_space > ring->space);
1299 	rq->reserved_space = 0;
1300 	rq->emitted_jiffies = jiffies;
1301 
1302 	/*
1303 	 * Record the position of the start of the breadcrumb so that
1304 	 * should we detect the updated seqno part-way through the
1305 	 * GPU processing the request, we never over-estimate the
1306 	 * position of the ring's HEAD.
1307 	 */
1308 	cs = intel_ring_begin(rq, engine->emit_fini_breadcrumb_dw);
1309 	GEM_BUG_ON(IS_ERR(cs));
1310 	rq->postfix = intel_ring_offset(rq, cs);
1311 
1312 	return __i915_request_add_to_timeline(rq);
1313 }
1314 
__i915_request_queue(struct i915_request * rq,const struct i915_sched_attr * attr)1315 void __i915_request_queue(struct i915_request *rq,
1316 			  const struct i915_sched_attr *attr)
1317 {
1318 	/*
1319 	 * Let the backend know a new request has arrived that may need
1320 	 * to adjust the existing execution schedule due to a high priority
1321 	 * request - i.e. we may want to preempt the current request in order
1322 	 * to run a high priority dependency chain *before* we can execute this
1323 	 * request.
1324 	 *
1325 	 * This is called before the request is ready to run so that we can
1326 	 * decide whether to preempt the entire chain so that it is ready to
1327 	 * run at the earliest possible convenience.
1328 	 */
1329 	i915_sw_fence_commit(&rq->semaphore);
1330 	if (attr && rq->engine->schedule)
1331 		rq->engine->schedule(rq, attr);
1332 	i915_sw_fence_commit(&rq->submit);
1333 }
1334 
i915_request_add(struct i915_request * rq)1335 void i915_request_add(struct i915_request *rq)
1336 {
1337 	struct intel_timeline * const tl = i915_request_timeline(rq);
1338 	struct i915_sched_attr attr = {};
1339 	struct i915_request *prev;
1340 
1341 	lockdep_assert_held(&tl->mutex);
1342 	lockdep_unpin_lock(&tl->mutex, rq->cookie);
1343 
1344 	trace_i915_request_add(rq);
1345 
1346 	prev = __i915_request_commit(rq);
1347 
1348 	if (rcu_access_pointer(rq->context->gem_context))
1349 		attr = i915_request_gem_context(rq)->sched;
1350 
1351 	/*
1352 	 * Boost actual workloads past semaphores!
1353 	 *
1354 	 * With semaphores we spin on one engine waiting for another,
1355 	 * simply to reduce the latency of starting our work when
1356 	 * the signaler completes. However, if there is any other
1357 	 * work that we could be doing on this engine instead, that
1358 	 * is better utilisation and will reduce the overall duration
1359 	 * of the current work. To avoid PI boosting a semaphore
1360 	 * far in the distance past over useful work, we keep a history
1361 	 * of any semaphore use along our dependency chain.
1362 	 */
1363 	if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1364 		attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1365 
1366 	/*
1367 	 * Boost priorities to new clients (new request flows).
1368 	 *
1369 	 * Allow interactive/synchronous clients to jump ahead of
1370 	 * the bulk clients. (FQ_CODEL)
1371 	 */
1372 	if (list_empty(&rq->sched.signalers_list))
1373 		attr.priority |= I915_PRIORITY_WAIT;
1374 
1375 #ifdef __NetBSD__
1376 	int s = splsoftserial();
1377 #else
1378 	local_bh_disable();
1379 #endif
1380 	__i915_request_queue(rq, &attr);
1381 #ifdef __NetBSD__
1382 	splx(s);
1383 #else
1384 	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1385 #endif
1386 
1387 	/*
1388 	 * In typical scenarios, we do not expect the previous request on
1389 	 * the timeline to be still tracked by timeline->last_request if it
1390 	 * has been completed. If the completed request is still here, that
1391 	 * implies that request retirement is a long way behind submission,
1392 	 * suggesting that we haven't been retiring frequently enough from
1393 	 * the combination of retire-before-alloc, waiters and the background
1394 	 * retirement worker. So if the last request on this timeline was
1395 	 * already completed, do a catch up pass, flushing the retirement queue
1396 	 * up to this client. Since we have now moved the heaviest operations
1397 	 * during retirement onto secondary workers, such as freeing objects
1398 	 * or contexts, retiring a bunch of requests is mostly list management
1399 	 * (and cache misses), and so we should not be overly penalizing this
1400 	 * client by performing excess work, though we may still performing
1401 	 * work on behalf of others -- but instead we should benefit from
1402 	 * improved resource management. (Well, that's the theory at least.)
1403 	 */
1404 	if (prev &&
1405 	    i915_request_completed(prev) &&
1406 	    rcu_access_pointer(prev->timeline) == tl)
1407 		i915_request_retire_upto(prev);
1408 
1409 	mutex_unlock(&tl->mutex);
1410 }
1411 
local_clock_us(unsigned int * cpu)1412 static unsigned long local_clock_us(unsigned int *cpu)
1413 {
1414 	unsigned long t;
1415 
1416 	/*
1417 	 * Cheaply and approximately convert from nanoseconds to microseconds.
1418 	 * The result and subsequent calculations are also defined in the same
1419 	 * approximate microseconds units. The principal source of timing
1420 	 * error here is from the simple truncation.
1421 	 *
1422 	 * Note that local_clock() is only defined wrt to the current CPU;
1423 	 * the comparisons are no longer valid if we switch CPUs. Instead of
1424 	 * blocking preemption for the entire busywait, we can detect the CPU
1425 	 * switch and use that as indicator of system load and a reason to
1426 	 * stop busywaiting, see busywait_stop().
1427 	 */
1428 	*cpu = get_cpu();
1429 	t = local_clock() >> 10;
1430 	put_cpu();
1431 
1432 	return t;
1433 }
1434 
busywait_stop(unsigned long timeout,unsigned int cpu)1435 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1436 {
1437 	unsigned int this_cpu;
1438 
1439 	if (time_after(local_clock_us(&this_cpu), timeout))
1440 		return true;
1441 
1442 	return this_cpu != cpu;
1443 }
1444 
__i915_spin_request(const struct i915_request * const rq,int state,unsigned long timeout_us)1445 static bool __i915_spin_request(const struct i915_request * const rq,
1446 				int state, unsigned long timeout_us)
1447 {
1448 	unsigned int cpu;
1449 
1450 	/*
1451 	 * Only wait for the request if we know it is likely to complete.
1452 	 *
1453 	 * We don't track the timestamps around requests, nor the average
1454 	 * request length, so we do not have a good indicator that this
1455 	 * request will complete within the timeout. What we do know is the
1456 	 * order in which requests are executed by the context and so we can
1457 	 * tell if the request has been started. If the request is not even
1458 	 * running yet, it is a fair assumption that it will not complete
1459 	 * within our relatively short timeout.
1460 	 */
1461 	if (!i915_request_is_running(rq))
1462 		return false;
1463 
1464 	/*
1465 	 * When waiting for high frequency requests, e.g. during synchronous
1466 	 * rendering split between the CPU and GPU, the finite amount of time
1467 	 * required to set up the irq and wait upon it limits the response
1468 	 * rate. By busywaiting on the request completion for a short while we
1469 	 * can service the high frequency waits as quick as possible. However,
1470 	 * if it is a slow request, we want to sleep as quickly as possible.
1471 	 * The tradeoff between waiting and sleeping is roughly the time it
1472 	 * takes to sleep on a request, on the order of a microsecond.
1473 	 */
1474 
1475 	timeout_us += local_clock_us(&cpu);
1476 	do {
1477 		if (i915_request_completed(rq))
1478 			return true;
1479 
1480 		if (signal_pending_state(state, current))
1481 			break;
1482 
1483 		if (busywait_stop(timeout_us, cpu))
1484 			break;
1485 
1486 		cpu_relax();
1487 	} while (!need_resched());
1488 
1489 	return false;
1490 }
1491 
1492 struct request_wait {
1493 	struct dma_fence_cb cb;
1494 #ifdef __NetBSD__
1495 	drm_waitqueue_t wq;
1496 #else
1497 	struct task_struct *tsk;
1498 #endif
1499 };
1500 
request_wait_wake(struct dma_fence * fence,struct dma_fence_cb * cb)1501 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1502 {
1503 	struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1504 
1505 #ifdef __NetBSD__
1506 	DRM_SPIN_WAKEUP_ALL(&wait->wq, fence->lock);
1507 #else
1508 	wake_up_process(wait->tsk);
1509 #endif
1510 }
1511 
1512 /**
1513  * i915_request_wait - wait until execution of request has finished
1514  * @rq: the request to wait upon
1515  * @flags: how to wait
1516  * @timeout: how long to wait in jiffies
1517  *
1518  * i915_request_wait() waits for the request to be completed, for a
1519  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1520  * unbounded wait).
1521  *
1522  * Returns the remaining time (in jiffies) if the request completed, which may
1523  * be zero or -ETIME if the request is unfinished after the timeout expires.
1524  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1525  * pending before the request completes.
1526  */
i915_request_wait(struct i915_request * rq,unsigned int flags,long timeout)1527 long i915_request_wait(struct i915_request *rq,
1528 		       unsigned int flags,
1529 		       long timeout)
1530 {
1531 	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1532 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1533 	struct request_wait wait;
1534 
1535 	might_sleep();
1536 	GEM_BUG_ON(timeout < 0);
1537 
1538 	if (dma_fence_is_signaled(&rq->fence))
1539 		return timeout;
1540 
1541 	if (!timeout)
1542 		return -ETIME;
1543 
1544 	trace_i915_request_wait_begin(rq, flags);
1545 
1546 	/*
1547 	 * We must never wait on the GPU while holding a lock as we
1548 	 * may need to perform a GPU reset. So while we don't need to
1549 	 * serialise wait/reset with an explicit lock, we do want
1550 	 * lockdep to detect potential dependency cycles.
1551 	 */
1552 	mutex_acquire(&rq->engine->gt->reset.mutex.dep_map, 0, 0, _THIS_IP_);
1553 
1554 	/*
1555 	 * Optimistic spin before touching IRQs.
1556 	 *
1557 	 * We may use a rather large value here to offset the penalty of
1558 	 * switching away from the active task. Frequently, the client will
1559 	 * wait upon an old swapbuffer to throttle itself to remain within a
1560 	 * frame of the gpu. If the client is running in lockstep with the gpu,
1561 	 * then it should not be waiting long at all, and a sleep now will incur
1562 	 * extra scheduler latency in producing the next frame. To try to
1563 	 * avoid adding the cost of enabling/disabling the interrupt to the
1564 	 * short wait, we first spin to see if the request would have completed
1565 	 * in the time taken to setup the interrupt.
1566 	 *
1567 	 * We need upto 5us to enable the irq, and upto 20us to hide the
1568 	 * scheduler latency of a context switch, ignoring the secondary
1569 	 * impacts from a context switch such as cache eviction.
1570 	 *
1571 	 * The scheme used for low-latency IO is called "hybrid interrupt
1572 	 * polling". The suggestion there is to sleep until just before you
1573 	 * expect to be woken by the device interrupt and then poll for its
1574 	 * completion. That requires having a good predictor for the request
1575 	 * duration, which we currently lack.
1576 	 */
1577 	if (IS_ACTIVE(CONFIG_DRM_I915_SPIN_REQUEST) &&
1578 	    __i915_spin_request(rq, state, CONFIG_DRM_I915_SPIN_REQUEST)) {
1579 		dma_fence_signal(&rq->fence);
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * This client is about to stall waiting for the GPU. In many cases
1585 	 * this is undesirable and limits the throughput of the system, as
1586 	 * many clients cannot continue processing user input/output whilst
1587 	 * blocked. RPS autotuning may take tens of milliseconds to respond
1588 	 * to the GPU load and thus incurs additional latency for the client.
1589 	 * We can circumvent that by promoting the GPU frequency to maximum
1590 	 * before we sleep. This makes the GPU throttle up much more quickly
1591 	 * (good for benchmarks and user experience, e.g. window animations),
1592 	 * but at a cost of spending more power processing the workload
1593 	 * (bad for battery).
1594 	 */
1595 	if (flags & I915_WAIT_PRIORITY) {
1596 		if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1597 			intel_rps_boost(rq);
1598 		i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1599 	}
1600 
1601 #ifdef __NetBSD__
1602 	DRM_INIT_WAITQUEUE(&wait.wq, "i915req");
1603 #else
1604 	wait.tsk = current;
1605 #endif
1606 	if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1607 		goto out;
1608 
1609 #ifdef __NetBSD__
1610 	spin_lock(rq->fence.lock);
1611 #define	C	(i915_request_completed(rq) ? 1 :			      \
1612 		    (spin_unlock(rq->fence.lock),			      \
1613 			intel_engine_flush_submission(rq->engine),	      \
1614 			spin_lock(rq->fence.lock),			      \
1615 			i915_request_completed(rq)))
1616 	if (flags & I915_WAIT_INTERRUPTIBLE) {
1617 		DRM_SPIN_TIMED_WAIT_UNTIL(timeout, &wait.wq,
1618 		    rq->fence.lock, timeout,
1619 		    C);
1620 	} else {
1621 		DRM_SPIN_TIMED_WAIT_NOINTR_UNTIL(timeout, &wait.wq,
1622 		    rq->fence.lock, timeout,
1623 		    C);
1624 	}
1625 #undef	C
1626 	if (timeout > 0) {	/* succeeded before timeout */
1627 		KASSERT(i915_request_completed(rq));
1628 		dma_fence_signal_locked(&rq->fence);
1629 	} else if (timeout == 0) {	/* timed out */
1630 		timeout = -ETIME;
1631 	}
1632 	spin_unlock(rq->fence.lock);
1633 #else
1634 	for (;;) {
1635 		set_current_state(state);
1636 
1637 		if (i915_request_completed(rq)) {
1638 			dma_fence_signal(&rq->fence);
1639 			break;
1640 		}
1641 
1642 		if (signal_pending_state(state, current)) {
1643 			timeout = -ERESTARTSYS;
1644 			break;
1645 		}
1646 
1647 		if (!timeout) {
1648 			timeout = -ETIME;
1649 			break;
1650 		}
1651 
1652 		intel_engine_flush_submission(rq->engine);
1653 		timeout = io_schedule_timeout(timeout);
1654 	}
1655 	__set_current_state(TASK_RUNNING);
1656 #endif
1657 
1658 	dma_fence_remove_callback(&rq->fence, &wait.cb);
1659 #ifdef __NetBSD__
1660 	DRM_DESTROY_WAITQUEUE(&wait.wq);
1661 #endif
1662 
1663 out:
1664 	mutex_release(&rq->engine->gt->reset.mutex.dep_map, _THIS_IP_);
1665 	trace_i915_request_wait_end(rq);
1666 	return timeout;
1667 }
1668 
1669 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1670 #include "selftests/mock_request.c"
1671 #include "selftests/i915_request.c"
1672 #endif
1673 
i915_global_request_shrink(void)1674 static void i915_global_request_shrink(void)
1675 {
1676 	kmem_cache_shrink(global.slab_dependencies);
1677 	kmem_cache_shrink(global.slab_execute_cbs);
1678 	kmem_cache_shrink(global.slab_requests);
1679 }
1680 
i915_global_request_exit(void)1681 static void i915_global_request_exit(void)
1682 {
1683 	kmem_cache_destroy(global.slab_dependencies);
1684 	kmem_cache_destroy(global.slab_execute_cbs);
1685 	kmem_cache_destroy(global.slab_requests);
1686 }
1687 
1688 static struct i915_global_request global = { {
1689 	.shrink = i915_global_request_shrink,
1690 	.exit = i915_global_request_exit,
1691 } };
1692 
i915_global_request_init(void)1693 int __init i915_global_request_init(void)
1694 {
1695 	global.slab_requests =
1696 		kmem_cache_create_dtor("i915_request",
1697 				  sizeof(struct i915_request),
1698 				  __alignof__(struct i915_request),
1699 				  SLAB_HWCACHE_ALIGN |
1700 				  SLAB_RECLAIM_ACCOUNT |
1701 				  SLAB_TYPESAFE_BY_RCU,
1702 				  __i915_request_ctor,
1703 				  __i915_request_dtor);
1704 	if (!global.slab_requests)
1705 		return -ENOMEM;
1706 
1707 	global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1708 					     SLAB_HWCACHE_ALIGN |
1709 					     SLAB_RECLAIM_ACCOUNT |
1710 					     SLAB_TYPESAFE_BY_RCU);
1711 	if (!global.slab_execute_cbs)
1712 		goto err_requests;
1713 
1714 	global.slab_dependencies = KMEM_CACHE(i915_dependency,
1715 					      SLAB_HWCACHE_ALIGN |
1716 					      SLAB_RECLAIM_ACCOUNT);
1717 	if (!global.slab_dependencies)
1718 		goto err_execute_cbs;
1719 
1720 	i915_global_register(&global.base);
1721 	return 0;
1722 
1723 err_execute_cbs:
1724 	kmem_cache_destroy(global.slab_execute_cbs);
1725 err_requests:
1726 	kmem_cache_destroy(global.slab_requests);
1727 	return -ENOMEM;
1728 }
1729