1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "i915_irq.h"
10 #include "i915_reg.h"
11 #include "intel_backlight_regs.h"
12 #include "intel_cdclk.h"
13 #include "intel_clock_gating.h"
14 #include "intel_combo_phy.h"
15 #include "intel_de.h"
16 #include "intel_display_power.h"
17 #include "intel_display_power_map.h"
18 #include "intel_display_power_well.h"
19 #include "intel_display_types.h"
20 #include "intel_dmc.h"
21 #include "intel_mchbar_regs.h"
22 #include "intel_pch_refclk.h"
23 #include "intel_pcode.h"
24 #include "intel_pmdemand.h"
25 #include "intel_pps_regs.h"
26 #include "intel_snps_phy.h"
27 #include "skl_watermark.h"
28 #include "skl_watermark_regs.h"
29 #include "vlv_sideband.h"
30 
31 #define for_each_power_domain_well(__dev_priv, __power_well, __domain)	\
32 	for_each_power_well(__dev_priv, __power_well)				\
33 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
34 
35 #define for_each_power_domain_well_reverse(__dev_priv, __power_well, __domain) \
36 	for_each_power_well_reverse(__dev_priv, __power_well)		        \
37 		for_each_if(test_bit((__domain), (__power_well)->domains.bits))
38 
39 const char *
intel_display_power_domain_str(enum intel_display_power_domain domain)40 intel_display_power_domain_str(enum intel_display_power_domain domain)
41 {
42 	switch (domain) {
43 	case POWER_DOMAIN_DISPLAY_CORE:
44 		return "DISPLAY_CORE";
45 	case POWER_DOMAIN_PIPE_A:
46 		return "PIPE_A";
47 	case POWER_DOMAIN_PIPE_B:
48 		return "PIPE_B";
49 	case POWER_DOMAIN_PIPE_C:
50 		return "PIPE_C";
51 	case POWER_DOMAIN_PIPE_D:
52 		return "PIPE_D";
53 	case POWER_DOMAIN_PIPE_PANEL_FITTER_A:
54 		return "PIPE_PANEL_FITTER_A";
55 	case POWER_DOMAIN_PIPE_PANEL_FITTER_B:
56 		return "PIPE_PANEL_FITTER_B";
57 	case POWER_DOMAIN_PIPE_PANEL_FITTER_C:
58 		return "PIPE_PANEL_FITTER_C";
59 	case POWER_DOMAIN_PIPE_PANEL_FITTER_D:
60 		return "PIPE_PANEL_FITTER_D";
61 	case POWER_DOMAIN_TRANSCODER_A:
62 		return "TRANSCODER_A";
63 	case POWER_DOMAIN_TRANSCODER_B:
64 		return "TRANSCODER_B";
65 	case POWER_DOMAIN_TRANSCODER_C:
66 		return "TRANSCODER_C";
67 	case POWER_DOMAIN_TRANSCODER_D:
68 		return "TRANSCODER_D";
69 	case POWER_DOMAIN_TRANSCODER_EDP:
70 		return "TRANSCODER_EDP";
71 	case POWER_DOMAIN_TRANSCODER_DSI_A:
72 		return "TRANSCODER_DSI_A";
73 	case POWER_DOMAIN_TRANSCODER_DSI_C:
74 		return "TRANSCODER_DSI_C";
75 	case POWER_DOMAIN_TRANSCODER_VDSC_PW2:
76 		return "TRANSCODER_VDSC_PW2";
77 	case POWER_DOMAIN_PORT_DDI_LANES_A:
78 		return "PORT_DDI_LANES_A";
79 	case POWER_DOMAIN_PORT_DDI_LANES_B:
80 		return "PORT_DDI_LANES_B";
81 	case POWER_DOMAIN_PORT_DDI_LANES_C:
82 		return "PORT_DDI_LANES_C";
83 	case POWER_DOMAIN_PORT_DDI_LANES_D:
84 		return "PORT_DDI_LANES_D";
85 	case POWER_DOMAIN_PORT_DDI_LANES_E:
86 		return "PORT_DDI_LANES_E";
87 	case POWER_DOMAIN_PORT_DDI_LANES_F:
88 		return "PORT_DDI_LANES_F";
89 	case POWER_DOMAIN_PORT_DDI_LANES_TC1:
90 		return "PORT_DDI_LANES_TC1";
91 	case POWER_DOMAIN_PORT_DDI_LANES_TC2:
92 		return "PORT_DDI_LANES_TC2";
93 	case POWER_DOMAIN_PORT_DDI_LANES_TC3:
94 		return "PORT_DDI_LANES_TC3";
95 	case POWER_DOMAIN_PORT_DDI_LANES_TC4:
96 		return "PORT_DDI_LANES_TC4";
97 	case POWER_DOMAIN_PORT_DDI_LANES_TC5:
98 		return "PORT_DDI_LANES_TC5";
99 	case POWER_DOMAIN_PORT_DDI_LANES_TC6:
100 		return "PORT_DDI_LANES_TC6";
101 	case POWER_DOMAIN_PORT_DDI_IO_A:
102 		return "PORT_DDI_IO_A";
103 	case POWER_DOMAIN_PORT_DDI_IO_B:
104 		return "PORT_DDI_IO_B";
105 	case POWER_DOMAIN_PORT_DDI_IO_C:
106 		return "PORT_DDI_IO_C";
107 	case POWER_DOMAIN_PORT_DDI_IO_D:
108 		return "PORT_DDI_IO_D";
109 	case POWER_DOMAIN_PORT_DDI_IO_E:
110 		return "PORT_DDI_IO_E";
111 	case POWER_DOMAIN_PORT_DDI_IO_F:
112 		return "PORT_DDI_IO_F";
113 	case POWER_DOMAIN_PORT_DDI_IO_TC1:
114 		return "PORT_DDI_IO_TC1";
115 	case POWER_DOMAIN_PORT_DDI_IO_TC2:
116 		return "PORT_DDI_IO_TC2";
117 	case POWER_DOMAIN_PORT_DDI_IO_TC3:
118 		return "PORT_DDI_IO_TC3";
119 	case POWER_DOMAIN_PORT_DDI_IO_TC4:
120 		return "PORT_DDI_IO_TC4";
121 	case POWER_DOMAIN_PORT_DDI_IO_TC5:
122 		return "PORT_DDI_IO_TC5";
123 	case POWER_DOMAIN_PORT_DDI_IO_TC6:
124 		return "PORT_DDI_IO_TC6";
125 	case POWER_DOMAIN_PORT_DSI:
126 		return "PORT_DSI";
127 	case POWER_DOMAIN_PORT_CRT:
128 		return "PORT_CRT";
129 	case POWER_DOMAIN_PORT_OTHER:
130 		return "PORT_OTHER";
131 	case POWER_DOMAIN_VGA:
132 		return "VGA";
133 	case POWER_DOMAIN_AUDIO_MMIO:
134 		return "AUDIO_MMIO";
135 	case POWER_DOMAIN_AUDIO_PLAYBACK:
136 		return "AUDIO_PLAYBACK";
137 	case POWER_DOMAIN_AUX_IO_A:
138 		return "AUX_IO_A";
139 	case POWER_DOMAIN_AUX_IO_B:
140 		return "AUX_IO_B";
141 	case POWER_DOMAIN_AUX_IO_C:
142 		return "AUX_IO_C";
143 	case POWER_DOMAIN_AUX_IO_D:
144 		return "AUX_IO_D";
145 	case POWER_DOMAIN_AUX_IO_E:
146 		return "AUX_IO_E";
147 	case POWER_DOMAIN_AUX_IO_F:
148 		return "AUX_IO_F";
149 	case POWER_DOMAIN_AUX_A:
150 		return "AUX_A";
151 	case POWER_DOMAIN_AUX_B:
152 		return "AUX_B";
153 	case POWER_DOMAIN_AUX_C:
154 		return "AUX_C";
155 	case POWER_DOMAIN_AUX_D:
156 		return "AUX_D";
157 	case POWER_DOMAIN_AUX_E:
158 		return "AUX_E";
159 	case POWER_DOMAIN_AUX_F:
160 		return "AUX_F";
161 	case POWER_DOMAIN_AUX_USBC1:
162 		return "AUX_USBC1";
163 	case POWER_DOMAIN_AUX_USBC2:
164 		return "AUX_USBC2";
165 	case POWER_DOMAIN_AUX_USBC3:
166 		return "AUX_USBC3";
167 	case POWER_DOMAIN_AUX_USBC4:
168 		return "AUX_USBC4";
169 	case POWER_DOMAIN_AUX_USBC5:
170 		return "AUX_USBC5";
171 	case POWER_DOMAIN_AUX_USBC6:
172 		return "AUX_USBC6";
173 	case POWER_DOMAIN_AUX_TBT1:
174 		return "AUX_TBT1";
175 	case POWER_DOMAIN_AUX_TBT2:
176 		return "AUX_TBT2";
177 	case POWER_DOMAIN_AUX_TBT3:
178 		return "AUX_TBT3";
179 	case POWER_DOMAIN_AUX_TBT4:
180 		return "AUX_TBT4";
181 	case POWER_DOMAIN_AUX_TBT5:
182 		return "AUX_TBT5";
183 	case POWER_DOMAIN_AUX_TBT6:
184 		return "AUX_TBT6";
185 	case POWER_DOMAIN_GMBUS:
186 		return "GMBUS";
187 	case POWER_DOMAIN_INIT:
188 		return "INIT";
189 	case POWER_DOMAIN_MODESET:
190 		return "MODESET";
191 	case POWER_DOMAIN_GT_IRQ:
192 		return "GT_IRQ";
193 	case POWER_DOMAIN_DC_OFF:
194 		return "DC_OFF";
195 	case POWER_DOMAIN_TC_COLD_OFF:
196 		return "TC_COLD_OFF";
197 	default:
198 		MISSING_CASE(domain);
199 		return "?";
200 	}
201 }
202 
203 /**
204  * __intel_display_power_is_enabled - unlocked check for a power domain
205  * @dev_priv: i915 device instance
206  * @domain: power domain to check
207  *
208  * This is the unlocked version of intel_display_power_is_enabled() and should
209  * only be used from error capture and recovery code where deadlocks are
210  * possible.
211  *
212  * Returns:
213  * True when the power domain is enabled, false otherwise.
214  */
__intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)215 bool __intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
216 				      enum intel_display_power_domain domain)
217 {
218 	struct i915_power_well *power_well;
219 	bool is_enabled;
220 
221 	if (dev_priv->runtime_pm.suspended)
222 		return false;
223 
224 	is_enabled = true;
225 
226 	for_each_power_domain_well_reverse(dev_priv, power_well, domain) {
227 		if (intel_power_well_is_always_on(power_well))
228 			continue;
229 
230 		if (!intel_power_well_is_enabled_cached(power_well)) {
231 			is_enabled = false;
232 			break;
233 		}
234 	}
235 
236 	return is_enabled;
237 }
238 
239 /**
240  * intel_display_power_is_enabled - check for a power domain
241  * @dev_priv: i915 device instance
242  * @domain: power domain to check
243  *
244  * This function can be used to check the hw power domain state. It is mostly
245  * used in hardware state readout functions. Everywhere else code should rely
246  * upon explicit power domain reference counting to ensure that the hardware
247  * block is powered up before accessing it.
248  *
249  * Callers must hold the relevant modesetting locks to ensure that concurrent
250  * threads can't disable the power well while the caller tries to read a few
251  * registers.
252  *
253  * Returns:
254  * True when the power domain is enabled, false otherwise.
255  */
intel_display_power_is_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)256 bool intel_display_power_is_enabled(struct drm_i915_private *dev_priv,
257 				    enum intel_display_power_domain domain)
258 {
259 	struct i915_power_domains *power_domains;
260 	bool ret;
261 
262 	power_domains = &dev_priv->display.power.domains;
263 
264 	mutex_lock(&power_domains->lock);
265 	ret = __intel_display_power_is_enabled(dev_priv, domain);
266 	mutex_unlock(&power_domains->lock);
267 
268 	return ret;
269 }
270 
271 static u32
sanitize_target_dc_state(struct drm_i915_private * i915,u32 target_dc_state)272 sanitize_target_dc_state(struct drm_i915_private *i915,
273 			 u32 target_dc_state)
274 {
275 	struct i915_power_domains *power_domains = &i915->display.power.domains;
276 	static const u32 states[] = {
277 		DC_STATE_EN_UPTO_DC6,
278 		DC_STATE_EN_UPTO_DC5,
279 		DC_STATE_EN_DC3CO,
280 		DC_STATE_DISABLE,
281 	};
282 	int i;
283 
284 	for (i = 0; i < ARRAY_SIZE(states) - 1; i++) {
285 		if (target_dc_state != states[i])
286 			continue;
287 
288 		if (power_domains->allowed_dc_mask & target_dc_state)
289 			break;
290 
291 		target_dc_state = states[i + 1];
292 	}
293 
294 	return target_dc_state;
295 }
296 
297 /**
298  * intel_display_power_set_target_dc_state - Set target dc state.
299  * @dev_priv: i915 device
300  * @state: state which needs to be set as target_dc_state.
301  *
302  * This function set the "DC off" power well target_dc_state,
303  * based upon this target_dc_stste, "DC off" power well will
304  * enable desired DC state.
305  */
intel_display_power_set_target_dc_state(struct drm_i915_private * dev_priv,u32 state)306 void intel_display_power_set_target_dc_state(struct drm_i915_private *dev_priv,
307 					     u32 state)
308 {
309 	struct i915_power_well *power_well;
310 	bool dc_off_enabled;
311 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
312 
313 	mutex_lock(&power_domains->lock);
314 	power_well = lookup_power_well(dev_priv, SKL_DISP_DC_OFF);
315 
316 	if (drm_WARN_ON(&dev_priv->drm, !power_well))
317 		goto unlock;
318 
319 	state = sanitize_target_dc_state(dev_priv, state);
320 
321 	if (state == power_domains->target_dc_state)
322 		goto unlock;
323 
324 	dc_off_enabled = intel_power_well_is_enabled(dev_priv, power_well);
325 	/*
326 	 * If DC off power well is disabled, need to enable and disable the
327 	 * DC off power well to effect target DC state.
328 	 */
329 	if (!dc_off_enabled)
330 		intel_power_well_enable(dev_priv, power_well);
331 
332 	power_domains->target_dc_state = state;
333 
334 	if (!dc_off_enabled)
335 		intel_power_well_disable(dev_priv, power_well);
336 
337 unlock:
338 	mutex_unlock(&power_domains->lock);
339 }
340 
341 #define POWER_DOMAIN_MASK (GENMASK_ULL(POWER_DOMAIN_NUM - 1, 0))
342 
__async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)343 static void __async_put_domains_mask(struct i915_power_domains *power_domains,
344 				     struct intel_power_domain_mask *mask)
345 {
346 	bitmap_or(mask->bits,
347 		  power_domains->async_put_domains[0].bits,
348 		  power_domains->async_put_domains[1].bits,
349 		  POWER_DOMAIN_NUM);
350 }
351 
352 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
353 
354 static bool
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)355 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
356 {
357 	struct drm_i915_private *i915 = container_of(power_domains,
358 						     struct drm_i915_private,
359 						     display.power.domains);
360 
361 	return !drm_WARN_ON(&i915->drm,
362 			    bitmap_intersects(power_domains->async_put_domains[0].bits,
363 					      power_domains->async_put_domains[1].bits,
364 					      POWER_DOMAIN_NUM));
365 }
366 
367 static bool
__async_put_domains_state_ok(struct i915_power_domains * power_domains)368 __async_put_domains_state_ok(struct i915_power_domains *power_domains)
369 {
370 	struct drm_i915_private *i915 = container_of(power_domains,
371 						     struct drm_i915_private,
372 						     display.power.domains);
373 	struct intel_power_domain_mask async_put_mask;
374 	enum intel_display_power_domain domain;
375 	bool err = false;
376 
377 	err |= !assert_async_put_domain_masks_disjoint(power_domains);
378 	__async_put_domains_mask(power_domains, &async_put_mask);
379 	err |= drm_WARN_ON(&i915->drm,
380 			   !!power_domains->async_put_wakeref !=
381 			   !bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM));
382 
383 	for_each_power_domain(domain, &async_put_mask)
384 		err |= drm_WARN_ON(&i915->drm,
385 				   power_domains->domain_use_count[domain] != 1);
386 
387 	return !err;
388 }
389 
print_power_domains(struct i915_power_domains * power_domains,const char * prefix,struct intel_power_domain_mask * mask)390 static void print_power_domains(struct i915_power_domains *power_domains,
391 				const char *prefix, struct intel_power_domain_mask *mask)
392 {
393 	struct drm_i915_private *i915 = container_of(power_domains,
394 						     struct drm_i915_private,
395 						     display.power.domains);
396 	enum intel_display_power_domain domain;
397 
398 	drm_dbg(&i915->drm, "%s (%d):\n", prefix, bitmap_weight(mask->bits, POWER_DOMAIN_NUM));
399 	for_each_power_domain(domain, mask)
400 		drm_dbg(&i915->drm, "%s use_count %d\n",
401 			intel_display_power_domain_str(domain),
402 			power_domains->domain_use_count[domain]);
403 }
404 
405 static void
print_async_put_domains_state(struct i915_power_domains * power_domains)406 print_async_put_domains_state(struct i915_power_domains *power_domains)
407 {
408 	struct drm_i915_private *i915 = container_of(power_domains,
409 						     struct drm_i915_private,
410 						     display.power.domains);
411 
412 	drm_dbg(&i915->drm, "async_put_wakeref %u\n",
413 		power_domains->async_put_wakeref);
414 
415 	print_power_domains(power_domains, "async_put_domains[0]",
416 			    &power_domains->async_put_domains[0]);
417 	print_power_domains(power_domains, "async_put_domains[1]",
418 			    &power_domains->async_put_domains[1]);
419 }
420 
421 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)422 verify_async_put_domains_state(struct i915_power_domains *power_domains)
423 {
424 	if (!__async_put_domains_state_ok(power_domains))
425 		print_async_put_domains_state(power_domains);
426 }
427 
428 #else
429 
430 static void
assert_async_put_domain_masks_disjoint(struct i915_power_domains * power_domains)431 assert_async_put_domain_masks_disjoint(struct i915_power_domains *power_domains)
432 {
433 }
434 
435 static void
verify_async_put_domains_state(struct i915_power_domains * power_domains)436 verify_async_put_domains_state(struct i915_power_domains *power_domains)
437 {
438 }
439 
440 #endif /* CONFIG_DRM_I915_DEBUG_RUNTIME_PM */
441 
async_put_domains_mask(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)442 static void async_put_domains_mask(struct i915_power_domains *power_domains,
443 				   struct intel_power_domain_mask *mask)
444 
445 {
446 	assert_async_put_domain_masks_disjoint(power_domains);
447 
448 	__async_put_domains_mask(power_domains, mask);
449 }
450 
451 static void
async_put_domains_clear_domain(struct i915_power_domains * power_domains,enum intel_display_power_domain domain)452 async_put_domains_clear_domain(struct i915_power_domains *power_domains,
453 			       enum intel_display_power_domain domain)
454 {
455 	assert_async_put_domain_masks_disjoint(power_domains);
456 
457 	clear_bit(domain, power_domains->async_put_domains[0].bits);
458 	clear_bit(domain, power_domains->async_put_domains[1].bits);
459 }
460 
461 static void
cancel_async_put_work(struct i915_power_domains * power_domains,bool sync)462 cancel_async_put_work(struct i915_power_domains *power_domains, bool sync)
463 {
464 	if (sync)
465 		cancel_delayed_work_sync(&power_domains->async_put_work);
466 	else
467 		cancel_delayed_work(&power_domains->async_put_work);
468 
469 	power_domains->async_put_next_delay = 0;
470 }
471 
472 static bool
intel_display_power_grab_async_put_ref(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)473 intel_display_power_grab_async_put_ref(struct drm_i915_private *dev_priv,
474 				       enum intel_display_power_domain domain)
475 {
476 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
477 	struct intel_power_domain_mask async_put_mask;
478 	bool ret = false;
479 
480 	async_put_domains_mask(power_domains, &async_put_mask);
481 	if (!test_bit(domain, async_put_mask.bits))
482 		goto out_verify;
483 
484 	async_put_domains_clear_domain(power_domains, domain);
485 
486 	ret = true;
487 
488 	async_put_domains_mask(power_domains, &async_put_mask);
489 	if (!bitmap_empty(async_put_mask.bits, POWER_DOMAIN_NUM))
490 		goto out_verify;
491 
492 	cancel_async_put_work(power_domains, false);
493 	intel_runtime_pm_put_raw(&dev_priv->runtime_pm,
494 				 fetch_and_zero(&power_domains->async_put_wakeref));
495 out_verify:
496 	verify_async_put_domains_state(power_domains);
497 
498 	return ret;
499 }
500 
501 static void
__intel_display_power_get_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)502 __intel_display_power_get_domain(struct drm_i915_private *dev_priv,
503 				 enum intel_display_power_domain domain)
504 {
505 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
506 	struct i915_power_well *power_well;
507 
508 	if (intel_display_power_grab_async_put_ref(dev_priv, domain))
509 		return;
510 
511 	for_each_power_domain_well(dev_priv, power_well, domain)
512 		intel_power_well_get(dev_priv, power_well);
513 
514 	power_domains->domain_use_count[domain]++;
515 }
516 
517 /**
518  * intel_display_power_get - grab a power domain reference
519  * @dev_priv: i915 device instance
520  * @domain: power domain to reference
521  *
522  * This function grabs a power domain reference for @domain and ensures that the
523  * power domain and all its parents are powered up. Therefore users should only
524  * grab a reference to the innermost power domain they need.
525  *
526  * Any power domain reference obtained by this function must have a symmetric
527  * call to intel_display_power_put() to release the reference again.
528  */
intel_display_power_get(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)529 intel_wakeref_t intel_display_power_get(struct drm_i915_private *dev_priv,
530 					enum intel_display_power_domain domain)
531 {
532 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
533 	intel_wakeref_t wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
534 
535 	mutex_lock(&power_domains->lock);
536 	__intel_display_power_get_domain(dev_priv, domain);
537 	mutex_unlock(&power_domains->lock);
538 
539 	return wakeref;
540 }
541 
542 /**
543  * intel_display_power_get_if_enabled - grab a reference for an enabled display power domain
544  * @dev_priv: i915 device instance
545  * @domain: power domain to reference
546  *
547  * This function grabs a power domain reference for @domain and ensures that the
548  * power domain and all its parents are powered up. Therefore users should only
549  * grab a reference to the innermost power domain they need.
550  *
551  * Any power domain reference obtained by this function must have a symmetric
552  * call to intel_display_power_put() to release the reference again.
553  */
554 intel_wakeref_t
intel_display_power_get_if_enabled(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)555 intel_display_power_get_if_enabled(struct drm_i915_private *dev_priv,
556 				   enum intel_display_power_domain domain)
557 {
558 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
559 	intel_wakeref_t wakeref;
560 	bool is_enabled;
561 
562 	wakeref = intel_runtime_pm_get_if_in_use(&dev_priv->runtime_pm);
563 	if (!wakeref)
564 		return false;
565 
566 	mutex_lock(&power_domains->lock);
567 
568 	if (__intel_display_power_is_enabled(dev_priv, domain)) {
569 		__intel_display_power_get_domain(dev_priv, domain);
570 		is_enabled = true;
571 	} else {
572 		is_enabled = false;
573 	}
574 
575 	mutex_unlock(&power_domains->lock);
576 
577 	if (!is_enabled) {
578 		intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
579 		wakeref = 0;
580 	}
581 
582 	return wakeref;
583 }
584 
585 static void
__intel_display_power_put_domain(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)586 __intel_display_power_put_domain(struct drm_i915_private *dev_priv,
587 				 enum intel_display_power_domain domain)
588 {
589 	struct i915_power_domains *power_domains;
590 	struct i915_power_well *power_well;
591 	const char *name = intel_display_power_domain_str(domain);
592 	struct intel_power_domain_mask async_put_mask;
593 
594 	power_domains = &dev_priv->display.power.domains;
595 
596 	drm_WARN(&dev_priv->drm, !power_domains->domain_use_count[domain],
597 		 "Use count on domain %s is already zero\n",
598 		 name);
599 	async_put_domains_mask(power_domains, &async_put_mask);
600 	drm_WARN(&dev_priv->drm,
601 		 test_bit(domain, async_put_mask.bits),
602 		 "Async disabling of domain %s is pending\n",
603 		 name);
604 
605 	power_domains->domain_use_count[domain]--;
606 
607 	for_each_power_domain_well_reverse(dev_priv, power_well, domain)
608 		intel_power_well_put(dev_priv, power_well);
609 }
610 
__intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)611 static void __intel_display_power_put(struct drm_i915_private *dev_priv,
612 				      enum intel_display_power_domain domain)
613 {
614 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
615 
616 	mutex_lock(&power_domains->lock);
617 	__intel_display_power_put_domain(dev_priv, domain);
618 	mutex_unlock(&power_domains->lock);
619 }
620 
621 static void
queue_async_put_domains_work(struct i915_power_domains * power_domains,intel_wakeref_t wakeref,int delay_ms)622 queue_async_put_domains_work(struct i915_power_domains *power_domains,
623 			     intel_wakeref_t wakeref,
624 			     int delay_ms)
625 {
626 	struct drm_i915_private *i915 = container_of(power_domains,
627 						     struct drm_i915_private,
628 						     display.power.domains);
629 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
630 	power_domains->async_put_wakeref = wakeref;
631 	drm_WARN_ON(&i915->drm, !queue_delayed_work(system_unbound_wq,
632 						    &power_domains->async_put_work,
633 						    msecs_to_jiffies(delay_ms)));
634 }
635 
636 static void
release_async_put_domains(struct i915_power_domains * power_domains,struct intel_power_domain_mask * mask)637 release_async_put_domains(struct i915_power_domains *power_domains,
638 			  struct intel_power_domain_mask *mask)
639 {
640 	struct drm_i915_private *dev_priv =
641 		container_of(power_domains, struct drm_i915_private,
642 			     display.power.domains);
643 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
644 	enum intel_display_power_domain domain;
645 	intel_wakeref_t wakeref;
646 
647 	/*
648 	 * The caller must hold already raw wakeref, upgrade that to a proper
649 	 * wakeref to make the state checker happy about the HW access during
650 	 * power well disabling.
651 	 */
652 	assert_rpm_raw_wakeref_held(rpm);
653 	wakeref = intel_runtime_pm_get(rpm);
654 
655 	for_each_power_domain(domain, mask) {
656 		/* Clear before put, so put's sanity check is happy. */
657 		async_put_domains_clear_domain(power_domains, domain);
658 		__intel_display_power_put_domain(dev_priv, domain);
659 	}
660 
661 	intel_runtime_pm_put(rpm, wakeref);
662 }
663 
664 static void
intel_display_power_put_async_work(struct work_struct * work)665 intel_display_power_put_async_work(struct work_struct *work)
666 {
667 	struct drm_i915_private *dev_priv =
668 		container_of(work, struct drm_i915_private,
669 			     display.power.domains.async_put_work.work);
670 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
671 	struct intel_runtime_pm *rpm = &dev_priv->runtime_pm;
672 	intel_wakeref_t new_work_wakeref = intel_runtime_pm_get_raw(rpm);
673 	intel_wakeref_t old_work_wakeref = 0;
674 
675 	mutex_lock(&power_domains->lock);
676 
677 	/*
678 	 * Bail out if all the domain refs pending to be released were grabbed
679 	 * by subsequent gets or a flush_work.
680 	 */
681 	old_work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
682 	if (!old_work_wakeref)
683 		goto out_verify;
684 
685 	release_async_put_domains(power_domains,
686 				  &power_domains->async_put_domains[0]);
687 
688 	/* Requeue the work if more domains were async put meanwhile. */
689 	if (!bitmap_empty(power_domains->async_put_domains[1].bits, POWER_DOMAIN_NUM)) {
690 		bitmap_copy(power_domains->async_put_domains[0].bits,
691 			    power_domains->async_put_domains[1].bits,
692 			    POWER_DOMAIN_NUM);
693 		bitmap_zero(power_domains->async_put_domains[1].bits,
694 			    POWER_DOMAIN_NUM);
695 		queue_async_put_domains_work(power_domains,
696 					     fetch_and_zero(&new_work_wakeref),
697 					     power_domains->async_put_next_delay);
698 		power_domains->async_put_next_delay = 0;
699 	} else {
700 		/*
701 		 * Cancel the work that got queued after this one got dequeued,
702 		 * since here we released the corresponding async-put reference.
703 		 */
704 		cancel_async_put_work(power_domains, false);
705 	}
706 
707 out_verify:
708 	verify_async_put_domains_state(power_domains);
709 
710 	mutex_unlock(&power_domains->lock);
711 
712 	if (old_work_wakeref)
713 		intel_runtime_pm_put_raw(rpm, old_work_wakeref);
714 	if (new_work_wakeref)
715 		intel_runtime_pm_put_raw(rpm, new_work_wakeref);
716 }
717 
718 /**
719  * __intel_display_power_put_async - release a power domain reference asynchronously
720  * @i915: i915 device instance
721  * @domain: power domain to reference
722  * @wakeref: wakeref acquired for the reference that is being released
723  * @delay_ms: delay of powering down the power domain
724  *
725  * This function drops the power domain reference obtained by
726  * intel_display_power_get*() and schedules a work to power down the
727  * corresponding hardware block if this is the last reference.
728  * The power down is delayed by @delay_ms if this is >= 0, or by a default
729  * 100 ms otherwise.
730  */
__intel_display_power_put_async(struct drm_i915_private * i915,enum intel_display_power_domain domain,intel_wakeref_t wakeref,int delay_ms)731 void __intel_display_power_put_async(struct drm_i915_private *i915,
732 				     enum intel_display_power_domain domain,
733 				     intel_wakeref_t wakeref,
734 				     int delay_ms)
735 {
736 	struct i915_power_domains *power_domains = &i915->display.power.domains;
737 	struct intel_runtime_pm *rpm = &i915->runtime_pm;
738 	intel_wakeref_t work_wakeref = intel_runtime_pm_get_raw(rpm);
739 
740 	delay_ms = delay_ms >= 0 ? delay_ms : 100;
741 
742 	mutex_lock(&power_domains->lock);
743 
744 	if (power_domains->domain_use_count[domain] > 1) {
745 		__intel_display_power_put_domain(i915, domain);
746 
747 		goto out_verify;
748 	}
749 
750 	drm_WARN_ON(&i915->drm, power_domains->domain_use_count[domain] != 1);
751 
752 	/* Let a pending work requeue itself or queue a new one. */
753 	if (power_domains->async_put_wakeref) {
754 		set_bit(domain, power_domains->async_put_domains[1].bits);
755 		power_domains->async_put_next_delay = max(power_domains->async_put_next_delay,
756 							  delay_ms);
757 	} else {
758 		set_bit(domain, power_domains->async_put_domains[0].bits);
759 		queue_async_put_domains_work(power_domains,
760 					     fetch_and_zero(&work_wakeref),
761 					     delay_ms);
762 	}
763 
764 out_verify:
765 	verify_async_put_domains_state(power_domains);
766 
767 	mutex_unlock(&power_domains->lock);
768 
769 	if (work_wakeref)
770 		intel_runtime_pm_put_raw(rpm, work_wakeref);
771 
772 	intel_runtime_pm_put(rpm, wakeref);
773 }
774 
775 /**
776  * intel_display_power_flush_work - flushes the async display power disabling work
777  * @i915: i915 device instance
778  *
779  * Flushes any pending work that was scheduled by a preceding
780  * intel_display_power_put_async() call, completing the disabling of the
781  * corresponding power domains.
782  *
783  * Note that the work handler function may still be running after this
784  * function returns; to ensure that the work handler isn't running use
785  * intel_display_power_flush_work_sync() instead.
786  */
intel_display_power_flush_work(struct drm_i915_private * i915)787 void intel_display_power_flush_work(struct drm_i915_private *i915)
788 {
789 	struct i915_power_domains *power_domains = &i915->display.power.domains;
790 	struct intel_power_domain_mask async_put_mask;
791 	intel_wakeref_t work_wakeref;
792 
793 	mutex_lock(&power_domains->lock);
794 
795 	work_wakeref = fetch_and_zero(&power_domains->async_put_wakeref);
796 	if (!work_wakeref)
797 		goto out_verify;
798 
799 	async_put_domains_mask(power_domains, &async_put_mask);
800 	release_async_put_domains(power_domains, &async_put_mask);
801 	cancel_async_put_work(power_domains, false);
802 
803 out_verify:
804 	verify_async_put_domains_state(power_domains);
805 
806 	mutex_unlock(&power_domains->lock);
807 
808 	if (work_wakeref)
809 		intel_runtime_pm_put_raw(&i915->runtime_pm, work_wakeref);
810 }
811 
812 /**
813  * intel_display_power_flush_work_sync - flushes and syncs the async display power disabling work
814  * @i915: i915 device instance
815  *
816  * Like intel_display_power_flush_work(), but also ensure that the work
817  * handler function is not running any more when this function returns.
818  */
819 static void
intel_display_power_flush_work_sync(struct drm_i915_private * i915)820 intel_display_power_flush_work_sync(struct drm_i915_private *i915)
821 {
822 	struct i915_power_domains *power_domains = &i915->display.power.domains;
823 
824 	intel_display_power_flush_work(i915);
825 	cancel_async_put_work(power_domains, true);
826 
827 	verify_async_put_domains_state(power_domains);
828 
829 	drm_WARN_ON(&i915->drm, power_domains->async_put_wakeref);
830 }
831 
832 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
833 /**
834  * intel_display_power_put - release a power domain reference
835  * @dev_priv: i915 device instance
836  * @domain: power domain to reference
837  * @wakeref: wakeref acquired for the reference that is being released
838  *
839  * This function drops the power domain reference obtained by
840  * intel_display_power_get() and might power down the corresponding hardware
841  * block right away if this is the last reference.
842  */
intel_display_power_put(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain,intel_wakeref_t wakeref)843 void intel_display_power_put(struct drm_i915_private *dev_priv,
844 			     enum intel_display_power_domain domain,
845 			     intel_wakeref_t wakeref)
846 {
847 	__intel_display_power_put(dev_priv, domain);
848 	intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
849 }
850 #else
851 /**
852  * intel_display_power_put_unchecked - release an unchecked power domain reference
853  * @dev_priv: i915 device instance
854  * @domain: power domain to reference
855  *
856  * This function drops the power domain reference obtained by
857  * intel_display_power_get() and might power down the corresponding hardware
858  * block right away if this is the last reference.
859  *
860  * This function is only for the power domain code's internal use to suppress wakeref
861  * tracking when the correspondig debug kconfig option is disabled, should not
862  * be used otherwise.
863  */
intel_display_power_put_unchecked(struct drm_i915_private * dev_priv,enum intel_display_power_domain domain)864 void intel_display_power_put_unchecked(struct drm_i915_private *dev_priv,
865 				       enum intel_display_power_domain domain)
866 {
867 	__intel_display_power_put(dev_priv, domain);
868 	intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
869 }
870 #endif
871 
872 void
intel_display_power_get_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)873 intel_display_power_get_in_set(struct drm_i915_private *i915,
874 			       struct intel_display_power_domain_set *power_domain_set,
875 			       enum intel_display_power_domain domain)
876 {
877 	intel_wakeref_t __maybe_unused wf;
878 
879 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
880 
881 	wf = intel_display_power_get(i915, domain);
882 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
883 	power_domain_set->wakerefs[domain] = wf;
884 #endif
885 	set_bit(domain, power_domain_set->mask.bits);
886 }
887 
888 bool
intel_display_power_get_in_set_if_enabled(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,enum intel_display_power_domain domain)889 intel_display_power_get_in_set_if_enabled(struct drm_i915_private *i915,
890 					  struct intel_display_power_domain_set *power_domain_set,
891 					  enum intel_display_power_domain domain)
892 {
893 	intel_wakeref_t wf;
894 
895 	drm_WARN_ON(&i915->drm, test_bit(domain, power_domain_set->mask.bits));
896 
897 	wf = intel_display_power_get_if_enabled(i915, domain);
898 	if (!wf)
899 		return false;
900 
901 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
902 	power_domain_set->wakerefs[domain] = wf;
903 #endif
904 	set_bit(domain, power_domain_set->mask.bits);
905 
906 	return true;
907 }
908 
909 void
intel_display_power_put_mask_in_set(struct drm_i915_private * i915,struct intel_display_power_domain_set * power_domain_set,struct intel_power_domain_mask * mask)910 intel_display_power_put_mask_in_set(struct drm_i915_private *i915,
911 				    struct intel_display_power_domain_set *power_domain_set,
912 				    struct intel_power_domain_mask *mask)
913 {
914 	enum intel_display_power_domain domain;
915 
916 #ifdef notyet
917 	drm_WARN_ON(&i915->drm,
918 		    !bitmap_subset(mask->bits, power_domain_set->mask.bits, POWER_DOMAIN_NUM));
919 #endif
920 
921 	for_each_power_domain(domain, mask) {
922 		intel_wakeref_t __maybe_unused wf = -1;
923 
924 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
925 		wf = fetch_and_zero(&power_domain_set->wakerefs[domain]);
926 #endif
927 		intel_display_power_put(i915, domain, wf);
928 		clear_bit(domain, power_domain_set->mask.bits);
929 	}
930 }
931 
932 static int
sanitize_disable_power_well_option(const struct drm_i915_private * dev_priv,int disable_power_well)933 sanitize_disable_power_well_option(const struct drm_i915_private *dev_priv,
934 				   int disable_power_well)
935 {
936 	if (disable_power_well >= 0)
937 		return !!disable_power_well;
938 
939 	return 1;
940 }
941 
get_allowed_dc_mask(const struct drm_i915_private * dev_priv,int enable_dc)942 static u32 get_allowed_dc_mask(const struct drm_i915_private *dev_priv,
943 			       int enable_dc)
944 {
945 	u32 mask;
946 	int requested_dc;
947 	int max_dc;
948 
949 	if (!HAS_DISPLAY(dev_priv))
950 		return 0;
951 
952 	if (IS_DG2(dev_priv))
953 		max_dc = 1;
954 	else if (IS_DG1(dev_priv))
955 		max_dc = 3;
956 	else if (DISPLAY_VER(dev_priv) >= 12)
957 		max_dc = 4;
958 	else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
959 		max_dc = 1;
960 	else if (DISPLAY_VER(dev_priv) >= 9)
961 		max_dc = 2;
962 	else
963 		max_dc = 0;
964 
965 	/*
966 	 * DC9 has a separate HW flow from the rest of the DC states,
967 	 * not depending on the DMC firmware. It's needed by system
968 	 * suspend/resume, so allow it unconditionally.
969 	 */
970 	mask = IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv) ||
971 		DISPLAY_VER(dev_priv) >= 11 ?
972 	       DC_STATE_EN_DC9 : 0;
973 
974 	if (!dev_priv->params.disable_power_well)
975 		max_dc = 0;
976 
977 	if (enable_dc >= 0 && enable_dc <= max_dc) {
978 		requested_dc = enable_dc;
979 	} else if (enable_dc == -1) {
980 		requested_dc = max_dc;
981 	} else if (enable_dc > max_dc && enable_dc <= 4) {
982 		drm_dbg_kms(&dev_priv->drm,
983 			    "Adjusting requested max DC state (%d->%d)\n",
984 			    enable_dc, max_dc);
985 		requested_dc = max_dc;
986 	} else {
987 		drm_err(&dev_priv->drm,
988 			"Unexpected value for enable_dc (%d)\n", enable_dc);
989 		requested_dc = max_dc;
990 	}
991 
992 	switch (requested_dc) {
993 	case 4:
994 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC6;
995 		break;
996 	case 3:
997 		mask |= DC_STATE_EN_DC3CO | DC_STATE_EN_UPTO_DC5;
998 		break;
999 	case 2:
1000 		mask |= DC_STATE_EN_UPTO_DC6;
1001 		break;
1002 	case 1:
1003 		mask |= DC_STATE_EN_UPTO_DC5;
1004 		break;
1005 	}
1006 
1007 	drm_dbg_kms(&dev_priv->drm, "Allowed DC state mask %02x\n", mask);
1008 
1009 	return mask;
1010 }
1011 
1012 /**
1013  * intel_power_domains_init - initializes the power domain structures
1014  * @dev_priv: i915 device instance
1015  *
1016  * Initializes the power domain structures for @dev_priv depending upon the
1017  * supported platform.
1018  */
intel_power_domains_init(struct drm_i915_private * dev_priv)1019 int intel_power_domains_init(struct drm_i915_private *dev_priv)
1020 {
1021 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1022 
1023 	dev_priv->params.disable_power_well =
1024 		sanitize_disable_power_well_option(dev_priv,
1025 						   dev_priv->params.disable_power_well);
1026 	power_domains->allowed_dc_mask =
1027 		get_allowed_dc_mask(dev_priv, dev_priv->params.enable_dc);
1028 
1029 	power_domains->target_dc_state =
1030 		sanitize_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
1031 
1032 	rw_init(&power_domains->lock, "ipdl");
1033 
1034 	INIT_DELAYED_WORK(&power_domains->async_put_work,
1035 			  intel_display_power_put_async_work);
1036 
1037 	return intel_display_power_map_init(power_domains);
1038 }
1039 
1040 /**
1041  * intel_power_domains_cleanup - clean up power domains resources
1042  * @dev_priv: i915 device instance
1043  *
1044  * Release any resources acquired by intel_power_domains_init()
1045  */
intel_power_domains_cleanup(struct drm_i915_private * dev_priv)1046 void intel_power_domains_cleanup(struct drm_i915_private *dev_priv)
1047 {
1048 	intel_display_power_map_cleanup(&dev_priv->display.power.domains);
1049 }
1050 
intel_power_domains_sync_hw(struct drm_i915_private * dev_priv)1051 static void intel_power_domains_sync_hw(struct drm_i915_private *dev_priv)
1052 {
1053 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1054 	struct i915_power_well *power_well;
1055 
1056 	mutex_lock(&power_domains->lock);
1057 	for_each_power_well(dev_priv, power_well)
1058 		intel_power_well_sync_hw(dev_priv, power_well);
1059 	mutex_unlock(&power_domains->lock);
1060 }
1061 
gen9_dbuf_slice_set(struct drm_i915_private * dev_priv,enum dbuf_slice slice,bool enable)1062 static void gen9_dbuf_slice_set(struct drm_i915_private *dev_priv,
1063 				enum dbuf_slice slice, bool enable)
1064 {
1065 	i915_reg_t reg = DBUF_CTL_S(slice);
1066 	bool state;
1067 
1068 	intel_de_rmw(dev_priv, reg, DBUF_POWER_REQUEST,
1069 		     enable ? DBUF_POWER_REQUEST : 0);
1070 	intel_de_posting_read(dev_priv, reg);
1071 	udelay(10);
1072 
1073 	state = intel_de_read(dev_priv, reg) & DBUF_POWER_STATE;
1074 	drm_WARN(&dev_priv->drm, enable != state,
1075 		 "DBuf slice %d power %s timeout!\n",
1076 		 slice, str_enable_disable(enable));
1077 }
1078 
gen9_dbuf_slices_update(struct drm_i915_private * dev_priv,u8 req_slices)1079 void gen9_dbuf_slices_update(struct drm_i915_private *dev_priv,
1080 			     u8 req_slices)
1081 {
1082 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1083 	u8 slice_mask = DISPLAY_INFO(dev_priv)->dbuf.slice_mask;
1084 	enum dbuf_slice slice;
1085 
1086 	drm_WARN(&dev_priv->drm, req_slices & ~slice_mask,
1087 		 "Invalid set of dbuf slices (0x%x) requested (total dbuf slices 0x%x)\n",
1088 		 req_slices, slice_mask);
1089 
1090 	drm_dbg_kms(&dev_priv->drm, "Updating dbuf slices to 0x%x\n",
1091 		    req_slices);
1092 
1093 	/*
1094 	 * Might be running this in parallel to gen9_dc_off_power_well_enable
1095 	 * being called from intel_dp_detect for instance,
1096 	 * which causes assertion triggered by race condition,
1097 	 * as gen9_assert_dbuf_enabled might preempt this when registers
1098 	 * were already updated, while dev_priv was not.
1099 	 */
1100 	mutex_lock(&power_domains->lock);
1101 
1102 	for_each_dbuf_slice(dev_priv, slice)
1103 		gen9_dbuf_slice_set(dev_priv, slice, req_slices & BIT(slice));
1104 
1105 	dev_priv->display.dbuf.enabled_slices = req_slices;
1106 
1107 	mutex_unlock(&power_domains->lock);
1108 }
1109 
gen9_dbuf_enable(struct drm_i915_private * dev_priv)1110 static void gen9_dbuf_enable(struct drm_i915_private *dev_priv)
1111 {
1112 	u8 slices_mask;
1113 
1114 	dev_priv->display.dbuf.enabled_slices =
1115 		intel_enabled_dbuf_slices_mask(dev_priv);
1116 
1117 	slices_mask = BIT(DBUF_S1) | dev_priv->display.dbuf.enabled_slices;
1118 
1119 	if (DISPLAY_VER(dev_priv) >= 14)
1120 		intel_pmdemand_program_dbuf(dev_priv, slices_mask);
1121 
1122 	/*
1123 	 * Just power up at least 1 slice, we will
1124 	 * figure out later which slices we have and what we need.
1125 	 */
1126 	gen9_dbuf_slices_update(dev_priv, slices_mask);
1127 }
1128 
gen9_dbuf_disable(struct drm_i915_private * dev_priv)1129 static void gen9_dbuf_disable(struct drm_i915_private *dev_priv)
1130 {
1131 	gen9_dbuf_slices_update(dev_priv, 0);
1132 
1133 	if (DISPLAY_VER(dev_priv) >= 14)
1134 		intel_pmdemand_program_dbuf(dev_priv, 0);
1135 }
1136 
gen12_dbuf_slices_config(struct drm_i915_private * dev_priv)1137 static void gen12_dbuf_slices_config(struct drm_i915_private *dev_priv)
1138 {
1139 	enum dbuf_slice slice;
1140 
1141 	if (IS_ALDERLAKE_P(dev_priv))
1142 		return;
1143 
1144 	for_each_dbuf_slice(dev_priv, slice)
1145 		intel_de_rmw(dev_priv, DBUF_CTL_S(slice),
1146 			     DBUF_TRACKER_STATE_SERVICE_MASK,
1147 			     DBUF_TRACKER_STATE_SERVICE(8));
1148 }
1149 
icl_mbus_init(struct drm_i915_private * dev_priv)1150 static void icl_mbus_init(struct drm_i915_private *dev_priv)
1151 {
1152 	unsigned long abox_regs = DISPLAY_INFO(dev_priv)->abox_mask;
1153 	u32 mask, val, i;
1154 
1155 	if (IS_ALDERLAKE_P(dev_priv) || DISPLAY_VER(dev_priv) >= 14)
1156 		return;
1157 
1158 	mask = MBUS_ABOX_BT_CREDIT_POOL1_MASK |
1159 		MBUS_ABOX_BT_CREDIT_POOL2_MASK |
1160 		MBUS_ABOX_B_CREDIT_MASK |
1161 		MBUS_ABOX_BW_CREDIT_MASK;
1162 	val = MBUS_ABOX_BT_CREDIT_POOL1(16) |
1163 		MBUS_ABOX_BT_CREDIT_POOL2(16) |
1164 		MBUS_ABOX_B_CREDIT(1) |
1165 		MBUS_ABOX_BW_CREDIT(1);
1166 
1167 	/*
1168 	 * gen12 platforms that use abox1 and abox2 for pixel data reads still
1169 	 * expect us to program the abox_ctl0 register as well, even though
1170 	 * we don't have to program other instance-0 registers like BW_BUDDY.
1171 	 */
1172 	if (DISPLAY_VER(dev_priv) == 12)
1173 		abox_regs |= BIT(0);
1174 
1175 	for_each_set_bit(i, &abox_regs, sizeof(abox_regs))
1176 		intel_de_rmw(dev_priv, MBUS_ABOX_CTL(i), mask, val);
1177 }
1178 
hsw_assert_cdclk(struct drm_i915_private * dev_priv)1179 static void hsw_assert_cdclk(struct drm_i915_private *dev_priv)
1180 {
1181 	u32 val = intel_de_read(dev_priv, LCPLL_CTL);
1182 
1183 	/*
1184 	 * The LCPLL register should be turned on by the BIOS. For now
1185 	 * let's just check its state and print errors in case
1186 	 * something is wrong.  Don't even try to turn it on.
1187 	 */
1188 
1189 	if (val & LCPLL_CD_SOURCE_FCLK)
1190 		drm_err(&dev_priv->drm, "CDCLK source is not LCPLL\n");
1191 
1192 	if (val & LCPLL_PLL_DISABLE)
1193 		drm_err(&dev_priv->drm, "LCPLL is disabled\n");
1194 
1195 	if ((val & LCPLL_REF_MASK) != LCPLL_REF_NON_SSC)
1196 		drm_err(&dev_priv->drm, "LCPLL not using non-SSC reference\n");
1197 }
1198 
assert_can_disable_lcpll(struct drm_i915_private * dev_priv)1199 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
1200 {
1201 	struct intel_crtc *crtc;
1202 
1203 	for_each_intel_crtc(&dev_priv->drm, crtc)
1204 		I915_STATE_WARN(dev_priv, crtc->active,
1205 				"CRTC for pipe %c enabled\n",
1206 				pipe_name(crtc->pipe));
1207 
1208 	I915_STATE_WARN(dev_priv, intel_de_read(dev_priv, HSW_PWR_WELL_CTL2),
1209 			"Display power well on\n");
1210 	I915_STATE_WARN(dev_priv,
1211 			intel_de_read(dev_priv, SPLL_CTL) & SPLL_PLL_ENABLE,
1212 			"SPLL enabled\n");
1213 	I915_STATE_WARN(dev_priv,
1214 			intel_de_read(dev_priv, WRPLL_CTL(0)) & WRPLL_PLL_ENABLE,
1215 			"WRPLL1 enabled\n");
1216 	I915_STATE_WARN(dev_priv,
1217 			intel_de_read(dev_priv, WRPLL_CTL(1)) & WRPLL_PLL_ENABLE,
1218 			"WRPLL2 enabled\n");
1219 	I915_STATE_WARN(dev_priv,
1220 			intel_de_read(dev_priv, PP_STATUS(0)) & PP_ON,
1221 			"Panel power on\n");
1222 	I915_STATE_WARN(dev_priv,
1223 			intel_de_read(dev_priv, BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
1224 			"CPU PWM1 enabled\n");
1225 	if (IS_HASWELL(dev_priv))
1226 		I915_STATE_WARN(dev_priv,
1227 				intel_de_read(dev_priv, HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
1228 				"CPU PWM2 enabled\n");
1229 	I915_STATE_WARN(dev_priv,
1230 			intel_de_read(dev_priv, BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
1231 			"PCH PWM1 enabled\n");
1232 	I915_STATE_WARN(dev_priv,
1233 			(intel_de_read(dev_priv, UTIL_PIN_CTL) & (UTIL_PIN_ENABLE | UTIL_PIN_MODE_MASK)) == (UTIL_PIN_ENABLE | UTIL_PIN_MODE_PWM),
1234 			"Utility pin enabled in PWM mode\n");
1235 	I915_STATE_WARN(dev_priv,
1236 			intel_de_read(dev_priv, PCH_GTC_CTL) & PCH_GTC_ENABLE,
1237 			"PCH GTC enabled\n");
1238 
1239 	/*
1240 	 * In theory we can still leave IRQs enabled, as long as only the HPD
1241 	 * interrupts remain enabled. We used to check for that, but since it's
1242 	 * gen-specific and since we only disable LCPLL after we fully disable
1243 	 * the interrupts, the check below should be enough.
1244 	 */
1245 	I915_STATE_WARN(dev_priv, intel_irqs_enabled(dev_priv),
1246 			"IRQs enabled\n");
1247 }
1248 
hsw_read_dcomp(struct drm_i915_private * dev_priv)1249 static u32 hsw_read_dcomp(struct drm_i915_private *dev_priv)
1250 {
1251 	if (IS_HASWELL(dev_priv))
1252 		return intel_de_read(dev_priv, D_COMP_HSW);
1253 	else
1254 		return intel_de_read(dev_priv, D_COMP_BDW);
1255 }
1256 
hsw_write_dcomp(struct drm_i915_private * dev_priv,u32 val)1257 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, u32 val)
1258 {
1259 	if (IS_HASWELL(dev_priv)) {
1260 		if (snb_pcode_write(&dev_priv->uncore, GEN6_PCODE_WRITE_D_COMP, val))
1261 			drm_dbg_kms(&dev_priv->drm,
1262 				    "Failed to write to D_COMP\n");
1263 	} else {
1264 		intel_de_write(dev_priv, D_COMP_BDW, val);
1265 		intel_de_posting_read(dev_priv, D_COMP_BDW);
1266 	}
1267 }
1268 
1269 /*
1270  * This function implements pieces of two sequences from BSpec:
1271  * - Sequence for display software to disable LCPLL
1272  * - Sequence for display software to allow package C8+
1273  * The steps implemented here are just the steps that actually touch the LCPLL
1274  * register. Callers should take care of disabling all the display engine
1275  * functions, doing the mode unset, fixing interrupts, etc.
1276  */
hsw_disable_lcpll(struct drm_i915_private * dev_priv,bool switch_to_fclk,bool allow_power_down)1277 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
1278 			      bool switch_to_fclk, bool allow_power_down)
1279 {
1280 	u32 val;
1281 
1282 	assert_can_disable_lcpll(dev_priv);
1283 
1284 	val = intel_de_read(dev_priv, LCPLL_CTL);
1285 
1286 	if (switch_to_fclk) {
1287 		val |= LCPLL_CD_SOURCE_FCLK;
1288 		intel_de_write(dev_priv, LCPLL_CTL, val);
1289 
1290 		if (wait_for_us(intel_de_read(dev_priv, LCPLL_CTL) &
1291 				LCPLL_CD_SOURCE_FCLK_DONE, 1))
1292 			drm_err(&dev_priv->drm, "Switching to FCLK failed\n");
1293 
1294 		val = intel_de_read(dev_priv, LCPLL_CTL);
1295 	}
1296 
1297 	val |= LCPLL_PLL_DISABLE;
1298 	intel_de_write(dev_priv, LCPLL_CTL, val);
1299 	intel_de_posting_read(dev_priv, LCPLL_CTL);
1300 
1301 	if (intel_de_wait_for_clear(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 1))
1302 		drm_err(&dev_priv->drm, "LCPLL still locked\n");
1303 
1304 	val = hsw_read_dcomp(dev_priv);
1305 	val |= D_COMP_COMP_DISABLE;
1306 	hsw_write_dcomp(dev_priv, val);
1307 	ndelay(100);
1308 
1309 	if (wait_for((hsw_read_dcomp(dev_priv) &
1310 		      D_COMP_RCOMP_IN_PROGRESS) == 0, 1))
1311 		drm_err(&dev_priv->drm, "D_COMP RCOMP still in progress\n");
1312 
1313 	if (allow_power_down) {
1314 		intel_de_rmw(dev_priv, LCPLL_CTL, 0, LCPLL_POWER_DOWN_ALLOW);
1315 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1316 	}
1317 }
1318 
1319 /*
1320  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
1321  * source.
1322  */
hsw_restore_lcpll(struct drm_i915_private * dev_priv)1323 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
1324 {
1325 	u32 val;
1326 
1327 	val = intel_de_read(dev_priv, LCPLL_CTL);
1328 
1329 	if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
1330 		    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
1331 		return;
1332 
1333 	/*
1334 	 * Make sure we're not on PC8 state before disabling PC8, otherwise
1335 	 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
1336 	 */
1337 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1338 
1339 	if (val & LCPLL_POWER_DOWN_ALLOW) {
1340 		val &= ~LCPLL_POWER_DOWN_ALLOW;
1341 		intel_de_write(dev_priv, LCPLL_CTL, val);
1342 		intel_de_posting_read(dev_priv, LCPLL_CTL);
1343 	}
1344 
1345 	val = hsw_read_dcomp(dev_priv);
1346 	val |= D_COMP_COMP_FORCE;
1347 	val &= ~D_COMP_COMP_DISABLE;
1348 	hsw_write_dcomp(dev_priv, val);
1349 
1350 	val = intel_de_read(dev_priv, LCPLL_CTL);
1351 	val &= ~LCPLL_PLL_DISABLE;
1352 	intel_de_write(dev_priv, LCPLL_CTL, val);
1353 
1354 	if (intel_de_wait_for_set(dev_priv, LCPLL_CTL, LCPLL_PLL_LOCK, 5))
1355 		drm_err(&dev_priv->drm, "LCPLL not locked yet\n");
1356 
1357 	if (val & LCPLL_CD_SOURCE_FCLK) {
1358 		intel_de_rmw(dev_priv, LCPLL_CTL, LCPLL_CD_SOURCE_FCLK, 0);
1359 
1360 		if (wait_for_us((intel_de_read(dev_priv, LCPLL_CTL) &
1361 				 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
1362 			drm_err(&dev_priv->drm,
1363 				"Switching back to LCPLL failed\n");
1364 	}
1365 
1366 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1367 
1368 	intel_update_cdclk(dev_priv);
1369 	intel_cdclk_dump_config(dev_priv, &dev_priv->display.cdclk.hw, "Current CDCLK");
1370 }
1371 
1372 /*
1373  * Package states C8 and deeper are really deep PC states that can only be
1374  * reached when all the devices on the system allow it, so even if the graphics
1375  * device allows PC8+, it doesn't mean the system will actually get to these
1376  * states. Our driver only allows PC8+ when going into runtime PM.
1377  *
1378  * The requirements for PC8+ are that all the outputs are disabled, the power
1379  * well is disabled and most interrupts are disabled, and these are also
1380  * requirements for runtime PM. When these conditions are met, we manually do
1381  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
1382  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
1383  * hang the machine.
1384  *
1385  * When we really reach PC8 or deeper states (not just when we allow it) we lose
1386  * the state of some registers, so when we come back from PC8+ we need to
1387  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
1388  * need to take care of the registers kept by RC6. Notice that this happens even
1389  * if we don't put the device in PCI D3 state (which is what currently happens
1390  * because of the runtime PM support).
1391  *
1392  * For more, read "Display Sequences for Package C8" on the hardware
1393  * documentation.
1394  */
hsw_enable_pc8(struct drm_i915_private * dev_priv)1395 static void hsw_enable_pc8(struct drm_i915_private *dev_priv)
1396 {
1397 	drm_dbg_kms(&dev_priv->drm, "Enabling package C8+\n");
1398 
1399 	if (HAS_PCH_LPT_LP(dev_priv))
1400 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D,
1401 			     PCH_LP_PARTITION_LEVEL_DISABLE, 0);
1402 
1403 	lpt_disable_clkout_dp(dev_priv);
1404 	hsw_disable_lcpll(dev_priv, true, true);
1405 }
1406 
hsw_disable_pc8(struct drm_i915_private * dev_priv)1407 static void hsw_disable_pc8(struct drm_i915_private *dev_priv)
1408 {
1409 	drm_dbg_kms(&dev_priv->drm, "Disabling package C8+\n");
1410 
1411 	hsw_restore_lcpll(dev_priv);
1412 	intel_init_pch_refclk(dev_priv);
1413 
1414 	/* Many display registers don't survive PC8+ */
1415 	intel_clock_gating_init(dev_priv);
1416 }
1417 
intel_pch_reset_handshake(struct drm_i915_private * dev_priv,bool enable)1418 static void intel_pch_reset_handshake(struct drm_i915_private *dev_priv,
1419 				      bool enable)
1420 {
1421 	i915_reg_t reg;
1422 	u32 reset_bits;
1423 
1424 	if (IS_IVYBRIDGE(dev_priv)) {
1425 		reg = GEN7_MSG_CTL;
1426 		reset_bits = WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK;
1427 	} else {
1428 		reg = HSW_NDE_RSTWRN_OPT;
1429 		reset_bits = RESET_PCH_HANDSHAKE_ENABLE;
1430 	}
1431 
1432 	if (DISPLAY_VER(dev_priv) >= 14)
1433 		reset_bits |= MTL_RESET_PICA_HANDSHAKE_EN;
1434 
1435 	intel_de_rmw(dev_priv, reg, reset_bits, enable ? reset_bits : 0);
1436 }
1437 
skl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1438 static void skl_display_core_init(struct drm_i915_private *dev_priv,
1439 				  bool resume)
1440 {
1441 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1442 	struct i915_power_well *well;
1443 
1444 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1445 
1446 	/* enable PCH reset handshake */
1447 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1448 
1449 	if (!HAS_DISPLAY(dev_priv))
1450 		return;
1451 
1452 	/* enable PG1 and Misc I/O */
1453 	mutex_lock(&power_domains->lock);
1454 
1455 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1456 	intel_power_well_enable(dev_priv, well);
1457 
1458 	well = lookup_power_well(dev_priv, SKL_DISP_PW_MISC_IO);
1459 	intel_power_well_enable(dev_priv, well);
1460 
1461 	mutex_unlock(&power_domains->lock);
1462 
1463 	intel_cdclk_init_hw(dev_priv);
1464 
1465 	gen9_dbuf_enable(dev_priv);
1466 
1467 	if (resume)
1468 		intel_dmc_load_program(dev_priv);
1469 }
1470 
skl_display_core_uninit(struct drm_i915_private * dev_priv)1471 static void skl_display_core_uninit(struct drm_i915_private *dev_priv)
1472 {
1473 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1474 	struct i915_power_well *well;
1475 
1476 	if (!HAS_DISPLAY(dev_priv))
1477 		return;
1478 
1479 	gen9_disable_dc_states(dev_priv);
1480 	/* TODO: disable DMC program */
1481 
1482 	gen9_dbuf_disable(dev_priv);
1483 
1484 	intel_cdclk_uninit_hw(dev_priv);
1485 
1486 	/* The spec doesn't call for removing the reset handshake flag */
1487 	/* disable PG1 and Misc I/O */
1488 
1489 	mutex_lock(&power_domains->lock);
1490 
1491 	/*
1492 	 * BSpec says to keep the MISC IO power well enabled here, only
1493 	 * remove our request for power well 1.
1494 	 * Note that even though the driver's request is removed power well 1
1495 	 * may stay enabled after this due to DMC's own request on it.
1496 	 */
1497 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1498 	intel_power_well_disable(dev_priv, well);
1499 
1500 	mutex_unlock(&power_domains->lock);
1501 
1502 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1503 }
1504 
bxt_display_core_init(struct drm_i915_private * dev_priv,bool resume)1505 static void bxt_display_core_init(struct drm_i915_private *dev_priv, bool resume)
1506 {
1507 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1508 	struct i915_power_well *well;
1509 
1510 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1511 
1512 	/*
1513 	 * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
1514 	 * or else the reset will hang because there is no PCH to respond.
1515 	 * Move the handshake programming to initialization sequence.
1516 	 * Previously was left up to BIOS.
1517 	 */
1518 	intel_pch_reset_handshake(dev_priv, false);
1519 
1520 	if (!HAS_DISPLAY(dev_priv))
1521 		return;
1522 
1523 	/* Enable PG1 */
1524 	mutex_lock(&power_domains->lock);
1525 
1526 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1527 	intel_power_well_enable(dev_priv, well);
1528 
1529 	mutex_unlock(&power_domains->lock);
1530 
1531 	intel_cdclk_init_hw(dev_priv);
1532 
1533 	gen9_dbuf_enable(dev_priv);
1534 
1535 	if (resume)
1536 		intel_dmc_load_program(dev_priv);
1537 }
1538 
bxt_display_core_uninit(struct drm_i915_private * dev_priv)1539 static void bxt_display_core_uninit(struct drm_i915_private *dev_priv)
1540 {
1541 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1542 	struct i915_power_well *well;
1543 
1544 	if (!HAS_DISPLAY(dev_priv))
1545 		return;
1546 
1547 	gen9_disable_dc_states(dev_priv);
1548 	/* TODO: disable DMC program */
1549 
1550 	gen9_dbuf_disable(dev_priv);
1551 
1552 	intel_cdclk_uninit_hw(dev_priv);
1553 
1554 	/* The spec doesn't call for removing the reset handshake flag */
1555 
1556 	/*
1557 	 * Disable PW1 (PG1).
1558 	 * Note that even though the driver's request is removed power well 1
1559 	 * may stay enabled after this due to DMC's own request on it.
1560 	 */
1561 	mutex_lock(&power_domains->lock);
1562 
1563 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1564 	intel_power_well_disable(dev_priv, well);
1565 
1566 	mutex_unlock(&power_domains->lock);
1567 
1568 	usleep_range(10, 30);		/* 10 us delay per Bspec */
1569 }
1570 
1571 struct buddy_page_mask {
1572 	u32 page_mask;
1573 	u8 type;
1574 	u8 num_channels;
1575 };
1576 
1577 static const struct buddy_page_mask tgl_buddy_page_masks[] = {
1578 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0xF },
1579 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,	.page_mask = 0xF },
1580 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1C },
1581 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1C },
1582 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1F },
1583 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1E },
1584 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x38 },
1585 	{ .num_channels = 4, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x38 },
1586 	{}
1587 };
1588 
1589 static const struct buddy_page_mask wa_1409767108_buddy_page_masks[] = {
1590 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x1 },
1591 	{ .num_channels = 1, .type = INTEL_DRAM_DDR4,   .page_mask = 0x1 },
1592 	{ .num_channels = 1, .type = INTEL_DRAM_DDR5,   .page_mask = 0x1 },
1593 	{ .num_channels = 1, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x1 },
1594 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR4, .page_mask = 0x3 },
1595 	{ .num_channels = 2, .type = INTEL_DRAM_DDR4,   .page_mask = 0x3 },
1596 	{ .num_channels = 2, .type = INTEL_DRAM_DDR5,   .page_mask = 0x3 },
1597 	{ .num_channels = 2, .type = INTEL_DRAM_LPDDR5, .page_mask = 0x3 },
1598 	{}
1599 };
1600 
tgl_bw_buddy_init(struct drm_i915_private * dev_priv)1601 static void tgl_bw_buddy_init(struct drm_i915_private *dev_priv)
1602 {
1603 	enum intel_dram_type type = dev_priv->dram_info.type;
1604 	u8 num_channels = dev_priv->dram_info.num_channels;
1605 	const struct buddy_page_mask *table;
1606 	unsigned long abox_mask = DISPLAY_INFO(dev_priv)->abox_mask;
1607 	int config, i;
1608 
1609 	/* BW_BUDDY registers are not used on dgpu's beyond DG1 */
1610 	if (IS_DGFX(dev_priv) && !IS_DG1(dev_priv))
1611 		return;
1612 
1613 	if (IS_ALDERLAKE_S(dev_priv) ||
1614 	    (IS_ROCKETLAKE(dev_priv) && IS_DISPLAY_STEP(dev_priv, STEP_A0, STEP_B0)))
1615 		/* Wa_1409767108 */
1616 		table = wa_1409767108_buddy_page_masks;
1617 	else
1618 		table = tgl_buddy_page_masks;
1619 
1620 	for (config = 0; table[config].page_mask != 0; config++)
1621 		if (table[config].num_channels == num_channels &&
1622 		    table[config].type == type)
1623 			break;
1624 
1625 	if (table[config].page_mask == 0) {
1626 		drm_dbg(&dev_priv->drm,
1627 			"Unknown memory configuration; disabling address buddy logic.\n");
1628 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask))
1629 			intel_de_write(dev_priv, BW_BUDDY_CTL(i),
1630 				       BW_BUDDY_DISABLE);
1631 	} else {
1632 		for_each_set_bit(i, &abox_mask, sizeof(abox_mask)) {
1633 			intel_de_write(dev_priv, BW_BUDDY_PAGE_MASK(i),
1634 				       table[config].page_mask);
1635 
1636 			/* Wa_22010178259:tgl,dg1,rkl,adl-s */
1637 			if (DISPLAY_VER(dev_priv) == 12)
1638 				intel_de_rmw(dev_priv, BW_BUDDY_CTL(i),
1639 					     BW_BUDDY_TLB_REQ_TIMER_MASK,
1640 					     BW_BUDDY_TLB_REQ_TIMER(0x8));
1641 		}
1642 	}
1643 }
1644 
icl_display_core_init(struct drm_i915_private * dev_priv,bool resume)1645 static void icl_display_core_init(struct drm_i915_private *dev_priv,
1646 				  bool resume)
1647 {
1648 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1649 	struct i915_power_well *well;
1650 
1651 	gen9_set_dc_state(dev_priv, DC_STATE_DISABLE);
1652 
1653 	/* Wa_14011294188:ehl,jsl,tgl,rkl,adl-s */
1654 	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP &&
1655 	    INTEL_PCH_TYPE(dev_priv) < PCH_DG1)
1656 		intel_de_rmw(dev_priv, SOUTH_DSPCLK_GATE_D, 0,
1657 			     PCH_DPMGUNIT_CLOCK_GATE_DISABLE);
1658 
1659 	/* 1. Enable PCH reset handshake. */
1660 	intel_pch_reset_handshake(dev_priv, !HAS_PCH_NOP(dev_priv));
1661 
1662 	if (!HAS_DISPLAY(dev_priv))
1663 		return;
1664 
1665 	/* 2. Initialize all combo phys */
1666 	intel_combo_phy_init(dev_priv);
1667 
1668 	/*
1669 	 * 3. Enable Power Well 1 (PG1).
1670 	 *    The AUX IO power wells will be enabled on demand.
1671 	 */
1672 	mutex_lock(&power_domains->lock);
1673 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1674 	intel_power_well_enable(dev_priv, well);
1675 	mutex_unlock(&power_domains->lock);
1676 
1677 	if (DISPLAY_VER(dev_priv) == 14)
1678 		intel_de_rmw(dev_priv, DC_STATE_EN,
1679 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH, 0);
1680 
1681 	/* 4. Enable CDCLK. */
1682 	intel_cdclk_init_hw(dev_priv);
1683 
1684 	if (DISPLAY_VER(dev_priv) >= 12)
1685 		gen12_dbuf_slices_config(dev_priv);
1686 
1687 	/* 5. Enable DBUF. */
1688 	gen9_dbuf_enable(dev_priv);
1689 
1690 	/* 6. Setup MBUS. */
1691 	icl_mbus_init(dev_priv);
1692 
1693 	/* 7. Program arbiter BW_BUDDY registers */
1694 	if (DISPLAY_VER(dev_priv) >= 12)
1695 		tgl_bw_buddy_init(dev_priv);
1696 
1697 	/* 8. Ensure PHYs have completed calibration and adaptation */
1698 	if (IS_DG2(dev_priv))
1699 		intel_snps_phy_wait_for_calibration(dev_priv);
1700 
1701 	if (resume)
1702 		intel_dmc_load_program(dev_priv);
1703 
1704 	/* Wa_14011508470:tgl,dg1,rkl,adl-s,adl-p */
1705 	if (DISPLAY_VER(dev_priv) >= 12)
1706 		intel_de_rmw(dev_priv, GEN11_CHICKEN_DCPR_2, 0,
1707 			     DCPR_CLEAR_MEMSTAT_DIS | DCPR_SEND_RESP_IMM |
1708 			     DCPR_MASK_LPMODE | DCPR_MASK_MAXLATENCY_MEMUP_CLR);
1709 
1710 	/* Wa_14011503030:xelpd */
1711 	if (DISPLAY_VER(dev_priv) >= 13)
1712 		intel_de_write(dev_priv, XELPD_DISPLAY_ERR_FATAL_MASK, ~0);
1713 }
1714 
icl_display_core_uninit(struct drm_i915_private * dev_priv)1715 static void icl_display_core_uninit(struct drm_i915_private *dev_priv)
1716 {
1717 	struct i915_power_domains *power_domains = &dev_priv->display.power.domains;
1718 	struct i915_power_well *well;
1719 
1720 	if (!HAS_DISPLAY(dev_priv))
1721 		return;
1722 
1723 	gen9_disable_dc_states(dev_priv);
1724 	intel_dmc_disable_program(dev_priv);
1725 
1726 	/* 1. Disable all display engine functions -> aready done */
1727 
1728 	/* 2. Disable DBUF */
1729 	gen9_dbuf_disable(dev_priv);
1730 
1731 	/* 3. Disable CD clock */
1732 	intel_cdclk_uninit_hw(dev_priv);
1733 
1734 	if (DISPLAY_VER(dev_priv) == 14)
1735 		intel_de_rmw(dev_priv, DC_STATE_EN, 0,
1736 			     HOLD_PHY_PG1_LATCH | HOLD_PHY_CLKREQ_PG1_LATCH);
1737 
1738 	/*
1739 	 * 4. Disable Power Well 1 (PG1).
1740 	 *    The AUX IO power wells are toggled on demand, so they are already
1741 	 *    disabled at this point.
1742 	 */
1743 	mutex_lock(&power_domains->lock);
1744 	well = lookup_power_well(dev_priv, SKL_DISP_PW_1);
1745 	intel_power_well_disable(dev_priv, well);
1746 	mutex_unlock(&power_domains->lock);
1747 
1748 	/* 5. */
1749 	intel_combo_phy_uninit(dev_priv);
1750 }
1751 
chv_phy_control_init(struct drm_i915_private * dev_priv)1752 static void chv_phy_control_init(struct drm_i915_private *dev_priv)
1753 {
1754 	struct i915_power_well *cmn_bc =
1755 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1756 	struct i915_power_well *cmn_d =
1757 		lookup_power_well(dev_priv, CHV_DISP_PW_DPIO_CMN_D);
1758 
1759 	/*
1760 	 * DISPLAY_PHY_CONTROL can get corrupted if read. As a
1761 	 * workaround never ever read DISPLAY_PHY_CONTROL, and
1762 	 * instead maintain a shadow copy ourselves. Use the actual
1763 	 * power well state and lane status to reconstruct the
1764 	 * expected initial value.
1765 	 */
1766 	dev_priv->display.power.chv_phy_control =
1767 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY0) |
1768 		PHY_LDO_SEQ_DELAY(PHY_LDO_DELAY_600NS, DPIO_PHY1) |
1769 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH0) |
1770 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY0, DPIO_CH1) |
1771 		PHY_CH_POWER_MODE(PHY_CH_DEEP_PSR, DPIO_PHY1, DPIO_CH0);
1772 
1773 	/*
1774 	 * If all lanes are disabled we leave the override disabled
1775 	 * with all power down bits cleared to match the state we
1776 	 * would use after disabling the port. Otherwise enable the
1777 	 * override and set the lane powerdown bits accding to the
1778 	 * current lane status.
1779 	 */
1780 	if (intel_power_well_is_enabled(dev_priv, cmn_bc)) {
1781 		u32 status = intel_de_read(dev_priv, DPLL(PIPE_A));
1782 		unsigned int mask;
1783 
1784 		mask = status & DPLL_PORTB_READY_MASK;
1785 		if (mask == 0xf)
1786 			mask = 0x0;
1787 		else
1788 			dev_priv->display.power.chv_phy_control |=
1789 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH0);
1790 
1791 		dev_priv->display.power.chv_phy_control |=
1792 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH0);
1793 
1794 		mask = (status & DPLL_PORTC_READY_MASK) >> 4;
1795 		if (mask == 0xf)
1796 			mask = 0x0;
1797 		else
1798 			dev_priv->display.power.chv_phy_control |=
1799 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY0, DPIO_CH1);
1800 
1801 		dev_priv->display.power.chv_phy_control |=
1802 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY0, DPIO_CH1);
1803 
1804 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY0);
1805 
1806 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = false;
1807 	} else {
1808 		dev_priv->display.power.chv_phy_assert[DPIO_PHY0] = true;
1809 	}
1810 
1811 	if (intel_power_well_is_enabled(dev_priv, cmn_d)) {
1812 		u32 status = intel_de_read(dev_priv, DPIO_PHY_STATUS);
1813 		unsigned int mask;
1814 
1815 		mask = status & DPLL_PORTD_READY_MASK;
1816 
1817 		if (mask == 0xf)
1818 			mask = 0x0;
1819 		else
1820 			dev_priv->display.power.chv_phy_control |=
1821 				PHY_CH_POWER_DOWN_OVRD_EN(DPIO_PHY1, DPIO_CH0);
1822 
1823 		dev_priv->display.power.chv_phy_control |=
1824 			PHY_CH_POWER_DOWN_OVRD(mask, DPIO_PHY1, DPIO_CH0);
1825 
1826 		dev_priv->display.power.chv_phy_control |= PHY_COM_LANE_RESET_DEASSERT(DPIO_PHY1);
1827 
1828 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = false;
1829 	} else {
1830 		dev_priv->display.power.chv_phy_assert[DPIO_PHY1] = true;
1831 	}
1832 
1833 	drm_dbg_kms(&dev_priv->drm, "Initial PHY_CONTROL=0x%08x\n",
1834 		    dev_priv->display.power.chv_phy_control);
1835 
1836 	/* Defer application of initial phy_control to enabling the powerwell */
1837 }
1838 
vlv_cmnlane_wa(struct drm_i915_private * dev_priv)1839 static void vlv_cmnlane_wa(struct drm_i915_private *dev_priv)
1840 {
1841 	struct i915_power_well *cmn =
1842 		lookup_power_well(dev_priv, VLV_DISP_PW_DPIO_CMN_BC);
1843 	struct i915_power_well *disp2d =
1844 		lookup_power_well(dev_priv, VLV_DISP_PW_DISP2D);
1845 
1846 	/* If the display might be already active skip this */
1847 	if (intel_power_well_is_enabled(dev_priv, cmn) &&
1848 	    intel_power_well_is_enabled(dev_priv, disp2d) &&
1849 	    intel_de_read(dev_priv, DPIO_CTL) & DPIO_CMNRST)
1850 		return;
1851 
1852 	drm_dbg_kms(&dev_priv->drm, "toggling display PHY side reset\n");
1853 
1854 	/* cmnlane needs DPLL registers */
1855 	intel_power_well_enable(dev_priv, disp2d);
1856 
1857 	/*
1858 	 * From VLV2A0_DP_eDP_HDMI_DPIO_driver_vbios_notes_11.docx:
1859 	 * Need to assert and de-assert PHY SB reset by gating the
1860 	 * common lane power, then un-gating it.
1861 	 * Simply ungating isn't enough to reset the PHY enough to get
1862 	 * ports and lanes running.
1863 	 */
1864 	intel_power_well_disable(dev_priv, cmn);
1865 }
1866 
vlv_punit_is_power_gated(struct drm_i915_private * dev_priv,u32 reg0)1867 static bool vlv_punit_is_power_gated(struct drm_i915_private *dev_priv, u32 reg0)
1868 {
1869 	bool ret;
1870 
1871 	vlv_punit_get(dev_priv);
1872 	ret = (vlv_punit_read(dev_priv, reg0) & SSPM0_SSC_MASK) == SSPM0_SSC_PWR_GATE;
1873 	vlv_punit_put(dev_priv);
1874 
1875 	return ret;
1876 }
1877 
assert_ved_power_gated(struct drm_i915_private * dev_priv)1878 static void assert_ved_power_gated(struct drm_i915_private *dev_priv)
1879 {
1880 	drm_WARN(&dev_priv->drm,
1881 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_VEDSSPM0),
1882 		 "VED not power gated\n");
1883 }
1884 
assert_isp_power_gated(struct drm_i915_private * dev_priv)1885 static void assert_isp_power_gated(struct drm_i915_private *dev_priv)
1886 {
1887 #ifdef notyet
1888 	static const struct pci_device_id isp_ids[] = {
1889 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x0f38)},
1890 		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x22b8)},
1891 		{}
1892 	};
1893 
1894 	drm_WARN(&dev_priv->drm, !pci_dev_present(isp_ids) &&
1895 		 !vlv_punit_is_power_gated(dev_priv, PUNIT_REG_ISPSSPM0),
1896 		 "ISP not power gated\n");
1897 #endif
1898 }
1899 
1900 static void intel_power_domains_verify_state(struct drm_i915_private *dev_priv);
1901 
1902 /**
1903  * intel_power_domains_init_hw - initialize hardware power domain state
1904  * @i915: i915 device instance
1905  * @resume: Called from resume code paths or not
1906  *
1907  * This function initializes the hardware power domain state and enables all
1908  * power wells belonging to the INIT power domain. Power wells in other
1909  * domains (and not in the INIT domain) are referenced or disabled by
1910  * intel_modeset_readout_hw_state(). After that the reference count of each
1911  * power well must match its HW enabled state, see
1912  * intel_power_domains_verify_state().
1913  *
1914  * It will return with power domains disabled (to be enabled later by
1915  * intel_power_domains_enable()) and must be paired with
1916  * intel_power_domains_driver_remove().
1917  */
intel_power_domains_init_hw(struct drm_i915_private * i915,bool resume)1918 void intel_power_domains_init_hw(struct drm_i915_private *i915, bool resume)
1919 {
1920 	struct i915_power_domains *power_domains = &i915->display.power.domains;
1921 
1922 	power_domains->initializing = true;
1923 
1924 	if (DISPLAY_VER(i915) >= 11) {
1925 		icl_display_core_init(i915, resume);
1926 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
1927 		bxt_display_core_init(i915, resume);
1928 	} else if (DISPLAY_VER(i915) == 9) {
1929 		skl_display_core_init(i915, resume);
1930 	} else if (IS_CHERRYVIEW(i915)) {
1931 		mutex_lock(&power_domains->lock);
1932 		chv_phy_control_init(i915);
1933 		mutex_unlock(&power_domains->lock);
1934 		assert_isp_power_gated(i915);
1935 	} else if (IS_VALLEYVIEW(i915)) {
1936 		mutex_lock(&power_domains->lock);
1937 		vlv_cmnlane_wa(i915);
1938 		mutex_unlock(&power_domains->lock);
1939 		assert_ved_power_gated(i915);
1940 		assert_isp_power_gated(i915);
1941 	} else if (IS_BROADWELL(i915) || IS_HASWELL(i915)) {
1942 		hsw_assert_cdclk(i915);
1943 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1944 	} else if (IS_IVYBRIDGE(i915)) {
1945 		intel_pch_reset_handshake(i915, !HAS_PCH_NOP(i915));
1946 	}
1947 
1948 	/*
1949 	 * Keep all power wells enabled for any dependent HW access during
1950 	 * initialization and to make sure we keep BIOS enabled display HW
1951 	 * resources powered until display HW readout is complete. We drop
1952 	 * this reference in intel_power_domains_enable().
1953 	 */
1954 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
1955 	power_domains->init_wakeref =
1956 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
1957 
1958 	/* Disable power support if the user asked so. */
1959 	if (!i915->params.disable_power_well) {
1960 		drm_WARN_ON(&i915->drm, power_domains->disable_wakeref);
1961 		i915->display.power.domains.disable_wakeref = intel_display_power_get(i915,
1962 										      POWER_DOMAIN_INIT);
1963 	}
1964 	intel_power_domains_sync_hw(i915);
1965 
1966 	power_domains->initializing = false;
1967 }
1968 
1969 /**
1970  * intel_power_domains_driver_remove - deinitialize hw power domain state
1971  * @i915: i915 device instance
1972  *
1973  * De-initializes the display power domain HW state. It also ensures that the
1974  * device stays powered up so that the driver can be reloaded.
1975  *
1976  * It must be called with power domains already disabled (after a call to
1977  * intel_power_domains_disable()) and must be paired with
1978  * intel_power_domains_init_hw().
1979  */
intel_power_domains_driver_remove(struct drm_i915_private * i915)1980 void intel_power_domains_driver_remove(struct drm_i915_private *i915)
1981 {
1982 	intel_wakeref_t wakeref __maybe_unused =
1983 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
1984 
1985 	/* Remove the refcount we took to keep power well support disabled. */
1986 	if (!i915->params.disable_power_well)
1987 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
1988 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
1989 
1990 	intel_display_power_flush_work_sync(i915);
1991 
1992 	intel_power_domains_verify_state(i915);
1993 
1994 	/* Keep the power well enabled, but cancel its rpm wakeref. */
1995 	intel_runtime_pm_put(&i915->runtime_pm, wakeref);
1996 }
1997 
1998 /**
1999  * intel_power_domains_sanitize_state - sanitize power domains state
2000  * @i915: i915 device instance
2001  *
2002  * Sanitize the power domains state during driver loading and system resume.
2003  * The function will disable all display power wells that BIOS has enabled
2004  * without a user for it (any user for a power well has taken a reference
2005  * on it by the time this function is called, after the state of all the
2006  * pipe, encoder, etc. HW resources have been sanitized).
2007  */
intel_power_domains_sanitize_state(struct drm_i915_private * i915)2008 void intel_power_domains_sanitize_state(struct drm_i915_private *i915)
2009 {
2010 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2011 	struct i915_power_well *power_well;
2012 
2013 	mutex_lock(&power_domains->lock);
2014 
2015 	for_each_power_well_reverse(i915, power_well) {
2016 		if (power_well->desc->always_on || power_well->count ||
2017 		    !intel_power_well_is_enabled(i915, power_well))
2018 			continue;
2019 
2020 		drm_dbg_kms(&i915->drm,
2021 			    "BIOS left unused %s power well enabled, disabling it\n",
2022 			    intel_power_well_name(power_well));
2023 		intel_power_well_disable(i915, power_well);
2024 	}
2025 
2026 	mutex_unlock(&power_domains->lock);
2027 }
2028 
2029 /**
2030  * intel_power_domains_enable - enable toggling of display power wells
2031  * @i915: i915 device instance
2032  *
2033  * Enable the ondemand enabling/disabling of the display power wells. Note that
2034  * power wells not belonging to POWER_DOMAIN_INIT are allowed to be toggled
2035  * only at specific points of the display modeset sequence, thus they are not
2036  * affected by the intel_power_domains_enable()/disable() calls. The purpose
2037  * of these function is to keep the rest of power wells enabled until the end
2038  * of display HW readout (which will acquire the power references reflecting
2039  * the current HW state).
2040  */
intel_power_domains_enable(struct drm_i915_private * i915)2041 void intel_power_domains_enable(struct drm_i915_private *i915)
2042 {
2043 	intel_wakeref_t wakeref __maybe_unused =
2044 		fetch_and_zero(&i915->display.power.domains.init_wakeref);
2045 
2046 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2047 	intel_power_domains_verify_state(i915);
2048 }
2049 
2050 /**
2051  * intel_power_domains_disable - disable toggling of display power wells
2052  * @i915: i915 device instance
2053  *
2054  * Disable the ondemand enabling/disabling of the display power wells. See
2055  * intel_power_domains_enable() for which power wells this call controls.
2056  */
intel_power_domains_disable(struct drm_i915_private * i915)2057 void intel_power_domains_disable(struct drm_i915_private *i915)
2058 {
2059 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2060 
2061 	drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2062 	power_domains->init_wakeref =
2063 		intel_display_power_get(i915, POWER_DOMAIN_INIT);
2064 
2065 	intel_power_domains_verify_state(i915);
2066 }
2067 
2068 /**
2069  * intel_power_domains_suspend - suspend power domain state
2070  * @i915: i915 device instance
2071  * @s2idle: specifies whether we go to idle, or deeper sleep
2072  *
2073  * This function prepares the hardware power domain state before entering
2074  * system suspend.
2075  *
2076  * It must be called with power domains already disabled (after a call to
2077  * intel_power_domains_disable()) and paired with intel_power_domains_resume().
2078  */
intel_power_domains_suspend(struct drm_i915_private * i915,bool s2idle)2079 void intel_power_domains_suspend(struct drm_i915_private *i915, bool s2idle)
2080 {
2081 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2082 	intel_wakeref_t wakeref __maybe_unused =
2083 		fetch_and_zero(&power_domains->init_wakeref);
2084 
2085 	intel_display_power_put(i915, POWER_DOMAIN_INIT, wakeref);
2086 
2087 	/*
2088 	 * In case of suspend-to-idle (aka S0ix) on a DMC platform without DC9
2089 	 * support don't manually deinit the power domains. This also means the
2090 	 * DMC firmware will stay active, it will power down any HW
2091 	 * resources as required and also enable deeper system power states
2092 	 * that would be blocked if the firmware was inactive.
2093 	 */
2094 	if (!(power_domains->allowed_dc_mask & DC_STATE_EN_DC9) && s2idle &&
2095 	    intel_dmc_has_payload(i915)) {
2096 		intel_display_power_flush_work(i915);
2097 		intel_power_domains_verify_state(i915);
2098 		return;
2099 	}
2100 
2101 	/*
2102 	 * Even if power well support was disabled we still want to disable
2103 	 * power wells if power domains must be deinitialized for suspend.
2104 	 */
2105 	if (!i915->params.disable_power_well)
2106 		intel_display_power_put(i915, POWER_DOMAIN_INIT,
2107 					fetch_and_zero(&i915->display.power.domains.disable_wakeref));
2108 
2109 	intel_display_power_flush_work(i915);
2110 	intel_power_domains_verify_state(i915);
2111 
2112 	if (DISPLAY_VER(i915) >= 11)
2113 		icl_display_core_uninit(i915);
2114 	else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915))
2115 		bxt_display_core_uninit(i915);
2116 	else if (DISPLAY_VER(i915) == 9)
2117 		skl_display_core_uninit(i915);
2118 
2119 	power_domains->display_core_suspended = true;
2120 }
2121 
2122 /**
2123  * intel_power_domains_resume - resume power domain state
2124  * @i915: i915 device instance
2125  *
2126  * This function resume the hardware power domain state during system resume.
2127  *
2128  * It will return with power domain support disabled (to be enabled later by
2129  * intel_power_domains_enable()) and must be paired with
2130  * intel_power_domains_suspend().
2131  */
intel_power_domains_resume(struct drm_i915_private * i915)2132 void intel_power_domains_resume(struct drm_i915_private *i915)
2133 {
2134 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2135 
2136 	if (power_domains->display_core_suspended) {
2137 		intel_power_domains_init_hw(i915, true);
2138 		power_domains->display_core_suspended = false;
2139 	} else {
2140 		drm_WARN_ON(&i915->drm, power_domains->init_wakeref);
2141 		power_domains->init_wakeref =
2142 			intel_display_power_get(i915, POWER_DOMAIN_INIT);
2143 	}
2144 
2145 	intel_power_domains_verify_state(i915);
2146 }
2147 
2148 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)
2149 
intel_power_domains_dump_info(struct drm_i915_private * i915)2150 static void intel_power_domains_dump_info(struct drm_i915_private *i915)
2151 {
2152 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2153 	struct i915_power_well *power_well;
2154 
2155 	for_each_power_well(i915, power_well) {
2156 		enum intel_display_power_domain domain;
2157 
2158 		drm_dbg(&i915->drm, "%-25s %d\n",
2159 			intel_power_well_name(power_well), intel_power_well_refcount(power_well));
2160 
2161 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2162 			drm_dbg(&i915->drm, "  %-23s %d\n",
2163 				intel_display_power_domain_str(domain),
2164 				power_domains->domain_use_count[domain]);
2165 	}
2166 }
2167 
2168 /**
2169  * intel_power_domains_verify_state - verify the HW/SW state for all power wells
2170  * @i915: i915 device instance
2171  *
2172  * Verify if the reference count of each power well matches its HW enabled
2173  * state and the total refcount of the domains it belongs to. This must be
2174  * called after modeset HW state sanitization, which is responsible for
2175  * acquiring reference counts for any power wells in use and disabling the
2176  * ones left on by BIOS but not required by any active output.
2177  */
intel_power_domains_verify_state(struct drm_i915_private * i915)2178 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2179 {
2180 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2181 	struct i915_power_well *power_well;
2182 	bool dump_domain_info;
2183 
2184 	mutex_lock(&power_domains->lock);
2185 
2186 	verify_async_put_domains_state(power_domains);
2187 
2188 	dump_domain_info = false;
2189 	for_each_power_well(i915, power_well) {
2190 		enum intel_display_power_domain domain;
2191 		int domains_count;
2192 		bool enabled;
2193 
2194 		enabled = intel_power_well_is_enabled(i915, power_well);
2195 		if ((intel_power_well_refcount(power_well) ||
2196 		     intel_power_well_is_always_on(power_well)) !=
2197 		    enabled)
2198 			drm_err(&i915->drm,
2199 				"power well %s state mismatch (refcount %d/enabled %d)",
2200 				intel_power_well_name(power_well),
2201 				intel_power_well_refcount(power_well), enabled);
2202 
2203 		domains_count = 0;
2204 		for_each_power_domain(domain, intel_power_well_domains(power_well))
2205 			domains_count += power_domains->domain_use_count[domain];
2206 
2207 		if (intel_power_well_refcount(power_well) != domains_count) {
2208 			drm_err(&i915->drm,
2209 				"power well %s refcount/domain refcount mismatch "
2210 				"(refcount %d/domains refcount %d)\n",
2211 				intel_power_well_name(power_well),
2212 				intel_power_well_refcount(power_well),
2213 				domains_count);
2214 			dump_domain_info = true;
2215 		}
2216 	}
2217 
2218 	if (dump_domain_info) {
2219 		static bool dumped;
2220 
2221 		if (!dumped) {
2222 			intel_power_domains_dump_info(i915);
2223 			dumped = true;
2224 		}
2225 	}
2226 
2227 	mutex_unlock(&power_domains->lock);
2228 }
2229 
2230 #else
2231 
intel_power_domains_verify_state(struct drm_i915_private * i915)2232 static void intel_power_domains_verify_state(struct drm_i915_private *i915)
2233 {
2234 }
2235 
2236 #endif
2237 
intel_display_power_suspend_late(struct drm_i915_private * i915)2238 void intel_display_power_suspend_late(struct drm_i915_private *i915)
2239 {
2240 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2241 	    IS_BROXTON(i915)) {
2242 		bxt_enable_dc9(i915);
2243 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2244 		hsw_enable_pc8(i915);
2245 	}
2246 
2247 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2248 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2249 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, SBCLK_RUN_REFCLK_DIS);
2250 }
2251 
intel_display_power_resume_early(struct drm_i915_private * i915)2252 void intel_display_power_resume_early(struct drm_i915_private *i915)
2253 {
2254 	if (DISPLAY_VER(i915) >= 11 || IS_GEMINILAKE(i915) ||
2255 	    IS_BROXTON(i915)) {
2256 		gen9_sanitize_dc_state(i915);
2257 		bxt_disable_dc9(i915);
2258 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2259 		hsw_disable_pc8(i915);
2260 	}
2261 
2262 	/* Tweaked Wa_14010685332:cnp,icp,jsp,mcc,tgp,adp */
2263 	if (INTEL_PCH_TYPE(i915) >= PCH_CNP && INTEL_PCH_TYPE(i915) < PCH_DG1)
2264 		intel_de_rmw(i915, SOUTH_CHICKEN1, SBCLK_RUN_REFCLK_DIS, 0);
2265 }
2266 
intel_display_power_suspend(struct drm_i915_private * i915)2267 void intel_display_power_suspend(struct drm_i915_private *i915)
2268 {
2269 	if (DISPLAY_VER(i915) >= 11) {
2270 		icl_display_core_uninit(i915);
2271 		bxt_enable_dc9(i915);
2272 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2273 		bxt_display_core_uninit(i915);
2274 		bxt_enable_dc9(i915);
2275 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2276 		hsw_enable_pc8(i915);
2277 	}
2278 }
2279 
intel_display_power_resume(struct drm_i915_private * i915)2280 void intel_display_power_resume(struct drm_i915_private *i915)
2281 {
2282 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2283 
2284 	if (DISPLAY_VER(i915) >= 11) {
2285 		bxt_disable_dc9(i915);
2286 		icl_display_core_init(i915, true);
2287 		if (intel_dmc_has_payload(i915)) {
2288 			if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC6)
2289 				skl_enable_dc6(i915);
2290 			else if (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5)
2291 				gen9_enable_dc5(i915);
2292 		}
2293 	} else if (IS_GEMINILAKE(i915) || IS_BROXTON(i915)) {
2294 		bxt_disable_dc9(i915);
2295 		bxt_display_core_init(i915, true);
2296 		if (intel_dmc_has_payload(i915) &&
2297 		    (power_domains->allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2298 			gen9_enable_dc5(i915);
2299 	} else if (IS_HASWELL(i915) || IS_BROADWELL(i915)) {
2300 		hsw_disable_pc8(i915);
2301 	}
2302 }
2303 
intel_display_power_debug(struct drm_i915_private * i915,struct seq_file * m)2304 void intel_display_power_debug(struct drm_i915_private *i915, struct seq_file *m)
2305 {
2306 	struct i915_power_domains *power_domains = &i915->display.power.domains;
2307 	int i;
2308 
2309 	mutex_lock(&power_domains->lock);
2310 
2311 	seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2312 	for (i = 0; i < power_domains->power_well_count; i++) {
2313 		struct i915_power_well *power_well;
2314 		enum intel_display_power_domain power_domain;
2315 
2316 		power_well = &power_domains->power_wells[i];
2317 		seq_printf(m, "%-25s %d\n", intel_power_well_name(power_well),
2318 			   intel_power_well_refcount(power_well));
2319 
2320 		for_each_power_domain(power_domain, intel_power_well_domains(power_well))
2321 			seq_printf(m, "  %-23s %d\n",
2322 				   intel_display_power_domain_str(power_domain),
2323 				   power_domains->domain_use_count[power_domain]);
2324 	}
2325 
2326 	mutex_unlock(&power_domains->lock);
2327 }
2328 
2329 struct intel_ddi_port_domains {
2330 	enum port port_start;
2331 	enum port port_end;
2332 	enum aux_ch aux_ch_start;
2333 	enum aux_ch aux_ch_end;
2334 
2335 	enum intel_display_power_domain ddi_lanes;
2336 	enum intel_display_power_domain ddi_io;
2337 	enum intel_display_power_domain aux_io;
2338 	enum intel_display_power_domain aux_legacy_usbc;
2339 	enum intel_display_power_domain aux_tbt;
2340 };
2341 
2342 static const struct intel_ddi_port_domains
2343 i9xx_port_domains[] = {
2344 	{
2345 		.port_start = PORT_A,
2346 		.port_end = PORT_F,
2347 		.aux_ch_start = AUX_CH_A,
2348 		.aux_ch_end = AUX_CH_F,
2349 
2350 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2351 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2352 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2353 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2354 		.aux_tbt = POWER_DOMAIN_INVALID,
2355 	},
2356 };
2357 
2358 static const struct intel_ddi_port_domains
2359 d11_port_domains[] = {
2360 	{
2361 		.port_start = PORT_A,
2362 		.port_end = PORT_B,
2363 		.aux_ch_start = AUX_CH_A,
2364 		.aux_ch_end = AUX_CH_B,
2365 
2366 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2367 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2368 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2369 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2370 		.aux_tbt = POWER_DOMAIN_INVALID,
2371 	}, {
2372 		.port_start = PORT_C,
2373 		.port_end = PORT_F,
2374 		.aux_ch_start = AUX_CH_C,
2375 		.aux_ch_end = AUX_CH_F,
2376 
2377 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_C,
2378 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_C,
2379 		.aux_io = POWER_DOMAIN_AUX_IO_C,
2380 		.aux_legacy_usbc = POWER_DOMAIN_AUX_C,
2381 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2382 	},
2383 };
2384 
2385 static const struct intel_ddi_port_domains
2386 d12_port_domains[] = {
2387 	{
2388 		.port_start = PORT_A,
2389 		.port_end = PORT_C,
2390 		.aux_ch_start = AUX_CH_A,
2391 		.aux_ch_end = AUX_CH_C,
2392 
2393 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2394 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2395 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2396 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2397 		.aux_tbt = POWER_DOMAIN_INVALID,
2398 	}, {
2399 		.port_start = PORT_TC1,
2400 		.port_end = PORT_TC6,
2401 		.aux_ch_start = AUX_CH_USBC1,
2402 		.aux_ch_end = AUX_CH_USBC6,
2403 
2404 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2405 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2406 		.aux_io = POWER_DOMAIN_INVALID,
2407 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2408 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2409 	},
2410 };
2411 
2412 static const struct intel_ddi_port_domains
2413 d13_port_domains[] = {
2414 	{
2415 		.port_start = PORT_A,
2416 		.port_end = PORT_C,
2417 		.aux_ch_start = AUX_CH_A,
2418 		.aux_ch_end = AUX_CH_C,
2419 
2420 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_A,
2421 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_A,
2422 		.aux_io = POWER_DOMAIN_AUX_IO_A,
2423 		.aux_legacy_usbc = POWER_DOMAIN_AUX_A,
2424 		.aux_tbt = POWER_DOMAIN_INVALID,
2425 	}, {
2426 		.port_start = PORT_TC1,
2427 		.port_end = PORT_TC4,
2428 		.aux_ch_start = AUX_CH_USBC1,
2429 		.aux_ch_end = AUX_CH_USBC4,
2430 
2431 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_TC1,
2432 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_TC1,
2433 		.aux_io = POWER_DOMAIN_INVALID,
2434 		.aux_legacy_usbc = POWER_DOMAIN_AUX_USBC1,
2435 		.aux_tbt = POWER_DOMAIN_AUX_TBT1,
2436 	}, {
2437 		.port_start = PORT_D_XELPD,
2438 		.port_end = PORT_E_XELPD,
2439 		.aux_ch_start = AUX_CH_D_XELPD,
2440 		.aux_ch_end = AUX_CH_E_XELPD,
2441 
2442 		.ddi_lanes = POWER_DOMAIN_PORT_DDI_LANES_D,
2443 		.ddi_io = POWER_DOMAIN_PORT_DDI_IO_D,
2444 		.aux_io = POWER_DOMAIN_AUX_IO_D,
2445 		.aux_legacy_usbc = POWER_DOMAIN_AUX_D,
2446 		.aux_tbt = POWER_DOMAIN_INVALID,
2447 	},
2448 };
2449 
2450 static void
intel_port_domains_for_platform(struct drm_i915_private * i915,const struct intel_ddi_port_domains ** domains,int * domains_size)2451 intel_port_domains_for_platform(struct drm_i915_private *i915,
2452 				const struct intel_ddi_port_domains **domains,
2453 				int *domains_size)
2454 {
2455 	if (DISPLAY_VER(i915) >= 13) {
2456 		*domains = d13_port_domains;
2457 		*domains_size = ARRAY_SIZE(d13_port_domains);
2458 	} else if (DISPLAY_VER(i915) >= 12) {
2459 		*domains = d12_port_domains;
2460 		*domains_size = ARRAY_SIZE(d12_port_domains);
2461 	} else if (DISPLAY_VER(i915) >= 11) {
2462 		*domains = d11_port_domains;
2463 		*domains_size = ARRAY_SIZE(d11_port_domains);
2464 	} else {
2465 		*domains = i9xx_port_domains;
2466 		*domains_size = ARRAY_SIZE(i9xx_port_domains);
2467 	}
2468 }
2469 
2470 static const struct intel_ddi_port_domains *
intel_port_domains_for_port(struct drm_i915_private * i915,enum port port)2471 intel_port_domains_for_port(struct drm_i915_private *i915, enum port port)
2472 {
2473 	const struct intel_ddi_port_domains *domains;
2474 	int domains_size;
2475 	int i;
2476 
2477 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2478 	for (i = 0; i < domains_size; i++)
2479 		if (port >= domains[i].port_start && port <= domains[i].port_end)
2480 			return &domains[i];
2481 
2482 	return NULL;
2483 }
2484 
2485 enum intel_display_power_domain
intel_display_power_ddi_io_domain(struct drm_i915_private * i915,enum port port)2486 intel_display_power_ddi_io_domain(struct drm_i915_private *i915, enum port port)
2487 {
2488 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2489 
2490 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_io == POWER_DOMAIN_INVALID))
2491 		return POWER_DOMAIN_PORT_DDI_IO_A;
2492 
2493 	return domains->ddi_io + (int)(port - domains->port_start);
2494 }
2495 
2496 enum intel_display_power_domain
intel_display_power_ddi_lanes_domain(struct drm_i915_private * i915,enum port port)2497 intel_display_power_ddi_lanes_domain(struct drm_i915_private *i915, enum port port)
2498 {
2499 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_port(i915, port);
2500 
2501 	if (drm_WARN_ON(&i915->drm, !domains || domains->ddi_lanes == POWER_DOMAIN_INVALID))
2502 		return POWER_DOMAIN_PORT_DDI_LANES_A;
2503 
2504 	return domains->ddi_lanes + (int)(port - domains->port_start);
2505 }
2506 
2507 static const struct intel_ddi_port_domains *
intel_port_domains_for_aux_ch(struct drm_i915_private * i915,enum aux_ch aux_ch)2508 intel_port_domains_for_aux_ch(struct drm_i915_private *i915, enum aux_ch aux_ch)
2509 {
2510 	const struct intel_ddi_port_domains *domains;
2511 	int domains_size;
2512 	int i;
2513 
2514 	intel_port_domains_for_platform(i915, &domains, &domains_size);
2515 	for (i = 0; i < domains_size; i++)
2516 		if (aux_ch >= domains[i].aux_ch_start && aux_ch <= domains[i].aux_ch_end)
2517 			return &domains[i];
2518 
2519 	return NULL;
2520 }
2521 
2522 enum intel_display_power_domain
intel_display_power_aux_io_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2523 intel_display_power_aux_io_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2524 {
2525 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2526 
2527 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_io == POWER_DOMAIN_INVALID))
2528 		return POWER_DOMAIN_AUX_IO_A;
2529 
2530 	return domains->aux_io + (int)(aux_ch - domains->aux_ch_start);
2531 }
2532 
2533 enum intel_display_power_domain
intel_display_power_legacy_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2534 intel_display_power_legacy_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2535 {
2536 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2537 
2538 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_legacy_usbc == POWER_DOMAIN_INVALID))
2539 		return POWER_DOMAIN_AUX_A;
2540 
2541 	return domains->aux_legacy_usbc + (int)(aux_ch - domains->aux_ch_start);
2542 }
2543 
2544 enum intel_display_power_domain
intel_display_power_tbt_aux_domain(struct drm_i915_private * i915,enum aux_ch aux_ch)2545 intel_display_power_tbt_aux_domain(struct drm_i915_private *i915, enum aux_ch aux_ch)
2546 {
2547 	const struct intel_ddi_port_domains *domains = intel_port_domains_for_aux_ch(i915, aux_ch);
2548 
2549 	if (drm_WARN_ON(&i915->drm, !domains || domains->aux_tbt == POWER_DOMAIN_INVALID))
2550 		return POWER_DOMAIN_AUX_TBT1;
2551 
2552 	return domains->aux_tbt + (int)(aux_ch - domains->aux_ch_start);
2553 }
2554