xref: /freebsd/sys/dev/igc/igc_mac.c (revision 685dc743)
1 /*-
2  * Copyright 2021 Intel Corp
3  * Copyright 2021 Rubicon Communications, LLC (Netgate)
4  * SPDX-License-Identifier: BSD-3-Clause
5  */
6 
7 #include <sys/cdefs.h>
8 #include "igc_api.h"
9 
10 static void igc_config_collision_dist_generic(struct igc_hw *hw);
11 
12 /**
13  *  igc_init_mac_ops_generic - Initialize MAC function pointers
14  *  @hw: pointer to the HW structure
15  *
16  *  Setups up the function pointers to no-op functions
17  **/
igc_init_mac_ops_generic(struct igc_hw * hw)18 void igc_init_mac_ops_generic(struct igc_hw *hw)
19 {
20 	struct igc_mac_info *mac = &hw->mac;
21 	DEBUGFUNC("igc_init_mac_ops_generic");
22 
23 	/* General Setup */
24 	mac->ops.init_params = igc_null_ops_generic;
25 	mac->ops.config_collision_dist = igc_config_collision_dist_generic;
26 	mac->ops.rar_set = igc_rar_set_generic;
27 }
28 
29 /**
30  *  igc_null_ops_generic - No-op function, returns 0
31  *  @hw: pointer to the HW structure
32  **/
igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG * hw)33 s32 igc_null_ops_generic(struct igc_hw IGC_UNUSEDARG *hw)
34 {
35 	DEBUGFUNC("igc_null_ops_generic");
36 	return IGC_SUCCESS;
37 }
38 
39 /**
40  *  igc_null_mac_generic - No-op function, return void
41  *  @hw: pointer to the HW structure
42  **/
igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG * hw)43 void igc_null_mac_generic(struct igc_hw IGC_UNUSEDARG *hw)
44 {
45 	DEBUGFUNC("igc_null_mac_generic");
46 	return;
47 }
48 
49 /**
50  *  igc_null_link_info - No-op function, return 0
51  *  @hw: pointer to the HW structure
52  *  @s: dummy variable
53  *  @d: dummy variable
54  **/
igc_null_link_info(struct igc_hw IGC_UNUSEDARG * hw,u16 IGC_UNUSEDARG * s,u16 IGC_UNUSEDARG * d)55 s32 igc_null_link_info(struct igc_hw IGC_UNUSEDARG *hw,
56 			 u16 IGC_UNUSEDARG *s, u16 IGC_UNUSEDARG *d)
57 {
58 	DEBUGFUNC("igc_null_link_info");
59 	return IGC_SUCCESS;
60 }
61 
62 /**
63  *  igc_null_mng_mode - No-op function, return false
64  *  @hw: pointer to the HW structure
65  **/
igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG * hw)66 bool igc_null_mng_mode(struct igc_hw IGC_UNUSEDARG *hw)
67 {
68 	DEBUGFUNC("igc_null_mng_mode");
69 	return false;
70 }
71 
72 /**
73  *  igc_null_update_mc - No-op function, return void
74  *  @hw: pointer to the HW structure
75  *  @h: dummy variable
76  *  @a: dummy variable
77  **/
igc_null_update_mc(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG * h,u32 IGC_UNUSEDARG a)78 void igc_null_update_mc(struct igc_hw IGC_UNUSEDARG *hw,
79 			  u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
80 {
81 	DEBUGFUNC("igc_null_update_mc");
82 	return;
83 }
84 
85 /**
86  *  igc_null_write_vfta - No-op function, return void
87  *  @hw: pointer to the HW structure
88  *  @a: dummy variable
89  *  @b: dummy variable
90  **/
igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG * hw,u32 IGC_UNUSEDARG a,u32 IGC_UNUSEDARG b)91 void igc_null_write_vfta(struct igc_hw IGC_UNUSEDARG *hw,
92 			   u32 IGC_UNUSEDARG a, u32 IGC_UNUSEDARG b)
93 {
94 	DEBUGFUNC("igc_null_write_vfta");
95 	return;
96 }
97 
98 /**
99  *  igc_null_rar_set - No-op function, return 0
100  *  @hw: pointer to the HW structure
101  *  @h: dummy variable
102  *  @a: dummy variable
103  **/
igc_null_rar_set(struct igc_hw IGC_UNUSEDARG * hw,u8 IGC_UNUSEDARG * h,u32 IGC_UNUSEDARG a)104 int igc_null_rar_set(struct igc_hw IGC_UNUSEDARG *hw,
105 			u8 IGC_UNUSEDARG *h, u32 IGC_UNUSEDARG a)
106 {
107 	DEBUGFUNC("igc_null_rar_set");
108 	return IGC_SUCCESS;
109 }
110 
111 /**
112  *  igc_set_lan_id_single_port - Set LAN id for a single port device
113  *  @hw: pointer to the HW structure
114  *
115  *  Sets the LAN function id to zero for a single port device.
116  **/
igc_set_lan_id_single_port(struct igc_hw * hw)117 void igc_set_lan_id_single_port(struct igc_hw *hw)
118 {
119 	struct igc_bus_info *bus = &hw->bus;
120 
121 	bus->func = 0;
122 }
123 
124 /**
125  *  igc_clear_vfta_generic - Clear VLAN filter table
126  *  @hw: pointer to the HW structure
127  *
128  *  Clears the register array which contains the VLAN filter table by
129  *  setting all the values to 0.
130  **/
igc_clear_vfta_generic(struct igc_hw * hw)131 void igc_clear_vfta_generic(struct igc_hw *hw)
132 {
133 	u32 offset;
134 
135 	DEBUGFUNC("igc_clear_vfta_generic");
136 
137 	for (offset = 0; offset < IGC_VLAN_FILTER_TBL_SIZE; offset++) {
138 		IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, 0);
139 		IGC_WRITE_FLUSH(hw);
140 	}
141 }
142 
143 /**
144  *  igc_write_vfta_generic - Write value to VLAN filter table
145  *  @hw: pointer to the HW structure
146  *  @offset: register offset in VLAN filter table
147  *  @value: register value written to VLAN filter table
148  *
149  *  Writes value at the given offset in the register array which stores
150  *  the VLAN filter table.
151  **/
igc_write_vfta_generic(struct igc_hw * hw,u32 offset,u32 value)152 void igc_write_vfta_generic(struct igc_hw *hw, u32 offset, u32 value)
153 {
154 	DEBUGFUNC("igc_write_vfta_generic");
155 
156 	IGC_WRITE_REG_ARRAY(hw, IGC_VFTA, offset, value);
157 	IGC_WRITE_FLUSH(hw);
158 }
159 
160 /**
161  *  igc_init_rx_addrs_generic - Initialize receive address's
162  *  @hw: pointer to the HW structure
163  *  @rar_count: receive address registers
164  *
165  *  Setup the receive address registers by setting the base receive address
166  *  register to the devices MAC address and clearing all the other receive
167  *  address registers to 0.
168  **/
igc_init_rx_addrs_generic(struct igc_hw * hw,u16 rar_count)169 void igc_init_rx_addrs_generic(struct igc_hw *hw, u16 rar_count)
170 {
171 	u32 i;
172 	u8 mac_addr[ETH_ADDR_LEN] = {0};
173 
174 	DEBUGFUNC("igc_init_rx_addrs_generic");
175 
176 	/* Setup the receive address */
177 	DEBUGOUT("Programming MAC Address into RAR[0]\n");
178 
179 	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
180 
181 	/* Zero out the other (rar_entry_count - 1) receive addresses */
182 	DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count-1);
183 	for (i = 1; i < rar_count; i++)
184 		hw->mac.ops.rar_set(hw, mac_addr, i);
185 }
186 
187 /**
188  *  igc_check_alt_mac_addr_generic - Check for alternate MAC addr
189  *  @hw: pointer to the HW structure
190  *
191  *  Checks the nvm for an alternate MAC address.  An alternate MAC address
192  *  can be setup by pre-boot software and must be treated like a permanent
193  *  address and must override the actual permanent MAC address. If an
194  *  alternate MAC address is found it is programmed into RAR0, replacing
195  *  the permanent address that was installed into RAR0 by the Si on reset.
196  *  This function will return SUCCESS unless it encounters an error while
197  *  reading the EEPROM.
198  **/
igc_check_alt_mac_addr_generic(struct igc_hw * hw)199 s32 igc_check_alt_mac_addr_generic(struct igc_hw *hw)
200 {
201 	u32 i;
202 	s32 ret_val;
203 	u16 offset, nvm_alt_mac_addr_offset, nvm_data;
204 	u8 alt_mac_addr[ETH_ADDR_LEN];
205 
206 	DEBUGFUNC("igc_check_alt_mac_addr_generic");
207 
208 	ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &nvm_data);
209 	if (ret_val)
210 		return ret_val;
211 
212 
213 	ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
214 				   &nvm_alt_mac_addr_offset);
215 	if (ret_val) {
216 		DEBUGOUT("NVM Read Error\n");
217 		return ret_val;
218 	}
219 
220 	if ((nvm_alt_mac_addr_offset == 0xFFFF) ||
221 	    (nvm_alt_mac_addr_offset == 0x0000))
222 		/* There is no Alternate MAC Address */
223 		return IGC_SUCCESS;
224 
225 	if (hw->bus.func == IGC_FUNC_1)
226 		nvm_alt_mac_addr_offset += IGC_ALT_MAC_ADDRESS_OFFSET_LAN1;
227 	for (i = 0; i < ETH_ADDR_LEN; i += 2) {
228 		offset = nvm_alt_mac_addr_offset + (i >> 1);
229 		ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
230 		if (ret_val) {
231 			DEBUGOUT("NVM Read Error\n");
232 			return ret_val;
233 		}
234 
235 		alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
236 		alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
237 	}
238 
239 	/* if multicast bit is set, the alternate address will not be used */
240 	if (alt_mac_addr[0] & 0x01) {
241 		DEBUGOUT("Ignoring Alternate Mac Address with MC bit set\n");
242 		return IGC_SUCCESS;
243 	}
244 
245 	/* We have a valid alternate MAC address, and we want to treat it the
246 	 * same as the normal permanent MAC address stored by the HW into the
247 	 * RAR. Do this by mapping this address into RAR0.
248 	 */
249 	hw->mac.ops.rar_set(hw, alt_mac_addr, 0);
250 
251 	return IGC_SUCCESS;
252 }
253 
254 /**
255  *  igc_rar_set_generic - Set receive address register
256  *  @hw: pointer to the HW structure
257  *  @addr: pointer to the receive address
258  *  @index: receive address array register
259  *
260  *  Sets the receive address array register at index to the address passed
261  *  in by addr.
262  **/
igc_rar_set_generic(struct igc_hw * hw,u8 * addr,u32 index)263 int igc_rar_set_generic(struct igc_hw *hw, u8 *addr, u32 index)
264 {
265 	u32 rar_low, rar_high;
266 
267 	DEBUGFUNC("igc_rar_set_generic");
268 
269 	/* HW expects these in little endian so we reverse the byte order
270 	 * from network order (big endian) to little endian
271 	 */
272 	rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
273 		   ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
274 
275 	rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
276 
277 	/* If MAC address zero, no need to set the AV bit */
278 	if (rar_low || rar_high)
279 		rar_high |= IGC_RAH_AV;
280 
281 	/* Some bridges will combine consecutive 32-bit writes into
282 	 * a single burst write, which will malfunction on some parts.
283 	 * The flushes avoid this.
284 	 */
285 	IGC_WRITE_REG(hw, IGC_RAL(index), rar_low);
286 	IGC_WRITE_FLUSH(hw);
287 	IGC_WRITE_REG(hw, IGC_RAH(index), rar_high);
288 	IGC_WRITE_FLUSH(hw);
289 
290 	return IGC_SUCCESS;
291 }
292 
293 /**
294  *  igc_hash_mc_addr_generic - Generate a multicast hash value
295  *  @hw: pointer to the HW structure
296  *  @mc_addr: pointer to a multicast address
297  *
298  *  Generates a multicast address hash value which is used to determine
299  *  the multicast filter table array address and new table value.
300  **/
igc_hash_mc_addr_generic(struct igc_hw * hw,u8 * mc_addr)301 u32 igc_hash_mc_addr_generic(struct igc_hw *hw, u8 *mc_addr)
302 {
303 	u32 hash_value, hash_mask;
304 	u8 bit_shift = 0;
305 
306 	DEBUGFUNC("igc_hash_mc_addr_generic");
307 
308 	/* Register count multiplied by bits per register */
309 	hash_mask = (hw->mac.mta_reg_count * 32) - 1;
310 
311 	/* For a mc_filter_type of 0, bit_shift is the number of left-shifts
312 	 * where 0xFF would still fall within the hash mask.
313 	 */
314 	while (hash_mask >> bit_shift != 0xFF)
315 		bit_shift++;
316 
317 	/* The portion of the address that is used for the hash table
318 	 * is determined by the mc_filter_type setting.
319 	 * The algorithm is such that there is a total of 8 bits of shifting.
320 	 * The bit_shift for a mc_filter_type of 0 represents the number of
321 	 * left-shifts where the MSB of mc_addr[5] would still fall within
322 	 * the hash_mask.  Case 0 does this exactly.  Since there are a total
323 	 * of 8 bits of shifting, then mc_addr[4] will shift right the
324 	 * remaining number of bits. Thus 8 - bit_shift.  The rest of the
325 	 * cases are a variation of this algorithm...essentially raising the
326 	 * number of bits to shift mc_addr[5] left, while still keeping the
327 	 * 8-bit shifting total.
328 	 *
329 	 * For example, given the following Destination MAC Address and an
330 	 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
331 	 * we can see that the bit_shift for case 0 is 4.  These are the hash
332 	 * values resulting from each mc_filter_type...
333 	 * [0] [1] [2] [3] [4] [5]
334 	 * 01  AA  00  12  34  56
335 	 * LSB		 MSB
336 	 *
337 	 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
338 	 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
339 	 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
340 	 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
341 	 */
342 	switch (hw->mac.mc_filter_type) {
343 	default:
344 	case 0:
345 		break;
346 	case 1:
347 		bit_shift += 1;
348 		break;
349 	case 2:
350 		bit_shift += 2;
351 		break;
352 	case 3:
353 		bit_shift += 4;
354 		break;
355 	}
356 
357 	hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
358 				  (((u16) mc_addr[5]) << bit_shift)));
359 
360 	return hash_value;
361 }
362 
363 /**
364  *  igc_update_mc_addr_list_generic - Update Multicast addresses
365  *  @hw: pointer to the HW structure
366  *  @mc_addr_list: array of multicast addresses to program
367  *  @mc_addr_count: number of multicast addresses to program
368  *
369  *  Updates entire Multicast Table Array.
370  *  The caller must have a packed mc_addr_list of multicast addresses.
371  **/
igc_update_mc_addr_list_generic(struct igc_hw * hw,u8 * mc_addr_list,u32 mc_addr_count)372 void igc_update_mc_addr_list_generic(struct igc_hw *hw,
373 				       u8 *mc_addr_list, u32 mc_addr_count)
374 {
375 	u32 hash_value, hash_bit, hash_reg;
376 	int i;
377 
378 	DEBUGFUNC("igc_update_mc_addr_list_generic");
379 
380 	/* clear mta_shadow */
381 	memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
382 
383 	/* update mta_shadow from mc_addr_list */
384 	for (i = 0; (u32) i < mc_addr_count; i++) {
385 		hash_value = igc_hash_mc_addr_generic(hw, mc_addr_list);
386 
387 		hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
388 		hash_bit = hash_value & 0x1F;
389 
390 		hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
391 		mc_addr_list += (ETH_ADDR_LEN);
392 	}
393 
394 	/* replace the entire MTA table */
395 	for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
396 		IGC_WRITE_REG_ARRAY(hw, IGC_MTA, i, hw->mac.mta_shadow[i]);
397 	IGC_WRITE_FLUSH(hw);
398 }
399 
400 /**
401  *  igc_clear_hw_cntrs_base_generic - Clear base hardware counters
402  *  @hw: pointer to the HW structure
403  *
404  *  Clears the base hardware counters by reading the counter registers.
405  **/
igc_clear_hw_cntrs_base_generic(struct igc_hw * hw)406 void igc_clear_hw_cntrs_base_generic(struct igc_hw *hw)
407 {
408 	DEBUGFUNC("igc_clear_hw_cntrs_base_generic");
409 
410 	IGC_READ_REG(hw, IGC_CRCERRS);
411 	IGC_READ_REG(hw, IGC_MPC);
412 	IGC_READ_REG(hw, IGC_SCC);
413 	IGC_READ_REG(hw, IGC_ECOL);
414 	IGC_READ_REG(hw, IGC_MCC);
415 	IGC_READ_REG(hw, IGC_LATECOL);
416 	IGC_READ_REG(hw, IGC_COLC);
417 	IGC_READ_REG(hw, IGC_RERC);
418 	IGC_READ_REG(hw, IGC_DC);
419 	IGC_READ_REG(hw, IGC_RLEC);
420 	IGC_READ_REG(hw, IGC_XONRXC);
421 	IGC_READ_REG(hw, IGC_XONTXC);
422 	IGC_READ_REG(hw, IGC_XOFFRXC);
423 	IGC_READ_REG(hw, IGC_XOFFTXC);
424 	IGC_READ_REG(hw, IGC_FCRUC);
425 	IGC_READ_REG(hw, IGC_GPRC);
426 	IGC_READ_REG(hw, IGC_BPRC);
427 	IGC_READ_REG(hw, IGC_MPRC);
428 	IGC_READ_REG(hw, IGC_GPTC);
429 	IGC_READ_REG(hw, IGC_GORCL);
430 	IGC_READ_REG(hw, IGC_GORCH);
431 	IGC_READ_REG(hw, IGC_GOTCL);
432 	IGC_READ_REG(hw, IGC_GOTCH);
433 	IGC_READ_REG(hw, IGC_RNBC);
434 	IGC_READ_REG(hw, IGC_RUC);
435 	IGC_READ_REG(hw, IGC_RFC);
436 	IGC_READ_REG(hw, IGC_ROC);
437 	IGC_READ_REG(hw, IGC_RJC);
438 	IGC_READ_REG(hw, IGC_TORL);
439 	IGC_READ_REG(hw, IGC_TORH);
440 	IGC_READ_REG(hw, IGC_TOTL);
441 	IGC_READ_REG(hw, IGC_TOTH);
442 	IGC_READ_REG(hw, IGC_TPR);
443 	IGC_READ_REG(hw, IGC_TPT);
444 	IGC_READ_REG(hw, IGC_MPTC);
445 	IGC_READ_REG(hw, IGC_BPTC);
446 	IGC_READ_REG(hw, IGC_TLPIC);
447 	IGC_READ_REG(hw, IGC_RLPIC);
448 	IGC_READ_REG(hw, IGC_RXDMTC);
449 }
450 
451 /**
452  *  igc_check_for_copper_link_generic - Check for link (Copper)
453  *  @hw: pointer to the HW structure
454  *
455  *  Checks to see of the link status of the hardware has changed.  If a
456  *  change in link status has been detected, then we read the PHY registers
457  *  to get the current speed/duplex if link exists.
458  **/
igc_check_for_copper_link_generic(struct igc_hw * hw)459 s32 igc_check_for_copper_link_generic(struct igc_hw *hw)
460 {
461 	struct igc_mac_info *mac = &hw->mac;
462 	s32 ret_val;
463 	bool link = false;
464 
465 	DEBUGFUNC("igc_check_for_copper_link");
466 
467 	/* We only want to go out to the PHY registers to see if Auto-Neg
468 	 * has completed and/or if our link status has changed.  The
469 	 * get_link_status flag is set upon receiving a Link Status
470 	 * Change or Rx Sequence Error interrupt.
471 	 */
472 	if (!mac->get_link_status)
473 		return IGC_SUCCESS;
474 
475 	/* First we want to see if the MII Status Register reports
476 	 * link.  If so, then we want to get the current speed/duplex
477 	 * of the PHY.
478 	 */
479 	ret_val = igc_phy_has_link_generic(hw, 1, 0, &link);
480 	if (ret_val)
481 		return ret_val;
482 
483 	if (!link)
484 		return IGC_SUCCESS; /* No link detected */
485 
486 	mac->get_link_status = false;
487 
488 	/* Check if there was DownShift, must be checked
489 	 * immediately after link-up
490 	 */
491 	igc_check_downshift_generic(hw);
492 
493 	/* If we are forcing speed/duplex, then we simply return since
494 	 * we have already determined whether we have link or not.
495 	 */
496 	if (!mac->autoneg)
497 		return -IGC_ERR_CONFIG;
498 
499 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
500 	 * of MAC speed/duplex configuration.  So we only need to
501 	 * configure Collision Distance in the MAC.
502 	 */
503 	mac->ops.config_collision_dist(hw);
504 
505 	/* Configure Flow Control now that Auto-Neg has completed.
506 	 * First, we need to restore the desired flow control
507 	 * settings because we may have had to re-autoneg with a
508 	 * different link partner.
509 	 */
510 	ret_val = igc_config_fc_after_link_up_generic(hw);
511 	if (ret_val)
512 		DEBUGOUT("Error configuring flow control\n");
513 
514 	return ret_val;
515 }
516 
517 /**
518  *  igc_setup_link_generic - Setup flow control and link settings
519  *  @hw: pointer to the HW structure
520  *
521  *  Determines which flow control settings to use, then configures flow
522  *  control.  Calls the appropriate media-specific link configuration
523  *  function.  Assuming the adapter has a valid link partner, a valid link
524  *  should be established.  Assumes the hardware has previously been reset
525  *  and the transmitter and receiver are not enabled.
526  **/
igc_setup_link_generic(struct igc_hw * hw)527 s32 igc_setup_link_generic(struct igc_hw *hw)
528 {
529 	s32 ret_val;
530 
531 	DEBUGFUNC("igc_setup_link_generic");
532 
533 	/* In the case of the phy reset being blocked, we already have a link.
534 	 * We do not need to set it up again.
535 	 */
536 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
537 		return IGC_SUCCESS;
538 
539 	/* If requested flow control is set to default, set flow control
540 	 * for both 'rx' and 'tx' pause frames.
541 	 */
542 	if (hw->fc.requested_mode == igc_fc_default) {
543 		hw->fc.requested_mode = igc_fc_full;
544 	}
545 
546 	/* Save off the requested flow control mode for use later.  Depending
547 	 * on the link partner's capabilities, we may or may not use this mode.
548 	 */
549 	hw->fc.current_mode = hw->fc.requested_mode;
550 
551 	DEBUGOUT1("After fix-ups FlowControl is now = %x\n",
552 		hw->fc.current_mode);
553 
554 	/* Call the necessary media_type subroutine to configure the link. */
555 	ret_val = hw->mac.ops.setup_physical_interface(hw);
556 	if (ret_val)
557 		return ret_val;
558 
559 	/* Initialize the flow control address, type, and PAUSE timer
560 	 * registers to their default values.  This is done even if flow
561 	 * control is disabled, because it does not hurt anything to
562 	 * initialize these registers.
563 	 */
564 	DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
565 	IGC_WRITE_REG(hw, IGC_FCT, FLOW_CONTROL_TYPE);
566 	IGC_WRITE_REG(hw, IGC_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
567 	IGC_WRITE_REG(hw, IGC_FCAL, FLOW_CONTROL_ADDRESS_LOW);
568 
569 	IGC_WRITE_REG(hw, IGC_FCTTV, hw->fc.pause_time);
570 
571 	return igc_set_fc_watermarks_generic(hw);
572 }
573 
574 /**
575  *  igc_config_collision_dist_generic - Configure collision distance
576  *  @hw: pointer to the HW structure
577  *
578  *  Configures the collision distance to the default value and is used
579  *  during link setup.
580  **/
igc_config_collision_dist_generic(struct igc_hw * hw)581 static void igc_config_collision_dist_generic(struct igc_hw *hw)
582 {
583 	u32 tctl;
584 
585 	DEBUGFUNC("igc_config_collision_dist_generic");
586 
587 	tctl = IGC_READ_REG(hw, IGC_TCTL);
588 
589 	tctl &= ~IGC_TCTL_COLD;
590 	tctl |= IGC_COLLISION_DISTANCE << IGC_COLD_SHIFT;
591 
592 	IGC_WRITE_REG(hw, IGC_TCTL, tctl);
593 	IGC_WRITE_FLUSH(hw);
594 }
595 
596 /**
597  *  igc_set_fc_watermarks_generic - Set flow control high/low watermarks
598  *  @hw: pointer to the HW structure
599  *
600  *  Sets the flow control high/low threshold (watermark) registers.  If
601  *  flow control XON frame transmission is enabled, then set XON frame
602  *  transmission as well.
603  **/
igc_set_fc_watermarks_generic(struct igc_hw * hw)604 s32 igc_set_fc_watermarks_generic(struct igc_hw *hw)
605 {
606 	u32 fcrtl = 0, fcrth = 0;
607 
608 	DEBUGFUNC("igc_set_fc_watermarks_generic");
609 
610 	/* Set the flow control receive threshold registers.  Normally,
611 	 * these registers will be set to a default threshold that may be
612 	 * adjusted later by the driver's runtime code.  However, if the
613 	 * ability to transmit pause frames is not enabled, then these
614 	 * registers will be set to 0.
615 	 */
616 	if (hw->fc.current_mode & igc_fc_tx_pause) {
617 		/* We need to set up the Receive Threshold high and low water
618 		 * marks as well as (optionally) enabling the transmission of
619 		 * XON frames.
620 		 */
621 		fcrtl = hw->fc.low_water;
622 		if (hw->fc.send_xon)
623 			fcrtl |= IGC_FCRTL_XONE;
624 
625 		fcrth = hw->fc.high_water;
626 	}
627 	IGC_WRITE_REG(hw, IGC_FCRTL, fcrtl);
628 	IGC_WRITE_REG(hw, IGC_FCRTH, fcrth);
629 
630 	return IGC_SUCCESS;
631 }
632 
633 /**
634  *  igc_force_mac_fc_generic - Force the MAC's flow control settings
635  *  @hw: pointer to the HW structure
636  *
637  *  Force the MAC's flow control settings.  Sets the TFCE and RFCE bits in the
638  *  device control register to reflect the adapter settings.  TFCE and RFCE
639  *  need to be explicitly set by software when a copper PHY is used because
640  *  autonegotiation is managed by the PHY rather than the MAC.  Software must
641  *  also configure these bits when link is forced on a fiber connection.
642  **/
igc_force_mac_fc_generic(struct igc_hw * hw)643 s32 igc_force_mac_fc_generic(struct igc_hw *hw)
644 {
645 	u32 ctrl;
646 
647 	DEBUGFUNC("igc_force_mac_fc_generic");
648 
649 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
650 
651 	/* Because we didn't get link via the internal auto-negotiation
652 	 * mechanism (we either forced link or we got link via PHY
653 	 * auto-neg), we have to manually enable/disable transmit an
654 	 * receive flow control.
655 	 *
656 	 * The "Case" statement below enables/disable flow control
657 	 * according to the "hw->fc.current_mode" parameter.
658 	 *
659 	 * The possible values of the "fc" parameter are:
660 	 *      0:  Flow control is completely disabled
661 	 *      1:  Rx flow control is enabled (we can receive pause
662 	 *          frames but not send pause frames).
663 	 *      2:  Tx flow control is enabled (we can send pause frames
664 	 *          frames but we do not receive pause frames).
665 	 *      3:  Both Rx and Tx flow control (symmetric) is enabled.
666 	 *  other:  No other values should be possible at this point.
667 	 */
668 	DEBUGOUT1("hw->fc.current_mode = %u\n", hw->fc.current_mode);
669 
670 	switch (hw->fc.current_mode) {
671 	case igc_fc_none:
672 		ctrl &= (~(IGC_CTRL_TFCE | IGC_CTRL_RFCE));
673 		break;
674 	case igc_fc_rx_pause:
675 		ctrl &= (~IGC_CTRL_TFCE);
676 		ctrl |= IGC_CTRL_RFCE;
677 		break;
678 	case igc_fc_tx_pause:
679 		ctrl &= (~IGC_CTRL_RFCE);
680 		ctrl |= IGC_CTRL_TFCE;
681 		break;
682 	case igc_fc_full:
683 		ctrl |= (IGC_CTRL_TFCE | IGC_CTRL_RFCE);
684 		break;
685 	default:
686 		DEBUGOUT("Flow control param set incorrectly\n");
687 		return -IGC_ERR_CONFIG;
688 	}
689 
690 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
691 
692 	return IGC_SUCCESS;
693 }
694 
695 /**
696  *  igc_config_fc_after_link_up_generic - Configures flow control after link
697  *  @hw: pointer to the HW structure
698  *
699  *  Checks the status of auto-negotiation after link up to ensure that the
700  *  speed and duplex were not forced.  If the link needed to be forced, then
701  *  flow control needs to be forced also.  If auto-negotiation is enabled
702  *  and did not fail, then we configure flow control based on our link
703  *  partner.
704  **/
igc_config_fc_after_link_up_generic(struct igc_hw * hw)705 s32 igc_config_fc_after_link_up_generic(struct igc_hw *hw)
706 {
707 	struct igc_mac_info *mac = &hw->mac;
708 	s32 ret_val = IGC_SUCCESS;
709 	u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
710 	u16 speed, duplex;
711 
712 	DEBUGFUNC("igc_config_fc_after_link_up_generic");
713 
714 	if (ret_val) {
715 		DEBUGOUT("Error forcing flow control settings\n");
716 		return ret_val;
717 	}
718 
719 	/* Check for the case where we have copper media and auto-neg is
720 	 * enabled.  In this case, we need to check and see if Auto-Neg
721 	 * has completed, and if so, how the PHY and link partner has
722 	 * flow control configured.
723 	 */
724 	if (mac->autoneg) {
725 		/* Read the MII Status Register and check to see if AutoNeg
726 		 * has completed.  We read this twice because this reg has
727 		 * some "sticky" (latched) bits.
728 		 */
729 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
730 		if (ret_val)
731 			return ret_val;
732 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &mii_status_reg);
733 		if (ret_val)
734 			return ret_val;
735 
736 		if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
737 			DEBUGOUT("Copper PHY and Auto Neg has not completed.\n");
738 			return ret_val;
739 		}
740 
741 		/* The AutoNeg process has completed, so we now need to
742 		 * read both the Auto Negotiation Advertisement
743 		 * Register (Address 4) and the Auto_Negotiation Base
744 		 * Page Ability Register (Address 5) to determine how
745 		 * flow control was negotiated.
746 		 */
747 		ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
748 					       &mii_nway_adv_reg);
749 		if (ret_val)
750 			return ret_val;
751 		ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
752 					       &mii_nway_lp_ability_reg);
753 		if (ret_val)
754 			return ret_val;
755 
756 		/* Two bits in the Auto Negotiation Advertisement Register
757 		 * (Address 4) and two bits in the Auto Negotiation Base
758 		 * Page Ability Register (Address 5) determine flow control
759 		 * for both the PHY and the link partner.  The following
760 		 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
761 		 * 1999, describes these PAUSE resolution bits and how flow
762 		 * control is determined based upon these settings.
763 		 * NOTE:  DC = Don't Care
764 		 *
765 		 *   LOCAL DEVICE  |   LINK PARTNER
766 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
767 		 *-------|---------|-------|---------|--------------------
768 		 *   0   |    0    |  DC   |   DC    | igc_fc_none
769 		 *   0   |    1    |   0   |   DC    | igc_fc_none
770 		 *   0   |    1    |   1   |    0    | igc_fc_none
771 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
772 		 *   1   |    0    |   0   |   DC    | igc_fc_none
773 		 *   1   |   DC    |   1   |   DC    | igc_fc_full
774 		 *   1   |    1    |   0   |    0    | igc_fc_none
775 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
776 		 *
777 		 * Are both PAUSE bits set to 1?  If so, this implies
778 		 * Symmetric Flow Control is enabled at both ends.  The
779 		 * ASM_DIR bits are irrelevant per the spec.
780 		 *
781 		 * For Symmetric Flow Control:
782 		 *
783 		 *   LOCAL DEVICE  |   LINK PARTNER
784 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
785 		 *-------|---------|-------|---------|--------------------
786 		 *   1   |   DC    |   1   |   DC    | IGC_fc_full
787 		 *
788 		 */
789 		if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
790 		    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
791 			/* Now we need to check if the user selected Rx ONLY
792 			 * of pause frames.  In this case, we had to advertise
793 			 * FULL flow control because we could not advertise Rx
794 			 * ONLY. Hence, we must now check to see if we need to
795 			 * turn OFF the TRANSMISSION of PAUSE frames.
796 			 */
797 			if (hw->fc.requested_mode == igc_fc_full) {
798 				hw->fc.current_mode = igc_fc_full;
799 				DEBUGOUT("Flow Control = FULL.\n");
800 			} else {
801 				hw->fc.current_mode = igc_fc_rx_pause;
802 				DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
803 			}
804 		}
805 		/* For receiving PAUSE frames ONLY.
806 		 *
807 		 *   LOCAL DEVICE  |   LINK PARTNER
808 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
809 		 *-------|---------|-------|---------|--------------------
810 		 *   0   |    1    |   1   |    1    | igc_fc_tx_pause
811 		 */
812 		else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
813 			  (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
814 			  (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
815 			  (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
816 			hw->fc.current_mode = igc_fc_tx_pause;
817 			DEBUGOUT("Flow Control = Tx PAUSE frames only.\n");
818 		}
819 		/* For transmitting PAUSE frames ONLY.
820 		 *
821 		 *   LOCAL DEVICE  |   LINK PARTNER
822 		 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
823 		 *-------|---------|-------|---------|--------------------
824 		 *   1   |    1    |   0   |    1    | igc_fc_rx_pause
825 		 */
826 		else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
827 			 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
828 			 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
829 			 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
830 			hw->fc.current_mode = igc_fc_rx_pause;
831 			DEBUGOUT("Flow Control = Rx PAUSE frames only.\n");
832 		} else {
833 			/* Per the IEEE spec, at this point flow control
834 			 * should be disabled.
835 			 */
836 			hw->fc.current_mode = igc_fc_none;
837 			DEBUGOUT("Flow Control = NONE.\n");
838 		}
839 
840 		/* Now we need to do one last check...  If we auto-
841 		 * negotiated to HALF DUPLEX, flow control should not be
842 		 * enabled per IEEE 802.3 spec.
843 		 */
844 		ret_val = mac->ops.get_link_up_info(hw, &speed, &duplex);
845 		if (ret_val) {
846 			DEBUGOUT("Error getting link speed and duplex\n");
847 			return ret_val;
848 		}
849 
850 		if (duplex == HALF_DUPLEX)
851 			hw->fc.current_mode = igc_fc_none;
852 
853 		/* Now we call a subroutine to actually force the MAC
854 		 * controller to use the correct flow control settings.
855 		 */
856 		ret_val = igc_force_mac_fc_generic(hw);
857 		if (ret_val) {
858 			DEBUGOUT("Error forcing flow control settings\n");
859 			return ret_val;
860 		}
861 	}
862 
863 	return IGC_SUCCESS;
864 }
865 
866 /**
867  *  igc_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
868  *  @hw: pointer to the HW structure
869  *  @speed: stores the current speed
870  *  @duplex: stores the current duplex
871  *
872  *  Read the status register for the current speed/duplex and store the current
873  *  speed and duplex for copper connections.
874  **/
igc_get_speed_and_duplex_copper_generic(struct igc_hw * hw,u16 * speed,u16 * duplex)875 s32 igc_get_speed_and_duplex_copper_generic(struct igc_hw *hw, u16 *speed,
876 					      u16 *duplex)
877 {
878 	u32 status;
879 
880 	DEBUGFUNC("igc_get_speed_and_duplex_copper_generic");
881 
882 	status = IGC_READ_REG(hw, IGC_STATUS);
883 	if (status & IGC_STATUS_SPEED_1000) {
884 		/* For I225, STATUS will indicate 1G speed in both 1 Gbps
885 		 * and 2.5 Gbps link modes. An additional bit is used
886 		 * to differentiate between 1 Gbps and 2.5 Gbps.
887 		 */
888 		if ((hw->mac.type == igc_i225) &&
889 		    (status & IGC_STATUS_SPEED_2500)) {
890 			*speed = SPEED_2500;
891 			DEBUGOUT("2500 Mbs, ");
892 		} else {
893 			*speed = SPEED_1000;
894 			DEBUGOUT("1000 Mbs, ");
895 		}
896 	} else if (status & IGC_STATUS_SPEED_100) {
897 		*speed = SPEED_100;
898 		DEBUGOUT("100 Mbs, ");
899 	} else {
900 		*speed = SPEED_10;
901 		DEBUGOUT("10 Mbs, ");
902 	}
903 
904 	if (status & IGC_STATUS_FD) {
905 		*duplex = FULL_DUPLEX;
906 		DEBUGOUT("Full Duplex\n");
907 	} else {
908 		*duplex = HALF_DUPLEX;
909 		DEBUGOUT("Half Duplex\n");
910 	}
911 
912 	return IGC_SUCCESS;
913 }
914 
915 /**
916  *  igc_get_hw_semaphore_generic - Acquire hardware semaphore
917  *  @hw: pointer to the HW structure
918  *
919  *  Acquire the HW semaphore to access the PHY or NVM
920  **/
igc_get_hw_semaphore_generic(struct igc_hw * hw)921 s32 igc_get_hw_semaphore_generic(struct igc_hw *hw)
922 {
923 	u32 swsm;
924 	s32 timeout = hw->nvm.word_size + 1;
925 	s32 i = 0;
926 
927 	DEBUGFUNC("igc_get_hw_semaphore_generic");
928 
929 	/* Get the SW semaphore */
930 	while (i < timeout) {
931 		swsm = IGC_READ_REG(hw, IGC_SWSM);
932 		if (!(swsm & IGC_SWSM_SMBI))
933 			break;
934 
935 		usec_delay(50);
936 		i++;
937 	}
938 
939 	if (i == timeout) {
940 		DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
941 		return -IGC_ERR_NVM;
942 	}
943 
944 	/* Get the FW semaphore. */
945 	for (i = 0; i < timeout; i++) {
946 		swsm = IGC_READ_REG(hw, IGC_SWSM);
947 		IGC_WRITE_REG(hw, IGC_SWSM, swsm | IGC_SWSM_SWESMBI);
948 
949 		/* Semaphore acquired if bit latched */
950 		if (IGC_READ_REG(hw, IGC_SWSM) & IGC_SWSM_SWESMBI)
951 			break;
952 
953 		usec_delay(50);
954 	}
955 
956 	if (i == timeout) {
957 		/* Release semaphores */
958 		igc_put_hw_semaphore_generic(hw);
959 		DEBUGOUT("Driver can't access the NVM\n");
960 		return -IGC_ERR_NVM;
961 	}
962 
963 	return IGC_SUCCESS;
964 }
965 
966 /**
967  *  igc_put_hw_semaphore_generic - Release hardware semaphore
968  *  @hw: pointer to the HW structure
969  *
970  *  Release hardware semaphore used to access the PHY or NVM
971  **/
igc_put_hw_semaphore_generic(struct igc_hw * hw)972 void igc_put_hw_semaphore_generic(struct igc_hw *hw)
973 {
974 	u32 swsm;
975 
976 	DEBUGFUNC("igc_put_hw_semaphore_generic");
977 
978 	swsm = IGC_READ_REG(hw, IGC_SWSM);
979 
980 	swsm &= ~(IGC_SWSM_SMBI | IGC_SWSM_SWESMBI);
981 
982 	IGC_WRITE_REG(hw, IGC_SWSM, swsm);
983 }
984 
985 /**
986  *  igc_get_auto_rd_done_generic - Check for auto read completion
987  *  @hw: pointer to the HW structure
988  *
989  *  Check EEPROM for Auto Read done bit.
990  **/
igc_get_auto_rd_done_generic(struct igc_hw * hw)991 s32 igc_get_auto_rd_done_generic(struct igc_hw *hw)
992 {
993 	s32 i = 0;
994 
995 	DEBUGFUNC("igc_get_auto_rd_done_generic");
996 
997 	while (i < AUTO_READ_DONE_TIMEOUT) {
998 		if (IGC_READ_REG(hw, IGC_EECD) & IGC_EECD_AUTO_RD)
999 			break;
1000 		msec_delay(1);
1001 		i++;
1002 	}
1003 
1004 	if (i == AUTO_READ_DONE_TIMEOUT) {
1005 		DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1006 		return -IGC_ERR_RESET;
1007 	}
1008 
1009 	return IGC_SUCCESS;
1010 }
1011 
1012 /**
1013  *  igc_disable_pcie_master_generic - Disables PCI-express master access
1014  *  @hw: pointer to the HW structure
1015  *
1016  *  Returns IGC_SUCCESS if successful, else returns -10
1017  *  (-IGC_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1018  *  the master requests to be disabled.
1019  *
1020  *  Disables PCI-Express master access and verifies there are no pending
1021  *  requests.
1022  **/
igc_disable_pcie_master_generic(struct igc_hw * hw)1023 s32 igc_disable_pcie_master_generic(struct igc_hw *hw)
1024 {
1025 	u32 ctrl;
1026 	s32 timeout = MASTER_DISABLE_TIMEOUT;
1027 
1028 	DEBUGFUNC("igc_disable_pcie_master_generic");
1029 
1030 	ctrl = IGC_READ_REG(hw, IGC_CTRL);
1031 	ctrl |= IGC_CTRL_GIO_MASTER_DISABLE;
1032 	IGC_WRITE_REG(hw, IGC_CTRL, ctrl);
1033 
1034 	while (timeout) {
1035 		if (!(IGC_READ_REG(hw, IGC_STATUS) &
1036 		      IGC_STATUS_GIO_MASTER_ENABLE))
1037 			break;
1038 		usec_delay(100);
1039 		timeout--;
1040 	}
1041 
1042 	if (!timeout) {
1043 		DEBUGOUT("Master requests are pending.\n");
1044 		return -IGC_ERR_MASTER_REQUESTS_PENDING;
1045 	}
1046 
1047 	return IGC_SUCCESS;
1048 }
1049