xref: /openbsd/sys/netinet/ip_output.c (revision 84d9c64a)
1 /*	$OpenBSD: ip_output.c,v 1.402 2025/01/03 21:27:40 bluhm Exp $	*/
2 /*	$NetBSD: ip_output.c,v 1.28 1996/02/13 23:43:07 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1988, 1990, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
33  */
34 
35 #include "pf.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/mbuf.h>
40 #include <sys/protosw.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/proc.h>
44 #include <sys/kernel.h>
45 
46 #include <net/if.h>
47 #include <net/if_var.h>
48 #include <net/if_enc.h>
49 #include <net/route.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/in_pcb.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/ip_icmp.h>
57 #include <netinet/tcp.h>
58 #include <netinet/udp.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/udp_var.h>
62 
63 #if NPF > 0
64 #include <net/pfvar.h>
65 #endif
66 
67 #ifdef IPSEC
68 #ifdef ENCDEBUG
69 #define DPRINTF(fmt, args...)						\
70 	do {								\
71 		if (encdebug)						\
72 			printf("%s: " fmt "\n", __func__, ## args);	\
73 	} while (0)
74 #else
75 #define DPRINTF(fmt, args...)						\
76 	do { } while (0)
77 #endif
78 #endif /* IPSEC */
79 
80 int ip_pcbopts(struct mbuf **, struct mbuf *);
81 int ip_multicast_if(struct ip_mreqn *, u_int, unsigned int *);
82 int ip_setmoptions(int, struct ip_moptions **, struct mbuf *, u_int);
83 void ip_mloopback(struct ifnet *, struct mbuf *, struct sockaddr_in *);
84 static u_int16_t in_cksum_phdr(u_int32_t, u_int32_t, u_int32_t);
85 void in_delayed_cksum(struct mbuf *);
86 
87 int ip_output_ipsec_lookup(struct mbuf *m, int hlen,
88     const struct ipsec_level *seclevel, struct tdb **, int ipsecflowinfo);
89 void ip_output_ipsec_pmtu_update(struct tdb *, struct route *, struct in_addr,
90     int, int);
91 int ip_output_ipsec_send(struct tdb *, struct mbuf *, struct route *, int);
92 
93 /*
94  * IP output.  The packet in mbuf chain m contains a skeletal IP
95  * header (with len, off, ttl, proto, tos, src, dst).
96  * The mbuf chain containing the packet will be freed.
97  * The mbuf opt, if present, will not be freed.
98  */
99 int
ip_output(struct mbuf * m,struct mbuf * opt,struct route * ro,int flags,struct ip_moptions * imo,const struct ipsec_level * seclevel,u_int32_t ipsecflowinfo)100 ip_output(struct mbuf *m, struct mbuf *opt, struct route *ro, int flags,
101     struct ip_moptions *imo, const struct ipsec_level *seclevel,
102     u_int32_t ipsecflowinfo)
103 {
104 	struct ip *ip;
105 	struct ifnet *ifp = NULL;
106 	struct mbuf_list ml;
107 	int hlen = sizeof (struct ip);
108 	int error = 0;
109 	struct route iproute;
110 	struct sockaddr_in *dst;
111 	struct tdb *tdb = NULL;
112 	u_long mtu;
113 #if NPF > 0
114 	u_int orig_rtableid;
115 #endif
116 
117 	NET_ASSERT_LOCKED();
118 
119 #ifdef	DIAGNOSTIC
120 	if ((m->m_flags & M_PKTHDR) == 0)
121 		panic("ip_output no HDR");
122 #endif
123 	if (opt)
124 		m = ip_insertoptions(m, opt, &hlen);
125 
126 	ip = mtod(m, struct ip *);
127 
128 	/*
129 	 * Fill in IP header.
130 	 */
131 	if ((flags & (IP_FORWARDING|IP_RAWOUTPUT)) == 0) {
132 		ip->ip_v = IPVERSION;
133 		ip->ip_off &= htons(IP_DF);
134 		ip->ip_id = htons(ip_randomid());
135 		ip->ip_hl = hlen >> 2;
136 		ipstat_inc(ips_localout);
137 	} else {
138 		hlen = ip->ip_hl << 2;
139 	}
140 
141 	/*
142 	 * We should not send traffic to 0/8 say both Stevens and RFCs
143 	 * 5735 section 3 and 1122 sections 3.2.1.3 and 3.3.6.
144 	 */
145 	if ((ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == 0) {
146 		error = ENETUNREACH;
147 		goto bad;
148 	}
149 
150 #if NPF > 0
151 	orig_rtableid = m->m_pkthdr.ph_rtableid;
152 reroute:
153 #endif
154 
155 	/*
156 	 * Do a route lookup now in case we need the source address to
157 	 * do an SPD lookup in IPsec; for most packets, the source address
158 	 * is set at a higher level protocol. ICMPs and other packets
159 	 * though (e.g., traceroute) have a source address of zeroes.
160 	 */
161 	if (ro == NULL) {
162 		ro = &iproute;
163 		ro->ro_rt = NULL;
164 	}
165 
166 	/*
167 	 * If there is a cached route, check that it is to the same
168 	 * destination and is still up.  If not, free it and try again.
169 	 */
170 	route_cache(ro, &ip->ip_dst, &ip->ip_src, m->m_pkthdr.ph_rtableid);
171 	dst = &ro->ro_dstsin;
172 
173 	if ((IN_MULTICAST(ip->ip_dst.s_addr) ||
174 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) &&
175 	    imo != NULL && (ifp = if_get(imo->imo_ifidx)) != NULL) {
176 
177 		mtu = ifp->if_mtu;
178 		if (ip->ip_src.s_addr == INADDR_ANY) {
179 			struct in_ifaddr *ia;
180 
181 			IFP_TO_IA(ifp, ia);
182 			if (ia != NULL)
183 				ip->ip_src = ia->ia_addr.sin_addr;
184 		}
185 	} else {
186 		struct in_ifaddr *ia;
187 
188 		if (ro->ro_rt == NULL)
189 			ro->ro_rt = rtalloc_mpath(&ro->ro_dstsa,
190 			    &ip->ip_src.s_addr, ro->ro_tableid);
191 
192 		if (ro->ro_rt == NULL) {
193 			ipstat_inc(ips_noroute);
194 			error = EHOSTUNREACH;
195 			goto bad;
196 		}
197 
198 		ia = ifatoia(ro->ro_rt->rt_ifa);
199 		if (ISSET(ro->ro_rt->rt_flags, RTF_LOCAL))
200 			ifp = if_get(rtable_loindex(m->m_pkthdr.ph_rtableid));
201 		else
202 			ifp = if_get(ro->ro_rt->rt_ifidx);
203 		/*
204 		 * We aren't using rtisvalid() here because the UP/DOWN state
205 		 * machine is broken with some Ethernet drivers like em(4).
206 		 * As a result we might try to use an invalid cached route
207 		 * entry while an interface is being detached.
208 		 */
209 		if (ifp == NULL) {
210 			ipstat_inc(ips_noroute);
211 			error = EHOSTUNREACH;
212 			goto bad;
213 		}
214 		mtu = atomic_load_int(&ro->ro_rt->rt_mtu);
215 		if (mtu == 0)
216 			mtu = ifp->if_mtu;
217 
218 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
219 			dst = satosin(ro->ro_rt->rt_gateway);
220 
221 		/* Set the source IP address */
222 		if (ip->ip_src.s_addr == INADDR_ANY && ia)
223 			ip->ip_src = ia->ia_addr.sin_addr;
224 	}
225 
226 #ifdef IPSEC
227 	if (ipsec_in_use || seclevel != NULL) {
228 		/* Do we have any pending SAs to apply ? */
229 		error = ip_output_ipsec_lookup(m, hlen, seclevel, &tdb,
230 		    ipsecflowinfo);
231 		if (error) {
232 			/* Should silently drop packet */
233 			if (error == -EINVAL)
234 				error = 0;
235 			goto bad;
236 		}
237 		if (tdb != NULL) {
238 			/*
239 			 * If it needs TCP/UDP hardware-checksumming, do the
240 			 * computation now.
241 			 */
242 			in_proto_cksum_out(m, NULL);
243 		}
244 	}
245 #endif /* IPSEC */
246 
247 	if (IN_MULTICAST(ip->ip_dst.s_addr) ||
248 	    (ip->ip_dst.s_addr == INADDR_BROADCAST)) {
249 
250 		m->m_flags |= (ip->ip_dst.s_addr == INADDR_BROADCAST) ?
251 			M_BCAST : M_MCAST;
252 
253 		/*
254 		 * IP destination address is multicast.  Make sure "dst"
255 		 * still points to the address in "ro".  (It may have been
256 		 * changed to point to a gateway address, above.)
257 		 */
258 		dst = &ro->ro_dstsin;
259 
260 		/*
261 		 * See if the caller provided any multicast options
262 		 */
263 		if (imo != NULL)
264 			ip->ip_ttl = imo->imo_ttl;
265 		else
266 			ip->ip_ttl = IP_DEFAULT_MULTICAST_TTL;
267 
268 		/*
269 		 * if we don't know the outgoing ifp yet, we can't generate
270 		 * output
271 		 */
272 		if (!ifp) {
273 			ipstat_inc(ips_noroute);
274 			error = EHOSTUNREACH;
275 			goto bad;
276 		}
277 
278 		/*
279 		 * Confirm that the outgoing interface supports multicast,
280 		 * but only if the packet actually is going out on that
281 		 * interface (i.e., no IPsec is applied).
282 		 */
283 		if ((((m->m_flags & M_MCAST) &&
284 		      (ifp->if_flags & IFF_MULTICAST) == 0) ||
285 		     ((m->m_flags & M_BCAST) &&
286 		      (ifp->if_flags & IFF_BROADCAST) == 0)) && (tdb == NULL)) {
287 			ipstat_inc(ips_noroute);
288 			error = ENETUNREACH;
289 			goto bad;
290 		}
291 
292 		/*
293 		 * If source address not specified yet, use address
294 		 * of outgoing interface.
295 		 */
296 		if (ip->ip_src.s_addr == INADDR_ANY) {
297 			struct in_ifaddr *ia;
298 
299 			IFP_TO_IA(ifp, ia);
300 			if (ia != NULL)
301 				ip->ip_src = ia->ia_addr.sin_addr;
302 		}
303 
304 		if ((imo == NULL || imo->imo_loop) &&
305 		    in_hasmulti(&ip->ip_dst, ifp)) {
306 			/*
307 			 * If we belong to the destination multicast group
308 			 * on the outgoing interface, and the caller did not
309 			 * forbid loopback, loop back a copy.
310 			 * Can't defer TCP/UDP checksumming, do the
311 			 * computation now.
312 			 */
313 			in_proto_cksum_out(m, NULL);
314 			ip_mloopback(ifp, m, dst);
315 		}
316 #ifdef MROUTING
317 		else {
318 			/*
319 			 * If we are acting as a multicast router, perform
320 			 * multicast forwarding as if the packet had just
321 			 * arrived on the interface to which we are about
322 			 * to send.  The multicast forwarding function
323 			 * recursively calls this function, using the
324 			 * IP_FORWARDING flag to prevent infinite recursion.
325 			 *
326 			 * Multicasts that are looped back by ip_mloopback(),
327 			 * above, will be forwarded by the ip_input() routine,
328 			 * if necessary.
329 			 */
330 			if (ipmforwarding && ip_mrouter[ifp->if_rdomain] &&
331 			    (flags & IP_FORWARDING) == 0) {
332 				int rv;
333 
334 				KERNEL_LOCK();
335 				rv = ip_mforward(m, ifp, flags);
336 				KERNEL_UNLOCK();
337 				if (rv != 0)
338 					goto bad;
339 			}
340 		}
341 #endif
342 		/*
343 		 * Multicasts with a time-to-live of zero may be looped-
344 		 * back, above, but must not be transmitted on a network.
345 		 * Also, multicasts addressed to the loopback interface
346 		 * are not sent -- the above call to ip_mloopback() will
347 		 * loop back a copy if this host actually belongs to the
348 		 * destination group on the loopback interface.
349 		 */
350 		if (ip->ip_ttl == 0 || (ifp->if_flags & IFF_LOOPBACK) != 0)
351 			goto bad;
352 
353 		goto sendit;
354 	}
355 
356 	/*
357 	 * Look for broadcast address and verify user is allowed to send
358 	 * such a packet; if the packet is going in an IPsec tunnel, skip
359 	 * this check.
360 	 */
361 	if ((tdb == NULL) && ((dst->sin_addr.s_addr == INADDR_BROADCAST) ||
362 	    (ro && ro->ro_rt && ISSET(ro->ro_rt->rt_flags, RTF_BROADCAST)))) {
363 		if ((ifp->if_flags & IFF_BROADCAST) == 0) {
364 			error = EADDRNOTAVAIL;
365 			goto bad;
366 		}
367 		if ((flags & IP_ALLOWBROADCAST) == 0) {
368 			error = EACCES;
369 			goto bad;
370 		}
371 
372 		/* Don't allow broadcast messages to be fragmented */
373 		if (ntohs(ip->ip_len) > ifp->if_mtu) {
374 			error = EMSGSIZE;
375 			goto bad;
376 		}
377 		m->m_flags |= M_BCAST;
378 	} else
379 		m->m_flags &= ~M_BCAST;
380 
381 sendit:
382 	/*
383 	 * If we're doing Path MTU discovery, we need to set DF unless
384 	 * the route's MTU is locked.
385 	 */
386 	if ((flags & IP_MTUDISC) && ro && ro->ro_rt &&
387 	    (ro->ro_rt->rt_locks & RTV_MTU) == 0)
388 		ip->ip_off |= htons(IP_DF);
389 
390 #ifdef IPSEC
391 	/*
392 	 * Check if the packet needs encapsulation.
393 	 */
394 	if (tdb != NULL) {
395 		/* Callee frees mbuf */
396 		error = ip_output_ipsec_send(tdb, m, ro,
397 		    (flags & IP_FORWARDING) ? 1 : 0);
398 		goto done;
399 	}
400 #endif /* IPSEC */
401 
402 	/*
403 	 * Packet filter
404 	 */
405 #if NPF > 0
406 	if (pf_test(AF_INET, (flags & IP_FORWARDING) ? PF_FWD : PF_OUT,
407 	    ifp, &m) != PF_PASS) {
408 		error = EACCES;
409 		goto bad;
410 	}
411 	if (m == NULL)
412 		goto done;
413 	ip = mtod(m, struct ip *);
414 	hlen = ip->ip_hl << 2;
415 	if ((m->m_pkthdr.pf.flags & (PF_TAG_REROUTE | PF_TAG_GENERATED)) ==
416 	    (PF_TAG_REROUTE | PF_TAG_GENERATED))
417 		/* already rerun the route lookup, go on */
418 		m->m_pkthdr.pf.flags &= ~(PF_TAG_GENERATED | PF_TAG_REROUTE);
419 	else if (m->m_pkthdr.pf.flags & PF_TAG_REROUTE) {
420 		/* tag as generated to skip over pf_test on rerun */
421 		m->m_pkthdr.pf.flags |= PF_TAG_GENERATED;
422 		if (ro == &iproute)
423 			rtfree(ro->ro_rt);
424 		ro = NULL;
425 		if_put(ifp); /* drop reference since target changed */
426 		ifp = NULL;
427 		goto reroute;
428 	}
429 #endif
430 
431 #ifdef IPSEC
432 	if (ISSET(flags, IP_FORWARDING) && ISSET(flags, IP_FORWARDING_IPSEC) &&
433 	    !ISSET(m->m_pkthdr.ph_tagsset, PACKET_TAG_IPSEC_IN_DONE)) {
434 		error = EHOSTUNREACH;
435 		goto bad;
436 	}
437 #endif
438 
439 	/*
440 	 * If TSO or small enough for interface, can just send directly.
441 	 */
442 	error = if_output_tso(ifp, &m, sintosa(dst), ro->ro_rt, mtu);
443 	if (error || m == NULL)
444 		goto done;
445 
446 	/*
447 	 * Too large for interface; fragment if possible.
448 	 * Must be able to put at least 8 bytes per fragment.
449 	 */
450 	if (ip->ip_off & htons(IP_DF)) {
451 #ifdef IPSEC
452 		if (ip_mtudisc)
453 			ipsec_adjust_mtu(m, ifp->if_mtu);
454 #endif
455 		error = EMSGSIZE;
456 #if NPF > 0
457 		/* pf changed routing table, use orig rtable for path MTU */
458 		if (ro->ro_tableid != orig_rtableid) {
459 			rtfree(ro->ro_rt);
460 			ro->ro_tableid = orig_rtableid;
461 			ro->ro_rt = icmp_mtudisc_clone(
462 			    ro->ro_dstsin.sin_addr, ro->ro_tableid, 0);
463 		}
464 #endif
465 		/*
466 		 * This case can happen if the user changed the MTU
467 		 * of an interface after enabling IP on it.  Because
468 		 * most netifs don't keep track of routes pointing to
469 		 * them, there is no way for one to update all its
470 		 * routes when the MTU is changed.
471 		 */
472 		if (rtisvalid(ro->ro_rt) &&
473 		    ISSET(ro->ro_rt->rt_flags, RTF_HOST) &&
474 		    !(ro->ro_rt->rt_locks & RTV_MTU)) {
475 			u_int rtmtu;
476 
477 			rtmtu = atomic_load_int(&ro->ro_rt->rt_mtu);
478 			if (rtmtu > ifp->if_mtu) {
479 				atomic_cas_uint(&ro->ro_rt->rt_mtu, rtmtu,
480 				    ifp->if_mtu);
481 			}
482 		}
483 		ipstat_inc(ips_cantfrag);
484 		goto bad;
485 	}
486 
487 	if ((error = ip_fragment(m, &ml, ifp, mtu)) ||
488 	    (error = if_output_ml(ifp, &ml, sintosa(dst), ro->ro_rt)))
489 		goto done;
490 	ipstat_inc(ips_fragmented);
491 
492 done:
493 	if (ro == &iproute)
494 		rtfree(ro->ro_rt);
495 	if_put(ifp);
496 #ifdef IPSEC
497 	tdb_unref(tdb);
498 #endif /* IPSEC */
499 	return (error);
500 
501 bad:
502 	m_freem(m);
503 	goto done;
504 }
505 
506 #ifdef IPSEC
507 int
ip_output_ipsec_lookup(struct mbuf * m,int hlen,const struct ipsec_level * seclevel,struct tdb ** tdbout,int ipsecflowinfo)508 ip_output_ipsec_lookup(struct mbuf *m, int hlen,
509     const struct ipsec_level *seclevel, struct tdb **tdbout, int ipsecflowinfo)
510 {
511 	struct m_tag *mtag;
512 	struct tdb_ident *tdbi;
513 	struct tdb *tdb;
514 	struct ipsec_ids *ids = NULL;
515 	int error;
516 
517 	/* Do we have any pending SAs to apply ? */
518 	if (ipsecflowinfo)
519 		ids = ipsp_ids_lookup(ipsecflowinfo);
520 	error = ipsp_spd_lookup(m, AF_INET, hlen, IPSP_DIRECTION_OUT,
521 	    NULL, seclevel, &tdb, ids);
522 	ipsp_ids_free(ids);
523 	if (error || tdb == NULL) {
524 		*tdbout = NULL;
525 		return error;
526 	}
527 	/* Loop detection */
528 	for (mtag = m_tag_first(m); mtag != NULL; mtag = m_tag_next(m, mtag)) {
529 		if (mtag->m_tag_id != PACKET_TAG_IPSEC_OUT_DONE)
530 			continue;
531 		tdbi = (struct tdb_ident *)(mtag + 1);
532 		if (tdbi->spi == tdb->tdb_spi &&
533 		    tdbi->proto == tdb->tdb_sproto &&
534 		    tdbi->rdomain == tdb->tdb_rdomain &&
535 		    !memcmp(&tdbi->dst, &tdb->tdb_dst,
536 		    sizeof(union sockaddr_union))) {
537 			/* no IPsec needed */
538 			tdb_unref(tdb);
539 			*tdbout = NULL;
540 			return 0;
541 		}
542 	}
543 	*tdbout = tdb;
544 	return 0;
545 }
546 
547 void
ip_output_ipsec_pmtu_update(struct tdb * tdb,struct route * ro,struct in_addr dst,int rtableid,int transportmode)548 ip_output_ipsec_pmtu_update(struct tdb *tdb, struct route *ro,
549     struct in_addr dst, int rtableid, int transportmode)
550 {
551 	struct rtentry *rt = NULL;
552 	int rt_mtucloned = 0;
553 
554 	/* Find a host route to store the mtu in */
555 	if (ro != NULL)
556 		rt = ro->ro_rt;
557 	/* but don't add a PMTU route for transport mode SAs */
558 	if (transportmode)
559 		rt = NULL;
560 	else if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0) {
561 		rt = icmp_mtudisc_clone(dst, rtableid, 1);
562 		rt_mtucloned = 1;
563 	}
564 	DPRINTF("spi %08x mtu %d rt %p cloned %d",
565 	    ntohl(tdb->tdb_spi), tdb->tdb_mtu, rt, rt_mtucloned);
566 	if (rt != NULL) {
567 		atomic_store_int(&rt->rt_mtu, tdb->tdb_mtu);
568 		if (ro != NULL && ro->ro_rt != NULL) {
569 			rtfree(ro->ro_rt);
570 			ro->ro_rt = rtalloc(&ro->ro_dstsa, RT_RESOLVE,
571 			    rtableid);
572 		}
573 		if (rt_mtucloned)
574 			rtfree(rt);
575 	}
576 }
577 
578 int
ip_output_ipsec_send(struct tdb * tdb,struct mbuf * m,struct route * ro,int fwd)579 ip_output_ipsec_send(struct tdb *tdb, struct mbuf *m, struct route *ro, int fwd)
580 {
581 	struct mbuf_list ml;
582 	struct ifnet *encif = NULL;
583 	struct ip *ip;
584 	struct in_addr dst;
585 	u_int len;
586 	int error, rtableid, tso = 0;
587 
588 #if NPF > 0
589 	/*
590 	 * Packet filter
591 	 */
592 	if ((encif = enc_getif(tdb->tdb_rdomain, tdb->tdb_tap)) == NULL ||
593 	    pf_test(AF_INET, fwd ? PF_FWD : PF_OUT, encif, &m) != PF_PASS) {
594 		m_freem(m);
595 		return EACCES;
596 	}
597 	if (m == NULL)
598 		return 0;
599 	/*
600 	 * PF_TAG_REROUTE handling or not...
601 	 * Packet is entering IPsec so the routing is
602 	 * already overruled by the IPsec policy.
603 	 * Until now the change was not reconsidered.
604 	 * What's the behaviour?
605 	 */
606 #endif
607 
608 	/* Check if we can chop the TCP packet */
609 	ip = mtod(m, struct ip *);
610 	if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
611 	    m->m_pkthdr.ph_mss <= tdb->tdb_mtu) {
612 		tso = 1;
613 		len = m->m_pkthdr.ph_mss;
614 	} else
615 		len = ntohs(ip->ip_len);
616 
617 	/* Check if we are allowed to fragment */
618 	dst = ip->ip_dst;
619 	rtableid = m->m_pkthdr.ph_rtableid;
620 	if (ip_mtudisc && (ip->ip_off & htons(IP_DF)) && tdb->tdb_mtu &&
621 	    len > tdb->tdb_mtu && tdb->tdb_mtutimeout > gettime()) {
622 		int transportmode;
623 
624 		transportmode = (tdb->tdb_dst.sa.sa_family == AF_INET) &&
625 		    (tdb->tdb_dst.sin.sin_addr.s_addr == dst.s_addr);
626 		ip_output_ipsec_pmtu_update(tdb, ro, dst, rtableid,
627 		    transportmode);
628 		ipsec_adjust_mtu(m, tdb->tdb_mtu);
629 		m_freem(m);
630 		return EMSGSIZE;
631 	}
632 	/* propagate IP_DF for v4-over-v6 */
633 	if (ip_mtudisc && ip->ip_off & htons(IP_DF))
634 		SET(m->m_pkthdr.csum_flags, M_IPV6_DF_OUT);
635 
636 	/*
637 	 * Clear these -- they'll be set in the recursive invocation
638 	 * as needed.
639 	 */
640 	m->m_flags &= ~(M_MCAST | M_BCAST);
641 
642 	if (tso) {
643 		error = tcp_chopper(m, &ml, encif, len);
644 		if (error)
645 			goto done;
646 	} else {
647 		CLR(m->m_pkthdr.csum_flags, M_TCP_TSO);
648 		in_proto_cksum_out(m, encif);
649 		ml_init(&ml);
650 		ml_enqueue(&ml, m);
651 	}
652 
653 	KERNEL_LOCK();
654 	while ((m = ml_dequeue(&ml)) != NULL) {
655 		/* Callee frees mbuf */
656 		error = ipsp_process_packet(m, tdb, AF_INET, 0);
657 		if (error)
658 			break;
659 	}
660 	KERNEL_UNLOCK();
661  done:
662 	if (error) {
663 		ml_purge(&ml);
664 		ipsecstat_inc(ipsec_odrops);
665 		tdbstat_inc(tdb, tdb_odrops);
666 	}
667 	if (!error && tso)
668 		tcpstat_inc(tcps_outswtso);
669 	if (ip_mtudisc && error == EMSGSIZE)
670 		ip_output_ipsec_pmtu_update(tdb, ro, dst, rtableid, 0);
671 	return error;
672 }
673 #endif /* IPSEC */
674 
675 int
ip_fragment(struct mbuf * m0,struct mbuf_list * ml,struct ifnet * ifp,u_long mtu)676 ip_fragment(struct mbuf *m0, struct mbuf_list *ml, struct ifnet *ifp,
677     u_long mtu)
678 {
679 	struct ip *ip;
680 	int firstlen, hlen, tlen, len, off;
681 	int error;
682 
683 	ml_init(ml);
684 	ml_enqueue(ml, m0);
685 
686 	ip = mtod(m0, struct ip *);
687 	hlen = ip->ip_hl << 2;
688 	tlen = m0->m_pkthdr.len;
689 	len = (mtu - hlen) &~ 7;
690 	if (len < 8) {
691 		error = EMSGSIZE;
692 		goto bad;
693 	}
694 	firstlen = len;
695 
696 	/*
697 	 * If we are doing fragmentation, we can't defer TCP/UDP
698 	 * checksumming; compute the checksum and clear the flag.
699 	 */
700 	in_proto_cksum_out(m0, NULL);
701 
702 	/*
703 	 * Loop through length of payload after first fragment,
704 	 * make new header and copy data of each part and link onto chain.
705 	 */
706 	for (off = hlen + firstlen; off < tlen; off += len) {
707 		struct mbuf *m;
708 		struct ip *mhip;
709 		int mhlen;
710 
711 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
712 		if (m == NULL) {
713 			error = ENOBUFS;
714 			goto bad;
715 		}
716 		ml_enqueue(ml, m);
717 		if ((error = m_dup_pkthdr(m, m0, M_DONTWAIT)) != 0)
718 			goto bad;
719 		m->m_data += max_linkhdr;
720 		mhip = mtod(m, struct ip *);
721 		*mhip = *ip;
722 		if (hlen > sizeof(struct ip)) {
723 			mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
724 			mhip->ip_hl = mhlen >> 2;
725 		} else
726 			mhlen = sizeof(struct ip);
727 		m->m_len = mhlen;
728 
729 		mhip->ip_off = ((off - hlen) >> 3) +
730 		    (ntohs(ip->ip_off) & ~IP_MF);
731 		if (ip->ip_off & htons(IP_MF))
732 			mhip->ip_off |= IP_MF;
733 		if (off + len >= tlen)
734 			len = tlen - off;
735 		else
736 			mhip->ip_off |= IP_MF;
737 		mhip->ip_off = htons(mhip->ip_off);
738 
739 		m->m_pkthdr.len = mhlen + len;
740 		mhip->ip_len = htons(m->m_pkthdr.len);
741 		m->m_next = m_copym(m0, off, len, M_NOWAIT);
742 		if (m->m_next == NULL) {
743 			error = ENOBUFS;
744 			goto bad;
745 		}
746 
747 		in_hdr_cksum_out(m, ifp);
748 	}
749 
750 	/*
751 	 * Update first fragment by trimming what's been copied out
752 	 * and updating header, then send each fragment (in order).
753 	 */
754 	if (hlen + firstlen < tlen) {
755 		m_adj(m0, hlen + firstlen - tlen);
756 		ip->ip_off |= htons(IP_MF);
757 	}
758 	ip->ip_len = htons(m0->m_pkthdr.len);
759 
760 	in_hdr_cksum_out(m0, ifp);
761 
762 	ipstat_add(ips_ofragments, ml_len(ml));
763 	return (0);
764 
765 bad:
766 	ipstat_inc(ips_odropped);
767 	ml_purge(ml);
768 	return (error);
769 }
770 
771 /*
772  * Insert IP options into preformed packet.
773  * Adjust IP destination as required for IP source routing,
774  * as indicated by a non-zero in_addr at the start of the options.
775  */
776 struct mbuf *
ip_insertoptions(struct mbuf * m,struct mbuf * opt,int * phlen)777 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
778 {
779 	struct ipoption *p = mtod(opt, struct ipoption *);
780 	struct mbuf *n;
781 	struct ip *ip = mtod(m, struct ip *);
782 	unsigned int optlen;
783 
784 	optlen = opt->m_len - sizeof(p->ipopt_dst);
785 	if (optlen + ntohs(ip->ip_len) > IP_MAXPACKET)
786 		return (m);		/* XXX should fail */
787 
788 	/* check if options will fit to IP header */
789 	if ((optlen + sizeof(struct ip)) > (0x0f << 2)) {
790 		*phlen = sizeof(struct ip);
791 		return (m);
792 	}
793 
794 	if (p->ipopt_dst.s_addr)
795 		ip->ip_dst = p->ipopt_dst;
796 	if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
797 		MGETHDR(n, M_DONTWAIT, MT_HEADER);
798 		if (n == NULL)
799 			return (m);
800 		M_MOVE_HDR(n, m);
801 		n->m_pkthdr.len += optlen;
802 		m->m_len -= sizeof(struct ip);
803 		m->m_data += sizeof(struct ip);
804 		n->m_next = m;
805 		m = n;
806 		m->m_len = optlen + sizeof(struct ip);
807 		m->m_data += max_linkhdr;
808 		memcpy(mtod(m, caddr_t), ip, sizeof(struct ip));
809 	} else {
810 		m->m_data -= optlen;
811 		m->m_len += optlen;
812 		m->m_pkthdr.len += optlen;
813 		memmove(mtod(m, caddr_t), (caddr_t)ip, sizeof(struct ip));
814 	}
815 	ip = mtod(m, struct ip *);
816 	memcpy(ip + 1, p->ipopt_list, optlen);
817 	*phlen = sizeof(struct ip) + optlen;
818 	ip->ip_len = htons(ntohs(ip->ip_len) + optlen);
819 	return (m);
820 }
821 
822 /*
823  * Copy options from ip to jp,
824  * omitting those not copied during fragmentation.
825  */
826 int
ip_optcopy(struct ip * ip,struct ip * jp)827 ip_optcopy(struct ip *ip, struct ip *jp)
828 {
829 	u_char *cp, *dp;
830 	int opt, optlen, cnt;
831 
832 	cp = (u_char *)(ip + 1);
833 	dp = (u_char *)(jp + 1);
834 	cnt = (ip->ip_hl << 2) - sizeof (struct ip);
835 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
836 		opt = cp[0];
837 		if (opt == IPOPT_EOL)
838 			break;
839 		if (opt == IPOPT_NOP) {
840 			/* Preserve for IP mcast tunnel's LSRR alignment. */
841 			*dp++ = IPOPT_NOP;
842 			optlen = 1;
843 			continue;
844 		}
845 #ifdef DIAGNOSTIC
846 		if (cnt < IPOPT_OLEN + sizeof(*cp))
847 			panic("malformed IPv4 option passed to ip_optcopy");
848 #endif
849 		optlen = cp[IPOPT_OLEN];
850 #ifdef DIAGNOSTIC
851 		if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt)
852 			panic("malformed IPv4 option passed to ip_optcopy");
853 #endif
854 		/* bogus lengths should have been caught by ip_dooptions */
855 		if (optlen > cnt)
856 			optlen = cnt;
857 		if (IPOPT_COPIED(opt)) {
858 			memcpy(dp, cp, optlen);
859 			dp += optlen;
860 		}
861 	}
862 	for (optlen = dp - (u_char *)(jp+1); optlen & 0x3; optlen++)
863 		*dp++ = IPOPT_EOL;
864 	return (optlen);
865 }
866 
867 /*
868  * IP socket option processing.
869  */
870 int
ip_ctloutput(int op,struct socket * so,int level,int optname,struct mbuf * m)871 ip_ctloutput(int op, struct socket *so, int level, int optname,
872     struct mbuf *m)
873 {
874 	struct inpcb *inp = sotoinpcb(so);
875 	int optval = 0;
876 	struct proc *p = curproc; /* XXX */
877 	int error = 0;
878 	u_int rtableid, rtid = 0;
879 
880 	if (level != IPPROTO_IP)
881 		return (EINVAL);
882 
883 	rtableid = p->p_p->ps_rtableid;
884 
885 	switch (op) {
886 	case PRCO_SETOPT:
887 		switch (optname) {
888 		case IP_OPTIONS:
889 			return (ip_pcbopts(&inp->inp_options, m));
890 
891 		case IP_TOS:
892 		case IP_TTL:
893 		case IP_MINTTL:
894 		case IP_RECVOPTS:
895 		case IP_RECVRETOPTS:
896 		case IP_RECVDSTADDR:
897 		case IP_RECVIF:
898 		case IP_RECVTTL:
899 		case IP_RECVDSTPORT:
900 		case IP_RECVRTABLE:
901 		case IP_IPSECFLOWINFO:
902 			if (m == NULL || m->m_len != sizeof(int))
903 				error = EINVAL;
904 			else {
905 				optval = *mtod(m, int *);
906 				switch (optname) {
907 
908 				case IP_TOS:
909 					inp->inp_ip.ip_tos = optval;
910 					break;
911 
912 				case IP_TTL:
913 					if (optval > 0 && optval <= MAXTTL)
914 						inp->inp_ip.ip_ttl = optval;
915 					else if (optval == -1)
916 						inp->inp_ip.ip_ttl = ip_defttl;
917 					else
918 						error = EINVAL;
919 					break;
920 
921 				case IP_MINTTL:
922 					if (optval >= 0 && optval <= MAXTTL)
923 						inp->inp_ip_minttl = optval;
924 					else
925 						error = EINVAL;
926 					break;
927 #define	OPTSET(bit) \
928 	if (optval) \
929 		inp->inp_flags |= bit; \
930 	else \
931 		inp->inp_flags &= ~bit;
932 
933 				case IP_RECVOPTS:
934 					OPTSET(INP_RECVOPTS);
935 					break;
936 
937 				case IP_RECVRETOPTS:
938 					OPTSET(INP_RECVRETOPTS);
939 					break;
940 
941 				case IP_RECVDSTADDR:
942 					OPTSET(INP_RECVDSTADDR);
943 					break;
944 				case IP_RECVIF:
945 					OPTSET(INP_RECVIF);
946 					break;
947 				case IP_RECVTTL:
948 					OPTSET(INP_RECVTTL);
949 					break;
950 				case IP_RECVDSTPORT:
951 					OPTSET(INP_RECVDSTPORT);
952 					break;
953 				case IP_RECVRTABLE:
954 					OPTSET(INP_RECVRTABLE);
955 					break;
956 				case IP_IPSECFLOWINFO:
957 					OPTSET(INP_IPSECFLOWINFO);
958 					break;
959 				}
960 			}
961 			break;
962 #undef OPTSET
963 
964 		case IP_MULTICAST_IF:
965 		case IP_MULTICAST_TTL:
966 		case IP_MULTICAST_LOOP:
967 		case IP_ADD_MEMBERSHIP:
968 		case IP_DROP_MEMBERSHIP:
969 			error = ip_setmoptions(optname, &inp->inp_moptions, m,
970 			    inp->inp_rtableid);
971 			break;
972 
973 		case IP_PORTRANGE:
974 			if (m == NULL || m->m_len != sizeof(int))
975 				error = EINVAL;
976 			else {
977 				optval = *mtod(m, int *);
978 
979 				switch (optval) {
980 
981 				case IP_PORTRANGE_DEFAULT:
982 					inp->inp_flags &= ~(INP_LOWPORT);
983 					inp->inp_flags &= ~(INP_HIGHPORT);
984 					break;
985 
986 				case IP_PORTRANGE_HIGH:
987 					inp->inp_flags &= ~(INP_LOWPORT);
988 					inp->inp_flags |= INP_HIGHPORT;
989 					break;
990 
991 				case IP_PORTRANGE_LOW:
992 					inp->inp_flags &= ~(INP_HIGHPORT);
993 					inp->inp_flags |= INP_LOWPORT;
994 					break;
995 
996 				default:
997 
998 					error = EINVAL;
999 					break;
1000 				}
1001 			}
1002 			break;
1003 		case IP_AUTH_LEVEL:
1004 		case IP_ESP_TRANS_LEVEL:
1005 		case IP_ESP_NETWORK_LEVEL:
1006 		case IP_IPCOMP_LEVEL:
1007 #ifndef IPSEC
1008 			error = EOPNOTSUPP;
1009 #else
1010 			if (m == NULL || m->m_len != sizeof(int)) {
1011 				error = EINVAL;
1012 				break;
1013 			}
1014 			optval = *mtod(m, int *);
1015 
1016 			if (optval < IPSEC_LEVEL_BYPASS ||
1017 			    optval > IPSEC_LEVEL_UNIQUE) {
1018 				error = EINVAL;
1019 				break;
1020 			}
1021 
1022 			switch (optname) {
1023 			case IP_AUTH_LEVEL:
1024 				if (optval < IPSEC_AUTH_LEVEL_DEFAULT &&
1025 				    suser(p)) {
1026 					error = EACCES;
1027 					break;
1028 				}
1029 				inp->inp_seclevel.sl_auth = optval;
1030 				break;
1031 
1032 			case IP_ESP_TRANS_LEVEL:
1033 				if (optval < IPSEC_ESP_TRANS_LEVEL_DEFAULT &&
1034 				    suser(p)) {
1035 					error = EACCES;
1036 					break;
1037 				}
1038 				inp->inp_seclevel.sl_esp_trans = optval;
1039 				break;
1040 
1041 			case IP_ESP_NETWORK_LEVEL:
1042 				if (optval < IPSEC_ESP_NETWORK_LEVEL_DEFAULT &&
1043 				    suser(p)) {
1044 					error = EACCES;
1045 					break;
1046 				}
1047 				inp->inp_seclevel.sl_esp_network = optval;
1048 				break;
1049 			case IP_IPCOMP_LEVEL:
1050 				if (optval < IPSEC_IPCOMP_LEVEL_DEFAULT &&
1051 				    suser(p)) {
1052 					error = EACCES;
1053 					break;
1054 				}
1055 				inp->inp_seclevel.sl_ipcomp = optval;
1056 				break;
1057 			}
1058 #endif
1059 			break;
1060 
1061 		case IP_IPSEC_LOCAL_ID:
1062 		case IP_IPSEC_REMOTE_ID:
1063 			error = EOPNOTSUPP;
1064 			break;
1065 		case SO_RTABLE:
1066 			if (m == NULL || m->m_len < sizeof(u_int)) {
1067 				error = EINVAL;
1068 				break;
1069 			}
1070 			rtid = *mtod(m, u_int *);
1071 			if (inp->inp_rtableid == rtid)
1072 				break;
1073 			/* needs privileges to switch when already set */
1074 			if (rtableid != rtid && rtableid != 0 &&
1075 			    (error = suser(p)) != 0)
1076 				break;
1077 			error = in_pcbset_rtableid(inp, rtid);
1078 			break;
1079 		case IP_PIPEX:
1080 			if (m != NULL && m->m_len == sizeof(int))
1081 				inp->inp_pipex = *mtod(m, int *);
1082 			else
1083 				error = EINVAL;
1084 			break;
1085 
1086 		default:
1087 			error = ENOPROTOOPT;
1088 			break;
1089 		}
1090 		break;
1091 
1092 	case PRCO_GETOPT:
1093 		switch (optname) {
1094 		case IP_OPTIONS:
1095 		case IP_RETOPTS:
1096 			if (inp->inp_options) {
1097 				m->m_len = inp->inp_options->m_len;
1098 				memcpy(mtod(m, caddr_t),
1099 				    mtod(inp->inp_options, caddr_t), m->m_len);
1100 			} else
1101 				m->m_len = 0;
1102 			break;
1103 
1104 		case IP_TOS:
1105 		case IP_TTL:
1106 		case IP_MINTTL:
1107 		case IP_RECVOPTS:
1108 		case IP_RECVRETOPTS:
1109 		case IP_RECVDSTADDR:
1110 		case IP_RECVIF:
1111 		case IP_RECVTTL:
1112 		case IP_RECVDSTPORT:
1113 		case IP_RECVRTABLE:
1114 		case IP_IPSECFLOWINFO:
1115 		case IP_IPDEFTTL:
1116 			m->m_len = sizeof(int);
1117 			switch (optname) {
1118 
1119 			case IP_TOS:
1120 				optval = inp->inp_ip.ip_tos;
1121 				break;
1122 
1123 			case IP_TTL:
1124 				optval = inp->inp_ip.ip_ttl;
1125 				break;
1126 
1127 			case IP_MINTTL:
1128 				optval = inp->inp_ip_minttl;
1129 				break;
1130 
1131 			case IP_IPDEFTTL:
1132 				optval = ip_defttl;
1133 				break;
1134 
1135 #define	OPTBIT(bit)	(inp->inp_flags & bit ? 1 : 0)
1136 
1137 			case IP_RECVOPTS:
1138 				optval = OPTBIT(INP_RECVOPTS);
1139 				break;
1140 
1141 			case IP_RECVRETOPTS:
1142 				optval = OPTBIT(INP_RECVRETOPTS);
1143 				break;
1144 
1145 			case IP_RECVDSTADDR:
1146 				optval = OPTBIT(INP_RECVDSTADDR);
1147 				break;
1148 			case IP_RECVIF:
1149 				optval = OPTBIT(INP_RECVIF);
1150 				break;
1151 			case IP_RECVTTL:
1152 				optval = OPTBIT(INP_RECVTTL);
1153 				break;
1154 			case IP_RECVDSTPORT:
1155 				optval = OPTBIT(INP_RECVDSTPORT);
1156 				break;
1157 			case IP_RECVRTABLE:
1158 				optval = OPTBIT(INP_RECVRTABLE);
1159 				break;
1160 			case IP_IPSECFLOWINFO:
1161 				optval = OPTBIT(INP_IPSECFLOWINFO);
1162 				break;
1163 			}
1164 			*mtod(m, int *) = optval;
1165 			break;
1166 
1167 		case IP_MULTICAST_IF:
1168 		case IP_MULTICAST_TTL:
1169 		case IP_MULTICAST_LOOP:
1170 		case IP_ADD_MEMBERSHIP:
1171 		case IP_DROP_MEMBERSHIP:
1172 			error = ip_getmoptions(optname, inp->inp_moptions, m);
1173 			break;
1174 
1175 		case IP_PORTRANGE:
1176 			m->m_len = sizeof(int);
1177 
1178 			if (inp->inp_flags & INP_HIGHPORT)
1179 				optval = IP_PORTRANGE_HIGH;
1180 			else if (inp->inp_flags & INP_LOWPORT)
1181 				optval = IP_PORTRANGE_LOW;
1182 			else
1183 				optval = 0;
1184 
1185 			*mtod(m, int *) = optval;
1186 			break;
1187 
1188 		case IP_AUTH_LEVEL:
1189 		case IP_ESP_TRANS_LEVEL:
1190 		case IP_ESP_NETWORK_LEVEL:
1191 		case IP_IPCOMP_LEVEL:
1192 #ifndef IPSEC
1193 			m->m_len = sizeof(int);
1194 			*mtod(m, int *) = IPSEC_LEVEL_NONE;
1195 #else
1196 			m->m_len = sizeof(int);
1197 			switch (optname) {
1198 			case IP_AUTH_LEVEL:
1199 				optval = inp->inp_seclevel.sl_auth;
1200 				break;
1201 
1202 			case IP_ESP_TRANS_LEVEL:
1203 				optval = inp->inp_seclevel.sl_esp_trans;
1204 				break;
1205 
1206 			case IP_ESP_NETWORK_LEVEL:
1207 				optval = inp->inp_seclevel.sl_esp_network;
1208 				break;
1209 			case IP_IPCOMP_LEVEL:
1210 				optval = inp->inp_seclevel.sl_ipcomp;
1211 				break;
1212 			}
1213 			*mtod(m, int *) = optval;
1214 #endif
1215 			break;
1216 		case IP_IPSEC_LOCAL_ID:
1217 		case IP_IPSEC_REMOTE_ID:
1218 			error = EOPNOTSUPP;
1219 			break;
1220 		case SO_RTABLE:
1221 			m->m_len = sizeof(u_int);
1222 			*mtod(m, u_int *) = inp->inp_rtableid;
1223 			break;
1224 		case IP_PIPEX:
1225 			m->m_len = sizeof(int);
1226 			*mtod(m, int *) = inp->inp_pipex;
1227 			break;
1228 		default:
1229 			error = ENOPROTOOPT;
1230 			break;
1231 		}
1232 		break;
1233 	}
1234 	return (error);
1235 }
1236 
1237 /*
1238  * Set up IP options in pcb for insertion in output packets.
1239  * Store in mbuf with pointer in pcbopt, adding pseudo-option
1240  * with destination address if source routed.
1241  */
1242 int
ip_pcbopts(struct mbuf ** pcbopt,struct mbuf * m)1243 ip_pcbopts(struct mbuf **pcbopt, struct mbuf *m)
1244 {
1245 	struct mbuf *n;
1246 	struct ipoption *p;
1247 	int cnt, off, optlen;
1248 	u_char *cp;
1249 	u_char opt;
1250 
1251 	/* turn off any old options */
1252 	m_freem(*pcbopt);
1253 	*pcbopt = NULL;
1254 	if (m == NULL || m->m_len == 0) {
1255 		/*
1256 		 * Only turning off any previous options.
1257 		 */
1258 		return (0);
1259 	}
1260 
1261 	if (m->m_len % sizeof(int32_t) ||
1262 	    m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr))
1263 		return (EINVAL);
1264 
1265 	/* Don't sleep because NET_LOCK() is hold. */
1266 	if ((n = m_get(M_NOWAIT, MT_SOOPTS)) == NULL)
1267 		return (ENOBUFS);
1268 	p = mtod(n, struct ipoption *);
1269 	memset(p, 0, sizeof (*p));	/* 0 = IPOPT_EOL, needed for padding */
1270 	n->m_len = sizeof(struct in_addr);
1271 
1272 	off = 0;
1273 	cnt = m->m_len;
1274 	cp = mtod(m, u_char *);
1275 
1276 	while (cnt > 0) {
1277 		opt = cp[IPOPT_OPTVAL];
1278 
1279 		if (opt == IPOPT_NOP || opt == IPOPT_EOL) {
1280 			optlen = 1;
1281 		} else {
1282 			if (cnt < IPOPT_OLEN + sizeof(*cp))
1283 				goto bad;
1284 			optlen = cp[IPOPT_OLEN];
1285 			if (optlen < IPOPT_OLEN  + sizeof(*cp) || optlen > cnt)
1286 				goto bad;
1287 		}
1288 		switch (opt) {
1289 		default:
1290 			memcpy(p->ipopt_list + off, cp, optlen);
1291 			break;
1292 
1293 		case IPOPT_LSRR:
1294 		case IPOPT_SSRR:
1295 			/*
1296 			 * user process specifies route as:
1297 			 *	->A->B->C->D
1298 			 * D must be our final destination (but we can't
1299 			 * check that since we may not have connected yet).
1300 			 * A is first hop destination, which doesn't appear in
1301 			 * actual IP option, but is stored before the options.
1302 			 */
1303 			if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr))
1304 				goto bad;
1305 
1306 			/*
1307 			 * Optlen is smaller because first address is popped.
1308 			 * Cnt and cp will be adjusted a bit later to reflect
1309 			 * this.
1310 			 */
1311 			optlen -= sizeof(struct in_addr);
1312 			p->ipopt_list[off + IPOPT_OPTVAL] = opt;
1313 			p->ipopt_list[off + IPOPT_OLEN] = optlen;
1314 
1315 			/*
1316 			 * Move first hop before start of options.
1317 			 */
1318 			memcpy(&p->ipopt_dst, cp + IPOPT_OFFSET,
1319 			    sizeof(struct in_addr));
1320 			cp += sizeof(struct in_addr);
1321 			cnt -= sizeof(struct in_addr);
1322 			/*
1323 			 * Then copy rest of options
1324 			 */
1325 			memcpy(p->ipopt_list + off + IPOPT_OFFSET,
1326 			    cp + IPOPT_OFFSET, optlen - IPOPT_OFFSET);
1327 			break;
1328 		}
1329 		off += optlen;
1330 		cp += optlen;
1331 		cnt -= optlen;
1332 
1333 		if (opt == IPOPT_EOL)
1334 			break;
1335 	}
1336 	/* pad options to next word, since p was zeroed just adjust off */
1337 	off = (off + sizeof(int32_t) - 1) & ~(sizeof(int32_t) - 1);
1338 	n->m_len += off;
1339 	if (n->m_len > sizeof(*p)) {
1340  bad:
1341 		m_freem(n);
1342 		return (EINVAL);
1343 	}
1344 
1345 	*pcbopt = n;
1346 	return (0);
1347 }
1348 
1349 /*
1350  * Lookup the interface based on the information in the ip_mreqn struct.
1351  */
1352 int
ip_multicast_if(struct ip_mreqn * mreq,u_int rtableid,unsigned int * ifidx)1353 ip_multicast_if(struct ip_mreqn *mreq, u_int rtableid, unsigned int *ifidx)
1354 {
1355 	struct sockaddr_in sin;
1356 	struct rtentry *rt;
1357 
1358 	/*
1359 	 * In case userland provides the imr_ifindex use this as interface.
1360 	 * If no interface address was provided, use the interface of
1361 	 * the route to the given multicast address.
1362 	 */
1363 	if (mreq->imr_ifindex != 0) {
1364 		*ifidx = mreq->imr_ifindex;
1365 	} else if (mreq->imr_address.s_addr == INADDR_ANY) {
1366 		memset(&sin, 0, sizeof(sin));
1367 		sin.sin_len = sizeof(sin);
1368 		sin.sin_family = AF_INET;
1369 		sin.sin_addr = mreq->imr_multiaddr;
1370 		rt = rtalloc(sintosa(&sin), RT_RESOLVE, rtableid);
1371 		if (!rtisvalid(rt)) {
1372 			rtfree(rt);
1373 			return EADDRNOTAVAIL;
1374 		}
1375 		*ifidx = rt->rt_ifidx;
1376 		rtfree(rt);
1377 	} else {
1378 		memset(&sin, 0, sizeof(sin));
1379 		sin.sin_len = sizeof(sin);
1380 		sin.sin_family = AF_INET;
1381 		sin.sin_addr = mreq->imr_address;
1382 		rt = rtalloc(sintosa(&sin), 0, rtableid);
1383 		if (!rtisvalid(rt) || !ISSET(rt->rt_flags, RTF_LOCAL)) {
1384 			rtfree(rt);
1385 			return EADDRNOTAVAIL;
1386 		}
1387 		*ifidx = rt->rt_ifidx;
1388 		rtfree(rt);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 /*
1395  * Set the IP multicast options in response to user setsockopt().
1396  */
1397 int
ip_setmoptions(int optname,struct ip_moptions ** imop,struct mbuf * m,u_int rtableid)1398 ip_setmoptions(int optname, struct ip_moptions **imop, struct mbuf *m,
1399     u_int rtableid)
1400 {
1401 	struct in_addr addr;
1402 	struct in_ifaddr *ia;
1403 	struct ip_mreqn mreqn;
1404 	struct ifnet *ifp = NULL;
1405 	struct ip_moptions *imo = *imop;
1406 	struct in_multi **immp;
1407 	struct sockaddr_in sin;
1408 	unsigned int ifidx;
1409 	int i, error = 0;
1410 	u_char loop;
1411 
1412 	if (imo == NULL) {
1413 		/*
1414 		 * No multicast option buffer attached to the pcb;
1415 		 * allocate one and initialize to default values.
1416 		 */
1417 		imo = malloc(sizeof(*imo), M_IPMOPTS, M_WAITOK|M_ZERO);
1418 		immp = mallocarray(IP_MIN_MEMBERSHIPS, sizeof(*immp), M_IPMOPTS,
1419 		    M_WAITOK|M_ZERO);
1420 		*imop = imo;
1421 		imo->imo_ifidx = 0;
1422 		imo->imo_ttl = IP_DEFAULT_MULTICAST_TTL;
1423 		imo->imo_loop = IP_DEFAULT_MULTICAST_LOOP;
1424 		imo->imo_num_memberships = 0;
1425 		imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1426 		imo->imo_membership = immp;
1427 	}
1428 
1429 	switch (optname) {
1430 
1431 	case IP_MULTICAST_IF:
1432 		/*
1433 		 * Select the interface for outgoing multicast packets.
1434 		 */
1435 		if (m == NULL) {
1436 			error = EINVAL;
1437 			break;
1438 		}
1439 		if (m->m_len == sizeof(struct in_addr)) {
1440 			addr = *(mtod(m, struct in_addr *));
1441 		} else if (m->m_len == sizeof(struct ip_mreq) ||
1442 		    m->m_len == sizeof(struct ip_mreqn)) {
1443 			memset(&mreqn, 0, sizeof(mreqn));
1444 			memcpy(&mreqn, mtod(m, void *), m->m_len);
1445 
1446 			/*
1447 			 * If an interface index is given use this
1448 			 * index to set the imo_ifidx but check first
1449 			 * that the interface actually exists.
1450 			 * In the other case just set the addr to
1451 			 * the imr_address and fall through to the
1452 			 * regular code.
1453 			 */
1454 			if (mreqn.imr_ifindex != 0) {
1455 				ifp = if_get(mreqn.imr_ifindex);
1456 				if (ifp == NULL ||
1457 				    ifp->if_rdomain != rtable_l2(rtableid)) {
1458 					error = EADDRNOTAVAIL;
1459 					if_put(ifp);
1460 					break;
1461 				}
1462 				imo->imo_ifidx = ifp->if_index;
1463 				if_put(ifp);
1464 				break;
1465 			} else
1466 				addr = mreqn.imr_address;
1467 		} else {
1468 			error = EINVAL;
1469 			break;
1470 		}
1471 		/*
1472 		 * INADDR_ANY is used to remove a previous selection.
1473 		 * When no interface is selected, a default one is
1474 		 * chosen every time a multicast packet is sent.
1475 		 */
1476 		if (addr.s_addr == INADDR_ANY) {
1477 			imo->imo_ifidx = 0;
1478 			break;
1479 		}
1480 		/*
1481 		 * The selected interface is identified by its local
1482 		 * IP address.  Find the interface and confirm that
1483 		 * it supports multicasting.
1484 		 */
1485 		memset(&sin, 0, sizeof(sin));
1486 		sin.sin_len = sizeof(sin);
1487 		sin.sin_family = AF_INET;
1488 		sin.sin_addr = addr;
1489 		ia = ifatoia(ifa_ifwithaddr(sintosa(&sin), rtableid));
1490 		if (ia == NULL ||
1491 		    (ia->ia_ifp->if_flags & IFF_MULTICAST) == 0) {
1492 			error = EADDRNOTAVAIL;
1493 			break;
1494 		}
1495 		imo->imo_ifidx = ia->ia_ifp->if_index;
1496 		break;
1497 
1498 	case IP_MULTICAST_TTL:
1499 		/*
1500 		 * Set the IP time-to-live for outgoing multicast packets.
1501 		 */
1502 		if (m == NULL || m->m_len != 1) {
1503 			error = EINVAL;
1504 			break;
1505 		}
1506 		imo->imo_ttl = *(mtod(m, u_char *));
1507 		break;
1508 
1509 	case IP_MULTICAST_LOOP:
1510 		/*
1511 		 * Set the loopback flag for outgoing multicast packets.
1512 		 * Must be zero or one.
1513 		 */
1514 		if (m == NULL || m->m_len != 1 ||
1515 		   (loop = *(mtod(m, u_char *))) > 1) {
1516 			error = EINVAL;
1517 			break;
1518 		}
1519 		imo->imo_loop = loop;
1520 		break;
1521 
1522 	case IP_ADD_MEMBERSHIP:
1523 		/*
1524 		 * Add a multicast group membership.
1525 		 * Group must be a valid IP multicast address.
1526 		 */
1527 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1528 		    m->m_len == sizeof(struct ip_mreqn))) {
1529 			error = EINVAL;
1530 			break;
1531 		}
1532 		memset(&mreqn, 0, sizeof(mreqn));
1533 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1534 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1535 			error = EINVAL;
1536 			break;
1537 		}
1538 
1539 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1540 		if (error)
1541 			break;
1542 
1543 		/*
1544 		 * See if we found an interface, and confirm that it
1545 		 * supports multicast.
1546 		 */
1547 		ifp = if_get(ifidx);
1548 		if (ifp == NULL || ifp->if_rdomain != rtable_l2(rtableid) ||
1549 		    (ifp->if_flags & IFF_MULTICAST) == 0) {
1550 			error = EADDRNOTAVAIL;
1551 			if_put(ifp);
1552 			break;
1553 		}
1554 
1555 		/*
1556 		 * See if the membership already exists or if all the
1557 		 * membership slots are full.
1558 		 */
1559 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1560 			if (imo->imo_membership[i]->inm_ifidx == ifidx &&
1561 			    imo->imo_membership[i]->inm_addr.s_addr
1562 						== mreqn.imr_multiaddr.s_addr)
1563 				break;
1564 		}
1565 		if (i < imo->imo_num_memberships) {
1566 			error = EADDRINUSE;
1567 			if_put(ifp);
1568 			break;
1569 		}
1570 		if (imo->imo_num_memberships == imo->imo_max_memberships) {
1571 			struct in_multi **nmships, **omships;
1572 			size_t newmax;
1573 			/*
1574 			 * Resize the vector to next power-of-two minus 1. If
1575 			 * the size would exceed the maximum then we know we've
1576 			 * really run out of entries. Otherwise, we reallocate
1577 			 * the vector.
1578 			 */
1579 			nmships = NULL;
1580 			omships = imo->imo_membership;
1581 			newmax = ((imo->imo_max_memberships + 1) * 2) - 1;
1582 			if (newmax <= IP_MAX_MEMBERSHIPS) {
1583 				nmships = mallocarray(newmax, sizeof(*nmships),
1584 				    M_IPMOPTS, M_NOWAIT|M_ZERO);
1585 				if (nmships != NULL) {
1586 					memcpy(nmships, omships,
1587 					    sizeof(*omships) *
1588 					    imo->imo_max_memberships);
1589 					free(omships, M_IPMOPTS,
1590 					    sizeof(*omships) *
1591 					    imo->imo_max_memberships);
1592 					imo->imo_membership = nmships;
1593 					imo->imo_max_memberships = newmax;
1594 				}
1595 			}
1596 			if (nmships == NULL) {
1597 				error = ENOBUFS;
1598 				if_put(ifp);
1599 				break;
1600 			}
1601 		}
1602 		/*
1603 		 * Everything looks good; add a new record to the multicast
1604 		 * address list for the given interface.
1605 		 */
1606 		if ((imo->imo_membership[i] =
1607 		    in_addmulti(&mreqn.imr_multiaddr, ifp)) == NULL) {
1608 			error = ENOBUFS;
1609 			if_put(ifp);
1610 			break;
1611 		}
1612 		++imo->imo_num_memberships;
1613 		if_put(ifp);
1614 		break;
1615 
1616 	case IP_DROP_MEMBERSHIP:
1617 		/*
1618 		 * Drop a multicast group membership.
1619 		 * Group must be a valid IP multicast address.
1620 		 */
1621 		if (m == NULL || !(m->m_len == sizeof(struct ip_mreq) ||
1622 		    m->m_len == sizeof(struct ip_mreqn))) {
1623 			error = EINVAL;
1624 			break;
1625 		}
1626 		memset(&mreqn, 0, sizeof(mreqn));
1627 		memcpy(&mreqn, mtod(m, void *), m->m_len);
1628 		if (!IN_MULTICAST(mreqn.imr_multiaddr.s_addr)) {
1629 			error = EINVAL;
1630 			break;
1631 		}
1632 
1633 		/*
1634 		 * If an interface address was specified, get a pointer
1635 		 * to its ifnet structure.
1636 		 */
1637 		error = ip_multicast_if(&mreqn, rtableid, &ifidx);
1638 		if (error)
1639 			break;
1640 
1641 		/*
1642 		 * Find the membership in the membership array.
1643 		 */
1644 		for (i = 0; i < imo->imo_num_memberships; ++i) {
1645 			if ((ifidx == 0 ||
1646 			    imo->imo_membership[i]->inm_ifidx == ifidx) &&
1647 			     imo->imo_membership[i]->inm_addr.s_addr ==
1648 			     mreqn.imr_multiaddr.s_addr)
1649 				break;
1650 		}
1651 		if (i == imo->imo_num_memberships) {
1652 			error = EADDRNOTAVAIL;
1653 			break;
1654 		}
1655 		/*
1656 		 * Give up the multicast address record to which the
1657 		 * membership points.
1658 		 */
1659 		in_delmulti(imo->imo_membership[i]);
1660 		/*
1661 		 * Remove the gap in the membership array.
1662 		 */
1663 		for (++i; i < imo->imo_num_memberships; ++i)
1664 			imo->imo_membership[i-1] = imo->imo_membership[i];
1665 		--imo->imo_num_memberships;
1666 		break;
1667 
1668 	default:
1669 		error = EOPNOTSUPP;
1670 		break;
1671 	}
1672 
1673 	/*
1674 	 * If all options have default values, no need to keep the data.
1675 	 */
1676 	if (imo->imo_ifidx == 0 &&
1677 	    imo->imo_ttl == IP_DEFAULT_MULTICAST_TTL &&
1678 	    imo->imo_loop == IP_DEFAULT_MULTICAST_LOOP &&
1679 	    imo->imo_num_memberships == 0) {
1680 		free(imo->imo_membership , M_IPMOPTS,
1681 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1682 		free(*imop, M_IPMOPTS, sizeof(**imop));
1683 		*imop = NULL;
1684 	}
1685 
1686 	return (error);
1687 }
1688 
1689 /*
1690  * Return the IP multicast options in response to user getsockopt().
1691  */
1692 int
ip_getmoptions(int optname,struct ip_moptions * imo,struct mbuf * m)1693 ip_getmoptions(int optname, struct ip_moptions *imo, struct mbuf *m)
1694 {
1695 	u_char *ttl;
1696 	u_char *loop;
1697 	struct in_addr *addr;
1698 	struct in_ifaddr *ia;
1699 	struct ifnet *ifp;
1700 
1701 	switch (optname) {
1702 
1703 	case IP_MULTICAST_IF:
1704 		addr = mtod(m, struct in_addr *);
1705 		m->m_len = sizeof(struct in_addr);
1706 		if (imo == NULL || (ifp = if_get(imo->imo_ifidx)) == NULL)
1707 			addr->s_addr = INADDR_ANY;
1708 		else {
1709 			IFP_TO_IA(ifp, ia);
1710 			addr->s_addr = (ia == NULL) ? INADDR_ANY
1711 					: ia->ia_addr.sin_addr.s_addr;
1712 			if_put(ifp);
1713 		}
1714 		return (0);
1715 
1716 	case IP_MULTICAST_TTL:
1717 		ttl = mtod(m, u_char *);
1718 		m->m_len = 1;
1719 		*ttl = (imo == NULL) ? IP_DEFAULT_MULTICAST_TTL
1720 				     : imo->imo_ttl;
1721 		return (0);
1722 
1723 	case IP_MULTICAST_LOOP:
1724 		loop = mtod(m, u_char *);
1725 		m->m_len = 1;
1726 		*loop = (imo == NULL) ? IP_DEFAULT_MULTICAST_LOOP
1727 				      : imo->imo_loop;
1728 		return (0);
1729 
1730 	default:
1731 		return (EOPNOTSUPP);
1732 	}
1733 }
1734 
1735 /*
1736  * Discard the IP multicast options.
1737  */
1738 void
ip_freemoptions(struct ip_moptions * imo)1739 ip_freemoptions(struct ip_moptions *imo)
1740 {
1741 	int i;
1742 
1743 	if (imo != NULL) {
1744 		for (i = 0; i < imo->imo_num_memberships; ++i)
1745 			in_delmulti(imo->imo_membership[i]);
1746 		free(imo->imo_membership, M_IPMOPTS,
1747 		    imo->imo_max_memberships * sizeof(struct in_multi *));
1748 		free(imo, M_IPMOPTS, sizeof(*imo));
1749 	}
1750 }
1751 
1752 /*
1753  * Routine called from ip_output() to loop back a copy of an IP multicast
1754  * packet to the input queue of a specified interface.
1755  */
1756 void
ip_mloopback(struct ifnet * ifp,struct mbuf * m,struct sockaddr_in * dst)1757 ip_mloopback(struct ifnet *ifp, struct mbuf *m, struct sockaddr_in *dst)
1758 {
1759 	struct mbuf *copym;
1760 
1761 	copym = m_dup_pkt(m, max_linkhdr, M_DONTWAIT);
1762 	if (copym != NULL) {
1763 		/*
1764 		 * We don't bother to fragment if the IP length is greater
1765 		 * than the interface's MTU.  Can this possibly matter?
1766 		 */
1767 		in_hdr_cksum_out(copym, NULL);
1768 		if_input_local(ifp, copym, dst->sin_family);
1769 	}
1770 }
1771 
1772 void
in_hdr_cksum_out(struct mbuf * m,struct ifnet * ifp)1773 in_hdr_cksum_out(struct mbuf *m, struct ifnet *ifp)
1774 {
1775 	struct ip *ip = mtod(m, struct ip *);
1776 
1777 	ip->ip_sum = 0;
1778 	if (in_ifcap_cksum(m, ifp, IFCAP_CSUM_IPv4)) {
1779 		SET(m->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT);
1780 	} else {
1781 		ipstat_inc(ips_outswcsum);
1782 		ip->ip_sum = in_cksum(m, ip->ip_hl << 2);
1783 		CLR(m->m_pkthdr.csum_flags, M_IPV4_CSUM_OUT);
1784 	}
1785 }
1786 
1787 /*
1788  *	Compute significant parts of the IPv4 checksum pseudo-header
1789  *	for use in a delayed TCP/UDP checksum calculation.
1790  */
1791 static u_int16_t
in_cksum_phdr(u_int32_t src,u_int32_t dst,u_int32_t lenproto)1792 in_cksum_phdr(u_int32_t src, u_int32_t dst, u_int32_t lenproto)
1793 {
1794 	u_int32_t sum;
1795 
1796 	sum = lenproto +
1797 	      (u_int16_t)(src >> 16) +
1798 	      (u_int16_t)(src /*& 0xffff*/) +
1799 	      (u_int16_t)(dst >> 16) +
1800 	      (u_int16_t)(dst /*& 0xffff*/);
1801 
1802 	sum = (u_int16_t)(sum >> 16) + (u_int16_t)(sum /*& 0xffff*/);
1803 
1804 	if (sum > 0xffff)
1805 		sum -= 0xffff;
1806 
1807 	return (sum);
1808 }
1809 
1810 /*
1811  * Process a delayed payload checksum calculation.
1812  */
1813 void
in_delayed_cksum(struct mbuf * m)1814 in_delayed_cksum(struct mbuf *m)
1815 {
1816 	struct ip *ip;
1817 	u_int16_t csum, offset;
1818 
1819 	ip = mtod(m, struct ip *);
1820 	offset = ip->ip_hl << 2;
1821 	csum = in4_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1822 	if (csum == 0 && ip->ip_p == IPPROTO_UDP)
1823 		csum = 0xffff;
1824 
1825 	switch (ip->ip_p) {
1826 	case IPPROTO_TCP:
1827 		offset += offsetof(struct tcphdr, th_sum);
1828 		break;
1829 
1830 	case IPPROTO_UDP:
1831 		offset += offsetof(struct udphdr, uh_sum);
1832 		break;
1833 
1834 	case IPPROTO_ICMP:
1835 		offset += offsetof(struct icmp, icmp_cksum);
1836 		break;
1837 
1838 	default:
1839 		return;
1840 	}
1841 
1842 	if ((offset + sizeof(u_int16_t)) > m->m_len)
1843 		m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1844 	else
1845 		*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1846 }
1847 
1848 void
in_proto_cksum_out(struct mbuf * m,struct ifnet * ifp)1849 in_proto_cksum_out(struct mbuf *m, struct ifnet *ifp)
1850 {
1851 	struct ip *ip = mtod(m, struct ip *);
1852 
1853 	/* some hw and in_delayed_cksum need the pseudo header cksum */
1854 	if (m->m_pkthdr.csum_flags &
1855 	    (M_TCP_CSUM_OUT|M_UDP_CSUM_OUT|M_ICMP_CSUM_OUT)) {
1856 		u_int16_t csum = 0, offset;
1857 
1858 		offset = ip->ip_hl << 2;
1859 		if (ISSET(m->m_pkthdr.csum_flags, M_TCP_TSO) &&
1860 		    in_ifcap_cksum(m, ifp, IFCAP_TSOv4)) {
1861 			csum = in_cksum_phdr(ip->ip_src.s_addr,
1862 			    ip->ip_dst.s_addr, htonl(ip->ip_p));
1863 		} else if (ISSET(m->m_pkthdr.csum_flags,
1864 		    M_TCP_CSUM_OUT|M_UDP_CSUM_OUT)) {
1865 			csum = in_cksum_phdr(ip->ip_src.s_addr,
1866 			    ip->ip_dst.s_addr, htonl(ntohs(ip->ip_len) -
1867 			    offset + ip->ip_p));
1868 		}
1869 		if (ip->ip_p == IPPROTO_TCP)
1870 			offset += offsetof(struct tcphdr, th_sum);
1871 		else if (ip->ip_p == IPPROTO_UDP)
1872 			offset += offsetof(struct udphdr, uh_sum);
1873 		else if (ip->ip_p == IPPROTO_ICMP)
1874 			offset += offsetof(struct icmp, icmp_cksum);
1875 		if ((offset + sizeof(u_int16_t)) > m->m_len)
1876 			m_copyback(m, offset, sizeof(csum), &csum, M_NOWAIT);
1877 		else
1878 			*(u_int16_t *)(mtod(m, caddr_t) + offset) = csum;
1879 	}
1880 
1881 	if (m->m_pkthdr.csum_flags & M_TCP_CSUM_OUT) {
1882 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_TCPv4) ||
1883 		    ip->ip_hl != 5) {
1884 			tcpstat_inc(tcps_outswcsum);
1885 			in_delayed_cksum(m);
1886 			m->m_pkthdr.csum_flags &= ~M_TCP_CSUM_OUT; /* Clear */
1887 		}
1888 	} else if (m->m_pkthdr.csum_flags & M_UDP_CSUM_OUT) {
1889 		if (!in_ifcap_cksum(m, ifp, IFCAP_CSUM_UDPv4) ||
1890 		    ip->ip_hl != 5) {
1891 			udpstat_inc(udps_outswcsum);
1892 			in_delayed_cksum(m);
1893 			m->m_pkthdr.csum_flags &= ~M_UDP_CSUM_OUT; /* Clear */
1894 		}
1895 	} else if (m->m_pkthdr.csum_flags & M_ICMP_CSUM_OUT) {
1896 		in_delayed_cksum(m);
1897 		m->m_pkthdr.csum_flags &= ~M_ICMP_CSUM_OUT; /* Clear */
1898 	}
1899 }
1900 
1901 int
in_ifcap_cksum(struct mbuf * m,struct ifnet * ifp,int ifcap)1902 in_ifcap_cksum(struct mbuf *m, struct ifnet *ifp, int ifcap)
1903 {
1904 	if ((ifp == NULL) ||
1905 	    !ISSET(ifp->if_capabilities, ifcap) ||
1906 	    (ifp->if_bridgeidx != 0))
1907 		return (0);
1908 	/*
1909 	 * Simplex interface sends packet back without hardware cksum.
1910 	 * Keep this check in sync with the condition where ether_resolve()
1911 	 * calls if_input_local().
1912 	 */
1913 	if (ISSET(m->m_flags, M_BCAST) &&
1914 	    ISSET(ifp->if_flags, IFF_SIMPLEX) &&
1915 	    !m->m_pkthdr.pf.routed)
1916 		return (0);
1917 	return (1);
1918 }
1919