xref: /linux/net/ipv4/inet_connection_sock.c (revision 7951e36a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Support for INET connection oriented protocols.
8  *
9  * Authors:	See the TCP sources
10  */
11 
12 #include <linux/module.h>
13 #include <linux/jhash.h>
14 
15 #include <net/inet_connection_sock.h>
16 #include <net/inet_hashtables.h>
17 #include <net/inet_timewait_sock.h>
18 #include <net/ip.h>
19 #include <net/route.h>
20 #include <net/tcp_states.h>
21 #include <net/xfrm.h>
22 #include <net/tcp.h>
23 #include <net/sock_reuseport.h>
24 #include <net/addrconf.h>
25 
26 #if IS_ENABLED(CONFIG_IPV6)
27 /* match_sk*_wildcard == true:  IPV6_ADDR_ANY equals to any IPv6 addresses
28  *				if IPv6 only, and any IPv4 addresses
29  *				if not IPv6 only
30  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
31  *				IPV6_ADDR_ANY only equals to IPV6_ADDR_ANY,
32  *				and 0.0.0.0 equals to 0.0.0.0 only
33  */
ipv6_rcv_saddr_equal(const struct in6_addr * sk1_rcv_saddr6,const struct in6_addr * sk2_rcv_saddr6,__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk1_ipv6only,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)34 static bool ipv6_rcv_saddr_equal(const struct in6_addr *sk1_rcv_saddr6,
35 				 const struct in6_addr *sk2_rcv_saddr6,
36 				 __be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
37 				 bool sk1_ipv6only, bool sk2_ipv6only,
38 				 bool match_sk1_wildcard,
39 				 bool match_sk2_wildcard)
40 {
41 	int addr_type = ipv6_addr_type(sk1_rcv_saddr6);
42 	int addr_type2 = sk2_rcv_saddr6 ? ipv6_addr_type(sk2_rcv_saddr6) : IPV6_ADDR_MAPPED;
43 
44 	/* if both are mapped, treat as IPv4 */
45 	if (addr_type == IPV6_ADDR_MAPPED && addr_type2 == IPV6_ADDR_MAPPED) {
46 		if (!sk2_ipv6only) {
47 			if (sk1_rcv_saddr == sk2_rcv_saddr)
48 				return true;
49 			return (match_sk1_wildcard && !sk1_rcv_saddr) ||
50 				(match_sk2_wildcard && !sk2_rcv_saddr);
51 		}
52 		return false;
53 	}
54 
55 	if (addr_type == IPV6_ADDR_ANY && addr_type2 == IPV6_ADDR_ANY)
56 		return true;
57 
58 	if (addr_type2 == IPV6_ADDR_ANY && match_sk2_wildcard &&
59 	    !(sk2_ipv6only && addr_type == IPV6_ADDR_MAPPED))
60 		return true;
61 
62 	if (addr_type == IPV6_ADDR_ANY && match_sk1_wildcard &&
63 	    !(sk1_ipv6only && addr_type2 == IPV6_ADDR_MAPPED))
64 		return true;
65 
66 	if (sk2_rcv_saddr6 &&
67 	    ipv6_addr_equal(sk1_rcv_saddr6, sk2_rcv_saddr6))
68 		return true;
69 
70 	return false;
71 }
72 #endif
73 
74 /* match_sk*_wildcard == true:  0.0.0.0 equals to any IPv4 addresses
75  * match_sk*_wildcard == false: addresses must be exactly the same, i.e.
76  *				0.0.0.0 only equals to 0.0.0.0
77  */
ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr,__be32 sk2_rcv_saddr,bool sk2_ipv6only,bool match_sk1_wildcard,bool match_sk2_wildcard)78 static bool ipv4_rcv_saddr_equal(__be32 sk1_rcv_saddr, __be32 sk2_rcv_saddr,
79 				 bool sk2_ipv6only, bool match_sk1_wildcard,
80 				 bool match_sk2_wildcard)
81 {
82 	if (!sk2_ipv6only) {
83 		if (sk1_rcv_saddr == sk2_rcv_saddr)
84 			return true;
85 		return (match_sk1_wildcard && !sk1_rcv_saddr) ||
86 			(match_sk2_wildcard && !sk2_rcv_saddr);
87 	}
88 	return false;
89 }
90 
inet_rcv_saddr_equal(const struct sock * sk,const struct sock * sk2,bool match_wildcard)91 bool inet_rcv_saddr_equal(const struct sock *sk, const struct sock *sk2,
92 			  bool match_wildcard)
93 {
94 #if IS_ENABLED(CONFIG_IPV6)
95 	if (sk->sk_family == AF_INET6)
96 		return ipv6_rcv_saddr_equal(&sk->sk_v6_rcv_saddr,
97 					    inet6_rcv_saddr(sk2),
98 					    sk->sk_rcv_saddr,
99 					    sk2->sk_rcv_saddr,
100 					    ipv6_only_sock(sk),
101 					    ipv6_only_sock(sk2),
102 					    match_wildcard,
103 					    match_wildcard);
104 #endif
105 	return ipv4_rcv_saddr_equal(sk->sk_rcv_saddr, sk2->sk_rcv_saddr,
106 				    ipv6_only_sock(sk2), match_wildcard,
107 				    match_wildcard);
108 }
109 EXPORT_SYMBOL(inet_rcv_saddr_equal);
110 
inet_rcv_saddr_any(const struct sock * sk)111 bool inet_rcv_saddr_any(const struct sock *sk)
112 {
113 #if IS_ENABLED(CONFIG_IPV6)
114 	if (sk->sk_family == AF_INET6)
115 		return ipv6_addr_any(&sk->sk_v6_rcv_saddr);
116 #endif
117 	return !sk->sk_rcv_saddr;
118 }
119 
120 /**
121  *	inet_sk_get_local_port_range - fetch ephemeral ports range
122  *	@sk: socket
123  *	@low: pointer to low port
124  *	@high: pointer to high port
125  *
126  *	Fetch netns port range (/proc/sys/net/ipv4/ip_local_port_range)
127  *	Range can be overridden if socket got IP_LOCAL_PORT_RANGE option.
128  *	Returns true if IP_LOCAL_PORT_RANGE was set on this socket.
129  */
inet_sk_get_local_port_range(const struct sock * sk,int * low,int * high)130 bool inet_sk_get_local_port_range(const struct sock *sk, int *low, int *high)
131 {
132 	int lo, hi, sk_lo, sk_hi;
133 	bool local_range = false;
134 	u32 sk_range;
135 
136 	inet_get_local_port_range(sock_net(sk), &lo, &hi);
137 
138 	sk_range = READ_ONCE(inet_sk(sk)->local_port_range);
139 	if (unlikely(sk_range)) {
140 		sk_lo = sk_range & 0xffff;
141 		sk_hi = sk_range >> 16;
142 
143 		if (lo <= sk_lo && sk_lo <= hi)
144 			lo = sk_lo;
145 		if (lo <= sk_hi && sk_hi <= hi)
146 			hi = sk_hi;
147 		local_range = true;
148 	}
149 
150 	*low = lo;
151 	*high = hi;
152 	return local_range;
153 }
154 EXPORT_SYMBOL(inet_sk_get_local_port_range);
155 
inet_use_bhash2_on_bind(const struct sock * sk)156 static bool inet_use_bhash2_on_bind(const struct sock *sk)
157 {
158 #if IS_ENABLED(CONFIG_IPV6)
159 	if (sk->sk_family == AF_INET6) {
160 		int addr_type = ipv6_addr_type(&sk->sk_v6_rcv_saddr);
161 
162 		if (addr_type == IPV6_ADDR_ANY)
163 			return false;
164 
165 		if (addr_type != IPV6_ADDR_MAPPED)
166 			return true;
167 	}
168 #endif
169 	return sk->sk_rcv_saddr != htonl(INADDR_ANY);
170 }
171 
inet_bind_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)172 static bool inet_bind_conflict(const struct sock *sk, struct sock *sk2,
173 			       kuid_t sk_uid, bool relax,
174 			       bool reuseport_cb_ok, bool reuseport_ok)
175 {
176 	int bound_dev_if2;
177 
178 	if (sk == sk2)
179 		return false;
180 
181 	bound_dev_if2 = READ_ONCE(sk2->sk_bound_dev_if);
182 
183 	if (!sk->sk_bound_dev_if || !bound_dev_if2 ||
184 	    sk->sk_bound_dev_if == bound_dev_if2) {
185 		if (sk->sk_reuse && sk2->sk_reuse &&
186 		    sk2->sk_state != TCP_LISTEN) {
187 			if (!relax || (!reuseport_ok && sk->sk_reuseport &&
188 				       sk2->sk_reuseport && reuseport_cb_ok &&
189 				       (sk2->sk_state == TCP_TIME_WAIT ||
190 					uid_eq(sk_uid, sock_i_uid(sk2)))))
191 				return true;
192 		} else if (!reuseport_ok || !sk->sk_reuseport ||
193 			   !sk2->sk_reuseport || !reuseport_cb_ok ||
194 			   (sk2->sk_state != TCP_TIME_WAIT &&
195 			    !uid_eq(sk_uid, sock_i_uid(sk2)))) {
196 			return true;
197 		}
198 	}
199 	return false;
200 }
201 
__inet_bhash2_conflict(const struct sock * sk,struct sock * sk2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)202 static bool __inet_bhash2_conflict(const struct sock *sk, struct sock *sk2,
203 				   kuid_t sk_uid, bool relax,
204 				   bool reuseport_cb_ok, bool reuseport_ok)
205 {
206 	if (ipv6_only_sock(sk2)) {
207 		if (sk->sk_family == AF_INET)
208 			return false;
209 
210 #if IS_ENABLED(CONFIG_IPV6)
211 		if (ipv6_addr_v4mapped(&sk->sk_v6_rcv_saddr))
212 			return false;
213 #endif
214 	}
215 
216 	return inet_bind_conflict(sk, sk2, sk_uid, relax,
217 				  reuseport_cb_ok, reuseport_ok);
218 }
219 
inet_bhash2_conflict(const struct sock * sk,const struct inet_bind2_bucket * tb2,kuid_t sk_uid,bool relax,bool reuseport_cb_ok,bool reuseport_ok)220 static bool inet_bhash2_conflict(const struct sock *sk,
221 				 const struct inet_bind2_bucket *tb2,
222 				 kuid_t sk_uid,
223 				 bool relax, bool reuseport_cb_ok,
224 				 bool reuseport_ok)
225 {
226 	struct sock *sk2;
227 
228 	sk_for_each_bound(sk2, &tb2->owners) {
229 		if (__inet_bhash2_conflict(sk, sk2, sk_uid, relax,
230 					   reuseport_cb_ok, reuseport_ok))
231 			return true;
232 	}
233 
234 	return false;
235 }
236 
237 #define sk_for_each_bound_bhash(__sk, __tb2, __tb)			\
238 	hlist_for_each_entry(__tb2, &(__tb)->bhash2, bhash_node)	\
239 		sk_for_each_bound(sk2, &(__tb2)->owners)
240 
241 /* This should be called only when the tb and tb2 hashbuckets' locks are held */
inet_csk_bind_conflict(const struct sock * sk,const struct inet_bind_bucket * tb,const struct inet_bind2_bucket * tb2,bool relax,bool reuseport_ok)242 static int inet_csk_bind_conflict(const struct sock *sk,
243 				  const struct inet_bind_bucket *tb,
244 				  const struct inet_bind2_bucket *tb2, /* may be null */
245 				  bool relax, bool reuseport_ok)
246 {
247 	kuid_t uid = sock_i_uid((struct sock *)sk);
248 	struct sock_reuseport *reuseport_cb;
249 	bool reuseport_cb_ok;
250 	struct sock *sk2;
251 
252 	rcu_read_lock();
253 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
254 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
255 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
256 	rcu_read_unlock();
257 
258 	/* Conflicts with an existing IPV6_ADDR_ANY (if ipv6) or INADDR_ANY (if
259 	 * ipv4) should have been checked already. We need to do these two
260 	 * checks separately because their spinlocks have to be acquired/released
261 	 * independently of each other, to prevent possible deadlocks
262 	 */
263 	if (inet_use_bhash2_on_bind(sk))
264 		return tb2 && inet_bhash2_conflict(sk, tb2, uid, relax,
265 						   reuseport_cb_ok, reuseport_ok);
266 
267 	/* Unlike other sk lookup places we do not check
268 	 * for sk_net here, since _all_ the socks listed
269 	 * in tb->owners and tb2->owners list belong
270 	 * to the same net - the one this bucket belongs to.
271 	 */
272 	sk_for_each_bound_bhash(sk2, tb2, tb) {
273 		if (!inet_bind_conflict(sk, sk2, uid, relax, reuseport_cb_ok, reuseport_ok))
274 			continue;
275 
276 		if (inet_rcv_saddr_equal(sk, sk2, true))
277 			return true;
278 	}
279 
280 	return false;
281 }
282 
283 /* Determine if there is a bind conflict with an existing IPV6_ADDR_ANY (if ipv6) or
284  * INADDR_ANY (if ipv4) socket.
285  *
286  * Caller must hold bhash hashbucket lock with local bh disabled, to protect
287  * against concurrent binds on the port for addr any
288  */
inet_bhash2_addr_any_conflict(const struct sock * sk,int port,int l3mdev,bool relax,bool reuseport_ok)289 static bool inet_bhash2_addr_any_conflict(const struct sock *sk, int port, int l3mdev,
290 					  bool relax, bool reuseport_ok)
291 {
292 	kuid_t uid = sock_i_uid((struct sock *)sk);
293 	const struct net *net = sock_net(sk);
294 	struct sock_reuseport *reuseport_cb;
295 	struct inet_bind_hashbucket *head2;
296 	struct inet_bind2_bucket *tb2;
297 	bool conflict = false;
298 	bool reuseport_cb_ok;
299 
300 	rcu_read_lock();
301 	reuseport_cb = rcu_dereference(sk->sk_reuseport_cb);
302 	/* paired with WRITE_ONCE() in __reuseport_(add|detach)_closed_sock */
303 	reuseport_cb_ok = !reuseport_cb || READ_ONCE(reuseport_cb->num_closed_socks);
304 	rcu_read_unlock();
305 
306 	head2 = inet_bhash2_addr_any_hashbucket(sk, net, port);
307 
308 	spin_lock(&head2->lock);
309 
310 	inet_bind_bucket_for_each(tb2, &head2->chain) {
311 		if (!inet_bind2_bucket_match_addr_any(tb2, net, port, l3mdev, sk))
312 			continue;
313 
314 		if (!inet_bhash2_conflict(sk, tb2, uid, relax, reuseport_cb_ok,	reuseport_ok))
315 			continue;
316 
317 		conflict = true;
318 		break;
319 	}
320 
321 	spin_unlock(&head2->lock);
322 
323 	return conflict;
324 }
325 
326 /*
327  * Find an open port number for the socket.  Returns with the
328  * inet_bind_hashbucket locks held if successful.
329  */
330 static struct inet_bind_hashbucket *
inet_csk_find_open_port(const struct sock * sk,struct inet_bind_bucket ** tb_ret,struct inet_bind2_bucket ** tb2_ret,struct inet_bind_hashbucket ** head2_ret,int * port_ret)331 inet_csk_find_open_port(const struct sock *sk, struct inet_bind_bucket **tb_ret,
332 			struct inet_bind2_bucket **tb2_ret,
333 			struct inet_bind_hashbucket **head2_ret, int *port_ret)
334 {
335 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
336 	int i, low, high, attempt_half, port, l3mdev;
337 	struct inet_bind_hashbucket *head, *head2;
338 	struct net *net = sock_net(sk);
339 	struct inet_bind2_bucket *tb2;
340 	struct inet_bind_bucket *tb;
341 	u32 remaining, offset;
342 	bool relax = false;
343 
344 	l3mdev = inet_sk_bound_l3mdev(sk);
345 ports_exhausted:
346 	attempt_half = (sk->sk_reuse == SK_CAN_REUSE) ? 1 : 0;
347 other_half_scan:
348 	inet_sk_get_local_port_range(sk, &low, &high);
349 	high++; /* [32768, 60999] -> [32768, 61000[ */
350 	if (high - low < 4)
351 		attempt_half = 0;
352 	if (attempt_half) {
353 		int half = low + (((high - low) >> 2) << 1);
354 
355 		if (attempt_half == 1)
356 			high = half;
357 		else
358 			low = half;
359 	}
360 	remaining = high - low;
361 	if (likely(remaining > 1))
362 		remaining &= ~1U;
363 
364 	offset = get_random_u32_below(remaining);
365 	/* __inet_hash_connect() favors ports having @low parity
366 	 * We do the opposite to not pollute connect() users.
367 	 */
368 	offset |= 1U;
369 
370 other_parity_scan:
371 	port = low + offset;
372 	for (i = 0; i < remaining; i += 2, port += 2) {
373 		if (unlikely(port >= high))
374 			port -= remaining;
375 		if (inet_is_local_reserved_port(net, port))
376 			continue;
377 		head = &hinfo->bhash[inet_bhashfn(net, port,
378 						  hinfo->bhash_size)];
379 		spin_lock_bh(&head->lock);
380 		if (inet_use_bhash2_on_bind(sk)) {
381 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, relax, false))
382 				goto next_port;
383 		}
384 
385 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
386 		spin_lock(&head2->lock);
387 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
388 		inet_bind_bucket_for_each(tb, &head->chain)
389 			if (inet_bind_bucket_match(tb, net, port, l3mdev)) {
390 				if (!inet_csk_bind_conflict(sk, tb, tb2,
391 							    relax, false))
392 					goto success;
393 				spin_unlock(&head2->lock);
394 				goto next_port;
395 			}
396 		tb = NULL;
397 		goto success;
398 next_port:
399 		spin_unlock_bh(&head->lock);
400 		cond_resched();
401 	}
402 
403 	offset--;
404 	if (!(offset & 1))
405 		goto other_parity_scan;
406 
407 	if (attempt_half == 1) {
408 		/* OK we now try the upper half of the range */
409 		attempt_half = 2;
410 		goto other_half_scan;
411 	}
412 
413 	if (READ_ONCE(net->ipv4.sysctl_ip_autobind_reuse) && !relax) {
414 		/* We still have a chance to connect to different destinations */
415 		relax = true;
416 		goto ports_exhausted;
417 	}
418 	return NULL;
419 success:
420 	*port_ret = port;
421 	*tb_ret = tb;
422 	*tb2_ret = tb2;
423 	*head2_ret = head2;
424 	return head;
425 }
426 
sk_reuseport_match(struct inet_bind_bucket * tb,struct sock * sk)427 static inline int sk_reuseport_match(struct inet_bind_bucket *tb,
428 				     struct sock *sk)
429 {
430 	kuid_t uid = sock_i_uid(sk);
431 
432 	if (tb->fastreuseport <= 0)
433 		return 0;
434 	if (!sk->sk_reuseport)
435 		return 0;
436 	if (rcu_access_pointer(sk->sk_reuseport_cb))
437 		return 0;
438 	if (!uid_eq(tb->fastuid, uid))
439 		return 0;
440 	/* We only need to check the rcv_saddr if this tb was once marked
441 	 * without fastreuseport and then was reset, as we can only know that
442 	 * the fast_*rcv_saddr doesn't have any conflicts with the socks on the
443 	 * owners list.
444 	 */
445 	if (tb->fastreuseport == FASTREUSEPORT_ANY)
446 		return 1;
447 #if IS_ENABLED(CONFIG_IPV6)
448 	if (tb->fast_sk_family == AF_INET6)
449 		return ipv6_rcv_saddr_equal(&tb->fast_v6_rcv_saddr,
450 					    inet6_rcv_saddr(sk),
451 					    tb->fast_rcv_saddr,
452 					    sk->sk_rcv_saddr,
453 					    tb->fast_ipv6_only,
454 					    ipv6_only_sock(sk), true, false);
455 #endif
456 	return ipv4_rcv_saddr_equal(tb->fast_rcv_saddr, sk->sk_rcv_saddr,
457 				    ipv6_only_sock(sk), true, false);
458 }
459 
inet_csk_update_fastreuse(struct inet_bind_bucket * tb,struct sock * sk)460 void inet_csk_update_fastreuse(struct inet_bind_bucket *tb,
461 			       struct sock *sk)
462 {
463 	kuid_t uid = sock_i_uid(sk);
464 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
465 
466 	if (hlist_empty(&tb->bhash2)) {
467 		tb->fastreuse = reuse;
468 		if (sk->sk_reuseport) {
469 			tb->fastreuseport = FASTREUSEPORT_ANY;
470 			tb->fastuid = uid;
471 			tb->fast_rcv_saddr = sk->sk_rcv_saddr;
472 			tb->fast_ipv6_only = ipv6_only_sock(sk);
473 			tb->fast_sk_family = sk->sk_family;
474 #if IS_ENABLED(CONFIG_IPV6)
475 			tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
476 #endif
477 		} else {
478 			tb->fastreuseport = 0;
479 		}
480 	} else {
481 		if (!reuse)
482 			tb->fastreuse = 0;
483 		if (sk->sk_reuseport) {
484 			/* We didn't match or we don't have fastreuseport set on
485 			 * the tb, but we have sk_reuseport set on this socket
486 			 * and we know that there are no bind conflicts with
487 			 * this socket in this tb, so reset our tb's reuseport
488 			 * settings so that any subsequent sockets that match
489 			 * our current socket will be put on the fast path.
490 			 *
491 			 * If we reset we need to set FASTREUSEPORT_STRICT so we
492 			 * do extra checking for all subsequent sk_reuseport
493 			 * socks.
494 			 */
495 			if (!sk_reuseport_match(tb, sk)) {
496 				tb->fastreuseport = FASTREUSEPORT_STRICT;
497 				tb->fastuid = uid;
498 				tb->fast_rcv_saddr = sk->sk_rcv_saddr;
499 				tb->fast_ipv6_only = ipv6_only_sock(sk);
500 				tb->fast_sk_family = sk->sk_family;
501 #if IS_ENABLED(CONFIG_IPV6)
502 				tb->fast_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
503 #endif
504 			}
505 		} else {
506 			tb->fastreuseport = 0;
507 		}
508 	}
509 }
510 
511 /* Obtain a reference to a local port for the given sock,
512  * if snum is zero it means select any available local port.
513  * We try to allocate an odd port (and leave even ports for connect())
514  */
inet_csk_get_port(struct sock * sk,unsigned short snum)515 int inet_csk_get_port(struct sock *sk, unsigned short snum)
516 {
517 	struct inet_hashinfo *hinfo = tcp_or_dccp_get_hashinfo(sk);
518 	bool reuse = sk->sk_reuse && sk->sk_state != TCP_LISTEN;
519 	bool found_port = false, check_bind_conflict = true;
520 	bool bhash_created = false, bhash2_created = false;
521 	int ret = -EADDRINUSE, port = snum, l3mdev;
522 	struct inet_bind_hashbucket *head, *head2;
523 	struct inet_bind2_bucket *tb2 = NULL;
524 	struct inet_bind_bucket *tb = NULL;
525 	bool head2_lock_acquired = false;
526 	struct net *net = sock_net(sk);
527 
528 	l3mdev = inet_sk_bound_l3mdev(sk);
529 
530 	if (!port) {
531 		head = inet_csk_find_open_port(sk, &tb, &tb2, &head2, &port);
532 		if (!head)
533 			return ret;
534 
535 		head2_lock_acquired = true;
536 
537 		if (tb && tb2)
538 			goto success;
539 		found_port = true;
540 	} else {
541 		head = &hinfo->bhash[inet_bhashfn(net, port,
542 						  hinfo->bhash_size)];
543 		spin_lock_bh(&head->lock);
544 		inet_bind_bucket_for_each(tb, &head->chain)
545 			if (inet_bind_bucket_match(tb, net, port, l3mdev))
546 				break;
547 	}
548 
549 	if (!tb) {
550 		tb = inet_bind_bucket_create(hinfo->bind_bucket_cachep, net,
551 					     head, port, l3mdev);
552 		if (!tb)
553 			goto fail_unlock;
554 		bhash_created = true;
555 	}
556 
557 	if (!found_port) {
558 		if (!hlist_empty(&tb->bhash2)) {
559 			if (sk->sk_reuse == SK_FORCE_REUSE ||
560 			    (tb->fastreuse > 0 && reuse) ||
561 			    sk_reuseport_match(tb, sk))
562 				check_bind_conflict = false;
563 		}
564 
565 		if (check_bind_conflict && inet_use_bhash2_on_bind(sk)) {
566 			if (inet_bhash2_addr_any_conflict(sk, port, l3mdev, true, true))
567 				goto fail_unlock;
568 		}
569 
570 		head2 = inet_bhashfn_portaddr(hinfo, sk, net, port);
571 		spin_lock(&head2->lock);
572 		head2_lock_acquired = true;
573 		tb2 = inet_bind2_bucket_find(head2, net, port, l3mdev, sk);
574 	}
575 
576 	if (!tb2) {
577 		tb2 = inet_bind2_bucket_create(hinfo->bind2_bucket_cachep,
578 					       net, head2, tb, sk);
579 		if (!tb2)
580 			goto fail_unlock;
581 		bhash2_created = true;
582 	}
583 
584 	if (!found_port && check_bind_conflict) {
585 		if (inet_csk_bind_conflict(sk, tb, tb2, true, true))
586 			goto fail_unlock;
587 	}
588 
589 success:
590 	inet_csk_update_fastreuse(tb, sk);
591 
592 	if (!inet_csk(sk)->icsk_bind_hash)
593 		inet_bind_hash(sk, tb, tb2, port);
594 	WARN_ON(inet_csk(sk)->icsk_bind_hash != tb);
595 	WARN_ON(inet_csk(sk)->icsk_bind2_hash != tb2);
596 	ret = 0;
597 
598 fail_unlock:
599 	if (ret) {
600 		if (bhash2_created)
601 			inet_bind2_bucket_destroy(hinfo->bind2_bucket_cachep, tb2);
602 		if (bhash_created)
603 			inet_bind_bucket_destroy(hinfo->bind_bucket_cachep, tb);
604 	}
605 	if (head2_lock_acquired)
606 		spin_unlock(&head2->lock);
607 	spin_unlock_bh(&head->lock);
608 	return ret;
609 }
610 EXPORT_SYMBOL_GPL(inet_csk_get_port);
611 
612 /*
613  * Wait for an incoming connection, avoid race conditions. This must be called
614  * with the socket locked.
615  */
inet_csk_wait_for_connect(struct sock * sk,long timeo)616 static int inet_csk_wait_for_connect(struct sock *sk, long timeo)
617 {
618 	struct inet_connection_sock *icsk = inet_csk(sk);
619 	DEFINE_WAIT(wait);
620 	int err;
621 
622 	/*
623 	 * True wake-one mechanism for incoming connections: only
624 	 * one process gets woken up, not the 'whole herd'.
625 	 * Since we do not 'race & poll' for established sockets
626 	 * anymore, the common case will execute the loop only once.
627 	 *
628 	 * Subtle issue: "add_wait_queue_exclusive()" will be added
629 	 * after any current non-exclusive waiters, and we know that
630 	 * it will always _stay_ after any new non-exclusive waiters
631 	 * because all non-exclusive waiters are added at the
632 	 * beginning of the wait-queue. As such, it's ok to "drop"
633 	 * our exclusiveness temporarily when we get woken up without
634 	 * having to remove and re-insert us on the wait queue.
635 	 */
636 	for (;;) {
637 		prepare_to_wait_exclusive(sk_sleep(sk), &wait,
638 					  TASK_INTERRUPTIBLE);
639 		release_sock(sk);
640 		if (reqsk_queue_empty(&icsk->icsk_accept_queue))
641 			timeo = schedule_timeout(timeo);
642 		sched_annotate_sleep();
643 		lock_sock(sk);
644 		err = 0;
645 		if (!reqsk_queue_empty(&icsk->icsk_accept_queue))
646 			break;
647 		err = -EINVAL;
648 		if (sk->sk_state != TCP_LISTEN)
649 			break;
650 		err = sock_intr_errno(timeo);
651 		if (signal_pending(current))
652 			break;
653 		err = -EAGAIN;
654 		if (!timeo)
655 			break;
656 	}
657 	finish_wait(sk_sleep(sk), &wait);
658 	return err;
659 }
660 
661 /*
662  * This will accept the next outstanding connection.
663  */
inet_csk_accept(struct sock * sk,struct proto_accept_arg * arg)664 struct sock *inet_csk_accept(struct sock *sk, struct proto_accept_arg *arg)
665 {
666 	struct inet_connection_sock *icsk = inet_csk(sk);
667 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
668 	struct request_sock *req;
669 	struct sock *newsk;
670 	int error;
671 
672 	lock_sock(sk);
673 
674 	/* We need to make sure that this socket is listening,
675 	 * and that it has something pending.
676 	 */
677 	error = -EINVAL;
678 	if (sk->sk_state != TCP_LISTEN)
679 		goto out_err;
680 
681 	/* Find already established connection */
682 	if (reqsk_queue_empty(queue)) {
683 		long timeo = sock_rcvtimeo(sk, arg->flags & O_NONBLOCK);
684 
685 		/* If this is a non blocking socket don't sleep */
686 		error = -EAGAIN;
687 		if (!timeo)
688 			goto out_err;
689 
690 		error = inet_csk_wait_for_connect(sk, timeo);
691 		if (error)
692 			goto out_err;
693 	}
694 	req = reqsk_queue_remove(queue, sk);
695 	arg->is_empty = reqsk_queue_empty(queue);
696 	newsk = req->sk;
697 
698 	if (sk->sk_protocol == IPPROTO_TCP &&
699 	    tcp_rsk(req)->tfo_listener) {
700 		spin_lock_bh(&queue->fastopenq.lock);
701 		if (tcp_rsk(req)->tfo_listener) {
702 			/* We are still waiting for the final ACK from 3WHS
703 			 * so can't free req now. Instead, we set req->sk to
704 			 * NULL to signify that the child socket is taken
705 			 * so reqsk_fastopen_remove() will free the req
706 			 * when 3WHS finishes (or is aborted).
707 			 */
708 			req->sk = NULL;
709 			req = NULL;
710 		}
711 		spin_unlock_bh(&queue->fastopenq.lock);
712 	}
713 
714 out:
715 	release_sock(sk);
716 	if (newsk && mem_cgroup_sockets_enabled) {
717 		int amt = 0;
718 
719 		/* atomically get the memory usage, set and charge the
720 		 * newsk->sk_memcg.
721 		 */
722 		lock_sock(newsk);
723 
724 		mem_cgroup_sk_alloc(newsk);
725 		if (newsk->sk_memcg) {
726 			/* The socket has not been accepted yet, no need
727 			 * to look at newsk->sk_wmem_queued.
728 			 */
729 			amt = sk_mem_pages(newsk->sk_forward_alloc +
730 					   atomic_read(&newsk->sk_rmem_alloc));
731 		}
732 
733 		if (amt)
734 			mem_cgroup_charge_skmem(newsk->sk_memcg, amt,
735 						GFP_KERNEL | __GFP_NOFAIL);
736 
737 		release_sock(newsk);
738 	}
739 	if (req)
740 		reqsk_put(req);
741 
742 	if (newsk)
743 		inet_init_csk_locks(newsk);
744 
745 	return newsk;
746 out_err:
747 	newsk = NULL;
748 	req = NULL;
749 	arg->err = error;
750 	goto out;
751 }
752 EXPORT_SYMBOL(inet_csk_accept);
753 
754 /*
755  * Using different timers for retransmit, delayed acks and probes
756  * We may wish use just one timer maintaining a list of expire jiffies
757  * to optimize.
758  */
inet_csk_init_xmit_timers(struct sock * sk,void (* retransmit_handler)(struct timer_list * t),void (* delack_handler)(struct timer_list * t),void (* keepalive_handler)(struct timer_list * t))759 void inet_csk_init_xmit_timers(struct sock *sk,
760 			       void (*retransmit_handler)(struct timer_list *t),
761 			       void (*delack_handler)(struct timer_list *t),
762 			       void (*keepalive_handler)(struct timer_list *t))
763 {
764 	struct inet_connection_sock *icsk = inet_csk(sk);
765 
766 	timer_setup(&icsk->icsk_retransmit_timer, retransmit_handler, 0);
767 	timer_setup(&icsk->icsk_delack_timer, delack_handler, 0);
768 	timer_setup(&sk->sk_timer, keepalive_handler, 0);
769 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
770 }
771 EXPORT_SYMBOL(inet_csk_init_xmit_timers);
772 
inet_csk_clear_xmit_timers(struct sock * sk)773 void inet_csk_clear_xmit_timers(struct sock *sk)
774 {
775 	struct inet_connection_sock *icsk = inet_csk(sk);
776 
777 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
778 
779 	sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
780 	sk_stop_timer(sk, &icsk->icsk_delack_timer);
781 	sk_stop_timer(sk, &sk->sk_timer);
782 }
783 EXPORT_SYMBOL(inet_csk_clear_xmit_timers);
784 
inet_csk_clear_xmit_timers_sync(struct sock * sk)785 void inet_csk_clear_xmit_timers_sync(struct sock *sk)
786 {
787 	struct inet_connection_sock *icsk = inet_csk(sk);
788 
789 	/* ongoing timer handlers need to acquire socket lock. */
790 	sock_not_owned_by_me(sk);
791 
792 	icsk->icsk_pending = icsk->icsk_ack.pending = 0;
793 
794 	sk_stop_timer_sync(sk, &icsk->icsk_retransmit_timer);
795 	sk_stop_timer_sync(sk, &icsk->icsk_delack_timer);
796 	sk_stop_timer_sync(sk, &sk->sk_timer);
797 }
798 
inet_csk_delete_keepalive_timer(struct sock * sk)799 void inet_csk_delete_keepalive_timer(struct sock *sk)
800 {
801 	sk_stop_timer(sk, &sk->sk_timer);
802 }
803 EXPORT_SYMBOL(inet_csk_delete_keepalive_timer);
804 
inet_csk_reset_keepalive_timer(struct sock * sk,unsigned long len)805 void inet_csk_reset_keepalive_timer(struct sock *sk, unsigned long len)
806 {
807 	sk_reset_timer(sk, &sk->sk_timer, jiffies + len);
808 }
809 EXPORT_SYMBOL(inet_csk_reset_keepalive_timer);
810 
inet_csk_route_req(const struct sock * sk,struct flowi4 * fl4,const struct request_sock * req)811 struct dst_entry *inet_csk_route_req(const struct sock *sk,
812 				     struct flowi4 *fl4,
813 				     const struct request_sock *req)
814 {
815 	const struct inet_request_sock *ireq = inet_rsk(req);
816 	struct net *net = read_pnet(&ireq->ireq_net);
817 	struct ip_options_rcu *opt;
818 	struct rtable *rt;
819 
820 	rcu_read_lock();
821 	opt = rcu_dereference(ireq->ireq_opt);
822 
823 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
824 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
825 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
826 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
827 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
828 			   htons(ireq->ir_num), sk->sk_uid);
829 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
830 	rt = ip_route_output_flow(net, fl4, sk);
831 	if (IS_ERR(rt))
832 		goto no_route;
833 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
834 		goto route_err;
835 	rcu_read_unlock();
836 	return &rt->dst;
837 
838 route_err:
839 	ip_rt_put(rt);
840 no_route:
841 	rcu_read_unlock();
842 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
843 	return NULL;
844 }
845 EXPORT_SYMBOL_GPL(inet_csk_route_req);
846 
inet_csk_route_child_sock(const struct sock * sk,struct sock * newsk,const struct request_sock * req)847 struct dst_entry *inet_csk_route_child_sock(const struct sock *sk,
848 					    struct sock *newsk,
849 					    const struct request_sock *req)
850 {
851 	const struct inet_request_sock *ireq = inet_rsk(req);
852 	struct net *net = read_pnet(&ireq->ireq_net);
853 	struct inet_sock *newinet = inet_sk(newsk);
854 	struct ip_options_rcu *opt;
855 	struct flowi4 *fl4;
856 	struct rtable *rt;
857 
858 	opt = rcu_dereference(ireq->ireq_opt);
859 	fl4 = &newinet->cork.fl.u.ip4;
860 
861 	flowi4_init_output(fl4, ireq->ir_iif, ireq->ir_mark,
862 			   ip_sock_rt_tos(sk), ip_sock_rt_scope(sk),
863 			   sk->sk_protocol, inet_sk_flowi_flags(sk),
864 			   (opt && opt->opt.srr) ? opt->opt.faddr : ireq->ir_rmt_addr,
865 			   ireq->ir_loc_addr, ireq->ir_rmt_port,
866 			   htons(ireq->ir_num), sk->sk_uid);
867 	security_req_classify_flow(req, flowi4_to_flowi_common(fl4));
868 	rt = ip_route_output_flow(net, fl4, sk);
869 	if (IS_ERR(rt))
870 		goto no_route;
871 	if (opt && opt->opt.is_strictroute && rt->rt_uses_gateway)
872 		goto route_err;
873 	return &rt->dst;
874 
875 route_err:
876 	ip_rt_put(rt);
877 no_route:
878 	__IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
879 	return NULL;
880 }
881 EXPORT_SYMBOL_GPL(inet_csk_route_child_sock);
882 
883 /* Decide when to expire the request and when to resend SYN-ACK */
syn_ack_recalc(struct request_sock * req,const int max_syn_ack_retries,const u8 rskq_defer_accept,int * expire,int * resend)884 static void syn_ack_recalc(struct request_sock *req,
885 			   const int max_syn_ack_retries,
886 			   const u8 rskq_defer_accept,
887 			   int *expire, int *resend)
888 {
889 	if (!rskq_defer_accept) {
890 		*expire = req->num_timeout >= max_syn_ack_retries;
891 		*resend = 1;
892 		return;
893 	}
894 	*expire = req->num_timeout >= max_syn_ack_retries &&
895 		  (!inet_rsk(req)->acked || req->num_timeout >= rskq_defer_accept);
896 	/* Do not resend while waiting for data after ACK,
897 	 * start to resend on end of deferring period to give
898 	 * last chance for data or ACK to create established socket.
899 	 */
900 	*resend = !inet_rsk(req)->acked ||
901 		  req->num_timeout >= rskq_defer_accept - 1;
902 }
903 
inet_rtx_syn_ack(const struct sock * parent,struct request_sock * req)904 int inet_rtx_syn_ack(const struct sock *parent, struct request_sock *req)
905 {
906 	int err = req->rsk_ops->rtx_syn_ack(parent, req);
907 
908 	if (!err)
909 		req->num_retrans++;
910 	return err;
911 }
912 EXPORT_SYMBOL(inet_rtx_syn_ack);
913 
inet_reqsk_clone(struct request_sock * req,struct sock * sk)914 static struct request_sock *inet_reqsk_clone(struct request_sock *req,
915 					     struct sock *sk)
916 {
917 	struct sock *req_sk, *nreq_sk;
918 	struct request_sock *nreq;
919 
920 	nreq = kmem_cache_alloc(req->rsk_ops->slab, GFP_ATOMIC | __GFP_NOWARN);
921 	if (!nreq) {
922 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
923 
924 		/* paired with refcount_inc_not_zero() in reuseport_migrate_sock() */
925 		sock_put(sk);
926 		return NULL;
927 	}
928 
929 	req_sk = req_to_sk(req);
930 	nreq_sk = req_to_sk(nreq);
931 
932 	memcpy(nreq_sk, req_sk,
933 	       offsetof(struct sock, sk_dontcopy_begin));
934 	unsafe_memcpy(&nreq_sk->sk_dontcopy_end, &req_sk->sk_dontcopy_end,
935 		      req->rsk_ops->obj_size - offsetof(struct sock, sk_dontcopy_end),
936 		      /* alloc is larger than struct, see above */);
937 
938 	sk_node_init(&nreq_sk->sk_node);
939 	nreq_sk->sk_tx_queue_mapping = req_sk->sk_tx_queue_mapping;
940 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
941 	nreq_sk->sk_rx_queue_mapping = req_sk->sk_rx_queue_mapping;
942 #endif
943 	nreq_sk->sk_incoming_cpu = req_sk->sk_incoming_cpu;
944 
945 	nreq->rsk_listener = sk;
946 
947 	/* We need not acquire fastopenq->lock
948 	 * because the child socket is locked in inet_csk_listen_stop().
949 	 */
950 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(nreq)->tfo_listener)
951 		rcu_assign_pointer(tcp_sk(nreq->sk)->fastopen_rsk, nreq);
952 
953 	return nreq;
954 }
955 
reqsk_queue_migrated(struct request_sock_queue * queue,const struct request_sock * req)956 static void reqsk_queue_migrated(struct request_sock_queue *queue,
957 				 const struct request_sock *req)
958 {
959 	if (req->num_timeout == 0)
960 		atomic_inc(&queue->young);
961 	atomic_inc(&queue->qlen);
962 }
963 
reqsk_migrate_reset(struct request_sock * req)964 static void reqsk_migrate_reset(struct request_sock *req)
965 {
966 	req->saved_syn = NULL;
967 #if IS_ENABLED(CONFIG_IPV6)
968 	inet_rsk(req)->ipv6_opt = NULL;
969 	inet_rsk(req)->pktopts = NULL;
970 #else
971 	inet_rsk(req)->ireq_opt = NULL;
972 #endif
973 }
974 
975 /* return true if req was found in the ehash table */
reqsk_queue_unlink(struct request_sock * req)976 static bool reqsk_queue_unlink(struct request_sock *req)
977 {
978 	struct sock *sk = req_to_sk(req);
979 	bool found = false;
980 
981 	if (sk_hashed(sk)) {
982 		struct inet_hashinfo *hashinfo = tcp_or_dccp_get_hashinfo(sk);
983 		spinlock_t *lock = inet_ehash_lockp(hashinfo, req->rsk_hash);
984 
985 		spin_lock(lock);
986 		found = __sk_nulls_del_node_init_rcu(sk);
987 		spin_unlock(lock);
988 	}
989 	if (timer_pending(&req->rsk_timer) && del_timer_sync(&req->rsk_timer))
990 		reqsk_put(req);
991 	return found;
992 }
993 
inet_csk_reqsk_queue_drop(struct sock * sk,struct request_sock * req)994 bool inet_csk_reqsk_queue_drop(struct sock *sk, struct request_sock *req)
995 {
996 	bool unlinked = reqsk_queue_unlink(req);
997 
998 	if (unlinked) {
999 		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
1000 		reqsk_put(req);
1001 	}
1002 	return unlinked;
1003 }
1004 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop);
1005 
inet_csk_reqsk_queue_drop_and_put(struct sock * sk,struct request_sock * req)1006 void inet_csk_reqsk_queue_drop_and_put(struct sock *sk, struct request_sock *req)
1007 {
1008 	inet_csk_reqsk_queue_drop(sk, req);
1009 	reqsk_put(req);
1010 }
1011 EXPORT_SYMBOL(inet_csk_reqsk_queue_drop_and_put);
1012 
reqsk_timer_handler(struct timer_list * t)1013 static void reqsk_timer_handler(struct timer_list *t)
1014 {
1015 	struct request_sock *req = from_timer(req, t, rsk_timer);
1016 	struct request_sock *nreq = NULL, *oreq = req;
1017 	struct sock *sk_listener = req->rsk_listener;
1018 	struct inet_connection_sock *icsk;
1019 	struct request_sock_queue *queue;
1020 	struct net *net;
1021 	int max_syn_ack_retries, qlen, expire = 0, resend = 0;
1022 
1023 	if (inet_sk_state_load(sk_listener) != TCP_LISTEN) {
1024 		struct sock *nsk;
1025 
1026 		nsk = reuseport_migrate_sock(sk_listener, req_to_sk(req), NULL);
1027 		if (!nsk)
1028 			goto drop;
1029 
1030 		nreq = inet_reqsk_clone(req, nsk);
1031 		if (!nreq)
1032 			goto drop;
1033 
1034 		/* The new timer for the cloned req can decrease the 2
1035 		 * by calling inet_csk_reqsk_queue_drop_and_put(), so
1036 		 * hold another count to prevent use-after-free and
1037 		 * call reqsk_put() just before return.
1038 		 */
1039 		refcount_set(&nreq->rsk_refcnt, 2 + 1);
1040 		timer_setup(&nreq->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1041 		reqsk_queue_migrated(&inet_csk(nsk)->icsk_accept_queue, req);
1042 
1043 		req = nreq;
1044 		sk_listener = nsk;
1045 	}
1046 
1047 	icsk = inet_csk(sk_listener);
1048 	net = sock_net(sk_listener);
1049 	max_syn_ack_retries = READ_ONCE(icsk->icsk_syn_retries) ? :
1050 		READ_ONCE(net->ipv4.sysctl_tcp_synack_retries);
1051 	/* Normally all the openreqs are young and become mature
1052 	 * (i.e. converted to established socket) for first timeout.
1053 	 * If synack was not acknowledged for 1 second, it means
1054 	 * one of the following things: synack was lost, ack was lost,
1055 	 * rtt is high or nobody planned to ack (i.e. synflood).
1056 	 * When server is a bit loaded, queue is populated with old
1057 	 * open requests, reducing effective size of queue.
1058 	 * When server is well loaded, queue size reduces to zero
1059 	 * after several minutes of work. It is not synflood,
1060 	 * it is normal operation. The solution is pruning
1061 	 * too old entries overriding normal timeout, when
1062 	 * situation becomes dangerous.
1063 	 *
1064 	 * Essentially, we reserve half of room for young
1065 	 * embrions; and abort old ones without pity, if old
1066 	 * ones are about to clog our table.
1067 	 */
1068 	queue = &icsk->icsk_accept_queue;
1069 	qlen = reqsk_queue_len(queue);
1070 	if ((qlen << 1) > max(8U, READ_ONCE(sk_listener->sk_max_ack_backlog))) {
1071 		int young = reqsk_queue_len_young(queue) << 1;
1072 
1073 		while (max_syn_ack_retries > 2) {
1074 			if (qlen < young)
1075 				break;
1076 			max_syn_ack_retries--;
1077 			young <<= 1;
1078 		}
1079 	}
1080 	syn_ack_recalc(req, max_syn_ack_retries, READ_ONCE(queue->rskq_defer_accept),
1081 		       &expire, &resend);
1082 	req->rsk_ops->syn_ack_timeout(req);
1083 	if (!expire &&
1084 	    (!resend ||
1085 	     !inet_rtx_syn_ack(sk_listener, req) ||
1086 	     inet_rsk(req)->acked)) {
1087 		if (req->num_timeout++ == 0)
1088 			atomic_dec(&queue->young);
1089 		mod_timer(&req->rsk_timer, jiffies + reqsk_timeout(req, TCP_RTO_MAX));
1090 
1091 		if (!nreq)
1092 			return;
1093 
1094 		if (!inet_ehash_insert(req_to_sk(nreq), req_to_sk(oreq), NULL)) {
1095 			/* delete timer */
1096 			inet_csk_reqsk_queue_drop(sk_listener, nreq);
1097 			goto no_ownership;
1098 		}
1099 
1100 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQSUCCESS);
1101 		reqsk_migrate_reset(oreq);
1102 		reqsk_queue_removed(&inet_csk(oreq->rsk_listener)->icsk_accept_queue, oreq);
1103 		reqsk_put(oreq);
1104 
1105 		reqsk_put(nreq);
1106 		return;
1107 	}
1108 
1109 	/* Even if we can clone the req, we may need not retransmit any more
1110 	 * SYN+ACKs (nreq->num_timeout > max_syn_ack_retries, etc), or another
1111 	 * CPU may win the "own_req" race so that inet_ehash_insert() fails.
1112 	 */
1113 	if (nreq) {
1114 		__NET_INC_STATS(net, LINUX_MIB_TCPMIGRATEREQFAILURE);
1115 no_ownership:
1116 		reqsk_migrate_reset(nreq);
1117 		reqsk_queue_removed(queue, nreq);
1118 		__reqsk_free(nreq);
1119 	}
1120 
1121 drop:
1122 	inet_csk_reqsk_queue_drop_and_put(oreq->rsk_listener, oreq);
1123 }
1124 
reqsk_queue_hash_req(struct request_sock * req,unsigned long timeout)1125 static void reqsk_queue_hash_req(struct request_sock *req,
1126 				 unsigned long timeout)
1127 {
1128 	timer_setup(&req->rsk_timer, reqsk_timer_handler, TIMER_PINNED);
1129 	mod_timer(&req->rsk_timer, jiffies + timeout);
1130 
1131 	inet_ehash_insert(req_to_sk(req), NULL, NULL);
1132 	/* before letting lookups find us, make sure all req fields
1133 	 * are committed to memory and refcnt initialized.
1134 	 */
1135 	smp_wmb();
1136 	refcount_set(&req->rsk_refcnt, 2 + 1);
1137 }
1138 
inet_csk_reqsk_queue_hash_add(struct sock * sk,struct request_sock * req,unsigned long timeout)1139 void inet_csk_reqsk_queue_hash_add(struct sock *sk, struct request_sock *req,
1140 				   unsigned long timeout)
1141 {
1142 	reqsk_queue_hash_req(req, timeout);
1143 	inet_csk_reqsk_queue_added(sk);
1144 }
1145 EXPORT_SYMBOL_GPL(inet_csk_reqsk_queue_hash_add);
1146 
inet_clone_ulp(const struct request_sock * req,struct sock * newsk,const gfp_t priority)1147 static void inet_clone_ulp(const struct request_sock *req, struct sock *newsk,
1148 			   const gfp_t priority)
1149 {
1150 	struct inet_connection_sock *icsk = inet_csk(newsk);
1151 
1152 	if (!icsk->icsk_ulp_ops)
1153 		return;
1154 
1155 	icsk->icsk_ulp_ops->clone(req, newsk, priority);
1156 }
1157 
1158 /**
1159  *	inet_csk_clone_lock - clone an inet socket, and lock its clone
1160  *	@sk: the socket to clone
1161  *	@req: request_sock
1162  *	@priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1163  *
1164  *	Caller must unlock socket even in error path (bh_unlock_sock(newsk))
1165  */
inet_csk_clone_lock(const struct sock * sk,const struct request_sock * req,const gfp_t priority)1166 struct sock *inet_csk_clone_lock(const struct sock *sk,
1167 				 const struct request_sock *req,
1168 				 const gfp_t priority)
1169 {
1170 	struct sock *newsk = sk_clone_lock(sk, priority);
1171 
1172 	if (newsk) {
1173 		struct inet_connection_sock *newicsk = inet_csk(newsk);
1174 
1175 		inet_sk_set_state(newsk, TCP_SYN_RECV);
1176 		newicsk->icsk_bind_hash = NULL;
1177 		newicsk->icsk_bind2_hash = NULL;
1178 
1179 		inet_sk(newsk)->inet_dport = inet_rsk(req)->ir_rmt_port;
1180 		inet_sk(newsk)->inet_num = inet_rsk(req)->ir_num;
1181 		inet_sk(newsk)->inet_sport = htons(inet_rsk(req)->ir_num);
1182 
1183 		/* listeners have SOCK_RCU_FREE, not the children */
1184 		sock_reset_flag(newsk, SOCK_RCU_FREE);
1185 
1186 		inet_sk(newsk)->mc_list = NULL;
1187 
1188 		newsk->sk_mark = inet_rsk(req)->ir_mark;
1189 		atomic64_set(&newsk->sk_cookie,
1190 			     atomic64_read(&inet_rsk(req)->ir_cookie));
1191 
1192 		newicsk->icsk_retransmits = 0;
1193 		newicsk->icsk_backoff	  = 0;
1194 		newicsk->icsk_probes_out  = 0;
1195 		newicsk->icsk_probes_tstamp = 0;
1196 
1197 		/* Deinitialize accept_queue to trap illegal accesses. */
1198 		memset(&newicsk->icsk_accept_queue, 0, sizeof(newicsk->icsk_accept_queue));
1199 
1200 		inet_clone_ulp(req, newsk, priority);
1201 
1202 		security_inet_csk_clone(newsk, req);
1203 	}
1204 	return newsk;
1205 }
1206 EXPORT_SYMBOL_GPL(inet_csk_clone_lock);
1207 
1208 /*
1209  * At this point, there should be no process reference to this
1210  * socket, and thus no user references at all.  Therefore we
1211  * can assume the socket waitqueue is inactive and nobody will
1212  * try to jump onto it.
1213  */
inet_csk_destroy_sock(struct sock * sk)1214 void inet_csk_destroy_sock(struct sock *sk)
1215 {
1216 	WARN_ON(sk->sk_state != TCP_CLOSE);
1217 	WARN_ON(!sock_flag(sk, SOCK_DEAD));
1218 
1219 	/* It cannot be in hash table! */
1220 	WARN_ON(!sk_unhashed(sk));
1221 
1222 	/* If it has not 0 inet_sk(sk)->inet_num, it must be bound */
1223 	WARN_ON(inet_sk(sk)->inet_num && !inet_csk(sk)->icsk_bind_hash);
1224 
1225 	sk->sk_prot->destroy(sk);
1226 
1227 	sk_stream_kill_queues(sk);
1228 
1229 	xfrm_sk_free_policy(sk);
1230 
1231 	this_cpu_dec(*sk->sk_prot->orphan_count);
1232 
1233 	sock_put(sk);
1234 }
1235 EXPORT_SYMBOL(inet_csk_destroy_sock);
1236 
1237 /* This function allows to force a closure of a socket after the call to
1238  * tcp/dccp_create_openreq_child().
1239  */
inet_csk_prepare_forced_close(struct sock * sk)1240 void inet_csk_prepare_forced_close(struct sock *sk)
1241 	__releases(&sk->sk_lock.slock)
1242 {
1243 	/* sk_clone_lock locked the socket and set refcnt to 2 */
1244 	bh_unlock_sock(sk);
1245 	sock_put(sk);
1246 	inet_csk_prepare_for_destroy_sock(sk);
1247 	inet_sk(sk)->inet_num = 0;
1248 }
1249 EXPORT_SYMBOL(inet_csk_prepare_forced_close);
1250 
inet_ulp_can_listen(const struct sock * sk)1251 static int inet_ulp_can_listen(const struct sock *sk)
1252 {
1253 	const struct inet_connection_sock *icsk = inet_csk(sk);
1254 
1255 	if (icsk->icsk_ulp_ops && !icsk->icsk_ulp_ops->clone)
1256 		return -EINVAL;
1257 
1258 	return 0;
1259 }
1260 
inet_csk_listen_start(struct sock * sk)1261 int inet_csk_listen_start(struct sock *sk)
1262 {
1263 	struct inet_connection_sock *icsk = inet_csk(sk);
1264 	struct inet_sock *inet = inet_sk(sk);
1265 	int err;
1266 
1267 	err = inet_ulp_can_listen(sk);
1268 	if (unlikely(err))
1269 		return err;
1270 
1271 	reqsk_queue_alloc(&icsk->icsk_accept_queue);
1272 
1273 	sk->sk_ack_backlog = 0;
1274 	inet_csk_delack_init(sk);
1275 
1276 	/* There is race window here: we announce ourselves listening,
1277 	 * but this transition is still not validated by get_port().
1278 	 * It is OK, because this socket enters to hash table only
1279 	 * after validation is complete.
1280 	 */
1281 	inet_sk_state_store(sk, TCP_LISTEN);
1282 	err = sk->sk_prot->get_port(sk, inet->inet_num);
1283 	if (!err) {
1284 		inet->inet_sport = htons(inet->inet_num);
1285 
1286 		sk_dst_reset(sk);
1287 		err = sk->sk_prot->hash(sk);
1288 
1289 		if (likely(!err))
1290 			return 0;
1291 	}
1292 
1293 	inet_sk_set_state(sk, TCP_CLOSE);
1294 	return err;
1295 }
1296 EXPORT_SYMBOL_GPL(inet_csk_listen_start);
1297 
inet_child_forget(struct sock * sk,struct request_sock * req,struct sock * child)1298 static void inet_child_forget(struct sock *sk, struct request_sock *req,
1299 			      struct sock *child)
1300 {
1301 	sk->sk_prot->disconnect(child, O_NONBLOCK);
1302 
1303 	sock_orphan(child);
1304 
1305 	this_cpu_inc(*sk->sk_prot->orphan_count);
1306 
1307 	if (sk->sk_protocol == IPPROTO_TCP && tcp_rsk(req)->tfo_listener) {
1308 		BUG_ON(rcu_access_pointer(tcp_sk(child)->fastopen_rsk) != req);
1309 		BUG_ON(sk != req->rsk_listener);
1310 
1311 		/* Paranoid, to prevent race condition if
1312 		 * an inbound pkt destined for child is
1313 		 * blocked by sock lock in tcp_v4_rcv().
1314 		 * Also to satisfy an assertion in
1315 		 * tcp_v4_destroy_sock().
1316 		 */
1317 		RCU_INIT_POINTER(tcp_sk(child)->fastopen_rsk, NULL);
1318 	}
1319 	inet_csk_destroy_sock(child);
1320 }
1321 
inet_csk_reqsk_queue_add(struct sock * sk,struct request_sock * req,struct sock * child)1322 struct sock *inet_csk_reqsk_queue_add(struct sock *sk,
1323 				      struct request_sock *req,
1324 				      struct sock *child)
1325 {
1326 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
1327 
1328 	spin_lock(&queue->rskq_lock);
1329 	if (unlikely(sk->sk_state != TCP_LISTEN)) {
1330 		inet_child_forget(sk, req, child);
1331 		child = NULL;
1332 	} else {
1333 		req->sk = child;
1334 		req->dl_next = NULL;
1335 		if (queue->rskq_accept_head == NULL)
1336 			WRITE_ONCE(queue->rskq_accept_head, req);
1337 		else
1338 			queue->rskq_accept_tail->dl_next = req;
1339 		queue->rskq_accept_tail = req;
1340 		sk_acceptq_added(sk);
1341 	}
1342 	spin_unlock(&queue->rskq_lock);
1343 	return child;
1344 }
1345 EXPORT_SYMBOL(inet_csk_reqsk_queue_add);
1346 
inet_csk_complete_hashdance(struct sock * sk,struct sock * child,struct request_sock * req,bool own_req)1347 struct sock *inet_csk_complete_hashdance(struct sock *sk, struct sock *child,
1348 					 struct request_sock *req, bool own_req)
1349 {
1350 	if (own_req) {
1351 		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
1352 		reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
1353 
1354 		if (sk != req->rsk_listener) {
1355 			/* another listening sk has been selected,
1356 			 * migrate the req to it.
1357 			 */
1358 			struct request_sock *nreq;
1359 
1360 			/* hold a refcnt for the nreq->rsk_listener
1361 			 * which is assigned in inet_reqsk_clone()
1362 			 */
1363 			sock_hold(sk);
1364 			nreq = inet_reqsk_clone(req, sk);
1365 			if (!nreq) {
1366 				inet_child_forget(sk, req, child);
1367 				goto child_put;
1368 			}
1369 
1370 			refcount_set(&nreq->rsk_refcnt, 1);
1371 			if (inet_csk_reqsk_queue_add(sk, nreq, child)) {
1372 				__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQSUCCESS);
1373 				reqsk_migrate_reset(req);
1374 				reqsk_put(req);
1375 				return child;
1376 			}
1377 
1378 			__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
1379 			reqsk_migrate_reset(nreq);
1380 			__reqsk_free(nreq);
1381 		} else if (inet_csk_reqsk_queue_add(sk, req, child)) {
1382 			return child;
1383 		}
1384 	}
1385 	/* Too bad, another child took ownership of the request, undo. */
1386 child_put:
1387 	bh_unlock_sock(child);
1388 	sock_put(child);
1389 	return NULL;
1390 }
1391 EXPORT_SYMBOL(inet_csk_complete_hashdance);
1392 
1393 /*
1394  *	This routine closes sockets which have been at least partially
1395  *	opened, but not yet accepted.
1396  */
inet_csk_listen_stop(struct sock * sk)1397 void inet_csk_listen_stop(struct sock *sk)
1398 {
1399 	struct inet_connection_sock *icsk = inet_csk(sk);
1400 	struct request_sock_queue *queue = &icsk->icsk_accept_queue;
1401 	struct request_sock *next, *req;
1402 
1403 	/* Following specs, it would be better either to send FIN
1404 	 * (and enter FIN-WAIT-1, it is normal close)
1405 	 * or to send active reset (abort).
1406 	 * Certainly, it is pretty dangerous while synflood, but it is
1407 	 * bad justification for our negligence 8)
1408 	 * To be honest, we are not able to make either
1409 	 * of the variants now.			--ANK
1410 	 */
1411 	while ((req = reqsk_queue_remove(queue, sk)) != NULL) {
1412 		struct sock *child = req->sk, *nsk;
1413 		struct request_sock *nreq;
1414 
1415 		local_bh_disable();
1416 		bh_lock_sock(child);
1417 		WARN_ON(sock_owned_by_user(child));
1418 		sock_hold(child);
1419 
1420 		nsk = reuseport_migrate_sock(sk, child, NULL);
1421 		if (nsk) {
1422 			nreq = inet_reqsk_clone(req, nsk);
1423 			if (nreq) {
1424 				refcount_set(&nreq->rsk_refcnt, 1);
1425 
1426 				if (inet_csk_reqsk_queue_add(nsk, nreq, child)) {
1427 					__NET_INC_STATS(sock_net(nsk),
1428 							LINUX_MIB_TCPMIGRATEREQSUCCESS);
1429 					reqsk_migrate_reset(req);
1430 				} else {
1431 					__NET_INC_STATS(sock_net(nsk),
1432 							LINUX_MIB_TCPMIGRATEREQFAILURE);
1433 					reqsk_migrate_reset(nreq);
1434 					__reqsk_free(nreq);
1435 				}
1436 
1437 				/* inet_csk_reqsk_queue_add() has already
1438 				 * called inet_child_forget() on failure case.
1439 				 */
1440 				goto skip_child_forget;
1441 			}
1442 		}
1443 
1444 		inet_child_forget(sk, req, child);
1445 skip_child_forget:
1446 		reqsk_put(req);
1447 		bh_unlock_sock(child);
1448 		local_bh_enable();
1449 		sock_put(child);
1450 
1451 		cond_resched();
1452 	}
1453 	if (queue->fastopenq.rskq_rst_head) {
1454 		/* Free all the reqs queued in rskq_rst_head. */
1455 		spin_lock_bh(&queue->fastopenq.lock);
1456 		req = queue->fastopenq.rskq_rst_head;
1457 		queue->fastopenq.rskq_rst_head = NULL;
1458 		spin_unlock_bh(&queue->fastopenq.lock);
1459 		while (req != NULL) {
1460 			next = req->dl_next;
1461 			reqsk_put(req);
1462 			req = next;
1463 		}
1464 	}
1465 	WARN_ON_ONCE(sk->sk_ack_backlog);
1466 }
1467 EXPORT_SYMBOL_GPL(inet_csk_listen_stop);
1468 
inet_csk_addr2sockaddr(struct sock * sk,struct sockaddr * uaddr)1469 void inet_csk_addr2sockaddr(struct sock *sk, struct sockaddr *uaddr)
1470 {
1471 	struct sockaddr_in *sin = (struct sockaddr_in *)uaddr;
1472 	const struct inet_sock *inet = inet_sk(sk);
1473 
1474 	sin->sin_family		= AF_INET;
1475 	sin->sin_addr.s_addr	= inet->inet_daddr;
1476 	sin->sin_port		= inet->inet_dport;
1477 }
1478 EXPORT_SYMBOL_GPL(inet_csk_addr2sockaddr);
1479 
inet_csk_rebuild_route(struct sock * sk,struct flowi * fl)1480 static struct dst_entry *inet_csk_rebuild_route(struct sock *sk, struct flowi *fl)
1481 {
1482 	const struct inet_sock *inet = inet_sk(sk);
1483 	const struct ip_options_rcu *inet_opt;
1484 	__be32 daddr = inet->inet_daddr;
1485 	struct flowi4 *fl4;
1486 	struct rtable *rt;
1487 
1488 	rcu_read_lock();
1489 	inet_opt = rcu_dereference(inet->inet_opt);
1490 	if (inet_opt && inet_opt->opt.srr)
1491 		daddr = inet_opt->opt.faddr;
1492 	fl4 = &fl->u.ip4;
1493 	rt = ip_route_output_ports(sock_net(sk), fl4, sk, daddr,
1494 				   inet->inet_saddr, inet->inet_dport,
1495 				   inet->inet_sport, sk->sk_protocol,
1496 				   ip_sock_rt_tos(sk), sk->sk_bound_dev_if);
1497 	if (IS_ERR(rt))
1498 		rt = NULL;
1499 	if (rt)
1500 		sk_setup_caps(sk, &rt->dst);
1501 	rcu_read_unlock();
1502 
1503 	return &rt->dst;
1504 }
1505 
inet_csk_update_pmtu(struct sock * sk,u32 mtu)1506 struct dst_entry *inet_csk_update_pmtu(struct sock *sk, u32 mtu)
1507 {
1508 	struct dst_entry *dst = __sk_dst_check(sk, 0);
1509 	struct inet_sock *inet = inet_sk(sk);
1510 
1511 	if (!dst) {
1512 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1513 		if (!dst)
1514 			goto out;
1515 	}
1516 	dst->ops->update_pmtu(dst, sk, NULL, mtu, true);
1517 
1518 	dst = __sk_dst_check(sk, 0);
1519 	if (!dst)
1520 		dst = inet_csk_rebuild_route(sk, &inet->cork.fl);
1521 out:
1522 	return dst;
1523 }
1524 EXPORT_SYMBOL_GPL(inet_csk_update_pmtu);
1525