xref: /openbsd/gnu/usr.bin/binutils/gdb/infcall.c (revision 63addd46)
1 /* Perform an inferior function call, for GDB, the GNU debugger.
2 
3    Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4    1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004
5    Free Software Foundation, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 2 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program; if not, write to the Free Software
21    Foundation, Inc., 59 Temple Place - Suite 330,
22    Boston, MA 02111-1307, USA.  */
23 
24 #include "defs.h"
25 #include "breakpoint.h"
26 #include "target.h"
27 #include "regcache.h"
28 #include "inferior.h"
29 #include "gdb_assert.h"
30 #include "block.h"
31 #include "gdbcore.h"
32 #include "language.h"
33 #include "objfiles.h"
34 #include "gdbcmd.h"
35 #include "command.h"
36 #include "gdb_string.h"
37 #include "infcall.h"
38 #include "dummy-frame.h"
39 
40 /* NOTE: cagney/2003-04-16: What's the future of this code?
41 
42    GDB needs an asynchronous expression evaluator, that means an
43    asynchronous inferior function call implementation, and that in
44    turn means restructuring the code so that it is event driven.  */
45 
46 /* How you should pass arguments to a function depends on whether it
47    was defined in K&R style or prototype style.  If you define a
48    function using the K&R syntax that takes a `float' argument, then
49    callers must pass that argument as a `double'.  If you define the
50    function using the prototype syntax, then you must pass the
51    argument as a `float', with no promotion.
52 
53    Unfortunately, on certain older platforms, the debug info doesn't
54    indicate reliably how each function was defined.  A function type's
55    TYPE_FLAG_PROTOTYPED flag may be clear, even if the function was
56    defined in prototype style.  When calling a function whose
57    TYPE_FLAG_PROTOTYPED flag is clear, GDB consults this flag to
58    decide what to do.
59 
60    For modern targets, it is proper to assume that, if the prototype
61    flag is clear, that can be trusted: `float' arguments should be
62    promoted to `double'.  For some older targets, if the prototype
63    flag is clear, that doesn't tell us anything.  The default is to
64    trust the debug information; the user can override this behavior
65    with "set coerce-float-to-double 0".  */
66 
67 static int coerce_float_to_double_p = 1;
68 
69 /* This boolean tells what gdb should do if a signal is received while
70    in a function called from gdb (call dummy).  If set, gdb unwinds
71    the stack and restore the context to what as it was before the
72    call.
73 
74    The default is to stop in the frame where the signal was received. */
75 
76 int unwind_on_signal_p = 0;
77 
78 /* Perform the standard coercions that are specified
79    for arguments to be passed to C functions.
80 
81    If PARAM_TYPE is non-NULL, it is the expected parameter type.
82    IS_PROTOTYPED is non-zero if the function declaration is prototyped.  */
83 
84 static struct value *
value_arg_coerce(struct value * arg,struct type * param_type,int is_prototyped)85 value_arg_coerce (struct value *arg, struct type *param_type,
86 		  int is_prototyped)
87 {
88   struct type *arg_type = check_typedef (VALUE_TYPE (arg));
89   struct type *type
90     = param_type ? check_typedef (param_type) : arg_type;
91 
92   switch (TYPE_CODE (type))
93     {
94     case TYPE_CODE_REF:
95       if (TYPE_CODE (arg_type) != TYPE_CODE_REF
96 	  && TYPE_CODE (arg_type) != TYPE_CODE_PTR)
97 	{
98 	  arg = value_addr (arg);
99 	  VALUE_TYPE (arg) = param_type;
100 	  return arg;
101 	}
102       break;
103     case TYPE_CODE_INT:
104     case TYPE_CODE_CHAR:
105     case TYPE_CODE_BOOL:
106     case TYPE_CODE_ENUM:
107       /* If we don't have a prototype, coerce to integer type if necessary.  */
108       if (!is_prototyped)
109 	{
110 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
111 	    type = builtin_type_int;
112 	}
113       /* Currently all target ABIs require at least the width of an integer
114          type for an argument.  We may have to conditionalize the following
115          type coercion for future targets.  */
116       if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_int))
117 	type = builtin_type_int;
118       break;
119     case TYPE_CODE_FLT:
120       if (!is_prototyped && coerce_float_to_double_p)
121 	{
122 	  if (TYPE_LENGTH (type) < TYPE_LENGTH (builtin_type_double))
123 	    type = builtin_type_double;
124 	  else if (TYPE_LENGTH (type) > TYPE_LENGTH (builtin_type_double))
125 	    type = builtin_type_long_double;
126 	}
127       break;
128     case TYPE_CODE_FUNC:
129       type = lookup_pointer_type (type);
130       break;
131     case TYPE_CODE_ARRAY:
132       /* Arrays are coerced to pointers to their first element, unless
133          they are vectors, in which case we want to leave them alone,
134          because they are passed by value.  */
135       if (current_language->c_style_arrays)
136 	if (!TYPE_VECTOR (type))
137 	  type = lookup_pointer_type (TYPE_TARGET_TYPE (type));
138       break;
139     case TYPE_CODE_UNDEF:
140     case TYPE_CODE_PTR:
141     case TYPE_CODE_STRUCT:
142     case TYPE_CODE_UNION:
143     case TYPE_CODE_VOID:
144     case TYPE_CODE_SET:
145     case TYPE_CODE_RANGE:
146     case TYPE_CODE_STRING:
147     case TYPE_CODE_BITSTRING:
148     case TYPE_CODE_ERROR:
149     case TYPE_CODE_MEMBER:
150     case TYPE_CODE_METHOD:
151     case TYPE_CODE_COMPLEX:
152     default:
153       break;
154     }
155 
156   return value_cast (type, arg);
157 }
158 
159 /* Determine a function's address and its return type from its value.
160    Calls error() if the function is not valid for calling.  */
161 
162 CORE_ADDR
find_function_addr(struct value * function,struct type ** retval_type)163 find_function_addr (struct value *function, struct type **retval_type)
164 {
165   struct type *ftype = check_typedef (VALUE_TYPE (function));
166   enum type_code code = TYPE_CODE (ftype);
167   struct type *value_type;
168   CORE_ADDR funaddr;
169 
170   /* If it's a member function, just look at the function
171      part of it.  */
172 
173   /* Determine address to call.  */
174   if (code == TYPE_CODE_FUNC || code == TYPE_CODE_METHOD)
175     {
176       funaddr = VALUE_ADDRESS (function);
177       value_type = TYPE_TARGET_TYPE (ftype);
178     }
179   else if (code == TYPE_CODE_PTR)
180     {
181       funaddr = value_as_address (function);
182       ftype = check_typedef (TYPE_TARGET_TYPE (ftype));
183       if (TYPE_CODE (ftype) == TYPE_CODE_FUNC
184 	  || TYPE_CODE (ftype) == TYPE_CODE_METHOD)
185 	{
186 	  funaddr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
187 							funaddr,
188 							&current_target);
189 	  value_type = TYPE_TARGET_TYPE (ftype);
190 	}
191       else
192 	value_type = builtin_type_int;
193     }
194   else if (code == TYPE_CODE_INT)
195     {
196       /* Handle the case of functions lacking debugging info.
197          Their values are characters since their addresses are char */
198       if (TYPE_LENGTH (ftype) == 1)
199 	funaddr = value_as_address (value_addr (function));
200       else
201 	/* Handle integer used as address of a function.  */
202 	funaddr = (CORE_ADDR) value_as_long (function);
203 
204       value_type = builtin_type_int;
205     }
206   else
207     error ("Invalid data type for function to be called.");
208 
209   if (retval_type != NULL)
210     *retval_type = value_type;
211   return funaddr + DEPRECATED_FUNCTION_START_OFFSET;
212 }
213 
214 /* Call breakpoint_auto_delete on the current contents of the bpstat
215    pointed to by arg (which is really a bpstat *).  */
216 
217 static void
breakpoint_auto_delete_contents(void * arg)218 breakpoint_auto_delete_contents (void *arg)
219 {
220   breakpoint_auto_delete (*(bpstat *) arg);
221 }
222 
223 static CORE_ADDR
generic_push_dummy_code(struct gdbarch * gdbarch,CORE_ADDR sp,CORE_ADDR funaddr,int using_gcc,struct value ** args,int nargs,struct type * value_type,CORE_ADDR * real_pc,CORE_ADDR * bp_addr)224 generic_push_dummy_code (struct gdbarch *gdbarch,
225 			 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
226 			 struct value **args, int nargs,
227 			 struct type *value_type,
228 			 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
229 {
230   /* Something here to findout the size of a breakpoint and then
231      allocate space for it on the stack.  */
232   int bplen;
233   /* This code assumes frame align.  */
234   gdb_assert (gdbarch_frame_align_p (gdbarch));
235   /* Force the stack's alignment.  The intent is to ensure that the SP
236      is aligned to at least a breakpoint instruction's boundary.  */
237   sp = gdbarch_frame_align (gdbarch, sp);
238   /* Allocate space for, and then position the breakpoint on the
239      stack.  */
240   if (gdbarch_inner_than (gdbarch, 1, 2))
241     {
242       CORE_ADDR bppc = sp;
243       gdbarch_breakpoint_from_pc (gdbarch, &bppc, &bplen);
244       sp = gdbarch_frame_align (gdbarch, sp - bplen);
245       (*bp_addr) = sp;
246       /* Should the breakpoint size/location be re-computed here?  */
247     }
248   else
249     {
250       (*bp_addr) = sp;
251       gdbarch_breakpoint_from_pc (gdbarch, bp_addr, &bplen);
252       sp = gdbarch_frame_align (gdbarch, sp + bplen);
253     }
254   /* Inferior resumes at the function entry point.  */
255   (*real_pc) = funaddr;
256   return sp;
257 }
258 
259 /* For CALL_DUMMY_ON_STACK, push a breakpoint sequence that the called
260    function returns to.  */
261 
262 static CORE_ADDR
push_dummy_code(struct gdbarch * gdbarch,CORE_ADDR sp,CORE_ADDR funaddr,int using_gcc,struct value ** args,int nargs,struct type * value_type,CORE_ADDR * real_pc,CORE_ADDR * bp_addr)263 push_dummy_code (struct gdbarch *gdbarch,
264 		 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
265 		 struct value **args, int nargs,
266 		 struct type *value_type,
267 		 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
268 {
269   if (gdbarch_push_dummy_code_p (gdbarch))
270     return gdbarch_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
271 				    args, nargs, value_type, real_pc, bp_addr);
272   else
273     return generic_push_dummy_code (gdbarch, sp, funaddr, using_gcc,
274 				    args, nargs, value_type, real_pc, bp_addr);
275 }
276 
277 /* All this stuff with a dummy frame may seem unnecessarily complicated
278    (why not just save registers in GDB?).  The purpose of pushing a dummy
279    frame which looks just like a real frame is so that if you call a
280    function and then hit a breakpoint (get a signal, etc), "backtrace"
281    will look right.  Whether the backtrace needs to actually show the
282    stack at the time the inferior function was called is debatable, but
283    it certainly needs to not display garbage.  So if you are contemplating
284    making dummy frames be different from normal frames, consider that.  */
285 
286 /* Perform a function call in the inferior.
287    ARGS is a vector of values of arguments (NARGS of them).
288    FUNCTION is a value, the function to be called.
289    Returns a value representing what the function returned.
290    May fail to return, if a breakpoint or signal is hit
291    during the execution of the function.
292 
293    ARGS is modified to contain coerced values. */
294 
295 struct value *
call_function_by_hand(struct value * function,int nargs,struct value ** args)296 call_function_by_hand (struct value *function, int nargs, struct value **args)
297 {
298   CORE_ADDR sp;
299   CORE_ADDR dummy_addr;
300   struct type *value_type;
301   unsigned char struct_return;
302   CORE_ADDR struct_addr = 0;
303   struct regcache *retbuf;
304   struct cleanup *retbuf_cleanup;
305   struct inferior_status *inf_status;
306   struct cleanup *inf_status_cleanup;
307   CORE_ADDR funaddr;
308   int using_gcc;		/* Set to version of gcc in use, or zero if not gcc */
309   CORE_ADDR real_pc;
310   struct type *ftype = check_typedef (VALUE_TYPE (function));
311   CORE_ADDR bp_addr;
312   struct regcache *caller_regcache;
313   struct cleanup *caller_regcache_cleanup;
314   struct frame_id dummy_id;
315 
316   if (!target_has_execution)
317     noprocess ();
318 
319   /* Create a cleanup chain that contains the retbuf (buffer
320      containing the register values).  This chain is create BEFORE the
321      inf_status chain so that the inferior status can cleaned up
322      (restored or discarded) without having the retbuf freed.  */
323   retbuf = regcache_xmalloc (current_gdbarch);
324   retbuf_cleanup = make_cleanup_regcache_xfree (retbuf);
325 
326   /* A cleanup for the inferior status.  Create this AFTER the retbuf
327      so that this can be discarded or applied without interfering with
328      the regbuf.  */
329   inf_status = save_inferior_status (1);
330   inf_status_cleanup = make_cleanup_restore_inferior_status (inf_status);
331 
332   /* Save the caller's registers so that they can be restored once the
333      callee returns.  To allow nested calls the registers are (further
334      down) pushed onto a dummy frame stack.  Include a cleanup (which
335      is tossed once the regcache has been pushed).  */
336   caller_regcache = frame_save_as_regcache (get_current_frame ());
337   caller_regcache_cleanup = make_cleanup_regcache_xfree (caller_regcache);
338 
339   /* Ensure that the initial SP is correctly aligned.  */
340   {
341     CORE_ADDR old_sp = read_sp ();
342     if (gdbarch_frame_align_p (current_gdbarch))
343       {
344 	sp = gdbarch_frame_align (current_gdbarch, old_sp);
345 	/* NOTE: cagney/2003-08-13: Skip the "red zone".  For some
346 	   ABIs, a function can use memory beyond the inner most stack
347 	   address.  AMD64 called that region the "red zone".  Skip at
348 	   least the "red zone" size before allocating any space on
349 	   the stack.  */
350 	if (INNER_THAN (1, 2))
351 	  sp -= gdbarch_frame_red_zone_size (current_gdbarch);
352 	else
353 	  sp += gdbarch_frame_red_zone_size (current_gdbarch);
354 	/* Still aligned?  */
355 	gdb_assert (sp == gdbarch_frame_align (current_gdbarch, sp));
356 	/* NOTE: cagney/2002-09-18:
357 
358 	   On a RISC architecture, a void parameterless generic dummy
359 	   frame (i.e., no parameters, no result) typically does not
360 	   need to push anything the stack and hence can leave SP and
361 	   FP.  Similarly, a frameless (possibly leaf) function does
362 	   not push anything on the stack and, hence, that too can
363 	   leave FP and SP unchanged.  As a consequence, a sequence of
364 	   void parameterless generic dummy frame calls to frameless
365 	   functions will create a sequence of effectively identical
366 	   frames (SP, FP and TOS and PC the same).  This, not
367 	   suprisingly, results in what appears to be a stack in an
368 	   infinite loop --- when GDB tries to find a generic dummy
369 	   frame on the internal dummy frame stack, it will always
370 	   find the first one.
371 
372 	   To avoid this problem, the code below always grows the
373 	   stack.  That way, two dummy frames can never be identical.
374 	   It does burn a few bytes of stack but that is a small price
375 	   to pay :-).  */
376 	if (sp == old_sp)
377 	  {
378 	    if (INNER_THAN (1, 2))
379 	      /* Stack grows down.  */
380 	      sp = gdbarch_frame_align (current_gdbarch, old_sp - 1);
381 	    else
382 	      /* Stack grows up.  */
383 	      sp = gdbarch_frame_align (current_gdbarch, old_sp + 1);
384 	  }
385 	gdb_assert ((INNER_THAN (1, 2) && sp <= old_sp)
386 		    || (INNER_THAN (2, 1) && sp >= old_sp));
387       }
388     else
389       /* FIXME: cagney/2002-09-18: Hey, you loose!
390 
391 	 Who knows how badly aligned the SP is!
392 
393 	 If the generic dummy frame ends up empty (because nothing is
394 	 pushed) GDB won't be able to correctly perform back traces.
395 	 If a target is having trouble with backtraces, first thing to
396 	 do is add FRAME_ALIGN() to the architecture vector. If that
397 	 fails, try unwind_dummy_id().
398 
399          If the ABI specifies a "Red Zone" (see the doco) the code
400          below will quietly trash it.  */
401       sp = old_sp;
402   }
403 
404   funaddr = find_function_addr (function, &value_type);
405   CHECK_TYPEDEF (value_type);
406 
407   {
408     struct block *b = block_for_pc (funaddr);
409     /* If compiled without -g, assume GCC 2.  */
410     using_gcc = (b == NULL ? 2 : BLOCK_GCC_COMPILED (b));
411   }
412 
413   /* Are we returning a value using a structure return or a normal
414      value return? */
415 
416   struct_return = using_struct_return (value_type, using_gcc);
417 
418   /* Determine the location of the breakpoint (and possibly other
419      stuff) that the called function will return to.  The SPARC, for a
420      function returning a structure or union, needs to make space for
421      not just the breakpoint but also an extra word containing the
422      size (?) of the structure being passed.  */
423 
424   /* The actual breakpoint (at BP_ADDR) is inserted separatly so there
425      is no need to write that out.  */
426 
427   switch (CALL_DUMMY_LOCATION)
428     {
429     case ON_STACK:
430       /* "dummy_addr" is here just to keep old targets happy.  New
431 	 targets return that same information via "sp" and "bp_addr".  */
432       if (INNER_THAN (1, 2))
433 	{
434 	  sp = push_dummy_code (current_gdbarch, sp, funaddr,
435 				using_gcc, args, nargs, value_type,
436 				&real_pc, &bp_addr);
437 	  dummy_addr = sp;
438 	}
439       else
440 	{
441 	  dummy_addr = sp;
442 	  sp = push_dummy_code (current_gdbarch, sp, funaddr,
443 				using_gcc, args, nargs, value_type,
444 				&real_pc, &bp_addr);
445 	}
446       break;
447     case AT_ENTRY_POINT:
448       real_pc = funaddr;
449       dummy_addr = entry_point_address ();
450       /* Make certain that the address points at real code, and not a
451          function descriptor.  */
452       dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
453 						       dummy_addr,
454 						       &current_target);
455       /* A call dummy always consists of just a single breakpoint, so
456          it's address is the same as the address of the dummy.  */
457       bp_addr = dummy_addr;
458       break;
459     case AT_SYMBOL:
460       /* Some executables define a symbol __CALL_DUMMY_ADDRESS whose
461 	 address is the location where the breakpoint should be
462 	 placed.  Once all targets are using the overhauled frame code
463 	 this can be deleted - ON_STACK is a better option.  */
464       {
465 	struct minimal_symbol *sym;
466 
467 	sym = lookup_minimal_symbol ("__CALL_DUMMY_ADDRESS", NULL, NULL);
468 	real_pc = funaddr;
469 	if (sym)
470 	  dummy_addr = SYMBOL_VALUE_ADDRESS (sym);
471 	else
472 	  dummy_addr = entry_point_address ();
473 	/* Make certain that the address points at real code, and not
474 	   a function descriptor.  */
475 	dummy_addr = gdbarch_convert_from_func_ptr_addr (current_gdbarch,
476 							 dummy_addr,
477 							 &current_target);
478 	/* A call dummy always consists of just a single breakpoint,
479 	   so it's address is the same as the address of the dummy.  */
480 	bp_addr = dummy_addr;
481 	break;
482       }
483     default:
484       internal_error (__FILE__, __LINE__, "bad switch");
485     }
486 
487   if (nargs < TYPE_NFIELDS (ftype))
488     error ("too few arguments in function call");
489 
490   {
491     int i;
492     for (i = nargs - 1; i >= 0; i--)
493       {
494 	int prototyped;
495 	struct type *param_type;
496 
497 	/* FIXME drow/2002-05-31: Should just always mark methods as
498 	   prototyped.  Can we respect TYPE_VARARGS?  Probably not.  */
499 	if (TYPE_CODE (ftype) == TYPE_CODE_METHOD)
500 	  prototyped = 1;
501 	else if (i < TYPE_NFIELDS (ftype))
502 	  prototyped = TYPE_PROTOTYPED (ftype);
503 	else
504 	  prototyped = 0;
505 
506 	if (i < TYPE_NFIELDS (ftype))
507 	  param_type = TYPE_FIELD_TYPE (ftype, i);
508 	else
509 	  param_type = NULL;
510 
511 	args[i] = value_arg_coerce (args[i], param_type, prototyped);
512 
513 	/* elz: this code is to handle the case in which the function
514 	   to be called has a pointer to function as parameter and the
515 	   corresponding actual argument is the address of a function
516 	   and not a pointer to function variable.  In aCC compiled
517 	   code, the calls through pointers to functions (in the body
518 	   of the function called by hand) are made via
519 	   $$dyncall_external which requires some registers setting,
520 	   this is taken care of if we call via a function pointer
521 	   variable, but not via a function address.  In cc this is
522 	   not a problem. */
523 
524 	if (using_gcc == 0)
525 	  {
526 	    if (param_type != NULL && TYPE_CODE (ftype) != TYPE_CODE_METHOD)
527 	      {
528 		/* if this parameter is a pointer to function.  */
529 		if (TYPE_CODE (param_type) == TYPE_CODE_PTR)
530 		  if (TYPE_CODE (TYPE_TARGET_TYPE (param_type)) == TYPE_CODE_FUNC)
531 		    /* elz: FIXME here should go the test about the
532 		       compiler used to compile the target. We want to
533 		       issue the error message only if the compiler
534 		       used was HP's aCC.  If we used HP's cc, then
535 		       there is no problem and no need to return at
536 		       this point.  */
537 		    /* Go see if the actual parameter is a variable of
538 		       type pointer to function or just a function.  */
539 		    if (args[i]->lval == not_lval)
540 		      {
541 			char *arg_name;
542 			if (find_pc_partial_function ((CORE_ADDR) args[i]->aligner.contents[0], &arg_name, NULL, NULL))
543 			  error ("\
544 You cannot use function <%s> as argument. \n\
545 You must use a pointer to function type variable. Command ignored.", arg_name);
546 		      }
547 	      }
548 	  }
549       }
550   }
551 
552   if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ())
553     {
554       int i;
555       /* This is a machine like the sparc, where we may need to pass a
556 	 pointer to the structure, not the structure itself.  */
557       for (i = nargs - 1; i >= 0; i--)
558 	{
559 	  struct type *arg_type = check_typedef (VALUE_TYPE (args[i]));
560 	  if ((TYPE_CODE (arg_type) == TYPE_CODE_STRUCT
561 	       || TYPE_CODE (arg_type) == TYPE_CODE_UNION
562 	       || TYPE_CODE (arg_type) == TYPE_CODE_ARRAY
563 	       || TYPE_CODE (arg_type) == TYPE_CODE_STRING
564 	       || TYPE_CODE (arg_type) == TYPE_CODE_BITSTRING
565 	       || TYPE_CODE (arg_type) == TYPE_CODE_SET
566 	       || (TYPE_CODE (arg_type) == TYPE_CODE_FLT
567 		   && TYPE_LENGTH (arg_type) > 8)
568 	       )
569 	      && DEPRECATED_REG_STRUCT_HAS_ADDR (using_gcc, arg_type))
570 	    {
571 	      CORE_ADDR addr;
572 	      int len;		/*  = TYPE_LENGTH (arg_type); */
573 	      int aligned_len;
574 	      arg_type = check_typedef (VALUE_ENCLOSING_TYPE (args[i]));
575 	      len = TYPE_LENGTH (arg_type);
576 
577 	      aligned_len = len;
578 	      if (INNER_THAN (1, 2))
579 		{
580 		  /* stack grows downward */
581 		  sp -= aligned_len;
582 		  /* ... so the address of the thing we push is the
583 		     stack pointer after we push it.  */
584 		  addr = sp;
585 		}
586 	      else
587 		{
588 		  /* The stack grows up, so the address of the thing
589 		     we push is the stack pointer before we push it.  */
590 		  addr = sp;
591 		  sp += aligned_len;
592 		}
593 	      /* Push the structure.  */
594 	      write_memory (addr, VALUE_CONTENTS_ALL (args[i]), len);
595 	      /* The value we're going to pass is the address of the
596 		 thing we just pushed.  */
597 	      /*args[i] = value_from_longest (lookup_pointer_type (value_type),
598 		(LONGEST) addr); */
599 	      args[i] = value_from_pointer (lookup_pointer_type (arg_type),
600 					    addr);
601 	    }
602 	}
603     }
604 
605 
606   /* Reserve space for the return structure to be written on the
607      stack, if necessary.  Make certain that the value is correctly
608      aligned. */
609 
610   if (struct_return)
611     {
612       int len = TYPE_LENGTH (value_type);
613       if (INNER_THAN (1, 2))
614 	{
615 	  /* Stack grows downward.  Align STRUCT_ADDR and SP after
616              making space for the return value.  */
617 	  sp -= len;
618 	  if (gdbarch_frame_align_p (current_gdbarch))
619 	    sp = gdbarch_frame_align (current_gdbarch, sp);
620 	  struct_addr = sp;
621 	}
622       else
623 	{
624 	  /* Stack grows upward.  Align the frame, allocate space, and
625              then again, re-align the frame??? */
626 	  if (gdbarch_frame_align_p (current_gdbarch))
627 	    sp = gdbarch_frame_align (current_gdbarch, sp);
628 	  struct_addr = sp;
629 	  sp += len;
630 	  if (gdbarch_frame_align_p (current_gdbarch))
631 	    sp = gdbarch_frame_align (current_gdbarch, sp);
632 	}
633     }
634 
635   /* Create the dummy stack frame.  Pass in the call dummy address as,
636      presumably, the ABI code knows where, in the call dummy, the
637      return address should be pointed.  */
638   if (gdbarch_push_dummy_call_p (current_gdbarch))
639     /* When there is no push_dummy_call method, should this code
640        simply error out.  That would the implementation of this method
641        for all ABIs (which is probably a good thing).  */
642     sp = gdbarch_push_dummy_call (current_gdbarch, function, current_regcache,
643 				  bp_addr, nargs, args, sp, struct_return,
644 				  struct_addr);
645   else  if (DEPRECATED_PUSH_ARGUMENTS_P ())
646     /* Keep old targets working.  */
647     sp = DEPRECATED_PUSH_ARGUMENTS (nargs, args, sp, struct_return,
648 				    struct_addr);
649   else
650     error ("This target does not support function calls");
651 
652   /* Set up a frame ID for the dummy frame so we can pass it to
653      set_momentary_breakpoint.  We need to give the breakpoint a frame
654      ID so that the breakpoint code can correctly re-identify the
655      dummy breakpoint.  */
656   /* Sanity.  The exact same SP value is returned by PUSH_DUMMY_CALL,
657      saved as the dummy-frame TOS, and used by unwind_dummy_id to form
658      the frame ID's stack address.  */
659   dummy_id = frame_id_build (sp, bp_addr);
660 
661   /* Create a momentary breakpoint at the return address of the
662      inferior.  That way it breaks when it returns.  */
663 
664   {
665     struct breakpoint *bpt;
666     struct symtab_and_line sal;
667     init_sal (&sal);		/* initialize to zeroes */
668     sal.pc = bp_addr;
669     sal.section = find_pc_overlay (sal.pc);
670     /* Sanity.  The exact same SP value is returned by
671        PUSH_DUMMY_CALL, saved as the dummy-frame TOS, and used by
672        unwind_dummy_id to form the frame ID's stack address.  */
673     bpt = set_momentary_breakpoint (sal, dummy_id, bp_call_dummy);
674     bpt->disposition = disp_del;
675   }
676 
677   /* Everything's ready, push all the info needed to restore the
678      caller (and identify the dummy-frame) onto the dummy-frame
679      stack.  */
680   dummy_frame_push (caller_regcache, &dummy_id);
681   discard_cleanups (caller_regcache_cleanup);
682 
683   /* - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP - SNIP -
684      If you're looking to implement asynchronous dummy-frames, then
685      just below is the place to chop this function in two..  */
686 
687   /* Now proceed, having reached the desired place.  */
688   clear_proceed_status ();
689 
690   /* Execute a "stack dummy", a piece of code stored in the stack by
691      the debugger to be executed in the inferior.
692 
693      The dummy's frame is automatically popped whenever that break is
694      hit.  If that is the first time the program stops,
695      call_function_by_hand returns to its caller with that frame
696      already gone and sets RC to 0.
697 
698      Otherwise, set RC to a non-zero value.  If the called function
699      receives a random signal, we do not allow the user to continue
700      executing it as this may not work.  The dummy frame is poped and
701      we return 1.  If we hit a breakpoint, we leave the frame in place
702      and return 2 (the frame will eventually be popped when we do hit
703      the dummy end breakpoint).  */
704 
705   {
706     struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
707     int saved_async = 0;
708 
709     /* If all error()s out of proceed ended up calling normal_stop
710        (and perhaps they should; it already does in the special case
711        of error out of resume()), then we wouldn't need this.  */
712     make_cleanup (breakpoint_auto_delete_contents, &stop_bpstat);
713 
714     disable_watchpoints_before_interactive_call_start ();
715     proceed_to_finish = 1;	/* We want stop_registers, please... */
716 
717     if (target_can_async_p ())
718       saved_async = target_async_mask (0);
719 
720     proceed (real_pc, TARGET_SIGNAL_0, 0);
721 
722     if (saved_async)
723       target_async_mask (saved_async);
724 
725     enable_watchpoints_after_interactive_call_stop ();
726 
727     discard_cleanups (old_cleanups);
728   }
729 
730   if (stopped_by_random_signal || !stop_stack_dummy)
731     {
732       /* Find the name of the function we're about to complain about.  */
733       const char *name = NULL;
734       {
735 	struct symbol *symbol = find_pc_function (funaddr);
736 	if (symbol)
737 	  name = SYMBOL_PRINT_NAME (symbol);
738 	else
739 	  {
740 	    /* Try the minimal symbols.  */
741 	    struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (funaddr);
742 	    if (msymbol)
743 	      name = SYMBOL_PRINT_NAME (msymbol);
744 	  }
745 	if (name == NULL)
746 	  {
747 	    /* Can't use a cleanup here.  It is discarded, instead use
748                an alloca.  */
749 	    char *tmp = xstrprintf ("at %s", hex_string (funaddr));
750 	    char *a = alloca (strlen (tmp) + 1);
751 	    strcpy (a, tmp);
752 	    xfree (tmp);
753 	    name = a;
754 	  }
755       }
756       if (stopped_by_random_signal)
757 	{
758 	  /* We stopped inside the FUNCTION because of a random
759 	     signal.  Further execution of the FUNCTION is not
760 	     allowed. */
761 
762 	  if (unwind_on_signal_p)
763 	    {
764 	      /* The user wants the context restored. */
765 
766 	      /* We must get back to the frame we were before the
767 		 dummy call. */
768 	      frame_pop (get_current_frame ());
769 
770 	      /* FIXME: Insert a bunch of wrap_here; name can be very
771 		 long if it's a C++ name with arguments and stuff.  */
772 	      error ("\
773 The program being debugged was signaled while in a function called from GDB.\n\
774 GDB has restored the context to what it was before the call.\n\
775 To change this behavior use \"set unwindonsignal off\"\n\
776 Evaluation of the expression containing the function (%s) will be abandoned.",
777 		     name);
778 	    }
779 	  else
780 	    {
781 	      /* The user wants to stay in the frame where we stopped
782                  (default).*/
783 	      /* If we restored the inferior status (via the cleanup),
784 		 we would print a spurious error message (Unable to
785 		 restore previously selected frame), would write the
786 		 registers from the inf_status (which is wrong), and
787 		 would do other wrong things.  */
788 	      discard_cleanups (inf_status_cleanup);
789 	      discard_inferior_status (inf_status);
790 	      /* FIXME: Insert a bunch of wrap_here; name can be very
791 		 long if it's a C++ name with arguments and stuff.  */
792 	      error ("\
793 The program being debugged was signaled while in a function called from GDB.\n\
794 GDB remains in the frame where the signal was received.\n\
795 To change this behavior use \"set unwindonsignal on\"\n\
796 Evaluation of the expression containing the function (%s) will be abandoned.",
797 		     name);
798 	    }
799 	}
800 
801       if (!stop_stack_dummy)
802 	{
803 	  /* We hit a breakpoint inside the FUNCTION. */
804 	  /* If we restored the inferior status (via the cleanup), we
805 	     would print a spurious error message (Unable to restore
806 	     previously selected frame), would write the registers
807 	     from the inf_status (which is wrong), and would do other
808 	     wrong things.  */
809 	  discard_cleanups (inf_status_cleanup);
810 	  discard_inferior_status (inf_status);
811 	  /* The following error message used to say "The expression
812 	     which contained the function call has been discarded."
813 	     It is a hard concept to explain in a few words.  Ideally,
814 	     GDB would be able to resume evaluation of the expression
815 	     when the function finally is done executing.  Perhaps
816 	     someday this will be implemented (it would not be easy).  */
817 	  /* FIXME: Insert a bunch of wrap_here; name can be very long if it's
818 	     a C++ name with arguments and stuff.  */
819 	  error ("\
820 The program being debugged stopped while in a function called from GDB.\n\
821 When the function (%s) is done executing, GDB will silently\n\
822 stop (instead of continuing to evaluate the expression containing\n\
823 the function call).", name);
824 	}
825 
826       /* The above code errors out, so ...  */
827       internal_error (__FILE__, __LINE__, "... should not be here");
828     }
829 
830   /* If we get here the called FUNCTION run to completion. */
831 
832   /* On normal return, the stack dummy has been popped already.  */
833   regcache_cpy_no_passthrough (retbuf, stop_registers);
834 
835   /* Restore the inferior status, via its cleanup.  At this stage,
836      leave the RETBUF alone.  */
837   do_cleanups (inf_status_cleanup);
838 
839   /* Figure out the value returned by the function, return that.  */
840   {
841     struct value *retval;
842     if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
843       /* If the function returns void, don't bother fetching the
844 	 return value.  */
845       retval = allocate_value (value_type);
846     else if (struct_return)
847       /* NOTE: cagney/2003-09-27: This assumes that PUSH_DUMMY_CALL
848 	 has correctly stored STRUCT_ADDR in the target.  In the past
849 	 that hasn't been the case, the old MIPS PUSH_ARGUMENTS
850 	 (PUSH_DUMMY_CALL precursor) would silently move the location
851 	 of the struct return value making STRUCT_ADDR bogus.  If
852 	 you're seeing problems with values being returned using the
853 	 "struct return convention", check that PUSH_DUMMY_CALL isn't
854 	 playing tricks.  */
855       retval = value_at (value_type, struct_addr, NULL);
856     else
857       {
858 	/* This code only handles "register convention".  */
859 	retval = allocate_value (value_type);
860 	gdb_assert (gdbarch_return_value (current_gdbarch, value_type,
861 					  NULL, NULL, NULL)
862 		    == RETURN_VALUE_REGISTER_CONVENTION);
863 	gdbarch_return_value (current_gdbarch, value_type, retbuf,
864 			      VALUE_CONTENTS_RAW (retval) /*read*/,
865 			      NULL /*write*/);
866       }
867     do_cleanups (retbuf_cleanup);
868     return retval;
869   }
870 }
871 
872 void _initialize_infcall (void);
873 
874 void
_initialize_infcall(void)875 _initialize_infcall (void)
876 {
877   add_setshow_boolean_cmd ("coerce-float-to-double", class_obscure,
878 			   &coerce_float_to_double_p, "\
879 Set coercion of floats to doubles when calling functions.", "\
880 Show coercion of floats to doubles when calling functions", "\
881 Variables of type float should generally be converted to doubles before\n\
882 calling an unprototyped function, and left alone when calling a prototyped\n\
883 function.  However, some older debug info formats do not provide enough\n\
884 information to determine that a function is prototyped.  If this flag is\n\
885 set, GDB will perform the conversion for a function it considers\n\
886 unprototyped.\n\
887 The default is to perform the conversion.\n", "\
888 Coercion of floats to doubles when calling functions is %s.",
889 			   NULL, NULL, &setlist, &showlist);
890 
891   add_setshow_boolean_cmd ("unwindonsignal", no_class,
892 			   &unwind_on_signal_p, "\
893 Set unwinding of stack if a signal is received while in a call dummy.", "\
894 Show unwinding of stack if a signal is received while in a call dummy.", "\
895 The unwindonsignal lets the user determine what gdb should do if a signal\n\
896 is received while in a function called from gdb (call dummy).  If set, gdb\n\
897 unwinds the stack and restore the context to what as it was before the call.\n\
898 The default is to stop in the frame where the signal was received.", "\
899 Unwinding of stack if a signal is received while in a call dummy is %s.",
900 			   NULL, NULL, &setlist, &showlist);
901 }
902