1 //===- CodeGenSchedule.cpp - Scheduling MachineModels ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines structures to encapsulate the machine model as described in
10 // the target description.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenSchedule.h"
15 #include "CodeGenInstruction.h"
16 #include "CodeGenTarget.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/Support/Casting.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/Regex.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/TableGen/Error.h"
26 #include <algorithm>
27 #include <iterator>
28 #include <utility>
29
30 using namespace llvm;
31
32 #define DEBUG_TYPE "subtarget-emitter"
33
34 #ifndef NDEBUG
dumpIdxVec(ArrayRef<unsigned> V)35 static void dumpIdxVec(ArrayRef<unsigned> V) {
36 for (unsigned Idx : V)
37 dbgs() << Idx << ", ";
38 }
39 #endif
40
41 namespace {
42
43 // (instrs a, b, ...) Evaluate and union all arguments. Identical to AddOp.
44 struct InstrsOp : public SetTheory::Operator {
apply__anon8686fb2a0111::InstrsOp45 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
46 ArrayRef<SMLoc> Loc) override {
47 ST.evaluate(Expr->arg_begin(), Expr->arg_end(), Elts, Loc);
48 }
49 };
50
51 // (instregex "OpcPat",...) Find all instructions matching an opcode pattern.
52 struct InstRegexOp : public SetTheory::Operator {
53 const CodeGenTarget &Target;
InstRegexOp__anon8686fb2a0111::InstRegexOp54 InstRegexOp(const CodeGenTarget &t): Target(t) {}
55
56 /// Remove any text inside of parentheses from S.
removeParens__anon8686fb2a0111::InstRegexOp57 static std::string removeParens(llvm::StringRef S) {
58 std::string Result;
59 unsigned Paren = 0;
60 // NB: We don't care about escaped parens here.
61 for (char C : S) {
62 switch (C) {
63 case '(':
64 ++Paren;
65 break;
66 case ')':
67 --Paren;
68 break;
69 default:
70 if (Paren == 0)
71 Result += C;
72 }
73 }
74 return Result;
75 }
76
apply__anon8686fb2a0111::InstRegexOp77 void apply(SetTheory &ST, DagInit *Expr, SetTheory::RecSet &Elts,
78 ArrayRef<SMLoc> Loc) override {
79 ArrayRef<const CodeGenInstruction *> Instructions =
80 Target.getInstructionsByEnumValue();
81
82 unsigned NumGeneric = Target.getNumFixedInstructions();
83 unsigned NumPseudos = Target.getNumPseudoInstructions();
84 auto Generics = Instructions.slice(0, NumGeneric);
85 auto Pseudos = Instructions.slice(NumGeneric, NumPseudos);
86 auto NonPseudos = Instructions.slice(NumGeneric + NumPseudos);
87
88 for (Init *Arg : Expr->getArgs()) {
89 StringInit *SI = dyn_cast<StringInit>(Arg);
90 if (!SI)
91 PrintFatalError(Loc, "instregex requires pattern string: " +
92 Expr->getAsString());
93 StringRef Original = SI->getValue();
94
95 // Extract a prefix that we can binary search on.
96 static const char RegexMetachars[] = "()^$|*+?.[]\\{}";
97 auto FirstMeta = Original.find_first_of(RegexMetachars);
98
99 // Look for top-level | or ?. We cannot optimize them to binary search.
100 if (removeParens(Original).find_first_of("|?") != std::string::npos)
101 FirstMeta = 0;
102
103 std::optional<Regex> Regexpr;
104 StringRef Prefix = Original.substr(0, FirstMeta);
105 StringRef PatStr = Original.substr(FirstMeta);
106 if (!PatStr.empty()) {
107 // For the rest use a python-style prefix match.
108 std::string pat = std::string(PatStr);
109 if (pat[0] != '^') {
110 pat.insert(0, "^(");
111 pat.insert(pat.end(), ')');
112 }
113 Regexpr = Regex(pat);
114 }
115
116 int NumMatches = 0;
117
118 // The generic opcodes are unsorted, handle them manually.
119 for (auto *Inst : Generics) {
120 StringRef InstName = Inst->TheDef->getName();
121 if (InstName.startswith(Prefix) &&
122 (!Regexpr || Regexpr->match(InstName.substr(Prefix.size())))) {
123 Elts.insert(Inst->TheDef);
124 NumMatches++;
125 }
126 }
127
128 // Target instructions are split into two ranges: pseudo instructions
129 // first, than non-pseudos. Each range is in lexicographical order
130 // sorted by name. Find the sub-ranges that start with our prefix.
131 struct Comp {
132 bool operator()(const CodeGenInstruction *LHS, StringRef RHS) {
133 return LHS->TheDef->getName() < RHS;
134 }
135 bool operator()(StringRef LHS, const CodeGenInstruction *RHS) {
136 return LHS < RHS->TheDef->getName() &&
137 !RHS->TheDef->getName().startswith(LHS);
138 }
139 };
140 auto Range1 =
141 std::equal_range(Pseudos.begin(), Pseudos.end(), Prefix, Comp());
142 auto Range2 = std::equal_range(NonPseudos.begin(), NonPseudos.end(),
143 Prefix, Comp());
144
145 // For these ranges we know that instruction names start with the prefix.
146 // Check if there's a regex that needs to be checked.
147 const auto HandleNonGeneric = [&](const CodeGenInstruction *Inst) {
148 StringRef InstName = Inst->TheDef->getName();
149 if (!Regexpr || Regexpr->match(InstName.substr(Prefix.size()))) {
150 Elts.insert(Inst->TheDef);
151 NumMatches++;
152 }
153 };
154 std::for_each(Range1.first, Range1.second, HandleNonGeneric);
155 std::for_each(Range2.first, Range2.second, HandleNonGeneric);
156
157 if (0 == NumMatches)
158 PrintFatalError(Loc, "instregex has no matches: " + Original);
159 }
160 }
161 };
162
163 } // end anonymous namespace
164
165 /// CodeGenModels ctor interprets machine model records and populates maps.
CodeGenSchedModels(RecordKeeper & RK,const CodeGenTarget & TGT)166 CodeGenSchedModels::CodeGenSchedModels(RecordKeeper &RK,
167 const CodeGenTarget &TGT):
168 Records(RK), Target(TGT) {
169
170 Sets.addFieldExpander("InstRW", "Instrs");
171
172 // Allow Set evaluation to recognize the dags used in InstRW records:
173 // (instrs Op1, Op1...)
174 Sets.addOperator("instrs", std::make_unique<InstrsOp>());
175 Sets.addOperator("instregex", std::make_unique<InstRegexOp>(Target));
176
177 // Instantiate a CodeGenProcModel for each SchedMachineModel with the values
178 // that are explicitly referenced in tablegen records. Resources associated
179 // with each processor will be derived later. Populate ProcModelMap with the
180 // CodeGenProcModel instances.
181 collectProcModels();
182
183 // Instantiate a CodeGenSchedRW for each SchedReadWrite record explicitly
184 // defined, and populate SchedReads and SchedWrites vectors. Implicit
185 // SchedReadWrites that represent sequences derived from expanded variant will
186 // be inferred later.
187 collectSchedRW();
188
189 // Instantiate a CodeGenSchedClass for each unique SchedRW signature directly
190 // required by an instruction definition, and populate SchedClassIdxMap. Set
191 // NumItineraryClasses to the number of explicit itinerary classes referenced
192 // by instructions. Set NumInstrSchedClasses to the number of itinerary
193 // classes plus any classes implied by instructions that derive from class
194 // Sched and provide SchedRW list. This does not infer any new classes from
195 // SchedVariant.
196 collectSchedClasses();
197
198 // Find instruction itineraries for each processor. Sort and populate
199 // CodeGenProcModel::ItinDefList. (Cycle-to-cycle itineraries). This requires
200 // all itinerary classes to be discovered.
201 collectProcItins();
202
203 // Find ItinRW records for each processor and itinerary class.
204 // (For per-operand resources mapped to itinerary classes).
205 collectProcItinRW();
206
207 // Find UnsupportedFeatures records for each processor.
208 // (For per-operand resources mapped to itinerary classes).
209 collectProcUnsupportedFeatures();
210
211 // Infer new SchedClasses from SchedVariant.
212 inferSchedClasses();
213
214 // Populate each CodeGenProcModel's WriteResDefs, ReadAdvanceDefs, and
215 // ProcResourceDefs.
216 LLVM_DEBUG(
217 dbgs() << "\n+++ RESOURCE DEFINITIONS (collectProcResources) +++\n");
218 collectProcResources();
219
220 // Collect optional processor description.
221 collectOptionalProcessorInfo();
222
223 // Check MCInstPredicate definitions.
224 checkMCInstPredicates();
225
226 // Check STIPredicate definitions.
227 checkSTIPredicates();
228
229 // Find STIPredicate definitions for each processor model, and construct
230 // STIPredicateFunction objects.
231 collectSTIPredicates();
232
233 checkCompleteness();
234 }
235
checkSTIPredicates() const236 void CodeGenSchedModels::checkSTIPredicates() const {
237 DenseMap<StringRef, const Record *> Declarations;
238
239 // There cannot be multiple declarations with the same name.
240 const RecVec Decls = Records.getAllDerivedDefinitions("STIPredicateDecl");
241 for (const Record *R : Decls) {
242 StringRef Name = R->getValueAsString("Name");
243 const auto It = Declarations.find(Name);
244 if (It == Declarations.end()) {
245 Declarations[Name] = R;
246 continue;
247 }
248
249 PrintError(R->getLoc(), "STIPredicate " + Name + " multiply declared.");
250 PrintFatalNote(It->second->getLoc(), "Previous declaration was here.");
251 }
252
253 // Disallow InstructionEquivalenceClasses with an empty instruction list.
254 const RecVec Defs =
255 Records.getAllDerivedDefinitions("InstructionEquivalenceClass");
256 for (const Record *R : Defs) {
257 RecVec Opcodes = R->getValueAsListOfDefs("Opcodes");
258 if (Opcodes.empty()) {
259 PrintFatalError(R->getLoc(), "Invalid InstructionEquivalenceClass "
260 "defined with an empty opcode list.");
261 }
262 }
263 }
264
265 // Used by function `processSTIPredicate` to construct a mask of machine
266 // instruction operands.
constructOperandMask(ArrayRef<int64_t> Indices)267 static APInt constructOperandMask(ArrayRef<int64_t> Indices) {
268 APInt OperandMask;
269 if (Indices.empty())
270 return OperandMask;
271
272 int64_t MaxIndex = *std::max_element(Indices.begin(), Indices.end());
273 assert(MaxIndex >= 0 && "Invalid negative indices in input!");
274 OperandMask = OperandMask.zext(MaxIndex + 1);
275 for (const int64_t Index : Indices) {
276 assert(Index >= 0 && "Invalid negative indices!");
277 OperandMask.setBit(Index);
278 }
279
280 return OperandMask;
281 }
282
283 static void
processSTIPredicate(STIPredicateFunction & Fn,const ProcModelMapTy & ProcModelMap)284 processSTIPredicate(STIPredicateFunction &Fn,
285 const ProcModelMapTy &ProcModelMap) {
286 DenseMap<const Record *, unsigned> Opcode2Index;
287 using OpcodeMapPair = std::pair<const Record *, OpcodeInfo>;
288 std::vector<OpcodeMapPair> OpcodeMappings;
289 std::vector<std::pair<APInt, APInt>> OpcodeMasks;
290
291 DenseMap<const Record *, unsigned> Predicate2Index;
292 unsigned NumUniquePredicates = 0;
293
294 // Number unique predicates and opcodes used by InstructionEquivalenceClass
295 // definitions. Each unique opcode will be associated with an OpcodeInfo
296 // object.
297 for (const Record *Def : Fn.getDefinitions()) {
298 RecVec Classes = Def->getValueAsListOfDefs("Classes");
299 for (const Record *EC : Classes) {
300 const Record *Pred = EC->getValueAsDef("Predicate");
301 if (Predicate2Index.find(Pred) == Predicate2Index.end())
302 Predicate2Index[Pred] = NumUniquePredicates++;
303
304 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
305 for (const Record *Opcode : Opcodes) {
306 if (Opcode2Index.find(Opcode) == Opcode2Index.end()) {
307 Opcode2Index[Opcode] = OpcodeMappings.size();
308 OpcodeMappings.emplace_back(Opcode, OpcodeInfo());
309 }
310 }
311 }
312 }
313
314 // Initialize vector `OpcodeMasks` with default values. We want to keep track
315 // of which processors "use" which opcodes. We also want to be able to
316 // identify predicates that are used by different processors for a same
317 // opcode.
318 // This information is used later on by this algorithm to sort OpcodeMapping
319 // elements based on their processor and predicate sets.
320 OpcodeMasks.resize(OpcodeMappings.size());
321 APInt DefaultProcMask(ProcModelMap.size(), 0);
322 APInt DefaultPredMask(NumUniquePredicates, 0);
323 for (std::pair<APInt, APInt> &MaskPair : OpcodeMasks)
324 MaskPair = std::make_pair(DefaultProcMask, DefaultPredMask);
325
326 // Construct a OpcodeInfo object for every unique opcode declared by an
327 // InstructionEquivalenceClass definition.
328 for (const Record *Def : Fn.getDefinitions()) {
329 RecVec Classes = Def->getValueAsListOfDefs("Classes");
330 const Record *SchedModel = Def->getValueAsDef("SchedModel");
331 unsigned ProcIndex = ProcModelMap.find(SchedModel)->second;
332 APInt ProcMask(ProcModelMap.size(), 0);
333 ProcMask.setBit(ProcIndex);
334
335 for (const Record *EC : Classes) {
336 RecVec Opcodes = EC->getValueAsListOfDefs("Opcodes");
337
338 std::vector<int64_t> OpIndices =
339 EC->getValueAsListOfInts("OperandIndices");
340 APInt OperandMask = constructOperandMask(OpIndices);
341
342 const Record *Pred = EC->getValueAsDef("Predicate");
343 APInt PredMask(NumUniquePredicates, 0);
344 PredMask.setBit(Predicate2Index[Pred]);
345
346 for (const Record *Opcode : Opcodes) {
347 unsigned OpcodeIdx = Opcode2Index[Opcode];
348 if (OpcodeMasks[OpcodeIdx].first[ProcIndex]) {
349 std::string Message =
350 "Opcode " + Opcode->getName().str() +
351 " used by multiple InstructionEquivalenceClass definitions.";
352 PrintFatalError(EC->getLoc(), Message);
353 }
354 OpcodeMasks[OpcodeIdx].first |= ProcMask;
355 OpcodeMasks[OpcodeIdx].second |= PredMask;
356 OpcodeInfo &OI = OpcodeMappings[OpcodeIdx].second;
357
358 OI.addPredicateForProcModel(ProcMask, OperandMask, Pred);
359 }
360 }
361 }
362
363 // Sort OpcodeMappings elements based on their CPU and predicate masks.
364 // As a last resort, order elements by opcode identifier.
365 llvm::sort(OpcodeMappings,
366 [&](const OpcodeMapPair &Lhs, const OpcodeMapPair &Rhs) {
367 unsigned LhsIdx = Opcode2Index[Lhs.first];
368 unsigned RhsIdx = Opcode2Index[Rhs.first];
369 const std::pair<APInt, APInt> &LhsMasks = OpcodeMasks[LhsIdx];
370 const std::pair<APInt, APInt> &RhsMasks = OpcodeMasks[RhsIdx];
371
372 auto LessThan = [](const APInt &Lhs, const APInt &Rhs) {
373 unsigned LhsCountPopulation = Lhs.countPopulation();
374 unsigned RhsCountPopulation = Rhs.countPopulation();
375 return ((LhsCountPopulation < RhsCountPopulation) ||
376 ((LhsCountPopulation == RhsCountPopulation) &&
377 (Lhs.countLeadingZeros() > Rhs.countLeadingZeros())));
378 };
379
380 if (LhsMasks.first != RhsMasks.first)
381 return LessThan(LhsMasks.first, RhsMasks.first);
382
383 if (LhsMasks.second != RhsMasks.second)
384 return LessThan(LhsMasks.second, RhsMasks.second);
385
386 return LhsIdx < RhsIdx;
387 });
388
389 // Now construct opcode groups. Groups are used by the SubtargetEmitter when
390 // expanding the body of a STIPredicate function. In particular, each opcode
391 // group is expanded into a sequence of labels in a switch statement.
392 // It identifies opcodes for which different processors define same predicates
393 // and same opcode masks.
394 for (OpcodeMapPair &Info : OpcodeMappings)
395 Fn.addOpcode(Info.first, std::move(Info.second));
396 }
397
collectSTIPredicates()398 void CodeGenSchedModels::collectSTIPredicates() {
399 // Map STIPredicateDecl records to elements of vector
400 // CodeGenSchedModels::STIPredicates.
401 DenseMap<const Record *, unsigned> Decl2Index;
402
403 RecVec RV = Records.getAllDerivedDefinitions("STIPredicate");
404 for (const Record *R : RV) {
405 const Record *Decl = R->getValueAsDef("Declaration");
406
407 const auto It = Decl2Index.find(Decl);
408 if (It == Decl2Index.end()) {
409 Decl2Index[Decl] = STIPredicates.size();
410 STIPredicateFunction Predicate(Decl);
411 Predicate.addDefinition(R);
412 STIPredicates.emplace_back(std::move(Predicate));
413 continue;
414 }
415
416 STIPredicateFunction &PreviousDef = STIPredicates[It->second];
417 PreviousDef.addDefinition(R);
418 }
419
420 for (STIPredicateFunction &Fn : STIPredicates)
421 processSTIPredicate(Fn, ProcModelMap);
422 }
423
addPredicateForProcModel(const llvm::APInt & CpuMask,const llvm::APInt & OperandMask,const Record * Predicate)424 void OpcodeInfo::addPredicateForProcModel(const llvm::APInt &CpuMask,
425 const llvm::APInt &OperandMask,
426 const Record *Predicate) {
427 auto It = llvm::find_if(
428 Predicates, [&OperandMask, &Predicate](const PredicateInfo &P) {
429 return P.Predicate == Predicate && P.OperandMask == OperandMask;
430 });
431 if (It == Predicates.end()) {
432 Predicates.emplace_back(CpuMask, OperandMask, Predicate);
433 return;
434 }
435 It->ProcModelMask |= CpuMask;
436 }
437
checkMCInstPredicates() const438 void CodeGenSchedModels::checkMCInstPredicates() const {
439 RecVec MCPredicates = Records.getAllDerivedDefinitions("TIIPredicate");
440 if (MCPredicates.empty())
441 return;
442
443 // A target cannot have multiple TIIPredicate definitions with a same name.
444 llvm::StringMap<const Record *> TIIPredicates(MCPredicates.size());
445 for (const Record *TIIPred : MCPredicates) {
446 StringRef Name = TIIPred->getValueAsString("FunctionName");
447 StringMap<const Record *>::const_iterator It = TIIPredicates.find(Name);
448 if (It == TIIPredicates.end()) {
449 TIIPredicates[Name] = TIIPred;
450 continue;
451 }
452
453 PrintError(TIIPred->getLoc(),
454 "TIIPredicate " + Name + " is multiply defined.");
455 PrintFatalNote(It->second->getLoc(),
456 " Previous definition of " + Name + " was here.");
457 }
458 }
459
collectRetireControlUnits()460 void CodeGenSchedModels::collectRetireControlUnits() {
461 RecVec Units = Records.getAllDerivedDefinitions("RetireControlUnit");
462
463 for (Record *RCU : Units) {
464 CodeGenProcModel &PM = getProcModel(RCU->getValueAsDef("SchedModel"));
465 if (PM.RetireControlUnit) {
466 PrintError(RCU->getLoc(),
467 "Expected a single RetireControlUnit definition");
468 PrintNote(PM.RetireControlUnit->getLoc(),
469 "Previous definition of RetireControlUnit was here");
470 }
471 PM.RetireControlUnit = RCU;
472 }
473 }
474
collectLoadStoreQueueInfo()475 void CodeGenSchedModels::collectLoadStoreQueueInfo() {
476 RecVec Queues = Records.getAllDerivedDefinitions("MemoryQueue");
477
478 for (Record *Queue : Queues) {
479 CodeGenProcModel &PM = getProcModel(Queue->getValueAsDef("SchedModel"));
480 if (Queue->isSubClassOf("LoadQueue")) {
481 if (PM.LoadQueue) {
482 PrintError(Queue->getLoc(),
483 "Expected a single LoadQueue definition");
484 PrintNote(PM.LoadQueue->getLoc(),
485 "Previous definition of LoadQueue was here");
486 }
487
488 PM.LoadQueue = Queue;
489 }
490
491 if (Queue->isSubClassOf("StoreQueue")) {
492 if (PM.StoreQueue) {
493 PrintError(Queue->getLoc(),
494 "Expected a single StoreQueue definition");
495 PrintNote(PM.StoreQueue->getLoc(),
496 "Previous definition of StoreQueue was here");
497 }
498
499 PM.StoreQueue = Queue;
500 }
501 }
502 }
503
504 /// Collect optional processor information.
collectOptionalProcessorInfo()505 void CodeGenSchedModels::collectOptionalProcessorInfo() {
506 // Find register file definitions for each processor.
507 collectRegisterFiles();
508
509 // Collect processor RetireControlUnit descriptors if available.
510 collectRetireControlUnits();
511
512 // Collect information about load/store queues.
513 collectLoadStoreQueueInfo();
514
515 checkCompleteness();
516 }
517
518 /// Gather all processor models.
collectProcModels()519 void CodeGenSchedModels::collectProcModels() {
520 RecVec ProcRecords = Records.getAllDerivedDefinitions("Processor");
521 llvm::sort(ProcRecords, LessRecordFieldName());
522
523 // Check for duplicated names.
524 auto I = std::adjacent_find(ProcRecords.begin(), ProcRecords.end(),
525 [](const Record *Rec1, const Record *Rec2) {
526 return Rec1->getValueAsString("Name") == Rec2->getValueAsString("Name");
527 });
528 if (I != ProcRecords.end())
529 PrintFatalError((*I)->getLoc(), "Duplicate processor name " +
530 (*I)->getValueAsString("Name"));
531
532 // Reserve space because we can. Reallocation would be ok.
533 ProcModels.reserve(ProcRecords.size()+1);
534
535 // Use idx=0 for NoModel/NoItineraries.
536 Record *NoModelDef = Records.getDef("NoSchedModel");
537 Record *NoItinsDef = Records.getDef("NoItineraries");
538 ProcModels.emplace_back(0, "NoSchedModel", NoModelDef, NoItinsDef);
539 ProcModelMap[NoModelDef] = 0;
540
541 // For each processor, find a unique machine model.
542 LLVM_DEBUG(dbgs() << "+++ PROCESSOR MODELs (addProcModel) +++\n");
543 for (Record *ProcRecord : ProcRecords)
544 addProcModel(ProcRecord);
545 }
546
547 /// Get a unique processor model based on the defined MachineModel and
548 /// ProcessorItineraries.
addProcModel(Record * ProcDef)549 void CodeGenSchedModels::addProcModel(Record *ProcDef) {
550 Record *ModelKey = getModelOrItinDef(ProcDef);
551 if (!ProcModelMap.insert(std::make_pair(ModelKey, ProcModels.size())).second)
552 return;
553
554 std::string Name = std::string(ModelKey->getName());
555 if (ModelKey->isSubClassOf("SchedMachineModel")) {
556 Record *ItinsDef = ModelKey->getValueAsDef("Itineraries");
557 ProcModels.emplace_back(ProcModels.size(), Name, ModelKey, ItinsDef);
558 }
559 else {
560 // An itinerary is defined without a machine model. Infer a new model.
561 if (!ModelKey->getValueAsListOfDefs("IID").empty())
562 Name = Name + "Model";
563 ProcModels.emplace_back(ProcModels.size(), Name,
564 ProcDef->getValueAsDef("SchedModel"), ModelKey);
565 }
566 LLVM_DEBUG(ProcModels.back().dump());
567 }
568
569 // Recursively find all reachable SchedReadWrite records.
scanSchedRW(Record * RWDef,RecVec & RWDefs,SmallPtrSet<Record *,16> & RWSet)570 static void scanSchedRW(Record *RWDef, RecVec &RWDefs,
571 SmallPtrSet<Record*, 16> &RWSet) {
572 if (!RWSet.insert(RWDef).second)
573 return;
574 RWDefs.push_back(RWDef);
575 // Reads don't currently have sequence records, but it can be added later.
576 if (RWDef->isSubClassOf("WriteSequence")) {
577 RecVec Seq = RWDef->getValueAsListOfDefs("Writes");
578 for (Record *WSRec : Seq)
579 scanSchedRW(WSRec, RWDefs, RWSet);
580 }
581 else if (RWDef->isSubClassOf("SchedVariant")) {
582 // Visit each variant (guarded by a different predicate).
583 RecVec Vars = RWDef->getValueAsListOfDefs("Variants");
584 for (Record *Variant : Vars) {
585 // Visit each RW in the sequence selected by the current variant.
586 RecVec Selected = Variant->getValueAsListOfDefs("Selected");
587 for (Record *SelDef : Selected)
588 scanSchedRW(SelDef, RWDefs, RWSet);
589 }
590 }
591 }
592
593 // Collect and sort all SchedReadWrites reachable via tablegen records.
594 // More may be inferred later when inferring new SchedClasses from variants.
collectSchedRW()595 void CodeGenSchedModels::collectSchedRW() {
596 // Reserve idx=0 for invalid writes/reads.
597 SchedWrites.resize(1);
598 SchedReads.resize(1);
599
600 SmallPtrSet<Record*, 16> RWSet;
601
602 // Find all SchedReadWrites referenced by instruction defs.
603 RecVec SWDefs, SRDefs;
604 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
605 Record *SchedDef = Inst->TheDef;
606 if (SchedDef->isValueUnset("SchedRW"))
607 continue;
608 RecVec RWs = SchedDef->getValueAsListOfDefs("SchedRW");
609 for (Record *RW : RWs) {
610 if (RW->isSubClassOf("SchedWrite"))
611 scanSchedRW(RW, SWDefs, RWSet);
612 else {
613 assert(RW->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
614 scanSchedRW(RW, SRDefs, RWSet);
615 }
616 }
617 }
618 // Find all ReadWrites referenced by InstRW.
619 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
620 for (Record *InstRWDef : InstRWDefs) {
621 // For all OperandReadWrites.
622 RecVec RWDefs = InstRWDef->getValueAsListOfDefs("OperandReadWrites");
623 for (Record *RWDef : RWDefs) {
624 if (RWDef->isSubClassOf("SchedWrite"))
625 scanSchedRW(RWDef, SWDefs, RWSet);
626 else {
627 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
628 scanSchedRW(RWDef, SRDefs, RWSet);
629 }
630 }
631 }
632 // Find all ReadWrites referenced by ItinRW.
633 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
634 for (Record *ItinRWDef : ItinRWDefs) {
635 // For all OperandReadWrites.
636 RecVec RWDefs = ItinRWDef->getValueAsListOfDefs("OperandReadWrites");
637 for (Record *RWDef : RWDefs) {
638 if (RWDef->isSubClassOf("SchedWrite"))
639 scanSchedRW(RWDef, SWDefs, RWSet);
640 else {
641 assert(RWDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
642 scanSchedRW(RWDef, SRDefs, RWSet);
643 }
644 }
645 }
646 // Find all ReadWrites referenced by SchedAlias. AliasDefs needs to be sorted
647 // for the loop below that initializes Alias vectors.
648 RecVec AliasDefs = Records.getAllDerivedDefinitions("SchedAlias");
649 llvm::sort(AliasDefs, LessRecord());
650 for (Record *ADef : AliasDefs) {
651 Record *MatchDef = ADef->getValueAsDef("MatchRW");
652 Record *AliasDef = ADef->getValueAsDef("AliasRW");
653 if (MatchDef->isSubClassOf("SchedWrite")) {
654 if (!AliasDef->isSubClassOf("SchedWrite"))
655 PrintFatalError(ADef->getLoc(), "SchedWrite Alias must be SchedWrite");
656 scanSchedRW(AliasDef, SWDefs, RWSet);
657 }
658 else {
659 assert(MatchDef->isSubClassOf("SchedRead") && "Unknown SchedReadWrite");
660 if (!AliasDef->isSubClassOf("SchedRead"))
661 PrintFatalError(ADef->getLoc(), "SchedRead Alias must be SchedRead");
662 scanSchedRW(AliasDef, SRDefs, RWSet);
663 }
664 }
665 // Sort and add the SchedReadWrites directly referenced by instructions or
666 // itinerary resources. Index reads and writes in separate domains.
667 llvm::sort(SWDefs, LessRecord());
668 for (Record *SWDef : SWDefs) {
669 assert(!getSchedRWIdx(SWDef, /*IsRead=*/false) && "duplicate SchedWrite");
670 SchedWrites.emplace_back(SchedWrites.size(), SWDef);
671 }
672 llvm::sort(SRDefs, LessRecord());
673 for (Record *SRDef : SRDefs) {
674 assert(!getSchedRWIdx(SRDef, /*IsRead-*/true) && "duplicate SchedWrite");
675 SchedReads.emplace_back(SchedReads.size(), SRDef);
676 }
677 // Initialize WriteSequence vectors.
678 for (CodeGenSchedRW &CGRW : SchedWrites) {
679 if (!CGRW.IsSequence)
680 continue;
681 findRWs(CGRW.TheDef->getValueAsListOfDefs("Writes"), CGRW.Sequence,
682 /*IsRead=*/false);
683 }
684 // Initialize Aliases vectors.
685 for (Record *ADef : AliasDefs) {
686 Record *AliasDef = ADef->getValueAsDef("AliasRW");
687 getSchedRW(AliasDef).IsAlias = true;
688 Record *MatchDef = ADef->getValueAsDef("MatchRW");
689 CodeGenSchedRW &RW = getSchedRW(MatchDef);
690 if (RW.IsAlias)
691 PrintFatalError(ADef->getLoc(), "Cannot Alias an Alias");
692 RW.Aliases.push_back(ADef);
693 }
694 LLVM_DEBUG(
695 dbgs() << "\n+++ SCHED READS and WRITES (collectSchedRW) +++\n";
696 for (unsigned WIdx = 0, WEnd = SchedWrites.size(); WIdx != WEnd; ++WIdx) {
697 dbgs() << WIdx << ": ";
698 SchedWrites[WIdx].dump();
699 dbgs() << '\n';
700 } for (unsigned RIdx = 0, REnd = SchedReads.size(); RIdx != REnd;
701 ++RIdx) {
702 dbgs() << RIdx << ": ";
703 SchedReads[RIdx].dump();
704 dbgs() << '\n';
705 } RecVec RWDefs = Records.getAllDerivedDefinitions("SchedReadWrite");
706 for (Record *RWDef
707 : RWDefs) {
708 if (!getSchedRWIdx(RWDef, RWDef->isSubClassOf("SchedRead"))) {
709 StringRef Name = RWDef->getName();
710 if (Name != "NoWrite" && Name != "ReadDefault")
711 dbgs() << "Unused SchedReadWrite " << Name << '\n';
712 }
713 });
714 }
715
716 /// Compute a SchedWrite name from a sequence of writes.
genRWName(ArrayRef<unsigned> Seq,bool IsRead)717 std::string CodeGenSchedModels::genRWName(ArrayRef<unsigned> Seq, bool IsRead) {
718 std::string Name("(");
719 ListSeparator LS("_");
720 for (unsigned I : Seq) {
721 Name += LS;
722 Name += getSchedRW(I, IsRead).Name;
723 }
724 Name += ')';
725 return Name;
726 }
727
getSchedRWIdx(const Record * Def,bool IsRead) const728 unsigned CodeGenSchedModels::getSchedRWIdx(const Record *Def,
729 bool IsRead) const {
730 const std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
731 const auto I = find_if(
732 RWVec, [Def](const CodeGenSchedRW &RW) { return RW.TheDef == Def; });
733 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
734 }
735
hasReadOfWrite(Record * WriteDef) const736 bool CodeGenSchedModels::hasReadOfWrite(Record *WriteDef) const {
737 for (auto& ProcModel : ProcModels) {
738 const RecVec &RADefs = ProcModel.ReadAdvanceDefs;
739 for (auto& RADef : RADefs) {
740 RecVec ValidWrites = RADef->getValueAsListOfDefs("ValidWrites");
741 if (is_contained(ValidWrites, WriteDef))
742 return true;
743 }
744 }
745 return false;
746 }
747
splitSchedReadWrites(const RecVec & RWDefs,RecVec & WriteDefs,RecVec & ReadDefs)748 static void splitSchedReadWrites(const RecVec &RWDefs,
749 RecVec &WriteDefs, RecVec &ReadDefs) {
750 for (Record *RWDef : RWDefs) {
751 if (RWDef->isSubClassOf("SchedWrite"))
752 WriteDefs.push_back(RWDef);
753 else {
754 assert(RWDef->isSubClassOf("SchedRead") && "unknown SchedReadWrite");
755 ReadDefs.push_back(RWDef);
756 }
757 }
758 }
759
760 // Split the SchedReadWrites defs and call findRWs for each list.
findRWs(const RecVec & RWDefs,IdxVec & Writes,IdxVec & Reads) const761 void CodeGenSchedModels::findRWs(const RecVec &RWDefs,
762 IdxVec &Writes, IdxVec &Reads) const {
763 RecVec WriteDefs;
764 RecVec ReadDefs;
765 splitSchedReadWrites(RWDefs, WriteDefs, ReadDefs);
766 findRWs(WriteDefs, Writes, false);
767 findRWs(ReadDefs, Reads, true);
768 }
769
770 // Call getSchedRWIdx for all elements in a sequence of SchedRW defs.
findRWs(const RecVec & RWDefs,IdxVec & RWs,bool IsRead) const771 void CodeGenSchedModels::findRWs(const RecVec &RWDefs, IdxVec &RWs,
772 bool IsRead) const {
773 for (Record *RWDef : RWDefs) {
774 unsigned Idx = getSchedRWIdx(RWDef, IsRead);
775 assert(Idx && "failed to collect SchedReadWrite");
776 RWs.push_back(Idx);
777 }
778 }
779
expandRWSequence(unsigned RWIdx,IdxVec & RWSeq,bool IsRead) const780 void CodeGenSchedModels::expandRWSequence(unsigned RWIdx, IdxVec &RWSeq,
781 bool IsRead) const {
782 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
783 if (!SchedRW.IsSequence) {
784 RWSeq.push_back(RWIdx);
785 return;
786 }
787 int Repeat =
788 SchedRW.TheDef ? SchedRW.TheDef->getValueAsInt("Repeat") : 1;
789 for (int i = 0; i < Repeat; ++i) {
790 for (unsigned I : SchedRW.Sequence) {
791 expandRWSequence(I, RWSeq, IsRead);
792 }
793 }
794 }
795
796 // Expand a SchedWrite as a sequence following any aliases that coincide with
797 // the given processor model.
expandRWSeqForProc(unsigned RWIdx,IdxVec & RWSeq,bool IsRead,const CodeGenProcModel & ProcModel) const798 void CodeGenSchedModels::expandRWSeqForProc(
799 unsigned RWIdx, IdxVec &RWSeq, bool IsRead,
800 const CodeGenProcModel &ProcModel) const {
801
802 const CodeGenSchedRW &SchedWrite = getSchedRW(RWIdx, IsRead);
803 Record *AliasDef = nullptr;
804 for (const Record *Rec : SchedWrite.Aliases) {
805 const CodeGenSchedRW &AliasRW = getSchedRW(Rec->getValueAsDef("AliasRW"));
806 if (Rec->getValueInit("SchedModel")->isComplete()) {
807 Record *ModelDef = Rec->getValueAsDef("SchedModel");
808 if (&getProcModel(ModelDef) != &ProcModel)
809 continue;
810 }
811 if (AliasDef)
812 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
813 "defined for processor " + ProcModel.ModelName +
814 " Ensure only one SchedAlias exists per RW.");
815 AliasDef = AliasRW.TheDef;
816 }
817 if (AliasDef) {
818 expandRWSeqForProc(getSchedRWIdx(AliasDef, IsRead),
819 RWSeq, IsRead,ProcModel);
820 return;
821 }
822 if (!SchedWrite.IsSequence) {
823 RWSeq.push_back(RWIdx);
824 return;
825 }
826 int Repeat =
827 SchedWrite.TheDef ? SchedWrite.TheDef->getValueAsInt("Repeat") : 1;
828 for (int I = 0, E = Repeat; I < E; ++I) {
829 for (unsigned Idx : SchedWrite.Sequence) {
830 expandRWSeqForProc(Idx, RWSeq, IsRead, ProcModel);
831 }
832 }
833 }
834
835 // Find the existing SchedWrite that models this sequence of writes.
findRWForSequence(ArrayRef<unsigned> Seq,bool IsRead)836 unsigned CodeGenSchedModels::findRWForSequence(ArrayRef<unsigned> Seq,
837 bool IsRead) {
838 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
839
840 auto I = find_if(RWVec, [Seq](CodeGenSchedRW &RW) {
841 return ArrayRef(RW.Sequence) == Seq;
842 });
843 // Index zero reserved for invalid RW.
844 return I == RWVec.end() ? 0 : std::distance(RWVec.begin(), I);
845 }
846
847 /// Add this ReadWrite if it doesn't already exist.
findOrInsertRW(ArrayRef<unsigned> Seq,bool IsRead)848 unsigned CodeGenSchedModels::findOrInsertRW(ArrayRef<unsigned> Seq,
849 bool IsRead) {
850 assert(!Seq.empty() && "cannot insert empty sequence");
851 if (Seq.size() == 1)
852 return Seq.back();
853
854 unsigned Idx = findRWForSequence(Seq, IsRead);
855 if (Idx)
856 return Idx;
857
858 std::vector<CodeGenSchedRW> &RWVec = IsRead ? SchedReads : SchedWrites;
859 unsigned RWIdx = RWVec.size();
860 CodeGenSchedRW SchedRW(RWIdx, IsRead, Seq, genRWName(Seq, IsRead));
861 RWVec.push_back(SchedRW);
862 return RWIdx;
863 }
864
865 /// Visit all the instruction definitions for this target to gather and
866 /// enumerate the itinerary classes. These are the explicitly specified
867 /// SchedClasses. More SchedClasses may be inferred.
collectSchedClasses()868 void CodeGenSchedModels::collectSchedClasses() {
869
870 // NoItinerary is always the first class at Idx=0
871 assert(SchedClasses.empty() && "Expected empty sched class");
872 SchedClasses.emplace_back(0, "NoInstrModel",
873 Records.getDef("NoItinerary"));
874 SchedClasses.back().ProcIndices.push_back(0);
875
876 // Create a SchedClass for each unique combination of itinerary class and
877 // SchedRW list.
878 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
879 Record *ItinDef = Inst->TheDef->getValueAsDef("Itinerary");
880 IdxVec Writes, Reads;
881 if (!Inst->TheDef->isValueUnset("SchedRW"))
882 findRWs(Inst->TheDef->getValueAsListOfDefs("SchedRW"), Writes, Reads);
883
884 // ProcIdx == 0 indicates the class applies to all processors.
885 unsigned SCIdx = addSchedClass(ItinDef, Writes, Reads, /*ProcIndices*/{0});
886 InstrClassMap[Inst->TheDef] = SCIdx;
887 }
888 // Create classes for InstRW defs.
889 RecVec InstRWDefs = Records.getAllDerivedDefinitions("InstRW");
890 llvm::sort(InstRWDefs, LessRecord());
891 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (createInstRWClass) +++\n");
892 for (Record *RWDef : InstRWDefs)
893 createInstRWClass(RWDef);
894
895 NumInstrSchedClasses = SchedClasses.size();
896
897 bool EnableDump = false;
898 LLVM_DEBUG(EnableDump = true);
899 if (!EnableDump)
900 return;
901
902 LLVM_DEBUG(
903 dbgs()
904 << "\n+++ ITINERARIES and/or MACHINE MODELS (collectSchedClasses) +++\n");
905 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
906 StringRef InstName = Inst->TheDef->getName();
907 unsigned SCIdx = getSchedClassIdx(*Inst);
908 if (!SCIdx) {
909 LLVM_DEBUG({
910 if (!Inst->hasNoSchedulingInfo)
911 dbgs() << "No machine model for " << Inst->TheDef->getName() << '\n';
912 });
913 continue;
914 }
915 CodeGenSchedClass &SC = getSchedClass(SCIdx);
916 if (SC.ProcIndices[0] != 0)
917 PrintFatalError(Inst->TheDef->getLoc(), "Instruction's sched class "
918 "must not be subtarget specific.");
919
920 IdxVec ProcIndices;
921 if (SC.ItinClassDef->getName() != "NoItinerary") {
922 ProcIndices.push_back(0);
923 dbgs() << "Itinerary for " << InstName << ": "
924 << SC.ItinClassDef->getName() << '\n';
925 }
926 if (!SC.Writes.empty()) {
927 ProcIndices.push_back(0);
928 LLVM_DEBUG({
929 dbgs() << "SchedRW machine model for " << InstName;
930 for (unsigned int Write : SC.Writes)
931 dbgs() << " " << SchedWrites[Write].Name;
932 for (unsigned int Read : SC.Reads)
933 dbgs() << " " << SchedReads[Read].Name;
934 dbgs() << '\n';
935 });
936 }
937 const RecVec &RWDefs = SchedClasses[SCIdx].InstRWs;
938 for (Record *RWDef : RWDefs) {
939 const CodeGenProcModel &ProcModel =
940 getProcModel(RWDef->getValueAsDef("SchedModel"));
941 ProcIndices.push_back(ProcModel.Index);
942 LLVM_DEBUG(dbgs() << "InstRW on " << ProcModel.ModelName << " for "
943 << InstName);
944 IdxVec Writes;
945 IdxVec Reads;
946 findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
947 Writes, Reads);
948 LLVM_DEBUG({
949 for (unsigned WIdx : Writes)
950 dbgs() << " " << SchedWrites[WIdx].Name;
951 for (unsigned RIdx : Reads)
952 dbgs() << " " << SchedReads[RIdx].Name;
953 dbgs() << '\n';
954 });
955 }
956 // If ProcIndices contains zero, the class applies to all processors.
957 LLVM_DEBUG({
958 if (!llvm::is_contained(ProcIndices, 0)) {
959 for (const CodeGenProcModel &PM : ProcModels) {
960 if (!llvm::is_contained(ProcIndices, PM.Index))
961 dbgs() << "No machine model for " << Inst->TheDef->getName()
962 << " on processor " << PM.ModelName << '\n';
963 }
964 }
965 });
966 }
967 }
968
969 // Get the SchedClass index for an instruction.
970 unsigned
getSchedClassIdx(const CodeGenInstruction & Inst) const971 CodeGenSchedModels::getSchedClassIdx(const CodeGenInstruction &Inst) const {
972 return InstrClassMap.lookup(Inst.TheDef);
973 }
974
975 std::string
createSchedClassName(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads)976 CodeGenSchedModels::createSchedClassName(Record *ItinClassDef,
977 ArrayRef<unsigned> OperWrites,
978 ArrayRef<unsigned> OperReads) {
979
980 std::string Name;
981 if (ItinClassDef && ItinClassDef->getName() != "NoItinerary")
982 Name = std::string(ItinClassDef->getName());
983 for (unsigned Idx : OperWrites) {
984 if (!Name.empty())
985 Name += '_';
986 Name += SchedWrites[Idx].Name;
987 }
988 for (unsigned Idx : OperReads) {
989 Name += '_';
990 Name += SchedReads[Idx].Name;
991 }
992 return Name;
993 }
994
createSchedClassName(const RecVec & InstDefs)995 std::string CodeGenSchedModels::createSchedClassName(const RecVec &InstDefs) {
996
997 std::string Name;
998 ListSeparator LS("_");
999 for (const Record *InstDef : InstDefs) {
1000 Name += LS;
1001 Name += InstDef->getName();
1002 }
1003 return Name;
1004 }
1005
1006 /// Add an inferred sched class from an itinerary class and per-operand list of
1007 /// SchedWrites and SchedReads. ProcIndices contains the set of IDs of
1008 /// processors that may utilize this class.
addSchedClass(Record * ItinClassDef,ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,ArrayRef<unsigned> ProcIndices)1009 unsigned CodeGenSchedModels::addSchedClass(Record *ItinClassDef,
1010 ArrayRef<unsigned> OperWrites,
1011 ArrayRef<unsigned> OperReads,
1012 ArrayRef<unsigned> ProcIndices) {
1013 assert(!ProcIndices.empty() && "expect at least one ProcIdx");
1014
1015 auto IsKeyEqual = [=](const CodeGenSchedClass &SC) {
1016 return SC.isKeyEqual(ItinClassDef, OperWrites, OperReads);
1017 };
1018
1019 auto I = find_if(make_range(schedClassBegin(), schedClassEnd()), IsKeyEqual);
1020 unsigned Idx = I == schedClassEnd() ? 0 : std::distance(schedClassBegin(), I);
1021 if (Idx || SchedClasses[0].isKeyEqual(ItinClassDef, OperWrites, OperReads)) {
1022 IdxVec PI;
1023 std::set_union(SchedClasses[Idx].ProcIndices.begin(),
1024 SchedClasses[Idx].ProcIndices.end(),
1025 ProcIndices.begin(), ProcIndices.end(),
1026 std::back_inserter(PI));
1027 SchedClasses[Idx].ProcIndices = std::move(PI);
1028 return Idx;
1029 }
1030 Idx = SchedClasses.size();
1031 SchedClasses.emplace_back(Idx,
1032 createSchedClassName(ItinClassDef, OperWrites,
1033 OperReads),
1034 ItinClassDef);
1035 CodeGenSchedClass &SC = SchedClasses.back();
1036 SC.Writes = OperWrites;
1037 SC.Reads = OperReads;
1038 SC.ProcIndices = ProcIndices;
1039
1040 return Idx;
1041 }
1042
1043 // Create classes for each set of opcodes that are in the same InstReadWrite
1044 // definition across all processors.
createInstRWClass(Record * InstRWDef)1045 void CodeGenSchedModels::createInstRWClass(Record *InstRWDef) {
1046 // ClassInstrs will hold an entry for each subset of Instrs in InstRWDef that
1047 // intersects with an existing class via a previous InstRWDef. Instrs that do
1048 // not intersect with an existing class refer back to their former class as
1049 // determined from ItinDef or SchedRW.
1050 SmallMapVector<unsigned, SmallVector<Record *, 8>, 4> ClassInstrs;
1051 // Sort Instrs into sets.
1052 const RecVec *InstDefs = Sets.expand(InstRWDef);
1053 if (InstDefs->empty())
1054 PrintFatalError(InstRWDef->getLoc(), "No matching instruction opcodes");
1055
1056 for (Record *InstDef : *InstDefs) {
1057 InstClassMapTy::const_iterator Pos = InstrClassMap.find(InstDef);
1058 if (Pos == InstrClassMap.end())
1059 PrintFatalError(InstDef->getLoc(), "No sched class for instruction.");
1060 unsigned SCIdx = Pos->second;
1061 ClassInstrs[SCIdx].push_back(InstDef);
1062 }
1063 // For each set of Instrs, create a new class if necessary, and map or remap
1064 // the Instrs to it.
1065 for (auto &Entry : ClassInstrs) {
1066 unsigned OldSCIdx = Entry.first;
1067 ArrayRef<Record*> InstDefs = Entry.second;
1068 // If the all instrs in the current class are accounted for, then leave
1069 // them mapped to their old class.
1070 if (OldSCIdx) {
1071 const RecVec &RWDefs = SchedClasses[OldSCIdx].InstRWs;
1072 if (!RWDefs.empty()) {
1073 const RecVec *OrigInstDefs = Sets.expand(RWDefs[0]);
1074 unsigned OrigNumInstrs =
1075 count_if(*OrigInstDefs, [&](Record *OIDef) {
1076 return InstrClassMap[OIDef] == OldSCIdx;
1077 });
1078 if (OrigNumInstrs == InstDefs.size()) {
1079 assert(SchedClasses[OldSCIdx].ProcIndices[0] == 0 &&
1080 "expected a generic SchedClass");
1081 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1082 // Make sure we didn't already have a InstRW containing this
1083 // instruction on this model.
1084 for (Record *RWD : RWDefs) {
1085 if (RWD->getValueAsDef("SchedModel") == RWModelDef &&
1086 RWModelDef->getValueAsBit("FullInstRWOverlapCheck")) {
1087 assert(!InstDefs.empty()); // Checked at function start.
1088 PrintError(
1089 InstRWDef->getLoc(),
1090 "Overlapping InstRW definition for \"" +
1091 InstDefs.front()->getName() +
1092 "\" also matches previous \"" +
1093 RWD->getValue("Instrs")->getValue()->getAsString() +
1094 "\".");
1095 PrintFatalNote(RWD->getLoc(), "Previous match was here.");
1096 }
1097 }
1098 LLVM_DEBUG(dbgs() << "InstRW: Reuse SC " << OldSCIdx << ":"
1099 << SchedClasses[OldSCIdx].Name << " on "
1100 << RWModelDef->getName() << "\n");
1101 SchedClasses[OldSCIdx].InstRWs.push_back(InstRWDef);
1102 continue;
1103 }
1104 }
1105 }
1106 unsigned SCIdx = SchedClasses.size();
1107 SchedClasses.emplace_back(SCIdx, createSchedClassName(InstDefs), nullptr);
1108 CodeGenSchedClass &SC = SchedClasses.back();
1109 LLVM_DEBUG(dbgs() << "InstRW: New SC " << SCIdx << ":" << SC.Name << " on "
1110 << InstRWDef->getValueAsDef("SchedModel")->getName()
1111 << "\n");
1112
1113 // Preserve ItinDef and Writes/Reads for processors without an InstRW entry.
1114 SC.ItinClassDef = SchedClasses[OldSCIdx].ItinClassDef;
1115 SC.Writes = SchedClasses[OldSCIdx].Writes;
1116 SC.Reads = SchedClasses[OldSCIdx].Reads;
1117 SC.ProcIndices.push_back(0);
1118 // If we had an old class, copy it's InstRWs to this new class.
1119 if (OldSCIdx) {
1120 Record *RWModelDef = InstRWDef->getValueAsDef("SchedModel");
1121 for (Record *OldRWDef : SchedClasses[OldSCIdx].InstRWs) {
1122 if (OldRWDef->getValueAsDef("SchedModel") == RWModelDef) {
1123 assert(!InstDefs.empty()); // Checked at function start.
1124 PrintError(
1125 InstRWDef->getLoc(),
1126 "Overlapping InstRW definition for \"" +
1127 InstDefs.front()->getName() + "\" also matches previous \"" +
1128 OldRWDef->getValue("Instrs")->getValue()->getAsString() +
1129 "\".");
1130 PrintFatalNote(OldRWDef->getLoc(), "Previous match was here.");
1131 }
1132 assert(OldRWDef != InstRWDef &&
1133 "SchedClass has duplicate InstRW def");
1134 SC.InstRWs.push_back(OldRWDef);
1135 }
1136 }
1137 // Map each Instr to this new class.
1138 for (Record *InstDef : InstDefs)
1139 InstrClassMap[InstDef] = SCIdx;
1140 SC.InstRWs.push_back(InstRWDef);
1141 }
1142 }
1143
1144 // True if collectProcItins found anything.
hasItineraries() const1145 bool CodeGenSchedModels::hasItineraries() const {
1146 for (const CodeGenProcModel &PM : make_range(procModelBegin(),procModelEnd()))
1147 if (PM.hasItineraries())
1148 return true;
1149 return false;
1150 }
1151
1152 // Gather the processor itineraries.
collectProcItins()1153 void CodeGenSchedModels::collectProcItins() {
1154 LLVM_DEBUG(dbgs() << "\n+++ PROBLEM ITINERARIES (collectProcItins) +++\n");
1155 for (CodeGenProcModel &ProcModel : ProcModels) {
1156 if (!ProcModel.hasItineraries())
1157 continue;
1158
1159 RecVec ItinRecords = ProcModel.ItinsDef->getValueAsListOfDefs("IID");
1160 assert(!ItinRecords.empty() && "ProcModel.hasItineraries is incorrect");
1161
1162 // Populate ItinDefList with Itinerary records.
1163 ProcModel.ItinDefList.resize(NumInstrSchedClasses);
1164
1165 // Insert each itinerary data record in the correct position within
1166 // the processor model's ItinDefList.
1167 for (Record *ItinData : ItinRecords) {
1168 const Record *ItinDef = ItinData->getValueAsDef("TheClass");
1169 bool FoundClass = false;
1170
1171 for (const CodeGenSchedClass &SC :
1172 make_range(schedClassBegin(), schedClassEnd())) {
1173 // Multiple SchedClasses may share an itinerary. Update all of them.
1174 if (SC.ItinClassDef == ItinDef) {
1175 ProcModel.ItinDefList[SC.Index] = ItinData;
1176 FoundClass = true;
1177 }
1178 }
1179 if (!FoundClass) {
1180 LLVM_DEBUG(dbgs() << ProcModel.ItinsDef->getName()
1181 << " missing class for itinerary "
1182 << ItinDef->getName() << '\n');
1183 }
1184 }
1185 // Check for missing itinerary entries.
1186 assert(!ProcModel.ItinDefList[0] && "NoItinerary class can't have rec");
1187 LLVM_DEBUG(
1188 for (unsigned i = 1, N = ProcModel.ItinDefList.size(); i < N; ++i) {
1189 if (!ProcModel.ItinDefList[i])
1190 dbgs() << ProcModel.ItinsDef->getName()
1191 << " missing itinerary for class " << SchedClasses[i].Name
1192 << '\n';
1193 });
1194 }
1195 }
1196
1197 // Gather the read/write types for each itinerary class.
collectProcItinRW()1198 void CodeGenSchedModels::collectProcItinRW() {
1199 RecVec ItinRWDefs = Records.getAllDerivedDefinitions("ItinRW");
1200 llvm::sort(ItinRWDefs, LessRecord());
1201 for (Record *RWDef : ItinRWDefs) {
1202 if (!RWDef->getValueInit("SchedModel")->isComplete())
1203 PrintFatalError(RWDef->getLoc(), "SchedModel is undefined");
1204 Record *ModelDef = RWDef->getValueAsDef("SchedModel");
1205 ProcModelMapTy::const_iterator I = ProcModelMap.find(ModelDef);
1206 if (I == ProcModelMap.end()) {
1207 PrintFatalError(RWDef->getLoc(), "Undefined SchedMachineModel "
1208 + ModelDef->getName());
1209 }
1210 ProcModels[I->second].ItinRWDefs.push_back(RWDef);
1211 }
1212 }
1213
1214 // Gather the unsupported features for processor models.
collectProcUnsupportedFeatures()1215 void CodeGenSchedModels::collectProcUnsupportedFeatures() {
1216 for (CodeGenProcModel &ProcModel : ProcModels)
1217 append_range(
1218 ProcModel.UnsupportedFeaturesDefs,
1219 ProcModel.ModelDef->getValueAsListOfDefs("UnsupportedFeatures"));
1220 }
1221
1222 /// Infer new classes from existing classes. In the process, this may create new
1223 /// SchedWrites from sequences of existing SchedWrites.
inferSchedClasses()1224 void CodeGenSchedModels::inferSchedClasses() {
1225 LLVM_DEBUG(
1226 dbgs() << "\n+++ INFERRING SCHED CLASSES (inferSchedClasses) +++\n");
1227 LLVM_DEBUG(dbgs() << NumInstrSchedClasses << " instr sched classes.\n");
1228
1229 // Visit all existing classes and newly created classes.
1230 for (unsigned Idx = 0; Idx != SchedClasses.size(); ++Idx) {
1231 assert(SchedClasses[Idx].Index == Idx && "bad SCIdx");
1232
1233 if (SchedClasses[Idx].ItinClassDef)
1234 inferFromItinClass(SchedClasses[Idx].ItinClassDef, Idx);
1235 if (!SchedClasses[Idx].InstRWs.empty())
1236 inferFromInstRWs(Idx);
1237 if (!SchedClasses[Idx].Writes.empty()) {
1238 inferFromRW(SchedClasses[Idx].Writes, SchedClasses[Idx].Reads,
1239 Idx, SchedClasses[Idx].ProcIndices);
1240 }
1241 assert(SchedClasses.size() < (NumInstrSchedClasses*6) &&
1242 "too many SchedVariants");
1243 }
1244 }
1245
1246 /// Infer classes from per-processor itinerary resources.
inferFromItinClass(Record * ItinClassDef,unsigned FromClassIdx)1247 void CodeGenSchedModels::inferFromItinClass(Record *ItinClassDef,
1248 unsigned FromClassIdx) {
1249 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
1250 const CodeGenProcModel &PM = ProcModels[PIdx];
1251 // For all ItinRW entries.
1252 bool HasMatch = false;
1253 for (const Record *Rec : PM.ItinRWDefs) {
1254 RecVec Matched = Rec->getValueAsListOfDefs("MatchedItinClasses");
1255 if (!llvm::is_contained(Matched, ItinClassDef))
1256 continue;
1257 if (HasMatch)
1258 PrintFatalError(Rec->getLoc(), "Duplicate itinerary class "
1259 + ItinClassDef->getName()
1260 + " in ItinResources for " + PM.ModelName);
1261 HasMatch = true;
1262 IdxVec Writes, Reads;
1263 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1264 inferFromRW(Writes, Reads, FromClassIdx, PIdx);
1265 }
1266 }
1267 }
1268
1269 /// Infer classes from per-processor InstReadWrite definitions.
inferFromInstRWs(unsigned SCIdx)1270 void CodeGenSchedModels::inferFromInstRWs(unsigned SCIdx) {
1271 for (unsigned I = 0, E = SchedClasses[SCIdx].InstRWs.size(); I != E; ++I) {
1272 assert(SchedClasses[SCIdx].InstRWs.size() == E && "InstrRWs was mutated!");
1273 Record *Rec = SchedClasses[SCIdx].InstRWs[I];
1274 const RecVec *InstDefs = Sets.expand(Rec);
1275 RecIter II = InstDefs->begin(), IE = InstDefs->end();
1276 for (; II != IE; ++II) {
1277 if (InstrClassMap[*II] == SCIdx)
1278 break;
1279 }
1280 // If this class no longer has any instructions mapped to it, it has become
1281 // irrelevant.
1282 if (II == IE)
1283 continue;
1284 IdxVec Writes, Reads;
1285 findRWs(Rec->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1286 unsigned PIdx = getProcModel(Rec->getValueAsDef("SchedModel")).Index;
1287 inferFromRW(Writes, Reads, SCIdx, PIdx); // May mutate SchedClasses.
1288 SchedClasses[SCIdx].InstRWProcIndices.insert(PIdx);
1289 }
1290 }
1291
1292 namespace {
1293
1294 // Helper for substituteVariantOperand.
1295 struct TransVariant {
1296 Record *VarOrSeqDef; // Variant or sequence.
1297 unsigned RWIdx; // Index of this variant or sequence's matched type.
1298 unsigned ProcIdx; // Processor model index or zero for any.
1299 unsigned TransVecIdx; // Index into PredTransitions::TransVec.
1300
TransVariant__anon8686fb2a0b11::TransVariant1301 TransVariant(Record *def, unsigned rwi, unsigned pi, unsigned ti):
1302 VarOrSeqDef(def), RWIdx(rwi), ProcIdx(pi), TransVecIdx(ti) {}
1303 };
1304
1305 // Associate a predicate with the SchedReadWrite that it guards.
1306 // RWIdx is the index of the read/write variant.
1307 struct PredCheck {
1308 bool IsRead;
1309 unsigned RWIdx;
1310 Record *Predicate;
1311
PredCheck__anon8686fb2a0b11::PredCheck1312 PredCheck(bool r, unsigned w, Record *p): IsRead(r), RWIdx(w), Predicate(p) {}
1313 };
1314
1315 // A Predicate transition is a list of RW sequences guarded by a PredTerm.
1316 struct PredTransition {
1317 // A predicate term is a conjunction of PredChecks.
1318 SmallVector<PredCheck, 4> PredTerm;
1319 SmallVector<SmallVector<unsigned,4>, 16> WriteSequences;
1320 SmallVector<SmallVector<unsigned,4>, 16> ReadSequences;
1321 unsigned ProcIndex = 0;
1322
1323 PredTransition() = default;
PredTransition__anon8686fb2a0b11::PredTransition1324 PredTransition(ArrayRef<PredCheck> PT, unsigned ProcId) {
1325 PredTerm.assign(PT.begin(), PT.end());
1326 ProcIndex = ProcId;
1327 }
1328 };
1329
1330 // Encapsulate a set of partially constructed transitions.
1331 // The results are built by repeated calls to substituteVariants.
1332 class PredTransitions {
1333 CodeGenSchedModels &SchedModels;
1334
1335 public:
1336 std::vector<PredTransition> TransVec;
1337
PredTransitions(CodeGenSchedModels & sm)1338 PredTransitions(CodeGenSchedModels &sm): SchedModels(sm) {}
1339
1340 bool substituteVariantOperand(const SmallVectorImpl<unsigned> &RWSeq,
1341 bool IsRead, unsigned StartIdx);
1342
1343 bool substituteVariants(const PredTransition &Trans);
1344
1345 #ifndef NDEBUG
1346 void dump() const;
1347 #endif
1348
1349 private:
1350 bool mutuallyExclusive(Record *PredDef, ArrayRef<Record *> Preds,
1351 ArrayRef<PredCheck> Term);
1352 void getIntersectingVariants(
1353 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1354 std::vector<TransVariant> &IntersectingVariants);
1355 void pushVariant(const TransVariant &VInfo, bool IsRead);
1356 };
1357
1358 } // end anonymous namespace
1359
1360 // Return true if this predicate is mutually exclusive with a PredTerm. This
1361 // degenerates into checking if the predicate is mutually exclusive with any
1362 // predicate in the Term's conjunction.
1363 //
1364 // All predicates associated with a given SchedRW are considered mutually
1365 // exclusive. This should work even if the conditions expressed by the
1366 // predicates are not exclusive because the predicates for a given SchedWrite
1367 // are always checked in the order they are defined in the .td file. Later
1368 // conditions implicitly negate any prior condition.
mutuallyExclusive(Record * PredDef,ArrayRef<Record * > Preds,ArrayRef<PredCheck> Term)1369 bool PredTransitions::mutuallyExclusive(Record *PredDef,
1370 ArrayRef<Record *> Preds,
1371 ArrayRef<PredCheck> Term) {
1372 for (const PredCheck &PC: Term) {
1373 if (PC.Predicate == PredDef)
1374 return false;
1375
1376 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(PC.RWIdx, PC.IsRead);
1377 assert(SchedRW.HasVariants && "PredCheck must refer to a SchedVariant");
1378 RecVec Variants = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1379 if (any_of(Variants, [PredDef](const Record *R) {
1380 return R->getValueAsDef("Predicate") == PredDef;
1381 })) {
1382 // To check if PredDef is mutually exclusive with PC we also need to
1383 // check that PC.Predicate is exclusive with all predicates from variant
1384 // we're expanding. Consider following RW sequence with two variants
1385 // (1 & 2), where A, B and C are predicates from corresponding SchedVars:
1386 //
1387 // 1:A/B - 2:C/B
1388 //
1389 // Here C is not mutually exclusive with variant (1), because A doesn't
1390 // exist in variant (2). This means we have possible transitions from A
1391 // to C and from A to B, and fully expanded sequence would look like:
1392 //
1393 // if (A & C) return ...;
1394 // if (A & B) return ...;
1395 // if (B) return ...;
1396 //
1397 // Now let's consider another sequence:
1398 //
1399 // 1:A/B - 2:A/B
1400 //
1401 // Here A in variant (2) is mutually exclusive with variant (1), because
1402 // A also exists in (2). This means A->B transition is impossible and
1403 // expanded sequence would look like:
1404 //
1405 // if (A) return ...;
1406 // if (B) return ...;
1407 if (!llvm::is_contained(Preds, PC.Predicate))
1408 continue;
1409 return true;
1410 }
1411 }
1412 return false;
1413 }
1414
getAllPredicates(ArrayRef<TransVariant> Variants,unsigned ProcId)1415 static std::vector<Record *> getAllPredicates(ArrayRef<TransVariant> Variants,
1416 unsigned ProcId) {
1417 std::vector<Record *> Preds;
1418 for (auto &Variant : Variants) {
1419 if (!Variant.VarOrSeqDef->isSubClassOf("SchedVar"))
1420 continue;
1421 Preds.push_back(Variant.VarOrSeqDef->getValueAsDef("Predicate"));
1422 }
1423 return Preds;
1424 }
1425
1426 // Populate IntersectingVariants with any variants or aliased sequences of the
1427 // given SchedRW whose processor indices and predicates are not mutually
1428 // exclusive with the given transition.
getIntersectingVariants(const CodeGenSchedRW & SchedRW,unsigned TransIdx,std::vector<TransVariant> & IntersectingVariants)1429 void PredTransitions::getIntersectingVariants(
1430 const CodeGenSchedRW &SchedRW, unsigned TransIdx,
1431 std::vector<TransVariant> &IntersectingVariants) {
1432
1433 bool GenericRW = false;
1434
1435 std::vector<TransVariant> Variants;
1436 if (SchedRW.HasVariants) {
1437 unsigned VarProcIdx = 0;
1438 if (SchedRW.TheDef->getValueInit("SchedModel")->isComplete()) {
1439 Record *ModelDef = SchedRW.TheDef->getValueAsDef("SchedModel");
1440 VarProcIdx = SchedModels.getProcModel(ModelDef).Index;
1441 }
1442 if (VarProcIdx == 0 || VarProcIdx == TransVec[TransIdx].ProcIndex) {
1443 // Push each variant. Assign TransVecIdx later.
1444 const RecVec VarDefs = SchedRW.TheDef->getValueAsListOfDefs("Variants");
1445 for (Record *VarDef : VarDefs)
1446 Variants.emplace_back(VarDef, SchedRW.Index, VarProcIdx, 0);
1447 if (VarProcIdx == 0)
1448 GenericRW = true;
1449 }
1450 }
1451 for (RecIter AI = SchedRW.Aliases.begin(), AE = SchedRW.Aliases.end();
1452 AI != AE; ++AI) {
1453 // If either the SchedAlias itself or the SchedReadWrite that it aliases
1454 // to is defined within a processor model, constrain all variants to
1455 // that processor.
1456 unsigned AliasProcIdx = 0;
1457 if ((*AI)->getValueInit("SchedModel")->isComplete()) {
1458 Record *ModelDef = (*AI)->getValueAsDef("SchedModel");
1459 AliasProcIdx = SchedModels.getProcModel(ModelDef).Index;
1460 }
1461 if (AliasProcIdx && AliasProcIdx != TransVec[TransIdx].ProcIndex)
1462 continue;
1463 if (!Variants.empty()) {
1464 const CodeGenProcModel &PM =
1465 *(SchedModels.procModelBegin() + AliasProcIdx);
1466 PrintFatalError((*AI)->getLoc(),
1467 "Multiple variants defined for processor " +
1468 PM.ModelName +
1469 " Ensure only one SchedAlias exists per RW.");
1470 }
1471
1472 const CodeGenSchedRW &AliasRW =
1473 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW"));
1474
1475 if (AliasRW.HasVariants) {
1476 const RecVec VarDefs = AliasRW.TheDef->getValueAsListOfDefs("Variants");
1477 for (Record *VD : VarDefs)
1478 Variants.emplace_back(VD, AliasRW.Index, AliasProcIdx, 0);
1479 }
1480 if (AliasRW.IsSequence)
1481 Variants.emplace_back(AliasRW.TheDef, SchedRW.Index, AliasProcIdx, 0);
1482 if (AliasProcIdx == 0)
1483 GenericRW = true;
1484 }
1485 std::vector<Record *> AllPreds =
1486 getAllPredicates(Variants, TransVec[TransIdx].ProcIndex);
1487 for (TransVariant &Variant : Variants) {
1488 // Don't expand variants if the processor models don't intersect.
1489 // A zero processor index means any processor.
1490 if (Variant.VarOrSeqDef->isSubClassOf("SchedVar")) {
1491 Record *PredDef = Variant.VarOrSeqDef->getValueAsDef("Predicate");
1492 if (mutuallyExclusive(PredDef, AllPreds, TransVec[TransIdx].PredTerm))
1493 continue;
1494 }
1495
1496 if (IntersectingVariants.empty()) {
1497 // The first variant builds on the existing transition.
1498 Variant.TransVecIdx = TransIdx;
1499 IntersectingVariants.push_back(Variant);
1500 }
1501 else {
1502 // Push another copy of the current transition for more variants.
1503 Variant.TransVecIdx = TransVec.size();
1504 IntersectingVariants.push_back(Variant);
1505 TransVec.push_back(TransVec[TransIdx]);
1506 }
1507 }
1508 if (GenericRW && IntersectingVariants.empty()) {
1509 PrintFatalError(SchedRW.TheDef->getLoc(), "No variant of this type has "
1510 "a matching predicate on any processor");
1511 }
1512 }
1513
1514 // Push the Reads/Writes selected by this variant onto the PredTransition
1515 // specified by VInfo.
1516 void PredTransitions::
pushVariant(const TransVariant & VInfo,bool IsRead)1517 pushVariant(const TransVariant &VInfo, bool IsRead) {
1518 PredTransition &Trans = TransVec[VInfo.TransVecIdx];
1519
1520 // If this operand transition is reached through a processor-specific alias,
1521 // then the whole transition is specific to this processor.
1522 IdxVec SelectedRWs;
1523 if (VInfo.VarOrSeqDef->isSubClassOf("SchedVar")) {
1524 Record *PredDef = VInfo.VarOrSeqDef->getValueAsDef("Predicate");
1525 Trans.PredTerm.emplace_back(IsRead, VInfo.RWIdx,PredDef);
1526 RecVec SelectedDefs = VInfo.VarOrSeqDef->getValueAsListOfDefs("Selected");
1527 SchedModels.findRWs(SelectedDefs, SelectedRWs, IsRead);
1528 }
1529 else {
1530 assert(VInfo.VarOrSeqDef->isSubClassOf("WriteSequence") &&
1531 "variant must be a SchedVariant or aliased WriteSequence");
1532 SelectedRWs.push_back(SchedModels.getSchedRWIdx(VInfo.VarOrSeqDef, IsRead));
1533 }
1534
1535 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(VInfo.RWIdx, IsRead);
1536
1537 SmallVectorImpl<SmallVector<unsigned,4>> &RWSequences = IsRead
1538 ? Trans.ReadSequences : Trans.WriteSequences;
1539 if (SchedRW.IsVariadic) {
1540 unsigned OperIdx = RWSequences.size()-1;
1541 // Make N-1 copies of this transition's last sequence.
1542 RWSequences.reserve(RWSequences.size() + SelectedRWs.size() - 1);
1543 RWSequences.insert(RWSequences.end(), SelectedRWs.size() - 1,
1544 RWSequences[OperIdx]);
1545 // Push each of the N elements of the SelectedRWs onto a copy of the last
1546 // sequence (split the current operand into N operands).
1547 // Note that write sequences should be expanded within this loop--the entire
1548 // sequence belongs to a single operand.
1549 for (IdxIter RWI = SelectedRWs.begin(), RWE = SelectedRWs.end();
1550 RWI != RWE; ++RWI, ++OperIdx) {
1551 IdxVec ExpandedRWs;
1552 if (IsRead)
1553 ExpandedRWs.push_back(*RWI);
1554 else
1555 SchedModels.expandRWSequence(*RWI, ExpandedRWs, IsRead);
1556 llvm::append_range(RWSequences[OperIdx], ExpandedRWs);
1557 }
1558 assert(OperIdx == RWSequences.size() && "missed a sequence");
1559 }
1560 else {
1561 // Push this transition's expanded sequence onto this transition's last
1562 // sequence (add to the current operand's sequence).
1563 SmallVectorImpl<unsigned> &Seq = RWSequences.back();
1564 IdxVec ExpandedRWs;
1565 for (unsigned int SelectedRW : SelectedRWs) {
1566 if (IsRead)
1567 ExpandedRWs.push_back(SelectedRW);
1568 else
1569 SchedModels.expandRWSequence(SelectedRW, ExpandedRWs, IsRead);
1570 }
1571 llvm::append_range(Seq, ExpandedRWs);
1572 }
1573 }
1574
1575 // RWSeq is a sequence of all Reads or all Writes for the next read or write
1576 // operand. StartIdx is an index into TransVec where partial results
1577 // starts. RWSeq must be applied to all transitions between StartIdx and the end
1578 // of TransVec.
substituteVariantOperand(const SmallVectorImpl<unsigned> & RWSeq,bool IsRead,unsigned StartIdx)1579 bool PredTransitions::substituteVariantOperand(
1580 const SmallVectorImpl<unsigned> &RWSeq, bool IsRead, unsigned StartIdx) {
1581 bool Subst = false;
1582 // Visit each original RW within the current sequence.
1583 for (unsigned int RWI : RWSeq) {
1584 const CodeGenSchedRW &SchedRW = SchedModels.getSchedRW(RWI, IsRead);
1585 // Push this RW on all partial PredTransitions or distribute variants.
1586 // New PredTransitions may be pushed within this loop which should not be
1587 // revisited (TransEnd must be loop invariant).
1588 for (unsigned TransIdx = StartIdx, TransEnd = TransVec.size();
1589 TransIdx != TransEnd; ++TransIdx) {
1590 // Distribute this partial PredTransition across intersecting variants.
1591 // This will push a copies of TransVec[TransIdx] on the back of TransVec.
1592 std::vector<TransVariant> IntersectingVariants;
1593 getIntersectingVariants(SchedRW, TransIdx, IntersectingVariants);
1594 // Now expand each variant on top of its copy of the transition.
1595 for (const TransVariant &IV : IntersectingVariants)
1596 pushVariant(IV, IsRead);
1597 if (IntersectingVariants.empty()) {
1598 if (IsRead)
1599 TransVec[TransIdx].ReadSequences.back().push_back(RWI);
1600 else
1601 TransVec[TransIdx].WriteSequences.back().push_back(RWI);
1602 continue;
1603 } else {
1604 Subst = true;
1605 }
1606 }
1607 }
1608 return Subst;
1609 }
1610
1611 // For each variant of a Read/Write in Trans, substitute the sequence of
1612 // Read/Writes guarded by the variant. This is exponential in the number of
1613 // variant Read/Writes, but in practice detection of mutually exclusive
1614 // predicates should result in linear growth in the total number variants.
1615 //
1616 // This is one step in a breadth-first search of nested variants.
substituteVariants(const PredTransition & Trans)1617 bool PredTransitions::substituteVariants(const PredTransition &Trans) {
1618 // Build up a set of partial results starting at the back of
1619 // PredTransitions. Remember the first new transition.
1620 unsigned StartIdx = TransVec.size();
1621 bool Subst = false;
1622 assert(Trans.ProcIndex != 0);
1623 TransVec.emplace_back(Trans.PredTerm, Trans.ProcIndex);
1624
1625 // Visit each original write sequence.
1626 for (const auto &WriteSequence : Trans.WriteSequences) {
1627 // Push a new (empty) write sequence onto all partial Transitions.
1628 for (std::vector<PredTransition>::iterator I =
1629 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1630 I->WriteSequences.emplace_back();
1631 }
1632 Subst |=
1633 substituteVariantOperand(WriteSequence, /*IsRead=*/false, StartIdx);
1634 }
1635 // Visit each original read sequence.
1636 for (const auto &ReadSequence : Trans.ReadSequences) {
1637 // Push a new (empty) read sequence onto all partial Transitions.
1638 for (std::vector<PredTransition>::iterator I =
1639 TransVec.begin() + StartIdx, E = TransVec.end(); I != E; ++I) {
1640 I->ReadSequences.emplace_back();
1641 }
1642 Subst |= substituteVariantOperand(ReadSequence, /*IsRead=*/true, StartIdx);
1643 }
1644 return Subst;
1645 }
1646
addSequences(CodeGenSchedModels & SchedModels,const SmallVectorImpl<SmallVector<unsigned,4>> & Seqs,IdxVec & Result,bool IsRead)1647 static void addSequences(CodeGenSchedModels &SchedModels,
1648 const SmallVectorImpl<SmallVector<unsigned, 4>> &Seqs,
1649 IdxVec &Result, bool IsRead) {
1650 for (const auto &S : Seqs)
1651 if (!S.empty())
1652 Result.push_back(SchedModels.findOrInsertRW(S, IsRead));
1653 }
1654
1655 #ifndef NDEBUG
dumpRecVec(const RecVec & RV)1656 static void dumpRecVec(const RecVec &RV) {
1657 for (const Record *R : RV)
1658 dbgs() << R->getName() << ", ";
1659 }
1660 #endif
1661
dumpTransition(const CodeGenSchedModels & SchedModels,const CodeGenSchedClass & FromSC,const CodeGenSchedTransition & SCTrans,const RecVec & Preds)1662 static void dumpTransition(const CodeGenSchedModels &SchedModels,
1663 const CodeGenSchedClass &FromSC,
1664 const CodeGenSchedTransition &SCTrans,
1665 const RecVec &Preds) {
1666 LLVM_DEBUG(dbgs() << "Adding transition from " << FromSC.Name << "("
1667 << FromSC.Index << ") to "
1668 << SchedModels.getSchedClass(SCTrans.ToClassIdx).Name << "("
1669 << SCTrans.ToClassIdx << ") on pred term: (";
1670 dumpRecVec(Preds);
1671 dbgs() << ") on processor (" << SCTrans.ProcIndex << ")\n");
1672 }
1673 // Create a new SchedClass for each variant found by inferFromRW. Pass
inferFromTransitions(ArrayRef<PredTransition> LastTransitions,unsigned FromClassIdx,CodeGenSchedModels & SchedModels)1674 static void inferFromTransitions(ArrayRef<PredTransition> LastTransitions,
1675 unsigned FromClassIdx,
1676 CodeGenSchedModels &SchedModels) {
1677 // For each PredTransition, create a new CodeGenSchedTransition, which usually
1678 // requires creating a new SchedClass.
1679 for (const auto &LastTransition : LastTransitions) {
1680 // Variant expansion (substituteVariants) may create unconditional
1681 // transitions. We don't need to build sched classes for them.
1682 if (LastTransition.PredTerm.empty())
1683 continue;
1684 IdxVec OperWritesVariant, OperReadsVariant;
1685 addSequences(SchedModels, LastTransition.WriteSequences, OperWritesVariant,
1686 false);
1687 addSequences(SchedModels, LastTransition.ReadSequences, OperReadsVariant,
1688 true);
1689 CodeGenSchedTransition SCTrans;
1690
1691 // Transition should not contain processor indices already assigned to
1692 // InstRWs in this scheduling class.
1693 const CodeGenSchedClass &FromSC = SchedModels.getSchedClass(FromClassIdx);
1694 if (FromSC.InstRWProcIndices.count(LastTransition.ProcIndex))
1695 continue;
1696 SCTrans.ProcIndex = LastTransition.ProcIndex;
1697 SCTrans.ToClassIdx =
1698 SchedModels.addSchedClass(/*ItinClassDef=*/nullptr, OperWritesVariant,
1699 OperReadsVariant, LastTransition.ProcIndex);
1700
1701 // The final PredTerm is unique set of predicates guarding the transition.
1702 RecVec Preds;
1703 transform(LastTransition.PredTerm, std::back_inserter(Preds),
1704 [](const PredCheck &P) { return P.Predicate; });
1705 Preds.erase(std::unique(Preds.begin(), Preds.end()), Preds.end());
1706 dumpTransition(SchedModels, FromSC, SCTrans, Preds);
1707 SCTrans.PredTerm = std::move(Preds);
1708 SchedModels.getSchedClass(FromClassIdx)
1709 .Transitions.push_back(std::move(SCTrans));
1710 }
1711 }
1712
getAllProcIndices() const1713 std::vector<unsigned> CodeGenSchedModels::getAllProcIndices() const {
1714 std::vector<unsigned> ProcIdVec;
1715 for (const auto &PM : ProcModelMap)
1716 if (PM.second != 0)
1717 ProcIdVec.push_back(PM.second);
1718 // The order of the keys (Record pointers) of ProcModelMap are not stable.
1719 // Sort to stabalize the values.
1720 llvm::sort(ProcIdVec);
1721 return ProcIdVec;
1722 }
1723
1724 static std::vector<PredTransition>
makePerProcessorTransitions(const PredTransition & Trans,ArrayRef<unsigned> ProcIndices)1725 makePerProcessorTransitions(const PredTransition &Trans,
1726 ArrayRef<unsigned> ProcIndices) {
1727 std::vector<PredTransition> PerCpuTransVec;
1728 for (unsigned ProcId : ProcIndices) {
1729 assert(ProcId != 0);
1730 PerCpuTransVec.push_back(Trans);
1731 PerCpuTransVec.back().ProcIndex = ProcId;
1732 }
1733 return PerCpuTransVec;
1734 }
1735
1736 // Create new SchedClasses for the given ReadWrite list. If any of the
1737 // ReadWrites refers to a SchedVariant, create a new SchedClass for each variant
1738 // of the ReadWrite list, following Aliases if necessary.
inferFromRW(ArrayRef<unsigned> OperWrites,ArrayRef<unsigned> OperReads,unsigned FromClassIdx,ArrayRef<unsigned> ProcIndices)1739 void CodeGenSchedModels::inferFromRW(ArrayRef<unsigned> OperWrites,
1740 ArrayRef<unsigned> OperReads,
1741 unsigned FromClassIdx,
1742 ArrayRef<unsigned> ProcIndices) {
1743 LLVM_DEBUG(dbgs() << "INFER RW proc("; dumpIdxVec(ProcIndices);
1744 dbgs() << ") ");
1745 // Create a seed transition with an empty PredTerm and the expanded sequences
1746 // of SchedWrites for the current SchedClass.
1747 std::vector<PredTransition> LastTransitions;
1748 LastTransitions.emplace_back();
1749
1750 for (unsigned WriteIdx : OperWrites) {
1751 IdxVec WriteSeq;
1752 expandRWSequence(WriteIdx, WriteSeq, /*IsRead=*/false);
1753 LastTransitions[0].WriteSequences.emplace_back();
1754 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].WriteSequences.back();
1755 Seq.append(WriteSeq.begin(), WriteSeq.end());
1756 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1757 }
1758 LLVM_DEBUG(dbgs() << " Reads: ");
1759 for (unsigned ReadIdx : OperReads) {
1760 IdxVec ReadSeq;
1761 expandRWSequence(ReadIdx, ReadSeq, /*IsRead=*/true);
1762 LastTransitions[0].ReadSequences.emplace_back();
1763 SmallVectorImpl<unsigned> &Seq = LastTransitions[0].ReadSequences.back();
1764 Seq.append(ReadSeq.begin(), ReadSeq.end());
1765 LLVM_DEBUG(dbgs() << "("; dumpIdxVec(Seq); dbgs() << ") ");
1766 }
1767 LLVM_DEBUG(dbgs() << '\n');
1768
1769 LastTransitions = makePerProcessorTransitions(
1770 LastTransitions[0], llvm::is_contained(ProcIndices, 0)
1771 ? ArrayRef<unsigned>(getAllProcIndices())
1772 : ProcIndices);
1773 // Collect all PredTransitions for individual operands.
1774 // Iterate until no variant writes remain.
1775 bool SubstitutedAny;
1776 do {
1777 SubstitutedAny = false;
1778 PredTransitions Transitions(*this);
1779 for (const PredTransition &Trans : LastTransitions)
1780 SubstitutedAny |= Transitions.substituteVariants(Trans);
1781 LLVM_DEBUG(Transitions.dump());
1782 LastTransitions.swap(Transitions.TransVec);
1783 } while (SubstitutedAny);
1784
1785 // WARNING: We are about to mutate the SchedClasses vector. Do not refer to
1786 // OperWrites, OperReads, or ProcIndices after calling inferFromTransitions.
1787 inferFromTransitions(LastTransitions, FromClassIdx, *this);
1788 }
1789
1790 // Check if any processor resource group contains all resource records in
1791 // SubUnits.
hasSuperGroup(RecVec & SubUnits,CodeGenProcModel & PM)1792 bool CodeGenSchedModels::hasSuperGroup(RecVec &SubUnits, CodeGenProcModel &PM) {
1793 for (Record *ProcResourceDef : PM.ProcResourceDefs) {
1794 if (!ProcResourceDef->isSubClassOf("ProcResGroup"))
1795 continue;
1796 RecVec SuperUnits = ProcResourceDef->getValueAsListOfDefs("Resources");
1797 RecIter RI = SubUnits.begin(), RE = SubUnits.end();
1798 for ( ; RI != RE; ++RI) {
1799 if (!is_contained(SuperUnits, *RI)) {
1800 break;
1801 }
1802 }
1803 if (RI == RE)
1804 return true;
1805 }
1806 return false;
1807 }
1808
1809 // Verify that overlapping groups have a common supergroup.
verifyProcResourceGroups(CodeGenProcModel & PM)1810 void CodeGenSchedModels::verifyProcResourceGroups(CodeGenProcModel &PM) {
1811 for (unsigned i = 0, e = PM.ProcResourceDefs.size(); i < e; ++i) {
1812 if (!PM.ProcResourceDefs[i]->isSubClassOf("ProcResGroup"))
1813 continue;
1814 RecVec CheckUnits =
1815 PM.ProcResourceDefs[i]->getValueAsListOfDefs("Resources");
1816 for (unsigned j = i+1; j < e; ++j) {
1817 if (!PM.ProcResourceDefs[j]->isSubClassOf("ProcResGroup"))
1818 continue;
1819 RecVec OtherUnits =
1820 PM.ProcResourceDefs[j]->getValueAsListOfDefs("Resources");
1821 if (std::find_first_of(CheckUnits.begin(), CheckUnits.end(),
1822 OtherUnits.begin(), OtherUnits.end())
1823 != CheckUnits.end()) {
1824 // CheckUnits and OtherUnits overlap
1825 llvm::append_range(OtherUnits, CheckUnits);
1826 if (!hasSuperGroup(OtherUnits, PM)) {
1827 PrintFatalError((PM.ProcResourceDefs[i])->getLoc(),
1828 "proc resource group overlaps with "
1829 + PM.ProcResourceDefs[j]->getName()
1830 + " but no supergroup contains both.");
1831 }
1832 }
1833 }
1834 }
1835 }
1836
1837 // Collect all the RegisterFile definitions available in this target.
collectRegisterFiles()1838 void CodeGenSchedModels::collectRegisterFiles() {
1839 RecVec RegisterFileDefs = Records.getAllDerivedDefinitions("RegisterFile");
1840
1841 // RegisterFiles is the vector of CodeGenRegisterFile.
1842 for (Record *RF : RegisterFileDefs) {
1843 // For each register file definition, construct a CodeGenRegisterFile object
1844 // and add it to the appropriate scheduling model.
1845 CodeGenProcModel &PM = getProcModel(RF->getValueAsDef("SchedModel"));
1846 PM.RegisterFiles.emplace_back(CodeGenRegisterFile(RF->getName(),RF));
1847 CodeGenRegisterFile &CGRF = PM.RegisterFiles.back();
1848 CGRF.MaxMovesEliminatedPerCycle =
1849 RF->getValueAsInt("MaxMovesEliminatedPerCycle");
1850 CGRF.AllowZeroMoveEliminationOnly =
1851 RF->getValueAsBit("AllowZeroMoveEliminationOnly");
1852
1853 // Now set the number of physical registers as well as the cost of registers
1854 // in each register class.
1855 CGRF.NumPhysRegs = RF->getValueAsInt("NumPhysRegs");
1856 if (!CGRF.NumPhysRegs) {
1857 PrintFatalError(RF->getLoc(),
1858 "Invalid RegisterFile with zero physical registers");
1859 }
1860
1861 RecVec RegisterClasses = RF->getValueAsListOfDefs("RegClasses");
1862 std::vector<int64_t> RegisterCosts = RF->getValueAsListOfInts("RegCosts");
1863 ListInit *MoveElimInfo = RF->getValueAsListInit("AllowMoveElimination");
1864 for (unsigned I = 0, E = RegisterClasses.size(); I < E; ++I) {
1865 int Cost = RegisterCosts.size() > I ? RegisterCosts[I] : 1;
1866
1867 bool AllowMoveElim = false;
1868 if (MoveElimInfo->size() > I) {
1869 BitInit *Val = cast<BitInit>(MoveElimInfo->getElement(I));
1870 AllowMoveElim = Val->getValue();
1871 }
1872
1873 CGRF.Costs.emplace_back(RegisterClasses[I], Cost, AllowMoveElim);
1874 }
1875 }
1876 }
1877
1878 // Collect and sort WriteRes, ReadAdvance, and ProcResources.
collectProcResources()1879 void CodeGenSchedModels::collectProcResources() {
1880 ProcResourceDefs = Records.getAllDerivedDefinitions("ProcResourceUnits");
1881 ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1882
1883 // Add any subtarget-specific SchedReadWrites that are directly associated
1884 // with processor resources. Refer to the parent SchedClass's ProcIndices to
1885 // determine which processors they apply to.
1886 for (const CodeGenSchedClass &SC :
1887 make_range(schedClassBegin(), schedClassEnd())) {
1888 if (SC.ItinClassDef) {
1889 collectItinProcResources(SC.ItinClassDef);
1890 continue;
1891 }
1892
1893 // This class may have a default ReadWrite list which can be overriden by
1894 // InstRW definitions.
1895 for (Record *RW : SC.InstRWs) {
1896 Record *RWModelDef = RW->getValueAsDef("SchedModel");
1897 unsigned PIdx = getProcModel(RWModelDef).Index;
1898 IdxVec Writes, Reads;
1899 findRWs(RW->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
1900 collectRWResources(Writes, Reads, PIdx);
1901 }
1902
1903 collectRWResources(SC.Writes, SC.Reads, SC.ProcIndices);
1904 }
1905 // Add resources separately defined by each subtarget.
1906 RecVec WRDefs = Records.getAllDerivedDefinitions("WriteRes");
1907 for (Record *WR : WRDefs) {
1908 Record *ModelDef = WR->getValueAsDef("SchedModel");
1909 addWriteRes(WR, getProcModel(ModelDef).Index);
1910 }
1911 RecVec SWRDefs = Records.getAllDerivedDefinitions("SchedWriteRes");
1912 for (Record *SWR : SWRDefs) {
1913 Record *ModelDef = SWR->getValueAsDef("SchedModel");
1914 addWriteRes(SWR, getProcModel(ModelDef).Index);
1915 }
1916 RecVec RADefs = Records.getAllDerivedDefinitions("ReadAdvance");
1917 for (Record *RA : RADefs) {
1918 Record *ModelDef = RA->getValueAsDef("SchedModel");
1919 addReadAdvance(RA, getProcModel(ModelDef).Index);
1920 }
1921 RecVec SRADefs = Records.getAllDerivedDefinitions("SchedReadAdvance");
1922 for (Record *SRA : SRADefs) {
1923 if (SRA->getValueInit("SchedModel")->isComplete()) {
1924 Record *ModelDef = SRA->getValueAsDef("SchedModel");
1925 addReadAdvance(SRA, getProcModel(ModelDef).Index);
1926 }
1927 }
1928 // Add ProcResGroups that are defined within this processor model, which may
1929 // not be directly referenced but may directly specify a buffer size.
1930 RecVec ProcResGroups = Records.getAllDerivedDefinitions("ProcResGroup");
1931 for (Record *PRG : ProcResGroups) {
1932 if (!PRG->getValueInit("SchedModel")->isComplete())
1933 continue;
1934 CodeGenProcModel &PM = getProcModel(PRG->getValueAsDef("SchedModel"));
1935 if (!is_contained(PM.ProcResourceDefs, PRG))
1936 PM.ProcResourceDefs.push_back(PRG);
1937 }
1938 // Add ProcResourceUnits unconditionally.
1939 for (Record *PRU : Records.getAllDerivedDefinitions("ProcResourceUnits")) {
1940 if (!PRU->getValueInit("SchedModel")->isComplete())
1941 continue;
1942 CodeGenProcModel &PM = getProcModel(PRU->getValueAsDef("SchedModel"));
1943 if (!is_contained(PM.ProcResourceDefs, PRU))
1944 PM.ProcResourceDefs.push_back(PRU);
1945 }
1946 // Finalize each ProcModel by sorting the record arrays.
1947 for (CodeGenProcModel &PM : ProcModels) {
1948 llvm::sort(PM.WriteResDefs, LessRecord());
1949 llvm::sort(PM.ReadAdvanceDefs, LessRecord());
1950 llvm::sort(PM.ProcResourceDefs, LessRecord());
1951 LLVM_DEBUG(
1952 PM.dump(); dbgs() << "WriteResDefs: "; for (auto WriteResDef
1953 : PM.WriteResDefs) {
1954 if (WriteResDef->isSubClassOf("WriteRes"))
1955 dbgs() << WriteResDef->getValueAsDef("WriteType")->getName() << " ";
1956 else
1957 dbgs() << WriteResDef->getName() << " ";
1958 } dbgs() << "\nReadAdvanceDefs: ";
1959 for (Record *ReadAdvanceDef
1960 : PM.ReadAdvanceDefs) {
1961 if (ReadAdvanceDef->isSubClassOf("ReadAdvance"))
1962 dbgs() << ReadAdvanceDef->getValueAsDef("ReadType")->getName()
1963 << " ";
1964 else
1965 dbgs() << ReadAdvanceDef->getName() << " ";
1966 } dbgs()
1967 << "\nProcResourceDefs: ";
1968 for (Record *ProcResourceDef
1969 : PM.ProcResourceDefs) {
1970 dbgs() << ProcResourceDef->getName() << " ";
1971 } dbgs()
1972 << '\n');
1973 verifyProcResourceGroups(PM);
1974 }
1975
1976 ProcResourceDefs.clear();
1977 ProcResGroups.clear();
1978 }
1979
checkCompleteness()1980 void CodeGenSchedModels::checkCompleteness() {
1981 bool Complete = true;
1982 for (const CodeGenProcModel &ProcModel : procModels()) {
1983 const bool HasItineraries = ProcModel.hasItineraries();
1984 if (!ProcModel.ModelDef->getValueAsBit("CompleteModel"))
1985 continue;
1986 for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) {
1987 if (Inst->hasNoSchedulingInfo)
1988 continue;
1989 if (ProcModel.isUnsupported(*Inst))
1990 continue;
1991 unsigned SCIdx = getSchedClassIdx(*Inst);
1992 if (!SCIdx) {
1993 if (Inst->TheDef->isValueUnset("SchedRW")) {
1994 PrintError(Inst->TheDef->getLoc(),
1995 "No schedule information for instruction '" +
1996 Inst->TheDef->getName() + "' in SchedMachineModel '" +
1997 ProcModel.ModelDef->getName() + "'");
1998 Complete = false;
1999 }
2000 continue;
2001 }
2002
2003 const CodeGenSchedClass &SC = getSchedClass(SCIdx);
2004 if (!SC.Writes.empty())
2005 continue;
2006 if (HasItineraries && SC.ItinClassDef != nullptr &&
2007 SC.ItinClassDef->getName() != "NoItinerary")
2008 continue;
2009
2010 const RecVec &InstRWs = SC.InstRWs;
2011 auto I = find_if(InstRWs, [&ProcModel](const Record *R) {
2012 return R->getValueAsDef("SchedModel") == ProcModel.ModelDef;
2013 });
2014 if (I == InstRWs.end()) {
2015 PrintError(Inst->TheDef->getLoc(), "'" + ProcModel.ModelName +
2016 "' lacks information for '" +
2017 Inst->TheDef->getName() + "'");
2018 Complete = false;
2019 }
2020 }
2021 }
2022 if (!Complete) {
2023 errs() << "\n\nIncomplete schedule models found.\n"
2024 << "- Consider setting 'CompleteModel = 0' while developing new models.\n"
2025 << "- Pseudo instructions can be marked with 'hasNoSchedulingInfo = 1'.\n"
2026 << "- Instructions should usually have Sched<[...]> as a superclass, "
2027 "you may temporarily use an empty list.\n"
2028 << "- Instructions related to unsupported features can be excluded with "
2029 "list<Predicate> UnsupportedFeatures = [HasA,..,HasY]; in the "
2030 "processor model.\n\n";
2031 PrintFatalError("Incomplete schedule model");
2032 }
2033 }
2034
2035 // Collect itinerary class resources for each processor.
collectItinProcResources(Record * ItinClassDef)2036 void CodeGenSchedModels::collectItinProcResources(Record *ItinClassDef) {
2037 for (unsigned PIdx = 0, PEnd = ProcModels.size(); PIdx != PEnd; ++PIdx) {
2038 const CodeGenProcModel &PM = ProcModels[PIdx];
2039 // For all ItinRW entries.
2040 bool HasMatch = false;
2041 for (RecIter II = PM.ItinRWDefs.begin(), IE = PM.ItinRWDefs.end();
2042 II != IE; ++II) {
2043 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses");
2044 if (!llvm::is_contained(Matched, ItinClassDef))
2045 continue;
2046 if (HasMatch)
2047 PrintFatalError((*II)->getLoc(), "Duplicate itinerary class "
2048 + ItinClassDef->getName()
2049 + " in ItinResources for " + PM.ModelName);
2050 HasMatch = true;
2051 IdxVec Writes, Reads;
2052 findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), Writes, Reads);
2053 collectRWResources(Writes, Reads, PIdx);
2054 }
2055 }
2056 }
2057
collectRWResources(unsigned RWIdx,bool IsRead,ArrayRef<unsigned> ProcIndices)2058 void CodeGenSchedModels::collectRWResources(unsigned RWIdx, bool IsRead,
2059 ArrayRef<unsigned> ProcIndices) {
2060 const CodeGenSchedRW &SchedRW = getSchedRW(RWIdx, IsRead);
2061 if (SchedRW.TheDef) {
2062 if (!IsRead && SchedRW.TheDef->isSubClassOf("SchedWriteRes")) {
2063 for (unsigned Idx : ProcIndices)
2064 addWriteRes(SchedRW.TheDef, Idx);
2065 }
2066 else if (IsRead && SchedRW.TheDef->isSubClassOf("SchedReadAdvance")) {
2067 for (unsigned Idx : ProcIndices)
2068 addReadAdvance(SchedRW.TheDef, Idx);
2069 }
2070 }
2071 for (auto *Alias : SchedRW.Aliases) {
2072 IdxVec AliasProcIndices;
2073 if (Alias->getValueInit("SchedModel")->isComplete()) {
2074 AliasProcIndices.push_back(
2075 getProcModel(Alias->getValueAsDef("SchedModel")).Index);
2076 } else
2077 AliasProcIndices = ProcIndices;
2078 const CodeGenSchedRW &AliasRW = getSchedRW(Alias->getValueAsDef("AliasRW"));
2079 assert(AliasRW.IsRead == IsRead && "cannot alias reads to writes");
2080
2081 IdxVec ExpandedRWs;
2082 expandRWSequence(AliasRW.Index, ExpandedRWs, IsRead);
2083 for (unsigned int ExpandedRW : ExpandedRWs) {
2084 collectRWResources(ExpandedRW, IsRead, AliasProcIndices);
2085 }
2086 }
2087 }
2088
2089 // Collect resources for a set of read/write types and processor indices.
collectRWResources(ArrayRef<unsigned> Writes,ArrayRef<unsigned> Reads,ArrayRef<unsigned> ProcIndices)2090 void CodeGenSchedModels::collectRWResources(ArrayRef<unsigned> Writes,
2091 ArrayRef<unsigned> Reads,
2092 ArrayRef<unsigned> ProcIndices) {
2093 for (unsigned Idx : Writes)
2094 collectRWResources(Idx, /*IsRead=*/false, ProcIndices);
2095
2096 for (unsigned Idx : Reads)
2097 collectRWResources(Idx, /*IsRead=*/true, ProcIndices);
2098 }
2099
2100 // Find the processor's resource units for this kind of resource.
findProcResUnits(Record * ProcResKind,const CodeGenProcModel & PM,ArrayRef<SMLoc> Loc) const2101 Record *CodeGenSchedModels::findProcResUnits(Record *ProcResKind,
2102 const CodeGenProcModel &PM,
2103 ArrayRef<SMLoc> Loc) const {
2104 if (ProcResKind->isSubClassOf("ProcResourceUnits"))
2105 return ProcResKind;
2106
2107 Record *ProcUnitDef = nullptr;
2108 assert(!ProcResourceDefs.empty());
2109 assert(!ProcResGroups.empty());
2110
2111 for (Record *ProcResDef : ProcResourceDefs) {
2112 if (ProcResDef->getValueAsDef("Kind") == ProcResKind
2113 && ProcResDef->getValueAsDef("SchedModel") == PM.ModelDef) {
2114 if (ProcUnitDef) {
2115 PrintFatalError(Loc,
2116 "Multiple ProcessorResourceUnits associated with "
2117 + ProcResKind->getName());
2118 }
2119 ProcUnitDef = ProcResDef;
2120 }
2121 }
2122 for (Record *ProcResGroup : ProcResGroups) {
2123 if (ProcResGroup == ProcResKind
2124 && ProcResGroup->getValueAsDef("SchedModel") == PM.ModelDef) {
2125 if (ProcUnitDef) {
2126 PrintFatalError(Loc,
2127 "Multiple ProcessorResourceUnits associated with "
2128 + ProcResKind->getName());
2129 }
2130 ProcUnitDef = ProcResGroup;
2131 }
2132 }
2133 if (!ProcUnitDef) {
2134 PrintFatalError(Loc,
2135 "No ProcessorResources associated with "
2136 + ProcResKind->getName());
2137 }
2138 return ProcUnitDef;
2139 }
2140
2141 // Iteratively add a resource and its super resources.
addProcResource(Record * ProcResKind,CodeGenProcModel & PM,ArrayRef<SMLoc> Loc)2142 void CodeGenSchedModels::addProcResource(Record *ProcResKind,
2143 CodeGenProcModel &PM,
2144 ArrayRef<SMLoc> Loc) {
2145 while (true) {
2146 Record *ProcResUnits = findProcResUnits(ProcResKind, PM, Loc);
2147
2148 // See if this ProcResource is already associated with this processor.
2149 if (is_contained(PM.ProcResourceDefs, ProcResUnits))
2150 return;
2151
2152 PM.ProcResourceDefs.push_back(ProcResUnits);
2153 if (ProcResUnits->isSubClassOf("ProcResGroup"))
2154 return;
2155
2156 if (!ProcResUnits->getValueInit("Super")->isComplete())
2157 return;
2158
2159 ProcResKind = ProcResUnits->getValueAsDef("Super");
2160 }
2161 }
2162
2163 // Add resources for a SchedWrite to this processor if they don't exist.
addWriteRes(Record * ProcWriteResDef,unsigned PIdx)2164 void CodeGenSchedModels::addWriteRes(Record *ProcWriteResDef, unsigned PIdx) {
2165 assert(PIdx && "don't add resources to an invalid Processor model");
2166
2167 RecVec &WRDefs = ProcModels[PIdx].WriteResDefs;
2168 if (is_contained(WRDefs, ProcWriteResDef))
2169 return;
2170 WRDefs.push_back(ProcWriteResDef);
2171
2172 // Visit ProcResourceKinds referenced by the newly discovered WriteRes.
2173 RecVec ProcResDefs = ProcWriteResDef->getValueAsListOfDefs("ProcResources");
2174 for (auto *ProcResDef : ProcResDefs) {
2175 addProcResource(ProcResDef, ProcModels[PIdx], ProcWriteResDef->getLoc());
2176 }
2177 }
2178
2179 // Add resources for a ReadAdvance to this processor if they don't exist.
addReadAdvance(Record * ProcReadAdvanceDef,unsigned PIdx)2180 void CodeGenSchedModels::addReadAdvance(Record *ProcReadAdvanceDef,
2181 unsigned PIdx) {
2182 RecVec &RADefs = ProcModels[PIdx].ReadAdvanceDefs;
2183 if (is_contained(RADefs, ProcReadAdvanceDef))
2184 return;
2185 RADefs.push_back(ProcReadAdvanceDef);
2186 }
2187
getProcResourceIdx(Record * PRDef) const2188 unsigned CodeGenProcModel::getProcResourceIdx(Record *PRDef) const {
2189 RecIter PRPos = find(ProcResourceDefs, PRDef);
2190 if (PRPos == ProcResourceDefs.end())
2191 PrintFatalError(PRDef->getLoc(), "ProcResource def is not included in "
2192 "the ProcResources list for " + ModelName);
2193 // Idx=0 is reserved for invalid.
2194 return 1 + (PRPos - ProcResourceDefs.begin());
2195 }
2196
isUnsupported(const CodeGenInstruction & Inst) const2197 bool CodeGenProcModel::isUnsupported(const CodeGenInstruction &Inst) const {
2198 for (const Record *TheDef : UnsupportedFeaturesDefs) {
2199 for (const Record *PredDef : Inst.TheDef->getValueAsListOfDefs("Predicates")) {
2200 if (TheDef->getName() == PredDef->getName())
2201 return true;
2202 }
2203 }
2204 return false;
2205 }
2206
2207 #ifndef NDEBUG
dump() const2208 void CodeGenProcModel::dump() const {
2209 dbgs() << Index << ": " << ModelName << " "
2210 << (ModelDef ? ModelDef->getName() : "inferred") << " "
2211 << (ItinsDef ? ItinsDef->getName() : "no itinerary") << '\n';
2212 }
2213
dump() const2214 void CodeGenSchedRW::dump() const {
2215 dbgs() << Name << (IsVariadic ? " (V) " : " ");
2216 if (IsSequence) {
2217 dbgs() << "(";
2218 dumpIdxVec(Sequence);
2219 dbgs() << ")";
2220 }
2221 }
2222
dump(const CodeGenSchedModels * SchedModels) const2223 void CodeGenSchedClass::dump(const CodeGenSchedModels* SchedModels) const {
2224 dbgs() << "SCHEDCLASS " << Index << ":" << Name << '\n'
2225 << " Writes: ";
2226 for (unsigned i = 0, N = Writes.size(); i < N; ++i) {
2227 SchedModels->getSchedWrite(Writes[i]).dump();
2228 if (i < N-1) {
2229 dbgs() << '\n';
2230 dbgs().indent(10);
2231 }
2232 }
2233 dbgs() << "\n Reads: ";
2234 for (unsigned i = 0, N = Reads.size(); i < N; ++i) {
2235 SchedModels->getSchedRead(Reads[i]).dump();
2236 if (i < N-1) {
2237 dbgs() << '\n';
2238 dbgs().indent(10);
2239 }
2240 }
2241 dbgs() << "\n ProcIdx: "; dumpIdxVec(ProcIndices);
2242 if (!Transitions.empty()) {
2243 dbgs() << "\n Transitions for Proc ";
2244 for (const CodeGenSchedTransition &Transition : Transitions) {
2245 dbgs() << Transition.ProcIndex << ", ";
2246 }
2247 }
2248 dbgs() << '\n';
2249 }
2250
dump() const2251 void PredTransitions::dump() const {
2252 dbgs() << "Expanded Variants:\n";
2253 for (const auto &TI : TransVec) {
2254 dbgs() << "{";
2255 ListSeparator LS;
2256 for (const PredCheck &PC : TI.PredTerm)
2257 dbgs() << LS << SchedModels.getSchedRW(PC.RWIdx, PC.IsRead).Name << ":"
2258 << PC.Predicate->getName();
2259 dbgs() << "},\n => {";
2260 for (SmallVectorImpl<SmallVector<unsigned, 4>>::const_iterator
2261 WSI = TI.WriteSequences.begin(),
2262 WSE = TI.WriteSequences.end();
2263 WSI != WSE; ++WSI) {
2264 dbgs() << "(";
2265 ListSeparator LS;
2266 for (unsigned N : *WSI)
2267 dbgs() << LS << SchedModels.getSchedWrite(N).Name;
2268 dbgs() << "),";
2269 }
2270 dbgs() << "}\n";
2271 }
2272 }
2273 #endif // NDEBUG
2274