1 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the ARM specific subclass of TargetSubtargetInfo.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "ARM.h"
14
15 #include "ARMCallLowering.h"
16 #include "ARMLegalizerInfo.h"
17 #include "ARMRegisterBankInfo.h"
18 #include "ARMFrameLowering.h"
19 #include "ARMInstrInfo.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMMCTargetDesc.h"
23 #include "Thumb1FrameLowering.h"
24 #include "Thumb1InstrInfo.h"
25 #include "Thumb2InstrInfo.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/MC/MCAsmInfo.h"
35 #include "llvm/MC/MCTargetOptions.h"
36 #include "llvm/Support/CodeGen.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ARMTargetParser.h"
39 #include "llvm/Support/TargetParser.h"
40 #include "llvm/Target/TargetOptions.h"
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "arm-subtarget"
45
46 #define GET_SUBTARGETINFO_TARGET_DESC
47 #define GET_SUBTARGETINFO_CTOR
48 #include "ARMGenSubtargetInfo.inc"
49
50 static cl::opt<bool>
51 UseFusedMulOps("arm-use-mulops",
52 cl::init(true), cl::Hidden);
53
54 enum ITMode {
55 DefaultIT,
56 RestrictedIT
57 };
58
59 static cl::opt<ITMode>
60 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
61 cl::values(clEnumValN(DefaultIT, "arm-default-it",
62 "Generate any type of IT block"),
63 clEnumValN(RestrictedIT, "arm-restrict-it",
64 "Disallow complex IT blocks")));
65
66 /// ForceFastISel - Use the fast-isel, even for subtargets where it is not
67 /// currently supported (for testing only).
68 static cl::opt<bool>
69 ForceFastISel("arm-force-fast-isel",
70 cl::init(false), cl::Hidden);
71
72 static cl::opt<bool> EnableSubRegLiveness("arm-enable-subreg-liveness",
73 cl::init(false), cl::Hidden);
74
75 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
76 /// so that we can use initializer lists for subtarget initialization.
initializeSubtargetDependencies(StringRef CPU,StringRef FS)77 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
78 StringRef FS) {
79 initializeEnvironment();
80 initSubtargetFeatures(CPU, FS);
81 return *this;
82 }
83
initializeFrameLowering(StringRef CPU,StringRef FS)84 ARMFrameLowering *ARMSubtarget::initializeFrameLowering(StringRef CPU,
85 StringRef FS) {
86 ARMSubtarget &STI = initializeSubtargetDependencies(CPU, FS);
87 if (STI.isThumb1Only())
88 return (ARMFrameLowering *)new Thumb1FrameLowering(STI);
89
90 return new ARMFrameLowering(STI);
91 }
92
ARMSubtarget(const Triple & TT,const std::string & CPU,const std::string & FS,const ARMBaseTargetMachine & TM,bool IsLittle,bool MinSize)93 ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
94 const std::string &FS,
95 const ARMBaseTargetMachine &TM, bool IsLittle,
96 bool MinSize)
97 : ARMGenSubtargetInfo(TT, CPU, /*TuneCPU*/ CPU, FS),
98 UseMulOps(UseFusedMulOps), CPUString(CPU), OptMinSize(MinSize),
99 IsLittle(IsLittle), TargetTriple(TT), Options(TM.Options), TM(TM),
100 FrameLowering(initializeFrameLowering(CPU, FS)),
101 // At this point initializeSubtargetDependencies has been called so
102 // we can query directly.
103 InstrInfo(isThumb1Only()
104 ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
105 : !isThumb()
106 ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
107 : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
108 TLInfo(TM, *this) {
109
110 CallLoweringInfo.reset(new ARMCallLowering(*getTargetLowering()));
111 Legalizer.reset(new ARMLegalizerInfo(*this));
112
113 auto *RBI = new ARMRegisterBankInfo(*getRegisterInfo());
114
115 // FIXME: At this point, we can't rely on Subtarget having RBI.
116 // It's awkward to mix passing RBI and the Subtarget; should we pass
117 // TII/TRI as well?
118 InstSelector.reset(createARMInstructionSelector(
119 *static_cast<const ARMBaseTargetMachine *>(&TM), *this, *RBI));
120
121 RegBankInfo.reset(RBI);
122 }
123
getCallLowering() const124 const CallLowering *ARMSubtarget::getCallLowering() const {
125 return CallLoweringInfo.get();
126 }
127
getInstructionSelector() const128 InstructionSelector *ARMSubtarget::getInstructionSelector() const {
129 return InstSelector.get();
130 }
131
getLegalizerInfo() const132 const LegalizerInfo *ARMSubtarget::getLegalizerInfo() const {
133 return Legalizer.get();
134 }
135
getRegBankInfo() const136 const RegisterBankInfo *ARMSubtarget::getRegBankInfo() const {
137 return RegBankInfo.get();
138 }
139
isXRaySupported() const140 bool ARMSubtarget::isXRaySupported() const {
141 // We don't currently suppport Thumb, but Windows requires Thumb.
142 return hasV6Ops() && hasARMOps() && !isTargetWindows();
143 }
144
initializeEnvironment()145 void ARMSubtarget::initializeEnvironment() {
146 // MCAsmInfo isn't always present (e.g. in opt) so we can't initialize this
147 // directly from it, but we can try to make sure they're consistent when both
148 // available.
149 UseSjLjEH = (isTargetDarwin() && !isTargetWatchABI() &&
150 Options.ExceptionModel == ExceptionHandling::None) ||
151 Options.ExceptionModel == ExceptionHandling::SjLj;
152 assert((!TM.getMCAsmInfo() ||
153 (TM.getMCAsmInfo()->getExceptionHandlingType() ==
154 ExceptionHandling::SjLj) == UseSjLjEH) &&
155 "inconsistent sjlj choice between CodeGen and MC");
156 }
157
initSubtargetFeatures(StringRef CPU,StringRef FS)158 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
159 if (CPUString.empty()) {
160 CPUString = "generic";
161
162 if (isTargetDarwin()) {
163 StringRef ArchName = TargetTriple.getArchName();
164 ARM::ArchKind AK = ARM::parseArch(ArchName);
165 if (AK == ARM::ArchKind::ARMV7S)
166 // Default to the Swift CPU when targeting armv7s/thumbv7s.
167 CPUString = "swift";
168 else if (AK == ARM::ArchKind::ARMV7K)
169 // Default to the Cortex-a7 CPU when targeting armv7k/thumbv7k.
170 // ARMv7k does not use SjLj exception handling.
171 CPUString = "cortex-a7";
172 }
173 }
174
175 // Insert the architecture feature derived from the target triple into the
176 // feature string. This is important for setting features that are implied
177 // based on the architecture version.
178 std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
179 if (!FS.empty()) {
180 if (!ArchFS.empty())
181 ArchFS = (Twine(ArchFS) + "," + FS).str();
182 else
183 ArchFS = std::string(FS);
184 }
185 ParseSubtargetFeatures(CPUString, /*TuneCPU*/ CPUString, ArchFS);
186
187 // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
188 // Assert this for now to make the change obvious.
189 assert(hasV6T2Ops() || !hasThumb2());
190
191 // Execute only support requires movt support
192 if (genExecuteOnly()) {
193 NoMovt = false;
194 assert(hasV8MBaselineOps() && "Cannot generate execute-only code for this target");
195 }
196
197 // Keep a pointer to static instruction cost data for the specified CPU.
198 SchedModel = getSchedModelForCPU(CPUString);
199
200 // Initialize scheduling itinerary for the specified CPU.
201 InstrItins = getInstrItineraryForCPU(CPUString);
202
203 // FIXME: this is invalid for WindowsCE
204 if (isTargetWindows())
205 NoARM = true;
206
207 if (isAAPCS_ABI())
208 stackAlignment = Align(8);
209 if (isTargetNaCl() || isAAPCS16_ABI())
210 stackAlignment = Align(16);
211
212 // FIXME: Completely disable sibcall for Thumb1 since ThumbRegisterInfo::
213 // emitEpilogue is not ready for them. Thumb tail calls also use t2B, as
214 // the Thumb1 16-bit unconditional branch doesn't have sufficient relocation
215 // support in the assembler and linker to be used. This would need to be
216 // fixed to fully support tail calls in Thumb1.
217 //
218 // For ARMv8-M, we /do/ implement tail calls. Doing this is tricky for v8-M
219 // baseline, since the LDM/POP instruction on Thumb doesn't take LR. This
220 // means if we need to reload LR, it takes extra instructions, which outweighs
221 // the value of the tail call; but here we don't know yet whether LR is going
222 // to be used. We take the optimistic approach of generating the tail call and
223 // perhaps taking a hit if we need to restore the LR.
224
225 // Thumb1 PIC calls to external symbols use BX, so they can be tail calls,
226 // but we need to make sure there are enough registers; the only valid
227 // registers are the 4 used for parameters. We don't currently do this
228 // case.
229
230 SupportsTailCall = !isThumb1Only() || hasV8MBaselineOps();
231
232 if (isTargetMachO() && isTargetIOS() && getTargetTriple().isOSVersionLT(5, 0))
233 SupportsTailCall = false;
234
235 switch (IT) {
236 case DefaultIT:
237 RestrictIT = false;
238 break;
239 case RestrictedIT:
240 RestrictIT = true;
241 break;
242 }
243
244 // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
245 const FeatureBitset &Bits = getFeatureBits();
246 if ((Bits[ARM::ProcA5] || Bits[ARM::ProcA8]) && // Where this matters
247 (Options.UnsafeFPMath || isTargetDarwin()))
248 HasNEONForFP = true;
249
250 if (isRWPI())
251 ReserveR9 = true;
252
253 // If MVEVectorCostFactor is still 0 (has not been set to anything else), default it to 2
254 if (MVEVectorCostFactor == 0)
255 MVEVectorCostFactor = 2;
256
257 // FIXME: Teach TableGen to deal with these instead of doing it manually here.
258 switch (ARMProcFamily) {
259 case Others:
260 case CortexA5:
261 break;
262 case CortexA7:
263 LdStMultipleTiming = DoubleIssue;
264 break;
265 case CortexA8:
266 LdStMultipleTiming = DoubleIssue;
267 break;
268 case CortexA9:
269 LdStMultipleTiming = DoubleIssueCheckUnalignedAccess;
270 PreISelOperandLatencyAdjustment = 1;
271 break;
272 case CortexA12:
273 break;
274 case CortexA15:
275 MaxInterleaveFactor = 2;
276 PreISelOperandLatencyAdjustment = 1;
277 PartialUpdateClearance = 12;
278 break;
279 case CortexA17:
280 case CortexA32:
281 case CortexA35:
282 case CortexA53:
283 case CortexA55:
284 case CortexA57:
285 case CortexA72:
286 case CortexA73:
287 case CortexA75:
288 case CortexA76:
289 case CortexA77:
290 case CortexA78:
291 case CortexA78C:
292 case CortexA710:
293 case CortexR4:
294 case CortexR4F:
295 case CortexR5:
296 case CortexR7:
297 case CortexM3:
298 case CortexM7:
299 case CortexR52:
300 case CortexX1:
301 case CortexX1C:
302 break;
303 case Exynos:
304 LdStMultipleTiming = SingleIssuePlusExtras;
305 MaxInterleaveFactor = 4;
306 if (!isThumb())
307 PrefLoopLogAlignment = 3;
308 break;
309 case Kryo:
310 break;
311 case Krait:
312 PreISelOperandLatencyAdjustment = 1;
313 break;
314 case NeoverseN1:
315 case NeoverseN2:
316 case NeoverseV1:
317 break;
318 case Swift:
319 MaxInterleaveFactor = 2;
320 LdStMultipleTiming = SingleIssuePlusExtras;
321 PreISelOperandLatencyAdjustment = 1;
322 PartialUpdateClearance = 12;
323 break;
324 }
325 }
326
isTargetHardFloat() const327 bool ARMSubtarget::isTargetHardFloat() const { return TM.isTargetHardFloat(); }
328
isAPCS_ABI() const329 bool ARMSubtarget::isAPCS_ABI() const {
330 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
331 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_APCS;
332 }
isAAPCS_ABI() const333 bool ARMSubtarget::isAAPCS_ABI() const {
334 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
335 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS ||
336 TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
337 }
isAAPCS16_ABI() const338 bool ARMSubtarget::isAAPCS16_ABI() const {
339 assert(TM.TargetABI != ARMBaseTargetMachine::ARM_ABI_UNKNOWN);
340 return TM.TargetABI == ARMBaseTargetMachine::ARM_ABI_AAPCS16;
341 }
342
isROPI() const343 bool ARMSubtarget::isROPI() const {
344 return TM.getRelocationModel() == Reloc::ROPI ||
345 TM.getRelocationModel() == Reloc::ROPI_RWPI;
346 }
isRWPI() const347 bool ARMSubtarget::isRWPI() const {
348 return TM.getRelocationModel() == Reloc::RWPI ||
349 TM.getRelocationModel() == Reloc::ROPI_RWPI;
350 }
351
isGVIndirectSymbol(const GlobalValue * GV) const352 bool ARMSubtarget::isGVIndirectSymbol(const GlobalValue *GV) const {
353 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
354 return true;
355
356 // 32 bit macho has no relocation for a-b if a is undefined, even if b is in
357 // the section that is being relocated. This means we have to use o load even
358 // for GVs that are known to be local to the dso.
359 if (isTargetMachO() && TM.isPositionIndependent() &&
360 (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
361 return true;
362
363 return false;
364 }
365
isGVInGOT(const GlobalValue * GV) const366 bool ARMSubtarget::isGVInGOT(const GlobalValue *GV) const {
367 return isTargetELF() && TM.isPositionIndependent() &&
368 !TM.shouldAssumeDSOLocal(*GV->getParent(), GV);
369 }
370
getMispredictionPenalty() const371 unsigned ARMSubtarget::getMispredictionPenalty() const {
372 return SchedModel.MispredictPenalty;
373 }
374
enableMachineScheduler() const375 bool ARMSubtarget::enableMachineScheduler() const {
376 // The MachineScheduler can increase register usage, so we use more high
377 // registers and end up with more T2 instructions that cannot be converted to
378 // T1 instructions. At least until we do better at converting to thumb1
379 // instructions, on cortex-m at Oz where we are size-paranoid, don't use the
380 // Machine scheduler, relying on the DAG register pressure scheduler instead.
381 if (isMClass() && hasMinSize())
382 return false;
383 // Enable the MachineScheduler before register allocation for subtargets
384 // with the use-misched feature.
385 return useMachineScheduler();
386 }
387
enableSubRegLiveness() const388 bool ARMSubtarget::enableSubRegLiveness() const {
389 if (EnableSubRegLiveness.getNumOccurrences())
390 return EnableSubRegLiveness;
391 // Enable SubRegLiveness for MVE to better optimize s subregs for mqpr regs
392 // and q subregs for qqqqpr regs.
393 return hasMVEIntegerOps();
394 }
395
enableMachinePipeliner() const396 bool ARMSubtarget::enableMachinePipeliner() const {
397 // Enable the MachinePipeliner before register allocation for subtargets
398 // with the use-mipipeliner feature.
399 return getSchedModel().hasInstrSchedModel() && useMachinePipeliner();
400 }
401
useDFAforSMS() const402 bool ARMSubtarget::useDFAforSMS() const { return false; }
403
404 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
enablePostRAScheduler() const405 bool ARMSubtarget::enablePostRAScheduler() const {
406 if (enableMachineScheduler())
407 return false;
408 if (disablePostRAScheduler())
409 return false;
410 // Thumb1 cores will generally not benefit from post-ra scheduling
411 return !isThumb1Only();
412 }
413
enablePostRAMachineScheduler() const414 bool ARMSubtarget::enablePostRAMachineScheduler() const {
415 if (!enableMachineScheduler())
416 return false;
417 if (disablePostRAScheduler())
418 return false;
419 return !isThumb1Only();
420 }
421
useStride4VFPs() const422 bool ARMSubtarget::useStride4VFPs() const {
423 // For general targets, the prologue can grow when VFPs are allocated with
424 // stride 4 (more vpush instructions). But WatchOS uses a compact unwind
425 // format which it's more important to get right.
426 return isTargetWatchABI() ||
427 (useWideStrideVFP() && !OptMinSize);
428 }
429
useMovt() const430 bool ARMSubtarget::useMovt() const {
431 // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
432 // immediates as it is inherently position independent, and may be out of
433 // range otherwise.
434 return !NoMovt && hasV8MBaselineOps() &&
435 (isTargetWindows() || !OptMinSize || genExecuteOnly());
436 }
437
useFastISel() const438 bool ARMSubtarget::useFastISel() const {
439 // Enable fast-isel for any target, for testing only.
440 if (ForceFastISel)
441 return true;
442
443 // Limit fast-isel to the targets that are or have been tested.
444 if (!hasV6Ops())
445 return false;
446
447 // Thumb2 support on iOS; ARM support on iOS, Linux and NaCl.
448 return TM.Options.EnableFastISel &&
449 ((isTargetMachO() && !isThumb1Only()) ||
450 (isTargetLinux() && !isThumb()) || (isTargetNaCl() && !isThumb()));
451 }
452
getGPRAllocationOrder(const MachineFunction & MF) const453 unsigned ARMSubtarget::getGPRAllocationOrder(const MachineFunction &MF) const {
454 // The GPR register class has multiple possible allocation orders, with
455 // tradeoffs preferred by different sub-architectures and optimisation goals.
456 // The allocation orders are:
457 // 0: (the default tablegen order, not used)
458 // 1: r14, r0-r13
459 // 2: r0-r7
460 // 3: r0-r7, r12, lr, r8-r11
461 // Note that the register allocator will change this order so that
462 // callee-saved registers are used later, as they require extra work in the
463 // prologue/epilogue (though we sometimes override that).
464
465 // For thumb1-only targets, only the low registers are allocatable.
466 if (isThumb1Only())
467 return 2;
468
469 // Allocate low registers first, so we can select more 16-bit instructions.
470 // We also (in ignoreCSRForAllocationOrder) override the default behaviour
471 // with regards to callee-saved registers, because pushing extra registers is
472 // much cheaper (in terms of code size) than using high registers. After
473 // that, we allocate r12 (doesn't need to be saved), lr (saving it means we
474 // can return with the pop, don't need an extra "bx lr") and then the rest of
475 // the high registers.
476 if (isThumb2() && MF.getFunction().hasMinSize())
477 return 3;
478
479 // Otherwise, allocate in the default order, using LR first because saving it
480 // allows a shorter epilogue sequence.
481 return 1;
482 }
483
ignoreCSRForAllocationOrder(const MachineFunction & MF,unsigned PhysReg) const484 bool ARMSubtarget::ignoreCSRForAllocationOrder(const MachineFunction &MF,
485 unsigned PhysReg) const {
486 // To minimize code size in Thumb2, we prefer the usage of low regs (lower
487 // cost per use) so we can use narrow encoding. By default, caller-saved
488 // registers (e.g. lr, r12) are always allocated first, regardless of
489 // their cost per use. When optForMinSize, we prefer the low regs even if
490 // they are CSR because usually push/pop can be folded into existing ones.
491 return isThumb2() && MF.getFunction().hasMinSize() &&
492 ARM::GPRRegClass.contains(PhysReg);
493 }
494
splitFramePointerPush(const MachineFunction & MF) const495 bool ARMSubtarget::splitFramePointerPush(const MachineFunction &MF) const {
496 const Function &F = MF.getFunction();
497 if (!MF.getTarget().getMCAsmInfo()->usesWindowsCFI() ||
498 !F.needsUnwindTableEntry())
499 return false;
500 const MachineFrameInfo &MFI = MF.getFrameInfo();
501 return MFI.hasVarSizedObjects() || getRegisterInfo()->hasStackRealignment(MF);
502 }
503