xref: /openbsd/usr.bin/systat/sensors.c (revision d651af2f)
1 /*	$OpenBSD: sensors.c,v 1.33 2024/11/08 08:45:47 matthieu Exp $	*/
2 
3 /*
4  * Copyright (c) 2007 Deanna Phillips <deanna@openbsd.org>
5  * Copyright (c) 2003 Henning Brauer <henning@openbsd.org>
6  * Copyright (c) 2006 Constantine A. Murenin <cnst+openbsd@bugmail.mojo.ru>
7  *
8  * Permission to use, copy, modify, and distribute this software for any
9  * purpose with or without fee is hereby granted, provided that the above
10  * copyright notice and this permission notice appear in all copies.
11  *
12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19  *
20  */
21 
22 #include <sys/types.h>
23 #include <sys/signal.h>
24 #include <sys/sysctl.h>
25 #include <sys/sensors.h>
26 
27 #include <err.h>
28 #include <errno.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <util.h>
33 #include "systat.h"
34 
35 struct sensor sensor;
36 struct sensordev sensordev;
37 
38 struct sensinfo {
39 	int sn_dev;
40 	struct sensor sn_sensor;
41 };
42 #define sn_type sn_sensor.type
43 #define sn_numt sn_sensor.numt
44 #define sn_desc sn_sensor.desc
45 #define sn_status sn_sensor.status
46 #define sn_value sn_sensor.value
47 
48 #define SYSTAT_MAXSENSORDEVICES 1024
49 char *devnames[SYSTAT_MAXSENSORDEVICES];
50 
51 #define ADD_ALLOC 100
52 static size_t sensor_cnt = 0;
53 static size_t num_alloc = 0;
54 static struct sensinfo *sensors = NULL;
55 
56 static char *fmttime(double);
57 static void showsensor(struct sensinfo *s);
58 
59 void print_sn(void);
60 int read_sn(void);
61 int select_sn(void);
62 
63 const char *drvstat[] = {
64 	NULL,
65 	"empty", "ready", "powering up", "online", "idle", "active",
66 	"rebuilding", "powering down", "failed", "degraded"
67 };
68 
69 
70 field_def fields_sn[] = {
71 	{"SENSOR", 16, 32, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0},
72 	{"VALUE", 16, 20, 1, FLD_ALIGN_RIGHT, -1, 0, 0, 0},
73 	{"STATUS", 5, 8, 1, FLD_ALIGN_CENTER, -1, 0, 0, 0},
74 	{"DESCRIPTION", 20, 45, 1, FLD_ALIGN_LEFT, -1, 0, 0, 0}
75 };
76 
77 #define FLD_SN_SENSOR	FIELD_ADDR(fields_sn,0)
78 #define FLD_SN_VALUE	FIELD_ADDR(fields_sn,1)
79 #define FLD_SN_STATUS	FIELD_ADDR(fields_sn,2)
80 #define FLD_SN_DESCR	FIELD_ADDR(fields_sn,3)
81 
82 /* Define views */
83 field_def *view_sn_0[] = {
84 	FLD_SN_SENSOR, FLD_SN_VALUE, FLD_SN_STATUS, FLD_SN_DESCR, NULL
85 };
86 
87 
88 /* Define view managers */
89 struct view_manager sensors_mgr = {
90 	"Sensors", select_sn, read_sn, NULL, print_header,
91 	print_sn, keyboard_callback, NULL, NULL
92 };
93 
94 field_view views_sn[] = {
95 	{view_sn_0, "sensors", '3', &sensors_mgr},
96 	{NULL, NULL, 0, NULL}
97 };
98 
99 struct sensinfo *
next_sn(void)100 next_sn(void)
101 {
102 	if (num_alloc <= sensor_cnt) {
103 		struct sensinfo *s;
104 		size_t a = num_alloc + ADD_ALLOC;
105 		if (a < num_alloc)
106 			return NULL;
107 		s = reallocarray(sensors, a, sizeof(struct sensinfo));
108 		if (s == NULL)
109 			return NULL;
110 		sensors = s;
111 		num_alloc = a;
112 	}
113 
114 	return &sensors[sensor_cnt++];
115 }
116 
117 
118 int
select_sn(void)119 select_sn(void)
120 {
121 	num_disp = sensor_cnt;
122 	return (0);
123 }
124 
125 int
read_sn(void)126 read_sn(void)
127 {
128 	enum sensor_type type;
129 	size_t		 slen, sdlen;
130 	int		 mib[5], dev, numt;
131 	struct sensinfo	*s;
132 
133 	mib[0] = CTL_HW;
134 	mib[1] = HW_SENSORS;
135 
136 	sensor_cnt = 0;
137 
138 	for (dev = 0; dev < SYSTAT_MAXSENSORDEVICES; dev++) {
139 		mib[2] = dev;
140 		sdlen = sizeof(struct sensordev);
141 		if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) {
142 			if (errno == ENOENT)
143 				break;
144 			if (errno == ENXIO)
145 				continue;
146 			error("sysctl: %s", strerror(errno));
147 		}
148 
149 		if (devnames[dev] && strcmp(devnames[dev], sensordev.xname)) {
150 			free(devnames[dev]);
151 			devnames[dev] = NULL;
152 		}
153 		if (devnames[dev] == NULL)
154 			devnames[dev] = strdup(sensordev.xname);
155 
156 		for (type = 0; type < SENSOR_MAX_TYPES; type++) {
157 			mib[3] = type;
158 			for (numt = 0; numt < sensordev.maxnumt[type]; numt++) {
159 				mib[4] = numt;
160 				slen = sizeof(struct sensor);
161 				if (sysctl(mib, 5, &sensor, &slen, NULL, 0)
162 				    == -1) {
163 					if (errno != ENOENT)
164 						error("sysctl: %s", strerror(errno));
165 					continue;
166 				}
167 				if (sensor.flags & SENSOR_FINVALID)
168 					continue;
169 
170 				s = next_sn();
171 				s->sn_sensor = sensor;
172 				s->sn_dev = dev;
173 			}
174 		}
175 	}
176 
177 	num_disp = sensor_cnt;
178 	return 0;
179 }
180 
181 
182 void
print_sn(void)183 print_sn(void)
184 {
185 	int n, count = 0;
186 
187 	for (n = dispstart; n < num_disp; n++) {
188 		showsensor(sensors + n);
189 		count++;
190 		if (maxprint > 0 && count >= maxprint)
191 			break;
192 	}
193 }
194 
195 int
initsensors(void)196 initsensors(void)
197 {
198 	field_view *v;
199 
200 	memset(devnames, 0, sizeof(devnames));
201 
202 	for (v = views_sn; v->name != NULL; v++)
203 		add_view(v);
204 
205 	return(1);
206 }
207 
208 static void
showsensor(struct sensinfo * s)209 showsensor(struct sensinfo *s)
210 {
211 	tb_start();
212 	tbprintf("%s.%s%d", devnames[s->sn_dev],
213 		 sensor_type_s[s->sn_type], s->sn_numt);
214 	print_fld_tb(FLD_SN_SENSOR);
215 
216 	if (s->sn_desc[0] != '\0')
217 		print_fld_str(FLD_SN_DESCR, s->sn_desc);
218 
219 	tb_start();
220 
221 	switch (s->sn_type) {
222 	case SENSOR_TEMP:
223 		tbprintf("%10.2f degC",
224 		    (s->sn_value - 273150000) / 1000000.0);
225 		break;
226 	case SENSOR_FANRPM:
227 		tbprintf("%11lld RPM", s->sn_value);
228 		break;
229 	case SENSOR_VOLTS_DC:
230 		tbprintf("%10.2f V DC",
231 		    s->sn_value / 1000000.0);
232 		break;
233 	case SENSOR_VOLTS_AC:
234 		tbprintf("%10.2f V AC",
235 		    s->sn_value / 1000000.0);
236 		break;
237 	case SENSOR_OHMS:
238 		tbprintf("%11lld ohm", s->sn_value);
239 		break;
240 	case SENSOR_WATTS:
241 		tbprintf("%10.2f W", s->sn_value / 1000000.0);
242 		break;
243 	case SENSOR_AMPS:
244 		tbprintf("%10.2f A", s->sn_value / 1000000.0);
245 		break;
246 	case SENSOR_WATTHOUR:
247 		tbprintf("%12.2f Wh", s->sn_value / 1000000.0);
248 		break;
249 	case SENSOR_AMPHOUR:
250 		tbprintf("%10.2f Ah", s->sn_value / 1000000.0);
251 		break;
252 	case SENSOR_INDICATOR:
253 		tbprintf("%15s", s->sn_value ? "On" : "Off");
254 		break;
255 	case SENSOR_INTEGER:
256 		tbprintf("%11lld raw", s->sn_value);
257 		break;
258 	case SENSOR_PERCENT:
259 		tbprintf("%14.2f%%", s->sn_value / 1000.0);
260 		break;
261 	case SENSOR_LUX:
262 		tbprintf("%15.2f lx", s->sn_value / 1000000.0);
263 		break;
264 	case SENSOR_DRIVE:
265 		if (0 < s->sn_value &&
266 		    s->sn_value < sizeof(drvstat)/sizeof(drvstat[0])) {
267 			tbprintf("%15s", drvstat[s->sn_value]);
268 			break;
269 		}
270 		break;
271 	case SENSOR_TIMEDELTA:
272 		tbprintf("%15s", fmttime(s->sn_value / 1000000000.0));
273 		break;
274 	case SENSOR_HUMIDITY:
275 		tbprintf("%3.2f%%", s->sn_value / 1000.0);
276 		break;
277 	case SENSOR_FREQ:
278 		if (humanreadable) {
279 			char buf[FMT_SCALED_STRSIZE];
280 			fmt_scaled(s->sn_value / 1000000.0, buf);
281 			tbprintf("%sHz", buf);
282 		} else
283 			tbprintf("%11.2f Hz", s->sn_value / 1000000.0);
284 		break;
285 	case SENSOR_ANGLE:
286 		tbprintf("%3.4f degrees", s->sn_value / 1000000.0);
287 		break;
288 	case SENSOR_DISTANCE:
289 		tbprintf("%.3f m", s->sn_value / 1000000.0);
290 		break;
291 	case SENSOR_PRESSURE:
292 		tbprintf("%.2f Pa", s->sn_value / 1000.0);
293 		break;
294 	case SENSOR_ACCEL:
295 		tbprintf("%2.4f m/s^2", s->sn_value / 1000000.0);
296 		break;
297 	case SENSOR_VELOCITY:
298 		tbprintf("%4.3f m/s", s->sn_value / 1000000.0);
299 		break;
300 	case SENSOR_ENERGY:
301 		tbprintf("%.2f J", s->sn_value / 1000000.0);
302 		break;
303 	default:
304 		tbprintf("%10lld", s->sn_value);
305 		break;
306 	}
307 
308 	print_fld_tb(FLD_SN_VALUE);
309 
310 	switch (s->sn_status) {
311 	case SENSOR_S_UNSPEC:
312 		break;
313 	case SENSOR_S_UNKNOWN:
314 		print_fld_str(FLD_SN_STATUS, "unknown");
315 		break;
316 	case SENSOR_S_WARN:
317 		print_fld_str(FLD_SN_STATUS, "WARNING");
318 		break;
319 	case SENSOR_S_CRIT:
320 		print_fld_str(FLD_SN_STATUS, "CRITICAL");
321 		break;
322 	case SENSOR_S_OK:
323 		print_fld_str(FLD_SN_STATUS, "OK");
324 		break;
325 	}
326 	end_line();
327 }
328 
329 #define SECS_PER_DAY 86400
330 #define SECS_PER_HOUR 3600
331 #define SECS_PER_MIN 60
332 
333 static char *
fmttime(double in)334 fmttime(double in)
335 {
336 	int signbit = 1;
337 	int tiny = 0;
338 	char *unit;
339 #define LEN 32
340 	static char outbuf[LEN];
341 
342 	if (in < 0){
343 		signbit = -1;
344 		in *= -1;
345 	}
346 
347 	if (in >= SECS_PER_DAY ){
348 		unit = "days";
349 		in /= SECS_PER_DAY;
350 	} else if (in >= SECS_PER_HOUR ){
351 		unit = "hr";
352 		in /= SECS_PER_HOUR;
353 	} else if (in >= SECS_PER_MIN ){
354 		unit = "min";
355 		in /= SECS_PER_MIN;
356 	} else if (in >= 1 ){
357 		unit = "s";
358 		/* in *= 1; */ /* no op */
359 	} else if (in == 0 ){ /* direct comparisons to floats are scary */
360 		unit = "s";
361 	} else if (in >= 1e-3 ){
362 		unit = "ms";
363 		in *= 1e3;
364 	} else if (in >= 1e-6 ){
365 		unit = "us";
366 		in *= 1e6;
367 	} else if (in >= 1e-9 ){
368 		unit = "ns";
369 		in *= 1e9;
370 	} else {
371 		unit = "ps";
372 		if (in < 1e-13)
373 			tiny = 1;
374 		in *= 1e12;
375 	}
376 
377 	snprintf(outbuf, LEN,
378 	    tiny ? "%s%f %s" : "%s%.3f %s",
379 	    signbit == -1 ? "-" : "", in, unit);
380 
381 	return outbuf;
382 }
383