xref: /linux/fs/inode.c (revision 66a67c86)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <linux/rw_hint.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __ro_after_init;
59 static unsigned int i_hash_shift __ro_after_init;
60 static struct hlist_head *inode_hashtable __ro_after_init;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
73 
74 static struct kmem_cache *inode_cachep __ro_after_init;
75 
get_nr_inodes(void)76 static long get_nr_inodes(void)
77 {
78 	int i;
79 	long sum = 0;
80 	for_each_possible_cpu(i)
81 		sum += per_cpu(nr_inodes, i);
82 	return sum < 0 ? 0 : sum;
83 }
84 
get_nr_inodes_unused(void)85 static inline long get_nr_inodes_unused(void)
86 {
87 	int i;
88 	long sum = 0;
89 	for_each_possible_cpu(i)
90 		sum += per_cpu(nr_unused, i);
91 	return sum < 0 ? 0 : sum;
92 }
93 
get_nr_dirty_inodes(void)94 long get_nr_dirty_inodes(void)
95 {
96 	/* not actually dirty inodes, but a wild approximation */
97 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 	return nr_dirty > 0 ? nr_dirty : 0;
99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
111 			  size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119 	{
120 		.procname	= "inode-nr",
121 		.data		= &inodes_stat,
122 		.maxlen		= 2*sizeof(long),
123 		.mode		= 0444,
124 		.proc_handler	= proc_nr_inodes,
125 	},
126 	{
127 		.procname	= "inode-state",
128 		.data		= &inodes_stat,
129 		.maxlen		= 7*sizeof(long),
130 		.mode		= 0444,
131 		.proc_handler	= proc_nr_inodes,
132 	},
133 };
134 
init_fs_inode_sysctls(void)135 static int __init init_fs_inode_sysctls(void)
136 {
137 	register_sysctl_init("fs", inodes_sysctls);
138 	return 0;
139 }
140 early_initcall(init_fs_inode_sysctls);
141 #endif
142 
no_open(struct inode * inode,struct file * file)143 static int no_open(struct inode *inode, struct file *file)
144 {
145 	return -ENXIO;
146 }
147 
148 /**
149  * inode_init_always - perform inode structure initialisation
150  * @sb: superblock inode belongs to
151  * @inode: inode to initialise
152  *
153  * These are initializations that need to be done on every inode
154  * allocation as the fields are not initialised by slab allocation.
155  */
inode_init_always(struct super_block * sb,struct inode * inode)156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 	static const struct inode_operations empty_iops;
159 	static const struct file_operations no_open_fops = {.open = no_open};
160 	struct address_space *const mapping = &inode->i_data;
161 
162 	inode->i_sb = sb;
163 	inode->i_blkbits = sb->s_blocksize_bits;
164 	inode->i_flags = 0;
165 	atomic64_set(&inode->i_sequence, 0);
166 	atomic_set(&inode->i_count, 1);
167 	inode->i_op = &empty_iops;
168 	inode->i_fop = &no_open_fops;
169 	inode->i_ino = 0;
170 	inode->__i_nlink = 1;
171 	inode->i_opflags = 0;
172 	if (sb->s_xattr)
173 		inode->i_opflags |= IOP_XATTR;
174 	i_uid_write(inode, 0);
175 	i_gid_write(inode, 0);
176 	atomic_set(&inode->i_writecount, 0);
177 	inode->i_size = 0;
178 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
179 	inode->i_blocks = 0;
180 	inode->i_bytes = 0;
181 	inode->i_generation = 0;
182 	inode->i_pipe = NULL;
183 	inode->i_cdev = NULL;
184 	inode->i_link = NULL;
185 	inode->i_dir_seq = 0;
186 	inode->i_rdev = 0;
187 	inode->dirtied_when = 0;
188 
189 #ifdef CONFIG_CGROUP_WRITEBACK
190 	inode->i_wb_frn_winner = 0;
191 	inode->i_wb_frn_avg_time = 0;
192 	inode->i_wb_frn_history = 0;
193 #endif
194 
195 	spin_lock_init(&inode->i_lock);
196 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
197 
198 	init_rwsem(&inode->i_rwsem);
199 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
200 
201 	atomic_set(&inode->i_dio_count, 0);
202 
203 	mapping->a_ops = &empty_aops;
204 	mapping->host = inode;
205 	mapping->flags = 0;
206 	mapping->wb_err = 0;
207 	atomic_set(&mapping->i_mmap_writable, 0);
208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
209 	atomic_set(&mapping->nr_thps, 0);
210 #endif
211 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
212 	mapping->i_private_data = NULL;
213 	mapping->writeback_index = 0;
214 	init_rwsem(&mapping->invalidate_lock);
215 	lockdep_set_class_and_name(&mapping->invalidate_lock,
216 				   &sb->s_type->invalidate_lock_key,
217 				   "mapping.invalidate_lock");
218 	if (sb->s_iflags & SB_I_STABLE_WRITES)
219 		mapping_set_stable_writes(mapping);
220 	inode->i_private = NULL;
221 	inode->i_mapping = mapping;
222 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
223 #ifdef CONFIG_FS_POSIX_ACL
224 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
225 #endif
226 
227 #ifdef CONFIG_FSNOTIFY
228 	inode->i_fsnotify_mask = 0;
229 #endif
230 	inode->i_flctx = NULL;
231 
232 	if (unlikely(security_inode_alloc(inode)))
233 		return -ENOMEM;
234 	this_cpu_inc(nr_inodes);
235 
236 	return 0;
237 }
238 EXPORT_SYMBOL(inode_init_always);
239 
free_inode_nonrcu(struct inode * inode)240 void free_inode_nonrcu(struct inode *inode)
241 {
242 	kmem_cache_free(inode_cachep, inode);
243 }
244 EXPORT_SYMBOL(free_inode_nonrcu);
245 
i_callback(struct rcu_head * head)246 static void i_callback(struct rcu_head *head)
247 {
248 	struct inode *inode = container_of(head, struct inode, i_rcu);
249 	if (inode->free_inode)
250 		inode->free_inode(inode);
251 	else
252 		free_inode_nonrcu(inode);
253 }
254 
alloc_inode(struct super_block * sb)255 static struct inode *alloc_inode(struct super_block *sb)
256 {
257 	const struct super_operations *ops = sb->s_op;
258 	struct inode *inode;
259 
260 	if (ops->alloc_inode)
261 		inode = ops->alloc_inode(sb);
262 	else
263 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
264 
265 	if (!inode)
266 		return NULL;
267 
268 	if (unlikely(inode_init_always(sb, inode))) {
269 		if (ops->destroy_inode) {
270 			ops->destroy_inode(inode);
271 			if (!ops->free_inode)
272 				return NULL;
273 		}
274 		inode->free_inode = ops->free_inode;
275 		i_callback(&inode->i_rcu);
276 		return NULL;
277 	}
278 
279 	return inode;
280 }
281 
__destroy_inode(struct inode * inode)282 void __destroy_inode(struct inode *inode)
283 {
284 	BUG_ON(inode_has_buffers(inode));
285 	inode_detach_wb(inode);
286 	security_inode_free(inode);
287 	fsnotify_inode_delete(inode);
288 	locks_free_lock_context(inode);
289 	if (!inode->i_nlink) {
290 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
291 		atomic_long_dec(&inode->i_sb->s_remove_count);
292 	}
293 
294 #ifdef CONFIG_FS_POSIX_ACL
295 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
296 		posix_acl_release(inode->i_acl);
297 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
298 		posix_acl_release(inode->i_default_acl);
299 #endif
300 	this_cpu_dec(nr_inodes);
301 }
302 EXPORT_SYMBOL(__destroy_inode);
303 
destroy_inode(struct inode * inode)304 static void destroy_inode(struct inode *inode)
305 {
306 	const struct super_operations *ops = inode->i_sb->s_op;
307 
308 	BUG_ON(!list_empty(&inode->i_lru));
309 	__destroy_inode(inode);
310 	if (ops->destroy_inode) {
311 		ops->destroy_inode(inode);
312 		if (!ops->free_inode)
313 			return;
314 	}
315 	inode->free_inode = ops->free_inode;
316 	call_rcu(&inode->i_rcu, i_callback);
317 }
318 
319 /**
320  * drop_nlink - directly drop an inode's link count
321  * @inode: inode
322  *
323  * This is a low-level filesystem helper to replace any
324  * direct filesystem manipulation of i_nlink.  In cases
325  * where we are attempting to track writes to the
326  * filesystem, a decrement to zero means an imminent
327  * write when the file is truncated and actually unlinked
328  * on the filesystem.
329  */
drop_nlink(struct inode * inode)330 void drop_nlink(struct inode *inode)
331 {
332 	WARN_ON(inode->i_nlink == 0);
333 	inode->__i_nlink--;
334 	if (!inode->i_nlink)
335 		atomic_long_inc(&inode->i_sb->s_remove_count);
336 }
337 EXPORT_SYMBOL(drop_nlink);
338 
339 /**
340  * clear_nlink - directly zero an inode's link count
341  * @inode: inode
342  *
343  * This is a low-level filesystem helper to replace any
344  * direct filesystem manipulation of i_nlink.  See
345  * drop_nlink() for why we care about i_nlink hitting zero.
346  */
clear_nlink(struct inode * inode)347 void clear_nlink(struct inode *inode)
348 {
349 	if (inode->i_nlink) {
350 		inode->__i_nlink = 0;
351 		atomic_long_inc(&inode->i_sb->s_remove_count);
352 	}
353 }
354 EXPORT_SYMBOL(clear_nlink);
355 
356 /**
357  * set_nlink - directly set an inode's link count
358  * @inode: inode
359  * @nlink: new nlink (should be non-zero)
360  *
361  * This is a low-level filesystem helper to replace any
362  * direct filesystem manipulation of i_nlink.
363  */
set_nlink(struct inode * inode,unsigned int nlink)364 void set_nlink(struct inode *inode, unsigned int nlink)
365 {
366 	if (!nlink) {
367 		clear_nlink(inode);
368 	} else {
369 		/* Yes, some filesystems do change nlink from zero to one */
370 		if (inode->i_nlink == 0)
371 			atomic_long_dec(&inode->i_sb->s_remove_count);
372 
373 		inode->__i_nlink = nlink;
374 	}
375 }
376 EXPORT_SYMBOL(set_nlink);
377 
378 /**
379  * inc_nlink - directly increment an inode's link count
380  * @inode: inode
381  *
382  * This is a low-level filesystem helper to replace any
383  * direct filesystem manipulation of i_nlink.  Currently,
384  * it is only here for parity with dec_nlink().
385  */
inc_nlink(struct inode * inode)386 void inc_nlink(struct inode *inode)
387 {
388 	if (unlikely(inode->i_nlink == 0)) {
389 		WARN_ON(!(inode->i_state & I_LINKABLE));
390 		atomic_long_dec(&inode->i_sb->s_remove_count);
391 	}
392 
393 	inode->__i_nlink++;
394 }
395 EXPORT_SYMBOL(inc_nlink);
396 
__address_space_init_once(struct address_space * mapping)397 static void __address_space_init_once(struct address_space *mapping)
398 {
399 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
400 	init_rwsem(&mapping->i_mmap_rwsem);
401 	INIT_LIST_HEAD(&mapping->i_private_list);
402 	spin_lock_init(&mapping->i_private_lock);
403 	mapping->i_mmap = RB_ROOT_CACHED;
404 }
405 
address_space_init_once(struct address_space * mapping)406 void address_space_init_once(struct address_space *mapping)
407 {
408 	memset(mapping, 0, sizeof(*mapping));
409 	__address_space_init_once(mapping);
410 }
411 EXPORT_SYMBOL(address_space_init_once);
412 
413 /*
414  * These are initializations that only need to be done
415  * once, because the fields are idempotent across use
416  * of the inode, so let the slab aware of that.
417  */
inode_init_once(struct inode * inode)418 void inode_init_once(struct inode *inode)
419 {
420 	memset(inode, 0, sizeof(*inode));
421 	INIT_HLIST_NODE(&inode->i_hash);
422 	INIT_LIST_HEAD(&inode->i_devices);
423 	INIT_LIST_HEAD(&inode->i_io_list);
424 	INIT_LIST_HEAD(&inode->i_wb_list);
425 	INIT_LIST_HEAD(&inode->i_lru);
426 	INIT_LIST_HEAD(&inode->i_sb_list);
427 	__address_space_init_once(&inode->i_data);
428 	i_size_ordered_init(inode);
429 }
430 EXPORT_SYMBOL(inode_init_once);
431 
init_once(void * foo)432 static void init_once(void *foo)
433 {
434 	struct inode *inode = (struct inode *) foo;
435 
436 	inode_init_once(inode);
437 }
438 
439 /*
440  * inode->i_lock must be held
441  */
__iget(struct inode * inode)442 void __iget(struct inode *inode)
443 {
444 	atomic_inc(&inode->i_count);
445 }
446 
447 /*
448  * get additional reference to inode; caller must already hold one.
449  */
ihold(struct inode * inode)450 void ihold(struct inode *inode)
451 {
452 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
453 }
454 EXPORT_SYMBOL(ihold);
455 
__inode_add_lru(struct inode * inode,bool rotate)456 static void __inode_add_lru(struct inode *inode, bool rotate)
457 {
458 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
459 		return;
460 	if (atomic_read(&inode->i_count))
461 		return;
462 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
463 		return;
464 	if (!mapping_shrinkable(&inode->i_data))
465 		return;
466 
467 	if (list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
468 		this_cpu_inc(nr_unused);
469 	else if (rotate)
470 		inode->i_state |= I_REFERENCED;
471 }
472 
473 /*
474  * Add inode to LRU if needed (inode is unused and clean).
475  *
476  * Needs inode->i_lock held.
477  */
inode_add_lru(struct inode * inode)478 void inode_add_lru(struct inode *inode)
479 {
480 	__inode_add_lru(inode, false);
481 }
482 
inode_lru_list_del(struct inode * inode)483 static void inode_lru_list_del(struct inode *inode)
484 {
485 	if (list_lru_del_obj(&inode->i_sb->s_inode_lru, &inode->i_lru))
486 		this_cpu_dec(nr_unused);
487 }
488 
489 /**
490  * inode_sb_list_add - add inode to the superblock list of inodes
491  * @inode: inode to add
492  */
inode_sb_list_add(struct inode * inode)493 void inode_sb_list_add(struct inode *inode)
494 {
495 	spin_lock(&inode->i_sb->s_inode_list_lock);
496 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
497 	spin_unlock(&inode->i_sb->s_inode_list_lock);
498 }
499 EXPORT_SYMBOL_GPL(inode_sb_list_add);
500 
inode_sb_list_del(struct inode * inode)501 static inline void inode_sb_list_del(struct inode *inode)
502 {
503 	if (!list_empty(&inode->i_sb_list)) {
504 		spin_lock(&inode->i_sb->s_inode_list_lock);
505 		list_del_init(&inode->i_sb_list);
506 		spin_unlock(&inode->i_sb->s_inode_list_lock);
507 	}
508 }
509 
hash(struct super_block * sb,unsigned long hashval)510 static unsigned long hash(struct super_block *sb, unsigned long hashval)
511 {
512 	unsigned long tmp;
513 
514 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
515 			L1_CACHE_BYTES;
516 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
517 	return tmp & i_hash_mask;
518 }
519 
520 /**
521  *	__insert_inode_hash - hash an inode
522  *	@inode: unhashed inode
523  *	@hashval: unsigned long value used to locate this object in the
524  *		inode_hashtable.
525  *
526  *	Add an inode to the inode hash for this superblock.
527  */
__insert_inode_hash(struct inode * inode,unsigned long hashval)528 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
529 {
530 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
531 
532 	spin_lock(&inode_hash_lock);
533 	spin_lock(&inode->i_lock);
534 	hlist_add_head_rcu(&inode->i_hash, b);
535 	spin_unlock(&inode->i_lock);
536 	spin_unlock(&inode_hash_lock);
537 }
538 EXPORT_SYMBOL(__insert_inode_hash);
539 
540 /**
541  *	__remove_inode_hash - remove an inode from the hash
542  *	@inode: inode to unhash
543  *
544  *	Remove an inode from the superblock.
545  */
__remove_inode_hash(struct inode * inode)546 void __remove_inode_hash(struct inode *inode)
547 {
548 	spin_lock(&inode_hash_lock);
549 	spin_lock(&inode->i_lock);
550 	hlist_del_init_rcu(&inode->i_hash);
551 	spin_unlock(&inode->i_lock);
552 	spin_unlock(&inode_hash_lock);
553 }
554 EXPORT_SYMBOL(__remove_inode_hash);
555 
dump_mapping(const struct address_space * mapping)556 void dump_mapping(const struct address_space *mapping)
557 {
558 	struct inode *host;
559 	const struct address_space_operations *a_ops;
560 	struct hlist_node *dentry_first;
561 	struct dentry *dentry_ptr;
562 	struct dentry dentry;
563 	unsigned long ino;
564 
565 	/*
566 	 * If mapping is an invalid pointer, we don't want to crash
567 	 * accessing it, so probe everything depending on it carefully.
568 	 */
569 	if (get_kernel_nofault(host, &mapping->host) ||
570 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
571 		pr_warn("invalid mapping:%px\n", mapping);
572 		return;
573 	}
574 
575 	if (!host) {
576 		pr_warn("aops:%ps\n", a_ops);
577 		return;
578 	}
579 
580 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
581 	    get_kernel_nofault(ino, &host->i_ino)) {
582 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
583 		return;
584 	}
585 
586 	if (!dentry_first) {
587 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
588 		return;
589 	}
590 
591 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
592 	if (get_kernel_nofault(dentry, dentry_ptr) ||
593 	    !dentry.d_parent || !dentry.d_name.name) {
594 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
595 				a_ops, ino, dentry_ptr);
596 		return;
597 	}
598 
599 	/*
600 	 * if dentry is corrupted, the %pd handler may still crash,
601 	 * but it's unlikely that we reach here with a corrupt mapping
602 	 */
603 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
604 }
605 
clear_inode(struct inode * inode)606 void clear_inode(struct inode *inode)
607 {
608 	/*
609 	 * We have to cycle the i_pages lock here because reclaim can be in the
610 	 * process of removing the last page (in __filemap_remove_folio())
611 	 * and we must not free the mapping under it.
612 	 */
613 	xa_lock_irq(&inode->i_data.i_pages);
614 	BUG_ON(inode->i_data.nrpages);
615 	/*
616 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
617 	 * two known and long-standing ways in which nodes may get left behind
618 	 * (when deep radix-tree node allocation failed partway; or when THP
619 	 * collapse_file() failed). Until those two known cases are cleaned up,
620 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
621 	 * nor even WARN_ON(!mapping_empty).
622 	 */
623 	xa_unlock_irq(&inode->i_data.i_pages);
624 	BUG_ON(!list_empty(&inode->i_data.i_private_list));
625 	BUG_ON(!(inode->i_state & I_FREEING));
626 	BUG_ON(inode->i_state & I_CLEAR);
627 	BUG_ON(!list_empty(&inode->i_wb_list));
628 	/* don't need i_lock here, no concurrent mods to i_state */
629 	inode->i_state = I_FREEING | I_CLEAR;
630 }
631 EXPORT_SYMBOL(clear_inode);
632 
633 /*
634  * Free the inode passed in, removing it from the lists it is still connected
635  * to. We remove any pages still attached to the inode and wait for any IO that
636  * is still in progress before finally destroying the inode.
637  *
638  * An inode must already be marked I_FREEING so that we avoid the inode being
639  * moved back onto lists if we race with other code that manipulates the lists
640  * (e.g. writeback_single_inode). The caller is responsible for setting this.
641  *
642  * An inode must already be removed from the LRU list before being evicted from
643  * the cache. This should occur atomically with setting the I_FREEING state
644  * flag, so no inodes here should ever be on the LRU when being evicted.
645  */
evict(struct inode * inode)646 static void evict(struct inode *inode)
647 {
648 	const struct super_operations *op = inode->i_sb->s_op;
649 
650 	BUG_ON(!(inode->i_state & I_FREEING));
651 	BUG_ON(!list_empty(&inode->i_lru));
652 
653 	if (!list_empty(&inode->i_io_list))
654 		inode_io_list_del(inode);
655 
656 	inode_sb_list_del(inode);
657 
658 	/*
659 	 * Wait for flusher thread to be done with the inode so that filesystem
660 	 * does not start destroying it while writeback is still running. Since
661 	 * the inode has I_FREEING set, flusher thread won't start new work on
662 	 * the inode.  We just have to wait for running writeback to finish.
663 	 */
664 	inode_wait_for_writeback(inode);
665 
666 	if (op->evict_inode) {
667 		op->evict_inode(inode);
668 	} else {
669 		truncate_inode_pages_final(&inode->i_data);
670 		clear_inode(inode);
671 	}
672 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
673 		cd_forget(inode);
674 
675 	remove_inode_hash(inode);
676 
677 	spin_lock(&inode->i_lock);
678 	wake_up_bit(&inode->i_state, __I_NEW);
679 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
680 	spin_unlock(&inode->i_lock);
681 
682 	destroy_inode(inode);
683 }
684 
685 /*
686  * dispose_list - dispose of the contents of a local list
687  * @head: the head of the list to free
688  *
689  * Dispose-list gets a local list with local inodes in it, so it doesn't
690  * need to worry about list corruption and SMP locks.
691  */
dispose_list(struct list_head * head)692 static void dispose_list(struct list_head *head)
693 {
694 	while (!list_empty(head)) {
695 		struct inode *inode;
696 
697 		inode = list_first_entry(head, struct inode, i_lru);
698 		list_del_init(&inode->i_lru);
699 
700 		evict(inode);
701 		cond_resched();
702 	}
703 }
704 
705 /**
706  * evict_inodes	- evict all evictable inodes for a superblock
707  * @sb:		superblock to operate on
708  *
709  * Make sure that no inodes with zero refcount are retained.  This is
710  * called by superblock shutdown after having SB_ACTIVE flag removed,
711  * so any inode reaching zero refcount during or after that call will
712  * be immediately evicted.
713  */
evict_inodes(struct super_block * sb)714 void evict_inodes(struct super_block *sb)
715 {
716 	struct inode *inode, *next;
717 	LIST_HEAD(dispose);
718 
719 again:
720 	spin_lock(&sb->s_inode_list_lock);
721 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
722 		if (atomic_read(&inode->i_count))
723 			continue;
724 
725 		spin_lock(&inode->i_lock);
726 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
727 			spin_unlock(&inode->i_lock);
728 			continue;
729 		}
730 
731 		inode->i_state |= I_FREEING;
732 		inode_lru_list_del(inode);
733 		spin_unlock(&inode->i_lock);
734 		list_add(&inode->i_lru, &dispose);
735 
736 		/*
737 		 * We can have a ton of inodes to evict at unmount time given
738 		 * enough memory, check to see if we need to go to sleep for a
739 		 * bit so we don't livelock.
740 		 */
741 		if (need_resched()) {
742 			spin_unlock(&sb->s_inode_list_lock);
743 			cond_resched();
744 			dispose_list(&dispose);
745 			goto again;
746 		}
747 	}
748 	spin_unlock(&sb->s_inode_list_lock);
749 
750 	dispose_list(&dispose);
751 }
752 EXPORT_SYMBOL_GPL(evict_inodes);
753 
754 /**
755  * invalidate_inodes	- attempt to free all inodes on a superblock
756  * @sb:		superblock to operate on
757  *
758  * Attempts to free all inodes (including dirty inodes) for a given superblock.
759  */
invalidate_inodes(struct super_block * sb)760 void invalidate_inodes(struct super_block *sb)
761 {
762 	struct inode *inode, *next;
763 	LIST_HEAD(dispose);
764 
765 again:
766 	spin_lock(&sb->s_inode_list_lock);
767 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
768 		spin_lock(&inode->i_lock);
769 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
770 			spin_unlock(&inode->i_lock);
771 			continue;
772 		}
773 		if (atomic_read(&inode->i_count)) {
774 			spin_unlock(&inode->i_lock);
775 			continue;
776 		}
777 
778 		inode->i_state |= I_FREEING;
779 		inode_lru_list_del(inode);
780 		spin_unlock(&inode->i_lock);
781 		list_add(&inode->i_lru, &dispose);
782 		if (need_resched()) {
783 			spin_unlock(&sb->s_inode_list_lock);
784 			cond_resched();
785 			dispose_list(&dispose);
786 			goto again;
787 		}
788 	}
789 	spin_unlock(&sb->s_inode_list_lock);
790 
791 	dispose_list(&dispose);
792 }
793 
794 /*
795  * Isolate the inode from the LRU in preparation for freeing it.
796  *
797  * If the inode has the I_REFERENCED flag set, then it means that it has been
798  * used recently - the flag is set in iput_final(). When we encounter such an
799  * inode, clear the flag and move it to the back of the LRU so it gets another
800  * pass through the LRU before it gets reclaimed. This is necessary because of
801  * the fact we are doing lazy LRU updates to minimise lock contention so the
802  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
803  * with this flag set because they are the inodes that are out of order.
804  */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)805 static enum lru_status inode_lru_isolate(struct list_head *item,
806 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
807 {
808 	struct list_head *freeable = arg;
809 	struct inode	*inode = container_of(item, struct inode, i_lru);
810 
811 	/*
812 	 * We are inverting the lru lock/inode->i_lock here, so use a
813 	 * trylock. If we fail to get the lock, just skip it.
814 	 */
815 	if (!spin_trylock(&inode->i_lock))
816 		return LRU_SKIP;
817 
818 	/*
819 	 * Inodes can get referenced, redirtied, or repopulated while
820 	 * they're already on the LRU, and this can make them
821 	 * unreclaimable for a while. Remove them lazily here; iput,
822 	 * sync, or the last page cache deletion will requeue them.
823 	 */
824 	if (atomic_read(&inode->i_count) ||
825 	    (inode->i_state & ~I_REFERENCED) ||
826 	    !mapping_shrinkable(&inode->i_data)) {
827 		list_lru_isolate(lru, &inode->i_lru);
828 		spin_unlock(&inode->i_lock);
829 		this_cpu_dec(nr_unused);
830 		return LRU_REMOVED;
831 	}
832 
833 	/* Recently referenced inodes get one more pass */
834 	if (inode->i_state & I_REFERENCED) {
835 		inode->i_state &= ~I_REFERENCED;
836 		spin_unlock(&inode->i_lock);
837 		return LRU_ROTATE;
838 	}
839 
840 	/*
841 	 * On highmem systems, mapping_shrinkable() permits dropping
842 	 * page cache in order to free up struct inodes: lowmem might
843 	 * be under pressure before the cache inside the highmem zone.
844 	 */
845 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
846 		__iget(inode);
847 		spin_unlock(&inode->i_lock);
848 		spin_unlock(lru_lock);
849 		if (remove_inode_buffers(inode)) {
850 			unsigned long reap;
851 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
852 			if (current_is_kswapd())
853 				__count_vm_events(KSWAPD_INODESTEAL, reap);
854 			else
855 				__count_vm_events(PGINODESTEAL, reap);
856 			mm_account_reclaimed_pages(reap);
857 		}
858 		iput(inode);
859 		spin_lock(lru_lock);
860 		return LRU_RETRY;
861 	}
862 
863 	WARN_ON(inode->i_state & I_NEW);
864 	inode->i_state |= I_FREEING;
865 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
866 	spin_unlock(&inode->i_lock);
867 
868 	this_cpu_dec(nr_unused);
869 	return LRU_REMOVED;
870 }
871 
872 /*
873  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
874  * This is called from the superblock shrinker function with a number of inodes
875  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
876  * then are freed outside inode_lock by dispose_list().
877  */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)878 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
879 {
880 	LIST_HEAD(freeable);
881 	long freed;
882 
883 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
884 				     inode_lru_isolate, &freeable);
885 	dispose_list(&freeable);
886 	return freed;
887 }
888 
889 static void __wait_on_freeing_inode(struct inode *inode);
890 /*
891  * Called with the inode lock held.
892  */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)893 static struct inode *find_inode(struct super_block *sb,
894 				struct hlist_head *head,
895 				int (*test)(struct inode *, void *),
896 				void *data)
897 {
898 	struct inode *inode = NULL;
899 
900 repeat:
901 	hlist_for_each_entry(inode, head, i_hash) {
902 		if (inode->i_sb != sb)
903 			continue;
904 		if (!test(inode, data))
905 			continue;
906 		spin_lock(&inode->i_lock);
907 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
908 			__wait_on_freeing_inode(inode);
909 			goto repeat;
910 		}
911 		if (unlikely(inode->i_state & I_CREATING)) {
912 			spin_unlock(&inode->i_lock);
913 			return ERR_PTR(-ESTALE);
914 		}
915 		__iget(inode);
916 		spin_unlock(&inode->i_lock);
917 		return inode;
918 	}
919 	return NULL;
920 }
921 
922 /*
923  * find_inode_fast is the fast path version of find_inode, see the comment at
924  * iget_locked for details.
925  */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)926 static struct inode *find_inode_fast(struct super_block *sb,
927 				struct hlist_head *head, unsigned long ino)
928 {
929 	struct inode *inode = NULL;
930 
931 repeat:
932 	hlist_for_each_entry(inode, head, i_hash) {
933 		if (inode->i_ino != ino)
934 			continue;
935 		if (inode->i_sb != sb)
936 			continue;
937 		spin_lock(&inode->i_lock);
938 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
939 			__wait_on_freeing_inode(inode);
940 			goto repeat;
941 		}
942 		if (unlikely(inode->i_state & I_CREATING)) {
943 			spin_unlock(&inode->i_lock);
944 			return ERR_PTR(-ESTALE);
945 		}
946 		__iget(inode);
947 		spin_unlock(&inode->i_lock);
948 		return inode;
949 	}
950 	return NULL;
951 }
952 
953 /*
954  * Each cpu owns a range of LAST_INO_BATCH numbers.
955  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
956  * to renew the exhausted range.
957  *
958  * This does not significantly increase overflow rate because every CPU can
959  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
960  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
961  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
962  * overflow rate by 2x, which does not seem too significant.
963  *
964  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
965  * error if st_ino won't fit in target struct field. Use 32bit counter
966  * here to attempt to avoid that.
967  */
968 #define LAST_INO_BATCH 1024
969 static DEFINE_PER_CPU(unsigned int, last_ino);
970 
get_next_ino(void)971 unsigned int get_next_ino(void)
972 {
973 	unsigned int *p = &get_cpu_var(last_ino);
974 	unsigned int res = *p;
975 
976 #ifdef CONFIG_SMP
977 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
978 		static atomic_t shared_last_ino;
979 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
980 
981 		res = next - LAST_INO_BATCH;
982 	}
983 #endif
984 
985 	res++;
986 	/* get_next_ino should not provide a 0 inode number */
987 	if (unlikely(!res))
988 		res++;
989 	*p = res;
990 	put_cpu_var(last_ino);
991 	return res;
992 }
993 EXPORT_SYMBOL(get_next_ino);
994 
995 /**
996  *	new_inode_pseudo 	- obtain an inode
997  *	@sb: superblock
998  *
999  *	Allocates a new inode for given superblock.
1000  *	Inode wont be chained in superblock s_inodes list
1001  *	This means :
1002  *	- fs can't be unmount
1003  *	- quotas, fsnotify, writeback can't work
1004  */
new_inode_pseudo(struct super_block * sb)1005 struct inode *new_inode_pseudo(struct super_block *sb)
1006 {
1007 	struct inode *inode = alloc_inode(sb);
1008 
1009 	if (inode) {
1010 		spin_lock(&inode->i_lock);
1011 		inode->i_state = 0;
1012 		spin_unlock(&inode->i_lock);
1013 	}
1014 	return inode;
1015 }
1016 
1017 /**
1018  *	new_inode 	- obtain an inode
1019  *	@sb: superblock
1020  *
1021  *	Allocates a new inode for given superblock. The default gfp_mask
1022  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1023  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1024  *	for the page cache are not reclaimable or migratable,
1025  *	mapping_set_gfp_mask() must be called with suitable flags on the
1026  *	newly created inode's mapping
1027  *
1028  */
new_inode(struct super_block * sb)1029 struct inode *new_inode(struct super_block *sb)
1030 {
1031 	struct inode *inode;
1032 
1033 	inode = new_inode_pseudo(sb);
1034 	if (inode)
1035 		inode_sb_list_add(inode);
1036 	return inode;
1037 }
1038 EXPORT_SYMBOL(new_inode);
1039 
1040 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)1041 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1042 {
1043 	if (S_ISDIR(inode->i_mode)) {
1044 		struct file_system_type *type = inode->i_sb->s_type;
1045 
1046 		/* Set new key only if filesystem hasn't already changed it */
1047 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1048 			/*
1049 			 * ensure nobody is actually holding i_mutex
1050 			 */
1051 			// mutex_destroy(&inode->i_mutex);
1052 			init_rwsem(&inode->i_rwsem);
1053 			lockdep_set_class(&inode->i_rwsem,
1054 					  &type->i_mutex_dir_key);
1055 		}
1056 	}
1057 }
1058 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1059 #endif
1060 
1061 /**
1062  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1063  * @inode:	new inode to unlock
1064  *
1065  * Called when the inode is fully initialised to clear the new state of the
1066  * inode and wake up anyone waiting for the inode to finish initialisation.
1067  */
unlock_new_inode(struct inode * inode)1068 void unlock_new_inode(struct inode *inode)
1069 {
1070 	lockdep_annotate_inode_mutex_key(inode);
1071 	spin_lock(&inode->i_lock);
1072 	WARN_ON(!(inode->i_state & I_NEW));
1073 	inode->i_state &= ~I_NEW & ~I_CREATING;
1074 	smp_mb();
1075 	wake_up_bit(&inode->i_state, __I_NEW);
1076 	spin_unlock(&inode->i_lock);
1077 }
1078 EXPORT_SYMBOL(unlock_new_inode);
1079 
discard_new_inode(struct inode * inode)1080 void discard_new_inode(struct inode *inode)
1081 {
1082 	lockdep_annotate_inode_mutex_key(inode);
1083 	spin_lock(&inode->i_lock);
1084 	WARN_ON(!(inode->i_state & I_NEW));
1085 	inode->i_state &= ~I_NEW;
1086 	smp_mb();
1087 	wake_up_bit(&inode->i_state, __I_NEW);
1088 	spin_unlock(&inode->i_lock);
1089 	iput(inode);
1090 }
1091 EXPORT_SYMBOL(discard_new_inode);
1092 
1093 /**
1094  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1095  *
1096  * Lock any non-NULL argument. Passed objects must not be directories.
1097  * Zero, one or two objects may be locked by this function.
1098  *
1099  * @inode1: first inode to lock
1100  * @inode2: second inode to lock
1101  */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1102 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1103 {
1104 	if (inode1)
1105 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1106 	if (inode2)
1107 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1108 	if (inode1 > inode2)
1109 		swap(inode1, inode2);
1110 	if (inode1)
1111 		inode_lock(inode1);
1112 	if (inode2 && inode2 != inode1)
1113 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1114 }
1115 EXPORT_SYMBOL(lock_two_nondirectories);
1116 
1117 /**
1118  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1119  * @inode1: first inode to unlock
1120  * @inode2: second inode to unlock
1121  */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1122 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1123 {
1124 	if (inode1) {
1125 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1126 		inode_unlock(inode1);
1127 	}
1128 	if (inode2 && inode2 != inode1) {
1129 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1130 		inode_unlock(inode2);
1131 	}
1132 }
1133 EXPORT_SYMBOL(unlock_two_nondirectories);
1134 
1135 /**
1136  * inode_insert5 - obtain an inode from a mounted file system
1137  * @inode:	pre-allocated inode to use for insert to cache
1138  * @hashval:	hash value (usually inode number) to get
1139  * @test:	callback used for comparisons between inodes
1140  * @set:	callback used to initialize a new struct inode
1141  * @data:	opaque data pointer to pass to @test and @set
1142  *
1143  * Search for the inode specified by @hashval and @data in the inode cache,
1144  * and if present it is return it with an increased reference count. This is
1145  * a variant of iget5_locked() for callers that don't want to fail on memory
1146  * allocation of inode.
1147  *
1148  * If the inode is not in cache, insert the pre-allocated inode to cache and
1149  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1150  * to fill it in before unlocking it via unlock_new_inode().
1151  *
1152  * Note both @test and @set are called with the inode_hash_lock held, so can't
1153  * sleep.
1154  */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1155 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1156 			    int (*test)(struct inode *, void *),
1157 			    int (*set)(struct inode *, void *), void *data)
1158 {
1159 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1160 	struct inode *old;
1161 
1162 again:
1163 	spin_lock(&inode_hash_lock);
1164 	old = find_inode(inode->i_sb, head, test, data);
1165 	if (unlikely(old)) {
1166 		/*
1167 		 * Uhhuh, somebody else created the same inode under us.
1168 		 * Use the old inode instead of the preallocated one.
1169 		 */
1170 		spin_unlock(&inode_hash_lock);
1171 		if (IS_ERR(old))
1172 			return NULL;
1173 		wait_on_inode(old);
1174 		if (unlikely(inode_unhashed(old))) {
1175 			iput(old);
1176 			goto again;
1177 		}
1178 		return old;
1179 	}
1180 
1181 	if (set && unlikely(set(inode, data))) {
1182 		inode = NULL;
1183 		goto unlock;
1184 	}
1185 
1186 	/*
1187 	 * Return the locked inode with I_NEW set, the
1188 	 * caller is responsible for filling in the contents
1189 	 */
1190 	spin_lock(&inode->i_lock);
1191 	inode->i_state |= I_NEW;
1192 	hlist_add_head_rcu(&inode->i_hash, head);
1193 	spin_unlock(&inode->i_lock);
1194 
1195 	/*
1196 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1197 	 * point, so it should be safe to test i_sb_list locklessly.
1198 	 */
1199 	if (list_empty(&inode->i_sb_list))
1200 		inode_sb_list_add(inode);
1201 unlock:
1202 	spin_unlock(&inode_hash_lock);
1203 
1204 	return inode;
1205 }
1206 EXPORT_SYMBOL(inode_insert5);
1207 
1208 /**
1209  * iget5_locked - obtain an inode from a mounted file system
1210  * @sb:		super block of file system
1211  * @hashval:	hash value (usually inode number) to get
1212  * @test:	callback used for comparisons between inodes
1213  * @set:	callback used to initialize a new struct inode
1214  * @data:	opaque data pointer to pass to @test and @set
1215  *
1216  * Search for the inode specified by @hashval and @data in the inode cache,
1217  * and if present it is return it with an increased reference count. This is
1218  * a generalized version of iget_locked() for file systems where the inode
1219  * number is not sufficient for unique identification of an inode.
1220  *
1221  * If the inode is not in cache, allocate a new inode and return it locked,
1222  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1223  * before unlocking it via unlock_new_inode().
1224  *
1225  * Note both @test and @set are called with the inode_hash_lock held, so can't
1226  * sleep.
1227  */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1228 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1229 		int (*test)(struct inode *, void *),
1230 		int (*set)(struct inode *, void *), void *data)
1231 {
1232 	struct inode *inode = ilookup5(sb, hashval, test, data);
1233 
1234 	if (!inode) {
1235 		struct inode *new = alloc_inode(sb);
1236 
1237 		if (new) {
1238 			new->i_state = 0;
1239 			inode = inode_insert5(new, hashval, test, set, data);
1240 			if (unlikely(inode != new))
1241 				destroy_inode(new);
1242 		}
1243 	}
1244 	return inode;
1245 }
1246 EXPORT_SYMBOL(iget5_locked);
1247 
1248 /**
1249  * iget_locked - obtain an inode from a mounted file system
1250  * @sb:		super block of file system
1251  * @ino:	inode number to get
1252  *
1253  * Search for the inode specified by @ino in the inode cache and if present
1254  * return it with an increased reference count. This is for file systems
1255  * where the inode number is sufficient for unique identification of an inode.
1256  *
1257  * If the inode is not in cache, allocate a new inode and return it locked,
1258  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1259  * before unlocking it via unlock_new_inode().
1260  */
iget_locked(struct super_block * sb,unsigned long ino)1261 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1262 {
1263 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1264 	struct inode *inode;
1265 again:
1266 	spin_lock(&inode_hash_lock);
1267 	inode = find_inode_fast(sb, head, ino);
1268 	spin_unlock(&inode_hash_lock);
1269 	if (inode) {
1270 		if (IS_ERR(inode))
1271 			return NULL;
1272 		wait_on_inode(inode);
1273 		if (unlikely(inode_unhashed(inode))) {
1274 			iput(inode);
1275 			goto again;
1276 		}
1277 		return inode;
1278 	}
1279 
1280 	inode = alloc_inode(sb);
1281 	if (inode) {
1282 		struct inode *old;
1283 
1284 		spin_lock(&inode_hash_lock);
1285 		/* We released the lock, so.. */
1286 		old = find_inode_fast(sb, head, ino);
1287 		if (!old) {
1288 			inode->i_ino = ino;
1289 			spin_lock(&inode->i_lock);
1290 			inode->i_state = I_NEW;
1291 			hlist_add_head_rcu(&inode->i_hash, head);
1292 			spin_unlock(&inode->i_lock);
1293 			inode_sb_list_add(inode);
1294 			spin_unlock(&inode_hash_lock);
1295 
1296 			/* Return the locked inode with I_NEW set, the
1297 			 * caller is responsible for filling in the contents
1298 			 */
1299 			return inode;
1300 		}
1301 
1302 		/*
1303 		 * Uhhuh, somebody else created the same inode under
1304 		 * us. Use the old inode instead of the one we just
1305 		 * allocated.
1306 		 */
1307 		spin_unlock(&inode_hash_lock);
1308 		destroy_inode(inode);
1309 		if (IS_ERR(old))
1310 			return NULL;
1311 		inode = old;
1312 		wait_on_inode(inode);
1313 		if (unlikely(inode_unhashed(inode))) {
1314 			iput(inode);
1315 			goto again;
1316 		}
1317 	}
1318 	return inode;
1319 }
1320 EXPORT_SYMBOL(iget_locked);
1321 
1322 /*
1323  * search the inode cache for a matching inode number.
1324  * If we find one, then the inode number we are trying to
1325  * allocate is not unique and so we should not use it.
1326  *
1327  * Returns 1 if the inode number is unique, 0 if it is not.
1328  */
test_inode_iunique(struct super_block * sb,unsigned long ino)1329 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1330 {
1331 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1332 	struct inode *inode;
1333 
1334 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1335 		if (inode->i_ino == ino && inode->i_sb == sb)
1336 			return 0;
1337 	}
1338 	return 1;
1339 }
1340 
1341 /**
1342  *	iunique - get a unique inode number
1343  *	@sb: superblock
1344  *	@max_reserved: highest reserved inode number
1345  *
1346  *	Obtain an inode number that is unique on the system for a given
1347  *	superblock. This is used by file systems that have no natural
1348  *	permanent inode numbering system. An inode number is returned that
1349  *	is higher than the reserved limit but unique.
1350  *
1351  *	BUGS:
1352  *	With a large number of inodes live on the file system this function
1353  *	currently becomes quite slow.
1354  */
iunique(struct super_block * sb,ino_t max_reserved)1355 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1356 {
1357 	/*
1358 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1359 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1360 	 * here to attempt to avoid that.
1361 	 */
1362 	static DEFINE_SPINLOCK(iunique_lock);
1363 	static unsigned int counter;
1364 	ino_t res;
1365 
1366 	rcu_read_lock();
1367 	spin_lock(&iunique_lock);
1368 	do {
1369 		if (counter <= max_reserved)
1370 			counter = max_reserved + 1;
1371 		res = counter++;
1372 	} while (!test_inode_iunique(sb, res));
1373 	spin_unlock(&iunique_lock);
1374 	rcu_read_unlock();
1375 
1376 	return res;
1377 }
1378 EXPORT_SYMBOL(iunique);
1379 
igrab(struct inode * inode)1380 struct inode *igrab(struct inode *inode)
1381 {
1382 	spin_lock(&inode->i_lock);
1383 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1384 		__iget(inode);
1385 		spin_unlock(&inode->i_lock);
1386 	} else {
1387 		spin_unlock(&inode->i_lock);
1388 		/*
1389 		 * Handle the case where s_op->clear_inode is not been
1390 		 * called yet, and somebody is calling igrab
1391 		 * while the inode is getting freed.
1392 		 */
1393 		inode = NULL;
1394 	}
1395 	return inode;
1396 }
1397 EXPORT_SYMBOL(igrab);
1398 
1399 /**
1400  * ilookup5_nowait - search for an inode in the inode cache
1401  * @sb:		super block of file system to search
1402  * @hashval:	hash value (usually inode number) to search for
1403  * @test:	callback used for comparisons between inodes
1404  * @data:	opaque data pointer to pass to @test
1405  *
1406  * Search for the inode specified by @hashval and @data in the inode cache.
1407  * If the inode is in the cache, the inode is returned with an incremented
1408  * reference count.
1409  *
1410  * Note: I_NEW is not waited upon so you have to be very careful what you do
1411  * with the returned inode.  You probably should be using ilookup5() instead.
1412  *
1413  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1414  */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1415 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1416 		int (*test)(struct inode *, void *), void *data)
1417 {
1418 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1419 	struct inode *inode;
1420 
1421 	spin_lock(&inode_hash_lock);
1422 	inode = find_inode(sb, head, test, data);
1423 	spin_unlock(&inode_hash_lock);
1424 
1425 	return IS_ERR(inode) ? NULL : inode;
1426 }
1427 EXPORT_SYMBOL(ilookup5_nowait);
1428 
1429 /**
1430  * ilookup5 - search for an inode in the inode cache
1431  * @sb:		super block of file system to search
1432  * @hashval:	hash value (usually inode number) to search for
1433  * @test:	callback used for comparisons between inodes
1434  * @data:	opaque data pointer to pass to @test
1435  *
1436  * Search for the inode specified by @hashval and @data in the inode cache,
1437  * and if the inode is in the cache, return the inode with an incremented
1438  * reference count.  Waits on I_NEW before returning the inode.
1439  * returned with an incremented reference count.
1440  *
1441  * This is a generalized version of ilookup() for file systems where the
1442  * inode number is not sufficient for unique identification of an inode.
1443  *
1444  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1445  */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1446 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1447 		int (*test)(struct inode *, void *), void *data)
1448 {
1449 	struct inode *inode;
1450 again:
1451 	inode = ilookup5_nowait(sb, hashval, test, data);
1452 	if (inode) {
1453 		wait_on_inode(inode);
1454 		if (unlikely(inode_unhashed(inode))) {
1455 			iput(inode);
1456 			goto again;
1457 		}
1458 	}
1459 	return inode;
1460 }
1461 EXPORT_SYMBOL(ilookup5);
1462 
1463 /**
1464  * ilookup - search for an inode in the inode cache
1465  * @sb:		super block of file system to search
1466  * @ino:	inode number to search for
1467  *
1468  * Search for the inode @ino in the inode cache, and if the inode is in the
1469  * cache, the inode is returned with an incremented reference count.
1470  */
ilookup(struct super_block * sb,unsigned long ino)1471 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1472 {
1473 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1474 	struct inode *inode;
1475 again:
1476 	spin_lock(&inode_hash_lock);
1477 	inode = find_inode_fast(sb, head, ino);
1478 	spin_unlock(&inode_hash_lock);
1479 
1480 	if (inode) {
1481 		if (IS_ERR(inode))
1482 			return NULL;
1483 		wait_on_inode(inode);
1484 		if (unlikely(inode_unhashed(inode))) {
1485 			iput(inode);
1486 			goto again;
1487 		}
1488 	}
1489 	return inode;
1490 }
1491 EXPORT_SYMBOL(ilookup);
1492 
1493 /**
1494  * find_inode_nowait - find an inode in the inode cache
1495  * @sb:		super block of file system to search
1496  * @hashval:	hash value (usually inode number) to search for
1497  * @match:	callback used for comparisons between inodes
1498  * @data:	opaque data pointer to pass to @match
1499  *
1500  * Search for the inode specified by @hashval and @data in the inode
1501  * cache, where the helper function @match will return 0 if the inode
1502  * does not match, 1 if the inode does match, and -1 if the search
1503  * should be stopped.  The @match function must be responsible for
1504  * taking the i_lock spin_lock and checking i_state for an inode being
1505  * freed or being initialized, and incrementing the reference count
1506  * before returning 1.  It also must not sleep, since it is called with
1507  * the inode_hash_lock spinlock held.
1508  *
1509  * This is a even more generalized version of ilookup5() when the
1510  * function must never block --- find_inode() can block in
1511  * __wait_on_freeing_inode() --- or when the caller can not increment
1512  * the reference count because the resulting iput() might cause an
1513  * inode eviction.  The tradeoff is that the @match funtion must be
1514  * very carefully implemented.
1515  */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1516 struct inode *find_inode_nowait(struct super_block *sb,
1517 				unsigned long hashval,
1518 				int (*match)(struct inode *, unsigned long,
1519 					     void *),
1520 				void *data)
1521 {
1522 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1523 	struct inode *inode, *ret_inode = NULL;
1524 	int mval;
1525 
1526 	spin_lock(&inode_hash_lock);
1527 	hlist_for_each_entry(inode, head, i_hash) {
1528 		if (inode->i_sb != sb)
1529 			continue;
1530 		mval = match(inode, hashval, data);
1531 		if (mval == 0)
1532 			continue;
1533 		if (mval == 1)
1534 			ret_inode = inode;
1535 		goto out;
1536 	}
1537 out:
1538 	spin_unlock(&inode_hash_lock);
1539 	return ret_inode;
1540 }
1541 EXPORT_SYMBOL(find_inode_nowait);
1542 
1543 /**
1544  * find_inode_rcu - find an inode in the inode cache
1545  * @sb:		Super block of file system to search
1546  * @hashval:	Key to hash
1547  * @test:	Function to test match on an inode
1548  * @data:	Data for test function
1549  *
1550  * Search for the inode specified by @hashval and @data in the inode cache,
1551  * where the helper function @test will return 0 if the inode does not match
1552  * and 1 if it does.  The @test function must be responsible for taking the
1553  * i_lock spin_lock and checking i_state for an inode being freed or being
1554  * initialized.
1555  *
1556  * If successful, this will return the inode for which the @test function
1557  * returned 1 and NULL otherwise.
1558  *
1559  * The @test function is not permitted to take a ref on any inode presented.
1560  * It is also not permitted to sleep.
1561  *
1562  * The caller must hold the RCU read lock.
1563  */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1564 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1565 			     int (*test)(struct inode *, void *), void *data)
1566 {
1567 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1568 	struct inode *inode;
1569 
1570 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1571 			 "suspicious find_inode_rcu() usage");
1572 
1573 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1574 		if (inode->i_sb == sb &&
1575 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1576 		    test(inode, data))
1577 			return inode;
1578 	}
1579 	return NULL;
1580 }
1581 EXPORT_SYMBOL(find_inode_rcu);
1582 
1583 /**
1584  * find_inode_by_ino_rcu - Find an inode in the inode cache
1585  * @sb:		Super block of file system to search
1586  * @ino:	The inode number to match
1587  *
1588  * Search for the inode specified by @hashval and @data in the inode cache,
1589  * where the helper function @test will return 0 if the inode does not match
1590  * and 1 if it does.  The @test function must be responsible for taking the
1591  * i_lock spin_lock and checking i_state for an inode being freed or being
1592  * initialized.
1593  *
1594  * If successful, this will return the inode for which the @test function
1595  * returned 1 and NULL otherwise.
1596  *
1597  * The @test function is not permitted to take a ref on any inode presented.
1598  * It is also not permitted to sleep.
1599  *
1600  * The caller must hold the RCU read lock.
1601  */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1602 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1603 				    unsigned long ino)
1604 {
1605 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1606 	struct inode *inode;
1607 
1608 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1609 			 "suspicious find_inode_by_ino_rcu() usage");
1610 
1611 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1612 		if (inode->i_ino == ino &&
1613 		    inode->i_sb == sb &&
1614 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1615 		    return inode;
1616 	}
1617 	return NULL;
1618 }
1619 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1620 
insert_inode_locked(struct inode * inode)1621 int insert_inode_locked(struct inode *inode)
1622 {
1623 	struct super_block *sb = inode->i_sb;
1624 	ino_t ino = inode->i_ino;
1625 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1626 
1627 	while (1) {
1628 		struct inode *old = NULL;
1629 		spin_lock(&inode_hash_lock);
1630 		hlist_for_each_entry(old, head, i_hash) {
1631 			if (old->i_ino != ino)
1632 				continue;
1633 			if (old->i_sb != sb)
1634 				continue;
1635 			spin_lock(&old->i_lock);
1636 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1637 				spin_unlock(&old->i_lock);
1638 				continue;
1639 			}
1640 			break;
1641 		}
1642 		if (likely(!old)) {
1643 			spin_lock(&inode->i_lock);
1644 			inode->i_state |= I_NEW | I_CREATING;
1645 			hlist_add_head_rcu(&inode->i_hash, head);
1646 			spin_unlock(&inode->i_lock);
1647 			spin_unlock(&inode_hash_lock);
1648 			return 0;
1649 		}
1650 		if (unlikely(old->i_state & I_CREATING)) {
1651 			spin_unlock(&old->i_lock);
1652 			spin_unlock(&inode_hash_lock);
1653 			return -EBUSY;
1654 		}
1655 		__iget(old);
1656 		spin_unlock(&old->i_lock);
1657 		spin_unlock(&inode_hash_lock);
1658 		wait_on_inode(old);
1659 		if (unlikely(!inode_unhashed(old))) {
1660 			iput(old);
1661 			return -EBUSY;
1662 		}
1663 		iput(old);
1664 	}
1665 }
1666 EXPORT_SYMBOL(insert_inode_locked);
1667 
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1668 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1669 		int (*test)(struct inode *, void *), void *data)
1670 {
1671 	struct inode *old;
1672 
1673 	inode->i_state |= I_CREATING;
1674 	old = inode_insert5(inode, hashval, test, NULL, data);
1675 
1676 	if (old != inode) {
1677 		iput(old);
1678 		return -EBUSY;
1679 	}
1680 	return 0;
1681 }
1682 EXPORT_SYMBOL(insert_inode_locked4);
1683 
1684 
generic_delete_inode(struct inode * inode)1685 int generic_delete_inode(struct inode *inode)
1686 {
1687 	return 1;
1688 }
1689 EXPORT_SYMBOL(generic_delete_inode);
1690 
1691 /*
1692  * Called when we're dropping the last reference
1693  * to an inode.
1694  *
1695  * Call the FS "drop_inode()" function, defaulting to
1696  * the legacy UNIX filesystem behaviour.  If it tells
1697  * us to evict inode, do so.  Otherwise, retain inode
1698  * in cache if fs is alive, sync and evict if fs is
1699  * shutting down.
1700  */
iput_final(struct inode * inode)1701 static void iput_final(struct inode *inode)
1702 {
1703 	struct super_block *sb = inode->i_sb;
1704 	const struct super_operations *op = inode->i_sb->s_op;
1705 	unsigned long state;
1706 	int drop;
1707 
1708 	WARN_ON(inode->i_state & I_NEW);
1709 
1710 	if (op->drop_inode)
1711 		drop = op->drop_inode(inode);
1712 	else
1713 		drop = generic_drop_inode(inode);
1714 
1715 	if (!drop &&
1716 	    !(inode->i_state & I_DONTCACHE) &&
1717 	    (sb->s_flags & SB_ACTIVE)) {
1718 		__inode_add_lru(inode, true);
1719 		spin_unlock(&inode->i_lock);
1720 		return;
1721 	}
1722 
1723 	state = inode->i_state;
1724 	if (!drop) {
1725 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1726 		spin_unlock(&inode->i_lock);
1727 
1728 		write_inode_now(inode, 1);
1729 
1730 		spin_lock(&inode->i_lock);
1731 		state = inode->i_state;
1732 		WARN_ON(state & I_NEW);
1733 		state &= ~I_WILL_FREE;
1734 	}
1735 
1736 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1737 	if (!list_empty(&inode->i_lru))
1738 		inode_lru_list_del(inode);
1739 	spin_unlock(&inode->i_lock);
1740 
1741 	evict(inode);
1742 }
1743 
1744 /**
1745  *	iput	- put an inode
1746  *	@inode: inode to put
1747  *
1748  *	Puts an inode, dropping its usage count. If the inode use count hits
1749  *	zero, the inode is then freed and may also be destroyed.
1750  *
1751  *	Consequently, iput() can sleep.
1752  */
iput(struct inode * inode)1753 void iput(struct inode *inode)
1754 {
1755 	if (!inode)
1756 		return;
1757 	BUG_ON(inode->i_state & I_CLEAR);
1758 retry:
1759 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1760 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1761 			atomic_inc(&inode->i_count);
1762 			spin_unlock(&inode->i_lock);
1763 			trace_writeback_lazytime_iput(inode);
1764 			mark_inode_dirty_sync(inode);
1765 			goto retry;
1766 		}
1767 		iput_final(inode);
1768 	}
1769 }
1770 EXPORT_SYMBOL(iput);
1771 
1772 #ifdef CONFIG_BLOCK
1773 /**
1774  *	bmap	- find a block number in a file
1775  *	@inode:  inode owning the block number being requested
1776  *	@block: pointer containing the block to find
1777  *
1778  *	Replaces the value in ``*block`` with the block number on the device holding
1779  *	corresponding to the requested block number in the file.
1780  *	That is, asked for block 4 of inode 1 the function will replace the
1781  *	4 in ``*block``, with disk block relative to the disk start that holds that
1782  *	block of the file.
1783  *
1784  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1785  *	hole, returns 0 and ``*block`` is also set to 0.
1786  */
bmap(struct inode * inode,sector_t * block)1787 int bmap(struct inode *inode, sector_t *block)
1788 {
1789 	if (!inode->i_mapping->a_ops->bmap)
1790 		return -EINVAL;
1791 
1792 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL(bmap);
1796 #endif
1797 
1798 /*
1799  * With relative atime, only update atime if the previous atime is
1800  * earlier than or equal to either the ctime or mtime,
1801  * or if at least a day has passed since the last atime update.
1802  */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1803 static bool relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1804 			     struct timespec64 now)
1805 {
1806 	struct timespec64 atime, mtime, ctime;
1807 
1808 	if (!(mnt->mnt_flags & MNT_RELATIME))
1809 		return true;
1810 	/*
1811 	 * Is mtime younger than or equal to atime? If yes, update atime:
1812 	 */
1813 	atime = inode_get_atime(inode);
1814 	mtime = inode_get_mtime(inode);
1815 	if (timespec64_compare(&mtime, &atime) >= 0)
1816 		return true;
1817 	/*
1818 	 * Is ctime younger than or equal to atime? If yes, update atime:
1819 	 */
1820 	ctime = inode_get_ctime(inode);
1821 	if (timespec64_compare(&ctime, &atime) >= 0)
1822 		return true;
1823 
1824 	/*
1825 	 * Is the previous atime value older than a day? If yes,
1826 	 * update atime:
1827 	 */
1828 	if ((long)(now.tv_sec - atime.tv_sec) >= 24*60*60)
1829 		return true;
1830 	/*
1831 	 * Good, we can skip the atime update:
1832 	 */
1833 	return false;
1834 }
1835 
1836 /**
1837  * inode_update_timestamps - update the timestamps on the inode
1838  * @inode: inode to be updated
1839  * @flags: S_* flags that needed to be updated
1840  *
1841  * The update_time function is called when an inode's timestamps need to be
1842  * updated for a read or write operation. This function handles updating the
1843  * actual timestamps. It's up to the caller to ensure that the inode is marked
1844  * dirty appropriately.
1845  *
1846  * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated,
1847  * attempt to update all three of them. S_ATIME updates can be handled
1848  * independently of the rest.
1849  *
1850  * Returns a set of S_* flags indicating which values changed.
1851  */
inode_update_timestamps(struct inode * inode,int flags)1852 int inode_update_timestamps(struct inode *inode, int flags)
1853 {
1854 	int updated = 0;
1855 	struct timespec64 now;
1856 
1857 	if (flags & (S_MTIME|S_CTIME|S_VERSION)) {
1858 		struct timespec64 ctime = inode_get_ctime(inode);
1859 		struct timespec64 mtime = inode_get_mtime(inode);
1860 
1861 		now = inode_set_ctime_current(inode);
1862 		if (!timespec64_equal(&now, &ctime))
1863 			updated |= S_CTIME;
1864 		if (!timespec64_equal(&now, &mtime)) {
1865 			inode_set_mtime_to_ts(inode, now);
1866 			updated |= S_MTIME;
1867 		}
1868 		if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated))
1869 			updated |= S_VERSION;
1870 	} else {
1871 		now = current_time(inode);
1872 	}
1873 
1874 	if (flags & S_ATIME) {
1875 		struct timespec64 atime = inode_get_atime(inode);
1876 
1877 		if (!timespec64_equal(&now, &atime)) {
1878 			inode_set_atime_to_ts(inode, now);
1879 			updated |= S_ATIME;
1880 		}
1881 	}
1882 	return updated;
1883 }
1884 EXPORT_SYMBOL(inode_update_timestamps);
1885 
1886 /**
1887  * generic_update_time - update the timestamps on the inode
1888  * @inode: inode to be updated
1889  * @flags: S_* flags that needed to be updated
1890  *
1891  * The update_time function is called when an inode's timestamps need to be
1892  * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME,
1893  * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME
1894  * updates can be handled done independently of the rest.
1895  *
1896  * Returns a S_* mask indicating which fields were updated.
1897  */
generic_update_time(struct inode * inode,int flags)1898 int generic_update_time(struct inode *inode, int flags)
1899 {
1900 	int updated = inode_update_timestamps(inode, flags);
1901 	int dirty_flags = 0;
1902 
1903 	if (updated & (S_ATIME|S_MTIME|S_CTIME))
1904 		dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC;
1905 	if (updated & S_VERSION)
1906 		dirty_flags |= I_DIRTY_SYNC;
1907 	__mark_inode_dirty(inode, dirty_flags);
1908 	return updated;
1909 }
1910 EXPORT_SYMBOL(generic_update_time);
1911 
1912 /*
1913  * This does the actual work of updating an inodes time or version.  Must have
1914  * had called mnt_want_write() before calling this.
1915  */
inode_update_time(struct inode * inode,int flags)1916 int inode_update_time(struct inode *inode, int flags)
1917 {
1918 	if (inode->i_op->update_time)
1919 		return inode->i_op->update_time(inode, flags);
1920 	generic_update_time(inode, flags);
1921 	return 0;
1922 }
1923 EXPORT_SYMBOL(inode_update_time);
1924 
1925 /**
1926  *	atime_needs_update	-	update the access time
1927  *	@path: the &struct path to update
1928  *	@inode: inode to update
1929  *
1930  *	Update the accessed time on an inode and mark it for writeback.
1931  *	This function automatically handles read only file systems and media,
1932  *	as well as the "noatime" flag and inode specific "noatime" markers.
1933  */
atime_needs_update(const struct path * path,struct inode * inode)1934 bool atime_needs_update(const struct path *path, struct inode *inode)
1935 {
1936 	struct vfsmount *mnt = path->mnt;
1937 	struct timespec64 now, atime;
1938 
1939 	if (inode->i_flags & S_NOATIME)
1940 		return false;
1941 
1942 	/* Atime updates will likely cause i_uid and i_gid to be written
1943 	 * back improprely if their true value is unknown to the vfs.
1944 	 */
1945 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1946 		return false;
1947 
1948 	if (IS_NOATIME(inode))
1949 		return false;
1950 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1951 		return false;
1952 
1953 	if (mnt->mnt_flags & MNT_NOATIME)
1954 		return false;
1955 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1956 		return false;
1957 
1958 	now = current_time(inode);
1959 
1960 	if (!relatime_need_update(mnt, inode, now))
1961 		return false;
1962 
1963 	atime = inode_get_atime(inode);
1964 	if (timespec64_equal(&atime, &now))
1965 		return false;
1966 
1967 	return true;
1968 }
1969 
touch_atime(const struct path * path)1970 void touch_atime(const struct path *path)
1971 {
1972 	struct vfsmount *mnt = path->mnt;
1973 	struct inode *inode = d_inode(path->dentry);
1974 
1975 	if (!atime_needs_update(path, inode))
1976 		return;
1977 
1978 	if (!sb_start_write_trylock(inode->i_sb))
1979 		return;
1980 
1981 	if (mnt_get_write_access(mnt) != 0)
1982 		goto skip_update;
1983 	/*
1984 	 * File systems can error out when updating inodes if they need to
1985 	 * allocate new space to modify an inode (such is the case for
1986 	 * Btrfs), but since we touch atime while walking down the path we
1987 	 * really don't care if we failed to update the atime of the file,
1988 	 * so just ignore the return value.
1989 	 * We may also fail on filesystems that have the ability to make parts
1990 	 * of the fs read only, e.g. subvolumes in Btrfs.
1991 	 */
1992 	inode_update_time(inode, S_ATIME);
1993 	mnt_put_write_access(mnt);
1994 skip_update:
1995 	sb_end_write(inode->i_sb);
1996 }
1997 EXPORT_SYMBOL(touch_atime);
1998 
1999 /*
2000  * Return mask of changes for notify_change() that need to be done as a
2001  * response to write or truncate. Return 0 if nothing has to be changed.
2002  * Negative value on error (change should be denied).
2003  */
dentry_needs_remove_privs(struct mnt_idmap * idmap,struct dentry * dentry)2004 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
2005 			      struct dentry *dentry)
2006 {
2007 	struct inode *inode = d_inode(dentry);
2008 	int mask = 0;
2009 	int ret;
2010 
2011 	if (IS_NOSEC(inode))
2012 		return 0;
2013 
2014 	mask = setattr_should_drop_suidgid(idmap, inode);
2015 	ret = security_inode_need_killpriv(dentry);
2016 	if (ret < 0)
2017 		return ret;
2018 	if (ret)
2019 		mask |= ATTR_KILL_PRIV;
2020 	return mask;
2021 }
2022 
__remove_privs(struct mnt_idmap * idmap,struct dentry * dentry,int kill)2023 static int __remove_privs(struct mnt_idmap *idmap,
2024 			  struct dentry *dentry, int kill)
2025 {
2026 	struct iattr newattrs;
2027 
2028 	newattrs.ia_valid = ATTR_FORCE | kill;
2029 	/*
2030 	 * Note we call this on write, so notify_change will not
2031 	 * encounter any conflicting delegations:
2032 	 */
2033 	return notify_change(idmap, dentry, &newattrs, NULL);
2034 }
2035 
file_remove_privs_flags(struct file * file,unsigned int flags)2036 int file_remove_privs_flags(struct file *file, unsigned int flags)
2037 {
2038 	struct dentry *dentry = file_dentry(file);
2039 	struct inode *inode = file_inode(file);
2040 	int error = 0;
2041 	int kill;
2042 
2043 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2044 		return 0;
2045 
2046 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2047 	if (kill < 0)
2048 		return kill;
2049 
2050 	if (kill) {
2051 		if (flags & IOCB_NOWAIT)
2052 			return -EAGAIN;
2053 
2054 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2055 	}
2056 
2057 	if (!error)
2058 		inode_has_no_xattr(inode);
2059 	return error;
2060 }
2061 EXPORT_SYMBOL_GPL(file_remove_privs_flags);
2062 
2063 /**
2064  * file_remove_privs - remove special file privileges (suid, capabilities)
2065  * @file: file to remove privileges from
2066  *
2067  * When file is modified by a write or truncation ensure that special
2068  * file privileges are removed.
2069  *
2070  * Return: 0 on success, negative errno on failure.
2071  */
file_remove_privs(struct file * file)2072 int file_remove_privs(struct file *file)
2073 {
2074 	return file_remove_privs_flags(file, 0);
2075 }
2076 EXPORT_SYMBOL(file_remove_privs);
2077 
inode_needs_update_time(struct inode * inode)2078 static int inode_needs_update_time(struct inode *inode)
2079 {
2080 	int sync_it = 0;
2081 	struct timespec64 now = current_time(inode);
2082 	struct timespec64 ts;
2083 
2084 	/* First try to exhaust all avenues to not sync */
2085 	if (IS_NOCMTIME(inode))
2086 		return 0;
2087 
2088 	ts = inode_get_mtime(inode);
2089 	if (!timespec64_equal(&ts, &now))
2090 		sync_it = S_MTIME;
2091 
2092 	ts = inode_get_ctime(inode);
2093 	if (!timespec64_equal(&ts, &now))
2094 		sync_it |= S_CTIME;
2095 
2096 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2097 		sync_it |= S_VERSION;
2098 
2099 	return sync_it;
2100 }
2101 
__file_update_time(struct file * file,int sync_mode)2102 static int __file_update_time(struct file *file, int sync_mode)
2103 {
2104 	int ret = 0;
2105 	struct inode *inode = file_inode(file);
2106 
2107 	/* try to update time settings */
2108 	if (!mnt_get_write_access_file(file)) {
2109 		ret = inode_update_time(inode, sync_mode);
2110 		mnt_put_write_access_file(file);
2111 	}
2112 
2113 	return ret;
2114 }
2115 
2116 /**
2117  * file_update_time - update mtime and ctime time
2118  * @file: file accessed
2119  *
2120  * Update the mtime and ctime members of an inode and mark the inode for
2121  * writeback. Note that this function is meant exclusively for usage in
2122  * the file write path of filesystems, and filesystems may choose to
2123  * explicitly ignore updates via this function with the _NOCMTIME inode
2124  * flag, e.g. for network filesystem where these imestamps are handled
2125  * by the server. This can return an error for file systems who need to
2126  * allocate space in order to update an inode.
2127  *
2128  * Return: 0 on success, negative errno on failure.
2129  */
file_update_time(struct file * file)2130 int file_update_time(struct file *file)
2131 {
2132 	int ret;
2133 	struct inode *inode = file_inode(file);
2134 
2135 	ret = inode_needs_update_time(inode);
2136 	if (ret <= 0)
2137 		return ret;
2138 
2139 	return __file_update_time(file, ret);
2140 }
2141 EXPORT_SYMBOL(file_update_time);
2142 
2143 /**
2144  * file_modified_flags - handle mandated vfs changes when modifying a file
2145  * @file: file that was modified
2146  * @flags: kiocb flags
2147  *
2148  * When file has been modified ensure that special
2149  * file privileges are removed and time settings are updated.
2150  *
2151  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2152  * time settings will not be updated. It will return -EAGAIN.
2153  *
2154  * Context: Caller must hold the file's inode lock.
2155  *
2156  * Return: 0 on success, negative errno on failure.
2157  */
file_modified_flags(struct file * file,int flags)2158 static int file_modified_flags(struct file *file, int flags)
2159 {
2160 	int ret;
2161 	struct inode *inode = file_inode(file);
2162 
2163 	/*
2164 	 * Clear the security bits if the process is not being run by root.
2165 	 * This keeps people from modifying setuid and setgid binaries.
2166 	 */
2167 	ret = file_remove_privs_flags(file, flags);
2168 	if (ret)
2169 		return ret;
2170 
2171 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2172 		return 0;
2173 
2174 	ret = inode_needs_update_time(inode);
2175 	if (ret <= 0)
2176 		return ret;
2177 	if (flags & IOCB_NOWAIT)
2178 		return -EAGAIN;
2179 
2180 	return __file_update_time(file, ret);
2181 }
2182 
2183 /**
2184  * file_modified - handle mandated vfs changes when modifying a file
2185  * @file: file that was modified
2186  *
2187  * When file has been modified ensure that special
2188  * file privileges are removed and time settings are updated.
2189  *
2190  * Context: Caller must hold the file's inode lock.
2191  *
2192  * Return: 0 on success, negative errno on failure.
2193  */
file_modified(struct file * file)2194 int file_modified(struct file *file)
2195 {
2196 	return file_modified_flags(file, 0);
2197 }
2198 EXPORT_SYMBOL(file_modified);
2199 
2200 /**
2201  * kiocb_modified - handle mandated vfs changes when modifying a file
2202  * @iocb: iocb that was modified
2203  *
2204  * When file has been modified ensure that special
2205  * file privileges are removed and time settings are updated.
2206  *
2207  * Context: Caller must hold the file's inode lock.
2208  *
2209  * Return: 0 on success, negative errno on failure.
2210  */
kiocb_modified(struct kiocb * iocb)2211 int kiocb_modified(struct kiocb *iocb)
2212 {
2213 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2214 }
2215 EXPORT_SYMBOL_GPL(kiocb_modified);
2216 
inode_needs_sync(struct inode * inode)2217 int inode_needs_sync(struct inode *inode)
2218 {
2219 	if (IS_SYNC(inode))
2220 		return 1;
2221 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2222 		return 1;
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL(inode_needs_sync);
2226 
2227 /*
2228  * If we try to find an inode in the inode hash while it is being
2229  * deleted, we have to wait until the filesystem completes its
2230  * deletion before reporting that it isn't found.  This function waits
2231  * until the deletion _might_ have completed.  Callers are responsible
2232  * to recheck inode state.
2233  *
2234  * It doesn't matter if I_NEW is not set initially, a call to
2235  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2236  * will DTRT.
2237  */
__wait_on_freeing_inode(struct inode * inode)2238 static void __wait_on_freeing_inode(struct inode *inode)
2239 {
2240 	wait_queue_head_t *wq;
2241 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2242 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2243 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2244 	spin_unlock(&inode->i_lock);
2245 	spin_unlock(&inode_hash_lock);
2246 	schedule();
2247 	finish_wait(wq, &wait.wq_entry);
2248 	spin_lock(&inode_hash_lock);
2249 }
2250 
2251 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2252 static int __init set_ihash_entries(char *str)
2253 {
2254 	if (!str)
2255 		return 0;
2256 	ihash_entries = simple_strtoul(str, &str, 0);
2257 	return 1;
2258 }
2259 __setup("ihash_entries=", set_ihash_entries);
2260 
2261 /*
2262  * Initialize the waitqueues and inode hash table.
2263  */
inode_init_early(void)2264 void __init inode_init_early(void)
2265 {
2266 	/* If hashes are distributed across NUMA nodes, defer
2267 	 * hash allocation until vmalloc space is available.
2268 	 */
2269 	if (hashdist)
2270 		return;
2271 
2272 	inode_hashtable =
2273 		alloc_large_system_hash("Inode-cache",
2274 					sizeof(struct hlist_head),
2275 					ihash_entries,
2276 					14,
2277 					HASH_EARLY | HASH_ZERO,
2278 					&i_hash_shift,
2279 					&i_hash_mask,
2280 					0,
2281 					0);
2282 }
2283 
inode_init(void)2284 void __init inode_init(void)
2285 {
2286 	/* inode slab cache */
2287 	inode_cachep = kmem_cache_create("inode_cache",
2288 					 sizeof(struct inode),
2289 					 0,
2290 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2291 					 SLAB_ACCOUNT),
2292 					 init_once);
2293 
2294 	/* Hash may have been set up in inode_init_early */
2295 	if (!hashdist)
2296 		return;
2297 
2298 	inode_hashtable =
2299 		alloc_large_system_hash("Inode-cache",
2300 					sizeof(struct hlist_head),
2301 					ihash_entries,
2302 					14,
2303 					HASH_ZERO,
2304 					&i_hash_shift,
2305 					&i_hash_mask,
2306 					0,
2307 					0);
2308 }
2309 
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2310 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2311 {
2312 	inode->i_mode = mode;
2313 	if (S_ISCHR(mode)) {
2314 		inode->i_fop = &def_chr_fops;
2315 		inode->i_rdev = rdev;
2316 	} else if (S_ISBLK(mode)) {
2317 		if (IS_ENABLED(CONFIG_BLOCK))
2318 			inode->i_fop = &def_blk_fops;
2319 		inode->i_rdev = rdev;
2320 	} else if (S_ISFIFO(mode))
2321 		inode->i_fop = &pipefifo_fops;
2322 	else if (S_ISSOCK(mode))
2323 		;	/* leave it no_open_fops */
2324 	else
2325 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2326 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2327 				  inode->i_ino);
2328 }
2329 EXPORT_SYMBOL(init_special_inode);
2330 
2331 /**
2332  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2333  * @idmap: idmap of the mount the inode was created from
2334  * @inode: New inode
2335  * @dir: Directory inode
2336  * @mode: mode of the new inode
2337  *
2338  * If the inode has been created through an idmapped mount the idmap of
2339  * the vfsmount must be passed through @idmap. This function will then take
2340  * care to map the inode according to @idmap before checking permissions
2341  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2342  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2343  */
inode_init_owner(struct mnt_idmap * idmap,struct inode * inode,const struct inode * dir,umode_t mode)2344 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2345 		      const struct inode *dir, umode_t mode)
2346 {
2347 	inode_fsuid_set(inode, idmap);
2348 	if (dir && dir->i_mode & S_ISGID) {
2349 		inode->i_gid = dir->i_gid;
2350 
2351 		/* Directories are special, and always inherit S_ISGID */
2352 		if (S_ISDIR(mode))
2353 			mode |= S_ISGID;
2354 	} else
2355 		inode_fsgid_set(inode, idmap);
2356 	inode->i_mode = mode;
2357 }
2358 EXPORT_SYMBOL(inode_init_owner);
2359 
2360 /**
2361  * inode_owner_or_capable - check current task permissions to inode
2362  * @idmap: idmap of the mount the inode was found from
2363  * @inode: inode being checked
2364  *
2365  * Return true if current either has CAP_FOWNER in a namespace with the
2366  * inode owner uid mapped, or owns the file.
2367  *
2368  * If the inode has been found through an idmapped mount the idmap of
2369  * the vfsmount must be passed through @idmap. This function will then take
2370  * care to map the inode according to @idmap before checking permissions.
2371  * On non-idmapped mounts or if permission checking is to be performed on the
2372  * raw inode simply pass @nop_mnt_idmap.
2373  */
inode_owner_or_capable(struct mnt_idmap * idmap,const struct inode * inode)2374 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2375 			    const struct inode *inode)
2376 {
2377 	vfsuid_t vfsuid;
2378 	struct user_namespace *ns;
2379 
2380 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2381 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2382 		return true;
2383 
2384 	ns = current_user_ns();
2385 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2386 		return true;
2387 	return false;
2388 }
2389 EXPORT_SYMBOL(inode_owner_or_capable);
2390 
2391 /*
2392  * Direct i/o helper functions
2393  */
__inode_dio_wait(struct inode * inode)2394 static void __inode_dio_wait(struct inode *inode)
2395 {
2396 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2397 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2398 
2399 	do {
2400 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2401 		if (atomic_read(&inode->i_dio_count))
2402 			schedule();
2403 	} while (atomic_read(&inode->i_dio_count));
2404 	finish_wait(wq, &q.wq_entry);
2405 }
2406 
2407 /**
2408  * inode_dio_wait - wait for outstanding DIO requests to finish
2409  * @inode: inode to wait for
2410  *
2411  * Waits for all pending direct I/O requests to finish so that we can
2412  * proceed with a truncate or equivalent operation.
2413  *
2414  * Must be called under a lock that serializes taking new references
2415  * to i_dio_count, usually by inode->i_mutex.
2416  */
inode_dio_wait(struct inode * inode)2417 void inode_dio_wait(struct inode *inode)
2418 {
2419 	if (atomic_read(&inode->i_dio_count))
2420 		__inode_dio_wait(inode);
2421 }
2422 EXPORT_SYMBOL(inode_dio_wait);
2423 
2424 /*
2425  * inode_set_flags - atomically set some inode flags
2426  *
2427  * Note: the caller should be holding i_mutex, or else be sure that
2428  * they have exclusive access to the inode structure (i.e., while the
2429  * inode is being instantiated).  The reason for the cmpxchg() loop
2430  * --- which wouldn't be necessary if all code paths which modify
2431  * i_flags actually followed this rule, is that there is at least one
2432  * code path which doesn't today so we use cmpxchg() out of an abundance
2433  * of caution.
2434  *
2435  * In the long run, i_mutex is overkill, and we should probably look
2436  * at using the i_lock spinlock to protect i_flags, and then make sure
2437  * it is so documented in include/linux/fs.h and that all code follows
2438  * the locking convention!!
2439  */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2440 void inode_set_flags(struct inode *inode, unsigned int flags,
2441 		     unsigned int mask)
2442 {
2443 	WARN_ON_ONCE(flags & ~mask);
2444 	set_mask_bits(&inode->i_flags, mask, flags);
2445 }
2446 EXPORT_SYMBOL(inode_set_flags);
2447 
inode_nohighmem(struct inode * inode)2448 void inode_nohighmem(struct inode *inode)
2449 {
2450 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2451 }
2452 EXPORT_SYMBOL(inode_nohighmem);
2453 
2454 /**
2455  * timestamp_truncate - Truncate timespec to a granularity
2456  * @t: Timespec
2457  * @inode: inode being updated
2458  *
2459  * Truncate a timespec to the granularity supported by the fs
2460  * containing the inode. Always rounds down. gran must
2461  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2462  */
timestamp_truncate(struct timespec64 t,struct inode * inode)2463 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2464 {
2465 	struct super_block *sb = inode->i_sb;
2466 	unsigned int gran = sb->s_time_gran;
2467 
2468 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2469 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2470 		t.tv_nsec = 0;
2471 
2472 	/* Avoid division in the common cases 1 ns and 1 s. */
2473 	if (gran == 1)
2474 		; /* nothing */
2475 	else if (gran == NSEC_PER_SEC)
2476 		t.tv_nsec = 0;
2477 	else if (gran > 1 && gran < NSEC_PER_SEC)
2478 		t.tv_nsec -= t.tv_nsec % gran;
2479 	else
2480 		WARN(1, "invalid file time granularity: %u", gran);
2481 	return t;
2482 }
2483 EXPORT_SYMBOL(timestamp_truncate);
2484 
2485 /**
2486  * current_time - Return FS time
2487  * @inode: inode.
2488  *
2489  * Return the current time truncated to the time granularity supported by
2490  * the fs.
2491  *
2492  * Note that inode and inode->sb cannot be NULL.
2493  * Otherwise, the function warns and returns time without truncation.
2494  */
current_time(struct inode * inode)2495 struct timespec64 current_time(struct inode *inode)
2496 {
2497 	struct timespec64 now;
2498 
2499 	ktime_get_coarse_real_ts64(&now);
2500 	return timestamp_truncate(now, inode);
2501 }
2502 EXPORT_SYMBOL(current_time);
2503 
2504 /**
2505  * inode_set_ctime_current - set the ctime to current_time
2506  * @inode: inode
2507  *
2508  * Set the inode->i_ctime to the current value for the inode. Returns
2509  * the current value that was assigned to i_ctime.
2510  */
inode_set_ctime_current(struct inode * inode)2511 struct timespec64 inode_set_ctime_current(struct inode *inode)
2512 {
2513 	struct timespec64 now = current_time(inode);
2514 
2515 	inode_set_ctime_to_ts(inode, now);
2516 	return now;
2517 }
2518 EXPORT_SYMBOL(inode_set_ctime_current);
2519 
2520 /**
2521  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2522  * @idmap:	idmap of the mount @inode was found from
2523  * @inode:	inode to check
2524  * @vfsgid:	the new/current vfsgid of @inode
2525  *
2526  * Check wether @vfsgid is in the caller's group list or if the caller is
2527  * privileged with CAP_FSETID over @inode. This can be used to determine
2528  * whether the setgid bit can be kept or must be dropped.
2529  *
2530  * Return: true if the caller is sufficiently privileged, false if not.
2531  */
in_group_or_capable(struct mnt_idmap * idmap,const struct inode * inode,vfsgid_t vfsgid)2532 bool in_group_or_capable(struct mnt_idmap *idmap,
2533 			 const struct inode *inode, vfsgid_t vfsgid)
2534 {
2535 	if (vfsgid_in_group_p(vfsgid))
2536 		return true;
2537 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2538 		return true;
2539 	return false;
2540 }
2541 
2542 /**
2543  * mode_strip_sgid - handle the sgid bit for non-directories
2544  * @idmap: idmap of the mount the inode was created from
2545  * @dir: parent directory inode
2546  * @mode: mode of the file to be created in @dir
2547  *
2548  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2549  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2550  * either in the group of the parent directory or they have CAP_FSETID
2551  * in their user namespace and are privileged over the parent directory.
2552  * In all other cases, strip the S_ISGID bit from @mode.
2553  *
2554  * Return: the new mode to use for the file
2555  */
mode_strip_sgid(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode)2556 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2557 			const struct inode *dir, umode_t mode)
2558 {
2559 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2560 		return mode;
2561 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2562 		return mode;
2563 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2564 		return mode;
2565 	return mode & ~S_ISGID;
2566 }
2567 EXPORT_SYMBOL(mode_strip_sgid);
2568