1 /* $OpenBSD: in_pcb.c,v 1.310 2025/01/09 16:47:24 bluhm Exp $ */
2 /* $NetBSD: in_pcb.c,v 1.25 1996/02/13 23:41:53 christos Exp $ */
3
4 /*
5 * Copyright (c) 1982, 1986, 1991, 1993
6 * The Regents of the University of California. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the University nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 *
32 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
33 *
34 * NRL grants permission for redistribution and use in source and binary
35 * forms, with or without modification, of the software and documentation
36 * created at NRL provided that the following conditions are met:
37 *
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. All advertising materials mentioning features or use of this software
44 * must display the following acknowledgements:
45 * This product includes software developed by the University of
46 * California, Berkeley and its contributors.
47 * This product includes software developed at the Information
48 * Technology Division, US Naval Research Laboratory.
49 * 4. Neither the name of the NRL nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
54 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
55 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
56 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
57 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
58 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
59 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
60 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
61 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
62 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
63 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
64 *
65 * The views and conclusions contained in the software and documentation
66 * are those of the authors and should not be interpreted as representing
67 * official policies, either expressed or implied, of the US Naval
68 * Research Laboratory (NRL).
69 */
70
71 #include "pf.h"
72
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/domain.h>
80 #include <sys/mount.h>
81 #include <sys/pool.h>
82 #include <sys/proc.h>
83
84 #include <net/if.h>
85 #include <net/if_var.h>
86 #include <net/pfvar.h>
87 #include <net/route.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip.h>
92 #include <netinet/ip_var.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet/in_pcb.h>
95 #ifdef IPSEC
96 #include <netinet/ip_esp.h>
97 #endif /* IPSEC */
98
99 #include "stoeplitz.h"
100 #if NSTOEPLITZ > 0
101 #include <net/toeplitz.h>
102 #endif
103
104 const struct in_addr zeroin_addr;
105 const union inpaddru zeroin46_addr;
106
107 /*
108 * These configure the range of local port addresses assigned to
109 * "unspecified" outgoing connections/packets/whatever.
110 */
111 int ipport_firstauto = IPPORT_RESERVED;
112 int ipport_lastauto = IPPORT_USERRESERVED;
113 int ipport_hifirstauto = IPPORT_HIFIRSTAUTO;
114 int ipport_hilastauto = IPPORT_HILASTAUTO;
115
116 struct baddynamicports baddynamicports;
117 struct baddynamicports rootonlyports;
118 struct pool inpcb_pool;
119
120 void in_pcbhash_insert(struct inpcb *);
121 struct inpcb *in_pcbhash_lookup(struct inpcbtable *, uint64_t, u_int,
122 const struct in_addr *, u_short, const struct in_addr *, u_short);
123 int in_pcbresize(struct inpcbtable *, int);
124
125 #define INPCBHASH_LOADFACTOR(_x) (((_x) * 3) / 4)
126
127 uint64_t in_pcbhash(struct inpcbtable *, u_int,
128 const struct in_addr *, u_short, const struct in_addr *, u_short);
129 uint64_t in_pcblhash(struct inpcbtable *, u_int, u_short);
130
131 struct inpcb *in_pcblookup_lock(struct inpcbtable *, struct in_addr, u_int,
132 struct in_addr, u_int, u_int, int);
133 int in_pcbaddrisavail_lock(const struct inpcb *, struct sockaddr_in *, int,
134 struct proc *, int);
135 int in_pcbpickport(u_int16_t *, const void *, int, const struct inpcb *,
136 struct proc *);
137
138 /*
139 * in_pcb is used for inet and inet6. in6_pcb only contains special
140 * IPv6 cases. So the internet initializer is used for both domains.
141 */
142 void
in_init(void)143 in_init(void)
144 {
145 pool_init(&inpcb_pool, sizeof(struct inpcb), 0,
146 IPL_SOFTNET, 0, "inpcb", NULL);
147 }
148
149 uint64_t
in_pcbhash(struct inpcbtable * table,u_int rdomain,const struct in_addr * faddr,u_short fport,const struct in_addr * laddr,u_short lport)150 in_pcbhash(struct inpcbtable *table, u_int rdomain,
151 const struct in_addr *faddr, u_short fport,
152 const struct in_addr *laddr, u_short lport)
153 {
154 SIPHASH_CTX ctx;
155 u_int32_t nrdom = htonl(rdomain);
156
157 SipHash24_Init(&ctx, &table->inpt_key);
158 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom));
159 SipHash24_Update(&ctx, faddr, sizeof(*faddr));
160 SipHash24_Update(&ctx, &fport, sizeof(fport));
161 SipHash24_Update(&ctx, laddr, sizeof(*laddr));
162 SipHash24_Update(&ctx, &lport, sizeof(lport));
163 return SipHash24_End(&ctx);
164 }
165
166 uint64_t
in_pcblhash(struct inpcbtable * table,u_int rdomain,u_short lport)167 in_pcblhash(struct inpcbtable *table, u_int rdomain, u_short lport)
168 {
169 SIPHASH_CTX ctx;
170 u_int32_t nrdom = htonl(rdomain);
171
172 SipHash24_Init(&ctx, &table->inpt_lkey);
173 SipHash24_Update(&ctx, &nrdom, sizeof(nrdom));
174 SipHash24_Update(&ctx, &lport, sizeof(lport));
175 return SipHash24_End(&ctx);
176 }
177
178 void
in_pcbinit(struct inpcbtable * table,int hashsize)179 in_pcbinit(struct inpcbtable *table, int hashsize)
180 {
181 mtx_init(&table->inpt_mtx, IPL_SOFTNET);
182 TAILQ_INIT(&table->inpt_queue);
183 table->inpt_hashtbl = hashinit(hashsize, M_PCB, M_WAITOK,
184 &table->inpt_mask);
185 table->inpt_lhashtbl = hashinit(hashsize, M_PCB, M_WAITOK,
186 &table->inpt_lmask);
187 table->inpt_count = 0;
188 table->inpt_size = hashsize;
189 arc4random_buf(&table->inpt_key, sizeof(table->inpt_key));
190 arc4random_buf(&table->inpt_lkey, sizeof(table->inpt_lkey));
191 }
192
193 /*
194 * Check if the specified port is invalid for dynamic allocation.
195 */
196 int
in_baddynamic(u_int16_t port,u_int16_t proto)197 in_baddynamic(u_int16_t port, u_int16_t proto)
198 {
199 switch (proto) {
200 case IPPROTO_TCP:
201 return (DP_ISSET(baddynamicports.tcp, port));
202 case IPPROTO_UDP:
203 #ifdef IPSEC
204 /* Cannot preset this as it is a sysctl */
205 if (port == udpencap_port)
206 return (1);
207 #endif
208 return (DP_ISSET(baddynamicports.udp, port));
209 default:
210 return (0);
211 }
212 }
213
214 int
in_rootonly(u_int16_t port,u_int16_t proto)215 in_rootonly(u_int16_t port, u_int16_t proto)
216 {
217 switch (proto) {
218 case IPPROTO_TCP:
219 return (port < IPPORT_RESERVED ||
220 DP_ISSET(rootonlyports.tcp, port));
221 case IPPROTO_UDP:
222 return (port < IPPORT_RESERVED ||
223 DP_ISSET(rootonlyports.udp, port));
224 default:
225 return (0);
226 }
227 }
228
229 int
in_pcballoc(struct socket * so,struct inpcbtable * table,int wait)230 in_pcballoc(struct socket *so, struct inpcbtable *table, int wait)
231 {
232 struct inpcb *inp;
233
234 inp = pool_get(&inpcb_pool, (wait == M_WAIT ? PR_WAITOK : PR_NOWAIT) |
235 PR_ZERO);
236 if (inp == NULL)
237 return (ENOBUFS);
238 inp->inp_table = table;
239 inp->inp_socket = so;
240 mtx_init(&inp->inp_sofree_mtx, IPL_SOFTNET);
241 refcnt_init_trace(&inp->inp_refcnt, DT_REFCNT_IDX_INPCB);
242 inp->inp_seclevel.sl_auth = IPSEC_AUTH_LEVEL_DEFAULT;
243 inp->inp_seclevel.sl_esp_trans = IPSEC_ESP_TRANS_LEVEL_DEFAULT;
244 inp->inp_seclevel.sl_esp_network = IPSEC_ESP_NETWORK_LEVEL_DEFAULT;
245 inp->inp_seclevel.sl_ipcomp = IPSEC_IPCOMP_LEVEL_DEFAULT;
246 inp->inp_rtableid = curproc->p_p->ps_rtableid;
247 inp->inp_hops = -1;
248 #ifdef INET6
249 switch (so->so_proto->pr_domain->dom_family) {
250 case PF_INET6:
251 inp->inp_flags = INP_IPV6;
252 break;
253 case PF_INET:
254 /* inp->inp_flags is initialized to 0 */
255 break;
256 default:
257 unhandled_af(so->so_proto->pr_domain->dom_family);
258 }
259 inp->inp_cksum6 = -1;
260 #endif /* INET6 */
261
262 mtx_enter(&table->inpt_mtx);
263 if (table->inpt_count++ > INPCBHASH_LOADFACTOR(table->inpt_size))
264 (void)in_pcbresize(table, table->inpt_size * 2);
265 TAILQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue);
266 in_pcbhash_insert(inp);
267 mtx_leave(&table->inpt_mtx);
268
269 so->so_pcb = inp;
270
271 return (0);
272 }
273
274 int
in_pcbbind_locked(struct inpcb * inp,struct mbuf * nam,const void * laddr,struct proc * p)275 in_pcbbind_locked(struct inpcb *inp, struct mbuf *nam, const void *laddr,
276 struct proc *p)
277 {
278 struct socket *so = inp->inp_socket;
279 u_int16_t lport = 0;
280 int wild = 0;
281 int error;
282
283 if (inp->inp_lport)
284 return (EINVAL);
285
286 if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
287 ((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
288 (so->so_options & SO_ACCEPTCONN) == 0))
289 wild = INPLOOKUP_WILDCARD;
290
291 #ifdef INET6
292 if (ISSET(inp->inp_flags, INP_IPV6)) {
293 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6))
294 return (EINVAL);
295 wild |= INPLOOKUP_IPV6;
296
297 if (nam) {
298 struct sockaddr_in6 *sin6;
299
300 if ((error = in6_nam2sin6(nam, &sin6)))
301 return (error);
302 if ((error = in6_pcbaddrisavail_lock(inp, sin6, wild,
303 p, IN_PCBLOCK_HOLD)))
304 return (error);
305 laddr = &sin6->sin6_addr;
306 lport = sin6->sin6_port;
307 }
308 } else
309 #endif
310 {
311 if (inp->inp_laddr.s_addr != INADDR_ANY)
312 return (EINVAL);
313
314 if (nam) {
315 struct sockaddr_in *sin;
316
317 if ((error = in_nam2sin(nam, &sin)))
318 return (error);
319 if ((error = in_pcbaddrisavail_lock(inp, sin, wild,
320 p, IN_PCBLOCK_HOLD)))
321 return (error);
322 laddr = &sin->sin_addr;
323 lport = sin->sin_port;
324 }
325 }
326
327 if (lport == 0) {
328 if ((error = in_pcbpickport(&lport, laddr, wild, inp, p)))
329 return (error);
330 } else {
331 if (in_rootonly(ntohs(lport), so->so_proto->pr_protocol) &&
332 suser(p) != 0)
333 return (EACCES);
334 }
335 if (nam) {
336 #ifdef INET6
337 if (ISSET(inp->inp_flags, INP_IPV6))
338 inp->inp_laddr6 = *(struct in6_addr *)laddr;
339 else
340 #endif
341 inp->inp_laddr = *(struct in_addr *)laddr;
342 }
343 inp->inp_lport = lport;
344 in_pcbrehash(inp);
345
346 return (0);
347 }
348
349 int
in_pcbbind(struct inpcb * inp,struct mbuf * nam,struct proc * p)350 in_pcbbind(struct inpcb *inp, struct mbuf *nam, struct proc *p)
351 {
352 struct inpcbtable *table = inp->inp_table;
353 int error;
354
355 /* keep lookup, modification, and rehash in sync */
356 mtx_enter(&table->inpt_mtx);
357 error = in_pcbbind_locked(inp, nam, &zeroin46_addr, p);
358 mtx_leave(&table->inpt_mtx);
359
360 return error;
361 }
362
363 int
in_pcbaddrisavail_lock(const struct inpcb * inp,struct sockaddr_in * sin,int wild,struct proc * p,int lock)364 in_pcbaddrisavail_lock(const struct inpcb *inp, struct sockaddr_in *sin,
365 int wild, struct proc *p, int lock)
366 {
367 struct socket *so = inp->inp_socket;
368 struct inpcbtable *table = inp->inp_table;
369 u_int16_t lport = sin->sin_port;
370 int reuseport = (so->so_options & SO_REUSEPORT);
371
372 if (IN_MULTICAST(sin->sin_addr.s_addr)) {
373 /*
374 * Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
375 * allow complete duplication of binding if
376 * SO_REUSEPORT is set, or if SO_REUSEADDR is set
377 * and a multicast address is bound on both
378 * new and duplicated sockets.
379 */
380 if (so->so_options & (SO_REUSEADDR|SO_REUSEPORT))
381 reuseport = SO_REUSEADDR|SO_REUSEPORT;
382 } else if (sin->sin_addr.s_addr != INADDR_ANY) {
383 /*
384 * we must check that we are binding to an address we
385 * own except when:
386 * - SO_BINDANY is set or
387 * - we are binding a UDP socket to 255.255.255.255 or
388 * - we are binding a UDP socket to one of our broadcast
389 * addresses
390 */
391 if (!ISSET(so->so_options, SO_BINDANY) &&
392 !(so->so_type == SOCK_DGRAM &&
393 sin->sin_addr.s_addr == INADDR_BROADCAST) &&
394 !(so->so_type == SOCK_DGRAM &&
395 in_broadcast(sin->sin_addr, inp->inp_rtableid))) {
396 struct ifaddr *ia;
397
398 sin->sin_port = 0;
399 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
400 ia = ifa_ifwithaddr(sintosa(sin), inp->inp_rtableid);
401 sin->sin_port = lport;
402
403 if (ia == NULL)
404 return (EADDRNOTAVAIL);
405 }
406 }
407 if (lport) {
408 struct inpcb *t;
409 int error = 0;
410
411 if (so->so_euid && !IN_MULTICAST(sin->sin_addr.s_addr)) {
412 t = in_pcblookup_local_lock(table, &sin->sin_addr,
413 lport, INPLOOKUP_WILDCARD, inp->inp_rtableid, lock);
414 if (t && (so->so_euid != t->inp_socket->so_euid))
415 error = EADDRINUSE;
416 if (lock == IN_PCBLOCK_GRAB)
417 in_pcbunref(t);
418 if (error)
419 return (error);
420 }
421 t = in_pcblookup_local_lock(table, &sin->sin_addr, lport,
422 wild, inp->inp_rtableid, lock);
423 if (t && (reuseport & t->inp_socket->so_options) == 0)
424 error = EADDRINUSE;
425 if (lock == IN_PCBLOCK_GRAB)
426 in_pcbunref(t);
427 if (error)
428 return (error);
429 }
430
431 return (0);
432 }
433
434 int
in_pcbaddrisavail(const struct inpcb * inp,struct sockaddr_in * sin,int wild,struct proc * p)435 in_pcbaddrisavail(const struct inpcb *inp, struct sockaddr_in *sin,
436 int wild, struct proc *p)
437 {
438 return in_pcbaddrisavail_lock(inp, sin, wild, p, IN_PCBLOCK_GRAB);
439 }
440
441 int
in_pcbpickport(u_int16_t * lport,const void * laddr,int wild,const struct inpcb * inp,struct proc * p)442 in_pcbpickport(u_int16_t *lport, const void *laddr, int wild,
443 const struct inpcb *inp, struct proc *p)
444 {
445 struct socket *so = inp->inp_socket;
446 struct inpcbtable *table = inp->inp_table;
447 struct inpcb *t;
448 u_int16_t first, last, lower, higher, candidate, localport;
449 int count;
450
451 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
452
453 if (inp->inp_flags & INP_HIGHPORT) {
454 first = ipport_hifirstauto; /* sysctl */
455 last = ipport_hilastauto;
456 } else if (inp->inp_flags & INP_LOWPORT) {
457 if (suser(p))
458 return (EACCES);
459 first = IPPORT_RESERVED-1; /* 1023 */
460 last = 600; /* not IPPORT_RESERVED/2 */
461 } else {
462 first = ipport_firstauto; /* sysctl */
463 last = ipport_lastauto;
464 }
465 if (first < last) {
466 lower = first;
467 higher = last;
468 } else {
469 lower = last;
470 higher = first;
471 }
472
473 /*
474 * Simple check to ensure all ports are not used up causing
475 * a deadlock here.
476 */
477
478 count = higher - lower;
479 candidate = lower + arc4random_uniform(count);
480
481 do {
482 do {
483 if (count-- < 0) /* completely used? */
484 return (EADDRNOTAVAIL);
485 ++candidate;
486 if (candidate < lower || candidate > higher)
487 candidate = lower;
488 localport = htons(candidate);
489 } while (in_baddynamic(candidate, so->so_proto->pr_protocol));
490 t = in_pcblookup_local_lock(table, laddr, localport, wild,
491 inp->inp_rtableid, IN_PCBLOCK_HOLD);
492 } while (t != NULL);
493 *lport = localport;
494
495 return (0);
496 }
497
498 /*
499 * Connect from a socket to a specified address.
500 * Both address and port must be specified in argument sin.
501 * If don't have a local address for this socket yet,
502 * then pick one.
503 */
504 int
in_pcbconnect(struct inpcb * inp,struct mbuf * nam)505 in_pcbconnect(struct inpcb *inp, struct mbuf *nam)
506 {
507 struct inpcbtable *table = inp->inp_table;
508 struct in_addr ina;
509 struct sockaddr_in *sin;
510 struct inpcb *t;
511 int error;
512
513 #ifdef INET6
514 if (ISSET(inp->inp_flags, INP_IPV6))
515 return (in6_pcbconnect(inp, nam));
516 #endif
517
518 if ((error = in_nam2sin(nam, &sin)))
519 return (error);
520 if (sin->sin_port == 0)
521 return (EADDRNOTAVAIL);
522 error = in_pcbselsrc(&ina, sin, inp);
523 if (error)
524 return (error);
525
526 /* keep lookup, modification, and rehash in sync */
527 mtx_enter(&table->inpt_mtx);
528
529 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr, sin->sin_port,
530 ina, inp->inp_lport, inp->inp_rtableid, IN_PCBLOCK_HOLD);
531 if (t != NULL) {
532 mtx_leave(&table->inpt_mtx);
533 return (EADDRINUSE);
534 }
535
536 KASSERT(inp->inp_laddr.s_addr == INADDR_ANY || inp->inp_lport);
537
538 if (inp->inp_laddr.s_addr == INADDR_ANY) {
539 if (inp->inp_lport == 0) {
540 error = in_pcbbind_locked(inp, NULL, &ina, curproc);
541 if (error) {
542 mtx_leave(&table->inpt_mtx);
543 return (error);
544 }
545 t = in_pcblookup_lock(inp->inp_table, sin->sin_addr,
546 sin->sin_port, ina, inp->inp_lport,
547 inp->inp_rtableid, IN_PCBLOCK_HOLD);
548 if (t != NULL) {
549 inp->inp_lport = 0;
550 mtx_leave(&table->inpt_mtx);
551 return (EADDRINUSE);
552 }
553 }
554 inp->inp_laddr = ina;
555 }
556 inp->inp_faddr = sin->sin_addr;
557 inp->inp_fport = sin->sin_port;
558 in_pcbrehash(inp);
559
560 mtx_leave(&table->inpt_mtx);
561
562 #if NSTOEPLITZ > 0
563 inp->inp_flowid = stoeplitz_ip4port(inp->inp_faddr.s_addr,
564 inp->inp_laddr.s_addr, inp->inp_fport, inp->inp_lport);
565 #endif
566 return (0);
567 }
568
569 void
in_pcbdisconnect(struct inpcb * inp)570 in_pcbdisconnect(struct inpcb *inp)
571 {
572 #if NPF > 0
573 pf_remove_divert_state(inp);
574 pf_inp_unlink(inp);
575 #endif
576 inp->inp_flowid = 0;
577 if (inp->inp_socket->so_state & SS_NOFDREF)
578 in_pcbdetach(inp);
579 }
580
581 void
in_pcbdetach(struct inpcb * inp)582 in_pcbdetach(struct inpcb *inp)
583 {
584 struct socket *so = inp->inp_socket;
585 struct inpcbtable *table = inp->inp_table;
586
587 so->so_pcb = NULL;
588 mtx_enter(&inp->inp_sofree_mtx);
589 inp->inp_socket = NULL;
590 mtx_leave(&inp->inp_sofree_mtx);
591 /*
592 * As long as the NET_LOCK() is the default lock for Internet
593 * sockets, do not release it to not introduce new sleeping
594 * points.
595 */
596 sofree(so, 1);
597 if (inp->inp_route.ro_rt) {
598 rtfree(inp->inp_route.ro_rt);
599 inp->inp_route.ro_rt = NULL;
600 }
601 #ifdef INET6
602 if (ISSET(inp->inp_flags, INP_IPV6)) {
603 ip6_freepcbopts(inp->inp_outputopts6);
604 ip6_freemoptions(inp->inp_moptions6);
605 } else
606 #endif
607 {
608 m_freem(inp->inp_options);
609 ip_freemoptions(inp->inp_moptions);
610 }
611 #if NPF > 0
612 pf_remove_divert_state(inp);
613 pf_inp_unlink(inp);
614 #endif
615 mtx_enter(&table->inpt_mtx);
616 LIST_REMOVE(inp, inp_lhash);
617 LIST_REMOVE(inp, inp_hash);
618 TAILQ_REMOVE(&table->inpt_queue, inp, inp_queue);
619 table->inpt_count--;
620 mtx_leave(&table->inpt_mtx);
621
622 in_pcbunref(inp);
623 }
624
625 struct socket *
in_pcbsolock_ref(struct inpcb * inp)626 in_pcbsolock_ref(struct inpcb *inp)
627 {
628 struct socket *so;
629
630 NET_ASSERT_LOCKED();
631
632 mtx_enter(&inp->inp_sofree_mtx);
633 so = soref(inp->inp_socket);
634 mtx_leave(&inp->inp_sofree_mtx);
635 if (so == NULL)
636 return NULL;
637 rw_enter_write(&so->so_lock);
638 return so;
639 }
640
641 void
in_pcbsounlock_rele(struct inpcb * inp,struct socket * so)642 in_pcbsounlock_rele(struct inpcb *inp, struct socket *so)
643 {
644 if (so == NULL)
645 return;
646 KASSERT(inp->inp_socket == NULL || inp->inp_socket == so);
647 rw_exit_write(&so->so_lock);
648 sorele(so);
649 }
650
651 struct inpcb *
in_pcbref(struct inpcb * inp)652 in_pcbref(struct inpcb *inp)
653 {
654 if (inp == NULL)
655 return NULL;
656 refcnt_take(&inp->inp_refcnt);
657 return inp;
658 }
659
660 void
in_pcbunref(struct inpcb * inp)661 in_pcbunref(struct inpcb *inp)
662 {
663 if (inp == NULL)
664 return;
665 if (refcnt_rele(&inp->inp_refcnt) == 0)
666 return;
667 KASSERT((LIST_NEXT(inp, inp_hash) == NULL) ||
668 (LIST_NEXT(inp, inp_hash) == _Q_INVALID));
669 KASSERT((LIST_NEXT(inp, inp_lhash) == NULL) ||
670 (LIST_NEXT(inp, inp_lhash) == _Q_INVALID));
671 KASSERT((TAILQ_NEXT(inp, inp_queue) == NULL) ||
672 (TAILQ_NEXT(inp, inp_queue) == _Q_INVALID));
673 pool_put(&inpcb_pool, inp);
674 }
675
676 struct inpcb *
in_pcb_iterator(struct inpcbtable * table,struct inpcb * inp,struct inpcb_iterator * iter)677 in_pcb_iterator(struct inpcbtable *table, struct inpcb *inp,
678 struct inpcb_iterator *iter)
679 {
680 struct inpcb *tmp;
681
682 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
683
684 if (inp)
685 tmp = TAILQ_NEXT((struct inpcb *)iter, inp_queue);
686 else
687 tmp = TAILQ_FIRST(&table->inpt_queue);
688
689 while (tmp && tmp->inp_table == NULL)
690 tmp = TAILQ_NEXT(tmp, inp_queue);
691
692 if (inp) {
693 TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter,
694 inp_queue);
695 in_pcbunref(inp);
696 }
697 if (tmp) {
698 TAILQ_INSERT_AFTER(&table->inpt_queue, tmp,
699 (struct inpcb *)iter, inp_queue);
700 in_pcbref(tmp);
701 }
702
703 return tmp;
704 }
705
706 void
in_pcb_iterator_abort(struct inpcbtable * table,struct inpcb * inp,struct inpcb_iterator * iter)707 in_pcb_iterator_abort(struct inpcbtable *table, struct inpcb *inp,
708 struct inpcb_iterator *iter)
709 {
710 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
711
712 if (inp) {
713 TAILQ_REMOVE(&table->inpt_queue, (struct inpcb *)iter,
714 inp_queue);
715 in_pcbunref(inp);
716 }
717 }
718
719 void
in_setsockaddr(struct inpcb * inp,struct mbuf * nam)720 in_setsockaddr(struct inpcb *inp, struct mbuf *nam)
721 {
722 struct sockaddr_in *sin;
723
724 #ifdef INET6
725 if (ISSET(inp->inp_flags, INP_IPV6)) {
726 in6_setsockaddr(inp, nam);
727 return;
728 }
729 #endif
730
731 nam->m_len = sizeof(*sin);
732 sin = mtod(nam, struct sockaddr_in *);
733 memset(sin, 0, sizeof(*sin));
734 sin->sin_family = AF_INET;
735 sin->sin_len = sizeof(*sin);
736 sin->sin_port = inp->inp_lport;
737 sin->sin_addr = inp->inp_laddr;
738 }
739
740 void
in_setpeeraddr(struct inpcb * inp,struct mbuf * nam)741 in_setpeeraddr(struct inpcb *inp, struct mbuf *nam)
742 {
743 struct sockaddr_in *sin;
744
745 #ifdef INET6
746 if (ISSET(inp->inp_flags, INP_IPV6)) {
747 in6_setpeeraddr(inp, nam);
748 return;
749 }
750 #endif
751
752 nam->m_len = sizeof(*sin);
753 sin = mtod(nam, struct sockaddr_in *);
754 memset(sin, 0, sizeof(*sin));
755 sin->sin_family = AF_INET;
756 sin->sin_len = sizeof(*sin);
757 sin->sin_port = inp->inp_fport;
758 sin->sin_addr = inp->inp_faddr;
759 }
760
761 int
in_sockaddr(struct socket * so,struct mbuf * nam)762 in_sockaddr(struct socket *so, struct mbuf *nam)
763 {
764 struct inpcb *inp;
765
766 inp = sotoinpcb(so);
767 in_setsockaddr(inp, nam);
768
769 return (0);
770 }
771
772 int
in_peeraddr(struct socket * so,struct mbuf * nam)773 in_peeraddr(struct socket *so, struct mbuf *nam)
774 {
775 struct inpcb *inp;
776
777 inp = sotoinpcb(so);
778 in_setpeeraddr(inp, nam);
779
780 return (0);
781 }
782
783 /*
784 * Pass some notification to all connections of a protocol
785 * associated with address dst. The "usual action" will be
786 * taken, depending on the ctlinput cmd. The caller must filter any
787 * cmds that are uninteresting (e.g., no error in the map).
788 * Call the protocol specific routine (if any) to report
789 * any errors for each matching socket.
790 */
791 void
in_pcbnotifyall(struct inpcbtable * table,const struct sockaddr_in * dst,u_int rtable,int errno,void (* notify)(struct inpcb *,int))792 in_pcbnotifyall(struct inpcbtable *table, const struct sockaddr_in *dst,
793 u_int rtable, int errno, void (*notify)(struct inpcb *, int))
794 {
795 struct inpcb_iterator iter = { .inp_table = NULL };
796 struct inpcb *inp = NULL;
797 u_int rdomain;
798
799 if (dst->sin_addr.s_addr == INADDR_ANY)
800 return;
801 if (notify == NULL)
802 return;
803
804 rdomain = rtable_l2(rtable);
805 mtx_enter(&table->inpt_mtx);
806 while ((inp = in_pcb_iterator(table, inp, &iter)) != NULL) {
807 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
808
809 if (inp->inp_faddr.s_addr != dst->sin_addr.s_addr ||
810 rtable_l2(inp->inp_rtableid) != rdomain) {
811 continue;
812 }
813 mtx_leave(&table->inpt_mtx);
814 (*notify)(inp, errno);
815 mtx_enter(&table->inpt_mtx);
816 }
817 mtx_leave(&table->inpt_mtx);
818 }
819
820 /*
821 * Check for alternatives when higher level complains
822 * about service problems. For now, invalidate cached
823 * routing information. If the route was created dynamically
824 * (by a redirect), time to try a default gateway again.
825 */
826 void
in_losing(struct inpcb * inp)827 in_losing(struct inpcb *inp)
828 {
829 struct rtentry *rt = inp->inp_route.ro_rt;
830
831 if (rt) {
832 inp->inp_route.ro_rt = NULL;
833
834 if (rt->rt_flags & RTF_DYNAMIC) {
835 struct ifnet *ifp;
836
837 ifp = if_get(rt->rt_ifidx);
838 /*
839 * If the interface is gone, all its attached
840 * route entries have been removed from the table,
841 * so we're dealing with a stale cache and have
842 * nothing to do.
843 */
844 if (ifp != NULL)
845 rtdeletemsg(rt, ifp, inp->inp_rtableid);
846 if_put(ifp);
847 }
848 /*
849 * A new route can be allocated
850 * the next time output is attempted.
851 * rtfree() needs to be called in anycase because the inp
852 * is still holding a reference to rt.
853 */
854 rtfree(rt);
855 }
856 }
857
858 /*
859 * After a routing change, flush old routing
860 * and allocate a (hopefully) better one.
861 */
862 void
in_rtchange(struct inpcb * inp,int errno)863 in_rtchange(struct inpcb *inp, int errno)
864 {
865 if (inp->inp_route.ro_rt) {
866 rtfree(inp->inp_route.ro_rt);
867 inp->inp_route.ro_rt = NULL;
868 /*
869 * A new route can be allocated the next time
870 * output is attempted.
871 */
872 }
873 }
874
875 struct inpcb *
in_pcblookup_local_lock(struct inpcbtable * table,const void * laddrp,u_int lport_arg,int flags,u_int rtable,int lock)876 in_pcblookup_local_lock(struct inpcbtable *table, const void *laddrp,
877 u_int lport_arg, int flags, u_int rtable, int lock)
878 {
879 struct inpcb *inp, *match = NULL;
880 int matchwild = 3, wildcard;
881 u_int16_t lport = lport_arg;
882 const struct in_addr laddr = *(const struct in_addr *)laddrp;
883 #ifdef INET6
884 const struct in6_addr *laddr6 = (const struct in6_addr *)laddrp;
885 #endif
886 struct inpcbhead *head;
887 uint64_t lhash;
888 u_int rdomain;
889
890 rdomain = rtable_l2(rtable);
891 lhash = in_pcblhash(table, rdomain, lport);
892
893 if (lock == IN_PCBLOCK_GRAB) {
894 mtx_enter(&table->inpt_mtx);
895 } else {
896 KASSERT(lock == IN_PCBLOCK_HOLD);
897 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
898 }
899 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask];
900 LIST_FOREACH(inp, head, inp_lhash) {
901 if (rtable_l2(inp->inp_rtableid) != rdomain)
902 continue;
903 if (inp->inp_lport != lport)
904 continue;
905 wildcard = 0;
906 #ifdef INET6
907 if (ISSET(flags, INPLOOKUP_IPV6)) {
908 KASSERT(ISSET(inp->inp_flags, INP_IPV6));
909
910 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->inp_faddr6))
911 wildcard++;
912
913 if (!IN6_ARE_ADDR_EQUAL(&inp->inp_laddr6, laddr6)) {
914 if (IN6_IS_ADDR_UNSPECIFIED(&inp->inp_laddr6) ||
915 IN6_IS_ADDR_UNSPECIFIED(laddr6))
916 wildcard++;
917 else
918 continue;
919 }
920
921 } else
922 #endif /* INET6 */
923 {
924 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
925
926 if (inp->inp_faddr.s_addr != INADDR_ANY)
927 wildcard++;
928
929 if (inp->inp_laddr.s_addr != laddr.s_addr) {
930 if (inp->inp_laddr.s_addr == INADDR_ANY ||
931 laddr.s_addr == INADDR_ANY)
932 wildcard++;
933 else
934 continue;
935 }
936
937 }
938 if ((!wildcard || (flags & INPLOOKUP_WILDCARD)) &&
939 wildcard < matchwild) {
940 match = inp;
941 if ((matchwild = wildcard) == 0)
942 break;
943 }
944 }
945 if (lock == IN_PCBLOCK_GRAB) {
946 in_pcbref(match);
947 mtx_leave(&table->inpt_mtx);
948 }
949
950 return (match);
951 }
952
953 struct rtentry *
in_pcbrtentry(struct inpcb * inp)954 in_pcbrtentry(struct inpcb *inp)
955 {
956 soassertlocked(inp->inp_socket);
957
958 #ifdef INET6
959 if (ISSET(inp->inp_flags, INP_IPV6))
960 return in6_pcbrtentry(inp);
961 #endif
962
963 if (inp->inp_faddr.s_addr == INADDR_ANY)
964 return (NULL);
965 return (route_mpath(&inp->inp_route, &inp->inp_faddr, &inp->inp_laddr,
966 inp->inp_rtableid));
967 }
968
969 /*
970 * Return an IPv4 address, which is the most appropriate for a given
971 * destination.
972 * If necessary, this function lookups the routing table and returns
973 * an entry to the caller for later use.
974 */
975 int
in_pcbselsrc(struct in_addr * insrc,struct sockaddr_in * sin,struct inpcb * inp)976 in_pcbselsrc(struct in_addr *insrc, struct sockaddr_in *sin,
977 struct inpcb *inp)
978 {
979 struct ip_moptions *mopts = inp->inp_moptions;
980 struct rtentry *rt;
981 const struct in_addr *laddr = &inp->inp_laddr;
982 u_int rtableid = inp->inp_rtableid;
983 struct sockaddr *ip4_source = NULL;
984 struct in_ifaddr *ia = NULL;
985
986 /*
987 * If the socket(if any) is already bound, use that bound address
988 * unless it is INADDR_ANY or INADDR_BROADCAST.
989 */
990 if (laddr->s_addr != INADDR_ANY &&
991 laddr->s_addr != INADDR_BROADCAST) {
992 *insrc = *laddr;
993 return (0);
994 }
995
996 /*
997 * If the destination address is multicast or limited
998 * broadcast (255.255.255.255) and an outgoing interface has
999 * been set as a multicast option, use the address of that
1000 * interface as our source address.
1001 */
1002 if ((IN_MULTICAST(sin->sin_addr.s_addr) ||
1003 sin->sin_addr.s_addr == INADDR_BROADCAST) && mopts != NULL) {
1004 struct ifnet *ifp;
1005
1006 ifp = if_get(mopts->imo_ifidx);
1007 if (ifp != NULL) {
1008 if (ifp->if_rdomain == rtable_l2(rtableid))
1009 IFP_TO_IA(ifp, ia);
1010 if (ia == NULL) {
1011 if_put(ifp);
1012 return (EADDRNOTAVAIL);
1013 }
1014
1015 *insrc = ia->ia_addr.sin_addr;
1016 if_put(ifp);
1017 return (0);
1018 }
1019 }
1020
1021 /*
1022 * If route is known or can be allocated now,
1023 * our src addr is taken from the i/f, else punt.
1024 */
1025 rt = route_mpath(&inp->inp_route, &sin->sin_addr, NULL, rtableid);
1026
1027 /*
1028 * If we found a route, use the address
1029 * corresponding to the outgoing interface.
1030 */
1031 if (rt != NULL)
1032 ia = ifatoia(rt->rt_ifa);
1033
1034 /*
1035 * Use preferred source address if :
1036 * - destination is not onlink
1037 * - preferred source address is set
1038 * - output interface is UP
1039 */
1040 if (rt != NULL && !(rt->rt_flags & RTF_LLINFO) &&
1041 !(rt->rt_flags & RTF_HOST)) {
1042 ip4_source = rtable_getsource(rtableid, AF_INET);
1043 if (ip4_source != NULL) {
1044 struct ifaddr *ifa;
1045 if ((ifa = ifa_ifwithaddr(ip4_source, rtableid)) !=
1046 NULL && ISSET(ifa->ifa_ifp->if_flags, IFF_UP)) {
1047 *insrc = satosin(ip4_source)->sin_addr;
1048 return (0);
1049 }
1050 }
1051 }
1052
1053 if (ia == NULL)
1054 return (EADDRNOTAVAIL);
1055
1056 *insrc = ia->ia_addr.sin_addr;
1057 return (0);
1058 }
1059
1060 void
in_pcbrehash(struct inpcb * inp)1061 in_pcbrehash(struct inpcb *inp)
1062 {
1063 LIST_REMOVE(inp, inp_lhash);
1064 LIST_REMOVE(inp, inp_hash);
1065 in_pcbhash_insert(inp);
1066 }
1067
1068 void
in_pcbhash_insert(struct inpcb * inp)1069 in_pcbhash_insert(struct inpcb *inp)
1070 {
1071 struct inpcbtable *table = inp->inp_table;
1072 struct inpcbhead *head;
1073 uint64_t hash, lhash;
1074
1075 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1076
1077 lhash = in_pcblhash(table, inp->inp_rtableid, inp->inp_lport);
1078 head = &table->inpt_lhashtbl[lhash & table->inpt_lmask];
1079 LIST_INSERT_HEAD(head, inp, inp_lhash);
1080 #ifdef INET6
1081 if (ISSET(inp->inp_flags, INP_IPV6))
1082 hash = in6_pcbhash(table, rtable_l2(inp->inp_rtableid),
1083 &inp->inp_faddr6, inp->inp_fport,
1084 &inp->inp_laddr6, inp->inp_lport);
1085 else
1086 #endif
1087 hash = in_pcbhash(table, rtable_l2(inp->inp_rtableid),
1088 &inp->inp_faddr, inp->inp_fport,
1089 &inp->inp_laddr, inp->inp_lport);
1090 head = &table->inpt_hashtbl[hash & table->inpt_mask];
1091 LIST_INSERT_HEAD(head, inp, inp_hash);
1092 }
1093
1094 struct inpcb *
in_pcbhash_lookup(struct inpcbtable * table,uint64_t hash,u_int rdomain,const struct in_addr * faddr,u_short fport,const struct in_addr * laddr,u_short lport)1095 in_pcbhash_lookup(struct inpcbtable *table, uint64_t hash, u_int rdomain,
1096 const struct in_addr *faddr, u_short fport,
1097 const struct in_addr *laddr, u_short lport)
1098 {
1099 struct inpcbhead *head;
1100 struct inpcb *inp;
1101
1102 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1103
1104 head = &table->inpt_hashtbl[hash & table->inpt_mask];
1105 LIST_FOREACH(inp, head, inp_hash) {
1106 KASSERT(!ISSET(inp->inp_flags, INP_IPV6));
1107
1108 if (inp->inp_fport == fport && inp->inp_lport == lport &&
1109 inp->inp_faddr.s_addr == faddr->s_addr &&
1110 inp->inp_laddr.s_addr == laddr->s_addr &&
1111 rtable_l2(inp->inp_rtableid) == rdomain) {
1112 break;
1113 }
1114 }
1115 if (inp != NULL) {
1116 /*
1117 * Move this PCB to the head of hash chain so that
1118 * repeated accesses are quicker. This is analogous to
1119 * the historic single-entry PCB cache.
1120 */
1121 if (inp != LIST_FIRST(head)) {
1122 LIST_REMOVE(inp, inp_hash);
1123 LIST_INSERT_HEAD(head, inp, inp_hash);
1124 }
1125 }
1126 return (inp);
1127 }
1128
1129 int
in_pcbresize(struct inpcbtable * table,int hashsize)1130 in_pcbresize(struct inpcbtable *table, int hashsize)
1131 {
1132 u_long nmask, nlmask;
1133 int osize;
1134 void *nhashtbl, *nlhashtbl, *ohashtbl, *olhashtbl;
1135 struct inpcb *inp;
1136
1137 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1138
1139 ohashtbl = table->inpt_hashtbl;
1140 olhashtbl = table->inpt_lhashtbl;
1141 osize = table->inpt_size;
1142
1143 nhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nmask);
1144 if (nhashtbl == NULL)
1145 return ENOBUFS;
1146 nlhashtbl = hashinit(hashsize, M_PCB, M_NOWAIT, &nlmask);
1147 if (nlhashtbl == NULL) {
1148 hashfree(nhashtbl, hashsize, M_PCB);
1149 return ENOBUFS;
1150 }
1151 table->inpt_hashtbl = nhashtbl;
1152 table->inpt_lhashtbl = nlhashtbl;
1153 table->inpt_mask = nmask;
1154 table->inpt_lmask = nlmask;
1155 table->inpt_size = hashsize;
1156
1157 TAILQ_FOREACH(inp, &table->inpt_queue, inp_queue) {
1158 if (in_pcb_is_iterator(inp))
1159 continue;
1160 LIST_REMOVE(inp, inp_lhash);
1161 LIST_REMOVE(inp, inp_hash);
1162 in_pcbhash_insert(inp);
1163 }
1164 hashfree(ohashtbl, osize, M_PCB);
1165 hashfree(olhashtbl, osize, M_PCB);
1166
1167 return (0);
1168 }
1169
1170 #ifdef DIAGNOSTIC
1171 int in_pcbnotifymiss = 0;
1172 #endif
1173
1174 /*
1175 * The in(6)_pcblookup functions are used to locate connected sockets
1176 * quickly:
1177 * faddr.fport <-> laddr.lport
1178 * No wildcard matching is done so that listening sockets are not found.
1179 * If the functions return NULL in(6)_pcblookup_listen can be used to
1180 * find a listening/bound socket that may accept the connection.
1181 * After those two lookups no other are necessary.
1182 */
1183 struct inpcb *
in_pcblookup_lock(struct inpcbtable * table,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,u_int rtable,int lock)1184 in_pcblookup_lock(struct inpcbtable *table, struct in_addr faddr,
1185 u_int fport, struct in_addr laddr, u_int lport, u_int rtable, int lock)
1186 {
1187 struct inpcb *inp;
1188 uint64_t hash;
1189 u_int rdomain;
1190
1191 rdomain = rtable_l2(rtable);
1192 hash = in_pcbhash(table, rdomain, &faddr, fport, &laddr, lport);
1193
1194 if (lock == IN_PCBLOCK_GRAB) {
1195 mtx_enter(&table->inpt_mtx);
1196 } else {
1197 KASSERT(lock == IN_PCBLOCK_HOLD);
1198 MUTEX_ASSERT_LOCKED(&table->inpt_mtx);
1199 }
1200 inp = in_pcbhash_lookup(table, hash, rdomain,
1201 &faddr, fport, &laddr, lport);
1202 if (lock == IN_PCBLOCK_GRAB) {
1203 in_pcbref(inp);
1204 mtx_leave(&table->inpt_mtx);
1205 }
1206
1207 #ifdef DIAGNOSTIC
1208 if (inp == NULL && in_pcbnotifymiss) {
1209 printf("%s: faddr=%08x fport=%d laddr=%08x lport=%d rdom=%u\n",
1210 __func__, ntohl(faddr.s_addr), ntohs(fport),
1211 ntohl(laddr.s_addr), ntohs(lport), rdomain);
1212 }
1213 #endif
1214 return (inp);
1215 }
1216
1217 struct inpcb *
in_pcblookup(struct inpcbtable * table,struct in_addr faddr,u_int fport,struct in_addr laddr,u_int lport,u_int rtable)1218 in_pcblookup(struct inpcbtable *table, struct in_addr faddr,
1219 u_int fport, struct in_addr laddr, u_int lport, u_int rtable)
1220 {
1221 return in_pcblookup_lock(table, faddr, fport, laddr, lport, rtable,
1222 IN_PCBLOCK_GRAB);
1223 }
1224
1225 /*
1226 * The in(6)_pcblookup_listen functions are used to locate listening
1227 * sockets quickly. This are sockets with unspecified foreign address
1228 * and port:
1229 * *.* <-> laddr.lport
1230 * *.* <-> *.lport
1231 */
1232 struct inpcb *
in_pcblookup_listen(struct inpcbtable * table,struct in_addr laddr,u_int lport_arg,struct mbuf * m,u_int rtable)1233 in_pcblookup_listen(struct inpcbtable *table, struct in_addr laddr,
1234 u_int lport_arg, struct mbuf *m, u_int rtable)
1235 {
1236 const struct in_addr *key1, *key2;
1237 struct inpcb *inp;
1238 uint64_t hash;
1239 u_int16_t lport = lport_arg;
1240 u_int rdomain;
1241
1242 key1 = &laddr;
1243 key2 = &zeroin_addr;
1244 #if NPF > 0
1245 if (m && m->m_pkthdr.pf.flags & PF_TAG_DIVERTED) {
1246 struct pf_divert *divert;
1247
1248 divert = pf_find_divert(m);
1249 KASSERT(divert != NULL);
1250 switch (divert->type) {
1251 case PF_DIVERT_TO:
1252 key1 = key2 = &divert->addr.v4;
1253 lport = divert->port;
1254 break;
1255 case PF_DIVERT_REPLY:
1256 return (NULL);
1257 default:
1258 panic("%s: unknown divert type %d, mbuf %p, divert %p",
1259 __func__, divert->type, m, divert);
1260 }
1261 } else if (m && m->m_pkthdr.pf.flags & PF_TAG_TRANSLATE_LOCALHOST) {
1262 /*
1263 * Redirected connections should not be treated the same
1264 * as connections directed to 127.0.0.0/8 since localhost
1265 * can only be accessed from the host itself.
1266 * For example portmap(8) grants more permissions for
1267 * connections to the socket bound to 127.0.0.1 than
1268 * to the * socket.
1269 */
1270 key1 = &zeroin_addr;
1271 key2 = &laddr;
1272 }
1273 #endif
1274
1275 rdomain = rtable_l2(rtable);
1276 hash = in_pcbhash(table, rdomain, &zeroin_addr, 0, key1, lport);
1277
1278 mtx_enter(&table->inpt_mtx);
1279 inp = in_pcbhash_lookup(table, hash, rdomain,
1280 &zeroin_addr, 0, key1, lport);
1281 if (inp == NULL && key1->s_addr != key2->s_addr) {
1282 hash = in_pcbhash(table, rdomain,
1283 &zeroin_addr, 0, key2, lport);
1284 inp = in_pcbhash_lookup(table, hash, rdomain,
1285 &zeroin_addr, 0, key2, lport);
1286 }
1287 in_pcbref(inp);
1288 mtx_leave(&table->inpt_mtx);
1289
1290 #ifdef DIAGNOSTIC
1291 if (inp == NULL && in_pcbnotifymiss) {
1292 printf("%s: laddr=%08x lport=%d rdom=%u\n",
1293 __func__, ntohl(laddr.s_addr), ntohs(lport), rdomain);
1294 }
1295 #endif
1296 return (inp);
1297 }
1298
1299 int
in_pcbset_rtableid(struct inpcb * inp,u_int rtableid)1300 in_pcbset_rtableid(struct inpcb *inp, u_int rtableid)
1301 {
1302 struct inpcbtable *table = inp->inp_table;
1303
1304 /* table must exist */
1305 if (!rtable_exists(rtableid))
1306 return (EINVAL);
1307
1308 mtx_enter(&table->inpt_mtx);
1309 if (inp->inp_lport) {
1310 mtx_leave(&table->inpt_mtx);
1311 return (EBUSY);
1312 }
1313 inp->inp_rtableid = rtableid;
1314 in_pcbrehash(inp);
1315 mtx_leave(&table->inpt_mtx);
1316
1317 return (0);
1318 }
1319
1320 void
in_pcbset_laddr(struct inpcb * inp,const struct sockaddr * sa,u_int rtableid)1321 in_pcbset_laddr(struct inpcb *inp, const struct sockaddr *sa, u_int rtableid)
1322 {
1323 struct inpcbtable *table = inp->inp_table;
1324
1325 mtx_enter(&table->inpt_mtx);
1326 inp->inp_rtableid = rtableid;
1327 #ifdef INET6
1328 if (ISSET(inp->inp_flags, INP_IPV6)) {
1329 const struct sockaddr_in6 *sin6;
1330
1331 KASSERT(sa->sa_family == AF_INET6);
1332 sin6 = satosin6_const(sa);
1333 inp->inp_lport = sin6->sin6_port;
1334 inp->inp_laddr6 = sin6->sin6_addr;
1335 } else
1336 #endif
1337 {
1338 const struct sockaddr_in *sin;
1339
1340 KASSERT(sa->sa_family == AF_INET);
1341 sin = satosin_const(sa);
1342 inp->inp_lport = sin->sin_port;
1343 inp->inp_laddr = sin->sin_addr;
1344 }
1345 in_pcbrehash(inp);
1346 mtx_leave(&table->inpt_mtx);
1347 }
1348
1349 void
in_pcbunset_faddr(struct inpcb * inp)1350 in_pcbunset_faddr(struct inpcb *inp)
1351 {
1352 struct inpcbtable *table = inp->inp_table;
1353
1354 mtx_enter(&table->inpt_mtx);
1355 #ifdef INET6
1356 if (ISSET(inp->inp_flags, INP_IPV6))
1357 inp->inp_faddr6 = in6addr_any;
1358 else
1359 #endif
1360 inp->inp_faddr.s_addr = INADDR_ANY;
1361 inp->inp_fport = 0;
1362 in_pcbrehash(inp);
1363 mtx_leave(&table->inpt_mtx);
1364 }
1365
1366 void
in_pcbunset_laddr(struct inpcb * inp)1367 in_pcbunset_laddr(struct inpcb *inp)
1368 {
1369 struct inpcbtable *table = inp->inp_table;
1370
1371 mtx_enter(&table->inpt_mtx);
1372 #ifdef INET6
1373 if (ISSET(inp->inp_flags, INP_IPV6)) {
1374 inp->inp_faddr6 = in6addr_any;
1375 inp->inp_laddr6 = in6addr_any;
1376 } else
1377 #endif
1378 {
1379 inp->inp_faddr.s_addr = INADDR_ANY;
1380 inp->inp_laddr.s_addr = INADDR_ANY;
1381 }
1382 inp->inp_fport = 0;
1383 in_pcbrehash(inp);
1384 mtx_leave(&table->inpt_mtx);
1385 }
1386