xref: /openbsd/gnu/gcc/gcc/tree-scalar-evolution.c (revision 404b540a)
1 /* Scalar evolution detector.
2    Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3    Contributed by Sebastian Pop <s.pop@laposte.net>
4 
5 This file is part of GCC.
6 
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11 
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
15 for more details.
16 
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING.  If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA.  */
21 
22 /*
23    Description:
24 
25    This pass analyzes the evolution of scalar variables in loop
26    structures.  The algorithm is based on the SSA representation,
27    and on the loop hierarchy tree.  This algorithm is not based on
28    the notion of versions of a variable, as it was the case for the
29    previous implementations of the scalar evolution algorithm, but
30    it assumes that each defined name is unique.
31 
32    The notation used in this file is called "chains of recurrences",
33    and has been proposed by Eugene Zima, Robert Van Engelen, and
34    others for describing induction variables in programs.  For example
35    "b -> {0, +, 2}_1" means that the scalar variable "b" is equal to 0
36    when entering in the loop_1 and has a step 2 in this loop, in other
37    words "for (b = 0; b < N; b+=2);".  Note that the coefficients of
38    this chain of recurrence (or chrec [shrek]) can contain the name of
39    other variables, in which case they are called parametric chrecs.
40    For example, "b -> {a, +, 2}_1" means that the initial value of "b"
41    is the value of "a".  In most of the cases these parametric chrecs
42    are fully instantiated before their use because symbolic names can
43    hide some difficult cases such as self-references described later
44    (see the Fibonacci example).
45 
46    A short sketch of the algorithm is:
47 
48    Given a scalar variable to be analyzed, follow the SSA edge to
49    its definition:
50 
51    - When the definition is a MODIFY_EXPR: if the right hand side
52    (RHS) of the definition cannot be statically analyzed, the answer
53    of the analyzer is: "don't know".
54    Otherwise, for all the variables that are not yet analyzed in the
55    RHS, try to determine their evolution, and finally try to
56    evaluate the operation of the RHS that gives the evolution
57    function of the analyzed variable.
58 
59    - When the definition is a condition-phi-node: determine the
60    evolution function for all the branches of the phi node, and
61    finally merge these evolutions (see chrec_merge).
62 
63    - When the definition is a loop-phi-node: determine its initial
64    condition, that is the SSA edge defined in an outer loop, and
65    keep it symbolic.  Then determine the SSA edges that are defined
66    in the body of the loop.  Follow the inner edges until ending on
67    another loop-phi-node of the same analyzed loop.  If the reached
68    loop-phi-node is not the starting loop-phi-node, then we keep
69    this definition under a symbolic form.  If the reached
70    loop-phi-node is the same as the starting one, then we compute a
71    symbolic stride on the return path.  The result is then the
72    symbolic chrec {initial_condition, +, symbolic_stride}_loop.
73 
74    Examples:
75 
76    Example 1: Illustration of the basic algorithm.
77 
78    | a = 3
79    | loop_1
80    |   b = phi (a, c)
81    |   c = b + 1
82    |   if (c > 10) exit_loop
83    | endloop
84 
85    Suppose that we want to know the number of iterations of the
86    loop_1.  The exit_loop is controlled by a COND_EXPR (c > 10).  We
87    ask the scalar evolution analyzer two questions: what's the
88    scalar evolution (scev) of "c", and what's the scev of "10".  For
89    "10" the answer is "10" since it is a scalar constant.  For the
90    scalar variable "c", it follows the SSA edge to its definition,
91    "c = b + 1", and then asks again what's the scev of "b".
92    Following the SSA edge, we end on a loop-phi-node "b = phi (a,
93    c)", where the initial condition is "a", and the inner loop edge
94    is "c".  The initial condition is kept under a symbolic form (it
95    may be the case that the copy constant propagation has done its
96    work and we end with the constant "3" as one of the edges of the
97    loop-phi-node).  The update edge is followed to the end of the
98    loop, and until reaching again the starting loop-phi-node: b -> c
99    -> b.  At this point we have drawn a path from "b" to "b" from
100    which we compute the stride in the loop: in this example it is
101    "+1".  The resulting scev for "b" is "b -> {a, +, 1}_1".  Now
102    that the scev for "b" is known, it is possible to compute the
103    scev for "c", that is "c -> {a + 1, +, 1}_1".  In order to
104    determine the number of iterations in the loop_1, we have to
105    instantiate_parameters ({a + 1, +, 1}_1), that gives after some
106    more analysis the scev {4, +, 1}_1, or in other words, this is
107    the function "f (x) = x + 4", where x is the iteration count of
108    the loop_1.  Now we have to solve the inequality "x + 4 > 10",
109    and take the smallest iteration number for which the loop is
110    exited: x = 7.  This loop runs from x = 0 to x = 7, and in total
111    there are 8 iterations.  In terms of loop normalization, we have
112    created a variable that is implicitly defined, "x" or just "_1",
113    and all the other analyzed scalars of the loop are defined in
114    function of this variable:
115 
116    a -> 3
117    b -> {3, +, 1}_1
118    c -> {4, +, 1}_1
119 
120    or in terms of a C program:
121 
122    | a = 3
123    | for (x = 0; x <= 7; x++)
124    |   {
125    |     b = x + 3
126    |     c = x + 4
127    |   }
128 
129    Example 2: Illustration of the algorithm on nested loops.
130 
131    | loop_1
132    |   a = phi (1, b)
133    |   c = a + 2
134    |   loop_2  10 times
135    |     b = phi (c, d)
136    |     d = b + 3
137    |   endloop
138    | endloop
139 
140    For analyzing the scalar evolution of "a", the algorithm follows
141    the SSA edge into the loop's body: "a -> b".  "b" is an inner
142    loop-phi-node, and its analysis as in Example 1, gives:
143 
144    b -> {c, +, 3}_2
145    d -> {c + 3, +, 3}_2
146 
147    Following the SSA edge for the initial condition, we end on "c = a
148    + 2", and then on the starting loop-phi-node "a".  From this point,
149    the loop stride is computed: back on "c = a + 2" we get a "+2" in
150    the loop_1, then on the loop-phi-node "b" we compute the overall
151    effect of the inner loop that is "b = c + 30", and we get a "+30"
152    in the loop_1.  That means that the overall stride in loop_1 is
153    equal to "+32", and the result is:
154 
155    a -> {1, +, 32}_1
156    c -> {3, +, 32}_1
157 
158    Example 3: Higher degree polynomials.
159 
160    | loop_1
161    |   a = phi (2, b)
162    |   c = phi (5, d)
163    |   b = a + 1
164    |   d = c + a
165    | endloop
166 
167    a -> {2, +, 1}_1
168    b -> {3, +, 1}_1
169    c -> {5, +, a}_1
170    d -> {5 + a, +, a}_1
171 
172    instantiate_parameters ({5, +, a}_1) -> {5, +, 2, +, 1}_1
173    instantiate_parameters ({5 + a, +, a}_1) -> {7, +, 3, +, 1}_1
174 
175    Example 4: Lucas, Fibonacci, or mixers in general.
176 
177    | loop_1
178    |   a = phi (1, b)
179    |   c = phi (3, d)
180    |   b = c
181    |   d = c + a
182    | endloop
183 
184    a -> (1, c)_1
185    c -> {3, +, a}_1
186 
187    The syntax "(1, c)_1" stands for a PEELED_CHREC that has the
188    following semantics: during the first iteration of the loop_1, the
189    variable contains the value 1, and then it contains the value "c".
190    Note that this syntax is close to the syntax of the loop-phi-node:
191    "a -> (1, c)_1" vs. "a = phi (1, c)".
192 
193    The symbolic chrec representation contains all the semantics of the
194    original code.  What is more difficult is to use this information.
195 
196    Example 5: Flip-flops, or exchangers.
197 
198    | loop_1
199    |   a = phi (1, b)
200    |   c = phi (3, d)
201    |   b = c
202    |   d = a
203    | endloop
204 
205    a -> (1, c)_1
206    c -> (3, a)_1
207 
208    Based on these symbolic chrecs, it is possible to refine this
209    information into the more precise PERIODIC_CHRECs:
210 
211    a -> |1, 3|_1
212    c -> |3, 1|_1
213 
214    This transformation is not yet implemented.
215 
216    Further readings:
217 
218    You can find a more detailed description of the algorithm in:
219    http://icps.u-strasbg.fr/~pop/DEA_03_Pop.pdf
220    http://icps.u-strasbg.fr/~pop/DEA_03_Pop.ps.gz.  But note that
221    this is a preliminary report and some of the details of the
222    algorithm have changed.  I'm working on a research report that
223    updates the description of the algorithms to reflect the design
224    choices used in this implementation.
225 
226    A set of slides show a high level overview of the algorithm and run
227    an example through the scalar evolution analyzer:
228    http://cri.ensmp.fr/~pop/gcc/mar04/slides.pdf
229 
230    The slides that I have presented at the GCC Summit'04 are available
231    at: http://cri.ensmp.fr/~pop/gcc/20040604/gccsummit-lno-spop.pdf
232 */
233 
234 #include "config.h"
235 #include "system.h"
236 #include "coretypes.h"
237 #include "tm.h"
238 #include "ggc.h"
239 #include "tree.h"
240 #include "real.h"
241 
242 /* These RTL headers are needed for basic-block.h.  */
243 #include "rtl.h"
244 #include "basic-block.h"
245 #include "diagnostic.h"
246 #include "tree-flow.h"
247 #include "tree-dump.h"
248 #include "timevar.h"
249 #include "cfgloop.h"
250 #include "tree-chrec.h"
251 #include "tree-scalar-evolution.h"
252 #include "tree-pass.h"
253 #include "flags.h"
254 #include "params.h"
255 
256 static tree analyze_scalar_evolution_1 (struct loop *, tree, tree);
257 static tree resolve_mixers (struct loop *, tree);
258 
259 /* The cached information about a ssa name VAR, claiming that inside LOOP,
260    the value of VAR can be expressed as CHREC.  */
261 
262 struct scev_info_str
263 {
264   tree var;
265   tree chrec;
266 };
267 
268 /* Counters for the scev database.  */
269 static unsigned nb_set_scev = 0;
270 static unsigned nb_get_scev = 0;
271 
272 /* The following trees are unique elements.  Thus the comparison of
273    another element to these elements should be done on the pointer to
274    these trees, and not on their value.  */
275 
276 /* The SSA_NAMEs that are not yet analyzed are qualified with NULL_TREE.  */
277 tree chrec_not_analyzed_yet;
278 
279 /* Reserved to the cases where the analyzer has detected an
280    undecidable property at compile time.  */
281 tree chrec_dont_know;
282 
283 /* When the analyzer has detected that a property will never
284    happen, then it qualifies it with chrec_known.  */
285 tree chrec_known;
286 
287 static bitmap already_instantiated;
288 
289 static htab_t scalar_evolution_info;
290 
291 
292 /* Constructs a new SCEV_INFO_STR structure.  */
293 
294 static inline struct scev_info_str *
new_scev_info_str(tree var)295 new_scev_info_str (tree var)
296 {
297   struct scev_info_str *res;
298 
299   res = XNEW (struct scev_info_str);
300   res->var = var;
301   res->chrec = chrec_not_analyzed_yet;
302 
303   return res;
304 }
305 
306 /* Computes a hash function for database element ELT.  */
307 
308 static hashval_t
hash_scev_info(const void * elt)309 hash_scev_info (const void *elt)
310 {
311   return SSA_NAME_VERSION (((struct scev_info_str *) elt)->var);
312 }
313 
314 /* Compares database elements E1 and E2.  */
315 
316 static int
eq_scev_info(const void * e1,const void * e2)317 eq_scev_info (const void *e1, const void *e2)
318 {
319   const struct scev_info_str *elt1 = (const struct scev_info_str *) e1;
320   const struct scev_info_str *elt2 = (const struct scev_info_str *) e2;
321 
322   return elt1->var == elt2->var;
323 }
324 
325 /* Deletes database element E.  */
326 
327 static void
del_scev_info(void * e)328 del_scev_info (void *e)
329 {
330   free (e);
331 }
332 
333 /* Get the index corresponding to VAR in the current LOOP.  If
334    it's the first time we ask for this VAR, then we return
335    chrec_not_analyzed_yet for this VAR and return its index.  */
336 
337 static tree *
find_var_scev_info(tree var)338 find_var_scev_info (tree var)
339 {
340   struct scev_info_str *res;
341   struct scev_info_str tmp;
342   PTR *slot;
343 
344   tmp.var = var;
345   slot = htab_find_slot (scalar_evolution_info, &tmp, INSERT);
346 
347   if (!*slot)
348     *slot = new_scev_info_str (var);
349   res = (struct scev_info_str *) *slot;
350 
351   return &res->chrec;
352 }
353 
354 /* Return true when CHREC contains symbolic names defined in
355    LOOP_NB.  */
356 
357 bool
chrec_contains_symbols_defined_in_loop(tree chrec,unsigned loop_nb)358 chrec_contains_symbols_defined_in_loop (tree chrec, unsigned loop_nb)
359 {
360   if (chrec == NULL_TREE)
361     return false;
362 
363   if (TREE_INVARIANT (chrec))
364     return false;
365 
366   if (TREE_CODE (chrec) == VAR_DECL
367       || TREE_CODE (chrec) == PARM_DECL
368       || TREE_CODE (chrec) == FUNCTION_DECL
369       || TREE_CODE (chrec) == LABEL_DECL
370       || TREE_CODE (chrec) == RESULT_DECL
371       || TREE_CODE (chrec) == FIELD_DECL)
372     return true;
373 
374   if (TREE_CODE (chrec) == SSA_NAME)
375     {
376       tree def = SSA_NAME_DEF_STMT (chrec);
377       struct loop *def_loop = loop_containing_stmt (def);
378       struct loop *loop = current_loops->parray[loop_nb];
379 
380       if (def_loop == NULL)
381 	return false;
382 
383       if (loop == def_loop || flow_loop_nested_p (loop, def_loop))
384 	return true;
385 
386       return false;
387     }
388 
389   switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
390     {
391     case 3:
392       if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 2),
393 						  loop_nb))
394 	return true;
395 
396     case 2:
397       if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 1),
398 						  loop_nb))
399 	return true;
400 
401     case 1:
402       if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (chrec, 0),
403 						  loop_nb))
404 	return true;
405 
406     default:
407       return false;
408     }
409 }
410 
411 /* Return true when PHI is a loop-phi-node.  */
412 
413 static bool
loop_phi_node_p(tree phi)414 loop_phi_node_p (tree phi)
415 {
416   /* The implementation of this function is based on the following
417      property: "all the loop-phi-nodes of a loop are contained in the
418      loop's header basic block".  */
419 
420   return loop_containing_stmt (phi)->header == bb_for_stmt (phi);
421 }
422 
423 /* Compute the scalar evolution for EVOLUTION_FN after crossing LOOP.
424    In general, in the case of multivariate evolutions we want to get
425    the evolution in different loops.  LOOP specifies the level for
426    which to get the evolution.
427 
428    Example:
429 
430    | for (j = 0; j < 100; j++)
431    |   {
432    |     for (k = 0; k < 100; k++)
433    |       {
434    |         i = k + j;   - Here the value of i is a function of j, k.
435    |       }
436    |      ... = i         - Here the value of i is a function of j.
437    |   }
438    | ... = i              - Here the value of i is a scalar.
439 
440    Example:
441 
442    | i_0 = ...
443    | loop_1 10 times
444    |   i_1 = phi (i_0, i_2)
445    |   i_2 = i_1 + 2
446    | endloop
447 
448    This loop has the same effect as:
449    LOOP_1 has the same effect as:
450 
451    | i_1 = i_0 + 20
452 
453    The overall effect of the loop, "i_0 + 20" in the previous example,
454    is obtained by passing in the parameters: LOOP = 1,
455    EVOLUTION_FN = {i_0, +, 2}_1.
456 */
457 
458 static tree
compute_overall_effect_of_inner_loop(struct loop * loop,tree evolution_fn)459 compute_overall_effect_of_inner_loop (struct loop *loop, tree evolution_fn)
460 {
461   bool val = false;
462 
463   if (evolution_fn == chrec_dont_know)
464     return chrec_dont_know;
465 
466   else if (TREE_CODE (evolution_fn) == POLYNOMIAL_CHREC)
467     {
468       if (CHREC_VARIABLE (evolution_fn) >= (unsigned) loop->num)
469 	{
470 	  struct loop *inner_loop =
471 	    current_loops->parray[CHREC_VARIABLE (evolution_fn)];
472 	  tree nb_iter = number_of_iterations_in_loop (inner_loop);
473 
474 	  if (nb_iter == chrec_dont_know)
475 	    return chrec_dont_know;
476 	  else
477 	    {
478 	      tree res;
479 	      tree type = chrec_type (nb_iter);
480 
481 	      /* Number of iterations is off by one (the ssa name we
482 		 analyze must be defined before the exit).  */
483 	      nb_iter = chrec_fold_minus (type, nb_iter,
484 					  build_int_cst (type, 1));
485 
486 	      /* evolution_fn is the evolution function in LOOP.  Get
487 		 its value in the nb_iter-th iteration.  */
488 	      res = chrec_apply (inner_loop->num, evolution_fn, nb_iter);
489 
490 	      /* Continue the computation until ending on a parent of LOOP.  */
491 	      return compute_overall_effect_of_inner_loop (loop, res);
492 	    }
493 	}
494       else
495 	return evolution_fn;
496      }
497 
498   /* If the evolution function is an invariant, there is nothing to do.  */
499   else if (no_evolution_in_loop_p (evolution_fn, loop->num, &val) && val)
500     return evolution_fn;
501 
502   else
503     return chrec_dont_know;
504 }
505 
506 /* Determine whether the CHREC is always positive/negative.  If the expression
507    cannot be statically analyzed, return false, otherwise set the answer into
508    VALUE.  */
509 
510 bool
chrec_is_positive(tree chrec,bool * value)511 chrec_is_positive (tree chrec, bool *value)
512 {
513   bool value0, value1, value2;
514   tree type, end_value, nb_iter;
515 
516   switch (TREE_CODE (chrec))
517     {
518     case POLYNOMIAL_CHREC:
519       if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
520 	  || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
521 	return false;
522 
523       /* FIXME -- overflows.  */
524       if (value0 == value1)
525 	{
526 	  *value = value0;
527 	  return true;
528 	}
529 
530       /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
531 	 and the proof consists in showing that the sign never
532 	 changes during the execution of the loop, from 0 to
533 	 loop->nb_iterations.  */
534       if (!evolution_function_is_affine_p (chrec))
535 	return false;
536 
537       nb_iter = number_of_iterations_in_loop
538 	(current_loops->parray[CHREC_VARIABLE (chrec)]);
539 
540       if (chrec_contains_undetermined (nb_iter))
541 	return false;
542 
543       type = chrec_type (nb_iter);
544       nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
545 
546 #if 0
547       /* TODO -- If the test is after the exit, we may decrease the number of
548 	 iterations by one.  */
549       if (after_exit)
550 	nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
551 #endif
552 
553       end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
554 
555       if (!chrec_is_positive (end_value, &value2))
556 	return false;
557 
558       *value = value0;
559       return value0 == value1;
560 
561     case INTEGER_CST:
562       *value = (tree_int_cst_sgn (chrec) == 1);
563       return true;
564 
565     default:
566       return false;
567     }
568 }
569 
570 /* Associate CHREC to SCALAR.  */
571 
572 static void
set_scalar_evolution(tree scalar,tree chrec)573 set_scalar_evolution (tree scalar, tree chrec)
574 {
575   tree *scalar_info;
576 
577   if (TREE_CODE (scalar) != SSA_NAME)
578     return;
579 
580   scalar_info = find_var_scev_info (scalar);
581 
582   if (dump_file)
583     {
584       if (dump_flags & TDF_DETAILS)
585 	{
586 	  fprintf (dump_file, "(set_scalar_evolution \n");
587 	  fprintf (dump_file, "  (scalar = ");
588 	  print_generic_expr (dump_file, scalar, 0);
589 	  fprintf (dump_file, ")\n  (scalar_evolution = ");
590 	  print_generic_expr (dump_file, chrec, 0);
591 	  fprintf (dump_file, "))\n");
592 	}
593       if (dump_flags & TDF_STATS)
594 	nb_set_scev++;
595     }
596 
597   *scalar_info = chrec;
598 }
599 
600 /* Retrieve the chrec associated to SCALAR in the LOOP.  */
601 
602 static tree
get_scalar_evolution(tree scalar)603 get_scalar_evolution (tree scalar)
604 {
605   tree res;
606 
607   if (dump_file)
608     {
609       if (dump_flags & TDF_DETAILS)
610 	{
611 	  fprintf (dump_file, "(get_scalar_evolution \n");
612 	  fprintf (dump_file, "  (scalar = ");
613 	  print_generic_expr (dump_file, scalar, 0);
614 	  fprintf (dump_file, ")\n");
615 	}
616       if (dump_flags & TDF_STATS)
617 	nb_get_scev++;
618     }
619 
620   switch (TREE_CODE (scalar))
621     {
622     case SSA_NAME:
623       res = *find_var_scev_info (scalar);
624       break;
625 
626     case REAL_CST:
627     case INTEGER_CST:
628       res = scalar;
629       break;
630 
631     default:
632       res = chrec_not_analyzed_yet;
633       break;
634     }
635 
636   if (dump_file && (dump_flags & TDF_DETAILS))
637     {
638       fprintf (dump_file, "  (scalar_evolution = ");
639       print_generic_expr (dump_file, res, 0);
640       fprintf (dump_file, "))\n");
641     }
642 
643   return res;
644 }
645 
646 /* Helper function for add_to_evolution.  Returns the evolution
647    function for an assignment of the form "a = b + c", where "a" and
648    "b" are on the strongly connected component.  CHREC_BEFORE is the
649    information that we already have collected up to this point.
650    TO_ADD is the evolution of "c".
651 
652    When CHREC_BEFORE has an evolution part in LOOP_NB, add to this
653    evolution the expression TO_ADD, otherwise construct an evolution
654    part for this loop.  */
655 
656 static tree
add_to_evolution_1(unsigned loop_nb,tree chrec_before,tree to_add,tree at_stmt)657 add_to_evolution_1 (unsigned loop_nb, tree chrec_before, tree to_add,
658 		    tree at_stmt)
659 {
660   tree type, left, right;
661 
662   switch (TREE_CODE (chrec_before))
663     {
664     case POLYNOMIAL_CHREC:
665       if (CHREC_VARIABLE (chrec_before) <= loop_nb)
666 	{
667 	  unsigned var;
668 
669 	  type = chrec_type (chrec_before);
670 
671 	  /* When there is no evolution part in this loop, build it.  */
672 	  if (CHREC_VARIABLE (chrec_before) < loop_nb)
673 	    {
674 	      var = loop_nb;
675 	      left = chrec_before;
676 	      right = SCALAR_FLOAT_TYPE_P (type)
677 		? build_real (type, dconst0)
678 		: build_int_cst (type, 0);
679 	    }
680 	  else
681 	    {
682 	      var = CHREC_VARIABLE (chrec_before);
683 	      left = CHREC_LEFT (chrec_before);
684 	      right = CHREC_RIGHT (chrec_before);
685 	    }
686 
687 	  to_add = chrec_convert (type, to_add, at_stmt);
688 	  right = chrec_convert (type, right, at_stmt);
689 	  right = chrec_fold_plus (type, right, to_add);
690 	  return build_polynomial_chrec (var, left, right);
691 	}
692       else
693 	{
694 	  /* Search the evolution in LOOP_NB.  */
695 	  left = add_to_evolution_1 (loop_nb, CHREC_LEFT (chrec_before),
696 				     to_add, at_stmt);
697 	  right = CHREC_RIGHT (chrec_before);
698 	  right = chrec_convert (chrec_type (left), right, at_stmt);
699 	  return build_polynomial_chrec (CHREC_VARIABLE (chrec_before),
700 					 left, right);
701 	}
702 
703     default:
704       /* These nodes do not depend on a loop.  */
705       if (chrec_before == chrec_dont_know)
706 	return chrec_dont_know;
707 
708       left = chrec_before;
709       right = chrec_convert (chrec_type (left), to_add, at_stmt);
710       return build_polynomial_chrec (loop_nb, left, right);
711     }
712 }
713 
714 /* Add TO_ADD to the evolution part of CHREC_BEFORE in the dimension
715    of LOOP_NB.
716 
717    Description (provided for completeness, for those who read code in
718    a plane, and for my poor 62 bytes brain that would have forgotten
719    all this in the next two or three months):
720 
721    The algorithm of translation of programs from the SSA representation
722    into the chrecs syntax is based on a pattern matching.  After having
723    reconstructed the overall tree expression for a loop, there are only
724    two cases that can arise:
725 
726    1. a = loop-phi (init, a + expr)
727    2. a = loop-phi (init, expr)
728 
729    where EXPR is either a scalar constant with respect to the analyzed
730    loop (this is a degree 0 polynomial), or an expression containing
731    other loop-phi definitions (these are higher degree polynomials).
732 
733    Examples:
734 
735    1.
736    | init = ...
737    | loop_1
738    |   a = phi (init, a + 5)
739    | endloop
740 
741    2.
742    | inita = ...
743    | initb = ...
744    | loop_1
745    |   a = phi (inita, 2 * b + 3)
746    |   b = phi (initb, b + 1)
747    | endloop
748 
749    For the first case, the semantics of the SSA representation is:
750 
751    | a (x) = init + \sum_{j = 0}^{x - 1} expr (j)
752 
753    that is, there is a loop index "x" that determines the scalar value
754    of the variable during the loop execution.  During the first
755    iteration, the value is that of the initial condition INIT, while
756    during the subsequent iterations, it is the sum of the initial
757    condition with the sum of all the values of EXPR from the initial
758    iteration to the before last considered iteration.
759 
760    For the second case, the semantics of the SSA program is:
761 
762    | a (x) = init, if x = 0;
763    |         expr (x - 1), otherwise.
764 
765    The second case corresponds to the PEELED_CHREC, whose syntax is
766    close to the syntax of a loop-phi-node:
767 
768    | phi (init, expr)  vs.  (init, expr)_x
769 
770    The proof of the translation algorithm for the first case is a
771    proof by structural induction based on the degree of EXPR.
772 
773    Degree 0:
774    When EXPR is a constant with respect to the analyzed loop, or in
775    other words when EXPR is a polynomial of degree 0, the evolution of
776    the variable A in the loop is an affine function with an initial
777    condition INIT, and a step EXPR.  In order to show this, we start
778    from the semantics of the SSA representation:
779 
780    f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
781 
782    and since "expr (j)" is a constant with respect to "j",
783 
784    f (x) = init + x * expr
785 
786    Finally, based on the semantics of the pure sum chrecs, by
787    identification we get the corresponding chrecs syntax:
788 
789    f (x) = init * \binom{x}{0} + expr * \binom{x}{1}
790    f (x) -> {init, +, expr}_x
791 
792    Higher degree:
793    Suppose that EXPR is a polynomial of degree N with respect to the
794    analyzed loop_x for which we have already determined that it is
795    written under the chrecs syntax:
796 
797    | expr (x)  ->  {b_0, +, b_1, +, ..., +, b_{n-1}} (x)
798 
799    We start from the semantics of the SSA program:
800 
801    | f (x) = init + \sum_{j = 0}^{x - 1} expr (j)
802    |
803    | f (x) = init + \sum_{j = 0}^{x - 1}
804    |                (b_0 * \binom{j}{0} + ... + b_{n-1} * \binom{j}{n-1})
805    |
806    | f (x) = init + \sum_{j = 0}^{x - 1}
807    |                \sum_{k = 0}^{n - 1} (b_k * \binom{j}{k})
808    |
809    | f (x) = init + \sum_{k = 0}^{n - 1}
810    |                (b_k * \sum_{j = 0}^{x - 1} \binom{j}{k})
811    |
812    | f (x) = init + \sum_{k = 0}^{n - 1}
813    |                (b_k * \binom{x}{k + 1})
814    |
815    | f (x) = init + b_0 * \binom{x}{1} + ...
816    |              + b_{n-1} * \binom{x}{n}
817    |
818    | f (x) = init * \binom{x}{0} + b_0 * \binom{x}{1} + ...
819    |                             + b_{n-1} * \binom{x}{n}
820    |
821 
822    And finally from the definition of the chrecs syntax, we identify:
823    | f (x)  ->  {init, +, b_0, +, ..., +, b_{n-1}}_x
824 
825    This shows the mechanism that stands behind the add_to_evolution
826    function.  An important point is that the use of symbolic
827    parameters avoids the need of an analysis schedule.
828 
829    Example:
830 
831    | inita = ...
832    | initb = ...
833    | loop_1
834    |   a = phi (inita, a + 2 + b)
835    |   b = phi (initb, b + 1)
836    | endloop
837 
838    When analyzing "a", the algorithm keeps "b" symbolically:
839 
840    | a  ->  {inita, +, 2 + b}_1
841 
842    Then, after instantiation, the analyzer ends on the evolution:
843 
844    | a  ->  {inita, +, 2 + initb, +, 1}_1
845 
846 */
847 
848 static tree
add_to_evolution(unsigned loop_nb,tree chrec_before,enum tree_code code,tree to_add,tree at_stmt)849 add_to_evolution (unsigned loop_nb, tree chrec_before, enum tree_code code,
850 		  tree to_add, tree at_stmt)
851 {
852   tree type = chrec_type (to_add);
853   tree res = NULL_TREE;
854 
855   if (to_add == NULL_TREE)
856     return chrec_before;
857 
858   /* TO_ADD is either a scalar, or a parameter.  TO_ADD is not
859      instantiated at this point.  */
860   if (TREE_CODE (to_add) == POLYNOMIAL_CHREC)
861     /* This should not happen.  */
862     return chrec_dont_know;
863 
864   if (dump_file && (dump_flags & TDF_DETAILS))
865     {
866       fprintf (dump_file, "(add_to_evolution \n");
867       fprintf (dump_file, "  (loop_nb = %d)\n", loop_nb);
868       fprintf (dump_file, "  (chrec_before = ");
869       print_generic_expr (dump_file, chrec_before, 0);
870       fprintf (dump_file, ")\n  (to_add = ");
871       print_generic_expr (dump_file, to_add, 0);
872       fprintf (dump_file, ")\n");
873     }
874 
875   if (code == MINUS_EXPR)
876     to_add = chrec_fold_multiply (type, to_add, SCALAR_FLOAT_TYPE_P (type)
877 				  ? build_real (type, dconstm1)
878 				  : build_int_cst_type (type, -1));
879 
880   res = add_to_evolution_1 (loop_nb, chrec_before, to_add, at_stmt);
881 
882   if (dump_file && (dump_flags & TDF_DETAILS))
883     {
884       fprintf (dump_file, "  (res = ");
885       print_generic_expr (dump_file, res, 0);
886       fprintf (dump_file, "))\n");
887     }
888 
889   return res;
890 }
891 
892 /* Helper function.  */
893 
894 static inline tree
set_nb_iterations_in_loop(struct loop * loop,tree res)895 set_nb_iterations_in_loop (struct loop *loop,
896 			   tree res)
897 {
898   tree type = chrec_type (res);
899 
900   res = chrec_fold_plus (type, res, build_int_cst (type, 1));
901 
902   /* FIXME HWI: However we want to store one iteration less than the
903      count of the loop in order to be compatible with the other
904      nb_iter computations in loop-iv.  This also allows the
905      representation of nb_iters that are equal to MAX_INT.  */
906   if (TREE_CODE (res) == INTEGER_CST
907       && (TREE_INT_CST_LOW (res) == 0
908 	  || TREE_OVERFLOW (res)))
909     res = chrec_dont_know;
910 
911   if (dump_file && (dump_flags & TDF_DETAILS))
912     {
913       fprintf (dump_file, "  (set_nb_iterations_in_loop = ");
914       print_generic_expr (dump_file, res, 0);
915       fprintf (dump_file, "))\n");
916     }
917 
918   loop->nb_iterations = res;
919   return res;
920 }
921 
922 
923 
924 /* This section selects the loops that will be good candidates for the
925    scalar evolution analysis.  For the moment, greedily select all the
926    loop nests we could analyze.  */
927 
928 /* Return true when it is possible to analyze the condition expression
929    EXPR.  */
930 
931 static bool
analyzable_condition(tree expr)932 analyzable_condition (tree expr)
933 {
934   tree condition;
935 
936   if (TREE_CODE (expr) != COND_EXPR)
937     return false;
938 
939   condition = TREE_OPERAND (expr, 0);
940 
941   switch (TREE_CODE (condition))
942     {
943     case SSA_NAME:
944       return true;
945 
946     case LT_EXPR:
947     case LE_EXPR:
948     case GT_EXPR:
949     case GE_EXPR:
950     case EQ_EXPR:
951     case NE_EXPR:
952       return true;
953 
954     default:
955       return false;
956     }
957 
958   return false;
959 }
960 
961 /* For a loop with a single exit edge, return the COND_EXPR that
962    guards the exit edge.  If the expression is too difficult to
963    analyze, then give up.  */
964 
965 tree
get_loop_exit_condition(struct loop * loop)966 get_loop_exit_condition (struct loop *loop)
967 {
968   tree res = NULL_TREE;
969   edge exit_edge = loop->single_exit;
970 
971 
972   if (dump_file && (dump_flags & TDF_DETAILS))
973     fprintf (dump_file, "(get_loop_exit_condition \n  ");
974 
975   if (exit_edge)
976     {
977       tree expr;
978 
979       expr = last_stmt (exit_edge->src);
980       if (analyzable_condition (expr))
981 	res = expr;
982     }
983 
984   if (dump_file && (dump_flags & TDF_DETAILS))
985     {
986       print_generic_expr (dump_file, res, 0);
987       fprintf (dump_file, ")\n");
988     }
989 
990   return res;
991 }
992 
993 /* Recursively determine and enqueue the exit conditions for a loop.  */
994 
995 static void
get_exit_conditions_rec(struct loop * loop,VEC (tree,heap)** exit_conditions)996 get_exit_conditions_rec (struct loop *loop,
997 			 VEC(tree,heap) **exit_conditions)
998 {
999   if (!loop)
1000     return;
1001 
1002   /* Recurse on the inner loops, then on the next (sibling) loops.  */
1003   get_exit_conditions_rec (loop->inner, exit_conditions);
1004   get_exit_conditions_rec (loop->next, exit_conditions);
1005 
1006   if (loop->single_exit)
1007     {
1008       tree loop_condition = get_loop_exit_condition (loop);
1009 
1010       if (loop_condition)
1011 	VEC_safe_push (tree, heap, *exit_conditions, loop_condition);
1012     }
1013 }
1014 
1015 /* Select the candidate loop nests for the analysis.  This function
1016    initializes the EXIT_CONDITIONS array.  */
1017 
1018 static void
select_loops_exit_conditions(struct loops * loops,VEC (tree,heap)** exit_conditions)1019 select_loops_exit_conditions (struct loops *loops,
1020 			      VEC(tree,heap) **exit_conditions)
1021 {
1022   struct loop *function_body = loops->parray[0];
1023 
1024   get_exit_conditions_rec (function_body->inner, exit_conditions);
1025 }
1026 
1027 
1028 /* Depth first search algorithm.  */
1029 
1030 typedef enum t_bool {
1031   t_false,
1032   t_true,
1033   t_dont_know
1034 } t_bool;
1035 
1036 
1037 static t_bool follow_ssa_edge (struct loop *loop, tree, tree, tree *, int);
1038 
1039 /* Follow the ssa edge into the right hand side RHS of an assignment.
1040    Return true if the strongly connected component has been found.  */
1041 
1042 static t_bool
follow_ssa_edge_in_rhs(struct loop * loop,tree at_stmt,tree rhs,tree halting_phi,tree * evolution_of_loop,int limit)1043 follow_ssa_edge_in_rhs (struct loop *loop, tree at_stmt, tree rhs,
1044 			tree halting_phi, tree *evolution_of_loop, int limit)
1045 {
1046   t_bool res = t_false;
1047   tree rhs0, rhs1;
1048   tree type_rhs = TREE_TYPE (rhs);
1049   tree evol;
1050 
1051   /* The RHS is one of the following cases:
1052      - an SSA_NAME,
1053      - an INTEGER_CST,
1054      - a PLUS_EXPR,
1055      - a MINUS_EXPR,
1056      - an ASSERT_EXPR,
1057      - other cases are not yet handled.  */
1058   switch (TREE_CODE (rhs))
1059     {
1060     case NOP_EXPR:
1061       /* This assignment is under the form "a_1 = (cast) rhs.  */
1062       res = follow_ssa_edge_in_rhs (loop, at_stmt, TREE_OPERAND (rhs, 0),
1063 				    halting_phi, evolution_of_loop, limit);
1064       *evolution_of_loop = chrec_convert (TREE_TYPE (rhs),
1065 					  *evolution_of_loop, at_stmt);
1066       break;
1067 
1068     case INTEGER_CST:
1069       /* This assignment is under the form "a_1 = 7".  */
1070       res = t_false;
1071       break;
1072 
1073     case SSA_NAME:
1074       /* This assignment is under the form: "a_1 = b_2".  */
1075       res = follow_ssa_edge
1076 	(loop, SSA_NAME_DEF_STMT (rhs), halting_phi, evolution_of_loop, limit);
1077       break;
1078 
1079     case PLUS_EXPR:
1080       /* This case is under the form "rhs0 + rhs1".  */
1081       rhs0 = TREE_OPERAND (rhs, 0);
1082       rhs1 = TREE_OPERAND (rhs, 1);
1083       STRIP_TYPE_NOPS (rhs0);
1084       STRIP_TYPE_NOPS (rhs1);
1085 
1086       if (TREE_CODE (rhs0) == SSA_NAME)
1087 	{
1088 	  if (TREE_CODE (rhs1) == SSA_NAME)
1089 	    {
1090 	      /* Match an assignment under the form:
1091 		 "a = b + c".  */
1092 	      evol = *evolution_of_loop;
1093 	      res = follow_ssa_edge
1094 		(loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1095 		 &evol, limit);
1096 
1097 	      if (res == t_true)
1098 		*evolution_of_loop = add_to_evolution
1099 		  (loop->num,
1100 		   chrec_convert (type_rhs, evol, at_stmt),
1101 		   PLUS_EXPR, rhs1, at_stmt);
1102 
1103 	      else if (res == t_false)
1104 		{
1105 		  res = follow_ssa_edge
1106 		    (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1107 		     evolution_of_loop, limit);
1108 
1109 		  if (res == t_true)
1110 		    *evolution_of_loop = add_to_evolution
1111 		      (loop->num,
1112 		       chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1113 		       PLUS_EXPR, rhs0, at_stmt);
1114 
1115 		  else if (res == t_dont_know)
1116 		    *evolution_of_loop = chrec_dont_know;
1117 		}
1118 
1119 	      else if (res == t_dont_know)
1120 		*evolution_of_loop = chrec_dont_know;
1121 	    }
1122 
1123 	  else
1124 	    {
1125 	      /* Match an assignment under the form:
1126 		 "a = b + ...".  */
1127 	      res = follow_ssa_edge
1128 		(loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1129 		 evolution_of_loop, limit);
1130 	      if (res == t_true)
1131 		*evolution_of_loop = add_to_evolution
1132 		  (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1133 					     at_stmt),
1134 		   PLUS_EXPR, rhs1, at_stmt);
1135 
1136 	      else if (res == t_dont_know)
1137 		*evolution_of_loop = chrec_dont_know;
1138 	    }
1139 	}
1140 
1141       else if (TREE_CODE (rhs1) == SSA_NAME)
1142 	{
1143 	  /* Match an assignment under the form:
1144 	     "a = ... + c".  */
1145 	  res = follow_ssa_edge
1146 	    (loop, SSA_NAME_DEF_STMT (rhs1), halting_phi,
1147 	     evolution_of_loop, limit);
1148 	  if (res == t_true)
1149 	    *evolution_of_loop = add_to_evolution
1150 	      (loop->num, chrec_convert (type_rhs, *evolution_of_loop,
1151 					 at_stmt),
1152 	       PLUS_EXPR, rhs0, at_stmt);
1153 
1154 	  else if (res == t_dont_know)
1155 	    *evolution_of_loop = chrec_dont_know;
1156 	}
1157 
1158       else
1159 	/* Otherwise, match an assignment under the form:
1160 	   "a = ... + ...".  */
1161 	/* And there is nothing to do.  */
1162 	res = t_false;
1163 
1164       break;
1165 
1166     case MINUS_EXPR:
1167       /* This case is under the form "opnd0 = rhs0 - rhs1".  */
1168       rhs0 = TREE_OPERAND (rhs, 0);
1169       rhs1 = TREE_OPERAND (rhs, 1);
1170       STRIP_TYPE_NOPS (rhs0);
1171       STRIP_TYPE_NOPS (rhs1);
1172 
1173       if (TREE_CODE (rhs0) == SSA_NAME)
1174 	{
1175 	  /* Match an assignment under the form:
1176 	     "a = b - ...".  */
1177 	  res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (rhs0), halting_phi,
1178 				 evolution_of_loop, limit);
1179 	  if (res == t_true)
1180 	    *evolution_of_loop = add_to_evolution
1181 	      (loop->num, chrec_convert (type_rhs, *evolution_of_loop, at_stmt),
1182 	       MINUS_EXPR, rhs1, at_stmt);
1183 
1184 	  else if (res == t_dont_know)
1185 	    *evolution_of_loop = chrec_dont_know;
1186 	}
1187       else
1188 	/* Otherwise, match an assignment under the form:
1189 	   "a = ... - ...".  */
1190 	/* And there is nothing to do.  */
1191 	res = t_false;
1192 
1193       break;
1194 
1195     case ASSERT_EXPR:
1196       {
1197 	/* This assignment is of the form: "a_1 = ASSERT_EXPR <a_2, ...>"
1198 	   It must be handled as a copy assignment of the form a_1 = a_2.  */
1199 	tree op0 = ASSERT_EXPR_VAR (rhs);
1200 	if (TREE_CODE (op0) == SSA_NAME)
1201 	  res = follow_ssa_edge (loop, SSA_NAME_DEF_STMT (op0),
1202 				 halting_phi, evolution_of_loop, limit);
1203 	else
1204 	  res = t_false;
1205 	break;
1206       }
1207 
1208 
1209     default:
1210       res = t_false;
1211       break;
1212     }
1213 
1214   return res;
1215 }
1216 
1217 /* Checks whether the I-th argument of a PHI comes from a backedge.  */
1218 
1219 static bool
backedge_phi_arg_p(tree phi,int i)1220 backedge_phi_arg_p (tree phi, int i)
1221 {
1222   edge e = PHI_ARG_EDGE (phi, i);
1223 
1224   /* We would in fact like to test EDGE_DFS_BACK here, but we do not care
1225      about updating it anywhere, and this should work as well most of the
1226      time.  */
1227   if (e->flags & EDGE_IRREDUCIBLE_LOOP)
1228     return true;
1229 
1230   return false;
1231 }
1232 
1233 /* Helper function for one branch of the condition-phi-node.  Return
1234    true if the strongly connected component has been found following
1235    this path.  */
1236 
1237 static inline t_bool
follow_ssa_edge_in_condition_phi_branch(int i,struct loop * loop,tree condition_phi,tree halting_phi,tree * evolution_of_branch,tree init_cond,int limit)1238 follow_ssa_edge_in_condition_phi_branch (int i,
1239 					 struct loop *loop,
1240 					 tree condition_phi,
1241 					 tree halting_phi,
1242 					 tree *evolution_of_branch,
1243 					 tree init_cond, int limit)
1244 {
1245   tree branch = PHI_ARG_DEF (condition_phi, i);
1246   *evolution_of_branch = chrec_dont_know;
1247 
1248   /* Do not follow back edges (they must belong to an irreducible loop, which
1249      we really do not want to worry about).  */
1250   if (backedge_phi_arg_p (condition_phi, i))
1251     return t_false;
1252 
1253   if (TREE_CODE (branch) == SSA_NAME)
1254     {
1255       *evolution_of_branch = init_cond;
1256       return follow_ssa_edge (loop, SSA_NAME_DEF_STMT (branch), halting_phi,
1257 			      evolution_of_branch, limit);
1258     }
1259 
1260   /* This case occurs when one of the condition branches sets
1261      the variable to a constant: i.e. a phi-node like
1262      "a_2 = PHI <a_7(5), 2(6)>;".
1263 
1264      FIXME:  This case have to be refined correctly:
1265      in some cases it is possible to say something better than
1266      chrec_dont_know, for example using a wrap-around notation.  */
1267   return t_false;
1268 }
1269 
1270 /* This function merges the branches of a condition-phi-node in a
1271    loop.  */
1272 
1273 static t_bool
follow_ssa_edge_in_condition_phi(struct loop * loop,tree condition_phi,tree halting_phi,tree * evolution_of_loop,int limit)1274 follow_ssa_edge_in_condition_phi (struct loop *loop,
1275 				  tree condition_phi,
1276 				  tree halting_phi,
1277 				  tree *evolution_of_loop, int limit)
1278 {
1279   int i;
1280   tree init = *evolution_of_loop;
1281   tree evolution_of_branch;
1282   t_bool res = follow_ssa_edge_in_condition_phi_branch (0, loop, condition_phi,
1283 							halting_phi,
1284 							&evolution_of_branch,
1285 							init, limit);
1286   if (res == t_false || res == t_dont_know)
1287     return res;
1288 
1289   *evolution_of_loop = evolution_of_branch;
1290 
1291   for (i = 1; i < PHI_NUM_ARGS (condition_phi); i++)
1292     {
1293       /* Quickly give up when the evolution of one of the branches is
1294 	 not known.  */
1295       if (*evolution_of_loop == chrec_dont_know)
1296 	return t_true;
1297 
1298       res = follow_ssa_edge_in_condition_phi_branch (i, loop, condition_phi,
1299 						     halting_phi,
1300 						     &evolution_of_branch,
1301 						     init, limit);
1302       if (res == t_false || res == t_dont_know)
1303 	return res;
1304 
1305       *evolution_of_loop = chrec_merge (*evolution_of_loop,
1306 					evolution_of_branch);
1307     }
1308 
1309   return t_true;
1310 }
1311 
1312 /* Follow an SSA edge in an inner loop.  It computes the overall
1313    effect of the loop, and following the symbolic initial conditions,
1314    it follows the edges in the parent loop.  The inner loop is
1315    considered as a single statement.  */
1316 
1317 static t_bool
follow_ssa_edge_inner_loop_phi(struct loop * outer_loop,tree loop_phi_node,tree halting_phi,tree * evolution_of_loop,int limit)1318 follow_ssa_edge_inner_loop_phi (struct loop *outer_loop,
1319 				tree loop_phi_node,
1320 				tree halting_phi,
1321 				tree *evolution_of_loop, int limit)
1322 {
1323   struct loop *loop = loop_containing_stmt (loop_phi_node);
1324   tree ev = analyze_scalar_evolution (loop, PHI_RESULT (loop_phi_node));
1325 
1326   /* Sometimes, the inner loop is too difficult to analyze, and the
1327      result of the analysis is a symbolic parameter.  */
1328   if (ev == PHI_RESULT (loop_phi_node))
1329     {
1330       t_bool res = t_false;
1331       int i;
1332 
1333       for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1334 	{
1335 	  tree arg = PHI_ARG_DEF (loop_phi_node, i);
1336 	  basic_block bb;
1337 
1338 	  /* Follow the edges that exit the inner loop.  */
1339 	  bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1340 	  if (!flow_bb_inside_loop_p (loop, bb))
1341 	    res = follow_ssa_edge_in_rhs (outer_loop, loop_phi_node,
1342 					  arg, halting_phi,
1343 					  evolution_of_loop, limit);
1344 	  if (res == t_true)
1345 	    break;
1346 	}
1347 
1348       /* If the path crosses this loop-phi, give up.  */
1349       if (res == t_true)
1350 	*evolution_of_loop = chrec_dont_know;
1351 
1352       return res;
1353     }
1354 
1355   /* Otherwise, compute the overall effect of the inner loop.  */
1356   ev = compute_overall_effect_of_inner_loop (loop, ev);
1357   return follow_ssa_edge_in_rhs (outer_loop, loop_phi_node, ev, halting_phi,
1358 				 evolution_of_loop, limit);
1359 }
1360 
1361 /* Follow an SSA edge from a loop-phi-node to itself, constructing a
1362    path that is analyzed on the return walk.  */
1363 
1364 static t_bool
follow_ssa_edge(struct loop * loop,tree def,tree halting_phi,tree * evolution_of_loop,int limit)1365 follow_ssa_edge (struct loop *loop, tree def, tree halting_phi,
1366 		 tree *evolution_of_loop, int limit)
1367 {
1368   struct loop *def_loop;
1369 
1370   if (TREE_CODE (def) == NOP_EXPR)
1371     return t_false;
1372 
1373   /* Give up if the path is longer than the MAX that we allow.  */
1374   if (limit++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
1375     return t_dont_know;
1376 
1377   def_loop = loop_containing_stmt (def);
1378 
1379   switch (TREE_CODE (def))
1380     {
1381     case PHI_NODE:
1382       if (!loop_phi_node_p (def))
1383 	/* DEF is a condition-phi-node.  Follow the branches, and
1384 	   record their evolutions.  Finally, merge the collected
1385 	   information and set the approximation to the main
1386 	   variable.  */
1387 	return follow_ssa_edge_in_condition_phi
1388 	  (loop, def, halting_phi, evolution_of_loop, limit);
1389 
1390       /* When the analyzed phi is the halting_phi, the
1391 	 depth-first search is over: we have found a path from
1392 	 the halting_phi to itself in the loop.  */
1393       if (def == halting_phi)
1394 	return t_true;
1395 
1396       /* Otherwise, the evolution of the HALTING_PHI depends
1397 	 on the evolution of another loop-phi-node, i.e. the
1398 	 evolution function is a higher degree polynomial.  */
1399       if (def_loop == loop)
1400 	return t_false;
1401 
1402       /* Inner loop.  */
1403       if (flow_loop_nested_p (loop, def_loop))
1404 	return follow_ssa_edge_inner_loop_phi
1405 	  (loop, def, halting_phi, evolution_of_loop, limit);
1406 
1407       /* Outer loop.  */
1408       return t_false;
1409 
1410     case MODIFY_EXPR:
1411       return follow_ssa_edge_in_rhs (loop, def,
1412 				     TREE_OPERAND (def, 1),
1413 				     halting_phi,
1414 				     evolution_of_loop, limit);
1415 
1416     default:
1417       /* At this level of abstraction, the program is just a set
1418 	 of MODIFY_EXPRs and PHI_NODEs.  In principle there is no
1419 	 other node to be handled.  */
1420       return t_false;
1421     }
1422 }
1423 
1424 
1425 
1426 /* Given a LOOP_PHI_NODE, this function determines the evolution
1427    function from LOOP_PHI_NODE to LOOP_PHI_NODE in the loop.  */
1428 
1429 static tree
analyze_evolution_in_loop(tree loop_phi_node,tree init_cond)1430 analyze_evolution_in_loop (tree loop_phi_node,
1431 			   tree init_cond)
1432 {
1433   int i;
1434   tree evolution_function = chrec_not_analyzed_yet;
1435   struct loop *loop = loop_containing_stmt (loop_phi_node);
1436   basic_block bb;
1437 
1438   if (dump_file && (dump_flags & TDF_DETAILS))
1439     {
1440       fprintf (dump_file, "(analyze_evolution_in_loop \n");
1441       fprintf (dump_file, "  (loop_phi_node = ");
1442       print_generic_expr (dump_file, loop_phi_node, 0);
1443       fprintf (dump_file, ")\n");
1444     }
1445 
1446   for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1447     {
1448       tree arg = PHI_ARG_DEF (loop_phi_node, i);
1449       tree ssa_chain, ev_fn;
1450       t_bool res;
1451 
1452       /* Select the edges that enter the loop body.  */
1453       bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1454       if (!flow_bb_inside_loop_p (loop, bb))
1455 	continue;
1456 
1457       if (TREE_CODE (arg) == SSA_NAME)
1458 	{
1459 	  ssa_chain = SSA_NAME_DEF_STMT (arg);
1460 
1461 	  /* Pass in the initial condition to the follow edge function.  */
1462 	  ev_fn = init_cond;
1463 	  res = follow_ssa_edge (loop, ssa_chain, loop_phi_node, &ev_fn, 0);
1464 	}
1465       else
1466 	res = t_false;
1467 
1468       /* When it is impossible to go back on the same
1469 	 loop_phi_node by following the ssa edges, the
1470 	 evolution is represented by a peeled chrec, i.e. the
1471 	 first iteration, EV_FN has the value INIT_COND, then
1472 	 all the other iterations it has the value of ARG.
1473 	 For the moment, PEELED_CHREC nodes are not built.  */
1474       if (res != t_true)
1475 	ev_fn = chrec_dont_know;
1476 
1477       /* When there are multiple back edges of the loop (which in fact never
1478 	 happens currently, but nevertheless), merge their evolutions.  */
1479       evolution_function = chrec_merge (evolution_function, ev_fn);
1480     }
1481 
1482   if (dump_file && (dump_flags & TDF_DETAILS))
1483     {
1484       fprintf (dump_file, "  (evolution_function = ");
1485       print_generic_expr (dump_file, evolution_function, 0);
1486       fprintf (dump_file, "))\n");
1487     }
1488 
1489   return evolution_function;
1490 }
1491 
1492 /* Given a loop-phi-node, return the initial conditions of the
1493    variable on entry of the loop.  When the CCP has propagated
1494    constants into the loop-phi-node, the initial condition is
1495    instantiated, otherwise the initial condition is kept symbolic.
1496    This analyzer does not analyze the evolution outside the current
1497    loop, and leaves this task to the on-demand tree reconstructor.  */
1498 
1499 static tree
analyze_initial_condition(tree loop_phi_node)1500 analyze_initial_condition (tree loop_phi_node)
1501 {
1502   int i;
1503   tree init_cond = chrec_not_analyzed_yet;
1504   struct loop *loop = bb_for_stmt (loop_phi_node)->loop_father;
1505 
1506   if (dump_file && (dump_flags & TDF_DETAILS))
1507     {
1508       fprintf (dump_file, "(analyze_initial_condition \n");
1509       fprintf (dump_file, "  (loop_phi_node = \n");
1510       print_generic_expr (dump_file, loop_phi_node, 0);
1511       fprintf (dump_file, ")\n");
1512     }
1513 
1514   for (i = 0; i < PHI_NUM_ARGS (loop_phi_node); i++)
1515     {
1516       tree branch = PHI_ARG_DEF (loop_phi_node, i);
1517       basic_block bb = PHI_ARG_EDGE (loop_phi_node, i)->src;
1518 
1519       /* When the branch is oriented to the loop's body, it does
1520      	 not contribute to the initial condition.  */
1521       if (flow_bb_inside_loop_p (loop, bb))
1522        	continue;
1523 
1524       if (init_cond == chrec_not_analyzed_yet)
1525 	{
1526 	  init_cond = branch;
1527 	  continue;
1528 	}
1529 
1530       if (TREE_CODE (branch) == SSA_NAME)
1531 	{
1532 	  init_cond = chrec_dont_know;
1533       	  break;
1534 	}
1535 
1536       init_cond = chrec_merge (init_cond, branch);
1537     }
1538 
1539   /* Ooops -- a loop without an entry???  */
1540   if (init_cond == chrec_not_analyzed_yet)
1541     init_cond = chrec_dont_know;
1542 
1543   if (dump_file && (dump_flags & TDF_DETAILS))
1544     {
1545       fprintf (dump_file, "  (init_cond = ");
1546       print_generic_expr (dump_file, init_cond, 0);
1547       fprintf (dump_file, "))\n");
1548     }
1549 
1550   return init_cond;
1551 }
1552 
1553 /* Analyze the scalar evolution for LOOP_PHI_NODE.  */
1554 
1555 static tree
interpret_loop_phi(struct loop * loop,tree loop_phi_node)1556 interpret_loop_phi (struct loop *loop, tree loop_phi_node)
1557 {
1558   tree res;
1559   struct loop *phi_loop = loop_containing_stmt (loop_phi_node);
1560   tree init_cond;
1561 
1562   if (phi_loop != loop)
1563     {
1564       struct loop *subloop;
1565       tree evolution_fn = analyze_scalar_evolution
1566 	(phi_loop, PHI_RESULT (loop_phi_node));
1567 
1568       /* Dive one level deeper.  */
1569       subloop = superloop_at_depth (phi_loop, loop->depth + 1);
1570 
1571       /* Interpret the subloop.  */
1572       res = compute_overall_effect_of_inner_loop (subloop, evolution_fn);
1573       return res;
1574     }
1575 
1576   /* Otherwise really interpret the loop phi.  */
1577   init_cond = analyze_initial_condition (loop_phi_node);
1578   res = analyze_evolution_in_loop (loop_phi_node, init_cond);
1579 
1580   return res;
1581 }
1582 
1583 /* This function merges the branches of a condition-phi-node,
1584    contained in the outermost loop, and whose arguments are already
1585    analyzed.  */
1586 
1587 static tree
interpret_condition_phi(struct loop * loop,tree condition_phi)1588 interpret_condition_phi (struct loop *loop, tree condition_phi)
1589 {
1590   int i;
1591   tree res = chrec_not_analyzed_yet;
1592 
1593   for (i = 0; i < PHI_NUM_ARGS (condition_phi); i++)
1594     {
1595       tree branch_chrec;
1596 
1597       if (backedge_phi_arg_p (condition_phi, i))
1598 	{
1599 	  res = chrec_dont_know;
1600 	  break;
1601 	}
1602 
1603       branch_chrec = analyze_scalar_evolution
1604 	(loop, PHI_ARG_DEF (condition_phi, i));
1605 
1606       res = chrec_merge (res, branch_chrec);
1607     }
1608 
1609   return res;
1610 }
1611 
1612 /* Interpret the right hand side of a modify_expr OPND1.  If we didn't
1613    analyze this node before, follow the definitions until ending
1614    either on an analyzed modify_expr, or on a loop-phi-node.  On the
1615    return path, this function propagates evolutions (ala constant copy
1616    propagation).  OPND1 is not a GIMPLE expression because we could
1617    analyze the effect of an inner loop: see interpret_loop_phi.  */
1618 
1619 static tree
interpret_rhs_modify_expr(struct loop * loop,tree at_stmt,tree opnd1,tree type)1620 interpret_rhs_modify_expr (struct loop *loop, tree at_stmt,
1621 			   tree opnd1, tree type)
1622 {
1623   tree res, opnd10, opnd11, chrec10, chrec11;
1624 
1625   if (is_gimple_min_invariant (opnd1))
1626     return chrec_convert (type, opnd1, at_stmt);
1627 
1628   switch (TREE_CODE (opnd1))
1629     {
1630     case PLUS_EXPR:
1631       opnd10 = TREE_OPERAND (opnd1, 0);
1632       opnd11 = TREE_OPERAND (opnd1, 1);
1633       chrec10 = analyze_scalar_evolution (loop, opnd10);
1634       chrec11 = analyze_scalar_evolution (loop, opnd11);
1635       chrec10 = chrec_convert (type, chrec10, at_stmt);
1636       chrec11 = chrec_convert (type, chrec11, at_stmt);
1637       res = chrec_fold_plus (type, chrec10, chrec11);
1638       break;
1639 
1640     case MINUS_EXPR:
1641       opnd10 = TREE_OPERAND (opnd1, 0);
1642       opnd11 = TREE_OPERAND (opnd1, 1);
1643       chrec10 = analyze_scalar_evolution (loop, opnd10);
1644       chrec11 = analyze_scalar_evolution (loop, opnd11);
1645       chrec10 = chrec_convert (type, chrec10, at_stmt);
1646       chrec11 = chrec_convert (type, chrec11, at_stmt);
1647       res = chrec_fold_minus (type, chrec10, chrec11);
1648       break;
1649 
1650     case NEGATE_EXPR:
1651       opnd10 = TREE_OPERAND (opnd1, 0);
1652       chrec10 = analyze_scalar_evolution (loop, opnd10);
1653       chrec10 = chrec_convert (type, chrec10, at_stmt);
1654       /* TYPE may be integer, real or complex, so use fold_convert.  */
1655       res = chrec_fold_multiply (type, chrec10,
1656 				 fold_convert (type, integer_minus_one_node));
1657       break;
1658 
1659     case MULT_EXPR:
1660       opnd10 = TREE_OPERAND (opnd1, 0);
1661       opnd11 = TREE_OPERAND (opnd1, 1);
1662       chrec10 = analyze_scalar_evolution (loop, opnd10);
1663       chrec11 = analyze_scalar_evolution (loop, opnd11);
1664       chrec10 = chrec_convert (type, chrec10, at_stmt);
1665       chrec11 = chrec_convert (type, chrec11, at_stmt);
1666       res = chrec_fold_multiply (type, chrec10, chrec11);
1667       break;
1668 
1669     case SSA_NAME:
1670       res = chrec_convert (type, analyze_scalar_evolution (loop, opnd1),
1671 			   at_stmt);
1672       break;
1673 
1674     case ASSERT_EXPR:
1675       opnd10 = ASSERT_EXPR_VAR (opnd1);
1676       res = chrec_convert (type, analyze_scalar_evolution (loop, opnd10),
1677 			   at_stmt);
1678       break;
1679 
1680     case NOP_EXPR:
1681     case CONVERT_EXPR:
1682       opnd10 = TREE_OPERAND (opnd1, 0);
1683       chrec10 = analyze_scalar_evolution (loop, opnd10);
1684       res = chrec_convert (type, chrec10, at_stmt);
1685       break;
1686 
1687     default:
1688       res = chrec_dont_know;
1689       break;
1690     }
1691 
1692   return res;
1693 }
1694 
1695 
1696 
1697 /* This section contains all the entry points:
1698    - number_of_iterations_in_loop,
1699    - analyze_scalar_evolution,
1700    - instantiate_parameters.
1701 */
1702 
1703 /* Compute and return the evolution function in WRTO_LOOP, the nearest
1704    common ancestor of DEF_LOOP and USE_LOOP.  */
1705 
1706 static tree
compute_scalar_evolution_in_loop(struct loop * wrto_loop,struct loop * def_loop,tree ev)1707 compute_scalar_evolution_in_loop (struct loop *wrto_loop,
1708 				  struct loop *def_loop,
1709 				  tree ev)
1710 {
1711   tree res;
1712   if (def_loop == wrto_loop)
1713     return ev;
1714 
1715   def_loop = superloop_at_depth (def_loop, wrto_loop->depth + 1);
1716   res = compute_overall_effect_of_inner_loop (def_loop, ev);
1717 
1718   return analyze_scalar_evolution_1 (wrto_loop, res, chrec_not_analyzed_yet);
1719 }
1720 
1721 /* Folds EXPR, if it is a cast to pointer, assuming that the created
1722    polynomial_chrec does not wrap.  */
1723 
1724 static tree
fold_used_pointer_cast(tree expr)1725 fold_used_pointer_cast (tree expr)
1726 {
1727   tree op;
1728   tree type, inner_type;
1729 
1730   if (TREE_CODE (expr) != NOP_EXPR && TREE_CODE (expr) != CONVERT_EXPR)
1731     return expr;
1732 
1733   op = TREE_OPERAND (expr, 0);
1734   if (TREE_CODE (op) != POLYNOMIAL_CHREC)
1735     return expr;
1736 
1737   type = TREE_TYPE (expr);
1738   inner_type = TREE_TYPE (op);
1739 
1740   if (!INTEGRAL_TYPE_P (inner_type)
1741       || TYPE_PRECISION (inner_type) != TYPE_PRECISION (type))
1742     return expr;
1743 
1744   return build_polynomial_chrec (CHREC_VARIABLE (op),
1745 		chrec_convert (type, CHREC_LEFT (op), NULL_TREE),
1746 		chrec_convert (type, CHREC_RIGHT (op), NULL_TREE));
1747 }
1748 
1749 /* Returns true if EXPR is an expression corresponding to offset of pointer
1750    in p + offset.  */
1751 
1752 static bool
pointer_offset_p(tree expr)1753 pointer_offset_p (tree expr)
1754 {
1755   if (TREE_CODE (expr) == INTEGER_CST)
1756     return true;
1757 
1758   if ((TREE_CODE (expr) == NOP_EXPR || TREE_CODE (expr) == CONVERT_EXPR)
1759       && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))))
1760     return true;
1761 
1762   return false;
1763 }
1764 
1765 /* EXPR is a scalar evolution of a pointer that is dereferenced or used in
1766    comparison.  This means that it must point to a part of some object in
1767    memory, which enables us to argue about overflows and possibly simplify
1768    the EXPR.  AT_STMT is the statement in which this conversion has to be
1769    performed.  Returns the simplified value.
1770 
1771    Currently, for
1772 
1773    int i, n;
1774    int *p;
1775 
1776    for (i = -n; i < n; i++)
1777      *(p + i) = ...;
1778 
1779    We generate the following code (assuming that size of int and size_t is
1780    4 bytes):
1781 
1782    for (i = -n; i < n; i++)
1783      {
1784        size_t tmp1, tmp2;
1785        int *tmp3, *tmp4;
1786 
1787        tmp1 = (size_t) i;	(1)
1788        tmp2 = 4 * tmp1;		(2)
1789        tmp3 = (int *) tmp2;	(3)
1790        tmp4 = p + tmp3;		(4)
1791 
1792        *tmp4 = ...;
1793      }
1794 
1795    We in general assume that pointer arithmetics does not overflow (since its
1796    behavior is undefined in that case).  One of the problems is that our
1797    translation does not capture this property very well -- (int *) is
1798    considered unsigned, hence the computation in (4) does overflow if i is
1799    negative.
1800 
1801    This impreciseness creates complications in scev analysis.  The scalar
1802    evolution of i is [-n, +, 1].  Since int and size_t have the same precision
1803    (in this example), and size_t is unsigned (so we do not care about
1804    overflows), we succeed to derive that scev of tmp1 is [(size_t) -n, +, 1]
1805    and scev of tmp2 is [4 * (size_t) -n, +, 4].  With tmp3, we run into
1806    problem -- [(int *) (4 * (size_t) -n), +, 4] wraps, and since we on several
1807    places assume that this is not the case for scevs with pointer type, we
1808    cannot use this scev for tmp3; hence, its scev is
1809    (int *) [(4 * (size_t) -n), +, 4], and scev of tmp4 is
1810    p + (int *) [(4 * (size_t) -n), +, 4].  Most of the optimizers are unable to
1811    work with scevs of this shape.
1812 
1813    However, since tmp4 is dereferenced, all its values must belong to a single
1814    object, and taking into account that the precision of int * and size_t is
1815    the same, it is impossible for its scev to wrap.  Hence, we can derive that
1816    its evolution is [p + (int *) (4 * (size_t) -n), +, 4], which the optimizers
1817    can work with.
1818 
1819    ??? Maybe we should use different representation for pointer arithmetics,
1820    however that is a long-term project with a lot of potential for creating
1821    bugs.  */
1822 
1823 static tree
fold_used_pointer(tree expr,tree at_stmt)1824 fold_used_pointer (tree expr, tree at_stmt)
1825 {
1826   tree op0, op1, new0, new1;
1827   enum tree_code code = TREE_CODE (expr);
1828 
1829   if (code == PLUS_EXPR
1830       || code == MINUS_EXPR)
1831     {
1832       op0 = TREE_OPERAND (expr, 0);
1833       op1 = TREE_OPERAND (expr, 1);
1834 
1835       if (pointer_offset_p (op1))
1836 	{
1837 	  new0 = fold_used_pointer (op0, at_stmt);
1838 	  new1 = fold_used_pointer_cast (op1);
1839 	}
1840       else if (code == PLUS_EXPR && pointer_offset_p (op0))
1841 	{
1842 	  new0 = fold_used_pointer_cast (op0);
1843 	  new1 = fold_used_pointer (op1, at_stmt);
1844 	}
1845       else
1846 	return expr;
1847 
1848       if (new0 == op0 && new1 == op1)
1849 	return expr;
1850 
1851       new0 = chrec_convert (TREE_TYPE (expr), new0, at_stmt);
1852       new1 = chrec_convert (TREE_TYPE (expr), new1, at_stmt);
1853 
1854       if (code == PLUS_EXPR)
1855 	expr = chrec_fold_plus (TREE_TYPE (expr), new0, new1);
1856       else
1857 	expr = chrec_fold_minus (TREE_TYPE (expr), new0, new1);
1858 
1859       return expr;
1860     }
1861   else
1862     return fold_used_pointer_cast (expr);
1863 }
1864 
1865 /* Returns true if PTR is dereferenced, or used in comparison.  */
1866 
1867 static bool
pointer_used_p(tree ptr)1868 pointer_used_p (tree ptr)
1869 {
1870   use_operand_p use_p;
1871   imm_use_iterator imm_iter;
1872   tree stmt, rhs;
1873   struct ptr_info_def *pi = get_ptr_info (ptr);
1874   var_ann_t v_ann = var_ann (SSA_NAME_VAR (ptr));
1875 
1876   /* Check whether the pointer has a memory tag; if it does, it is
1877      (or at least used to be) dereferenced.  */
1878   if ((pi != NULL && pi->name_mem_tag != NULL)
1879       || v_ann->symbol_mem_tag)
1880     return true;
1881 
1882   FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ptr)
1883     {
1884       stmt = USE_STMT (use_p);
1885       if (TREE_CODE (stmt) == COND_EXPR)
1886 	return true;
1887 
1888       if (TREE_CODE (stmt) != MODIFY_EXPR)
1889 	continue;
1890 
1891       rhs = TREE_OPERAND (stmt, 1);
1892       if (!COMPARISON_CLASS_P (rhs))
1893 	continue;
1894 
1895       if (TREE_OPERAND (stmt, 0) == ptr
1896 	  || TREE_OPERAND (stmt, 1) == ptr)
1897 	return true;
1898     }
1899 
1900   return false;
1901 }
1902 
1903 /* Helper recursive function.  */
1904 
1905 static tree
analyze_scalar_evolution_1(struct loop * loop,tree var,tree res)1906 analyze_scalar_evolution_1 (struct loop *loop, tree var, tree res)
1907 {
1908   tree def, type = TREE_TYPE (var);
1909   basic_block bb;
1910   struct loop *def_loop;
1911 
1912   if (loop == NULL || TREE_CODE (type) == VECTOR_TYPE)
1913     return chrec_dont_know;
1914 
1915   if (TREE_CODE (var) != SSA_NAME)
1916     return interpret_rhs_modify_expr (loop, NULL_TREE, var, type);
1917 
1918   def = SSA_NAME_DEF_STMT (var);
1919   bb = bb_for_stmt (def);
1920   def_loop = bb ? bb->loop_father : NULL;
1921 
1922   if (bb == NULL
1923       || !flow_bb_inside_loop_p (loop, bb))
1924     {
1925       /* Keep the symbolic form.  */
1926       res = var;
1927       goto set_and_end;
1928     }
1929 
1930   if (res != chrec_not_analyzed_yet)
1931     {
1932       if (loop != bb->loop_father)
1933 	res = compute_scalar_evolution_in_loop
1934 	    (find_common_loop (loop, bb->loop_father), bb->loop_father, res);
1935 
1936       goto set_and_end;
1937     }
1938 
1939   if (loop != def_loop)
1940     {
1941       res = analyze_scalar_evolution_1 (def_loop, var, chrec_not_analyzed_yet);
1942       res = compute_scalar_evolution_in_loop (loop, def_loop, res);
1943 
1944       goto set_and_end;
1945     }
1946 
1947   switch (TREE_CODE (def))
1948     {
1949     case MODIFY_EXPR:
1950       res = interpret_rhs_modify_expr (loop, def, TREE_OPERAND (def, 1), type);
1951 
1952       if (POINTER_TYPE_P (type)
1953 	  && !automatically_generated_chrec_p (res)
1954 	  && pointer_used_p (var))
1955 	res = fold_used_pointer (res, def);
1956       break;
1957 
1958     case PHI_NODE:
1959       if (loop_phi_node_p (def))
1960 	res = interpret_loop_phi (loop, def);
1961       else
1962 	res = interpret_condition_phi (loop, def);
1963       break;
1964 
1965     default:
1966       res = chrec_dont_know;
1967       break;
1968     }
1969 
1970  set_and_end:
1971 
1972   /* Keep the symbolic form.  */
1973   if (res == chrec_dont_know)
1974     res = var;
1975 
1976   if (loop == def_loop)
1977     set_scalar_evolution (var, res);
1978 
1979   return res;
1980 }
1981 
1982 /* Entry point for the scalar evolution analyzer.
1983    Analyzes and returns the scalar evolution of the ssa_name VAR.
1984    LOOP_NB is the identifier number of the loop in which the variable
1985    is used.
1986 
1987    Example of use: having a pointer VAR to a SSA_NAME node, STMT a
1988    pointer to the statement that uses this variable, in order to
1989    determine the evolution function of the variable, use the following
1990    calls:
1991 
1992    unsigned loop_nb = loop_containing_stmt (stmt)->num;
1993    tree chrec_with_symbols = analyze_scalar_evolution (loop_nb, var);
1994    tree chrec_instantiated = instantiate_parameters
1995    (loop_nb, chrec_with_symbols);
1996 */
1997 
1998 tree
analyze_scalar_evolution(struct loop * loop,tree var)1999 analyze_scalar_evolution (struct loop *loop, tree var)
2000 {
2001   tree res;
2002 
2003   if (dump_file && (dump_flags & TDF_DETAILS))
2004     {
2005       fprintf (dump_file, "(analyze_scalar_evolution \n");
2006       fprintf (dump_file, "  (loop_nb = %d)\n", loop->num);
2007       fprintf (dump_file, "  (scalar = ");
2008       print_generic_expr (dump_file, var, 0);
2009       fprintf (dump_file, ")\n");
2010     }
2011 
2012   res = analyze_scalar_evolution_1 (loop, var, get_scalar_evolution (var));
2013 
2014   if (TREE_CODE (var) == SSA_NAME && res == chrec_dont_know)
2015     res = var;
2016 
2017   if (dump_file && (dump_flags & TDF_DETAILS))
2018     fprintf (dump_file, ")\n");
2019 
2020   return res;
2021 }
2022 
2023 /* Analyze scalar evolution of use of VERSION in USE_LOOP with respect to
2024    WRTO_LOOP (which should be a superloop of both USE_LOOP and definition
2025    of VERSION).
2026 
2027    FOLDED_CASTS is set to true if resolve_mixers used
2028    chrec_convert_aggressive (TODO -- not really, we are way too conservative
2029    at the moment in order to keep things simple).  */
2030 
2031 static tree
analyze_scalar_evolution_in_loop(struct loop * wrto_loop,struct loop * use_loop,tree version,bool * folded_casts)2032 analyze_scalar_evolution_in_loop (struct loop *wrto_loop, struct loop *use_loop,
2033 				  tree version, bool *folded_casts)
2034 {
2035   bool val = false;
2036   tree ev = version, tmp;
2037 
2038   if (folded_casts)
2039     *folded_casts = false;
2040   while (1)
2041     {
2042       tmp = analyze_scalar_evolution (use_loop, ev);
2043       ev = resolve_mixers (use_loop, tmp);
2044 
2045       if (folded_casts && tmp != ev)
2046 	*folded_casts = true;
2047 
2048       if (use_loop == wrto_loop)
2049 	return ev;
2050 
2051       /* If the value of the use changes in the inner loop, we cannot express
2052 	 its value in the outer loop (we might try to return interval chrec,
2053 	 but we do not have a user for it anyway)  */
2054       if (!no_evolution_in_loop_p (ev, use_loop->num, &val)
2055 	  || !val)
2056 	return chrec_dont_know;
2057 
2058       use_loop = use_loop->outer;
2059     }
2060 }
2061 
2062 /* Returns instantiated value for VERSION in CACHE.  */
2063 
2064 static tree
get_instantiated_value(htab_t cache,tree version)2065 get_instantiated_value (htab_t cache, tree version)
2066 {
2067   struct scev_info_str *info, pattern;
2068 
2069   pattern.var = version;
2070   info = (struct scev_info_str *) htab_find (cache, &pattern);
2071 
2072   if (info)
2073     return info->chrec;
2074   else
2075     return NULL_TREE;
2076 }
2077 
2078 /* Sets instantiated value for VERSION to VAL in CACHE.  */
2079 
2080 static void
set_instantiated_value(htab_t cache,tree version,tree val)2081 set_instantiated_value (htab_t cache, tree version, tree val)
2082 {
2083   struct scev_info_str *info, pattern;
2084   PTR *slot;
2085 
2086   pattern.var = version;
2087   slot = htab_find_slot (cache, &pattern, INSERT);
2088 
2089   if (!*slot)
2090     *slot = new_scev_info_str (version);
2091   info = (struct scev_info_str *) *slot;
2092   info->chrec = val;
2093 }
2094 
2095 /* Return the closed_loop_phi node for VAR.  If there is none, return
2096    NULL_TREE.  */
2097 
2098 static tree
loop_closed_phi_def(tree var)2099 loop_closed_phi_def (tree var)
2100 {
2101   struct loop *loop;
2102   edge exit;
2103   tree phi;
2104 
2105   if (var == NULL_TREE
2106       || TREE_CODE (var) != SSA_NAME)
2107     return NULL_TREE;
2108 
2109   loop = loop_containing_stmt (SSA_NAME_DEF_STMT (var));
2110   exit = loop->single_exit;
2111   if (!exit)
2112     return NULL_TREE;
2113 
2114   for (phi = phi_nodes (exit->dest); phi; phi = PHI_CHAIN (phi))
2115     if (PHI_ARG_DEF_FROM_EDGE (phi, exit) == var)
2116       return PHI_RESULT (phi);
2117 
2118   return NULL_TREE;
2119 }
2120 
2121 /* Analyze all the parameters of the chrec that were left under a symbolic form,
2122    with respect to LOOP.  CHREC is the chrec to instantiate.  CACHE is the cache
2123    of already instantiated values.  FLAGS modify the way chrecs are
2124    instantiated.  SIZE_EXPR is used for computing the size of the expression to
2125    be instantiated, and to stop if it exceeds some limit.  */
2126 
2127 /* Values for FLAGS.  */
2128 enum
2129 {
2130   INSERT_SUPERLOOP_CHRECS = 1,  /* Loop invariants are replaced with chrecs
2131 				   in outer loops.  */
2132   FOLD_CONVERSIONS = 2		/* The conversions that may wrap in
2133 				   signed/pointer type are folded, as long as the
2134 				   value of the chrec is preserved.  */
2135 };
2136 
2137 static tree
instantiate_parameters_1(struct loop * loop,tree chrec,int flags,htab_t cache,int size_expr)2138 instantiate_parameters_1 (struct loop *loop, tree chrec, int flags, htab_t cache,
2139 			  int size_expr)
2140 {
2141   tree res, op0, op1, op2;
2142   basic_block def_bb;
2143   struct loop *def_loop;
2144   tree type = chrec_type (chrec);
2145 
2146   /* Give up if the expression is larger than the MAX that we allow.  */
2147   if (size_expr++ > PARAM_VALUE (PARAM_SCEV_MAX_EXPR_SIZE))
2148     return chrec_dont_know;
2149 
2150   if (automatically_generated_chrec_p (chrec)
2151       || is_gimple_min_invariant (chrec))
2152     return chrec;
2153 
2154   switch (TREE_CODE (chrec))
2155     {
2156     case SSA_NAME:
2157       def_bb = bb_for_stmt (SSA_NAME_DEF_STMT (chrec));
2158 
2159       /* A parameter (or loop invariant and we do not want to include
2160 	 evolutions in outer loops), nothing to do.  */
2161       if (!def_bb
2162 	  || (!(flags & INSERT_SUPERLOOP_CHRECS)
2163 	      && !flow_bb_inside_loop_p (loop, def_bb)))
2164 	return chrec;
2165 
2166       /* We cache the value of instantiated variable to avoid exponential
2167 	 time complexity due to reevaluations.  We also store the convenient
2168 	 value in the cache in order to prevent infinite recursion -- we do
2169 	 not want to instantiate the SSA_NAME if it is in a mixer
2170 	 structure.  This is used for avoiding the instantiation of
2171 	 recursively defined functions, such as:
2172 
2173 	 | a_2 -> {0, +, 1, +, a_2}_1  */
2174 
2175       res = get_instantiated_value (cache, chrec);
2176       if (res)
2177 	return res;
2178 
2179       /* Store the convenient value for chrec in the structure.  If it
2180 	 is defined outside of the loop, we may just leave it in symbolic
2181 	 form, otherwise we need to admit that we do not know its behavior
2182 	 inside the loop.  */
2183       res = !flow_bb_inside_loop_p (loop, def_bb) ? chrec : chrec_dont_know;
2184       set_instantiated_value (cache, chrec, res);
2185 
2186       /* To make things even more complicated, instantiate_parameters_1
2187 	 calls analyze_scalar_evolution that may call # of iterations
2188 	 analysis that may in turn call instantiate_parameters_1 again.
2189 	 To prevent the infinite recursion, keep also the bitmap of
2190 	 ssa names that are being instantiated globally.  */
2191       if (bitmap_bit_p (already_instantiated, SSA_NAME_VERSION (chrec)))
2192 	return res;
2193 
2194       def_loop = find_common_loop (loop, def_bb->loop_father);
2195 
2196       /* If the analysis yields a parametric chrec, instantiate the
2197 	 result again.  */
2198       bitmap_set_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2199       res = analyze_scalar_evolution (def_loop, chrec);
2200 
2201       /* Don't instantiate loop-closed-ssa phi nodes.  */
2202       if (TREE_CODE (res) == SSA_NAME
2203 	  && (loop_containing_stmt (SSA_NAME_DEF_STMT (res)) == NULL
2204 	      || (loop_containing_stmt (SSA_NAME_DEF_STMT (res))->depth
2205 		  > def_loop->depth)))
2206 	{
2207 	  if (res == chrec)
2208 	    res = loop_closed_phi_def (chrec);
2209 	  else
2210 	    res = chrec;
2211 
2212 	  if (res == NULL_TREE)
2213 	    res = chrec_dont_know;
2214 	}
2215 
2216       else if (res != chrec_dont_know)
2217 	res = instantiate_parameters_1 (loop, res, flags, cache, size_expr);
2218 
2219       bitmap_clear_bit (already_instantiated, SSA_NAME_VERSION (chrec));
2220 
2221       /* Store the correct value to the cache.  */
2222       set_instantiated_value (cache, chrec, res);
2223       return res;
2224 
2225     case POLYNOMIAL_CHREC:
2226       op0 = instantiate_parameters_1 (loop, CHREC_LEFT (chrec),
2227 				      flags, cache, size_expr);
2228       if (op0 == chrec_dont_know)
2229 	return chrec_dont_know;
2230 
2231       op1 = instantiate_parameters_1 (loop, CHREC_RIGHT (chrec),
2232 				      flags, cache, size_expr);
2233       if (op1 == chrec_dont_know)
2234 	return chrec_dont_know;
2235 
2236       if (CHREC_LEFT (chrec) != op0
2237 	  || CHREC_RIGHT (chrec) != op1)
2238 	{
2239 	  op1 = chrec_convert (chrec_type (op0), op1, NULL_TREE);
2240 	  chrec = build_polynomial_chrec (CHREC_VARIABLE (chrec), op0, op1);
2241 	}
2242       return chrec;
2243 
2244     case PLUS_EXPR:
2245       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2246 				      flags, cache, size_expr);
2247       if (op0 == chrec_dont_know)
2248 	return chrec_dont_know;
2249 
2250       op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2251 				      flags, cache, size_expr);
2252       if (op1 == chrec_dont_know)
2253 	return chrec_dont_know;
2254 
2255       if (TREE_OPERAND (chrec, 0) != op0
2256 	  || TREE_OPERAND (chrec, 1) != op1)
2257 	{
2258 	  op0 = chrec_convert (type, op0, NULL_TREE);
2259 	  op1 = chrec_convert (type, op1, NULL_TREE);
2260 	  chrec = chrec_fold_plus (type, op0, op1);
2261 	}
2262       return chrec;
2263 
2264     case MINUS_EXPR:
2265       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2266 				      flags, cache, size_expr);
2267       if (op0 == chrec_dont_know)
2268 	return chrec_dont_know;
2269 
2270       op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2271 				      flags, cache, size_expr);
2272       if (op1 == chrec_dont_know)
2273 	return chrec_dont_know;
2274 
2275       if (TREE_OPERAND (chrec, 0) != op0
2276 	  || TREE_OPERAND (chrec, 1) != op1)
2277 	{
2278 	  op0 = chrec_convert (type, op0, NULL_TREE);
2279 	  op1 = chrec_convert (type, op1, NULL_TREE);
2280 	  chrec = chrec_fold_minus (type, op0, op1);
2281 	}
2282       return chrec;
2283 
2284     case MULT_EXPR:
2285       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2286 				      flags, cache, size_expr);
2287       if (op0 == chrec_dont_know)
2288 	return chrec_dont_know;
2289 
2290       op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2291 				      flags, cache, size_expr);
2292       if (op1 == chrec_dont_know)
2293 	return chrec_dont_know;
2294 
2295       if (TREE_OPERAND (chrec, 0) != op0
2296 	  || TREE_OPERAND (chrec, 1) != op1)
2297 	{
2298 	  op0 = chrec_convert (type, op0, NULL_TREE);
2299 	  op1 = chrec_convert (type, op1, NULL_TREE);
2300 	  chrec = chrec_fold_multiply (type, op0, op1);
2301 	}
2302       return chrec;
2303 
2304     case NOP_EXPR:
2305     case CONVERT_EXPR:
2306     case NON_LVALUE_EXPR:
2307       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2308 				      flags, cache, size_expr);
2309       if (op0 == chrec_dont_know)
2310         return chrec_dont_know;
2311 
2312       if (flags & FOLD_CONVERSIONS)
2313 	{
2314 	  tree tmp = chrec_convert_aggressive (TREE_TYPE (chrec), op0);
2315 	  if (tmp)
2316 	    return tmp;
2317 	}
2318 
2319       if (op0 == TREE_OPERAND (chrec, 0))
2320 	return chrec;
2321 
2322       /* If we used chrec_convert_aggressive, we can no longer assume that
2323 	 signed chrecs do not overflow, as chrec_convert does, so avoid
2324          calling it in that case.  */
2325       if (flags & FOLD_CONVERSIONS)
2326 	return fold_convert (TREE_TYPE (chrec), op0);
2327 
2328       return chrec_convert (TREE_TYPE (chrec), op0, NULL_TREE);
2329 
2330     case SCEV_NOT_KNOWN:
2331       return chrec_dont_know;
2332 
2333     case SCEV_KNOWN:
2334       return chrec_known;
2335 
2336     default:
2337       break;
2338     }
2339 
2340   switch (TREE_CODE_LENGTH (TREE_CODE (chrec)))
2341     {
2342     case 3:
2343       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2344 				      flags, cache, size_expr);
2345       if (op0 == chrec_dont_know)
2346 	return chrec_dont_know;
2347 
2348       op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2349 				      flags, cache, size_expr);
2350       if (op1 == chrec_dont_know)
2351 	return chrec_dont_know;
2352 
2353       op2 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 2),
2354 				      flags, cache, size_expr);
2355       if (op2 == chrec_dont_know)
2356         return chrec_dont_know;
2357 
2358       if (op0 == TREE_OPERAND (chrec, 0)
2359 	  && op1 == TREE_OPERAND (chrec, 1)
2360 	  && op2 == TREE_OPERAND (chrec, 2))
2361 	return chrec;
2362 
2363       return fold_build3 (TREE_CODE (chrec),
2364 			  TREE_TYPE (chrec), op0, op1, op2);
2365 
2366     case 2:
2367       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2368 				      flags, cache, size_expr);
2369       if (op0 == chrec_dont_know)
2370 	return chrec_dont_know;
2371 
2372       op1 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 1),
2373 				      flags, cache, size_expr);
2374       if (op1 == chrec_dont_know)
2375         return chrec_dont_know;
2376 
2377       if (op0 == TREE_OPERAND (chrec, 0)
2378 	  && op1 == TREE_OPERAND (chrec, 1))
2379 	return chrec;
2380       return fold_build2 (TREE_CODE (chrec), TREE_TYPE (chrec), op0, op1);
2381 
2382     case 1:
2383       op0 = instantiate_parameters_1 (loop, TREE_OPERAND (chrec, 0),
2384 				      flags, cache, size_expr);
2385       if (op0 == chrec_dont_know)
2386         return chrec_dont_know;
2387       if (op0 == TREE_OPERAND (chrec, 0))
2388 	return chrec;
2389       return fold_build1 (TREE_CODE (chrec), TREE_TYPE (chrec), op0);
2390 
2391     case 0:
2392       return chrec;
2393 
2394     default:
2395       break;
2396     }
2397 
2398   /* Too complicated to handle.  */
2399   return chrec_dont_know;
2400 }
2401 
2402 /* Analyze all the parameters of the chrec that were left under a
2403    symbolic form.  LOOP is the loop in which symbolic names have to
2404    be analyzed and instantiated.  */
2405 
2406 tree
instantiate_parameters(struct loop * loop,tree chrec)2407 instantiate_parameters (struct loop *loop,
2408 			tree chrec)
2409 {
2410   tree res;
2411   htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2412 
2413   if (dump_file && (dump_flags & TDF_DETAILS))
2414     {
2415       fprintf (dump_file, "(instantiate_parameters \n");
2416       fprintf (dump_file, "  (loop_nb = %d)\n", loop->num);
2417       fprintf (dump_file, "  (chrec = ");
2418       print_generic_expr (dump_file, chrec, 0);
2419       fprintf (dump_file, ")\n");
2420     }
2421 
2422   res = instantiate_parameters_1 (loop, chrec, INSERT_SUPERLOOP_CHRECS, cache,
2423 				  0);
2424 
2425   if (dump_file && (dump_flags & TDF_DETAILS))
2426     {
2427       fprintf (dump_file, "  (res = ");
2428       print_generic_expr (dump_file, res, 0);
2429       fprintf (dump_file, "))\n");
2430     }
2431 
2432   htab_delete (cache);
2433 
2434   return res;
2435 }
2436 
2437 /* Similar to instantiate_parameters, but does not introduce the
2438    evolutions in outer loops for LOOP invariants in CHREC, and does not
2439    care about causing overflows, as long as they do not affect value
2440    of an expression.  */
2441 
2442 static tree
resolve_mixers(struct loop * loop,tree chrec)2443 resolve_mixers (struct loop *loop, tree chrec)
2444 {
2445   htab_t cache = htab_create (10, hash_scev_info, eq_scev_info, del_scev_info);
2446   tree ret = instantiate_parameters_1 (loop, chrec, FOLD_CONVERSIONS, cache, 0);
2447   htab_delete (cache);
2448   return ret;
2449 }
2450 
2451 /* Entry point for the analysis of the number of iterations pass.
2452    This function tries to safely approximate the number of iterations
2453    the loop will run.  When this property is not decidable at compile
2454    time, the result is chrec_dont_know.  Otherwise the result is
2455    a scalar or a symbolic parameter.
2456 
2457    Example of analysis: suppose that the loop has an exit condition:
2458 
2459    "if (b > 49) goto end_loop;"
2460 
2461    and that in a previous analysis we have determined that the
2462    variable 'b' has an evolution function:
2463 
2464    "EF = {23, +, 5}_2".
2465 
2466    When we evaluate the function at the point 5, i.e. the value of the
2467    variable 'b' after 5 iterations in the loop, we have EF (5) = 48,
2468    and EF (6) = 53.  In this case the value of 'b' on exit is '53' and
2469    the loop body has been executed 6 times.  */
2470 
2471 tree
number_of_iterations_in_loop(struct loop * loop)2472 number_of_iterations_in_loop (struct loop *loop)
2473 {
2474   tree res, type;
2475   edge exit;
2476   struct tree_niter_desc niter_desc;
2477 
2478   /* Determine whether the number_of_iterations_in_loop has already
2479      been computed.  */
2480   res = loop->nb_iterations;
2481   if (res)
2482     return res;
2483   res = chrec_dont_know;
2484 
2485   if (dump_file && (dump_flags & TDF_DETAILS))
2486     fprintf (dump_file, "(number_of_iterations_in_loop\n");
2487 
2488   exit = loop->single_exit;
2489   if (!exit)
2490     goto end;
2491 
2492   if (!number_of_iterations_exit (loop, exit, &niter_desc, false))
2493     goto end;
2494 
2495   type = TREE_TYPE (niter_desc.niter);
2496   if (integer_nonzerop (niter_desc.may_be_zero))
2497     res = build_int_cst (type, 0);
2498   else if (integer_zerop (niter_desc.may_be_zero))
2499     res = niter_desc.niter;
2500   else
2501     res = chrec_dont_know;
2502 
2503 end:
2504   return set_nb_iterations_in_loop (loop, res);
2505 }
2506 
2507 /* One of the drivers for testing the scalar evolutions analysis.
2508    This function computes the number of iterations for all the loops
2509    from the EXIT_CONDITIONS array.  */
2510 
2511 static void
number_of_iterations_for_all_loops(VEC (tree,heap)** exit_conditions)2512 number_of_iterations_for_all_loops (VEC(tree,heap) **exit_conditions)
2513 {
2514   unsigned int i;
2515   unsigned nb_chrec_dont_know_loops = 0;
2516   unsigned nb_static_loops = 0;
2517   tree cond;
2518 
2519   for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2520     {
2521       tree res = number_of_iterations_in_loop (loop_containing_stmt (cond));
2522       if (chrec_contains_undetermined (res))
2523 	nb_chrec_dont_know_loops++;
2524       else
2525 	nb_static_loops++;
2526     }
2527 
2528   if (dump_file)
2529     {
2530       fprintf (dump_file, "\n(\n");
2531       fprintf (dump_file, "-----------------------------------------\n");
2532       fprintf (dump_file, "%d\tnb_chrec_dont_know_loops\n", nb_chrec_dont_know_loops);
2533       fprintf (dump_file, "%d\tnb_static_loops\n", nb_static_loops);
2534       fprintf (dump_file, "%d\tnb_total_loops\n", current_loops->num);
2535       fprintf (dump_file, "-----------------------------------------\n");
2536       fprintf (dump_file, ")\n\n");
2537 
2538       print_loop_ir (dump_file);
2539     }
2540 }
2541 
2542 
2543 
2544 /* Counters for the stats.  */
2545 
2546 struct chrec_stats
2547 {
2548   unsigned nb_chrecs;
2549   unsigned nb_affine;
2550   unsigned nb_affine_multivar;
2551   unsigned nb_higher_poly;
2552   unsigned nb_chrec_dont_know;
2553   unsigned nb_undetermined;
2554 };
2555 
2556 /* Reset the counters.  */
2557 
2558 static inline void
reset_chrecs_counters(struct chrec_stats * stats)2559 reset_chrecs_counters (struct chrec_stats *stats)
2560 {
2561   stats->nb_chrecs = 0;
2562   stats->nb_affine = 0;
2563   stats->nb_affine_multivar = 0;
2564   stats->nb_higher_poly = 0;
2565   stats->nb_chrec_dont_know = 0;
2566   stats->nb_undetermined = 0;
2567 }
2568 
2569 /* Dump the contents of a CHREC_STATS structure.  */
2570 
2571 static void
dump_chrecs_stats(FILE * file,struct chrec_stats * stats)2572 dump_chrecs_stats (FILE *file, struct chrec_stats *stats)
2573 {
2574   fprintf (file, "\n(\n");
2575   fprintf (file, "-----------------------------------------\n");
2576   fprintf (file, "%d\taffine univariate chrecs\n", stats->nb_affine);
2577   fprintf (file, "%d\taffine multivariate chrecs\n", stats->nb_affine_multivar);
2578   fprintf (file, "%d\tdegree greater than 2 polynomials\n",
2579 	   stats->nb_higher_poly);
2580   fprintf (file, "%d\tchrec_dont_know chrecs\n", stats->nb_chrec_dont_know);
2581   fprintf (file, "-----------------------------------------\n");
2582   fprintf (file, "%d\ttotal chrecs\n", stats->nb_chrecs);
2583   fprintf (file, "%d\twith undetermined coefficients\n",
2584 	   stats->nb_undetermined);
2585   fprintf (file, "-----------------------------------------\n");
2586   fprintf (file, "%d\tchrecs in the scev database\n",
2587 	   (int) htab_elements (scalar_evolution_info));
2588   fprintf (file, "%d\tsets in the scev database\n", nb_set_scev);
2589   fprintf (file, "%d\tgets in the scev database\n", nb_get_scev);
2590   fprintf (file, "-----------------------------------------\n");
2591   fprintf (file, ")\n\n");
2592 }
2593 
2594 /* Gather statistics about CHREC.  */
2595 
2596 static void
gather_chrec_stats(tree chrec,struct chrec_stats * stats)2597 gather_chrec_stats (tree chrec, struct chrec_stats *stats)
2598 {
2599   if (dump_file && (dump_flags & TDF_STATS))
2600     {
2601       fprintf (dump_file, "(classify_chrec ");
2602       print_generic_expr (dump_file, chrec, 0);
2603       fprintf (dump_file, "\n");
2604     }
2605 
2606   stats->nb_chrecs++;
2607 
2608   if (chrec == NULL_TREE)
2609     {
2610       stats->nb_undetermined++;
2611       return;
2612     }
2613 
2614   switch (TREE_CODE (chrec))
2615     {
2616     case POLYNOMIAL_CHREC:
2617       if (evolution_function_is_affine_p (chrec))
2618 	{
2619 	  if (dump_file && (dump_flags & TDF_STATS))
2620 	    fprintf (dump_file, "  affine_univariate\n");
2621 	  stats->nb_affine++;
2622 	}
2623       else if (evolution_function_is_affine_multivariate_p (chrec))
2624 	{
2625 	  if (dump_file && (dump_flags & TDF_STATS))
2626 	    fprintf (dump_file, "  affine_multivariate\n");
2627 	  stats->nb_affine_multivar++;
2628 	}
2629       else
2630 	{
2631 	  if (dump_file && (dump_flags & TDF_STATS))
2632 	    fprintf (dump_file, "  higher_degree_polynomial\n");
2633 	  stats->nb_higher_poly++;
2634 	}
2635 
2636       break;
2637 
2638     default:
2639       break;
2640     }
2641 
2642   if (chrec_contains_undetermined (chrec))
2643     {
2644       if (dump_file && (dump_flags & TDF_STATS))
2645 	fprintf (dump_file, "  undetermined\n");
2646       stats->nb_undetermined++;
2647     }
2648 
2649   if (dump_file && (dump_flags & TDF_STATS))
2650     fprintf (dump_file, ")\n");
2651 }
2652 
2653 /* One of the drivers for testing the scalar evolutions analysis.
2654    This function analyzes the scalar evolution of all the scalars
2655    defined as loop phi nodes in one of the loops from the
2656    EXIT_CONDITIONS array.
2657 
2658    TODO Optimization: A loop is in canonical form if it contains only
2659    a single scalar loop phi node.  All the other scalars that have an
2660    evolution in the loop are rewritten in function of this single
2661    index.  This allows the parallelization of the loop.  */
2662 
2663 static void
analyze_scalar_evolution_for_all_loop_phi_nodes(VEC (tree,heap)** exit_conditions)2664 analyze_scalar_evolution_for_all_loop_phi_nodes (VEC(tree,heap) **exit_conditions)
2665 {
2666   unsigned int i;
2667   struct chrec_stats stats;
2668   tree cond;
2669 
2670   reset_chrecs_counters (&stats);
2671 
2672   for (i = 0; VEC_iterate (tree, *exit_conditions, i, cond); i++)
2673     {
2674       struct loop *loop;
2675       basic_block bb;
2676       tree phi, chrec;
2677 
2678       loop = loop_containing_stmt (cond);
2679       bb = loop->header;
2680 
2681       for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2682 	if (is_gimple_reg (PHI_RESULT (phi)))
2683 	  {
2684 	    chrec = instantiate_parameters
2685 	      (loop,
2686 	       analyze_scalar_evolution (loop, PHI_RESULT (phi)));
2687 
2688 	    if (dump_file && (dump_flags & TDF_STATS))
2689 	      gather_chrec_stats (chrec, &stats);
2690 	  }
2691     }
2692 
2693   if (dump_file && (dump_flags & TDF_STATS))
2694     dump_chrecs_stats (dump_file, &stats);
2695 }
2696 
2697 /* Callback for htab_traverse, gathers information on chrecs in the
2698    hashtable.  */
2699 
2700 static int
gather_stats_on_scev_database_1(void ** slot,void * stats)2701 gather_stats_on_scev_database_1 (void **slot, void *stats)
2702 {
2703   struct scev_info_str *entry = (struct scev_info_str *) *slot;
2704 
2705   gather_chrec_stats (entry->chrec, (struct chrec_stats *) stats);
2706 
2707   return 1;
2708 }
2709 
2710 /* Classify the chrecs of the whole database.  */
2711 
2712 void
gather_stats_on_scev_database(void)2713 gather_stats_on_scev_database (void)
2714 {
2715   struct chrec_stats stats;
2716 
2717   if (!dump_file)
2718     return;
2719 
2720   reset_chrecs_counters (&stats);
2721 
2722   htab_traverse (scalar_evolution_info, gather_stats_on_scev_database_1,
2723 		 &stats);
2724 
2725   dump_chrecs_stats (dump_file, &stats);
2726 }
2727 
2728 
2729 
2730 /* Initializer.  */
2731 
2732 static void
initialize_scalar_evolutions_analyzer(void)2733 initialize_scalar_evolutions_analyzer (void)
2734 {
2735   /* The elements below are unique.  */
2736   if (chrec_dont_know == NULL_TREE)
2737     {
2738       chrec_not_analyzed_yet = NULL_TREE;
2739       chrec_dont_know = make_node (SCEV_NOT_KNOWN);
2740       chrec_known = make_node (SCEV_KNOWN);
2741       TREE_TYPE (chrec_dont_know) = void_type_node;
2742       TREE_TYPE (chrec_known) = void_type_node;
2743     }
2744 }
2745 
2746 /* Initialize the analysis of scalar evolutions for LOOPS.  */
2747 
2748 void
scev_initialize(struct loops * loops)2749 scev_initialize (struct loops *loops)
2750 {
2751   unsigned i;
2752   current_loops = loops;
2753 
2754   scalar_evolution_info = htab_create (100, hash_scev_info,
2755 				       eq_scev_info, del_scev_info);
2756   already_instantiated = BITMAP_ALLOC (NULL);
2757 
2758   initialize_scalar_evolutions_analyzer ();
2759 
2760   for (i = 1; i < loops->num; i++)
2761     if (loops->parray[i])
2762       loops->parray[i]->nb_iterations = NULL_TREE;
2763 }
2764 
2765 /* Cleans up the information cached by the scalar evolutions analysis.  */
2766 
2767 void
scev_reset(void)2768 scev_reset (void)
2769 {
2770   unsigned i;
2771   struct loop *loop;
2772 
2773   if (!scalar_evolution_info || !current_loops)
2774     return;
2775 
2776   htab_empty (scalar_evolution_info);
2777   for (i = 1; i < current_loops->num; i++)
2778     {
2779       loop = current_loops->parray[i];
2780       if (loop)
2781 	loop->nb_iterations = NULL_TREE;
2782     }
2783 }
2784 
2785 /* Checks whether OP behaves as a simple affine iv of LOOP in STMT and returns
2786    its base and step in IV if possible.  If ALLOW_NONCONSTANT_STEP is true, we
2787    want step to be invariant in LOOP.  Otherwise we require it to be an
2788    integer constant.  IV->no_overflow is set to true if we are sure the iv cannot
2789    overflow (e.g.  because it is computed in signed arithmetics).  */
2790 
2791 bool
simple_iv(struct loop * loop,tree stmt,tree op,affine_iv * iv,bool allow_nonconstant_step)2792 simple_iv (struct loop *loop, tree stmt, tree op, affine_iv *iv,
2793 	   bool allow_nonconstant_step)
2794 {
2795   basic_block bb = bb_for_stmt (stmt);
2796   tree type, ev;
2797   bool folded_casts;
2798 
2799   iv->base = NULL_TREE;
2800   iv->step = NULL_TREE;
2801   iv->no_overflow = false;
2802 
2803   type = TREE_TYPE (op);
2804   if (TREE_CODE (type) != INTEGER_TYPE
2805       && TREE_CODE (type) != POINTER_TYPE)
2806     return false;
2807 
2808   ev = analyze_scalar_evolution_in_loop (loop, bb->loop_father, op,
2809 					 &folded_casts);
2810   if (chrec_contains_undetermined (ev))
2811     return false;
2812 
2813   if (tree_does_not_contain_chrecs (ev)
2814       && !chrec_contains_symbols_defined_in_loop (ev, loop->num))
2815     {
2816       iv->base = ev;
2817       iv->no_overflow = true;
2818       return true;
2819     }
2820 
2821   if (TREE_CODE (ev) != POLYNOMIAL_CHREC
2822       || CHREC_VARIABLE (ev) != (unsigned) loop->num)
2823     return false;
2824 
2825   iv->step = CHREC_RIGHT (ev);
2826   if (allow_nonconstant_step)
2827     {
2828       if (tree_contains_chrecs (iv->step, NULL)
2829 	  || chrec_contains_symbols_defined_in_loop (iv->step, loop->num))
2830 	return false;
2831     }
2832   else if (TREE_CODE (iv->step) != INTEGER_CST)
2833     return false;
2834 
2835   iv->base = CHREC_LEFT (ev);
2836   if (tree_contains_chrecs (iv->base, NULL)
2837       || chrec_contains_symbols_defined_in_loop (iv->base, loop->num))
2838     return false;
2839 
2840   iv->no_overflow = !folded_casts && TYPE_OVERFLOW_UNDEFINED (type);
2841 
2842   return true;
2843 }
2844 
2845 /* Runs the analysis of scalar evolutions.  */
2846 
2847 void
scev_analysis(void)2848 scev_analysis (void)
2849 {
2850   VEC(tree,heap) *exit_conditions;
2851 
2852   exit_conditions = VEC_alloc (tree, heap, 37);
2853   select_loops_exit_conditions (current_loops, &exit_conditions);
2854 
2855   if (dump_file && (dump_flags & TDF_STATS))
2856     analyze_scalar_evolution_for_all_loop_phi_nodes (&exit_conditions);
2857 
2858   number_of_iterations_for_all_loops (&exit_conditions);
2859   VEC_free (tree, heap, exit_conditions);
2860 }
2861 
2862 /* Finalize the scalar evolution analysis.  */
2863 
2864 void
scev_finalize(void)2865 scev_finalize (void)
2866 {
2867   htab_delete (scalar_evolution_info);
2868   BITMAP_FREE (already_instantiated);
2869 }
2870 
2871 /* Returns true if EXPR looks expensive.  */
2872 
2873 static bool
expression_expensive_p(tree expr)2874 expression_expensive_p (tree expr)
2875 {
2876   return force_expr_to_var_cost (expr) >= target_spill_cost;
2877 }
2878 
2879 /* Replace ssa names for that scev can prove they are constant by the
2880    appropriate constants.  Also perform final value replacement in loops,
2881    in case the replacement expressions are cheap.
2882 
2883    We only consider SSA names defined by phi nodes; rest is left to the
2884    ordinary constant propagation pass.  */
2885 
2886 unsigned int
scev_const_prop(void)2887 scev_const_prop (void)
2888 {
2889   basic_block bb;
2890   tree name, phi, next_phi, type, ev;
2891   struct loop *loop, *ex_loop;
2892   bitmap ssa_names_to_remove = NULL;
2893   unsigned i;
2894 
2895   if (!current_loops)
2896     return 0;
2897 
2898   FOR_EACH_BB (bb)
2899     {
2900       loop = bb->loop_father;
2901 
2902       for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2903 	{
2904 	  name = PHI_RESULT (phi);
2905 
2906 	  if (!is_gimple_reg (name))
2907 	    continue;
2908 
2909 	  type = TREE_TYPE (name);
2910 
2911 	  if (!POINTER_TYPE_P (type)
2912 	      && !INTEGRAL_TYPE_P (type))
2913 	    continue;
2914 
2915 	  ev = resolve_mixers (loop, analyze_scalar_evolution (loop, name));
2916 	  if (!is_gimple_min_invariant (ev)
2917 	      || !may_propagate_copy (name, ev))
2918 	    continue;
2919 
2920 	  /* Replace the uses of the name.  */
2921 	  if (name != ev)
2922 	    replace_uses_by (name, ev);
2923 
2924 	  if (!ssa_names_to_remove)
2925 	    ssa_names_to_remove = BITMAP_ALLOC (NULL);
2926 	  bitmap_set_bit (ssa_names_to_remove, SSA_NAME_VERSION (name));
2927 	}
2928     }
2929 
2930   /* Remove the ssa names that were replaced by constants.  We do not remove them
2931      directly in the previous cycle, since this invalidates scev cache.  */
2932   if (ssa_names_to_remove)
2933     {
2934       bitmap_iterator bi;
2935       unsigned i;
2936 
2937       EXECUTE_IF_SET_IN_BITMAP (ssa_names_to_remove, 0, i, bi)
2938 	{
2939 	  name = ssa_name (i);
2940 	  phi = SSA_NAME_DEF_STMT (name);
2941 
2942 	  gcc_assert (TREE_CODE (phi) == PHI_NODE);
2943 	  remove_phi_node (phi, NULL);
2944 	}
2945 
2946       BITMAP_FREE (ssa_names_to_remove);
2947       scev_reset ();
2948     }
2949 
2950   /* Now the regular final value replacement.  */
2951   for (i = current_loops->num - 1; i > 0; i--)
2952     {
2953       edge exit;
2954       tree def, rslt, ass, niter;
2955       block_stmt_iterator bsi;
2956 
2957       loop = current_loops->parray[i];
2958       if (!loop)
2959 	continue;
2960 
2961       /* If we do not know exact number of iterations of the loop, we cannot
2962 	 replace the final value.  */
2963       exit = loop->single_exit;
2964       if (!exit)
2965 	continue;
2966 
2967       niter = number_of_iterations_in_loop (loop);
2968       if (niter == chrec_dont_know
2969 	  /* If computing the number of iterations is expensive, it may be
2970 	     better not to introduce computations involving it.  */
2971 	  || expression_expensive_p (niter))
2972 	continue;
2973 
2974       /* Ensure that it is possible to insert new statements somewhere.  */
2975       if (!single_pred_p (exit->dest))
2976 	split_loop_exit_edge (exit);
2977       tree_block_label (exit->dest);
2978       bsi = bsi_after_labels (exit->dest);
2979 
2980       ex_loop = superloop_at_depth (loop, exit->dest->loop_father->depth + 1);
2981 
2982       for (phi = phi_nodes (exit->dest); phi; phi = next_phi)
2983 	{
2984 	  next_phi = PHI_CHAIN (phi);
2985 	  rslt = PHI_RESULT (phi);
2986 	  def = PHI_ARG_DEF_FROM_EDGE (phi, exit);
2987 	  if (!is_gimple_reg (def))
2988 	    continue;
2989 
2990 	  if (!POINTER_TYPE_P (TREE_TYPE (def))
2991 	      && !INTEGRAL_TYPE_P (TREE_TYPE (def)))
2992 	    continue;
2993 
2994 	  def = analyze_scalar_evolution_in_loop (ex_loop, loop, def, NULL);
2995 	  def = compute_overall_effect_of_inner_loop (ex_loop, def);
2996 	  if (!tree_does_not_contain_chrecs (def)
2997 	      || chrec_contains_symbols_defined_in_loop (def, ex_loop->num)
2998 	      /* Moving the computation from the loop may prolong life range
2999 		 of some ssa names, which may cause problems if they appear
3000 		 on abnormal edges.  */
3001 	      || contains_abnormal_ssa_name_p (def))
3002 	    continue;
3003 
3004 	  /* Eliminate the phi node and replace it by a computation outside
3005 	     the loop.  */
3006 	  def = unshare_expr (def);
3007 	  SET_PHI_RESULT (phi, NULL_TREE);
3008 	  remove_phi_node (phi, NULL_TREE);
3009 
3010 	  ass = build2 (MODIFY_EXPR, void_type_node, rslt, NULL_TREE);
3011 	  SSA_NAME_DEF_STMT (rslt) = ass;
3012 	  {
3013 	    block_stmt_iterator dest = bsi;
3014 	    bsi_insert_before (&dest, ass, BSI_NEW_STMT);
3015 	    def = force_gimple_operand_bsi (&dest, def, false, NULL_TREE);
3016 	  }
3017 	  TREE_OPERAND (ass, 1) = def;
3018 	  update_stmt (ass);
3019 	}
3020     }
3021   return 0;
3022 }
3023