xref: /netbsd/sys/external/bsd/drm2/dist/drm/i915/gt/intel_gt.c (revision 38ad7c77)
1 /*	$NetBSD: intel_gt.c,v 1.3 2021/12/19 11:39:55 riastradh Exp $	*/
2 
3 // SPDX-License-Identifier: MIT
4 /*
5  * Copyright © 2019 Intel Corporation
6  */
7 
8 #include <sys/cdefs.h>
9 __KERNEL_RCSID(0, "$NetBSD: intel_gt.c,v 1.3 2021/12/19 11:39:55 riastradh Exp $");
10 
11 #include <linux/kernel.h>
12 
13 #if IS_ENABLED(CONFIG_DEBUGFS)
14 #include "debugfs_gt.h"
15 #endif
16 #include "i915_drv.h"
17 #include "intel_context.h"
18 #include "intel_gt.h"
19 #include "intel_gt_pm.h"
20 #include "intel_gt_requests.h"
21 #include "intel_mocs.h"
22 #include "intel_rc6.h"
23 #include "intel_renderstate.h"
24 #include "intel_rps.h"
25 #include "intel_uncore.h"
26 #include "intel_pm.h"
27 
intel_gt_init_early(struct intel_gt * gt,struct drm_i915_private * i915)28 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
29 {
30 	gt->i915 = i915;
31 	gt->uncore = &i915->uncore;
32 
33 	spin_lock_init(&gt->irq_lock);
34 
35 	INIT_LIST_HEAD(&gt->closed_vma);
36 	spin_lock_init(&gt->closed_lock);
37 
38 	intel_gt_init_reset(gt);
39 	intel_gt_init_requests(gt);
40 	intel_gt_init_timelines(gt);
41 	intel_gt_pm_init_early(gt);
42 
43 	intel_rps_init_early(&gt->rps);
44 	intel_uc_init_early(&gt->uc);
45 }
46 
intel_gt_init_hw_early(struct intel_gt * gt,struct i915_ggtt * ggtt)47 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
48 {
49 	gt->ggtt = ggtt;
50 }
51 
init_unused_ring(struct intel_gt * gt,u32 base)52 static void init_unused_ring(struct intel_gt *gt, u32 base)
53 {
54 	struct intel_uncore *uncore = gt->uncore;
55 
56 	intel_uncore_write(uncore, RING_CTL(base), 0);
57 	intel_uncore_write(uncore, RING_HEAD(base), 0);
58 	intel_uncore_write(uncore, RING_TAIL(base), 0);
59 	intel_uncore_write(uncore, RING_START(base), 0);
60 }
61 
init_unused_rings(struct intel_gt * gt)62 static void init_unused_rings(struct intel_gt *gt)
63 {
64 	struct drm_i915_private *i915 = gt->i915;
65 
66 	if (IS_I830(i915)) {
67 		init_unused_ring(gt, PRB1_BASE);
68 		init_unused_ring(gt, SRB0_BASE);
69 		init_unused_ring(gt, SRB1_BASE);
70 		init_unused_ring(gt, SRB2_BASE);
71 		init_unused_ring(gt, SRB3_BASE);
72 	} else if (IS_GEN(i915, 2)) {
73 		init_unused_ring(gt, SRB0_BASE);
74 		init_unused_ring(gt, SRB1_BASE);
75 	} else if (IS_GEN(i915, 3)) {
76 		init_unused_ring(gt, PRB1_BASE);
77 		init_unused_ring(gt, PRB2_BASE);
78 	}
79 }
80 
intel_gt_init_hw(struct intel_gt * gt)81 int intel_gt_init_hw(struct intel_gt *gt)
82 {
83 	struct drm_i915_private *i915 = gt->i915;
84 	struct intel_uncore *uncore = gt->uncore;
85 	int ret;
86 
87 	gt->last_init_time = ktime_get();
88 
89 	/* Double layer security blanket, see i915_gem_init() */
90 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
91 
92 	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
93 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
94 
95 	if (IS_HASWELL(i915))
96 		intel_uncore_write(uncore,
97 				   MI_PREDICATE_RESULT_2,
98 				   IS_HSW_GT3(i915) ?
99 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
100 
101 	/* Apply the GT workarounds... */
102 	intel_gt_apply_workarounds(gt);
103 	/* ...and determine whether they are sticking. */
104 	intel_gt_verify_workarounds(gt, "init");
105 
106 	intel_gt_init_swizzling(gt);
107 
108 	/*
109 	 * At least 830 can leave some of the unused rings
110 	 * "active" (ie. head != tail) after resume which
111 	 * will prevent c3 entry. Makes sure all unused rings
112 	 * are totally idle.
113 	 */
114 	init_unused_rings(gt);
115 
116 	ret = i915_ppgtt_init_hw(gt);
117 	if (ret) {
118 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
119 		goto out;
120 	}
121 
122 	/* We can't enable contexts until all firmware is loaded */
123 	ret = intel_uc_init_hw(&gt->uc);
124 	if (ret) {
125 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
126 		goto out;
127 	}
128 
129 	intel_mocs_init(gt);
130 
131 out:
132 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
133 	return ret;
134 }
135 
rmw_set(struct intel_uncore * uncore,i915_reg_t reg,u32 set)136 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
137 {
138 	intel_uncore_rmw(uncore, reg, 0, set);
139 }
140 
rmw_clear(struct intel_uncore * uncore,i915_reg_t reg,u32 clr)141 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
142 {
143 	intel_uncore_rmw(uncore, reg, clr, 0);
144 }
145 
clear_register(struct intel_uncore * uncore,i915_reg_t reg)146 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
147 {
148 	intel_uncore_rmw(uncore, reg, 0, 0);
149 }
150 
gen8_clear_engine_error_register(struct intel_engine_cs * engine)151 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
152 {
153 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
154 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
155 }
156 
157 void
intel_gt_clear_error_registers(struct intel_gt * gt,intel_engine_mask_t engine_mask)158 intel_gt_clear_error_registers(struct intel_gt *gt,
159 			       intel_engine_mask_t engine_mask)
160 {
161 	struct drm_i915_private *i915 = gt->i915;
162 	struct intel_uncore *uncore = gt->uncore;
163 	u32 eir;
164 
165 	if (!IS_GEN(i915, 2))
166 		clear_register(uncore, PGTBL_ER);
167 
168 	if (INTEL_GEN(i915) < 4)
169 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
170 	else
171 		clear_register(uncore, IPEIR_I965);
172 
173 	clear_register(uncore, EIR);
174 	eir = intel_uncore_read(uncore, EIR);
175 	if (eir) {
176 		/*
177 		 * some errors might have become stuck,
178 		 * mask them.
179 		 */
180 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
181 		rmw_set(uncore, EMR, eir);
182 		intel_uncore_write(uncore, GEN2_IIR,
183 				   I915_MASTER_ERROR_INTERRUPT);
184 	}
185 
186 	if (INTEL_GEN(i915) >= 12) {
187 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
188 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
189 	} else if (INTEL_GEN(i915) >= 8) {
190 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
191 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
192 	} else if (INTEL_GEN(i915) >= 6) {
193 		struct intel_engine_cs *engine;
194 		enum intel_engine_id id;
195 
196 		for_each_engine_masked(engine, gt, engine_mask, id)
197 			gen8_clear_engine_error_register(engine);
198 	}
199 }
200 
gen6_check_faults(struct intel_gt * gt)201 static void gen6_check_faults(struct intel_gt *gt)
202 {
203 	struct intel_engine_cs *engine;
204 	enum intel_engine_id id;
205 	u32 fault;
206 
207 	for_each_engine(engine, gt, id) {
208 		fault = GEN6_RING_FAULT_REG_READ(engine);
209 		if (fault & RING_FAULT_VALID) {
210 			DRM_DEBUG_DRIVER("Unexpected fault\n"
211 					 "\tAddr: 0x%08"PRIx32"\n"
212 					 "\tAddress space: %s\n"
213 					 "\tSource ID: %d\n"
214 					 "\tType: %d\n",
215 					 fault & PAGE_MASK,
216 					 fault & RING_FAULT_GTTSEL_MASK ?
217 					 "GGTT" : "PPGTT",
218 					 RING_FAULT_SRCID(fault),
219 					 RING_FAULT_FAULT_TYPE(fault));
220 		}
221 	}
222 }
223 
gen8_check_faults(struct intel_gt * gt)224 static void gen8_check_faults(struct intel_gt *gt)
225 {
226 	struct intel_uncore *uncore = gt->uncore;
227 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
228 	u32 fault;
229 
230 	if (INTEL_GEN(gt->i915) >= 12) {
231 		fault_reg = GEN12_RING_FAULT_REG;
232 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
233 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
234 	} else {
235 		fault_reg = GEN8_RING_FAULT_REG;
236 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
237 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
238 	}
239 
240 	fault = intel_uncore_read(uncore, fault_reg);
241 	if (fault & RING_FAULT_VALID) {
242 		u32 fault_data0, fault_data1;
243 		u64 fault_addr;
244 
245 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
246 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
247 
248 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
249 			     ((u64)fault_data0 << 12);
250 
251 		DRM_DEBUG_DRIVER("Unexpected fault\n"
252 				 "\tAddr: 0x%08x_%08x\n"
253 				 "\tAddress space: %s\n"
254 				 "\tEngine ID: %d\n"
255 				 "\tSource ID: %d\n"
256 				 "\tType: %d\n",
257 				 upper_32_bits(fault_addr),
258 				 lower_32_bits(fault_addr),
259 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
260 				 GEN8_RING_FAULT_ENGINE_ID(fault),
261 				 RING_FAULT_SRCID(fault),
262 				 RING_FAULT_FAULT_TYPE(fault));
263 	}
264 }
265 
intel_gt_check_and_clear_faults(struct intel_gt * gt)266 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
267 {
268 	struct drm_i915_private *i915 = gt->i915;
269 
270 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
271 	if (INTEL_GEN(i915) >= 8)
272 		gen8_check_faults(gt);
273 	else if (INTEL_GEN(i915) >= 6)
274 		gen6_check_faults(gt);
275 	else
276 		return;
277 
278 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
279 }
280 
intel_gt_flush_ggtt_writes(struct intel_gt * gt)281 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
282 {
283 	struct intel_uncore *uncore = gt->uncore;
284 	intel_wakeref_t wakeref;
285 
286 	/*
287 	 * No actual flushing is required for the GTT write domain for reads
288 	 * from the GTT domain. Writes to it "immediately" go to main memory
289 	 * as far as we know, so there's no chipset flush. It also doesn't
290 	 * land in the GPU render cache.
291 	 *
292 	 * However, we do have to enforce the order so that all writes through
293 	 * the GTT land before any writes to the device, such as updates to
294 	 * the GATT itself.
295 	 *
296 	 * We also have to wait a bit for the writes to land from the GTT.
297 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
298 	 * timing. This issue has only been observed when switching quickly
299 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
300 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
301 	 * system agents we cannot reproduce this behaviour, until Cannonlake
302 	 * that was!).
303 	 */
304 
305 	wmb();
306 
307 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
308 		return;
309 
310 	intel_gt_chipset_flush(gt);
311 
312 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
313 		unsigned long flags;
314 
315 		spin_lock_irqsave(&uncore->lock, flags);
316 		intel_uncore_posting_read_fw(uncore,
317 					     RING_HEAD(RENDER_RING_BASE));
318 		spin_unlock_irqrestore(&uncore->lock, flags);
319 	}
320 }
321 
intel_gt_chipset_flush(struct intel_gt * gt)322 void intel_gt_chipset_flush(struct intel_gt *gt)
323 {
324 	wmb();
325 	if (INTEL_GEN(gt->i915) < 6)
326 		intel_gtt_chipset_flush();
327 }
328 
intel_gt_driver_register(struct intel_gt * gt)329 void intel_gt_driver_register(struct intel_gt *gt)
330 {
331 	intel_rps_driver_register(&gt->rps);
332 
333 #if IS_ENABLED(CONFIG_DEBUGFS)
334 	debugfs_gt_register(gt);
335 #endif
336 }
337 
intel_gt_init_scratch(struct intel_gt * gt,unsigned int size)338 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
339 {
340 	struct drm_i915_private *i915 = gt->i915;
341 	struct drm_i915_gem_object *obj;
342 	struct i915_vma *vma;
343 	int ret;
344 
345 	obj = i915_gem_object_create_stolen(i915, size);
346 	if (IS_ERR(obj))
347 		obj = i915_gem_object_create_internal(i915, size);
348 	if (IS_ERR(obj)) {
349 		DRM_ERROR("Failed to allocate scratch page\n");
350 		return PTR_ERR(obj);
351 	}
352 
353 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
354 	if (IS_ERR(vma)) {
355 		ret = PTR_ERR(vma);
356 		goto err_unref;
357 	}
358 
359 	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
360 	if (ret)
361 		goto err_unref;
362 
363 	gt->scratch = i915_vma_make_unshrinkable(vma);
364 
365 	return 0;
366 
367 err_unref:
368 	i915_gem_object_put(obj);
369 	return ret;
370 }
371 
intel_gt_fini_scratch(struct intel_gt * gt)372 static void intel_gt_fini_scratch(struct intel_gt *gt)
373 {
374 	i915_vma_unpin_and_release(&gt->scratch, 0);
375 }
376 
kernel_vm(struct intel_gt * gt)377 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
378 {
379 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
380 		return &i915_ppgtt_create(gt)->vm;
381 	else
382 		return i915_vm_get(&gt->ggtt->vm);
383 }
384 
__intel_context_flush_retire(struct intel_context * ce)385 static int __intel_context_flush_retire(struct intel_context *ce)
386 {
387 	struct intel_timeline *tl;
388 
389 	tl = intel_context_timeline_lock(ce);
390 	if (IS_ERR(tl))
391 		return PTR_ERR(tl);
392 
393 	intel_context_timeline_unlock(tl);
394 	return 0;
395 }
396 
__engines_record_defaults(struct intel_gt * gt)397 static int __engines_record_defaults(struct intel_gt *gt)
398 {
399 	struct i915_request *requests[I915_NUM_ENGINES] = {};
400 	struct intel_engine_cs *engine;
401 	enum intel_engine_id id;
402 	int err = 0;
403 
404 	/*
405 	 * As we reset the gpu during very early sanitisation, the current
406 	 * register state on the GPU should reflect its defaults values.
407 	 * We load a context onto the hw (with restore-inhibit), then switch
408 	 * over to a second context to save that default register state. We
409 	 * can then prime every new context with that state so they all start
410 	 * from the same default HW values.
411 	 */
412 
413 	for_each_engine(engine, gt, id) {
414 		struct intel_renderstate so;
415 		struct intel_context *ce;
416 		struct i915_request *rq;
417 
418 		/* We must be able to switch to something! */
419 		GEM_BUG_ON(!engine->kernel_context);
420 
421 		err = intel_renderstate_init(&so, engine);
422 		if (err)
423 			goto out;
424 
425 		ce = intel_context_create(engine);
426 		if (IS_ERR(ce)) {
427 			err = PTR_ERR(ce);
428 			goto out;
429 		}
430 
431 		rq = intel_context_create_request(ce);
432 		if (IS_ERR(rq)) {
433 			err = PTR_ERR(rq);
434 			intel_context_put(ce);
435 			goto out;
436 		}
437 
438 		err = intel_engine_emit_ctx_wa(rq);
439 		if (err)
440 			goto err_rq;
441 
442 		err = intel_renderstate_emit(&so, rq);
443 		if (err)
444 			goto err_rq;
445 
446 err_rq:
447 		requests[id] = i915_request_get(rq);
448 		i915_request_add(rq);
449 		intel_renderstate_fini(&so);
450 		if (err)
451 			goto out;
452 	}
453 
454 	/* Flush the default context image to memory, and enable powersaving. */
455 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
456 		err = -EIO;
457 		goto out;
458 	}
459 
460 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
461 		struct i915_request *rq;
462 		struct i915_vma *state;
463 		void *vaddr;
464 
465 		rq = requests[id];
466 		if (!rq)
467 			continue;
468 
469 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
470 		state = rq->context->state;
471 		if (!state)
472 			continue;
473 
474 		/* Serialise with retirement on another CPU */
475 		GEM_BUG_ON(!i915_request_completed(rq));
476 		err = __intel_context_flush_retire(rq->context);
477 		if (err)
478 			goto out;
479 
480 		/* We want to be able to unbind the state from the GGTT */
481 		GEM_BUG_ON(intel_context_is_pinned(rq->context));
482 
483 		/*
484 		 * As we will hold a reference to the logical state, it will
485 		 * not be torn down with the context, and importantly the
486 		 * object will hold onto its vma (making it possible for a
487 		 * stray GTT write to corrupt our defaults). Unmap the vma
488 		 * from the GTT to prevent such accidents and reclaim the
489 		 * space.
490 		 */
491 		err = i915_vma_unbind(state);
492 		if (err)
493 			goto out;
494 
495 		i915_gem_object_lock(state->obj);
496 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
497 		i915_gem_object_unlock(state->obj);
498 		if (err)
499 			goto out;
500 
501 		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
502 
503 		/* Check we can acquire the image of the context state */
504 		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
505 		if (IS_ERR(vaddr)) {
506 			err = PTR_ERR(vaddr);
507 			goto out;
508 		}
509 
510 		rq->engine->default_state = i915_gem_object_get(state->obj);
511 		i915_gem_object_unpin_map(state->obj);
512 	}
513 
514 out:
515 	/*
516 	 * If we have to abandon now, we expect the engines to be idle
517 	 * and ready to be torn-down. The quickest way we can accomplish
518 	 * this is by declaring ourselves wedged.
519 	 */
520 	if (err)
521 		intel_gt_set_wedged(gt);
522 
523 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
524 		struct intel_context *ce;
525 		struct i915_request *rq;
526 
527 		rq = requests[id];
528 		if (!rq)
529 			continue;
530 
531 		ce = rq->context;
532 		i915_request_put(rq);
533 		intel_context_put(ce);
534 	}
535 	return err;
536 }
537 
__engines_verify_workarounds(struct intel_gt * gt)538 static int __engines_verify_workarounds(struct intel_gt *gt)
539 {
540 	struct intel_engine_cs *engine;
541 	enum intel_engine_id id;
542 	int err = 0;
543 
544 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
545 		return 0;
546 
547 	for_each_engine(engine, gt, id) {
548 		if (intel_engine_verify_workarounds(engine, "load"))
549 			err = -EIO;
550 	}
551 
552 	return err;
553 }
554 
__intel_gt_disable(struct intel_gt * gt)555 static void __intel_gt_disable(struct intel_gt *gt)
556 {
557 	intel_gt_set_wedged_on_init(gt);
558 
559 	intel_gt_suspend_prepare(gt);
560 	intel_gt_suspend_late(gt);
561 
562 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
563 }
564 
intel_gt_init(struct intel_gt * gt)565 int intel_gt_init(struct intel_gt *gt)
566 {
567 	int err;
568 
569 	err = i915_inject_probe_error(gt->i915, -ENODEV);
570 	if (err)
571 		return err;
572 
573 	/*
574 	 * This is just a security blanket to placate dragons.
575 	 * On some systems, we very sporadically observe that the first TLBs
576 	 * used by the CS may be stale, despite us poking the TLB reset. If
577 	 * we hold the forcewake during initialisation these problems
578 	 * just magically go away.
579 	 */
580 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
581 
582 	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
583 	if (err)
584 		goto out_fw;
585 
586 	intel_gt_pm_init(gt);
587 
588 	gt->vm = kernel_vm(gt);
589 	if (!gt->vm) {
590 		err = -ENOMEM;
591 		goto err_pm;
592 	}
593 
594 	err = intel_engines_init(gt);
595 	if (err)
596 		goto err_engines;
597 
598 	intel_uc_init(&gt->uc);
599 
600 	err = intel_gt_resume(gt);
601 	if (err)
602 		goto err_uc_init;
603 
604 	err = __engines_record_defaults(gt);
605 	if (err)
606 		goto err_gt;
607 
608 	err = __engines_verify_workarounds(gt);
609 	if (err)
610 		goto err_gt;
611 
612 	err = i915_inject_probe_error(gt->i915, -EIO);
613 	if (err)
614 		goto err_gt;
615 
616 	goto out_fw;
617 err_gt:
618 	__intel_gt_disable(gt);
619 	intel_uc_fini_hw(&gt->uc);
620 err_uc_init:
621 	intel_uc_fini(&gt->uc);
622 err_engines:
623 	intel_engines_release(gt);
624 	i915_vm_put(fetch_and_zero(&gt->vm));
625 err_pm:
626 	intel_gt_pm_fini(gt);
627 	intel_gt_fini_scratch(gt);
628 out_fw:
629 	if (err)
630 		intel_gt_set_wedged_on_init(gt);
631 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
632 	return err;
633 }
634 
intel_gt_driver_remove(struct intel_gt * gt)635 void intel_gt_driver_remove(struct intel_gt *gt)
636 {
637 	__intel_gt_disable(gt);
638 
639 	intel_uc_fini_hw(&gt->uc);
640 	intel_uc_fini(&gt->uc);
641 
642 	intel_engines_release(gt);
643 }
644 
intel_gt_driver_unregister(struct intel_gt * gt)645 void intel_gt_driver_unregister(struct intel_gt *gt)
646 {
647 	intel_rps_driver_unregister(&gt->rps);
648 }
649 
intel_gt_driver_release(struct intel_gt * gt)650 void intel_gt_driver_release(struct intel_gt *gt)
651 {
652 	struct i915_address_space *vm;
653 
654 	vm = fetch_and_zero(&gt->vm);
655 	if (vm) /* FIXME being called twice on error paths :( */
656 		i915_vm_put(vm);
657 
658 	intel_gt_pm_fini(gt);
659 	intel_gt_fini_scratch(gt);
660 }
661 
intel_gt_driver_late_release(struct intel_gt * gt)662 void intel_gt_driver_late_release(struct intel_gt *gt)
663 {
664 	intel_uc_driver_late_release(&gt->uc);
665 	intel_gt_fini_requests(gt);
666 	intel_gt_fini_reset(gt);
667 	intel_gt_fini_timelines(gt);
668 	intel_engines_free(gt);
669 }
670