1 /* $NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $ */
2
3 /*
4 * GTT virtualization
5 *
6 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the "Software"),
10 * to deal in the Software without restriction, including without limitation
11 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12 * and/or sell copies of the Software, and to permit persons to whom the
13 * Software is furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the next
16 * paragraph) shall be included in all copies or substantial portions of the
17 * Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
25 * SOFTWARE.
26 *
27 * Authors:
28 * Zhi Wang <zhi.a.wang@intel.com>
29 * Zhenyu Wang <zhenyuw@linux.intel.com>
30 * Xiao Zheng <xiao.zheng@intel.com>
31 *
32 * Contributors:
33 * Min He <min.he@intel.com>
34 * Bing Niu <bing.niu@intel.com>
35 *
36 */
37
38 #include <sys/cdefs.h>
39 __KERNEL_RCSID(0, "$NetBSD: gtt.c,v 1.2 2021/12/18 23:45:31 riastradh Exp $");
40
41 #include "i915_drv.h"
42 #include "gvt.h"
43 #include "i915_pvinfo.h"
44 #include "trace.h"
45
46 #if defined(VERBOSE_DEBUG)
47 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
48 #else
49 #define gvt_vdbg_mm(fmt, args...)
50 #endif
51
52 static bool enable_out_of_sync = false;
53 static int preallocated_oos_pages = 8192;
54
55 /*
56 * validate a gm address and related range size,
57 * translate it to host gm address
58 */
intel_gvt_ggtt_validate_range(struct intel_vgpu * vgpu,u64 addr,u32 size)59 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
60 {
61 if (size == 0)
62 return vgpu_gmadr_is_valid(vgpu, addr);
63
64 if (vgpu_gmadr_is_aperture(vgpu, addr) &&
65 vgpu_gmadr_is_aperture(vgpu, addr + size - 1))
66 return true;
67 else if (vgpu_gmadr_is_hidden(vgpu, addr) &&
68 vgpu_gmadr_is_hidden(vgpu, addr + size - 1))
69 return true;
70
71 gvt_dbg_mm("Invalid ggtt range at 0x%llx, size: 0x%x\n",
72 addr, size);
73 return false;
74 }
75
76 /* translate a guest gmadr to host gmadr */
intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu * vgpu,u64 g_addr,u64 * h_addr)77 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
78 {
79 if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
80 "invalid guest gmadr %llx\n", g_addr))
81 return -EACCES;
82
83 if (vgpu_gmadr_is_aperture(vgpu, g_addr))
84 *h_addr = vgpu_aperture_gmadr_base(vgpu)
85 + (g_addr - vgpu_aperture_offset(vgpu));
86 else
87 *h_addr = vgpu_hidden_gmadr_base(vgpu)
88 + (g_addr - vgpu_hidden_offset(vgpu));
89 return 0;
90 }
91
92 /* translate a host gmadr to guest gmadr */
intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu * vgpu,u64 h_addr,u64 * g_addr)93 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
94 {
95 if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
96 "invalid host gmadr %llx\n", h_addr))
97 return -EACCES;
98
99 if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
100 *g_addr = vgpu_aperture_gmadr_base(vgpu)
101 + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
102 else
103 *g_addr = vgpu_hidden_gmadr_base(vgpu)
104 + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
105 return 0;
106 }
107
intel_gvt_ggtt_index_g2h(struct intel_vgpu * vgpu,unsigned long g_index,unsigned long * h_index)108 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
109 unsigned long *h_index)
110 {
111 u64 h_addr;
112 int ret;
113
114 ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
115 &h_addr);
116 if (ret)
117 return ret;
118
119 *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
120 return 0;
121 }
122
intel_gvt_ggtt_h2g_index(struct intel_vgpu * vgpu,unsigned long h_index,unsigned long * g_index)123 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
124 unsigned long *g_index)
125 {
126 u64 g_addr;
127 int ret;
128
129 ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
130 &g_addr);
131 if (ret)
132 return ret;
133
134 *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
135 return 0;
136 }
137
138 #define gtt_type_is_entry(type) \
139 (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
140 && type != GTT_TYPE_PPGTT_PTE_ENTRY \
141 && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
142
143 #define gtt_type_is_pt(type) \
144 (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
145
146 #define gtt_type_is_pte_pt(type) \
147 (type == GTT_TYPE_PPGTT_PTE_PT)
148
149 #define gtt_type_is_root_pointer(type) \
150 (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
151
152 #define gtt_init_entry(e, t, p, v) do { \
153 (e)->type = t; \
154 (e)->pdev = p; \
155 memcpy(&(e)->val64, &v, sizeof(v)); \
156 } while (0)
157
158 /*
159 * Mappings between GTT_TYPE* enumerations.
160 * Following information can be found according to the given type:
161 * - type of next level page table
162 * - type of entry inside this level page table
163 * - type of entry with PSE set
164 *
165 * If the given type doesn't have such a kind of information,
166 * e.g. give a l4 root entry type, then request to get its PSE type,
167 * give a PTE page table type, then request to get its next level page
168 * table type, as we know l4 root entry doesn't have a PSE bit,
169 * and a PTE page table doesn't have a next level page table type,
170 * GTT_TYPE_INVALID will be returned. This is useful when traversing a
171 * page table.
172 */
173
174 struct gtt_type_table_entry {
175 int entry_type;
176 int pt_type;
177 int next_pt_type;
178 int pse_entry_type;
179 };
180
181 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
182 [type] = { \
183 .entry_type = e_type, \
184 .pt_type = cpt_type, \
185 .next_pt_type = npt_type, \
186 .pse_entry_type = pse_type, \
187 }
188
189 static struct gtt_type_table_entry gtt_type_table[] = {
190 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
191 GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
192 GTT_TYPE_INVALID,
193 GTT_TYPE_PPGTT_PML4_PT,
194 GTT_TYPE_INVALID),
195 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
196 GTT_TYPE_PPGTT_PML4_ENTRY,
197 GTT_TYPE_PPGTT_PML4_PT,
198 GTT_TYPE_PPGTT_PDP_PT,
199 GTT_TYPE_INVALID),
200 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
201 GTT_TYPE_PPGTT_PML4_ENTRY,
202 GTT_TYPE_PPGTT_PML4_PT,
203 GTT_TYPE_PPGTT_PDP_PT,
204 GTT_TYPE_INVALID),
205 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
206 GTT_TYPE_PPGTT_PDP_ENTRY,
207 GTT_TYPE_PPGTT_PDP_PT,
208 GTT_TYPE_PPGTT_PDE_PT,
209 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
210 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
211 GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
212 GTT_TYPE_INVALID,
213 GTT_TYPE_PPGTT_PDE_PT,
214 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
215 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
216 GTT_TYPE_PPGTT_PDP_ENTRY,
217 GTT_TYPE_PPGTT_PDP_PT,
218 GTT_TYPE_PPGTT_PDE_PT,
219 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
220 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
221 GTT_TYPE_PPGTT_PDE_ENTRY,
222 GTT_TYPE_PPGTT_PDE_PT,
223 GTT_TYPE_PPGTT_PTE_PT,
224 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
225 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
226 GTT_TYPE_PPGTT_PDE_ENTRY,
227 GTT_TYPE_PPGTT_PDE_PT,
228 GTT_TYPE_PPGTT_PTE_PT,
229 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
230 /* We take IPS bit as 'PSE' for PTE level. */
231 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
232 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
233 GTT_TYPE_PPGTT_PTE_PT,
234 GTT_TYPE_INVALID,
235 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
236 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
237 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
238 GTT_TYPE_PPGTT_PTE_PT,
239 GTT_TYPE_INVALID,
240 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
241 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
242 GTT_TYPE_PPGTT_PTE_4K_ENTRY,
243 GTT_TYPE_PPGTT_PTE_PT,
244 GTT_TYPE_INVALID,
245 GTT_TYPE_PPGTT_PTE_64K_ENTRY),
246 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
247 GTT_TYPE_PPGTT_PDE_ENTRY,
248 GTT_TYPE_PPGTT_PDE_PT,
249 GTT_TYPE_INVALID,
250 GTT_TYPE_PPGTT_PTE_2M_ENTRY),
251 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
252 GTT_TYPE_PPGTT_PDP_ENTRY,
253 GTT_TYPE_PPGTT_PDP_PT,
254 GTT_TYPE_INVALID,
255 GTT_TYPE_PPGTT_PTE_1G_ENTRY),
256 GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
257 GTT_TYPE_GGTT_PTE,
258 GTT_TYPE_INVALID,
259 GTT_TYPE_INVALID,
260 GTT_TYPE_INVALID),
261 };
262
get_next_pt_type(int type)263 static inline int get_next_pt_type(int type)
264 {
265 return gtt_type_table[type].next_pt_type;
266 }
267
get_pt_type(int type)268 static inline int get_pt_type(int type)
269 {
270 return gtt_type_table[type].pt_type;
271 }
272
get_entry_type(int type)273 static inline int get_entry_type(int type)
274 {
275 return gtt_type_table[type].entry_type;
276 }
277
get_pse_type(int type)278 static inline int get_pse_type(int type)
279 {
280 return gtt_type_table[type].pse_entry_type;
281 }
282
read_pte64(struct drm_i915_private * dev_priv,unsigned long index)283 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
284 {
285 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
286
287 return readq(addr);
288 }
289
ggtt_invalidate(struct drm_i915_private * dev_priv)290 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
291 {
292 mmio_hw_access_pre(dev_priv);
293 I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
294 mmio_hw_access_post(dev_priv);
295 }
296
write_pte64(struct drm_i915_private * dev_priv,unsigned long index,u64 pte)297 static void write_pte64(struct drm_i915_private *dev_priv,
298 unsigned long index, u64 pte)
299 {
300 void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
301
302 writeq(pte, addr);
303 }
304
gtt_get_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)305 static inline int gtt_get_entry64(void *pt,
306 struct intel_gvt_gtt_entry *e,
307 unsigned long index, bool hypervisor_access, unsigned long gpa,
308 struct intel_vgpu *vgpu)
309 {
310 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
311 int ret;
312
313 if (WARN_ON(info->gtt_entry_size != 8))
314 return -EINVAL;
315
316 if (hypervisor_access) {
317 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
318 (index << info->gtt_entry_size_shift),
319 &e->val64, 8);
320 if (WARN_ON(ret))
321 return ret;
322 } else if (!pt) {
323 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
324 } else {
325 e->val64 = *((u64 *)pt + index);
326 }
327 return 0;
328 }
329
gtt_set_entry64(void * pt,struct intel_gvt_gtt_entry * e,unsigned long index,bool hypervisor_access,unsigned long gpa,struct intel_vgpu * vgpu)330 static inline int gtt_set_entry64(void *pt,
331 struct intel_gvt_gtt_entry *e,
332 unsigned long index, bool hypervisor_access, unsigned long gpa,
333 struct intel_vgpu *vgpu)
334 {
335 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
336 int ret;
337
338 if (WARN_ON(info->gtt_entry_size != 8))
339 return -EINVAL;
340
341 if (hypervisor_access) {
342 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
343 (index << info->gtt_entry_size_shift),
344 &e->val64, 8);
345 if (WARN_ON(ret))
346 return ret;
347 } else if (!pt) {
348 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
349 } else {
350 *((u64 *)pt + index) = e->val64;
351 }
352 return 0;
353 }
354
355 #define GTT_HAW 46
356
357 #define ADDR_1G_MASK GENMASK_ULL(GTT_HAW - 1, 30)
358 #define ADDR_2M_MASK GENMASK_ULL(GTT_HAW - 1, 21)
359 #define ADDR_64K_MASK GENMASK_ULL(GTT_HAW - 1, 16)
360 #define ADDR_4K_MASK GENMASK_ULL(GTT_HAW - 1, 12)
361
362 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
363 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
364
365 #define GTT_64K_PTE_STRIDE 16
366
gen8_gtt_get_pfn(struct intel_gvt_gtt_entry * e)367 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
368 {
369 unsigned long pfn;
370
371 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
372 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
373 else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
374 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
375 else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
376 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
377 else
378 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
379 return pfn;
380 }
381
gen8_gtt_set_pfn(struct intel_gvt_gtt_entry * e,unsigned long pfn)382 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
383 {
384 if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
385 e->val64 &= ~ADDR_1G_MASK;
386 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
387 } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
388 e->val64 &= ~ADDR_2M_MASK;
389 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
390 } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
391 e->val64 &= ~ADDR_64K_MASK;
392 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
393 } else {
394 e->val64 &= ~ADDR_4K_MASK;
395 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
396 }
397
398 e->val64 |= (pfn << PAGE_SHIFT);
399 }
400
gen8_gtt_test_pse(struct intel_gvt_gtt_entry * e)401 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
402 {
403 return !!(e->val64 & _PAGE_PSE);
404 }
405
gen8_gtt_clear_pse(struct intel_gvt_gtt_entry * e)406 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
407 {
408 if (gen8_gtt_test_pse(e)) {
409 switch (e->type) {
410 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
411 e->val64 &= ~_PAGE_PSE;
412 e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
413 break;
414 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
415 e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
416 e->val64 &= ~_PAGE_PSE;
417 break;
418 default:
419 WARN_ON(1);
420 }
421 }
422 }
423
gen8_gtt_test_ips(struct intel_gvt_gtt_entry * e)424 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
425 {
426 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
427 return false;
428
429 return !!(e->val64 & GEN8_PDE_IPS_64K);
430 }
431
gen8_gtt_clear_ips(struct intel_gvt_gtt_entry * e)432 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
433 {
434 if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
435 return;
436
437 e->val64 &= ~GEN8_PDE_IPS_64K;
438 }
439
gen8_gtt_test_present(struct intel_gvt_gtt_entry * e)440 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
441 {
442 /*
443 * i915 writes PDP root pointer registers without present bit,
444 * it also works, so we need to treat root pointer entry
445 * specifically.
446 */
447 if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
448 || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
449 return (e->val64 != 0);
450 else
451 return (e->val64 & _PAGE_PRESENT);
452 }
453
gtt_entry_clear_present(struct intel_gvt_gtt_entry * e)454 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
455 {
456 e->val64 &= ~_PAGE_PRESENT;
457 }
458
gtt_entry_set_present(struct intel_gvt_gtt_entry * e)459 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
460 {
461 e->val64 |= _PAGE_PRESENT;
462 }
463
gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry * e)464 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
465 {
466 return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
467 }
468
gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry * e)469 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
470 {
471 e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
472 }
473
gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry * e)474 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
475 {
476 e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
477 }
478
479 /*
480 * Per-platform GMA routines.
481 */
gma_to_ggtt_pte_index(unsigned long gma)482 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
483 {
484 unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
485
486 trace_gma_index(__func__, gma, x);
487 return x;
488 }
489
490 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
491 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
492 { \
493 unsigned long x = (exp); \
494 trace_gma_index(__func__, gma, x); \
495 return x; \
496 }
497
498 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
499 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
500 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
501 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
502 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
503
504 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
505 .get_entry = gtt_get_entry64,
506 .set_entry = gtt_set_entry64,
507 .clear_present = gtt_entry_clear_present,
508 .set_present = gtt_entry_set_present,
509 .test_present = gen8_gtt_test_present,
510 .test_pse = gen8_gtt_test_pse,
511 .clear_pse = gen8_gtt_clear_pse,
512 .clear_ips = gen8_gtt_clear_ips,
513 .test_ips = gen8_gtt_test_ips,
514 .clear_64k_splited = gen8_gtt_clear_64k_splited,
515 .set_64k_splited = gen8_gtt_set_64k_splited,
516 .test_64k_splited = gen8_gtt_test_64k_splited,
517 .get_pfn = gen8_gtt_get_pfn,
518 .set_pfn = gen8_gtt_set_pfn,
519 };
520
521 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
522 .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
523 .gma_to_pte_index = gen8_gma_to_pte_index,
524 .gma_to_pde_index = gen8_gma_to_pde_index,
525 .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
526 .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
527 .gma_to_pml4_index = gen8_gma_to_pml4_index,
528 };
529
530 /* Update entry type per pse and ips bit. */
update_entry_type_for_real(struct intel_gvt_gtt_pte_ops * pte_ops,struct intel_gvt_gtt_entry * entry,bool ips)531 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
532 struct intel_gvt_gtt_entry *entry, bool ips)
533 {
534 switch (entry->type) {
535 case GTT_TYPE_PPGTT_PDE_ENTRY:
536 case GTT_TYPE_PPGTT_PDP_ENTRY:
537 if (pte_ops->test_pse(entry))
538 entry->type = get_pse_type(entry->type);
539 break;
540 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
541 if (ips)
542 entry->type = get_pse_type(entry->type);
543 break;
544 default:
545 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
546 }
547
548 GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
549 }
550
551 /*
552 * MM helpers.
553 */
_ppgtt_get_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)554 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
555 struct intel_gvt_gtt_entry *entry, unsigned long index,
556 bool guest)
557 {
558 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
559
560 GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
561
562 entry->type = mm->ppgtt_mm.root_entry_type;
563 pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
564 mm->ppgtt_mm.shadow_pdps,
565 entry, index, false, 0, mm->vgpu);
566 update_entry_type_for_real(pte_ops, entry, false);
567 }
568
ppgtt_get_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)569 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
570 struct intel_gvt_gtt_entry *entry, unsigned long index)
571 {
572 _ppgtt_get_root_entry(mm, entry, index, true);
573 }
574
ppgtt_get_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)575 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
576 struct intel_gvt_gtt_entry *entry, unsigned long index)
577 {
578 _ppgtt_get_root_entry(mm, entry, index, false);
579 }
580
_ppgtt_set_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index,bool guest)581 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
582 struct intel_gvt_gtt_entry *entry, unsigned long index,
583 bool guest)
584 {
585 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
586
587 pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
588 mm->ppgtt_mm.shadow_pdps,
589 entry, index, false, 0, mm->vgpu);
590 }
591
ppgtt_set_guest_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)592 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
593 struct intel_gvt_gtt_entry *entry, unsigned long index)
594 {
595 _ppgtt_set_root_entry(mm, entry, index, true);
596 }
597
ppgtt_set_shadow_root_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)598 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
599 struct intel_gvt_gtt_entry *entry, unsigned long index)
600 {
601 _ppgtt_set_root_entry(mm, entry, index, false);
602 }
603
ggtt_get_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)604 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
605 struct intel_gvt_gtt_entry *entry, unsigned long index)
606 {
607 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
608
609 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
610
611 entry->type = GTT_TYPE_GGTT_PTE;
612 pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613 false, 0, mm->vgpu);
614 }
615
ggtt_set_guest_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)616 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
617 struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623 pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
624 false, 0, mm->vgpu);
625 }
626
ggtt_get_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)627 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
628 struct intel_gvt_gtt_entry *entry, unsigned long index)
629 {
630 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
631
632 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
633
634 pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
635 }
636
ggtt_set_host_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * entry,unsigned long index)637 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
638 struct intel_gvt_gtt_entry *entry, unsigned long index)
639 {
640 struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
641
642 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
643
644 pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
645 }
646
647 /*
648 * PPGTT shadow page table helpers.
649 */
ppgtt_spt_get_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)650 static inline int ppgtt_spt_get_entry(
651 struct intel_vgpu_ppgtt_spt *spt,
652 void *page_table, int type,
653 struct intel_gvt_gtt_entry *e, unsigned long index,
654 bool guest)
655 {
656 struct intel_gvt *gvt = spt->vgpu->gvt;
657 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
658 int ret;
659
660 e->type = get_entry_type(type);
661
662 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
663 return -EINVAL;
664
665 ret = ops->get_entry(page_table, e, index, guest,
666 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
667 spt->vgpu);
668 if (ret)
669 return ret;
670
671 update_entry_type_for_real(ops, e, guest ?
672 spt->guest_page.pde_ips : false);
673
674 gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
675 type, e->type, index, e->val64);
676 return 0;
677 }
678
ppgtt_spt_set_entry(struct intel_vgpu_ppgtt_spt * spt,void * page_table,int type,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)679 static inline int ppgtt_spt_set_entry(
680 struct intel_vgpu_ppgtt_spt *spt,
681 void *page_table, int type,
682 struct intel_gvt_gtt_entry *e, unsigned long index,
683 bool guest)
684 {
685 struct intel_gvt *gvt = spt->vgpu->gvt;
686 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
687
688 if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
689 return -EINVAL;
690
691 gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
692 type, e->type, index, e->val64);
693
694 return ops->set_entry(page_table, e, index, guest,
695 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
696 spt->vgpu);
697 }
698
699 #define ppgtt_get_guest_entry(spt, e, index) \
700 ppgtt_spt_get_entry(spt, NULL, \
701 spt->guest_page.type, e, index, true)
702
703 #define ppgtt_set_guest_entry(spt, e, index) \
704 ppgtt_spt_set_entry(spt, NULL, \
705 spt->guest_page.type, e, index, true)
706
707 #define ppgtt_get_shadow_entry(spt, e, index) \
708 ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
709 spt->shadow_page.type, e, index, false)
710
711 #define ppgtt_set_shadow_entry(spt, e, index) \
712 ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
713 spt->shadow_page.type, e, index, false)
714
alloc_spt(gfp_t gfp_mask)715 static void *alloc_spt(gfp_t gfp_mask)
716 {
717 struct intel_vgpu_ppgtt_spt *spt;
718
719 spt = kzalloc(sizeof(*spt), gfp_mask);
720 if (!spt)
721 return NULL;
722
723 spt->shadow_page.page = alloc_page(gfp_mask);
724 if (!spt->shadow_page.page) {
725 kfree(spt);
726 return NULL;
727 }
728 return spt;
729 }
730
free_spt(struct intel_vgpu_ppgtt_spt * spt)731 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
732 {
733 __free_page(spt->shadow_page.page);
734 kfree(spt);
735 }
736
737 static int detach_oos_page(struct intel_vgpu *vgpu,
738 struct intel_vgpu_oos_page *oos_page);
739
ppgtt_free_spt(struct intel_vgpu_ppgtt_spt * spt)740 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
741 {
742 struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
743
744 trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
745
746 dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
747 PCI_DMA_BIDIRECTIONAL);
748
749 radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
750
751 if (spt->guest_page.gfn) {
752 if (spt->guest_page.oos_page)
753 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
754
755 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
756 }
757
758 list_del_init(&spt->post_shadow_list);
759 free_spt(spt);
760 }
761
ppgtt_free_all_spt(struct intel_vgpu * vgpu)762 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
763 {
764 struct intel_vgpu_ppgtt_spt *spt, *spn;
765 struct radix_tree_iter iter;
766 LIST_HEAD(all_spt);
767 void __rcu **slot;
768
769 rcu_read_lock();
770 radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
771 spt = radix_tree_deref_slot(slot);
772 list_move(&spt->post_shadow_list, &all_spt);
773 }
774 rcu_read_unlock();
775
776 list_for_each_entry_safe(spt, spn, &all_spt, post_shadow_list)
777 ppgtt_free_spt(spt);
778 }
779
780 static int ppgtt_handle_guest_write_page_table_bytes(
781 struct intel_vgpu_ppgtt_spt *spt,
782 u64 pa, void *p_data, int bytes);
783
ppgtt_write_protection_handler(struct intel_vgpu_page_track * page_track,u64 gpa,void * data,int bytes)784 static int ppgtt_write_protection_handler(
785 struct intel_vgpu_page_track *page_track,
786 u64 gpa, void *data, int bytes)
787 {
788 struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
789
790 int ret;
791
792 if (bytes != 4 && bytes != 8)
793 return -EINVAL;
794
795 ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
796 if (ret)
797 return ret;
798 return ret;
799 }
800
801 /* Find a spt by guest gfn. */
intel_vgpu_find_spt_by_gfn(struct intel_vgpu * vgpu,unsigned long gfn)802 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
803 struct intel_vgpu *vgpu, unsigned long gfn)
804 {
805 struct intel_vgpu_page_track *track;
806
807 track = intel_vgpu_find_page_track(vgpu, gfn);
808 if (track && track->handler == ppgtt_write_protection_handler)
809 return track->priv_data;
810
811 return NULL;
812 }
813
814 /* Find the spt by shadow page mfn. */
intel_vgpu_find_spt_by_mfn(struct intel_vgpu * vgpu,unsigned long mfn)815 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
816 struct intel_vgpu *vgpu, unsigned long mfn)
817 {
818 return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
819 }
820
821 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
822
823 /* Allocate shadow page table without guest page. */
ppgtt_alloc_spt(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)824 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
825 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type)
826 {
827 struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
828 struct intel_vgpu_ppgtt_spt *spt = NULL;
829 dma_addr_t daddr;
830 int ret;
831
832 retry:
833 spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
834 if (!spt) {
835 if (reclaim_one_ppgtt_mm(vgpu->gvt))
836 goto retry;
837
838 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
839 return ERR_PTR(-ENOMEM);
840 }
841
842 spt->vgpu = vgpu;
843 atomic_set(&spt->refcount, 1);
844 INIT_LIST_HEAD(&spt->post_shadow_list);
845
846 /*
847 * Init shadow_page.
848 */
849 spt->shadow_page.type = type;
850 daddr = dma_map_page(kdev, spt->shadow_page.page,
851 0, 4096, PCI_DMA_BIDIRECTIONAL);
852 if (dma_mapping_error(kdev, daddr)) {
853 gvt_vgpu_err("fail to map dma addr\n");
854 ret = -EINVAL;
855 goto err_free_spt;
856 }
857 spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
858 spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
859
860 ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
861 if (ret)
862 goto err_unmap_dma;
863
864 return spt;
865
866 err_unmap_dma:
867 dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
868 err_free_spt:
869 free_spt(spt);
870 return ERR_PTR(ret);
871 }
872
873 /* Allocate shadow page table associated with specific gfn. */
ppgtt_alloc_spt_gfn(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type,unsigned long gfn,bool guest_pde_ips)874 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
875 struct intel_vgpu *vgpu, enum intel_gvt_gtt_type type,
876 unsigned long gfn, bool guest_pde_ips)
877 {
878 struct intel_vgpu_ppgtt_spt *spt;
879 int ret;
880
881 spt = ppgtt_alloc_spt(vgpu, type);
882 if (IS_ERR(spt))
883 return spt;
884
885 /*
886 * Init guest_page.
887 */
888 ret = intel_vgpu_register_page_track(vgpu, gfn,
889 ppgtt_write_protection_handler, spt);
890 if (ret) {
891 ppgtt_free_spt(spt);
892 return ERR_PTR(ret);
893 }
894
895 spt->guest_page.type = type;
896 spt->guest_page.gfn = gfn;
897 spt->guest_page.pde_ips = guest_pde_ips;
898
899 trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
900
901 return spt;
902 }
903
904 #define pt_entry_size_shift(spt) \
905 ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
906
907 #define pt_entries(spt) \
908 (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
909
910 #define for_each_present_guest_entry(spt, e, i) \
911 for (i = 0; i < pt_entries(spt); \
912 i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
913 if (!ppgtt_get_guest_entry(spt, e, i) && \
914 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
915
916 #define for_each_present_shadow_entry(spt, e, i) \
917 for (i = 0; i < pt_entries(spt); \
918 i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
919 if (!ppgtt_get_shadow_entry(spt, e, i) && \
920 spt->vgpu->gvt->gtt.pte_ops->test_present(e))
921
922 #define for_each_shadow_entry(spt, e, i) \
923 for (i = 0; i < pt_entries(spt); \
924 i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
925 if (!ppgtt_get_shadow_entry(spt, e, i))
926
ppgtt_get_spt(struct intel_vgpu_ppgtt_spt * spt)927 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
928 {
929 int v = atomic_read(&spt->refcount);
930
931 trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
932 atomic_inc(&spt->refcount);
933 }
934
ppgtt_put_spt(struct intel_vgpu_ppgtt_spt * spt)935 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
936 {
937 int v = atomic_read(&spt->refcount);
938
939 trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
940 return atomic_dec_return(&spt->refcount);
941 }
942
943 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
944
ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * e)945 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
946 struct intel_gvt_gtt_entry *e)
947 {
948 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
949 struct intel_vgpu_ppgtt_spt *s;
950 enum intel_gvt_gtt_type cur_pt_type;
951
952 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
953
954 if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
955 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
956 cur_pt_type = get_next_pt_type(e->type);
957
958 if (!gtt_type_is_pt(cur_pt_type) ||
959 !gtt_type_is_pt(cur_pt_type + 1)) {
960 WARN(1, "Invalid page table type, cur_pt_type is: %d\n", cur_pt_type);
961 return -EINVAL;
962 }
963
964 cur_pt_type += 1;
965
966 if (ops->get_pfn(e) ==
967 vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
968 return 0;
969 }
970 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
971 if (!s) {
972 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
973 ops->get_pfn(e));
974 return -ENXIO;
975 }
976 return ppgtt_invalidate_spt(s);
977 }
978
ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * entry)979 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
980 struct intel_gvt_gtt_entry *entry)
981 {
982 struct intel_vgpu *vgpu = spt->vgpu;
983 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
984 unsigned long pfn;
985 int type;
986
987 pfn = ops->get_pfn(entry);
988 type = spt->shadow_page.type;
989
990 /* Uninitialized spte or unshadowed spte. */
991 if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
992 return;
993
994 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
995 }
996
ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt * spt)997 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
998 {
999 struct intel_vgpu *vgpu = spt->vgpu;
1000 struct intel_gvt_gtt_entry e;
1001 unsigned long index;
1002 int ret;
1003
1004 trace_spt_change(spt->vgpu->id, "die", spt,
1005 spt->guest_page.gfn, spt->shadow_page.type);
1006
1007 if (ppgtt_put_spt(spt) > 0)
1008 return 0;
1009
1010 for_each_present_shadow_entry(spt, &e, index) {
1011 switch (e.type) {
1012 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1013 gvt_vdbg_mm("invalidate 4K entry\n");
1014 ppgtt_invalidate_pte(spt, &e);
1015 break;
1016 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1017 /* We don't setup 64K shadow entry so far. */
1018 WARN(1, "suspicious 64K gtt entry\n");
1019 continue;
1020 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1021 gvt_vdbg_mm("invalidate 2M entry\n");
1022 continue;
1023 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1024 WARN(1, "GVT doesn't support 1GB page\n");
1025 continue;
1026 case GTT_TYPE_PPGTT_PML4_ENTRY:
1027 case GTT_TYPE_PPGTT_PDP_ENTRY:
1028 case GTT_TYPE_PPGTT_PDE_ENTRY:
1029 gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1030 ret = ppgtt_invalidate_spt_by_shadow_entry(
1031 spt->vgpu, &e);
1032 if (ret)
1033 goto fail;
1034 break;
1035 default:
1036 GEM_BUG_ON(1);
1037 }
1038 }
1039
1040 trace_spt_change(spt->vgpu->id, "release", spt,
1041 spt->guest_page.gfn, spt->shadow_page.type);
1042 ppgtt_free_spt(spt);
1043 return 0;
1044 fail:
1045 gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1046 spt, e.val64, e.type);
1047 return ret;
1048 }
1049
vgpu_ips_enabled(struct intel_vgpu * vgpu)1050 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1051 {
1052 struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1053
1054 if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1055 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1056 GAMW_ECO_ENABLE_64K_IPS_FIELD;
1057
1058 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1059 } else if (INTEL_GEN(dev_priv) >= 11) {
1060 /* 64K paging only controlled by IPS bit in PTE now. */
1061 return true;
1062 } else
1063 return false;
1064 }
1065
1066 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1067
ppgtt_populate_spt_by_guest_entry(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * we)1068 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1069 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1070 {
1071 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1072 struct intel_vgpu_ppgtt_spt *spt = NULL;
1073 bool ips = false;
1074 int ret;
1075
1076 GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1077
1078 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1079 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1080
1081 spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1082 if (spt) {
1083 ppgtt_get_spt(spt);
1084
1085 if (ips != spt->guest_page.pde_ips) {
1086 spt->guest_page.pde_ips = ips;
1087
1088 gvt_dbg_mm("reshadow PDE since ips changed\n");
1089 clear_page(spt->shadow_page.vaddr);
1090 ret = ppgtt_populate_spt(spt);
1091 if (ret) {
1092 ppgtt_put_spt(spt);
1093 goto err;
1094 }
1095 }
1096 } else {
1097 int type = get_next_pt_type(we->type);
1098
1099 if (!gtt_type_is_pt(type)) {
1100 ret = -EINVAL;
1101 goto err;
1102 }
1103
1104 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1105 if (IS_ERR(spt)) {
1106 ret = PTR_ERR(spt);
1107 goto err;
1108 }
1109
1110 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1111 if (ret)
1112 goto err_free_spt;
1113
1114 ret = ppgtt_populate_spt(spt);
1115 if (ret)
1116 goto err_free_spt;
1117
1118 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1119 spt->shadow_page.type);
1120 }
1121 return spt;
1122
1123 err_free_spt:
1124 ppgtt_free_spt(spt);
1125 spt = NULL;
1126 err:
1127 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1128 spt, we->val64, we->type);
1129 return ERR_PTR(ret);
1130 }
1131
ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry * se,struct intel_vgpu_ppgtt_spt * s,struct intel_gvt_gtt_entry * ge)1132 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1133 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1134 {
1135 struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1136
1137 se->type = ge->type;
1138 se->val64 = ge->val64;
1139
1140 /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1141 if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1142 ops->clear_ips(se);
1143
1144 ops->set_pfn(se, s->shadow_page.mfn);
1145 }
1146
1147 /**
1148 * Check if can do 2M page
1149 * @vgpu: target vgpu
1150 * @entry: target pfn's gtt entry
1151 *
1152 * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1153 * negtive if found err.
1154 */
is_2MB_gtt_possible(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)1155 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1156 struct intel_gvt_gtt_entry *entry)
1157 {
1158 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1159 unsigned long pfn;
1160
1161 if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1162 return 0;
1163
1164 pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1165 if (pfn == INTEL_GVT_INVALID_ADDR)
1166 return -EINVAL;
1167
1168 return PageTransHuge(pfn_to_page(pfn));
1169 }
1170
split_2MB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1171 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1172 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1173 struct intel_gvt_gtt_entry *se)
1174 {
1175 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1176 struct intel_vgpu_ppgtt_spt *sub_spt;
1177 struct intel_gvt_gtt_entry sub_se;
1178 unsigned long start_gfn;
1179 dma_addr_t dma_addr;
1180 unsigned long sub_index;
1181 int ret;
1182
1183 gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1184
1185 start_gfn = ops->get_pfn(se);
1186
1187 sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1188 if (IS_ERR(sub_spt))
1189 return PTR_ERR(sub_spt);
1190
1191 for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1192 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1193 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1194 if (ret) {
1195 ppgtt_invalidate_spt(spt);
1196 return ret;
1197 }
1198 sub_se.val64 = se->val64;
1199
1200 /* Copy the PAT field from PDE. */
1201 sub_se.val64 &= ~_PAGE_PAT;
1202 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1203
1204 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1205 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1206 }
1207
1208 /* Clear dirty field. */
1209 se->val64 &= ~_PAGE_DIRTY;
1210
1211 ops->clear_pse(se);
1212 ops->clear_ips(se);
1213 ops->set_pfn(se, sub_spt->shadow_page.mfn);
1214 ppgtt_set_shadow_entry(spt, se, index);
1215 return 0;
1216 }
1217
split_64KB_gtt_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * se)1218 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1219 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1220 struct intel_gvt_gtt_entry *se)
1221 {
1222 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1223 struct intel_gvt_gtt_entry entry = *se;
1224 unsigned long start_gfn;
1225 dma_addr_t dma_addr;
1226 int i, ret;
1227
1228 gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1229
1230 GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1231
1232 start_gfn = ops->get_pfn(se);
1233
1234 entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1235 ops->set_64k_splited(&entry);
1236
1237 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1238 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1239 start_gfn + i, PAGE_SIZE, &dma_addr);
1240 if (ret)
1241 return ret;
1242
1243 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1244 ppgtt_set_shadow_entry(spt, &entry, index + i);
1245 }
1246 return 0;
1247 }
1248
ppgtt_populate_shadow_entry(struct intel_vgpu * vgpu,struct intel_vgpu_ppgtt_spt * spt,unsigned long index,struct intel_gvt_gtt_entry * ge)1249 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1250 struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1251 struct intel_gvt_gtt_entry *ge)
1252 {
1253 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1254 struct intel_gvt_gtt_entry se = *ge;
1255 unsigned long gfn, page_size = PAGE_SIZE;
1256 dma_addr_t dma_addr;
1257 int ret;
1258
1259 if (!pte_ops->test_present(ge))
1260 return 0;
1261
1262 gfn = pte_ops->get_pfn(ge);
1263
1264 switch (ge->type) {
1265 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1266 gvt_vdbg_mm("shadow 4K gtt entry\n");
1267 break;
1268 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1269 gvt_vdbg_mm("shadow 64K gtt entry\n");
1270 /*
1271 * The layout of 64K page is special, the page size is
1272 * controlled by uper PDE. To be simple, we always split
1273 * 64K page to smaller 4K pages in shadow PT.
1274 */
1275 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1276 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1277 gvt_vdbg_mm("shadow 2M gtt entry\n");
1278 ret = is_2MB_gtt_possible(vgpu, ge);
1279 if (ret == 0)
1280 return split_2MB_gtt_entry(vgpu, spt, index, &se);
1281 else if (ret < 0)
1282 return ret;
1283 page_size = I915_GTT_PAGE_SIZE_2M;
1284 break;
1285 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1286 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1287 return -EINVAL;
1288 default:
1289 GEM_BUG_ON(1);
1290 }
1291
1292 /* direct shadow */
1293 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1294 &dma_addr);
1295 if (ret)
1296 return -ENXIO;
1297
1298 pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1299 ppgtt_set_shadow_entry(spt, &se, index);
1300 return 0;
1301 }
1302
ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt * spt)1303 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1304 {
1305 struct intel_vgpu *vgpu = spt->vgpu;
1306 struct intel_gvt *gvt = vgpu->gvt;
1307 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1308 struct intel_vgpu_ppgtt_spt *s;
1309 struct intel_gvt_gtt_entry se, ge;
1310 unsigned long gfn, i;
1311 int ret;
1312
1313 trace_spt_change(spt->vgpu->id, "born", spt,
1314 spt->guest_page.gfn, spt->shadow_page.type);
1315
1316 for_each_present_guest_entry(spt, &ge, i) {
1317 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1318 s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1319 if (IS_ERR(s)) {
1320 ret = PTR_ERR(s);
1321 goto fail;
1322 }
1323 ppgtt_get_shadow_entry(spt, &se, i);
1324 ppgtt_generate_shadow_entry(&se, s, &ge);
1325 ppgtt_set_shadow_entry(spt, &se, i);
1326 } else {
1327 gfn = ops->get_pfn(&ge);
1328 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1329 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1330 ppgtt_set_shadow_entry(spt, &se, i);
1331 continue;
1332 }
1333
1334 ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1335 if (ret)
1336 goto fail;
1337 }
1338 }
1339 return 0;
1340 fail:
1341 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1342 spt, ge.val64, ge.type);
1343 return ret;
1344 }
1345
ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * se,unsigned long index)1346 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1347 struct intel_gvt_gtt_entry *se, unsigned long index)
1348 {
1349 struct intel_vgpu *vgpu = spt->vgpu;
1350 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1351 int ret;
1352
1353 trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1354 spt->shadow_page.type, se->val64, index);
1355
1356 gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1357 se->type, index, se->val64);
1358
1359 if (!ops->test_present(se))
1360 return 0;
1361
1362 if (ops->get_pfn(se) ==
1363 vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1364 return 0;
1365
1366 if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1367 struct intel_vgpu_ppgtt_spt *s =
1368 intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1369 if (!s) {
1370 gvt_vgpu_err("fail to find guest page\n");
1371 ret = -ENXIO;
1372 goto fail;
1373 }
1374 ret = ppgtt_invalidate_spt(s);
1375 if (ret)
1376 goto fail;
1377 } else {
1378 /* We don't setup 64K shadow entry so far. */
1379 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1380 "suspicious 64K entry\n");
1381 ppgtt_invalidate_pte(spt, se);
1382 }
1383
1384 return 0;
1385 fail:
1386 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1387 spt, se->val64, se->type);
1388 return ret;
1389 }
1390
ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1391 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1392 struct intel_gvt_gtt_entry *we, unsigned long index)
1393 {
1394 struct intel_vgpu *vgpu = spt->vgpu;
1395 struct intel_gvt_gtt_entry m;
1396 struct intel_vgpu_ppgtt_spt *s;
1397 int ret;
1398
1399 trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1400 we->val64, index);
1401
1402 gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1403 we->type, index, we->val64);
1404
1405 if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1406 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1407 if (IS_ERR(s)) {
1408 ret = PTR_ERR(s);
1409 goto fail;
1410 }
1411 ppgtt_get_shadow_entry(spt, &m, index);
1412 ppgtt_generate_shadow_entry(&m, s, we);
1413 ppgtt_set_shadow_entry(spt, &m, index);
1414 } else {
1415 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1416 if (ret)
1417 goto fail;
1418 }
1419 return 0;
1420 fail:
1421 gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1422 spt, we->val64, we->type);
1423 return ret;
1424 }
1425
sync_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1426 static int sync_oos_page(struct intel_vgpu *vgpu,
1427 struct intel_vgpu_oos_page *oos_page)
1428 {
1429 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1430 struct intel_gvt *gvt = vgpu->gvt;
1431 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1432 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1433 struct intel_gvt_gtt_entry old, new;
1434 int index;
1435 int ret;
1436
1437 trace_oos_change(vgpu->id, "sync", oos_page->id,
1438 spt, spt->guest_page.type);
1439
1440 old.type = new.type = get_entry_type(spt->guest_page.type);
1441 old.val64 = new.val64 = 0;
1442
1443 for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1444 info->gtt_entry_size_shift); index++) {
1445 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1446 ops->get_entry(NULL, &new, index, true,
1447 spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1448
1449 if (old.val64 == new.val64
1450 && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1451 continue;
1452
1453 trace_oos_sync(vgpu->id, oos_page->id,
1454 spt, spt->guest_page.type,
1455 new.val64, index);
1456
1457 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1458 if (ret)
1459 return ret;
1460
1461 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1462 }
1463
1464 spt->guest_page.write_cnt = 0;
1465 list_del_init(&spt->post_shadow_list);
1466 return 0;
1467 }
1468
detach_oos_page(struct intel_vgpu * vgpu,struct intel_vgpu_oos_page * oos_page)1469 static int detach_oos_page(struct intel_vgpu *vgpu,
1470 struct intel_vgpu_oos_page *oos_page)
1471 {
1472 struct intel_gvt *gvt = vgpu->gvt;
1473 struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1474
1475 trace_oos_change(vgpu->id, "detach", oos_page->id,
1476 spt, spt->guest_page.type);
1477
1478 spt->guest_page.write_cnt = 0;
1479 spt->guest_page.oos_page = NULL;
1480 oos_page->spt = NULL;
1481
1482 list_del_init(&oos_page->vm_list);
1483 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1484
1485 return 0;
1486 }
1487
attach_oos_page(struct intel_vgpu_oos_page * oos_page,struct intel_vgpu_ppgtt_spt * spt)1488 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1489 struct intel_vgpu_ppgtt_spt *spt)
1490 {
1491 struct intel_gvt *gvt = spt->vgpu->gvt;
1492 int ret;
1493
1494 ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1495 spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1496 oos_page->mem, I915_GTT_PAGE_SIZE);
1497 if (ret)
1498 return ret;
1499
1500 oos_page->spt = spt;
1501 spt->guest_page.oos_page = oos_page;
1502
1503 list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1504
1505 trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1506 spt, spt->guest_page.type);
1507 return 0;
1508 }
1509
ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt * spt)1510 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1511 {
1512 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1513 int ret;
1514
1515 ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1516 if (ret)
1517 return ret;
1518
1519 trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1520 spt, spt->guest_page.type);
1521
1522 list_del_init(&oos_page->vm_list);
1523 return sync_oos_page(spt->vgpu, oos_page);
1524 }
1525
ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt * spt)1526 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1527 {
1528 struct intel_gvt *gvt = spt->vgpu->gvt;
1529 struct intel_gvt_gtt *gtt = &gvt->gtt;
1530 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1531 int ret;
1532
1533 WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1534
1535 if (list_empty(>t->oos_page_free_list_head)) {
1536 oos_page = container_of(gtt->oos_page_use_list_head.next,
1537 struct intel_vgpu_oos_page, list);
1538 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1539 if (ret)
1540 return ret;
1541 ret = detach_oos_page(spt->vgpu, oos_page);
1542 if (ret)
1543 return ret;
1544 } else
1545 oos_page = container_of(gtt->oos_page_free_list_head.next,
1546 struct intel_vgpu_oos_page, list);
1547 return attach_oos_page(oos_page, spt);
1548 }
1549
ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt * spt)1550 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1551 {
1552 struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1553
1554 if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1555 return -EINVAL;
1556
1557 trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1558 spt, spt->guest_page.type);
1559
1560 list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1561 return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1562 }
1563
1564 /**
1565 * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1566 * @vgpu: a vGPU
1567 *
1568 * This function is called before submitting a guest workload to host,
1569 * to sync all the out-of-synced shadow for vGPU
1570 *
1571 * Returns:
1572 * Zero on success, negative error code if failed.
1573 */
intel_vgpu_sync_oos_pages(struct intel_vgpu * vgpu)1574 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1575 {
1576 struct list_head *pos, *n;
1577 struct intel_vgpu_oos_page *oos_page;
1578 int ret;
1579
1580 if (!enable_out_of_sync)
1581 return 0;
1582
1583 list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1584 oos_page = container_of(pos,
1585 struct intel_vgpu_oos_page, vm_list);
1586 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1587 if (ret)
1588 return ret;
1589 }
1590 return 0;
1591 }
1592
1593 /*
1594 * The heart of PPGTT shadow page table.
1595 */
ppgtt_handle_guest_write_page_table(struct intel_vgpu_ppgtt_spt * spt,struct intel_gvt_gtt_entry * we,unsigned long index)1596 static int ppgtt_handle_guest_write_page_table(
1597 struct intel_vgpu_ppgtt_spt *spt,
1598 struct intel_gvt_gtt_entry *we, unsigned long index)
1599 {
1600 struct intel_vgpu *vgpu = spt->vgpu;
1601 int type = spt->shadow_page.type;
1602 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1603 struct intel_gvt_gtt_entry old_se;
1604 int new_present;
1605 int i, ret;
1606
1607 new_present = ops->test_present(we);
1608
1609 /*
1610 * Adding the new entry first and then removing the old one, that can
1611 * guarantee the ppgtt table is validated during the window between
1612 * adding and removal.
1613 */
1614 ppgtt_get_shadow_entry(spt, &old_se, index);
1615
1616 if (new_present) {
1617 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1618 if (ret)
1619 goto fail;
1620 }
1621
1622 ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1623 if (ret)
1624 goto fail;
1625
1626 if (!new_present) {
1627 /* For 64KB splited entries, we need clear them all. */
1628 if (ops->test_64k_splited(&old_se) &&
1629 !(index % GTT_64K_PTE_STRIDE)) {
1630 gvt_vdbg_mm("remove splited 64K shadow entries\n");
1631 for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1632 ops->clear_64k_splited(&old_se);
1633 ops->set_pfn(&old_se,
1634 vgpu->gtt.scratch_pt[type].page_mfn);
1635 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1636 }
1637 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1638 old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1639 ops->clear_pse(&old_se);
1640 ops->set_pfn(&old_se,
1641 vgpu->gtt.scratch_pt[type].page_mfn);
1642 ppgtt_set_shadow_entry(spt, &old_se, index);
1643 } else {
1644 ops->set_pfn(&old_se,
1645 vgpu->gtt.scratch_pt[type].page_mfn);
1646 ppgtt_set_shadow_entry(spt, &old_se, index);
1647 }
1648 }
1649
1650 return 0;
1651 fail:
1652 gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1653 spt, we->val64, we->type);
1654 return ret;
1655 }
1656
1657
1658
can_do_out_of_sync(struct intel_vgpu_ppgtt_spt * spt)1659 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1660 {
1661 return enable_out_of_sync
1662 && gtt_type_is_pte_pt(spt->guest_page.type)
1663 && spt->guest_page.write_cnt >= 2;
1664 }
1665
ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt * spt,unsigned long index)1666 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1667 unsigned long index)
1668 {
1669 set_bit(index, spt->post_shadow_bitmap);
1670 if (!list_empty(&spt->post_shadow_list))
1671 return;
1672
1673 list_add_tail(&spt->post_shadow_list,
1674 &spt->vgpu->gtt.post_shadow_list_head);
1675 }
1676
1677 /**
1678 * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1679 * @vgpu: a vGPU
1680 *
1681 * This function is called before submitting a guest workload to host,
1682 * to flush all the post shadows for a vGPU.
1683 *
1684 * Returns:
1685 * Zero on success, negative error code if failed.
1686 */
intel_vgpu_flush_post_shadow(struct intel_vgpu * vgpu)1687 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1688 {
1689 struct list_head *pos, *n;
1690 struct intel_vgpu_ppgtt_spt *spt;
1691 struct intel_gvt_gtt_entry ge;
1692 unsigned long index;
1693 int ret;
1694
1695 list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1696 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1697 post_shadow_list);
1698
1699 for_each_set_bit(index, spt->post_shadow_bitmap,
1700 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1701 ppgtt_get_guest_entry(spt, &ge, index);
1702
1703 ret = ppgtt_handle_guest_write_page_table(spt,
1704 &ge, index);
1705 if (ret)
1706 return ret;
1707 clear_bit(index, spt->post_shadow_bitmap);
1708 }
1709 list_del_init(&spt->post_shadow_list);
1710 }
1711 return 0;
1712 }
1713
ppgtt_handle_guest_write_page_table_bytes(struct intel_vgpu_ppgtt_spt * spt,u64 pa,void * p_data,int bytes)1714 static int ppgtt_handle_guest_write_page_table_bytes(
1715 struct intel_vgpu_ppgtt_spt *spt,
1716 u64 pa, void *p_data, int bytes)
1717 {
1718 struct intel_vgpu *vgpu = spt->vgpu;
1719 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1720 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1721 struct intel_gvt_gtt_entry we, se;
1722 unsigned long index;
1723 int ret;
1724
1725 index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1726
1727 ppgtt_get_guest_entry(spt, &we, index);
1728
1729 /*
1730 * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1731 * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1732 * ignored.
1733 */
1734 if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1735 (index % GTT_64K_PTE_STRIDE)) {
1736 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1737 index);
1738 return 0;
1739 }
1740
1741 if (bytes == info->gtt_entry_size) {
1742 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1743 if (ret)
1744 return ret;
1745 } else {
1746 if (!test_bit(index, spt->post_shadow_bitmap)) {
1747 int type = spt->shadow_page.type;
1748
1749 ppgtt_get_shadow_entry(spt, &se, index);
1750 ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1751 if (ret)
1752 return ret;
1753 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1754 ppgtt_set_shadow_entry(spt, &se, index);
1755 }
1756 ppgtt_set_post_shadow(spt, index);
1757 }
1758
1759 if (!enable_out_of_sync)
1760 return 0;
1761
1762 spt->guest_page.write_cnt++;
1763
1764 if (spt->guest_page.oos_page)
1765 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1766 false, 0, vgpu);
1767
1768 if (can_do_out_of_sync(spt)) {
1769 if (!spt->guest_page.oos_page)
1770 ppgtt_allocate_oos_page(spt);
1771
1772 ret = ppgtt_set_guest_page_oos(spt);
1773 if (ret < 0)
1774 return ret;
1775 }
1776 return 0;
1777 }
1778
invalidate_ppgtt_mm(struct intel_vgpu_mm * mm)1779 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1780 {
1781 struct intel_vgpu *vgpu = mm->vgpu;
1782 struct intel_gvt *gvt = vgpu->gvt;
1783 struct intel_gvt_gtt *gtt = &gvt->gtt;
1784 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1785 struct intel_gvt_gtt_entry se;
1786 int index;
1787
1788 if (!mm->ppgtt_mm.shadowed)
1789 return;
1790
1791 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1792 ppgtt_get_shadow_root_entry(mm, &se, index);
1793
1794 if (!ops->test_present(&se))
1795 continue;
1796
1797 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1798 se.val64 = 0;
1799 ppgtt_set_shadow_root_entry(mm, &se, index);
1800
1801 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1802 NULL, se.type, se.val64, index);
1803 }
1804
1805 mm->ppgtt_mm.shadowed = false;
1806 }
1807
1808
shadow_ppgtt_mm(struct intel_vgpu_mm * mm)1809 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1810 {
1811 struct intel_vgpu *vgpu = mm->vgpu;
1812 struct intel_gvt *gvt = vgpu->gvt;
1813 struct intel_gvt_gtt *gtt = &gvt->gtt;
1814 struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1815 struct intel_vgpu_ppgtt_spt *spt;
1816 struct intel_gvt_gtt_entry ge, se;
1817 int index, ret;
1818
1819 if (mm->ppgtt_mm.shadowed)
1820 return 0;
1821
1822 mm->ppgtt_mm.shadowed = true;
1823
1824 for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1825 ppgtt_get_guest_root_entry(mm, &ge, index);
1826
1827 if (!ops->test_present(&ge))
1828 continue;
1829
1830 trace_spt_guest_change(vgpu->id, __func__, NULL,
1831 ge.type, ge.val64, index);
1832
1833 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1834 if (IS_ERR(spt)) {
1835 gvt_vgpu_err("fail to populate guest root pointer\n");
1836 ret = PTR_ERR(spt);
1837 goto fail;
1838 }
1839 ppgtt_generate_shadow_entry(&se, spt, &ge);
1840 ppgtt_set_shadow_root_entry(mm, &se, index);
1841
1842 trace_spt_guest_change(vgpu->id, "populate root pointer",
1843 NULL, se.type, se.val64, index);
1844 }
1845
1846 return 0;
1847 fail:
1848 invalidate_ppgtt_mm(mm);
1849 return ret;
1850 }
1851
vgpu_alloc_mm(struct intel_vgpu * vgpu)1852 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1853 {
1854 struct intel_vgpu_mm *mm;
1855
1856 mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1857 if (!mm)
1858 return NULL;
1859
1860 mm->vgpu = vgpu;
1861 kref_init(&mm->ref);
1862 atomic_set(&mm->pincount, 0);
1863
1864 return mm;
1865 }
1866
vgpu_free_mm(struct intel_vgpu_mm * mm)1867 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1868 {
1869 kfree(mm);
1870 }
1871
1872 /**
1873 * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1874 * @vgpu: a vGPU
1875 * @root_entry_type: ppgtt root entry type
1876 * @pdps: guest pdps.
1877 *
1878 * This function is used to create a ppgtt mm object for a vGPU.
1879 *
1880 * Returns:
1881 * Zero on success, negative error code in pointer if failed.
1882 */
intel_vgpu_create_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])1883 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1884 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
1885 {
1886 struct intel_gvt *gvt = vgpu->gvt;
1887 struct intel_vgpu_mm *mm;
1888 int ret;
1889
1890 mm = vgpu_alloc_mm(vgpu);
1891 if (!mm)
1892 return ERR_PTR(-ENOMEM);
1893
1894 mm->type = INTEL_GVT_MM_PPGTT;
1895
1896 GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1897 root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1898 mm->ppgtt_mm.root_entry_type = root_entry_type;
1899
1900 INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1901 INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1902
1903 if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1904 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1905 else
1906 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1907 sizeof(mm->ppgtt_mm.guest_pdps));
1908
1909 ret = shadow_ppgtt_mm(mm);
1910 if (ret) {
1911 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1912 vgpu_free_mm(mm);
1913 return ERR_PTR(ret);
1914 }
1915
1916 list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1917
1918 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
1919 list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1920 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
1921
1922 return mm;
1923 }
1924
intel_vgpu_create_ggtt_mm(struct intel_vgpu * vgpu)1925 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1926 {
1927 struct intel_vgpu_mm *mm;
1928 unsigned long nr_entries;
1929
1930 mm = vgpu_alloc_mm(vgpu);
1931 if (!mm)
1932 return ERR_PTR(-ENOMEM);
1933
1934 mm->type = INTEL_GVT_MM_GGTT;
1935
1936 nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1937 mm->ggtt_mm.virtual_ggtt =
1938 vzalloc(array_size(nr_entries,
1939 vgpu->gvt->device_info.gtt_entry_size));
1940 if (!mm->ggtt_mm.virtual_ggtt) {
1941 vgpu_free_mm(mm);
1942 return ERR_PTR(-ENOMEM);
1943 }
1944
1945 return mm;
1946 }
1947
1948 /**
1949 * _intel_vgpu_mm_release - destroy a mm object
1950 * @mm_ref: a kref object
1951 *
1952 * This function is used to destroy a mm object for vGPU
1953 *
1954 */
_intel_vgpu_mm_release(struct kref * mm_ref)1955 void _intel_vgpu_mm_release(struct kref *mm_ref)
1956 {
1957 struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1958
1959 if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1960 gvt_err("vgpu mm pin count bug detected\n");
1961
1962 if (mm->type == INTEL_GVT_MM_PPGTT) {
1963 list_del(&mm->ppgtt_mm.list);
1964
1965 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1966 list_del(&mm->ppgtt_mm.lru_list);
1967 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
1968
1969 invalidate_ppgtt_mm(mm);
1970 } else {
1971 vfree(mm->ggtt_mm.virtual_ggtt);
1972 }
1973
1974 vgpu_free_mm(mm);
1975 }
1976
1977 /**
1978 * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1979 * @mm: a vGPU mm object
1980 *
1981 * This function is called when user doesn't want to use a vGPU mm object
1982 */
intel_vgpu_unpin_mm(struct intel_vgpu_mm * mm)1983 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1984 {
1985 atomic_dec_if_positive(&mm->pincount);
1986 }
1987
1988 /**
1989 * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1990 * @mm: target vgpu mm
1991 *
1992 * This function is called when user wants to use a vGPU mm object. If this
1993 * mm object hasn't been shadowed yet, the shadow will be populated at this
1994 * time.
1995 *
1996 * Returns:
1997 * Zero on success, negative error code if failed.
1998 */
intel_vgpu_pin_mm(struct intel_vgpu_mm * mm)1999 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
2000 {
2001 int ret;
2002
2003 atomic_inc(&mm->pincount);
2004
2005 if (mm->type == INTEL_GVT_MM_PPGTT) {
2006 ret = shadow_ppgtt_mm(mm);
2007 if (ret)
2008 return ret;
2009
2010 mutex_lock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2011 list_move_tail(&mm->ppgtt_mm.lru_list,
2012 &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
2013 mutex_unlock(&mm->vgpu->gvt->gtt.ppgtt_mm_lock);
2014 }
2015
2016 return 0;
2017 }
2018
reclaim_one_ppgtt_mm(struct intel_gvt * gvt)2019 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
2020 {
2021 struct intel_vgpu_mm *mm;
2022 struct list_head *pos, *n;
2023
2024 mutex_lock(&gvt->gtt.ppgtt_mm_lock);
2025
2026 list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
2027 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
2028
2029 if (atomic_read(&mm->pincount))
2030 continue;
2031
2032 list_del_init(&mm->ppgtt_mm.lru_list);
2033 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2034 invalidate_ppgtt_mm(mm);
2035 return 1;
2036 }
2037 mutex_unlock(&gvt->gtt.ppgtt_mm_lock);
2038 return 0;
2039 }
2040
2041 /*
2042 * GMA translation APIs.
2043 */
ppgtt_get_next_level_entry(struct intel_vgpu_mm * mm,struct intel_gvt_gtt_entry * e,unsigned long index,bool guest)2044 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
2045 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
2046 {
2047 struct intel_vgpu *vgpu = mm->vgpu;
2048 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2049 struct intel_vgpu_ppgtt_spt *s;
2050
2051 s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2052 if (!s)
2053 return -ENXIO;
2054
2055 if (!guest)
2056 ppgtt_get_shadow_entry(s, e, index);
2057 else
2058 ppgtt_get_guest_entry(s, e, index);
2059 return 0;
2060 }
2061
2062 /**
2063 * intel_vgpu_gma_to_gpa - translate a gma to GPA
2064 * @mm: mm object. could be a PPGTT or GGTT mm object
2065 * @gma: graphics memory address in this mm object
2066 *
2067 * This function is used to translate a graphics memory address in specific
2068 * graphics memory space to guest physical address.
2069 *
2070 * Returns:
2071 * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2072 */
intel_vgpu_gma_to_gpa(struct intel_vgpu_mm * mm,unsigned long gma)2073 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2074 {
2075 struct intel_vgpu *vgpu = mm->vgpu;
2076 struct intel_gvt *gvt = vgpu->gvt;
2077 struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2078 struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2079 unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2080 unsigned long gma_index[4];
2081 struct intel_gvt_gtt_entry e;
2082 int i, levels = 0;
2083 int ret;
2084
2085 GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2086 mm->type != INTEL_GVT_MM_PPGTT);
2087
2088 if (mm->type == INTEL_GVT_MM_GGTT) {
2089 if (!vgpu_gmadr_is_valid(vgpu, gma))
2090 goto err;
2091
2092 ggtt_get_guest_entry(mm, &e,
2093 gma_ops->gma_to_ggtt_pte_index(gma));
2094
2095 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2096 + (gma & ~I915_GTT_PAGE_MASK);
2097
2098 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2099 } else {
2100 switch (mm->ppgtt_mm.root_entry_type) {
2101 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2102 ppgtt_get_shadow_root_entry(mm, &e, 0);
2103
2104 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2105 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2106 gma_index[2] = gma_ops->gma_to_pde_index(gma);
2107 gma_index[3] = gma_ops->gma_to_pte_index(gma);
2108 levels = 4;
2109 break;
2110 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2111 ppgtt_get_shadow_root_entry(mm, &e,
2112 gma_ops->gma_to_l3_pdp_index(gma));
2113
2114 gma_index[0] = gma_ops->gma_to_pde_index(gma);
2115 gma_index[1] = gma_ops->gma_to_pte_index(gma);
2116 levels = 2;
2117 break;
2118 default:
2119 GEM_BUG_ON(1);
2120 }
2121
2122 /* walk the shadow page table and get gpa from guest entry */
2123 for (i = 0; i < levels; i++) {
2124 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2125 (i == levels - 1));
2126 if (ret)
2127 goto err;
2128
2129 if (!pte_ops->test_present(&e)) {
2130 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2131 goto err;
2132 }
2133 }
2134
2135 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2136 (gma & ~I915_GTT_PAGE_MASK);
2137 trace_gma_translate(vgpu->id, "ppgtt", 0,
2138 mm->ppgtt_mm.root_entry_type, gma, gpa);
2139 }
2140
2141 return gpa;
2142 err:
2143 gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2144 return INTEL_GVT_INVALID_ADDR;
2145 }
2146
emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2147 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2148 unsigned int off, void *p_data, unsigned int bytes)
2149 {
2150 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2151 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2152 unsigned long index = off >> info->gtt_entry_size_shift;
2153 unsigned long gma;
2154 struct intel_gvt_gtt_entry e;
2155
2156 if (bytes != 4 && bytes != 8)
2157 return -EINVAL;
2158
2159 gma = index << I915_GTT_PAGE_SHIFT;
2160 if (!intel_gvt_ggtt_validate_range(vgpu,
2161 gma, 1 << I915_GTT_PAGE_SHIFT)) {
2162 gvt_dbg_mm("read invalid ggtt at 0x%lx\n", gma);
2163 memset(p_data, 0, bytes);
2164 return 0;
2165 }
2166
2167 ggtt_get_guest_entry(ggtt_mm, &e, index);
2168 memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2169 bytes);
2170 return 0;
2171 }
2172
2173 /**
2174 * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2175 * @vgpu: a vGPU
2176 * @off: register offset
2177 * @p_data: data will be returned to guest
2178 * @bytes: data length
2179 *
2180 * This function is used to emulate the GTT MMIO register read
2181 *
2182 * Returns:
2183 * Zero on success, error code if failed.
2184 */
intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2185 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2186 void *p_data, unsigned int bytes)
2187 {
2188 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2189 int ret;
2190
2191 if (bytes != 4 && bytes != 8)
2192 return -EINVAL;
2193
2194 off -= info->gtt_start_offset;
2195 ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2196 return ret;
2197 }
2198
ggtt_invalidate_pte(struct intel_vgpu * vgpu,struct intel_gvt_gtt_entry * entry)2199 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2200 struct intel_gvt_gtt_entry *entry)
2201 {
2202 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2203 unsigned long pfn;
2204
2205 pfn = pte_ops->get_pfn(entry);
2206 if (pfn != vgpu->gvt->gtt.scratch_mfn)
2207 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2208 pfn << PAGE_SHIFT);
2209 }
2210
emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2211 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2212 void *p_data, unsigned int bytes)
2213 {
2214 struct intel_gvt *gvt = vgpu->gvt;
2215 const struct intel_gvt_device_info *info = &gvt->device_info;
2216 struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2217 struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2218 unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2219 unsigned long gma, gfn;
2220 struct intel_gvt_gtt_entry e = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2221 struct intel_gvt_gtt_entry m = {.val64 = 0, .type = GTT_TYPE_GGTT_PTE};
2222 dma_addr_t dma_addr;
2223 int ret;
2224 struct intel_gvt_partial_pte *partial_pte, *pos, *n;
2225 bool partial_update = false;
2226
2227 if (bytes != 4 && bytes != 8)
2228 return -EINVAL;
2229
2230 gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2231
2232 /* the VM may configure the whole GM space when ballooning is used */
2233 if (!vgpu_gmadr_is_valid(vgpu, gma))
2234 return 0;
2235
2236 e.type = GTT_TYPE_GGTT_PTE;
2237 memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2238 bytes);
2239
2240 /* If ggtt entry size is 8 bytes, and it's split into two 4 bytes
2241 * write, save the first 4 bytes in a list and update virtual
2242 * PTE. Only update shadow PTE when the second 4 bytes comes.
2243 */
2244 if (bytes < info->gtt_entry_size) {
2245 bool found = false;
2246
2247 list_for_each_entry_safe(pos, n,
2248 &ggtt_mm->ggtt_mm.partial_pte_list, list) {
2249 if (g_gtt_index == pos->offset >>
2250 info->gtt_entry_size_shift) {
2251 if (off != pos->offset) {
2252 /* the second partial part*/
2253 int last_off = pos->offset &
2254 (info->gtt_entry_size - 1);
2255
2256 memcpy((void *)&e.val64 + last_off,
2257 (void *)&pos->data + last_off,
2258 bytes);
2259
2260 list_del(&pos->list);
2261 kfree(pos);
2262 found = true;
2263 break;
2264 }
2265
2266 /* update of the first partial part */
2267 pos->data = e.val64;
2268 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2269 return 0;
2270 }
2271 }
2272
2273 if (!found) {
2274 /* the first partial part */
2275 partial_pte = kzalloc(sizeof(*partial_pte), GFP_KERNEL);
2276 if (!partial_pte)
2277 return -ENOMEM;
2278 partial_pte->offset = off;
2279 partial_pte->data = e.val64;
2280 list_add_tail(&partial_pte->list,
2281 &ggtt_mm->ggtt_mm.partial_pte_list);
2282 partial_update = true;
2283 }
2284 }
2285
2286 if (!partial_update && (ops->test_present(&e))) {
2287 gfn = ops->get_pfn(&e);
2288 m.val64 = e.val64;
2289 m.type = e.type;
2290
2291 /* one PTE update may be issued in multiple writes and the
2292 * first write may not construct a valid gfn
2293 */
2294 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2295 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2296 goto out;
2297 }
2298
2299 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2300 PAGE_SIZE, &dma_addr);
2301 if (ret) {
2302 gvt_vgpu_err("fail to populate guest ggtt entry\n");
2303 /* guest driver may read/write the entry when partial
2304 * update the entry in this situation p2m will fail
2305 * settting the shadow entry to point to a scratch page
2306 */
2307 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2308 } else
2309 ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2310 } else {
2311 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2312 ops->clear_present(&m);
2313 }
2314
2315 out:
2316 ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2317
2318 ggtt_get_host_entry(ggtt_mm, &e, g_gtt_index);
2319 ggtt_invalidate_pte(vgpu, &e);
2320
2321 ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2322 ggtt_invalidate(gvt->dev_priv);
2323 return 0;
2324 }
2325
2326 /*
2327 * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2328 * @vgpu: a vGPU
2329 * @off: register offset
2330 * @p_data: data from guest write
2331 * @bytes: data length
2332 *
2333 * This function is used to emulate the GTT MMIO register write
2334 *
2335 * Returns:
2336 * Zero on success, error code if failed.
2337 */
intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu * vgpu,unsigned int off,void * p_data,unsigned int bytes)2338 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2339 unsigned int off, void *p_data, unsigned int bytes)
2340 {
2341 const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2342 int ret;
2343
2344 if (bytes != 4 && bytes != 8)
2345 return -EINVAL;
2346
2347 off -= info->gtt_start_offset;
2348 ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2349 return ret;
2350 }
2351
alloc_scratch_pages(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type type)2352 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2353 enum intel_gvt_gtt_type type)
2354 {
2355 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2356 struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2357 int page_entry_num = I915_GTT_PAGE_SIZE >>
2358 vgpu->gvt->device_info.gtt_entry_size_shift;
2359 void *scratch_pt;
2360 int i;
2361 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2362 dma_addr_t daddr;
2363
2364 if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2365 return -EINVAL;
2366
2367 scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2368 if (!scratch_pt) {
2369 gvt_vgpu_err("fail to allocate scratch page\n");
2370 return -ENOMEM;
2371 }
2372
2373 daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2374 4096, PCI_DMA_BIDIRECTIONAL);
2375 if (dma_mapping_error(dev, daddr)) {
2376 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2377 __free_page(virt_to_page(scratch_pt));
2378 return -ENOMEM;
2379 }
2380 gtt->scratch_pt[type].page_mfn =
2381 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2382 gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2383 gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2384 vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2385
2386 /* Build the tree by full filled the scratch pt with the entries which
2387 * point to the next level scratch pt or scratch page. The
2388 * scratch_pt[type] indicate the scratch pt/scratch page used by the
2389 * 'type' pt.
2390 * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2391 * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2392 * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2393 */
2394 if (type > GTT_TYPE_PPGTT_PTE_PT) {
2395 struct intel_gvt_gtt_entry se;
2396
2397 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2398 se.type = get_entry_type(type - 1);
2399 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2400
2401 /* The entry parameters like present/writeable/cache type
2402 * set to the same as i915's scratch page tree.
2403 */
2404 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2405 if (type == GTT_TYPE_PPGTT_PDE_PT)
2406 se.val64 |= PPAT_CACHED;
2407
2408 for (i = 0; i < page_entry_num; i++)
2409 ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2410 }
2411
2412 return 0;
2413 }
2414
release_scratch_page_tree(struct intel_vgpu * vgpu)2415 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2416 {
2417 int i;
2418 struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2419 dma_addr_t daddr;
2420
2421 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2422 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2423 daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2424 I915_GTT_PAGE_SHIFT);
2425 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2426 __free_page(vgpu->gtt.scratch_pt[i].page);
2427 vgpu->gtt.scratch_pt[i].page = NULL;
2428 vgpu->gtt.scratch_pt[i].page_mfn = 0;
2429 }
2430 }
2431
2432 return 0;
2433 }
2434
create_scratch_page_tree(struct intel_vgpu * vgpu)2435 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2436 {
2437 int i, ret;
2438
2439 for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2440 ret = alloc_scratch_pages(vgpu, i);
2441 if (ret)
2442 goto err;
2443 }
2444
2445 return 0;
2446
2447 err:
2448 release_scratch_page_tree(vgpu);
2449 return ret;
2450 }
2451
2452 /**
2453 * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2454 * @vgpu: a vGPU
2455 *
2456 * This function is used to initialize per-vGPU graphics memory virtualization
2457 * components.
2458 *
2459 * Returns:
2460 * Zero on success, error code if failed.
2461 */
intel_vgpu_init_gtt(struct intel_vgpu * vgpu)2462 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2463 {
2464 struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2465
2466 INIT_RADIX_TREE(>t->spt_tree, GFP_KERNEL);
2467
2468 INIT_LIST_HEAD(>t->ppgtt_mm_list_head);
2469 INIT_LIST_HEAD(>t->oos_page_list_head);
2470 INIT_LIST_HEAD(>t->post_shadow_list_head);
2471
2472 gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2473 if (IS_ERR(gtt->ggtt_mm)) {
2474 gvt_vgpu_err("fail to create mm for ggtt.\n");
2475 return PTR_ERR(gtt->ggtt_mm);
2476 }
2477
2478 intel_vgpu_reset_ggtt(vgpu, false);
2479
2480 INIT_LIST_HEAD(>t->ggtt_mm->ggtt_mm.partial_pte_list);
2481
2482 return create_scratch_page_tree(vgpu);
2483 }
2484
intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu * vgpu)2485 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2486 {
2487 struct list_head *pos, *n;
2488 struct intel_vgpu_mm *mm;
2489
2490 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2491 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2492 intel_vgpu_destroy_mm(mm);
2493 }
2494
2495 if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2496 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2497
2498 if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2499 gvt_err("Why we still has spt not freed?\n");
2500 ppgtt_free_all_spt(vgpu);
2501 }
2502 }
2503
intel_vgpu_destroy_ggtt_mm(struct intel_vgpu * vgpu)2504 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2505 {
2506 struct intel_gvt_partial_pte *pos, *next;
2507
2508 list_for_each_entry_safe(pos, next,
2509 &vgpu->gtt.ggtt_mm->ggtt_mm.partial_pte_list,
2510 list) {
2511 gvt_dbg_mm("partial PTE update on hold 0x%lx : 0x%llx\n",
2512 pos->offset, pos->data);
2513 kfree(pos);
2514 }
2515 intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2516 vgpu->gtt.ggtt_mm = NULL;
2517 }
2518
2519 /**
2520 * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2521 * @vgpu: a vGPU
2522 *
2523 * This function is used to clean up per-vGPU graphics memory virtualization
2524 * components.
2525 *
2526 * Returns:
2527 * Zero on success, error code if failed.
2528 */
intel_vgpu_clean_gtt(struct intel_vgpu * vgpu)2529 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2530 {
2531 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2532 intel_vgpu_destroy_ggtt_mm(vgpu);
2533 release_scratch_page_tree(vgpu);
2534 }
2535
clean_spt_oos(struct intel_gvt * gvt)2536 static void clean_spt_oos(struct intel_gvt *gvt)
2537 {
2538 struct intel_gvt_gtt *gtt = &gvt->gtt;
2539 struct list_head *pos, *n;
2540 struct intel_vgpu_oos_page *oos_page;
2541
2542 WARN(!list_empty(>t->oos_page_use_list_head),
2543 "someone is still using oos page\n");
2544
2545 list_for_each_safe(pos, n, >t->oos_page_free_list_head) {
2546 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2547 list_del(&oos_page->list);
2548 free_page((unsigned long)oos_page->mem);
2549 kfree(oos_page);
2550 }
2551 }
2552
setup_spt_oos(struct intel_gvt * gvt)2553 static int setup_spt_oos(struct intel_gvt *gvt)
2554 {
2555 struct intel_gvt_gtt *gtt = &gvt->gtt;
2556 struct intel_vgpu_oos_page *oos_page;
2557 int i;
2558 int ret;
2559
2560 INIT_LIST_HEAD(>t->oos_page_free_list_head);
2561 INIT_LIST_HEAD(>t->oos_page_use_list_head);
2562
2563 for (i = 0; i < preallocated_oos_pages; i++) {
2564 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2565 if (!oos_page) {
2566 ret = -ENOMEM;
2567 goto fail;
2568 }
2569 oos_page->mem = (void *)__get_free_pages(GFP_KERNEL, 0);
2570 if (!oos_page->mem) {
2571 ret = -ENOMEM;
2572 kfree(oos_page);
2573 goto fail;
2574 }
2575
2576 INIT_LIST_HEAD(&oos_page->list);
2577 INIT_LIST_HEAD(&oos_page->vm_list);
2578 oos_page->id = i;
2579 list_add_tail(&oos_page->list, >t->oos_page_free_list_head);
2580 }
2581
2582 gvt_dbg_mm("%d oos pages preallocated\n", i);
2583
2584 return 0;
2585 fail:
2586 clean_spt_oos(gvt);
2587 return ret;
2588 }
2589
2590 /**
2591 * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2592 * @vgpu: a vGPU
2593 * @pdps: pdp root array
2594 *
2595 * This function is used to find a PPGTT mm object from mm object pool
2596 *
2597 * Returns:
2598 * pointer to mm object on success, NULL if failed.
2599 */
intel_vgpu_find_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2600 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2601 u64 pdps[])
2602 {
2603 struct intel_vgpu_mm *mm;
2604 struct list_head *pos;
2605
2606 list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2607 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2608
2609 switch (mm->ppgtt_mm.root_entry_type) {
2610 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2611 if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2612 return mm;
2613 break;
2614 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2615 if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2616 sizeof(mm->ppgtt_mm.guest_pdps)))
2617 return mm;
2618 break;
2619 default:
2620 GEM_BUG_ON(1);
2621 }
2622 }
2623 return NULL;
2624 }
2625
2626 /**
2627 * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2628 * @vgpu: a vGPU
2629 * @root_entry_type: ppgtt root entry type
2630 * @pdps: guest pdps
2631 *
2632 * This function is used to find or create a PPGTT mm object from a guest.
2633 *
2634 * Returns:
2635 * Zero on success, negative error code if failed.
2636 */
intel_vgpu_get_ppgtt_mm(struct intel_vgpu * vgpu,enum intel_gvt_gtt_type root_entry_type,u64 pdps[])2637 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2638 enum intel_gvt_gtt_type root_entry_type, u64 pdps[])
2639 {
2640 struct intel_vgpu_mm *mm;
2641
2642 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2643 if (mm) {
2644 intel_vgpu_mm_get(mm);
2645 } else {
2646 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2647 if (IS_ERR(mm))
2648 gvt_vgpu_err("fail to create mm\n");
2649 }
2650 return mm;
2651 }
2652
2653 /**
2654 * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2655 * @vgpu: a vGPU
2656 * @pdps: guest pdps
2657 *
2658 * This function is used to find a PPGTT mm object from a guest and destroy it.
2659 *
2660 * Returns:
2661 * Zero on success, negative error code if failed.
2662 */
intel_vgpu_put_ppgtt_mm(struct intel_vgpu * vgpu,u64 pdps[])2663 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2664 {
2665 struct intel_vgpu_mm *mm;
2666
2667 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2668 if (!mm) {
2669 gvt_vgpu_err("fail to find ppgtt instance.\n");
2670 return -EINVAL;
2671 }
2672 intel_vgpu_mm_put(mm);
2673 return 0;
2674 }
2675
2676 /**
2677 * intel_gvt_init_gtt - initialize mm components of a GVT device
2678 * @gvt: GVT device
2679 *
2680 * This function is called at the initialization stage, to initialize
2681 * the mm components of a GVT device.
2682 *
2683 * Returns:
2684 * zero on success, negative error code if failed.
2685 */
intel_gvt_init_gtt(struct intel_gvt * gvt)2686 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2687 {
2688 int ret;
2689 void *page;
2690 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2691 dma_addr_t daddr;
2692
2693 gvt_dbg_core("init gtt\n");
2694
2695 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2696 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2697
2698 page = (void *)get_zeroed_page(GFP_KERNEL);
2699 if (!page) {
2700 gvt_err("fail to allocate scratch ggtt page\n");
2701 return -ENOMEM;
2702 }
2703
2704 daddr = dma_map_page(dev, virt_to_page(page), 0,
2705 4096, PCI_DMA_BIDIRECTIONAL);
2706 if (dma_mapping_error(dev, daddr)) {
2707 gvt_err("fail to dmamap scratch ggtt page\n");
2708 __free_page(virt_to_page(page));
2709 return -ENOMEM;
2710 }
2711
2712 gvt->gtt.scratch_page = virt_to_page(page);
2713 gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2714
2715 if (enable_out_of_sync) {
2716 ret = setup_spt_oos(gvt);
2717 if (ret) {
2718 gvt_err("fail to initialize SPT oos\n");
2719 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2720 __free_page(gvt->gtt.scratch_page);
2721 return ret;
2722 }
2723 }
2724 INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2725 mutex_init(&gvt->gtt.ppgtt_mm_lock);
2726 return 0;
2727 }
2728
2729 /**
2730 * intel_gvt_clean_gtt - clean up mm components of a GVT device
2731 * @gvt: GVT device
2732 *
2733 * This function is called at the driver unloading stage, to clean up the
2734 * the mm components of a GVT device.
2735 *
2736 */
intel_gvt_clean_gtt(struct intel_gvt * gvt)2737 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2738 {
2739 struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2740 dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2741 I915_GTT_PAGE_SHIFT);
2742
2743 dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2744
2745 __free_page(gvt->gtt.scratch_page);
2746
2747 if (enable_out_of_sync)
2748 clean_spt_oos(gvt);
2749 }
2750
2751 /**
2752 * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2753 * @vgpu: a vGPU
2754 *
2755 * This function is called when invalidate all PPGTT instances of a vGPU.
2756 *
2757 */
intel_vgpu_invalidate_ppgtt(struct intel_vgpu * vgpu)2758 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2759 {
2760 struct list_head *pos, *n;
2761 struct intel_vgpu_mm *mm;
2762
2763 list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2764 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2765 if (mm->type == INTEL_GVT_MM_PPGTT) {
2766 mutex_lock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2767 list_del_init(&mm->ppgtt_mm.lru_list);
2768 mutex_unlock(&vgpu->gvt->gtt.ppgtt_mm_lock);
2769 if (mm->ppgtt_mm.shadowed)
2770 invalidate_ppgtt_mm(mm);
2771 }
2772 }
2773 }
2774
2775 /**
2776 * intel_vgpu_reset_ggtt - reset the GGTT entry
2777 * @vgpu: a vGPU
2778 * @invalidate_old: invalidate old entries
2779 *
2780 * This function is called at the vGPU create stage
2781 * to reset all the GGTT entries.
2782 *
2783 */
intel_vgpu_reset_ggtt(struct intel_vgpu * vgpu,bool invalidate_old)2784 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2785 {
2786 struct intel_gvt *gvt = vgpu->gvt;
2787 struct drm_i915_private *dev_priv = gvt->dev_priv;
2788 struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2789 struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2790 struct intel_gvt_gtt_entry old_entry;
2791 u32 index;
2792 u32 num_entries;
2793
2794 pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2795 pte_ops->set_present(&entry);
2796
2797 index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2798 num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2799 while (num_entries--) {
2800 if (invalidate_old) {
2801 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2802 ggtt_invalidate_pte(vgpu, &old_entry);
2803 }
2804 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2805 }
2806
2807 index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2808 num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2809 while (num_entries--) {
2810 if (invalidate_old) {
2811 ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2812 ggtt_invalidate_pte(vgpu, &old_entry);
2813 }
2814 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2815 }
2816
2817 ggtt_invalidate(dev_priv);
2818 }
2819
2820 /**
2821 * intel_vgpu_reset_gtt - reset the all GTT related status
2822 * @vgpu: a vGPU
2823 *
2824 * This function is called from vfio core to reset reset all
2825 * GTT related status, including GGTT, PPGTT, scratch page.
2826 *
2827 */
intel_vgpu_reset_gtt(struct intel_vgpu * vgpu)2828 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2829 {
2830 /* Shadow pages are only created when there is no page
2831 * table tracking data, so remove page tracking data after
2832 * removing the shadow pages.
2833 */
2834 intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2835 intel_vgpu_reset_ggtt(vgpu, true);
2836 }
2837