1 /*	$NetBSD: intel_hdcp.c,v 1.6 2021/12/19 12:32:15 riastradh Exp $	*/
2 
3 /* SPDX-License-Identifier: MIT */
4 /*
5  * Copyright (C) 2017 Google, Inc.
6  * Copyright _ 2017-2019, Intel Corporation.
7  *
8  * Authors:
9  * Sean Paul <seanpaul@chromium.org>
10  * Ramalingam C <ramalingam.c@intel.com>
11  */
12 
13 #include <sys/cdefs.h>
14 __KERNEL_RCSID(0, "$NetBSD: intel_hdcp.c,v 1.6 2021/12/19 12:32:15 riastradh Exp $");
15 
16 #include <linux/component.h>
17 #include <linux/i2c.h>
18 #include <linux/random.h>
19 
20 #include <drm/drm_hdcp.h>
21 #include <drm/i915_component.h>
22 
23 #include "i915_reg.h"
24 #include "intel_display_power.h"
25 #include "intel_display_types.h"
26 #include "intel_hdcp.h"
27 #include "intel_sideband.h"
28 #include "intel_connector.h"
29 
30 #include <linux/nbsd-namespace.h>
31 
32 #define KEY_LOAD_TRIES	5
33 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS	50
34 #define HDCP2_LC_RETRY_CNT			3
35 
36 static
intel_hdcp_is_ksv_valid(u8 * ksv)37 bool intel_hdcp_is_ksv_valid(u8 *ksv)
38 {
39 	int i, ones = 0;
40 	/* KSV has 20 1's and 20 0's */
41 	for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
42 		ones += hweight8(ksv[i]);
43 	if (ones != 20)
44 		return false;
45 
46 	return true;
47 }
48 
49 static
intel_hdcp_read_valid_bksv(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim,u8 * bksv)50 int intel_hdcp_read_valid_bksv(struct intel_digital_port *intel_dig_port,
51 			       const struct intel_hdcp_shim *shim, u8 *bksv)
52 {
53 	int ret, i, tries = 2;
54 
55 	/* HDCP spec states that we must retry the bksv if it is invalid */
56 	for (i = 0; i < tries; i++) {
57 		ret = shim->read_bksv(intel_dig_port, bksv);
58 		if (ret)
59 			return ret;
60 		if (intel_hdcp_is_ksv_valid(bksv))
61 			break;
62 	}
63 	if (i == tries) {
64 		DRM_DEBUG_KMS("Bksv is invalid\n");
65 		return -ENODEV;
66 	}
67 
68 	return 0;
69 }
70 
71 /* Is HDCP1.4 capable on Platform and Sink */
intel_hdcp_capable(struct intel_connector * connector)72 bool intel_hdcp_capable(struct intel_connector *connector)
73 {
74 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
75 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
76 	bool capable = false;
77 	u8 bksv[5];
78 
79 	if (!shim)
80 		return capable;
81 
82 	if (shim->hdcp_capable) {
83 		shim->hdcp_capable(intel_dig_port, &capable);
84 	} else {
85 		if (!intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv))
86 			capable = true;
87 	}
88 
89 	return capable;
90 }
91 
92 /* Is HDCP2.2 capable on Platform and Sink */
intel_hdcp2_capable(struct intel_connector * connector)93 bool intel_hdcp2_capable(struct intel_connector *connector)
94 {
95 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
96 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
97 	struct intel_hdcp *hdcp = &connector->hdcp;
98 	bool capable = false;
99 
100 	/* I915 support for HDCP2.2 */
101 	if (!hdcp->hdcp2_supported)
102 		return false;
103 
104 	/* MEI interface is solid */
105 	mutex_lock(&dev_priv->hdcp_comp_mutex);
106 	if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
107 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
108 		return false;
109 	}
110 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
111 
112 	/* Sink's capability for HDCP2.2 */
113 	hdcp->shim->hdcp_2_2_capable(intel_dig_port, &capable);
114 
115 	return capable;
116 }
117 
118 static inline
intel_hdcp_in_use(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)119 bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
120 		       enum transcoder cpu_transcoder, enum port port)
121 {
122 	return I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
123 	       HDCP_STATUS_ENC;
124 }
125 
126 static inline
intel_hdcp2_in_use(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)127 bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
128 			enum transcoder cpu_transcoder, enum port port)
129 {
130 	return I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
131 	       LINK_ENCRYPTION_STATUS;
132 }
133 
intel_hdcp_poll_ksv_fifo(struct intel_digital_port * intel_dig_port,const struct intel_hdcp_shim * shim)134 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *intel_dig_port,
135 				    const struct intel_hdcp_shim *shim)
136 {
137 	int ret, read_ret;
138 	bool ksv_ready;
139 
140 	/* Poll for ksv list ready (spec says max time allowed is 5s) */
141 	ret = __wait_for(read_ret = shim->read_ksv_ready(intel_dig_port,
142 							 &ksv_ready),
143 			 read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
144 			 100 * 1000);
145 	if (ret)
146 		return ret;
147 	if (read_ret)
148 		return read_ret;
149 	if (!ksv_ready)
150 		return -ETIMEDOUT;
151 
152 	return 0;
153 }
154 
hdcp_key_loadable(struct drm_i915_private * dev_priv)155 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
156 {
157 	struct i915_power_domains *power_domains = &dev_priv->power_domains;
158 	struct i915_power_well *power_well;
159 	enum i915_power_well_id id;
160 	bool enabled = false;
161 
162 	/*
163 	 * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
164 	 * On all BXT+, SW can load the keys only when the PW#1 is turned on.
165 	 */
166 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
167 		id = HSW_DISP_PW_GLOBAL;
168 	else
169 		id = SKL_DISP_PW_1;
170 
171 	mutex_lock(&power_domains->lock);
172 
173 	/* PG1 (power well #1) needs to be enabled */
174 	for_each_power_well(dev_priv, power_well) {
175 		if (power_well->desc->id == id) {
176 			enabled = power_well->desc->ops->is_enabled(dev_priv,
177 								    power_well);
178 			break;
179 		}
180 	}
181 	mutex_unlock(&power_domains->lock);
182 
183 	/*
184 	 * Another req for hdcp key loadability is enabled state of pll for
185 	 * cdclk. Without active crtc we wont land here. So we are assuming that
186 	 * cdclk is already on.
187 	 */
188 
189 	return enabled;
190 }
191 
intel_hdcp_clear_keys(struct drm_i915_private * dev_priv)192 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
193 {
194 	I915_WRITE(HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
195 	I915_WRITE(HDCP_KEY_STATUS, HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS |
196 		   HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
197 }
198 
intel_hdcp_load_keys(struct drm_i915_private * dev_priv)199 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
200 {
201 	int ret;
202 	u32 val;
203 
204 	val = I915_READ(HDCP_KEY_STATUS);
205 	if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
206 		return 0;
207 
208 	/*
209 	 * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
210 	 * out of reset. So if Key is not already loaded, its an error state.
211 	 */
212 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
213 		if (!(I915_READ(HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
214 			return -ENXIO;
215 
216 	/*
217 	 * Initiate loading the HDCP key from fuses.
218 	 *
219 	 * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
220 	 * platforms except BXT and GLK, differ in the key load trigger process
221 	 * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
222 	 */
223 	if (IS_GEN9_BC(dev_priv)) {
224 		ret = sandybridge_pcode_write(dev_priv,
225 					      SKL_PCODE_LOAD_HDCP_KEYS, 1);
226 		if (ret) {
227 			DRM_ERROR("Failed to initiate HDCP key load (%d)\n",
228 			          ret);
229 			return ret;
230 		}
231 	} else {
232 		I915_WRITE(HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
233 	}
234 
235 	/* Wait for the keys to load (500us) */
236 	ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
237 					HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
238 					10, 1, &val);
239 	if (ret)
240 		return ret;
241 	else if (!(val & HDCP_KEY_LOAD_STATUS))
242 		return -ENXIO;
243 
244 	/* Send Aksv over to PCH display for use in authentication */
245 	I915_WRITE(HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
246 
247 	return 0;
248 }
249 
250 /* Returns updated SHA-1 index */
intel_write_sha_text(struct drm_i915_private * dev_priv,u32 sha_text)251 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
252 {
253 	I915_WRITE(HDCP_SHA_TEXT, sha_text);
254 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
255 		DRM_ERROR("Timed out waiting for SHA1 ready\n");
256 		return -ETIMEDOUT;
257 	}
258 	return 0;
259 }
260 
261 static
intel_hdcp_get_repeater_ctl(struct drm_i915_private * dev_priv,enum transcoder cpu_transcoder,enum port port)262 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
263 				enum transcoder cpu_transcoder, enum port port)
264 {
265 	if (INTEL_GEN(dev_priv) >= 12) {
266 		switch (cpu_transcoder) {
267 		case TRANSCODER_A:
268 			return HDCP_TRANSA_REP_PRESENT |
269 			       HDCP_TRANSA_SHA1_M0;
270 		case TRANSCODER_B:
271 			return HDCP_TRANSB_REP_PRESENT |
272 			       HDCP_TRANSB_SHA1_M0;
273 		case TRANSCODER_C:
274 			return HDCP_TRANSC_REP_PRESENT |
275 			       HDCP_TRANSC_SHA1_M0;
276 		case TRANSCODER_D:
277 			return HDCP_TRANSD_REP_PRESENT |
278 			       HDCP_TRANSD_SHA1_M0;
279 		default:
280 			DRM_ERROR("Unknown transcoder %d\n", cpu_transcoder);
281 			return -EINVAL;
282 		}
283 	}
284 
285 	switch (port) {
286 	case PORT_A:
287 		return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
288 	case PORT_B:
289 		return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
290 	case PORT_C:
291 		return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
292 	case PORT_D:
293 		return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
294 	case PORT_E:
295 		return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
296 	default:
297 		DRM_ERROR("Unknown port %d\n", port);
298 		return -EINVAL;
299 	}
300 }
301 
302 static
intel_hdcp_validate_v_prime(struct intel_connector * connector,const struct intel_hdcp_shim * shim,u8 * ksv_fifo,u8 num_downstream,u8 * bstatus)303 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
304 				const struct intel_hdcp_shim *shim,
305 				u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
306 {
307 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
308 	struct drm_i915_private *dev_priv;
309 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
310 	enum port port = intel_dig_port->base.port;
311 	u32 vprime, sha_text, sha_leftovers, rep_ctl;
312 	int ret, i, j, sha_idx;
313 
314 	dev_priv = intel_dig_port->base.base.dev->dev_private;
315 
316 	/* Process V' values from the receiver */
317 	for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
318 		ret = shim->read_v_prime_part(intel_dig_port, i, &vprime);
319 		if (ret)
320 			return ret;
321 		I915_WRITE(HDCP_SHA_V_PRIME(i), vprime);
322 	}
323 
324 	/*
325 	 * We need to write the concatenation of all device KSVs, BINFO (DP) ||
326 	 * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
327 	 * stream is written via the HDCP_SHA_TEXT register in 32-bit
328 	 * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
329 	 * index will keep track of our progress through the 64 bytes as well as
330 	 * helping us work the 40-bit KSVs through our 32-bit register.
331 	 *
332 	 * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
333 	 */
334 	sha_idx = 0;
335 	sha_text = 0;
336 	sha_leftovers = 0;
337 	rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
338 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
339 	for (i = 0; i < num_downstream; i++) {
340 		unsigned int sha_empty;
341 		u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
342 
343 		/* Fill up the empty slots in sha_text and write it out */
344 		sha_empty = sizeof(sha_text) - sha_leftovers;
345 		for (j = 0; j < sha_empty; j++)
346 			sha_text |= ksv[j] << ((sizeof(sha_text) - j - 1) * 8);
347 
348 		ret = intel_write_sha_text(dev_priv, sha_text);
349 		if (ret < 0)
350 			return ret;
351 
352 		/* Programming guide writes this every 64 bytes */
353 		sha_idx += sizeof(sha_text);
354 		if (!(sha_idx % 64))
355 			I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
356 
357 		/* Store the leftover bytes from the ksv in sha_text */
358 		sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
359 		sha_text = 0;
360 		for (j = 0; j < sha_leftovers; j++)
361 			sha_text |= ksv[sha_empty + j] <<
362 					((sizeof(sha_text) - j - 1) * 8);
363 
364 		/*
365 		 * If we still have room in sha_text for more data, continue.
366 		 * Otherwise, write it out immediately.
367 		 */
368 		if (sizeof(sha_text) > sha_leftovers)
369 			continue;
370 
371 		ret = intel_write_sha_text(dev_priv, sha_text);
372 		if (ret < 0)
373 			return ret;
374 		sha_leftovers = 0;
375 		sha_text = 0;
376 		sha_idx += sizeof(sha_text);
377 	}
378 
379 	/*
380 	 * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
381 	 * bytes are leftover from the last ksv, we might be able to fit them
382 	 * all in sha_text (first 2 cases), or we might need to split them up
383 	 * into 2 writes (last 2 cases).
384 	 */
385 	if (sha_leftovers == 0) {
386 		/* Write 16 bits of text, 16 bits of M0 */
387 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
388 		ret = intel_write_sha_text(dev_priv,
389 					   bstatus[0] << 8 | bstatus[1]);
390 		if (ret < 0)
391 			return ret;
392 		sha_idx += sizeof(sha_text);
393 
394 		/* Write 32 bits of M0 */
395 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
396 		ret = intel_write_sha_text(dev_priv, 0);
397 		if (ret < 0)
398 			return ret;
399 		sha_idx += sizeof(sha_text);
400 
401 		/* Write 16 bits of M0 */
402 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_16);
403 		ret = intel_write_sha_text(dev_priv, 0);
404 		if (ret < 0)
405 			return ret;
406 		sha_idx += sizeof(sha_text);
407 
408 	} else if (sha_leftovers == 1) {
409 		/* Write 24 bits of text, 8 bits of M0 */
410 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
411 		sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
412 		/* Only 24-bits of data, must be in the LSB */
413 		sha_text = (sha_text & 0xffffff00) >> 8;
414 		ret = intel_write_sha_text(dev_priv, sha_text);
415 		if (ret < 0)
416 			return ret;
417 		sha_idx += sizeof(sha_text);
418 
419 		/* Write 32 bits of M0 */
420 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
421 		ret = intel_write_sha_text(dev_priv, 0);
422 		if (ret < 0)
423 			return ret;
424 		sha_idx += sizeof(sha_text);
425 
426 		/* Write 24 bits of M0 */
427 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
428 		ret = intel_write_sha_text(dev_priv, 0);
429 		if (ret < 0)
430 			return ret;
431 		sha_idx += sizeof(sha_text);
432 
433 	} else if (sha_leftovers == 2) {
434 		/* Write 32 bits of text */
435 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
436 		sha_text |= bstatus[0] << 24 | bstatus[1] << 16;
437 		ret = intel_write_sha_text(dev_priv, sha_text);
438 		if (ret < 0)
439 			return ret;
440 		sha_idx += sizeof(sha_text);
441 
442 		/* Write 64 bits of M0 */
443 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
444 		for (i = 0; i < 2; i++) {
445 			ret = intel_write_sha_text(dev_priv, 0);
446 			if (ret < 0)
447 				return ret;
448 			sha_idx += sizeof(sha_text);
449 		}
450 	} else if (sha_leftovers == 3) {
451 		/* Write 32 bits of text */
452 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
453 		sha_text |= bstatus[0] << 24;
454 		ret = intel_write_sha_text(dev_priv, sha_text);
455 		if (ret < 0)
456 			return ret;
457 		sha_idx += sizeof(sha_text);
458 
459 		/* Write 8 bits of text, 24 bits of M0 */
460 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_8);
461 		ret = intel_write_sha_text(dev_priv, bstatus[1]);
462 		if (ret < 0)
463 			return ret;
464 		sha_idx += sizeof(sha_text);
465 
466 		/* Write 32 bits of M0 */
467 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_0);
468 		ret = intel_write_sha_text(dev_priv, 0);
469 		if (ret < 0)
470 			return ret;
471 		sha_idx += sizeof(sha_text);
472 
473 		/* Write 8 bits of M0 */
474 		I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_24);
475 		ret = intel_write_sha_text(dev_priv, 0);
476 		if (ret < 0)
477 			return ret;
478 		sha_idx += sizeof(sha_text);
479 	} else {
480 		DRM_DEBUG_KMS("Invalid number of leftovers %d\n",
481 			      sha_leftovers);
482 		return -EINVAL;
483 	}
484 
485 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
486 	/* Fill up to 64-4 bytes with zeros (leave the last write for length) */
487 	while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
488 		ret = intel_write_sha_text(dev_priv, 0);
489 		if (ret < 0)
490 			return ret;
491 		sha_idx += sizeof(sha_text);
492 	}
493 
494 	/*
495 	 * Last write gets the length of the concatenation in bits. That is:
496 	 *  - 5 bytes per device
497 	 *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
498 	 */
499 	sha_text = (num_downstream * 5 + 10) * 8;
500 	ret = intel_write_sha_text(dev_priv, sha_text);
501 	if (ret < 0)
502 		return ret;
503 
504 	/* Tell the HW we're done with the hash and wait for it to ACK */
505 	I915_WRITE(HDCP_REP_CTL, rep_ctl | HDCP_SHA1_COMPLETE_HASH);
506 	if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
507 				  HDCP_SHA1_COMPLETE, 1)) {
508 		DRM_ERROR("Timed out waiting for SHA1 complete\n");
509 		return -ETIMEDOUT;
510 	}
511 	if (!(I915_READ(HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
512 		DRM_DEBUG_KMS("SHA-1 mismatch, HDCP failed\n");
513 		return -ENXIO;
514 	}
515 
516 	return 0;
517 }
518 
519 /* Implements Part 2 of the HDCP authorization procedure */
520 static
intel_hdcp_auth_downstream(struct intel_connector * connector)521 int intel_hdcp_auth_downstream(struct intel_connector *connector)
522 {
523 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
524 	const struct intel_hdcp_shim *shim = connector->hdcp.shim;
525 	struct drm_device *dev = connector->base.dev;
526 	u8 bstatus[2], num_downstream, *ksv_fifo;
527 	int ret, i, tries = 3;
528 
529 	ret = intel_hdcp_poll_ksv_fifo(intel_dig_port, shim);
530 	if (ret) {
531 		DRM_DEBUG_KMS("KSV list failed to become ready (%d)\n", ret);
532 		return ret;
533 	}
534 
535 	ret = shim->read_bstatus(intel_dig_port, bstatus);
536 	if (ret)
537 		return ret;
538 
539 	if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
540 	    DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
541 		DRM_DEBUG_KMS("Max Topology Limit Exceeded\n");
542 		return -EPERM;
543 	}
544 
545 	/*
546 	 * When repeater reports 0 device count, HDCP1.4 spec allows disabling
547 	 * the HDCP encryption. That implies that repeater can't have its own
548 	 * display. As there is no consumption of encrypted content in the
549 	 * repeater with 0 downstream devices, we are failing the
550 	 * authentication.
551 	 */
552 	num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
553 	if (num_downstream == 0) {
554 		DRM_DEBUG_KMS("Repeater with zero downstream devices\n");
555 		return -EINVAL;
556 	}
557 
558 	ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
559 	if (!ksv_fifo) {
560 		DRM_DEBUG_KMS("Out of mem: ksv_fifo\n");
561 		return -ENOMEM;
562 	}
563 
564 	ret = shim->read_ksv_fifo(intel_dig_port, num_downstream, ksv_fifo);
565 	if (ret)
566 		goto err;
567 
568 	if (drm_hdcp_check_ksvs_revoked(dev, ksv_fifo, num_downstream)) {
569 		DRM_ERROR("Revoked Ksv(s) in ksv_fifo\n");
570 		ret = -EPERM;
571 		goto err;
572 	}
573 
574 	/*
575 	 * When V prime mismatches, DP Spec mandates re-read of
576 	 * V prime atleast twice.
577 	 */
578 	for (i = 0; i < tries; i++) {
579 		ret = intel_hdcp_validate_v_prime(connector, shim,
580 						  ksv_fifo, num_downstream,
581 						  bstatus);
582 		if (!ret)
583 			break;
584 	}
585 
586 	if (i == tries) {
587 		DRM_DEBUG_KMS("V Prime validation failed.(%d)\n", ret);
588 		goto err;
589 	}
590 
591 	DRM_DEBUG_KMS("HDCP is enabled (%d downstream devices)\n",
592 		      num_downstream);
593 	ret = 0;
594 err:
595 	kfree(ksv_fifo);
596 	return ret;
597 }
598 
599 /* Implements Part 1 of the HDCP authorization procedure */
intel_hdcp_auth(struct intel_connector * connector)600 static int intel_hdcp_auth(struct intel_connector *connector)
601 {
602 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
603 	struct intel_hdcp *hdcp = &connector->hdcp;
604 	struct drm_device *dev = connector->base.dev;
605 	const struct intel_hdcp_shim *shim = hdcp->shim;
606 	struct drm_i915_private *dev_priv;
607 	enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
608 	enum port port;
609 	unsigned long r0_prime_gen_start;
610 	int ret, i, tries = 2;
611 	union {
612 		u32 reg[2];
613 		u8 shim[DRM_HDCP_AN_LEN];
614 	} an;
615 	union {
616 		u32 reg[2];
617 		u8 shim[DRM_HDCP_KSV_LEN];
618 	} bksv;
619 	union {
620 		u32 reg;
621 		u8 shim[DRM_HDCP_RI_LEN];
622 	} ri;
623 	bool repeater_present, hdcp_capable;
624 
625 	dev_priv = intel_dig_port->base.base.dev->dev_private;
626 
627 	port = intel_dig_port->base.port;
628 
629 	/*
630 	 * Detects whether the display is HDCP capable. Although we check for
631 	 * valid Bksv below, the HDCP over DP spec requires that we check
632 	 * whether the display supports HDCP before we write An. For HDMI
633 	 * displays, this is not necessary.
634 	 */
635 	if (shim->hdcp_capable) {
636 		ret = shim->hdcp_capable(intel_dig_port, &hdcp_capable);
637 		if (ret)
638 			return ret;
639 		if (!hdcp_capable) {
640 			DRM_DEBUG_KMS("Panel is not HDCP capable\n");
641 			return -EINVAL;
642 		}
643 	}
644 
645 	/* Initialize An with 2 random values and acquire it */
646 	for (i = 0; i < 2; i++)
647 		I915_WRITE(HDCP_ANINIT(dev_priv, cpu_transcoder, port),
648 			   get_random_u32());
649 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
650 		   HDCP_CONF_CAPTURE_AN);
651 
652 	/* Wait for An to be acquired */
653 	if (intel_de_wait_for_set(dev_priv,
654 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
655 				  HDCP_STATUS_AN_READY, 1)) {
656 		DRM_ERROR("Timed out waiting for An\n");
657 		return -ETIMEDOUT;
658 	}
659 
660 	an.reg[0] = I915_READ(HDCP_ANLO(dev_priv, cpu_transcoder, port));
661 	an.reg[1] = I915_READ(HDCP_ANHI(dev_priv, cpu_transcoder, port));
662 	ret = shim->write_an_aksv(intel_dig_port, an.shim);
663 	if (ret)
664 		return ret;
665 
666 	r0_prime_gen_start = jiffies;
667 
668 	memset(&bksv, 0, sizeof(bksv));
669 
670 	ret = intel_hdcp_read_valid_bksv(intel_dig_port, shim, bksv.shim);
671 	if (ret < 0)
672 		return ret;
673 
674 	if (drm_hdcp_check_ksvs_revoked(dev, bksv.shim, 1)) {
675 		DRM_ERROR("BKSV is revoked\n");
676 		return -EPERM;
677 	}
678 
679 	I915_WRITE(HDCP_BKSVLO(dev_priv, cpu_transcoder, port), bksv.reg[0]);
680 	I915_WRITE(HDCP_BKSVHI(dev_priv, cpu_transcoder, port), bksv.reg[1]);
681 
682 	ret = shim->repeater_present(intel_dig_port, &repeater_present);
683 	if (ret)
684 		return ret;
685 	if (repeater_present)
686 		I915_WRITE(HDCP_REP_CTL,
687 			   intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
688 						       port));
689 
690 	ret = shim->toggle_signalling(intel_dig_port, true);
691 	if (ret)
692 		return ret;
693 
694 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port),
695 		   HDCP_CONF_AUTH_AND_ENC);
696 
697 	/* Wait for R0 ready */
698 	if (wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
699 		     (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
700 		DRM_ERROR("Timed out waiting for R0 ready\n");
701 		return -ETIMEDOUT;
702 	}
703 
704 	/*
705 	 * Wait for R0' to become available. The spec says 100ms from Aksv, but
706 	 * some monitors can take longer than this. We'll set the timeout at
707 	 * 300ms just to be sure.
708 	 *
709 	 * On DP, there's an R0_READY bit available but no such bit
710 	 * exists on HDMI. Since the upper-bound is the same, we'll just do
711 	 * the stupid thing instead of polling on one and not the other.
712 	 */
713 	wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
714 
715 	tries = 3;
716 
717 	/*
718 	 * DP HDCP Spec mandates the two more reattempt to read R0, incase
719 	 * of R0 mismatch.
720 	 */
721 	for (i = 0; i < tries; i++) {
722 		ri.reg = 0;
723 		ret = shim->read_ri_prime(intel_dig_port, ri.shim);
724 		if (ret)
725 			return ret;
726 		I915_WRITE(HDCP_RPRIME(dev_priv, cpu_transcoder, port), ri.reg);
727 
728 		/* Wait for Ri prime match */
729 		if (!wait_for(I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
730 						    port)) &
731 		    (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
732 			break;
733 	}
734 
735 	if (i == tries) {
736 		DRM_DEBUG_KMS("Timed out waiting for Ri prime match (%x)\n",
737 			      I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
738 						    port)));
739 		return -ETIMEDOUT;
740 	}
741 
742 	/* Wait for encryption confirmation */
743 	if (intel_de_wait_for_set(dev_priv,
744 				  HDCP_STATUS(dev_priv, cpu_transcoder, port),
745 				  HDCP_STATUS_ENC,
746 				  ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
747 		DRM_ERROR("Timed out waiting for encryption\n");
748 		return -ETIMEDOUT;
749 	}
750 
751 	/*
752 	 * XXX: If we have MST-connected devices, we need to enable encryption
753 	 * on those as well.
754 	 */
755 
756 	if (repeater_present)
757 		return intel_hdcp_auth_downstream(connector);
758 
759 	DRM_DEBUG_KMS("HDCP is enabled (no repeater present)\n");
760 	return 0;
761 }
762 
_intel_hdcp_disable(struct intel_connector * connector)763 static int _intel_hdcp_disable(struct intel_connector *connector)
764 {
765 	struct intel_hdcp *hdcp = &connector->hdcp;
766 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
767 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
768 	enum port port = intel_dig_port->base.port;
769 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
770 	int ret;
771 
772 	DRM_DEBUG_KMS("[%s:%d] HDCP is being disabled...\n",
773 		      connector->base.name, connector->base.base.id);
774 
775 	hdcp->hdcp_encrypted = false;
776 	I915_WRITE(HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
777 	if (intel_de_wait_for_clear(dev_priv,
778 				    HDCP_STATUS(dev_priv, cpu_transcoder, port),
779 				    ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
780 		DRM_ERROR("Failed to disable HDCP, timeout clearing status\n");
781 		return -ETIMEDOUT;
782 	}
783 
784 	ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
785 	if (ret) {
786 		DRM_ERROR("Failed to disable HDCP signalling\n");
787 		return ret;
788 	}
789 
790 	DRM_DEBUG_KMS("HDCP is disabled\n");
791 	return 0;
792 }
793 
_intel_hdcp_enable(struct intel_connector * connector)794 static int _intel_hdcp_enable(struct intel_connector *connector)
795 {
796 	struct intel_hdcp *hdcp = &connector->hdcp;
797 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
798 	int i, ret, tries = 3;
799 
800 	DRM_DEBUG_KMS("[%s:%d] HDCP is being enabled...\n",
801 		      connector->base.name, connector->base.base.id);
802 
803 	if (!hdcp_key_loadable(dev_priv)) {
804 		DRM_ERROR("HDCP key Load is not possible\n");
805 		return -ENXIO;
806 	}
807 
808 	for (i = 0; i < KEY_LOAD_TRIES; i++) {
809 		ret = intel_hdcp_load_keys(dev_priv);
810 		if (!ret)
811 			break;
812 		intel_hdcp_clear_keys(dev_priv);
813 	}
814 	if (ret) {
815 		DRM_ERROR("Could not load HDCP keys, (%d)\n", ret);
816 		return ret;
817 	}
818 
819 	/* Incase of authentication failures, HDCP spec expects reauth. */
820 	for (i = 0; i < tries; i++) {
821 		ret = intel_hdcp_auth(connector);
822 		if (!ret) {
823 			hdcp->hdcp_encrypted = true;
824 			return 0;
825 		}
826 
827 		DRM_DEBUG_KMS("HDCP Auth failure (%d)\n", ret);
828 
829 		/* Ensuring HDCP encryption and signalling are stopped. */
830 		_intel_hdcp_disable(connector);
831 	}
832 
833 	DRM_DEBUG_KMS("HDCP authentication failed (%d tries/%d)\n", tries, ret);
834 	return ret;
835 }
836 
837 static inline
intel_hdcp_to_connector(struct intel_hdcp * hdcp)838 struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
839 {
840 	return container_of(hdcp, struct intel_connector, hdcp);
841 }
842 
843 /* Implements Part 3 of the HDCP authorization procedure */
intel_hdcp_check_link(struct intel_connector * connector)844 static int intel_hdcp_check_link(struct intel_connector *connector)
845 {
846 	struct intel_hdcp *hdcp = &connector->hdcp;
847 	struct drm_i915_private *dev_priv = connector->base.dev->dev_private;
848 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
849 	enum port port = intel_dig_port->base.port;
850 	enum transcoder cpu_transcoder;
851 	int ret = 0;
852 
853 	mutex_lock(&hdcp->mutex);
854 	cpu_transcoder = hdcp->cpu_transcoder;
855 
856 	/* Check_link valid only when HDCP1.4 is enabled */
857 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
858 	    !hdcp->hdcp_encrypted) {
859 		ret = -EINVAL;
860 		goto out;
861 	}
862 
863 	if (WARN_ON(!intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
864 		DRM_ERROR("%s:%d HDCP link stopped encryption,%x\n",
865 			  connector->base.name, connector->base.base.id,
866 			  I915_READ(HDCP_STATUS(dev_priv, cpu_transcoder,
867 						port)));
868 		ret = -ENXIO;
869 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
870 		schedule_work(&hdcp->prop_work);
871 		goto out;
872 	}
873 
874 	if (hdcp->shim->check_link(intel_dig_port)) {
875 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
876 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
877 			schedule_work(&hdcp->prop_work);
878 		}
879 		goto out;
880 	}
881 
882 	DRM_DEBUG_KMS("[%s:%d] HDCP link failed, retrying authentication\n",
883 		      connector->base.name, connector->base.base.id);
884 
885 	ret = _intel_hdcp_disable(connector);
886 	if (ret) {
887 		DRM_ERROR("Failed to disable hdcp (%d)\n", ret);
888 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
889 		schedule_work(&hdcp->prop_work);
890 		goto out;
891 	}
892 
893 	ret = _intel_hdcp_enable(connector);
894 	if (ret) {
895 		DRM_ERROR("Failed to enable hdcp (%d)\n", ret);
896 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
897 		schedule_work(&hdcp->prop_work);
898 		goto out;
899 	}
900 
901 out:
902 	mutex_unlock(&hdcp->mutex);
903 	return ret;
904 }
905 
intel_hdcp_prop_work(struct work_struct * work)906 static void intel_hdcp_prop_work(struct work_struct *work)
907 {
908 	struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
909 					       prop_work);
910 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
911 	struct drm_device *dev = connector->base.dev;
912 
913 	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
914 	mutex_lock(&hdcp->mutex);
915 
916 	/*
917 	 * This worker is only used to flip between ENABLED/DESIRED. Either of
918 	 * those to UNDESIRED is handled by core. If value == UNDESIRED,
919 	 * we're running just after hdcp has been disabled, so just exit
920 	 */
921 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
922 		drm_hdcp_update_content_protection(&connector->base,
923 						   hdcp->value);
924 
925 	mutex_unlock(&hdcp->mutex);
926 	drm_modeset_unlock(&dev->mode_config.connection_mutex);
927 }
928 
is_hdcp_supported(struct drm_i915_private * dev_priv,enum port port)929 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
930 {
931 	/* PORT E doesn't have HDCP, and PORT F is disabled */
932 	return INTEL_INFO(dev_priv)->display.has_hdcp && port < PORT_E;
933 }
934 
935 static int
hdcp2_prepare_ake_init(struct intel_connector * connector,struct hdcp2_ake_init * ake_data)936 hdcp2_prepare_ake_init(struct intel_connector *connector,
937 		       struct hdcp2_ake_init *ake_data)
938 {
939 	struct hdcp_port_data *data = &connector->hdcp.port_data;
940 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
941 	struct i915_hdcp_comp_master *comp;
942 	int ret;
943 
944 	mutex_lock(&dev_priv->hdcp_comp_mutex);
945 	comp = dev_priv->hdcp_master;
946 
947 	if (!comp || !comp->ops) {
948 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
949 		return -EINVAL;
950 	}
951 
952 	ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
953 	if (ret)
954 		DRM_DEBUG_KMS("Prepare_ake_init failed. %d\n", ret);
955 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
956 
957 	return ret;
958 }
959 
960 static int
hdcp2_verify_rx_cert_prepare_km(struct intel_connector * connector,struct hdcp2_ake_send_cert * rx_cert,bool * paired,struct hdcp2_ake_no_stored_km * ek_pub_km,size_t * msg_sz)961 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
962 				struct hdcp2_ake_send_cert *rx_cert,
963 				bool *paired,
964 				struct hdcp2_ake_no_stored_km *ek_pub_km,
965 				size_t *msg_sz)
966 {
967 	struct hdcp_port_data *data = &connector->hdcp.port_data;
968 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
969 	struct i915_hdcp_comp_master *comp;
970 	int ret;
971 
972 	mutex_lock(&dev_priv->hdcp_comp_mutex);
973 	comp = dev_priv->hdcp_master;
974 
975 	if (!comp || !comp->ops) {
976 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
977 		return -EINVAL;
978 	}
979 
980 	ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
981 							 rx_cert, paired,
982 							 ek_pub_km, msg_sz);
983 	if (ret < 0)
984 		DRM_DEBUG_KMS("Verify rx_cert failed. %d\n", ret);
985 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
986 
987 	return ret;
988 }
989 
hdcp2_verify_hprime(struct intel_connector * connector,struct hdcp2_ake_send_hprime * rx_hprime)990 static int hdcp2_verify_hprime(struct intel_connector *connector,
991 			       struct hdcp2_ake_send_hprime *rx_hprime)
992 {
993 	struct hdcp_port_data *data = &connector->hdcp.port_data;
994 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
995 	struct i915_hdcp_comp_master *comp;
996 	int ret;
997 
998 	mutex_lock(&dev_priv->hdcp_comp_mutex);
999 	comp = dev_priv->hdcp_master;
1000 
1001 	if (!comp || !comp->ops) {
1002 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1003 		return -EINVAL;
1004 	}
1005 
1006 	ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1007 	if (ret < 0)
1008 		DRM_DEBUG_KMS("Verify hprime failed. %d\n", ret);
1009 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1010 
1011 	return ret;
1012 }
1013 
1014 static int
hdcp2_store_pairing_info(struct intel_connector * connector,struct hdcp2_ake_send_pairing_info * pairing_info)1015 hdcp2_store_pairing_info(struct intel_connector *connector,
1016 			 struct hdcp2_ake_send_pairing_info *pairing_info)
1017 {
1018 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1019 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1020 	struct i915_hdcp_comp_master *comp;
1021 	int ret;
1022 
1023 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1024 	comp = dev_priv->hdcp_master;
1025 
1026 	if (!comp || !comp->ops) {
1027 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1028 		return -EINVAL;
1029 	}
1030 
1031 	ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1032 	if (ret < 0)
1033 		DRM_DEBUG_KMS("Store pairing info failed. %d\n", ret);
1034 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1035 
1036 	return ret;
1037 }
1038 
1039 static int
hdcp2_prepare_lc_init(struct intel_connector * connector,struct hdcp2_lc_init * lc_init)1040 hdcp2_prepare_lc_init(struct intel_connector *connector,
1041 		      struct hdcp2_lc_init *lc_init)
1042 {
1043 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1044 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1045 	struct i915_hdcp_comp_master *comp;
1046 	int ret;
1047 
1048 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1049 	comp = dev_priv->hdcp_master;
1050 
1051 	if (!comp || !comp->ops) {
1052 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1053 		return -EINVAL;
1054 	}
1055 
1056 	ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1057 	if (ret < 0)
1058 		DRM_DEBUG_KMS("Prepare lc_init failed. %d\n", ret);
1059 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1060 
1061 	return ret;
1062 }
1063 
1064 static int
hdcp2_verify_lprime(struct intel_connector * connector,struct hdcp2_lc_send_lprime * rx_lprime)1065 hdcp2_verify_lprime(struct intel_connector *connector,
1066 		    struct hdcp2_lc_send_lprime *rx_lprime)
1067 {
1068 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1069 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1070 	struct i915_hdcp_comp_master *comp;
1071 	int ret;
1072 
1073 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1074 	comp = dev_priv->hdcp_master;
1075 
1076 	if (!comp || !comp->ops) {
1077 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1078 		return -EINVAL;
1079 	}
1080 
1081 	ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1082 	if (ret < 0)
1083 		DRM_DEBUG_KMS("Verify L_Prime failed. %d\n", ret);
1084 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1085 
1086 	return ret;
1087 }
1088 
hdcp2_prepare_skey(struct intel_connector * connector,struct hdcp2_ske_send_eks * ske_data)1089 static int hdcp2_prepare_skey(struct intel_connector *connector,
1090 			      struct hdcp2_ske_send_eks *ske_data)
1091 {
1092 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1093 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1094 	struct i915_hdcp_comp_master *comp;
1095 	int ret;
1096 
1097 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1098 	comp = dev_priv->hdcp_master;
1099 
1100 	if (!comp || !comp->ops) {
1101 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1102 		return -EINVAL;
1103 	}
1104 
1105 	ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1106 	if (ret < 0)
1107 		DRM_DEBUG_KMS("Get session key failed. %d\n", ret);
1108 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1109 
1110 	return ret;
1111 }
1112 
1113 static int
hdcp2_verify_rep_topology_prepare_ack(struct intel_connector * connector,struct hdcp2_rep_send_receiverid_list * rep_topology,struct hdcp2_rep_send_ack * rep_send_ack)1114 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1115 				      struct hdcp2_rep_send_receiverid_list
1116 								*rep_topology,
1117 				      struct hdcp2_rep_send_ack *rep_send_ack)
1118 {
1119 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1120 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1121 	struct i915_hdcp_comp_master *comp;
1122 	int ret;
1123 
1124 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1125 	comp = dev_priv->hdcp_master;
1126 
1127 	if (!comp || !comp->ops) {
1128 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1129 		return -EINVAL;
1130 	}
1131 
1132 	ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1133 							 rep_topology,
1134 							 rep_send_ack);
1135 	if (ret < 0)
1136 		DRM_DEBUG_KMS("Verify rep topology failed. %d\n", ret);
1137 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1138 
1139 	return ret;
1140 }
1141 
1142 static int
hdcp2_verify_mprime(struct intel_connector * connector,struct hdcp2_rep_stream_ready * stream_ready)1143 hdcp2_verify_mprime(struct intel_connector *connector,
1144 		    struct hdcp2_rep_stream_ready *stream_ready)
1145 {
1146 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1147 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1148 	struct i915_hdcp_comp_master *comp;
1149 	int ret;
1150 
1151 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1152 	comp = dev_priv->hdcp_master;
1153 
1154 	if (!comp || !comp->ops) {
1155 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1156 		return -EINVAL;
1157 	}
1158 
1159 	ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1160 	if (ret < 0)
1161 		DRM_DEBUG_KMS("Verify mprime failed. %d\n", ret);
1162 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1163 
1164 	return ret;
1165 }
1166 
hdcp2_authenticate_port(struct intel_connector * connector)1167 static int hdcp2_authenticate_port(struct intel_connector *connector)
1168 {
1169 	struct hdcp_port_data *data = &connector->hdcp.port_data;
1170 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1171 	struct i915_hdcp_comp_master *comp;
1172 	int ret;
1173 
1174 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1175 	comp = dev_priv->hdcp_master;
1176 
1177 	if (!comp || !comp->ops) {
1178 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1179 		return -EINVAL;
1180 	}
1181 
1182 	ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1183 	if (ret < 0)
1184 		DRM_DEBUG_KMS("Enable hdcp auth failed. %d\n", ret);
1185 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1186 
1187 	return ret;
1188 }
1189 
hdcp2_close_mei_session(struct intel_connector * connector)1190 static int hdcp2_close_mei_session(struct intel_connector *connector)
1191 {
1192 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1193 	struct i915_hdcp_comp_master *comp;
1194 	int ret;
1195 
1196 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1197 	comp = dev_priv->hdcp_master;
1198 
1199 	if (!comp || !comp->ops) {
1200 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1201 		return -EINVAL;
1202 	}
1203 
1204 	ret = comp->ops->close_hdcp_session(comp->mei_dev,
1205 					     &connector->hdcp.port_data);
1206 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1207 
1208 	return ret;
1209 }
1210 
hdcp2_deauthenticate_port(struct intel_connector * connector)1211 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1212 {
1213 	return hdcp2_close_mei_session(connector);
1214 }
1215 
1216 /* Authentication flow starts from here */
hdcp2_authentication_key_exchange(struct intel_connector * connector)1217 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1218 {
1219 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1220 	struct intel_hdcp *hdcp = &connector->hdcp;
1221 	struct drm_device *dev = connector->base.dev;
1222 	union {
1223 		struct hdcp2_ake_init ake_init;
1224 		struct hdcp2_ake_send_cert send_cert;
1225 		struct hdcp2_ake_no_stored_km no_stored_km;
1226 		struct hdcp2_ake_send_hprime send_hprime;
1227 		struct hdcp2_ake_send_pairing_info pairing_info;
1228 	} msgs;
1229 	const struct intel_hdcp_shim *shim = hdcp->shim;
1230 	size_t size;
1231 	int ret;
1232 
1233 	/* Init for seq_num */
1234 	hdcp->seq_num_v = 0;
1235 	hdcp->seq_num_m = 0;
1236 
1237 	ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1238 	if (ret < 0)
1239 		return ret;
1240 
1241 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.ake_init,
1242 				  sizeof(msgs.ake_init));
1243 	if (ret < 0)
1244 		return ret;
1245 
1246 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_CERT,
1247 				 &msgs.send_cert, sizeof(msgs.send_cert));
1248 	if (ret < 0)
1249 		return ret;
1250 
1251 	if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1252 		DRM_DEBUG_KMS("cert.rx_caps dont claim HDCP2.2\n");
1253 		return -EINVAL;
1254 	}
1255 
1256 	hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1257 
1258 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.send_cert.cert_rx.receiver_id,
1259 					1)) {
1260 		DRM_ERROR("Receiver ID is revoked\n");
1261 		return -EPERM;
1262 	}
1263 
1264 	/*
1265 	 * Here msgs.no_stored_km will hold msgs corresponding to the km
1266 	 * stored also.
1267 	 */
1268 	ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1269 					      &hdcp->is_paired,
1270 					      &msgs.no_stored_km, &size);
1271 	if (ret < 0)
1272 		return ret;
1273 
1274 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.no_stored_km, size);
1275 	if (ret < 0)
1276 		return ret;
1277 
1278 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1279 				 &msgs.send_hprime, sizeof(msgs.send_hprime));
1280 	if (ret < 0)
1281 		return ret;
1282 
1283 	ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1284 	if (ret < 0)
1285 		return ret;
1286 
1287 	if (!hdcp->is_paired) {
1288 		/* Pairing is required */
1289 		ret = shim->read_2_2_msg(intel_dig_port,
1290 					 HDCP_2_2_AKE_SEND_PAIRING_INFO,
1291 					 &msgs.pairing_info,
1292 					 sizeof(msgs.pairing_info));
1293 		if (ret < 0)
1294 			return ret;
1295 
1296 		ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1297 		if (ret < 0)
1298 			return ret;
1299 		hdcp->is_paired = true;
1300 	}
1301 
1302 	return 0;
1303 }
1304 
hdcp2_locality_check(struct intel_connector * connector)1305 static int hdcp2_locality_check(struct intel_connector *connector)
1306 {
1307 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1308 	struct intel_hdcp *hdcp = &connector->hdcp;
1309 	union {
1310 		struct hdcp2_lc_init lc_init;
1311 		struct hdcp2_lc_send_lprime send_lprime;
1312 	} msgs;
1313 	const struct intel_hdcp_shim *shim = hdcp->shim;
1314 	int tries = HDCP2_LC_RETRY_CNT, ret, i;
1315 
1316 	for (i = 0; i < tries; i++) {
1317 		ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1318 		if (ret < 0)
1319 			continue;
1320 
1321 		ret = shim->write_2_2_msg(intel_dig_port, &msgs.lc_init,
1322 				      sizeof(msgs.lc_init));
1323 		if (ret < 0)
1324 			continue;
1325 
1326 		ret = shim->read_2_2_msg(intel_dig_port,
1327 					 HDCP_2_2_LC_SEND_LPRIME,
1328 					 &msgs.send_lprime,
1329 					 sizeof(msgs.send_lprime));
1330 		if (ret < 0)
1331 			continue;
1332 
1333 		ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1334 		if (!ret)
1335 			break;
1336 	}
1337 
1338 	return ret;
1339 }
1340 
hdcp2_session_key_exchange(struct intel_connector * connector)1341 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1342 {
1343 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1344 	struct intel_hdcp *hdcp = &connector->hdcp;
1345 	struct hdcp2_ske_send_eks send_eks;
1346 	int ret;
1347 
1348 	ret = hdcp2_prepare_skey(connector, &send_eks);
1349 	if (ret < 0)
1350 		return ret;
1351 
1352 	ret = hdcp->shim->write_2_2_msg(intel_dig_port, &send_eks,
1353 					sizeof(send_eks));
1354 	if (ret < 0)
1355 		return ret;
1356 
1357 	return 0;
1358 }
1359 
1360 static
hdcp2_propagate_stream_management_info(struct intel_connector * connector)1361 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1362 {
1363 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1364 	struct intel_hdcp *hdcp = &connector->hdcp;
1365 	union {
1366 		struct hdcp2_rep_stream_manage stream_manage;
1367 		struct hdcp2_rep_stream_ready stream_ready;
1368 	} msgs;
1369 	const struct intel_hdcp_shim *shim = hdcp->shim;
1370 	int ret;
1371 
1372 	/* Prepare RepeaterAuth_Stream_Manage msg */
1373 	msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1374 	drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1375 
1376 	/* K no of streams is fixed as 1. Stored as big-endian. */
1377 	msgs.stream_manage.k = cpu_to_be16(1);
1378 
1379 	/* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1380 	msgs.stream_manage.streams[0].stream_id = 0;
1381 	msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1382 
1383 	/* Send it to Repeater */
1384 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.stream_manage,
1385 				  sizeof(msgs.stream_manage));
1386 	if (ret < 0)
1387 		return ret;
1388 
1389 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_STREAM_READY,
1390 				 &msgs.stream_ready, sizeof(msgs.stream_ready));
1391 	if (ret < 0)
1392 		return ret;
1393 
1394 	hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1395 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1396 
1397 	ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1398 	if (ret < 0)
1399 		return ret;
1400 
1401 	hdcp->seq_num_m++;
1402 
1403 	if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1404 		DRM_DEBUG_KMS("seq_num_m roll over.\n");
1405 		return -1;
1406 	}
1407 
1408 	return 0;
1409 }
1410 
1411 static
hdcp2_authenticate_repeater_topology(struct intel_connector * connector)1412 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1413 {
1414 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1415 	struct intel_hdcp *hdcp = &connector->hdcp;
1416 	struct drm_device *dev = connector->base.dev;
1417 	union {
1418 		struct hdcp2_rep_send_receiverid_list recvid_list;
1419 		struct hdcp2_rep_send_ack rep_ack;
1420 	} msgs;
1421 	const struct intel_hdcp_shim *shim = hdcp->shim;
1422 	u32 seq_num_v, device_cnt;
1423 	u8 *rx_info;
1424 	int ret;
1425 
1426 	ret = shim->read_2_2_msg(intel_dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1427 				 &msgs.recvid_list, sizeof(msgs.recvid_list));
1428 	if (ret < 0)
1429 		return ret;
1430 
1431 	rx_info = msgs.recvid_list.rx_info;
1432 
1433 	if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1434 	    HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1435 		DRM_DEBUG_KMS("Topology Max Size Exceeded\n");
1436 		return -EINVAL;
1437 	}
1438 
1439 	/* Converting and Storing the seq_num_v to local variable as DWORD */
1440 	seq_num_v =
1441 		drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1442 
1443 	if (seq_num_v < hdcp->seq_num_v) {
1444 		/* Roll over of the seq_num_v from repeater. Reauthenticate. */
1445 		DRM_DEBUG_KMS("Seq_num_v roll over.\n");
1446 		return -EINVAL;
1447 	}
1448 
1449 	device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1450 		      HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1451 	if (drm_hdcp_check_ksvs_revoked(dev, msgs.recvid_list.receiver_ids,
1452 					device_cnt)) {
1453 		DRM_ERROR("Revoked receiver ID(s) is in list\n");
1454 		return -EPERM;
1455 	}
1456 
1457 	ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1458 						    &msgs.recvid_list,
1459 						    &msgs.rep_ack);
1460 	if (ret < 0)
1461 		return ret;
1462 
1463 	hdcp->seq_num_v = seq_num_v;
1464 	ret = shim->write_2_2_msg(intel_dig_port, &msgs.rep_ack,
1465 				  sizeof(msgs.rep_ack));
1466 	if (ret < 0)
1467 		return ret;
1468 
1469 	return 0;
1470 }
1471 
hdcp2_authenticate_repeater(struct intel_connector * connector)1472 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1473 {
1474 	int ret;
1475 
1476 	ret = hdcp2_authenticate_repeater_topology(connector);
1477 	if (ret < 0)
1478 		return ret;
1479 
1480 	return hdcp2_propagate_stream_management_info(connector);
1481 }
1482 
hdcp2_authenticate_sink(struct intel_connector * connector)1483 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1484 {
1485 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1486 	struct intel_hdcp *hdcp = &connector->hdcp;
1487 	const struct intel_hdcp_shim *shim = hdcp->shim;
1488 	int ret;
1489 
1490 	ret = hdcp2_authentication_key_exchange(connector);
1491 	if (ret < 0) {
1492 		DRM_DEBUG_KMS("AKE Failed. Err : %d\n", ret);
1493 		return ret;
1494 	}
1495 
1496 	ret = hdcp2_locality_check(connector);
1497 	if (ret < 0) {
1498 		DRM_DEBUG_KMS("Locality Check failed. Err : %d\n", ret);
1499 		return ret;
1500 	}
1501 
1502 	ret = hdcp2_session_key_exchange(connector);
1503 	if (ret < 0) {
1504 		DRM_DEBUG_KMS("SKE Failed. Err : %d\n", ret);
1505 		return ret;
1506 	}
1507 
1508 	if (shim->config_stream_type) {
1509 		ret = shim->config_stream_type(intel_dig_port,
1510 					       hdcp->is_repeater,
1511 					       hdcp->content_type);
1512 		if (ret < 0)
1513 			return ret;
1514 	}
1515 
1516 	if (hdcp->is_repeater) {
1517 		ret = hdcp2_authenticate_repeater(connector);
1518 		if (ret < 0) {
1519 			DRM_DEBUG_KMS("Repeater Auth Failed. Err: %d\n", ret);
1520 			return ret;
1521 		}
1522 	}
1523 
1524 	hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1525 	ret = hdcp2_authenticate_port(connector);
1526 	if (ret < 0)
1527 		return ret;
1528 
1529 	return ret;
1530 }
1531 
hdcp2_enable_encryption(struct intel_connector * connector)1532 static int hdcp2_enable_encryption(struct intel_connector *connector)
1533 {
1534 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1535 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1536 	struct intel_hdcp *hdcp = &connector->hdcp;
1537 	enum port port = connector->encoder->port;
1538 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1539 	int ret;
1540 
1541 	WARN_ON(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1542 		LINK_ENCRYPTION_STATUS);
1543 	if (hdcp->shim->toggle_signalling) {
1544 		ret = hdcp->shim->toggle_signalling(intel_dig_port, true);
1545 		if (ret) {
1546 			DRM_ERROR("Failed to enable HDCP signalling. %d\n",
1547 				  ret);
1548 			return ret;
1549 		}
1550 	}
1551 
1552 	if (I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1553 	    LINK_AUTH_STATUS) {
1554 		/* Link is Authenticated. Now set for Encryption */
1555 		I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1556 			   I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder,
1557 					       port)) |
1558 			   CTL_LINK_ENCRYPTION_REQ);
1559 	}
1560 
1561 	ret = intel_de_wait_for_set(dev_priv,
1562 				    HDCP2_STATUS(dev_priv, cpu_transcoder,
1563 						 port),
1564 				    LINK_ENCRYPTION_STATUS,
1565 				    ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1566 
1567 	return ret;
1568 }
1569 
hdcp2_disable_encryption(struct intel_connector * connector)1570 static int hdcp2_disable_encryption(struct intel_connector *connector)
1571 {
1572 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1573 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1574 	struct intel_hdcp *hdcp = &connector->hdcp;
1575 	enum port port = connector->encoder->port;
1576 	enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1577 	int ret;
1578 
1579 	WARN_ON(!(I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1580 			    LINK_ENCRYPTION_STATUS));
1581 
1582 	I915_WRITE(HDCP2_CTL(dev_priv, cpu_transcoder, port),
1583 		   I915_READ(HDCP2_CTL(dev_priv, cpu_transcoder, port)) &
1584 		   ~CTL_LINK_ENCRYPTION_REQ);
1585 
1586 	ret = intel_de_wait_for_clear(dev_priv,
1587 				      HDCP2_STATUS(dev_priv, cpu_transcoder,
1588 						   port),
1589 				      LINK_ENCRYPTION_STATUS,
1590 				      ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1591 	if (ret == -ETIMEDOUT)
1592 		DRM_DEBUG_KMS("Disable Encryption Timedout");
1593 
1594 	if (hdcp->shim->toggle_signalling) {
1595 		ret = hdcp->shim->toggle_signalling(intel_dig_port, false);
1596 		if (ret) {
1597 			DRM_ERROR("Failed to disable HDCP signalling. %d\n",
1598 				  ret);
1599 			return ret;
1600 		}
1601 	}
1602 
1603 	return ret;
1604 }
1605 
hdcp2_authenticate_and_encrypt(struct intel_connector * connector)1606 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1607 {
1608 	int ret, i, tries = 3;
1609 
1610 	for (i = 0; i < tries; i++) {
1611 		ret = hdcp2_authenticate_sink(connector);
1612 		if (!ret)
1613 			break;
1614 
1615 		/* Clearing the mei hdcp session */
1616 		DRM_DEBUG_KMS("HDCP2.2 Auth %d of %d Failed.(%d)\n",
1617 			      i + 1, tries, ret);
1618 		if (hdcp2_deauthenticate_port(connector) < 0)
1619 			DRM_DEBUG_KMS("Port deauth failed.\n");
1620 	}
1621 
1622 	if (i != tries) {
1623 		/*
1624 		 * Ensuring the required 200mSec min time interval between
1625 		 * Session Key Exchange and encryption.
1626 		 */
1627 		msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1628 		ret = hdcp2_enable_encryption(connector);
1629 		if (ret < 0) {
1630 			DRM_DEBUG_KMS("Encryption Enable Failed.(%d)\n", ret);
1631 			if (hdcp2_deauthenticate_port(connector) < 0)
1632 				DRM_DEBUG_KMS("Port deauth failed.\n");
1633 		}
1634 	}
1635 
1636 	return ret;
1637 }
1638 
_intel_hdcp2_enable(struct intel_connector * connector)1639 static int _intel_hdcp2_enable(struct intel_connector *connector)
1640 {
1641 	struct intel_hdcp *hdcp = &connector->hdcp;
1642 	int ret;
1643 
1644 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1645 		      connector->base.name, connector->base.base.id,
1646 		      hdcp->content_type);
1647 
1648 	ret = hdcp2_authenticate_and_encrypt(connector);
1649 	if (ret) {
1650 		DRM_DEBUG_KMS("HDCP2 Type%d  Enabling Failed. (%d)\n",
1651 			      hdcp->content_type, ret);
1652 		return ret;
1653 	}
1654 
1655 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is enabled. Type %d\n",
1656 		      connector->base.name, connector->base.base.id,
1657 		      hdcp->content_type);
1658 
1659 	hdcp->hdcp2_encrypted = true;
1660 	return 0;
1661 }
1662 
_intel_hdcp2_disable(struct intel_connector * connector)1663 static int _intel_hdcp2_disable(struct intel_connector *connector)
1664 {
1665 	int ret;
1666 
1667 	DRM_DEBUG_KMS("[%s:%d] HDCP2.2 is being Disabled\n",
1668 		      connector->base.name, connector->base.base.id);
1669 
1670 	ret = hdcp2_disable_encryption(connector);
1671 
1672 	if (hdcp2_deauthenticate_port(connector) < 0)
1673 		DRM_DEBUG_KMS("Port deauth failed.\n");
1674 
1675 	connector->hdcp.hdcp2_encrypted = false;
1676 
1677 	return ret;
1678 }
1679 
1680 /* Implements the Link Integrity Check for HDCP2.2 */
intel_hdcp2_check_link(struct intel_connector * connector)1681 static int intel_hdcp2_check_link(struct intel_connector *connector)
1682 {
1683 	struct intel_digital_port *intel_dig_port = conn_to_dig_port(connector);
1684 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1685 	struct intel_hdcp *hdcp = &connector->hdcp;
1686 	enum port port = connector->encoder->port;
1687 	enum transcoder cpu_transcoder;
1688 	int ret = 0;
1689 
1690 	mutex_lock(&hdcp->mutex);
1691 	cpu_transcoder = hdcp->cpu_transcoder;
1692 
1693 	/* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1694 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1695 	    !hdcp->hdcp2_encrypted) {
1696 		ret = -EINVAL;
1697 		goto out;
1698 	}
1699 
1700 	if (WARN_ON(!intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1701 		DRM_ERROR("HDCP2.2 link stopped the encryption, %x\n",
1702 			  I915_READ(HDCP2_STATUS(dev_priv, cpu_transcoder,
1703 						 port)));
1704 		ret = -ENXIO;
1705 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1706 		schedule_work(&hdcp->prop_work);
1707 		goto out;
1708 	}
1709 
1710 	ret = hdcp->shim->check_2_2_link(intel_dig_port);
1711 	if (ret == HDCP_LINK_PROTECTED) {
1712 		if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1713 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1714 			schedule_work(&hdcp->prop_work);
1715 		}
1716 		goto out;
1717 	}
1718 
1719 	if (ret == HDCP_TOPOLOGY_CHANGE) {
1720 		if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1721 			goto out;
1722 
1723 		DRM_DEBUG_KMS("HDCP2.2 Downstream topology change\n");
1724 		ret = hdcp2_authenticate_repeater_topology(connector);
1725 		if (!ret) {
1726 			hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1727 			schedule_work(&hdcp->prop_work);
1728 			goto out;
1729 		}
1730 		DRM_DEBUG_KMS("[%s:%d] Repeater topology auth failed.(%d)\n",
1731 			      connector->base.name, connector->base.base.id,
1732 			      ret);
1733 	} else {
1734 		DRM_DEBUG_KMS("[%s:%d] HDCP2.2 link failed, retrying auth\n",
1735 			      connector->base.name, connector->base.base.id);
1736 	}
1737 
1738 	ret = _intel_hdcp2_disable(connector);
1739 	if (ret) {
1740 		DRM_ERROR("[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1741 			  connector->base.name, connector->base.base.id, ret);
1742 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1743 		schedule_work(&hdcp->prop_work);
1744 		goto out;
1745 	}
1746 
1747 	ret = _intel_hdcp2_enable(connector);
1748 	if (ret) {
1749 		DRM_DEBUG_KMS("[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1750 			      connector->base.name, connector->base.base.id,
1751 			      ret);
1752 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1753 		schedule_work(&hdcp->prop_work);
1754 		goto out;
1755 	}
1756 
1757 out:
1758 	mutex_unlock(&hdcp->mutex);
1759 	return ret;
1760 }
1761 
intel_hdcp_check_work(struct work_struct * work)1762 static void intel_hdcp_check_work(struct work_struct *work)
1763 {
1764 	struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1765 					       struct intel_hdcp,
1766 					       check_work);
1767 	struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1768 
1769 	if (!intel_hdcp2_check_link(connector))
1770 		schedule_delayed_work(&hdcp->check_work,
1771 				      DRM_HDCP2_CHECK_PERIOD_MS);
1772 	else if (!intel_hdcp_check_link(connector))
1773 		schedule_delayed_work(&hdcp->check_work,
1774 				      DRM_HDCP_CHECK_PERIOD_MS);
1775 }
1776 
1777 #ifndef __NetBSD__		/* XXX i915 hdmi audio */
1778 
i915_hdcp_component_bind(struct device * i915_kdev,struct device * mei_kdev,void * data)1779 static int i915_hdcp_component_bind(struct device *i915_kdev,
1780 				    struct device *mei_kdev, void *data)
1781 {
1782 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1783 
1784 	DRM_DEBUG("I915 HDCP comp bind\n");
1785 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1786 	dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1787 	dev_priv->hdcp_master->mei_dev = mei_kdev;
1788 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1789 
1790 	return 0;
1791 }
1792 
i915_hdcp_component_unbind(struct device * i915_kdev,struct device * mei_kdev,void * data)1793 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1794 				       struct device *mei_kdev, void *data)
1795 {
1796 	struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1797 
1798 	DRM_DEBUG("I915 HDCP comp unbind\n");
1799 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1800 	dev_priv->hdcp_master = NULL;
1801 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1802 }
1803 
1804 static const struct component_ops i915_hdcp_component_ops = {
1805 	.bind   = i915_hdcp_component_bind,
1806 	.unbind = i915_hdcp_component_unbind,
1807 };
1808 
1809 #endif
1810 
1811 static inline
intel_get_mei_fw_ddi_index(enum port port)1812 enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1813 {
1814 	switch (port) {
1815 	case PORT_A:
1816 		return MEI_DDI_A;
1817 	case PORT_B ... PORT_F:
1818 		return (enum mei_fw_ddi)port;
1819 	default:
1820 		return MEI_DDI_INVALID_PORT;
1821 	}
1822 }
1823 
1824 static inline
intel_get_mei_fw_tc(enum transcoder cpu_transcoder)1825 enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1826 {
1827 	switch (cpu_transcoder) {
1828 	case TRANSCODER_A ... TRANSCODER_D:
1829 		return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1830 	default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1831 		return MEI_INVALID_TRANSCODER;
1832 	}
1833 }
1834 
initialize_hdcp_port_data(struct intel_connector * connector,const struct intel_hdcp_shim * shim)1835 static inline int initialize_hdcp_port_data(struct intel_connector *connector,
1836 					    const struct intel_hdcp_shim *shim)
1837 {
1838 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1839 	struct intel_hdcp *hdcp = &connector->hdcp;
1840 	struct hdcp_port_data *data = &hdcp->port_data;
1841 
1842 	if (INTEL_GEN(dev_priv) < 12)
1843 		data->fw_ddi =
1844 			intel_get_mei_fw_ddi_index(connector->encoder->port);
1845 	else
1846 		/*
1847 		 * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1848 		 * with zero(INVALID PORT index).
1849 		 */
1850 		data->fw_ddi = MEI_DDI_INVALID_PORT;
1851 
1852 	/*
1853 	 * As associated transcoder is set and modified at modeset, here fw_tc
1854 	 * is initialized to zero (invalid transcoder index). This will be
1855 	 * retained for <Gen12 forever.
1856 	 */
1857 	data->fw_tc = MEI_INVALID_TRANSCODER;
1858 
1859 	data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1860 	data->protocol = (u8)shim->protocol;
1861 
1862 	data->k = 1;
1863 	if (!data->streams)
1864 		data->streams = kcalloc(data->k,
1865 					sizeof(struct hdcp2_streamid_type),
1866 					GFP_KERNEL);
1867 	if (!data->streams) {
1868 		DRM_ERROR("Out of Memory\n");
1869 		return -ENOMEM;
1870 	}
1871 
1872 	data->streams[0].stream_id = 0;
1873 	data->streams[0].stream_type = hdcp->content_type;
1874 
1875 	return 0;
1876 }
1877 
is_hdcp2_supported(struct drm_i915_private * dev_priv)1878 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1879 {
1880 	if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1881 		return false;
1882 
1883 	return (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv) ||
1884 		IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv));
1885 }
1886 
intel_hdcp_component_init(struct drm_i915_private * dev_priv)1887 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1888 {
1889 	int ret;
1890 
1891 	if (!is_hdcp2_supported(dev_priv))
1892 		return;
1893 
1894 	mutex_lock(&dev_priv->hdcp_comp_mutex);
1895 	WARN_ON(dev_priv->hdcp_comp_added);
1896 
1897 	dev_priv->hdcp_comp_added = true;
1898 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
1899 #ifdef __NetBSD__		/* XXX i915 hdmi audio */
1900 	ret = 0;
1901 #else
1902 	ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1903 				  I915_COMPONENT_HDCP);
1904 #endif
1905 	if (ret < 0) {
1906 		DRM_DEBUG_KMS("Failed at component add(%d)\n", ret);
1907 		mutex_lock(&dev_priv->hdcp_comp_mutex);
1908 		dev_priv->hdcp_comp_added = false;
1909 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
1910 		return;
1911 	}
1912 }
1913 
intel_hdcp2_init(struct intel_connector * connector,const struct intel_hdcp_shim * shim)1914 static void intel_hdcp2_init(struct intel_connector *connector,
1915 			     const struct intel_hdcp_shim *shim)
1916 {
1917 	struct intel_hdcp *hdcp = &connector->hdcp;
1918 	int ret;
1919 
1920 	ret = initialize_hdcp_port_data(connector, shim);
1921 	if (ret) {
1922 		DRM_DEBUG_KMS("Mei hdcp data init failed\n");
1923 		return;
1924 	}
1925 
1926 	hdcp->hdcp2_supported = true;
1927 }
1928 
intel_hdcp_init(struct intel_connector * connector,const struct intel_hdcp_shim * shim)1929 int intel_hdcp_init(struct intel_connector *connector,
1930 		    const struct intel_hdcp_shim *shim)
1931 {
1932 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1933 	struct intel_hdcp *hdcp = &connector->hdcp;
1934 	int ret;
1935 
1936 	if (!shim)
1937 		return -EINVAL;
1938 
1939 	if (is_hdcp2_supported(dev_priv))
1940 		intel_hdcp2_init(connector, shim);
1941 
1942 	ret =
1943 	drm_connector_attach_content_protection_property(&connector->base,
1944 							 hdcp->hdcp2_supported);
1945 	if (ret) {
1946 		hdcp->hdcp2_supported = false;
1947 		kfree(hdcp->port_data.streams);
1948 		return ret;
1949 	}
1950 
1951 	hdcp->shim = shim;
1952 	mutex_init(&hdcp->mutex);
1953 	INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
1954 	INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
1955 	DRM_INIT_WAITQUEUE(&hdcp->cp_irq_queue, "hdcpirq");
1956 
1957 	return 0;
1958 }
1959 
intel_hdcp_enable(struct intel_connector * connector,enum transcoder cpu_transcoder,u8 content_type)1960 int intel_hdcp_enable(struct intel_connector *connector,
1961 		      enum transcoder cpu_transcoder, u8 content_type)
1962 {
1963 	struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1964 	struct intel_hdcp *hdcp = &connector->hdcp;
1965 	unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
1966 	int ret = -EINVAL;
1967 
1968 	if (!hdcp->shim)
1969 		return -ENOENT;
1970 
1971 	mutex_lock(&hdcp->mutex);
1972 	WARN_ON(hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
1973 	hdcp->content_type = content_type;
1974 
1975 	if (INTEL_GEN(dev_priv) >= 12) {
1976 		hdcp->cpu_transcoder = cpu_transcoder;
1977 		hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
1978 	}
1979 
1980 	/*
1981 	 * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
1982 	 * is capable of HDCP2.2, it is preferred to use HDCP2.2.
1983 	 */
1984 	if (intel_hdcp2_capable(connector)) {
1985 		ret = _intel_hdcp2_enable(connector);
1986 		if (!ret)
1987 			check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
1988 	}
1989 
1990 	/*
1991 	 * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
1992 	 * be attempted.
1993 	 */
1994 	if (ret && intel_hdcp_capable(connector) &&
1995 	    hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
1996 		ret = _intel_hdcp_enable(connector);
1997 	}
1998 
1999 	if (!ret) {
2000 		schedule_delayed_work(&hdcp->check_work, check_link_interval);
2001 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
2002 		schedule_work(&hdcp->prop_work);
2003 	}
2004 
2005 	mutex_unlock(&hdcp->mutex);
2006 	return ret;
2007 }
2008 
intel_hdcp_disable(struct intel_connector * connector)2009 int intel_hdcp_disable(struct intel_connector *connector)
2010 {
2011 	struct intel_hdcp *hdcp = &connector->hdcp;
2012 	int ret = 0;
2013 
2014 	if (!hdcp->shim)
2015 		return -ENOENT;
2016 
2017 	mutex_lock(&hdcp->mutex);
2018 
2019 	if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2020 		hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
2021 		if (hdcp->hdcp2_encrypted)
2022 			ret = _intel_hdcp2_disable(connector);
2023 		else if (hdcp->hdcp_encrypted)
2024 			ret = _intel_hdcp_disable(connector);
2025 	}
2026 
2027 	mutex_unlock(&hdcp->mutex);
2028 	cancel_delayed_work_sync(&hdcp->check_work);
2029 	return ret;
2030 }
2031 
intel_hdcp_component_fini(struct drm_i915_private * dev_priv)2032 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2033 {
2034 	mutex_lock(&dev_priv->hdcp_comp_mutex);
2035 	if (!dev_priv->hdcp_comp_added) {
2036 		mutex_unlock(&dev_priv->hdcp_comp_mutex);
2037 		return;
2038 	}
2039 
2040 	dev_priv->hdcp_comp_added = false;
2041 	mutex_unlock(&dev_priv->hdcp_comp_mutex);
2042 
2043 #ifndef __NetBSD__		/* XXX i915 hdmi audio */
2044 	component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2045 #endif
2046 }
2047 
intel_hdcp_cleanup(struct intel_connector * connector)2048 void intel_hdcp_cleanup(struct intel_connector *connector)
2049 {
2050 	if (!connector->hdcp.shim)
2051 		return;
2052 
2053 	mutex_lock(&connector->hdcp.mutex);
2054 	kfree(connector->hdcp.port_data.streams);
2055 	mutex_unlock(&connector->hdcp.mutex);
2056 
2057 	mutex_destroy(&connector->hdcp.mutex);
2058 }
2059 
intel_hdcp_atomic_check(struct drm_connector * connector,struct drm_connector_state * old_state,struct drm_connector_state * new_state)2060 void intel_hdcp_atomic_check(struct drm_connector *connector,
2061 			     struct drm_connector_state *old_state,
2062 			     struct drm_connector_state *new_state)
2063 {
2064 	u64 old_cp = old_state->content_protection;
2065 	u64 new_cp = new_state->content_protection;
2066 	struct drm_crtc_state *crtc_state;
2067 
2068 	if (!new_state->crtc) {
2069 		/*
2070 		 * If the connector is being disabled with CP enabled, mark it
2071 		 * desired so it's re-enabled when the connector is brought back
2072 		 */
2073 		if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2074 			new_state->content_protection =
2075 				DRM_MODE_CONTENT_PROTECTION_DESIRED;
2076 		return;
2077 	}
2078 
2079 	/*
2080 	 * Nothing to do if the state didn't change, or HDCP was activated since
2081 	 * the last commit. And also no change in hdcp content type.
2082 	 */
2083 	if (old_cp == new_cp ||
2084 	    (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2085 	     new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2086 		if (old_state->hdcp_content_type ==
2087 				new_state->hdcp_content_type)
2088 			return;
2089 	}
2090 
2091 	crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2092 						   new_state->crtc);
2093 	crtc_state->mode_changed = true;
2094 }
2095 
2096 /* Handles the CP_IRQ raised from the DP HDCP sink */
intel_hdcp_handle_cp_irq(struct intel_connector * connector)2097 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2098 {
2099 	struct intel_hdcp *hdcp = &connector->hdcp;
2100 
2101 	if (!hdcp->shim)
2102 		return;
2103 
2104 	unsigned long irqflags;
2105 	spin_lock_irqsave(&connector->hdcp.cp_irq_lock, irqflags);
2106 	atomic_inc(&connector->hdcp.cp_irq_count);
2107 	DRM_SPIN_WAKEUP_ALL(&connector->hdcp.cp_irq_queue,
2108 	    &connector->hdcp.cp_irq_lock);
2109 	spin_unlock_irqrestore(&connector->hdcp.cp_irq_lock, irqflags);
2110 
2111 	schedule_delayed_work(&hdcp->check_work, 0);
2112 }
2113