1 //===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an analysis that determines, for a given memory
10 // operation, what preceding memory operations it depends on. It builds on
11 // alias analysis information, and tries to provide a lazy, caching interface to
12 // a common kind of alias information query.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/MemoryBuiltins.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/PHITransAddr.h"
27 #include "llvm/Analysis/TargetLibraryInfo.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/PredIteratorCache.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/Debug.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <utility>
54
55 using namespace llvm;
56
57 #define DEBUG_TYPE "memdep"
58
59 STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
60 STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
61 STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
62
63 STATISTIC(NumCacheNonLocalPtr,
64 "Number of fully cached non-local ptr responses");
65 STATISTIC(NumCacheDirtyNonLocalPtr,
66 "Number of cached, but dirty, non-local ptr responses");
67 STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
68 STATISTIC(NumCacheCompleteNonLocalPtr,
69 "Number of block queries that were completely cached");
70
71 // Limit for the number of instructions to scan in a block.
72
73 static cl::opt<unsigned> BlockScanLimit(
74 "memdep-block-scan-limit", cl::Hidden, cl::init(100),
75 cl::desc("The number of instructions to scan in a block in memory "
76 "dependency analysis (default = 100)"));
77
78 static cl::opt<unsigned>
79 BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(200),
80 cl::desc("The number of blocks to scan during memory "
81 "dependency analysis (default = 200)"));
82
83 // Limit on the number of memdep results to process.
84 static const unsigned int NumResultsLimit = 100;
85
86 /// This is a helper function that removes Val from 'Inst's set in ReverseMap.
87 ///
88 /// If the set becomes empty, remove Inst's entry.
89 template <typename KeyTy>
90 static void
RemoveFromReverseMap(DenseMap<Instruction *,SmallPtrSet<KeyTy,4>> & ReverseMap,Instruction * Inst,KeyTy Val)91 RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
92 Instruction *Inst, KeyTy Val) {
93 typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94 ReverseMap.find(Inst);
95 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96 bool Found = InstIt->second.erase(Val);
97 assert(Found && "Invalid reverse map!");
98 (void)Found;
99 if (InstIt->second.empty())
100 ReverseMap.erase(InstIt);
101 }
102
103 /// If the given instruction references a specific memory location, fill in Loc
104 /// with the details, otherwise set Loc.Ptr to null.
105 ///
106 /// Returns a ModRefInfo value describing the general behavior of the
107 /// instruction.
GetLocation(const Instruction * Inst,MemoryLocation & Loc,const TargetLibraryInfo & TLI)108 static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
109 const TargetLibraryInfo &TLI) {
110 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
111 if (LI->isUnordered()) {
112 Loc = MemoryLocation::get(LI);
113 return ModRefInfo::Ref;
114 }
115 if (LI->getOrdering() == AtomicOrdering::Monotonic) {
116 Loc = MemoryLocation::get(LI);
117 return ModRefInfo::ModRef;
118 }
119 Loc = MemoryLocation();
120 return ModRefInfo::ModRef;
121 }
122
123 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
124 if (SI->isUnordered()) {
125 Loc = MemoryLocation::get(SI);
126 return ModRefInfo::Mod;
127 }
128 if (SI->getOrdering() == AtomicOrdering::Monotonic) {
129 Loc = MemoryLocation::get(SI);
130 return ModRefInfo::ModRef;
131 }
132 Loc = MemoryLocation();
133 return ModRefInfo::ModRef;
134 }
135
136 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
137 Loc = MemoryLocation::get(V);
138 return ModRefInfo::ModRef;
139 }
140
141 if (const CallBase *CB = dyn_cast<CallBase>(Inst)) {
142 if (Value *FreedOp = getFreedOperand(CB, &TLI)) {
143 // calls to free() deallocate the entire structure
144 Loc = MemoryLocation::getAfter(FreedOp);
145 return ModRefInfo::Mod;
146 }
147 }
148
149 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
150 switch (II->getIntrinsicID()) {
151 case Intrinsic::lifetime_start:
152 case Intrinsic::lifetime_end:
153 case Intrinsic::invariant_start:
154 Loc = MemoryLocation::getForArgument(II, 1, TLI);
155 // These intrinsics don't really modify the memory, but returning Mod
156 // will allow them to be handled conservatively.
157 return ModRefInfo::Mod;
158 case Intrinsic::invariant_end:
159 Loc = MemoryLocation::getForArgument(II, 2, TLI);
160 // These intrinsics don't really modify the memory, but returning Mod
161 // will allow them to be handled conservatively.
162 return ModRefInfo::Mod;
163 case Intrinsic::masked_load:
164 Loc = MemoryLocation::getForArgument(II, 0, TLI);
165 return ModRefInfo::Ref;
166 case Intrinsic::masked_store:
167 Loc = MemoryLocation::getForArgument(II, 1, TLI);
168 return ModRefInfo::Mod;
169 default:
170 break;
171 }
172 }
173
174 // Otherwise, just do the coarse-grained thing that always works.
175 if (Inst->mayWriteToMemory())
176 return ModRefInfo::ModRef;
177 if (Inst->mayReadFromMemory())
178 return ModRefInfo::Ref;
179 return ModRefInfo::NoModRef;
180 }
181
182 /// Private helper for finding the local dependencies of a call site.
getCallDependencyFrom(CallBase * Call,bool isReadOnlyCall,BasicBlock::iterator ScanIt,BasicBlock * BB)183 MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184 CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185 BasicBlock *BB) {
186 unsigned Limit = getDefaultBlockScanLimit();
187
188 // Walk backwards through the block, looking for dependencies.
189 while (ScanIt != BB->begin()) {
190 Instruction *Inst = &*--ScanIt;
191 // Debug intrinsics don't cause dependences and should not affect Limit
192 if (isa<DbgInfoIntrinsic>(Inst))
193 continue;
194
195 // Limit the amount of scanning we do so we don't end up with quadratic
196 // running time on extreme testcases.
197 --Limit;
198 if (!Limit)
199 return MemDepResult::getUnknown();
200
201 // If this inst is a memory op, get the pointer it accessed
202 MemoryLocation Loc;
203 ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204 if (Loc.Ptr) {
205 // A simple instruction.
206 if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207 return MemDepResult::getClobber(Inst);
208 continue;
209 }
210
211 if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212 // If these two calls do not interfere, look past it.
213 if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214 // If the two calls are the same, return Inst as a Def, so that
215 // Call can be found redundant and eliminated.
216 if (isReadOnlyCall && !isModSet(MR) &&
217 Call->isIdenticalToWhenDefined(CallB))
218 return MemDepResult::getDef(Inst);
219
220 // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221 // keep scanning.
222 continue;
223 } else
224 return MemDepResult::getClobber(Inst);
225 }
226
227 // If we could not obtain a pointer for the instruction and the instruction
228 // touches memory then assume that this is a dependency.
229 if (isModOrRefSet(MR))
230 return MemDepResult::getClobber(Inst);
231 }
232
233 // No dependence found. If this is the entry block of the function, it is
234 // unknown, otherwise it is non-local.
235 if (BB != &BB->getParent()->getEntryBlock())
236 return MemDepResult::getNonLocal();
237 return MemDepResult::getNonFuncLocal();
238 }
239
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit,BatchAAResults & BatchAA)240 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
241 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
242 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
243 BatchAAResults &BatchAA) {
244 MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
245 if (QueryInst != nullptr) {
246 if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
247 InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
248
249 if (InvariantGroupDependency.isDef())
250 return InvariantGroupDependency;
251 }
252 }
253 MemDepResult SimpleDep = getSimplePointerDependencyFrom(
254 MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
255 if (SimpleDep.isDef())
256 return SimpleDep;
257 // Non-local invariant group dependency indicates there is non local Def
258 // (it only returns nonLocal if it finds nonLocal def), which is better than
259 // local clobber and everything else.
260 if (InvariantGroupDependency.isNonLocal())
261 return InvariantGroupDependency;
262
263 assert(InvariantGroupDependency.isUnknown() &&
264 "InvariantGroupDependency should be only unknown at this point");
265 return SimpleDep;
266 }
267
getPointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit)268 MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
269 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
270 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
271 BatchAAResults BatchAA(AA);
272 return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
273 BatchAA);
274 }
275
276 MemDepResult
getInvariantGroupPointerDependency(LoadInst * LI,BasicBlock * BB)277 MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
278 BasicBlock *BB) {
279
280 if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
281 return MemDepResult::getUnknown();
282
283 // Take the ptr operand after all casts and geps 0. This way we can search
284 // cast graph down only.
285 Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
286
287 // It's is not safe to walk the use list of global value, because function
288 // passes aren't allowed to look outside their functions.
289 // FIXME: this could be fixed by filtering instructions from outside
290 // of current function.
291 if (isa<GlobalValue>(LoadOperand))
292 return MemDepResult::getUnknown();
293
294 // Queue to process all pointers that are equivalent to load operand.
295 SmallVector<const Value *, 8> LoadOperandsQueue;
296 LoadOperandsQueue.push_back(LoadOperand);
297
298 Instruction *ClosestDependency = nullptr;
299 // Order of instructions in uses list is unpredictible. In order to always
300 // get the same result, we will look for the closest dominance.
301 auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
302 assert(Other && "Must call it with not null instruction");
303 if (Best == nullptr || DT.dominates(Best, Other))
304 return Other;
305 return Best;
306 };
307
308 // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
309 // we will see all the instructions. This should be fixed in MSSA.
310 while (!LoadOperandsQueue.empty()) {
311 const Value *Ptr = LoadOperandsQueue.pop_back_val();
312 assert(Ptr && !isa<GlobalValue>(Ptr) &&
313 "Null or GlobalValue should not be inserted");
314
315 for (const Use &Us : Ptr->uses()) {
316 auto *U = dyn_cast<Instruction>(Us.getUser());
317 if (!U || U == LI || !DT.dominates(U, LI))
318 continue;
319
320 // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
321 // users. U = bitcast Ptr
322 if (isa<BitCastInst>(U)) {
323 LoadOperandsQueue.push_back(U);
324 continue;
325 }
326 // Gep with zeros is equivalent to bitcast.
327 // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
328 // or gep 0 to bitcast because of SROA, so there are 2 forms. When
329 // typeless pointers will be ready then both cases will be gone
330 // (and this BFS also won't be needed).
331 if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
332 if (GEP->hasAllZeroIndices()) {
333 LoadOperandsQueue.push_back(U);
334 continue;
335 }
336
337 // If we hit load/store with the same invariant.group metadata (and the
338 // same pointer operand) we can assume that value pointed by pointer
339 // operand didn't change.
340 if ((isa<LoadInst>(U) ||
341 (isa<StoreInst>(U) &&
342 cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
343 U->hasMetadata(LLVMContext::MD_invariant_group))
344 ClosestDependency = GetClosestDependency(ClosestDependency, U);
345 }
346 }
347
348 if (!ClosestDependency)
349 return MemDepResult::getUnknown();
350 if (ClosestDependency->getParent() == BB)
351 return MemDepResult::getDef(ClosestDependency);
352 // Def(U) can't be returned here because it is non-local. If local
353 // dependency won't be found then return nonLocal counting that the
354 // user will call getNonLocalPointerDependency, which will return cached
355 // result.
356 NonLocalDefsCache.try_emplace(
357 LI, NonLocalDepResult(ClosestDependency->getParent(),
358 MemDepResult::getDef(ClosestDependency), nullptr));
359 ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
360 return MemDepResult::getNonLocal();
361 }
362
getSimplePointerDependencyFrom(const MemoryLocation & MemLoc,bool isLoad,BasicBlock::iterator ScanIt,BasicBlock * BB,Instruction * QueryInst,unsigned * Limit,BatchAAResults & BatchAA)363 MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
364 const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
365 BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
366 BatchAAResults &BatchAA) {
367 bool isInvariantLoad = false;
368
369 unsigned DefaultLimit = getDefaultBlockScanLimit();
370 if (!Limit)
371 Limit = &DefaultLimit;
372
373 // We must be careful with atomic accesses, as they may allow another thread
374 // to touch this location, clobbering it. We are conservative: if the
375 // QueryInst is not a simple (non-atomic) memory access, we automatically
376 // return getClobber.
377 // If it is simple, we know based on the results of
378 // "Compiler testing via a theory of sound optimisations in the C11/C++11
379 // memory model" in PLDI 2013, that a non-atomic location can only be
380 // clobbered between a pair of a release and an acquire action, with no
381 // access to the location in between.
382 // Here is an example for giving the general intuition behind this rule.
383 // In the following code:
384 // store x 0;
385 // release action; [1]
386 // acquire action; [4]
387 // %val = load x;
388 // It is unsafe to replace %val by 0 because another thread may be running:
389 // acquire action; [2]
390 // store x 42;
391 // release action; [3]
392 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
393 // being 42. A key property of this program however is that if either
394 // 1 or 4 were missing, there would be a race between the store of 42
395 // either the store of 0 or the load (making the whole program racy).
396 // The paper mentioned above shows that the same property is respected
397 // by every program that can detect any optimization of that kind: either
398 // it is racy (undefined) or there is a release followed by an acquire
399 // between the pair of accesses under consideration.
400
401 // If the load is invariant, we "know" that it doesn't alias *any* write. We
402 // do want to respect mustalias results since defs are useful for value
403 // forwarding, but any mayalias write can be assumed to be noalias.
404 // Arguably, this logic should be pushed inside AliasAnalysis itself.
405 if (isLoad && QueryInst) {
406 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
407 if (LI && LI->hasMetadata(LLVMContext::MD_invariant_load))
408 isInvariantLoad = true;
409 }
410
411 // True for volatile instruction.
412 // For Load/Store return true if atomic ordering is stronger than AO,
413 // for other instruction just true if it can read or write to memory.
414 auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
415 if (I->isVolatile())
416 return true;
417 if (auto *LI = dyn_cast<LoadInst>(I))
418 return isStrongerThan(LI->getOrdering(), AO);
419 if (auto *SI = dyn_cast<StoreInst>(I))
420 return isStrongerThan(SI->getOrdering(), AO);
421 return I->mayReadOrWriteMemory();
422 };
423
424 // Walk backwards through the basic block, looking for dependencies.
425 while (ScanIt != BB->begin()) {
426 Instruction *Inst = &*--ScanIt;
427
428 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
429 // Debug intrinsics don't (and can't) cause dependencies.
430 if (isa<DbgInfoIntrinsic>(II))
431 continue;
432
433 // Limit the amount of scanning we do so we don't end up with quadratic
434 // running time on extreme testcases.
435 --*Limit;
436 if (!*Limit)
437 return MemDepResult::getUnknown();
438
439 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
440 // If we reach a lifetime begin or end marker, then the query ends here
441 // because the value is undefined.
442 Intrinsic::ID ID = II->getIntrinsicID();
443 switch (ID) {
444 case Intrinsic::lifetime_start: {
445 // FIXME: This only considers queries directly on the invariant-tagged
446 // pointer, not on query pointers that are indexed off of them. It'd
447 // be nice to handle that at some point (the right approach is to use
448 // GetPointerBaseWithConstantOffset).
449 MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
450 if (BatchAA.isMustAlias(ArgLoc, MemLoc))
451 return MemDepResult::getDef(II);
452 continue;
453 }
454 case Intrinsic::masked_load:
455 case Intrinsic::masked_store: {
456 MemoryLocation Loc;
457 /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
458 AliasResult R = BatchAA.alias(Loc, MemLoc);
459 if (R == AliasResult::NoAlias)
460 continue;
461 if (R == AliasResult::MustAlias)
462 return MemDepResult::getDef(II);
463 if (ID == Intrinsic::masked_load)
464 continue;
465 return MemDepResult::getClobber(II);
466 }
467 }
468 }
469
470 // Values depend on loads if the pointers are must aliased. This means
471 // that a load depends on another must aliased load from the same value.
472 // One exception is atomic loads: a value can depend on an atomic load that
473 // it does not alias with when this atomic load indicates that another
474 // thread may be accessing the location.
475 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
476 // While volatile access cannot be eliminated, they do not have to clobber
477 // non-aliasing locations, as normal accesses, for example, can be safely
478 // reordered with volatile accesses.
479 if (LI->isVolatile()) {
480 if (!QueryInst)
481 // Original QueryInst *may* be volatile
482 return MemDepResult::getClobber(LI);
483 if (QueryInst->isVolatile())
484 // Ordering required if QueryInst is itself volatile
485 return MemDepResult::getClobber(LI);
486 // Otherwise, volatile doesn't imply any special ordering
487 }
488
489 // Atomic loads have complications involved.
490 // A Monotonic (or higher) load is OK if the query inst is itself not
491 // atomic.
492 // FIXME: This is overly conservative.
493 if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
494 if (!QueryInst ||
495 isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
496 return MemDepResult::getClobber(LI);
497 if (LI->getOrdering() != AtomicOrdering::Monotonic)
498 return MemDepResult::getClobber(LI);
499 }
500
501 MemoryLocation LoadLoc = MemoryLocation::get(LI);
502
503 // If we found a pointer, check if it could be the same as our pointer.
504 AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
505
506 if (R == AliasResult::NoAlias)
507 continue;
508
509 if (isLoad) {
510 // Must aliased loads are defs of each other.
511 if (R == AliasResult::MustAlias)
512 return MemDepResult::getDef(Inst);
513
514 // If we have a partial alias, then return this as a clobber for the
515 // client to handle.
516 if (R == AliasResult::PartialAlias && R.hasOffset()) {
517 ClobberOffsets[LI] = R.getOffset();
518 return MemDepResult::getClobber(Inst);
519 }
520
521 // Random may-alias loads don't depend on each other without a
522 // dependence.
523 continue;
524 }
525
526 // Stores don't alias loads from read-only memory.
527 if (!isModSet(BatchAA.getModRefInfoMask(LoadLoc)))
528 continue;
529
530 // Stores depend on may/must aliased loads.
531 return MemDepResult::getDef(Inst);
532 }
533
534 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
535 // Atomic stores have complications involved.
536 // A Monotonic store is OK if the query inst is itself not atomic.
537 // FIXME: This is overly conservative.
538 if (!SI->isUnordered() && SI->isAtomic()) {
539 if (!QueryInst ||
540 isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
541 return MemDepResult::getClobber(SI);
542 // Ok, if we are here the guard above guarantee us that
543 // QueryInst is a non-atomic or unordered load/store.
544 // SI is atomic with monotonic or release semantic (seq_cst for store
545 // is actually a release semantic plus total order over other seq_cst
546 // instructions, as soon as QueryInst is not seq_cst we can consider it
547 // as simple release semantic).
548 // Monotonic and Release semantic allows re-ordering before store
549 // so we are safe to go further and check the aliasing. It will prohibit
550 // re-ordering in case locations are may or must alias.
551 }
552
553 // While volatile access cannot be eliminated, they do not have to clobber
554 // non-aliasing locations, as normal accesses can for example be reordered
555 // with volatile accesses.
556 if (SI->isVolatile())
557 if (!QueryInst || QueryInst->isVolatile())
558 return MemDepResult::getClobber(SI);
559
560 // If alias analysis can tell that this store is guaranteed to not modify
561 // the query pointer, ignore it. Use getModRefInfo to handle cases where
562 // the query pointer points to constant memory etc.
563 if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
564 continue;
565
566 // Ok, this store might clobber the query pointer. Check to see if it is
567 // a must alias: in this case, we want to return this as a def.
568 // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
569 MemoryLocation StoreLoc = MemoryLocation::get(SI);
570
571 // If we found a pointer, check if it could be the same as our pointer.
572 AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
573
574 if (R == AliasResult::NoAlias)
575 continue;
576 if (R == AliasResult::MustAlias)
577 return MemDepResult::getDef(Inst);
578 if (isInvariantLoad)
579 continue;
580 return MemDepResult::getClobber(Inst);
581 }
582
583 // If this is an allocation, and if we know that the accessed pointer is to
584 // the allocation, return Def. This means that there is no dependence and
585 // the access can be optimized based on that. For example, a load could
586 // turn into undef. Note that we can bypass the allocation itself when
587 // looking for a clobber in many cases; that's an alias property and is
588 // handled by BasicAA.
589 if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
590 const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
591 if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
592 return MemDepResult::getDef(Inst);
593 }
594
595 // If we found a select instruction for MemLoc pointer, return it as Def
596 // dependency.
597 if (isa<SelectInst>(Inst) && MemLoc.Ptr == Inst)
598 return MemDepResult::getDef(Inst);
599
600 if (isInvariantLoad)
601 continue;
602
603 // A release fence requires that all stores complete before it, but does
604 // not prevent the reordering of following loads or stores 'before' the
605 // fence. As a result, we look past it when finding a dependency for
606 // loads. DSE uses this to find preceding stores to delete and thus we
607 // can't bypass the fence if the query instruction is a store.
608 if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
609 if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
610 continue;
611
612 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
613 ModRefInfo MR = BatchAA.getModRefInfo(Inst, MemLoc);
614 // If necessary, perform additional analysis.
615 if (isModAndRefSet(MR))
616 MR = BatchAA.callCapturesBefore(Inst, MemLoc, &DT);
617 switch (MR) {
618 case ModRefInfo::NoModRef:
619 // If the call has no effect on the queried pointer, just ignore it.
620 continue;
621 case ModRefInfo::Mod:
622 return MemDepResult::getClobber(Inst);
623 case ModRefInfo::Ref:
624 // If the call is known to never store to the pointer, and if this is a
625 // load query, we can safely ignore it (scan past it).
626 if (isLoad)
627 continue;
628 [[fallthrough]];
629 default:
630 // Otherwise, there is a potential dependence. Return a clobber.
631 return MemDepResult::getClobber(Inst);
632 }
633 }
634
635 // No dependence found. If this is the entry block of the function, it is
636 // unknown, otherwise it is non-local.
637 if (BB != &BB->getParent()->getEntryBlock())
638 return MemDepResult::getNonLocal();
639 return MemDepResult::getNonFuncLocal();
640 }
641
getDependency(Instruction * QueryInst)642 MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
643 ClobberOffsets.clear();
644 Instruction *ScanPos = QueryInst;
645
646 // Check for a cached result
647 MemDepResult &LocalCache = LocalDeps[QueryInst];
648
649 // If the cached entry is non-dirty, just return it. Note that this depends
650 // on MemDepResult's default constructing to 'dirty'.
651 if (!LocalCache.isDirty())
652 return LocalCache;
653
654 // Otherwise, if we have a dirty entry, we know we can start the scan at that
655 // instruction, which may save us some work.
656 if (Instruction *Inst = LocalCache.getInst()) {
657 ScanPos = Inst;
658
659 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
660 }
661
662 BasicBlock *QueryParent = QueryInst->getParent();
663
664 // Do the scan.
665 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
666 // No dependence found. If this is the entry block of the function, it is
667 // unknown, otherwise it is non-local.
668 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
669 LocalCache = MemDepResult::getNonLocal();
670 else
671 LocalCache = MemDepResult::getNonFuncLocal();
672 } else {
673 MemoryLocation MemLoc;
674 ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
675 if (MemLoc.Ptr) {
676 // If we can do a pointer scan, make it happen.
677 bool isLoad = !isModSet(MR);
678 if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
679 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
680
681 LocalCache =
682 getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
683 QueryParent, QueryInst, nullptr);
684 } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
685 bool isReadOnly = AA.onlyReadsMemory(QueryCall);
686 LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
687 ScanPos->getIterator(), QueryParent);
688 } else
689 // Non-memory instruction.
690 LocalCache = MemDepResult::getUnknown();
691 }
692
693 // Remember the result!
694 if (Instruction *I = LocalCache.getInst())
695 ReverseLocalDeps[I].insert(QueryInst);
696
697 return LocalCache;
698 }
699
700 #ifndef NDEBUG
701 /// This method is used when -debug is specified to verify that cache arrays
702 /// are properly kept sorted.
AssertSorted(MemoryDependenceResults::NonLocalDepInfo & Cache,int Count=-1)703 static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
704 int Count = -1) {
705 if (Count == -1)
706 Count = Cache.size();
707 assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
708 "Cache isn't sorted!");
709 }
710 #endif
711
712 const MemoryDependenceResults::NonLocalDepInfo &
getNonLocalCallDependency(CallBase * QueryCall)713 MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
714 assert(getDependency(QueryCall).isNonLocal() &&
715 "getNonLocalCallDependency should only be used on calls with "
716 "non-local deps!");
717 PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
718 NonLocalDepInfo &Cache = CacheP.first;
719
720 // This is the set of blocks that need to be recomputed. In the cached case,
721 // this can happen due to instructions being deleted etc. In the uncached
722 // case, this starts out as the set of predecessors we care about.
723 SmallVector<BasicBlock *, 32> DirtyBlocks;
724
725 if (!Cache.empty()) {
726 // Okay, we have a cache entry. If we know it is not dirty, just return it
727 // with no computation.
728 if (!CacheP.second) {
729 ++NumCacheNonLocal;
730 return Cache;
731 }
732
733 // If we already have a partially computed set of results, scan them to
734 // determine what is dirty, seeding our initial DirtyBlocks worklist.
735 for (auto &Entry : Cache)
736 if (Entry.getResult().isDirty())
737 DirtyBlocks.push_back(Entry.getBB());
738
739 // Sort the cache so that we can do fast binary search lookups below.
740 llvm::sort(Cache);
741
742 ++NumCacheDirtyNonLocal;
743 } else {
744 // Seed DirtyBlocks with each of the preds of QueryInst's block.
745 BasicBlock *QueryBB = QueryCall->getParent();
746 append_range(DirtyBlocks, PredCache.get(QueryBB));
747 ++NumUncacheNonLocal;
748 }
749
750 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
751 bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
752
753 SmallPtrSet<BasicBlock *, 32> Visited;
754
755 unsigned NumSortedEntries = Cache.size();
756 LLVM_DEBUG(AssertSorted(Cache));
757
758 // Iterate while we still have blocks to update.
759 while (!DirtyBlocks.empty()) {
760 BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
761
762 // Already processed this block?
763 if (!Visited.insert(DirtyBB).second)
764 continue;
765
766 // Do a binary search to see if we already have an entry for this block in
767 // the cache set. If so, find it.
768 LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
769 NonLocalDepInfo::iterator Entry =
770 std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
771 NonLocalDepEntry(DirtyBB));
772 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
773 --Entry;
774
775 NonLocalDepEntry *ExistingResult = nullptr;
776 if (Entry != Cache.begin() + NumSortedEntries &&
777 Entry->getBB() == DirtyBB) {
778 // If we already have an entry, and if it isn't already dirty, the block
779 // is done.
780 if (!Entry->getResult().isDirty())
781 continue;
782
783 // Otherwise, remember this slot so we can update the value.
784 ExistingResult = &*Entry;
785 }
786
787 // If the dirty entry has a pointer, start scanning from it so we don't have
788 // to rescan the entire block.
789 BasicBlock::iterator ScanPos = DirtyBB->end();
790 if (ExistingResult) {
791 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
792 ScanPos = Inst->getIterator();
793 // We're removing QueryInst's use of Inst.
794 RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
795 QueryCall);
796 }
797 }
798
799 // Find out if this block has a local dependency for QueryInst.
800 MemDepResult Dep;
801
802 if (ScanPos != DirtyBB->begin()) {
803 Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
804 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
805 // No dependence found. If this is the entry block of the function, it is
806 // a clobber, otherwise it is unknown.
807 Dep = MemDepResult::getNonLocal();
808 } else {
809 Dep = MemDepResult::getNonFuncLocal();
810 }
811
812 // If we had a dirty entry for the block, update it. Otherwise, just add
813 // a new entry.
814 if (ExistingResult)
815 ExistingResult->setResult(Dep);
816 else
817 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
818
819 // If the block has a dependency (i.e. it isn't completely transparent to
820 // the value), remember the association!
821 if (!Dep.isNonLocal()) {
822 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
823 // update this when we remove instructions.
824 if (Instruction *Inst = Dep.getInst())
825 ReverseNonLocalDeps[Inst].insert(QueryCall);
826 } else {
827
828 // If the block *is* completely transparent to the load, we need to check
829 // the predecessors of this block. Add them to our worklist.
830 append_range(DirtyBlocks, PredCache.get(DirtyBB));
831 }
832 }
833
834 return Cache;
835 }
836
getNonLocalPointerDependency(Instruction * QueryInst,SmallVectorImpl<NonLocalDepResult> & Result)837 void MemoryDependenceResults::getNonLocalPointerDependency(
838 Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
839 const MemoryLocation Loc = MemoryLocation::get(QueryInst);
840 bool isLoad = isa<LoadInst>(QueryInst);
841 BasicBlock *FromBB = QueryInst->getParent();
842 assert(FromBB);
843
844 assert(Loc.Ptr->getType()->isPointerTy() &&
845 "Can't get pointer deps of a non-pointer!");
846 Result.clear();
847 {
848 // Check if there is cached Def with invariant.group.
849 auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
850 if (NonLocalDefIt != NonLocalDefsCache.end()) {
851 Result.push_back(NonLocalDefIt->second);
852 ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
853 .erase(QueryInst);
854 NonLocalDefsCache.erase(NonLocalDefIt);
855 return;
856 }
857 }
858 // This routine does not expect to deal with volatile instructions.
859 // Doing so would require piping through the QueryInst all the way through.
860 // TODO: volatiles can't be elided, but they can be reordered with other
861 // non-volatile accesses.
862
863 // We currently give up on any instruction which is ordered, but we do handle
864 // atomic instructions which are unordered.
865 // TODO: Handle ordered instructions
866 auto isOrdered = [](Instruction *Inst) {
867 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
868 return !LI->isUnordered();
869 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
870 return !SI->isUnordered();
871 }
872 return false;
873 };
874 if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
875 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
876 const_cast<Value *>(Loc.Ptr)));
877 return;
878 }
879 const DataLayout &DL = FromBB->getModule()->getDataLayout();
880 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
881
882 // This is the set of blocks we've inspected, and the pointer we consider in
883 // each block. Because of critical edges, we currently bail out if querying
884 // a block with multiple different pointers. This can happen during PHI
885 // translation.
886 DenseMap<BasicBlock *, Value *> Visited;
887 if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
888 Result, Visited, true))
889 return;
890 Result.clear();
891 Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
892 const_cast<Value *>(Loc.Ptr)));
893 }
894
895 /// Compute the memdep value for BB with Pointer/PointeeSize using either
896 /// cached information in Cache or by doing a lookup (which may use dirty cache
897 /// info if available).
898 ///
899 /// If we do a lookup, add the result to the cache.
getNonLocalInfoForBlock(Instruction * QueryInst,const MemoryLocation & Loc,bool isLoad,BasicBlock * BB,NonLocalDepInfo * Cache,unsigned NumSortedEntries,BatchAAResults & BatchAA)900 MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
901 Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
902 BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
903 BatchAAResults &BatchAA) {
904
905 bool isInvariantLoad = false;
906
907 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
908 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
909
910 // Do a binary search to see if we already have an entry for this block in
911 // the cache set. If so, find it.
912 NonLocalDepInfo::iterator Entry = std::upper_bound(
913 Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
914 if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
915 --Entry;
916
917 NonLocalDepEntry *ExistingResult = nullptr;
918 if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
919 ExistingResult = &*Entry;
920
921 // Use cached result for invariant load only if there is no dependency for non
922 // invariant load. In this case invariant load can not have any dependency as
923 // well.
924 if (ExistingResult && isInvariantLoad &&
925 !ExistingResult->getResult().isNonFuncLocal())
926 ExistingResult = nullptr;
927
928 // If we have a cached entry, and it is non-dirty, use it as the value for
929 // this dependency.
930 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
931 ++NumCacheNonLocalPtr;
932 return ExistingResult->getResult();
933 }
934
935 // Otherwise, we have to scan for the value. If we have a dirty cache
936 // entry, start scanning from its position, otherwise we scan from the end
937 // of the block.
938 BasicBlock::iterator ScanPos = BB->end();
939 if (ExistingResult && ExistingResult->getResult().getInst()) {
940 assert(ExistingResult->getResult().getInst()->getParent() == BB &&
941 "Instruction invalidated?");
942 ++NumCacheDirtyNonLocalPtr;
943 ScanPos = ExistingResult->getResult().getInst()->getIterator();
944
945 // Eliminating the dirty entry from 'Cache', so update the reverse info.
946 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
947 RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
948 } else {
949 ++NumUncacheNonLocalPtr;
950 }
951
952 // Scan the block for the dependency.
953 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
954 QueryInst, nullptr, BatchAA);
955
956 // Don't cache results for invariant load.
957 if (isInvariantLoad)
958 return Dep;
959
960 // If we had a dirty entry for the block, update it. Otherwise, just add
961 // a new entry.
962 if (ExistingResult)
963 ExistingResult->setResult(Dep);
964 else
965 Cache->push_back(NonLocalDepEntry(BB, Dep));
966
967 // If the block has a dependency (i.e. it isn't completely transparent to
968 // the value), remember the reverse association because we just added it
969 // to Cache!
970 if (!Dep.isLocal())
971 return Dep;
972
973 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
974 // update MemDep when we remove instructions.
975 Instruction *Inst = Dep.getInst();
976 assert(Inst && "Didn't depend on anything?");
977 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
978 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
979 return Dep;
980 }
981
982 /// Sort the NonLocalDepInfo cache, given a certain number of elements in the
983 /// array that are already properly ordered.
984 ///
985 /// This is optimized for the case when only a few entries are added.
986 static void
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo & Cache,unsigned NumSortedEntries)987 SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
988 unsigned NumSortedEntries) {
989 switch (Cache.size() - NumSortedEntries) {
990 case 0:
991 // done, no new entries.
992 break;
993 case 2: {
994 // Two new entries, insert the last one into place.
995 NonLocalDepEntry Val = Cache.back();
996 Cache.pop_back();
997 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
998 std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
999 Cache.insert(Entry, Val);
1000 [[fallthrough]];
1001 }
1002 case 1:
1003 // One new entry, Just insert the new value at the appropriate position.
1004 if (Cache.size() != 1) {
1005 NonLocalDepEntry Val = Cache.back();
1006 Cache.pop_back();
1007 MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1008 llvm::upper_bound(Cache, Val);
1009 Cache.insert(Entry, Val);
1010 }
1011 break;
1012 default:
1013 // Added many values, do a full scale sort.
1014 llvm::sort(Cache);
1015 break;
1016 }
1017 }
1018
1019 /// Perform a dependency query based on pointer/pointeesize starting at the end
1020 /// of StartBB.
1021 ///
1022 /// Add any clobber/def results to the results vector and keep track of which
1023 /// blocks are visited in 'Visited'.
1024 ///
1025 /// This has special behavior for the first block queries (when SkipFirstBlock
1026 /// is true). In this special case, it ignores the contents of the specified
1027 /// block and starts returning dependence info for its predecessors.
1028 ///
1029 /// This function returns true on success, or false to indicate that it could
1030 /// not compute dependence information for some reason. This should be treated
1031 /// as a clobber dependence on the first instruction in the predecessor block.
getNonLocalPointerDepFromBB(Instruction * QueryInst,const PHITransAddr & Pointer,const MemoryLocation & Loc,bool isLoad,BasicBlock * StartBB,SmallVectorImpl<NonLocalDepResult> & Result,DenseMap<BasicBlock *,Value * > & Visited,bool SkipFirstBlock,bool IsIncomplete)1032 bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1033 Instruction *QueryInst, const PHITransAddr &Pointer,
1034 const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1035 SmallVectorImpl<NonLocalDepResult> &Result,
1036 DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1037 bool IsIncomplete) {
1038 // Look up the cached info for Pointer.
1039 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1040
1041 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1042 // CacheKey, this value will be inserted as the associated value. Otherwise,
1043 // it'll be ignored, and we'll have to check to see if the cached size and
1044 // aa tags are consistent with the current query.
1045 NonLocalPointerInfo InitialNLPI;
1046 InitialNLPI.Size = Loc.Size;
1047 InitialNLPI.AATags = Loc.AATags;
1048
1049 bool isInvariantLoad = false;
1050 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1051 isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1052
1053 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1054 // already have one.
1055 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1056 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1057 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1058
1059 // If we already have a cache entry for this CacheKey, we may need to do some
1060 // work to reconcile the cache entry and the current query.
1061 // Invariant loads don't participate in caching. Thus no need to reconcile.
1062 if (!isInvariantLoad && !Pair.second) {
1063 if (CacheInfo->Size != Loc.Size) {
1064 bool ThrowOutEverything;
1065 if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1066 // FIXME: We may be able to do better in the face of results with mixed
1067 // precision. We don't appear to get them in practice, though, so just
1068 // be conservative.
1069 ThrowOutEverything =
1070 CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1071 CacheInfo->Size.getValue() < Loc.Size.getValue();
1072 } else {
1073 // For our purposes, unknown size > all others.
1074 ThrowOutEverything = !Loc.Size.hasValue();
1075 }
1076
1077 if (ThrowOutEverything) {
1078 // The query's Size is greater than the cached one. Throw out the
1079 // cached data and proceed with the query at the greater size.
1080 CacheInfo->Pair = BBSkipFirstBlockPair();
1081 CacheInfo->Size = Loc.Size;
1082 for (auto &Entry : CacheInfo->NonLocalDeps)
1083 if (Instruction *Inst = Entry.getResult().getInst())
1084 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1085 CacheInfo->NonLocalDeps.clear();
1086 // The cache is cleared (in the above line) so we will have lost
1087 // information about blocks we have already visited. We therefore must
1088 // assume that the cache information is incomplete.
1089 IsIncomplete = true;
1090 } else {
1091 // This query's Size is less than the cached one. Conservatively restart
1092 // the query using the greater size.
1093 return getNonLocalPointerDepFromBB(
1094 QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1095 StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1096 }
1097 }
1098
1099 // If the query's AATags are inconsistent with the cached one,
1100 // conservatively throw out the cached data and restart the query with
1101 // no tag if needed.
1102 if (CacheInfo->AATags != Loc.AATags) {
1103 if (CacheInfo->AATags) {
1104 CacheInfo->Pair = BBSkipFirstBlockPair();
1105 CacheInfo->AATags = AAMDNodes();
1106 for (auto &Entry : CacheInfo->NonLocalDeps)
1107 if (Instruction *Inst = Entry.getResult().getInst())
1108 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1109 CacheInfo->NonLocalDeps.clear();
1110 // The cache is cleared (in the above line) so we will have lost
1111 // information about blocks we have already visited. We therefore must
1112 // assume that the cache information is incomplete.
1113 IsIncomplete = true;
1114 }
1115 if (Loc.AATags)
1116 return getNonLocalPointerDepFromBB(
1117 QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1118 Visited, SkipFirstBlock, IsIncomplete);
1119 }
1120 }
1121
1122 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1123
1124 // If we have valid cached information for exactly the block we are
1125 // investigating, just return it with no recomputation.
1126 // Don't use cached information for invariant loads since it is valid for
1127 // non-invariant loads only.
1128 if (!IsIncomplete && !isInvariantLoad &&
1129 CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1130 // We have a fully cached result for this query then we can just return the
1131 // cached results and populate the visited set. However, we have to verify
1132 // that we don't already have conflicting results for these blocks. Check
1133 // to ensure that if a block in the results set is in the visited set that
1134 // it was for the same pointer query.
1135 if (!Visited.empty()) {
1136 for (auto &Entry : *Cache) {
1137 DenseMap<BasicBlock *, Value *>::iterator VI =
1138 Visited.find(Entry.getBB());
1139 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1140 continue;
1141
1142 // We have a pointer mismatch in a block. Just return false, saying
1143 // that something was clobbered in this result. We could also do a
1144 // non-fully cached query, but there is little point in doing this.
1145 return false;
1146 }
1147 }
1148
1149 Value *Addr = Pointer.getAddr();
1150 for (auto &Entry : *Cache) {
1151 Visited.insert(std::make_pair(Entry.getBB(), Addr));
1152 if (Entry.getResult().isNonLocal()) {
1153 continue;
1154 }
1155
1156 if (DT.isReachableFromEntry(Entry.getBB())) {
1157 Result.push_back(
1158 NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1159 }
1160 }
1161 ++NumCacheCompleteNonLocalPtr;
1162 return true;
1163 }
1164
1165 // Otherwise, either this is a new block, a block with an invalid cache
1166 // pointer or one that we're about to invalidate by putting more info into
1167 // it than its valid cache info. If empty and not explicitly indicated as
1168 // incomplete, the result will be valid cache info, otherwise it isn't.
1169 //
1170 // Invariant loads don't affect cache in any way thus no need to update
1171 // CacheInfo as well.
1172 if (!isInvariantLoad) {
1173 if (!IsIncomplete && Cache->empty())
1174 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1175 else
1176 CacheInfo->Pair = BBSkipFirstBlockPair();
1177 }
1178
1179 SmallVector<BasicBlock *, 32> Worklist;
1180 Worklist.push_back(StartBB);
1181
1182 // PredList used inside loop.
1183 SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1184
1185 // Keep track of the entries that we know are sorted. Previously cached
1186 // entries will all be sorted. The entries we add we only sort on demand (we
1187 // don't insert every element into its sorted position). We know that we
1188 // won't get any reuse from currently inserted values, because we don't
1189 // revisit blocks after we insert info for them.
1190 unsigned NumSortedEntries = Cache->size();
1191 unsigned WorklistEntries = BlockNumberLimit;
1192 bool GotWorklistLimit = false;
1193 LLVM_DEBUG(AssertSorted(*Cache));
1194
1195 BatchAAResults BatchAA(AA);
1196 while (!Worklist.empty()) {
1197 BasicBlock *BB = Worklist.pop_back_val();
1198
1199 // If we do process a large number of blocks it becomes very expensive and
1200 // likely it isn't worth worrying about
1201 if (Result.size() > NumResultsLimit) {
1202 // Sort it now (if needed) so that recursive invocations of
1203 // getNonLocalPointerDepFromBB and other routines that could reuse the
1204 // cache value will only see properly sorted cache arrays.
1205 if (Cache && NumSortedEntries != Cache->size()) {
1206 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1207 }
1208 // Since we bail out, the "Cache" set won't contain all of the
1209 // results for the query. This is ok (we can still use it to accelerate
1210 // specific block queries) but we can't do the fastpath "return all
1211 // results from the set". Clear out the indicator for this.
1212 CacheInfo->Pair = BBSkipFirstBlockPair();
1213 return false;
1214 }
1215
1216 // Skip the first block if we have it.
1217 if (!SkipFirstBlock) {
1218 // Analyze the dependency of *Pointer in FromBB. See if we already have
1219 // been here.
1220 assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1221
1222 // Get the dependency info for Pointer in BB. If we have cached
1223 // information, we will use it, otherwise we compute it.
1224 LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1225 MemDepResult Dep = getNonLocalInfoForBlock(
1226 QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1227
1228 // If we got a Def or Clobber, add this to the list of results.
1229 if (!Dep.isNonLocal()) {
1230 if (DT.isReachableFromEntry(BB)) {
1231 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1232 continue;
1233 }
1234 }
1235 }
1236
1237 // If 'Pointer' is an instruction defined in this block, then we need to do
1238 // phi translation to change it into a value live in the predecessor block.
1239 // If not, we just add the predecessors to the worklist and scan them with
1240 // the same Pointer.
1241 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1242 SkipFirstBlock = false;
1243 SmallVector<BasicBlock *, 16> NewBlocks;
1244 for (BasicBlock *Pred : PredCache.get(BB)) {
1245 // Verify that we haven't looked at this block yet.
1246 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1247 Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1248 if (InsertRes.second) {
1249 // First time we've looked at *PI.
1250 NewBlocks.push_back(Pred);
1251 continue;
1252 }
1253
1254 // If we have seen this block before, but it was with a different
1255 // pointer then we have a phi translation failure and we have to treat
1256 // this as a clobber.
1257 if (InsertRes.first->second != Pointer.getAddr()) {
1258 // Make sure to clean up the Visited map before continuing on to
1259 // PredTranslationFailure.
1260 for (unsigned i = 0; i < NewBlocks.size(); i++)
1261 Visited.erase(NewBlocks[i]);
1262 goto PredTranslationFailure;
1263 }
1264 }
1265 if (NewBlocks.size() > WorklistEntries) {
1266 // Make sure to clean up the Visited map before continuing on to
1267 // PredTranslationFailure.
1268 for (unsigned i = 0; i < NewBlocks.size(); i++)
1269 Visited.erase(NewBlocks[i]);
1270 GotWorklistLimit = true;
1271 goto PredTranslationFailure;
1272 }
1273 WorklistEntries -= NewBlocks.size();
1274 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1275 continue;
1276 }
1277
1278 // We do need to do phi translation, if we know ahead of time we can't phi
1279 // translate this value, don't even try.
1280 if (!Pointer.IsPotentiallyPHITranslatable())
1281 goto PredTranslationFailure;
1282
1283 // We may have added values to the cache list before this PHI translation.
1284 // If so, we haven't done anything to ensure that the cache remains sorted.
1285 // Sort it now (if needed) so that recursive invocations of
1286 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1287 // value will only see properly sorted cache arrays.
1288 if (Cache && NumSortedEntries != Cache->size()) {
1289 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1290 NumSortedEntries = Cache->size();
1291 }
1292 Cache = nullptr;
1293
1294 PredList.clear();
1295 for (BasicBlock *Pred : PredCache.get(BB)) {
1296 PredList.push_back(std::make_pair(Pred, Pointer));
1297
1298 // Get the PHI translated pointer in this predecessor. This can fail if
1299 // not translatable, in which case the getAddr() returns null.
1300 PHITransAddr &PredPointer = PredList.back().second;
1301 PredPointer.PHITranslateValue(BB, Pred, &DT, /*MustDominate=*/false);
1302 Value *PredPtrVal = PredPointer.getAddr();
1303
1304 // Check to see if we have already visited this pred block with another
1305 // pointer. If so, we can't do this lookup. This failure can occur
1306 // with PHI translation when a critical edge exists and the PHI node in
1307 // the successor translates to a pointer value different than the
1308 // pointer the block was first analyzed with.
1309 std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1310 Visited.insert(std::make_pair(Pred, PredPtrVal));
1311
1312 if (!InsertRes.second) {
1313 // We found the pred; take it off the list of preds to visit.
1314 PredList.pop_back();
1315
1316 // If the predecessor was visited with PredPtr, then we already did
1317 // the analysis and can ignore it.
1318 if (InsertRes.first->second == PredPtrVal)
1319 continue;
1320
1321 // Otherwise, the block was previously analyzed with a different
1322 // pointer. We can't represent the result of this case, so we just
1323 // treat this as a phi translation failure.
1324
1325 // Make sure to clean up the Visited map before continuing on to
1326 // PredTranslationFailure.
1327 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1328 Visited.erase(PredList[i].first);
1329
1330 goto PredTranslationFailure;
1331 }
1332 }
1333
1334 // Actually process results here; this need to be a separate loop to avoid
1335 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1336 // any results for. (getNonLocalPointerDepFromBB will modify our
1337 // datastructures in ways the code after the PredTranslationFailure label
1338 // doesn't expect.)
1339 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1340 BasicBlock *Pred = PredList[i].first;
1341 PHITransAddr &PredPointer = PredList[i].second;
1342 Value *PredPtrVal = PredPointer.getAddr();
1343
1344 bool CanTranslate = true;
1345 // If PHI translation was unable to find an available pointer in this
1346 // predecessor, then we have to assume that the pointer is clobbered in
1347 // that predecessor. We can still do PRE of the load, which would insert
1348 // a computation of the pointer in this predecessor.
1349 if (!PredPtrVal)
1350 CanTranslate = false;
1351
1352 // FIXME: it is entirely possible that PHI translating will end up with
1353 // the same value. Consider PHI translating something like:
1354 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1355 // to recurse here, pedantically speaking.
1356
1357 // If getNonLocalPointerDepFromBB fails here, that means the cached
1358 // result conflicted with the Visited list; we have to conservatively
1359 // assume it is unknown, but this also does not block PRE of the load.
1360 if (!CanTranslate ||
1361 !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1362 Loc.getWithNewPtr(PredPtrVal), isLoad,
1363 Pred, Result, Visited)) {
1364 // Add the entry to the Result list.
1365 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1366 Result.push_back(Entry);
1367
1368 // Since we had a phi translation failure, the cache for CacheKey won't
1369 // include all of the entries that we need to immediately satisfy future
1370 // queries. Mark this in NonLocalPointerDeps by setting the
1371 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1372 // cached value to do more work but not miss the phi trans failure.
1373 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1374 NLPI.Pair = BBSkipFirstBlockPair();
1375 continue;
1376 }
1377 }
1378
1379 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1380 CacheInfo = &NonLocalPointerDeps[CacheKey];
1381 Cache = &CacheInfo->NonLocalDeps;
1382 NumSortedEntries = Cache->size();
1383
1384 // Since we did phi translation, the "Cache" set won't contain all of the
1385 // results for the query. This is ok (we can still use it to accelerate
1386 // specific block queries) but we can't do the fastpath "return all
1387 // results from the set" Clear out the indicator for this.
1388 CacheInfo->Pair = BBSkipFirstBlockPair();
1389 SkipFirstBlock = false;
1390 continue;
1391
1392 PredTranslationFailure:
1393 // The following code is "failure"; we can't produce a sane translation
1394 // for the given block. It assumes that we haven't modified any of
1395 // our datastructures while processing the current block.
1396
1397 if (!Cache) {
1398 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1399 CacheInfo = &NonLocalPointerDeps[CacheKey];
1400 Cache = &CacheInfo->NonLocalDeps;
1401 NumSortedEntries = Cache->size();
1402 }
1403
1404 // Since we failed phi translation, the "Cache" set won't contain all of the
1405 // results for the query. This is ok (we can still use it to accelerate
1406 // specific block queries) but we can't do the fastpath "return all
1407 // results from the set". Clear out the indicator for this.
1408 CacheInfo->Pair = BBSkipFirstBlockPair();
1409
1410 // If *nothing* works, mark the pointer as unknown.
1411 //
1412 // If this is the magic first block, return this as a clobber of the whole
1413 // incoming value. Since we can't phi translate to one of the predecessors,
1414 // we have to bail out.
1415 if (SkipFirstBlock)
1416 return false;
1417
1418 // Results of invariant loads are not cached thus no need to update cached
1419 // information.
1420 if (!isInvariantLoad) {
1421 for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1422 if (I.getBB() != BB)
1423 continue;
1424
1425 assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1426 !DT.isReachableFromEntry(BB)) &&
1427 "Should only be here with transparent block");
1428
1429 I.setResult(MemDepResult::getUnknown());
1430
1431
1432 break;
1433 }
1434 }
1435 (void)GotWorklistLimit;
1436 // Go ahead and report unknown dependence.
1437 Result.push_back(
1438 NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1439 }
1440
1441 // Okay, we're done now. If we added new values to the cache, re-sort it.
1442 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1443 LLVM_DEBUG(AssertSorted(*Cache));
1444 return true;
1445 }
1446
1447 /// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
removeCachedNonLocalPointerDependencies(ValueIsLoadPair P)1448 void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1449 ValueIsLoadPair P) {
1450
1451 // Most of the time this cache is empty.
1452 if (!NonLocalDefsCache.empty()) {
1453 auto it = NonLocalDefsCache.find(P.getPointer());
1454 if (it != NonLocalDefsCache.end()) {
1455 RemoveFromReverseMap(ReverseNonLocalDefsCache,
1456 it->second.getResult().getInst(), P.getPointer());
1457 NonLocalDefsCache.erase(it);
1458 }
1459
1460 if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1461 auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1462 if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1463 for (const auto *entry : toRemoveIt->second)
1464 NonLocalDefsCache.erase(entry);
1465 ReverseNonLocalDefsCache.erase(toRemoveIt);
1466 }
1467 }
1468 }
1469
1470 CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1471 if (It == NonLocalPointerDeps.end())
1472 return;
1473
1474 // Remove all of the entries in the BB->val map. This involves removing
1475 // instructions from the reverse map.
1476 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1477
1478 for (const NonLocalDepEntry &DE : PInfo) {
1479 Instruction *Target = DE.getResult().getInst();
1480 if (!Target)
1481 continue; // Ignore non-local dep results.
1482 assert(Target->getParent() == DE.getBB());
1483
1484 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1485 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1486 }
1487
1488 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1489 NonLocalPointerDeps.erase(It);
1490 }
1491
invalidateCachedPointerInfo(Value * Ptr)1492 void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1493 // If Ptr isn't really a pointer, just ignore it.
1494 if (!Ptr->getType()->isPointerTy())
1495 return;
1496 // Flush store info for the pointer.
1497 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1498 // Flush load info for the pointer.
1499 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1500 }
1501
invalidateCachedPredecessors()1502 void MemoryDependenceResults::invalidateCachedPredecessors() {
1503 PredCache.clear();
1504 }
1505
removeInstruction(Instruction * RemInst)1506 void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1507 // Walk through the Non-local dependencies, removing this one as the value
1508 // for any cached queries.
1509 NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1510 if (NLDI != NonLocalDepsMap.end()) {
1511 NonLocalDepInfo &BlockMap = NLDI->second.first;
1512 for (auto &Entry : BlockMap)
1513 if (Instruction *Inst = Entry.getResult().getInst())
1514 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1515 NonLocalDepsMap.erase(NLDI);
1516 }
1517
1518 // If we have a cached local dependence query for this instruction, remove it.
1519 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1520 if (LocalDepEntry != LocalDeps.end()) {
1521 // Remove us from DepInst's reverse set now that the local dep info is gone.
1522 if (Instruction *Inst = LocalDepEntry->second.getInst())
1523 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1524
1525 // Remove this local dependency info.
1526 LocalDeps.erase(LocalDepEntry);
1527 }
1528
1529 // If we have any cached dependencies on this instruction, remove
1530 // them.
1531
1532 // If the instruction is a pointer, remove it from both the load info and the
1533 // store info.
1534 if (RemInst->getType()->isPointerTy()) {
1535 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1536 removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1537 } else {
1538 // Otherwise, if the instructions is in the map directly, it must be a load.
1539 // Remove it.
1540 auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1541 if (toRemoveIt != NonLocalDefsCache.end()) {
1542 assert(isa<LoadInst>(RemInst) &&
1543 "only load instructions should be added directly");
1544 const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1545 ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1546 NonLocalDefsCache.erase(toRemoveIt);
1547 }
1548 }
1549
1550 // Loop over all of the things that depend on the instruction we're removing.
1551 SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1552
1553 // If we find RemInst as a clobber or Def in any of the maps for other values,
1554 // we need to replace its entry with a dirty version of the instruction after
1555 // it. If RemInst is a terminator, we use a null dirty value.
1556 //
1557 // Using a dirty version of the instruction after RemInst saves having to scan
1558 // the entire block to get to this point.
1559 MemDepResult NewDirtyVal;
1560 if (!RemInst->isTerminator())
1561 NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1562
1563 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1564 if (ReverseDepIt != ReverseLocalDeps.end()) {
1565 // RemInst can't be the terminator if it has local stuff depending on it.
1566 assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1567 "Nothing can locally depend on a terminator");
1568
1569 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1570 assert(InstDependingOnRemInst != RemInst &&
1571 "Already removed our local dep info");
1572
1573 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1574
1575 // Make sure to remember that new things depend on NewDepInst.
1576 assert(NewDirtyVal.getInst() &&
1577 "There is no way something else can have "
1578 "a local dep on this if it is a terminator!");
1579 ReverseDepsToAdd.push_back(
1580 std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1581 }
1582
1583 ReverseLocalDeps.erase(ReverseDepIt);
1584
1585 // Add new reverse deps after scanning the set, to avoid invalidating the
1586 // 'ReverseDeps' reference.
1587 while (!ReverseDepsToAdd.empty()) {
1588 ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1589 ReverseDepsToAdd.back().second);
1590 ReverseDepsToAdd.pop_back();
1591 }
1592 }
1593
1594 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1595 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1596 for (Instruction *I : ReverseDepIt->second) {
1597 assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1598
1599 PerInstNLInfo &INLD = NonLocalDepsMap[I];
1600 // The information is now dirty!
1601 INLD.second = true;
1602
1603 for (auto &Entry : INLD.first) {
1604 if (Entry.getResult().getInst() != RemInst)
1605 continue;
1606
1607 // Convert to a dirty entry for the subsequent instruction.
1608 Entry.setResult(NewDirtyVal);
1609
1610 if (Instruction *NextI = NewDirtyVal.getInst())
1611 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1612 }
1613 }
1614
1615 ReverseNonLocalDeps.erase(ReverseDepIt);
1616
1617 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1618 while (!ReverseDepsToAdd.empty()) {
1619 ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1620 ReverseDepsToAdd.back().second);
1621 ReverseDepsToAdd.pop_back();
1622 }
1623 }
1624
1625 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1626 // value in the NonLocalPointerDeps info.
1627 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1628 ReverseNonLocalPtrDeps.find(RemInst);
1629 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1630 SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1631 ReversePtrDepsToAdd;
1632
1633 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1634 assert(P.getPointer() != RemInst &&
1635 "Already removed NonLocalPointerDeps info for RemInst");
1636
1637 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1638
1639 // The cache is not valid for any specific block anymore.
1640 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1641
1642 // Update any entries for RemInst to use the instruction after it.
1643 for (auto &Entry : NLPDI) {
1644 if (Entry.getResult().getInst() != RemInst)
1645 continue;
1646
1647 // Convert to a dirty entry for the subsequent instruction.
1648 Entry.setResult(NewDirtyVal);
1649
1650 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1651 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1652 }
1653
1654 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1655 // subsequent value may invalidate the sortedness.
1656 llvm::sort(NLPDI);
1657 }
1658
1659 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1660
1661 while (!ReversePtrDepsToAdd.empty()) {
1662 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1663 ReversePtrDepsToAdd.back().second);
1664 ReversePtrDepsToAdd.pop_back();
1665 }
1666 }
1667
1668 assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1669 LLVM_DEBUG(verifyRemoved(RemInst));
1670 }
1671
1672 /// Verify that the specified instruction does not occur in our internal data
1673 /// structures.
1674 ///
1675 /// This function verifies by asserting in debug builds.
verifyRemoved(Instruction * D) const1676 void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1677 #ifndef NDEBUG
1678 for (const auto &DepKV : LocalDeps) {
1679 assert(DepKV.first != D && "Inst occurs in data structures");
1680 assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1681 }
1682
1683 for (const auto &DepKV : NonLocalPointerDeps) {
1684 assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1685 for (const auto &Entry : DepKV.second.NonLocalDeps)
1686 assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1687 }
1688
1689 for (const auto &DepKV : NonLocalDepsMap) {
1690 assert(DepKV.first != D && "Inst occurs in data structures");
1691 const PerInstNLInfo &INLD = DepKV.second;
1692 for (const auto &Entry : INLD.first)
1693 assert(Entry.getResult().getInst() != D &&
1694 "Inst occurs in data structures");
1695 }
1696
1697 for (const auto &DepKV : ReverseLocalDeps) {
1698 assert(DepKV.first != D && "Inst occurs in data structures");
1699 for (Instruction *Inst : DepKV.second)
1700 assert(Inst != D && "Inst occurs in data structures");
1701 }
1702
1703 for (const auto &DepKV : ReverseNonLocalDeps) {
1704 assert(DepKV.first != D && "Inst occurs in data structures");
1705 for (Instruction *Inst : DepKV.second)
1706 assert(Inst != D && "Inst occurs in data structures");
1707 }
1708
1709 for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1710 assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1711
1712 for (ValueIsLoadPair P : DepKV.second)
1713 assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1714 "Inst occurs in ReverseNonLocalPtrDeps map");
1715 }
1716 #endif
1717 }
1718
1719 AnalysisKey MemoryDependenceAnalysis::Key;
1720
MemoryDependenceAnalysis()1721 MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1722 : DefaultBlockScanLimit(BlockScanLimit) {}
1723
1724 MemoryDependenceResults
run(Function & F,FunctionAnalysisManager & AM)1725 MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1726 auto &AA = AM.getResult<AAManager>(F);
1727 auto &AC = AM.getResult<AssumptionAnalysis>(F);
1728 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1729 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1730 return MemoryDependenceResults(AA, AC, TLI, DT, DefaultBlockScanLimit);
1731 }
1732
1733 char MemoryDependenceWrapperPass::ID = 0;
1734
1735 INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1736 "Memory Dependence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)1737 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1738 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1739 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1740 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1741 INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1742 "Memory Dependence Analysis", false, true)
1743
1744 MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1745 initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1746 }
1747
1748 MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1749
releaseMemory()1750 void MemoryDependenceWrapperPass::releaseMemory() {
1751 MemDep.reset();
1752 }
1753
getAnalysisUsage(AnalysisUsage & AU) const1754 void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1755 AU.setPreservesAll();
1756 AU.addRequired<AssumptionCacheTracker>();
1757 AU.addRequired<DominatorTreeWrapperPass>();
1758 AU.addRequiredTransitive<AAResultsWrapperPass>();
1759 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1760 }
1761
invalidate(Function & F,const PreservedAnalyses & PA,FunctionAnalysisManager::Invalidator & Inv)1762 bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1763 FunctionAnalysisManager::Invalidator &Inv) {
1764 // Check whether our analysis is preserved.
1765 auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1766 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1767 // If not, give up now.
1768 return true;
1769
1770 // Check whether the analyses we depend on became invalid for any reason.
1771 if (Inv.invalidate<AAManager>(F, PA) ||
1772 Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1773 Inv.invalidate<DominatorTreeAnalysis>(F, PA))
1774 return true;
1775
1776 // Otherwise this analysis result remains valid.
1777 return false;
1778 }
1779
getDefaultBlockScanLimit() const1780 unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1781 return DefaultBlockScanLimit;
1782 }
1783
runOnFunction(Function & F)1784 bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1785 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1786 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1787 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1788 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1789 MemDep.emplace(AA, AC, TLI, DT, BlockScanLimit);
1790 return false;
1791 }
1792