xref: /freebsd/sys/amd64/amd64/mp_machdep.c (revision bec000c9)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 1996, by Steve Passe
5  * Copyright (c) 2003, by Peter Wemm
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. The name of the developer may NOT be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include <sys/cdefs.h>
30 #include "opt_acpi.h"
31 #include "opt_cpu.h"
32 #include "opt_ddb.h"
33 #include "opt_kstack_pages.h"
34 #include "opt_sched.h"
35 #include "opt_smp.h"
36 
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/bus.h>
40 #include <sys/cpuset.h>
41 #include <sys/domainset.h>
42 #include <sys/kdb.h>
43 #include <sys/kernel.h>
44 #include <sys/ktr.h>
45 #include <sys/lock.h>
46 #include <sys/malloc.h>
47 #include <sys/memrange.h>
48 #include <sys/mutex.h>
49 #include <sys/pcpu.h>
50 #include <sys/proc.h>
51 #include <sys/sched.h>
52 #include <sys/smp.h>
53 #include <sys/sysctl.h>
54 
55 #include <vm/vm.h>
56 #include <vm/vm_param.h>
57 #include <vm/pmap.h>
58 #include <vm/vm_kern.h>
59 #include <vm/vm_extern.h>
60 #include <vm/vm_page.h>
61 #include <vm/vm_phys.h>
62 
63 #include <x86/apicreg.h>
64 #include <machine/clock.h>
65 #include <machine/cputypes.h>
66 #include <machine/cpufunc.h>
67 #include <x86/mca.h>
68 #include <machine/md_var.h>
69 #include <machine/pcb.h>
70 #include <machine/psl.h>
71 #include <machine/smp.h>
72 #include <machine/specialreg.h>
73 #include <machine/tss.h>
74 #include <x86/ucode.h>
75 #include <machine/cpu.h>
76 #include <x86/init.h>
77 
78 #ifdef DEV_ACPI
79 #include <contrib/dev/acpica/include/acpi.h>
80 #include <dev/acpica/acpivar.h>
81 #endif
82 
83 #define WARMBOOT_TARGET		0
84 #define WARMBOOT_OFF		(KERNBASE + 0x0467)
85 #define WARMBOOT_SEG		(KERNBASE + 0x0469)
86 
87 #define CMOS_REG		(0x70)
88 #define CMOS_DATA		(0x71)
89 #define BIOS_RESET		(0x0f)
90 #define BIOS_WARM		(0x0a)
91 
92 #define GiB(v)			(v ## ULL << 30)
93 
94 #define	AP_BOOTPT_SZ		(PAGE_SIZE * 4)
95 
96 /* Temporary variables for init_secondary()  */
97 static char *doublefault_stack;
98 static char *mce_stack;
99 static char *nmi_stack;
100 static char *dbg_stack;
101 void *bootpcpu;
102 
103 extern u_int mptramp_la57;
104 extern u_int mptramp_nx;
105 smp_targeted_tlb_shootdown_t smp_targeted_tlb_shootdown = &smp_targeted_tlb_shootdown_native;
106 /*
107  * Local data and functions.
108  */
109 
110 static int start_ap(int apic_id, vm_paddr_t boot_address);
111 
112 void
113 smp_targeted_tlb_shootdown_native(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
114     smp_invl_cb_t curcpu_cb, enum invl_op_codes op);
115 /*
116  * Initialize the IPI handlers and start up the AP's.
117  */
118 void
cpu_mp_start(void)119 cpu_mp_start(void)
120 {
121 	int i;
122 
123 	/* Initialize the logical ID to APIC ID table. */
124 	for (i = 0; i < MAXCPU; i++) {
125 		cpu_apic_ids[i] = -1;
126 	}
127 
128 	/* Install an inter-CPU IPI for cache and TLB invalidations. */
129 	setidt(IPI_INVLOP, pti ? IDTVEC(invlop_pti) : IDTVEC(invlop),
130 	    SDT_SYSIGT, SEL_KPL, 0);
131 
132 	/* Install an inter-CPU IPI for all-CPU rendezvous */
133 	setidt(IPI_RENDEZVOUS, pti ? IDTVEC(rendezvous_pti) :
134 	    IDTVEC(rendezvous), SDT_SYSIGT, SEL_KPL, 0);
135 
136 	/* Install generic inter-CPU IPI handler */
137 	setidt(IPI_BITMAP_VECTOR, pti ? IDTVEC(ipi_intr_bitmap_handler_pti) :
138 	    IDTVEC(ipi_intr_bitmap_handler), SDT_SYSIGT, SEL_KPL, 0);
139 
140 	/* Install an inter-CPU IPI for CPU stop/restart */
141 	setidt(IPI_STOP, pti ? IDTVEC(cpustop_pti) : IDTVEC(cpustop),
142 	    SDT_SYSIGT, SEL_KPL, 0);
143 
144 	/* Install an inter-CPU IPI for CPU suspend/resume */
145 	setidt(IPI_SUSPEND, pti ? IDTVEC(cpususpend_pti) : IDTVEC(cpususpend),
146 	    SDT_SYSIGT, SEL_KPL, 0);
147 
148 	/* Install an IPI for calling delayed SWI */
149 	setidt(IPI_SWI, pti ? IDTVEC(ipi_swi_pti) : IDTVEC(ipi_swi),
150 	    SDT_SYSIGT, SEL_KPL, 0);
151 
152 	/* Set boot_cpu_id if needed. */
153 	if (boot_cpu_id == -1) {
154 		boot_cpu_id = PCPU_GET(apic_id);
155 		cpu_info[boot_cpu_id].cpu_bsp = 1;
156 	} else
157 		KASSERT(boot_cpu_id == PCPU_GET(apic_id),
158 		    ("BSP's APIC ID doesn't match boot_cpu_id"));
159 
160 	/* Probe logical/physical core configuration. */
161 	topo_probe();
162 
163 	assign_cpu_ids();
164 
165 	mptramp_la57 = la57;
166 	mptramp_nx = pg_nx != 0;
167 	MPASS(kernel_pmap->pm_cr3 < (1UL << 32));
168 	mptramp_pagetables = kernel_pmap->pm_cr3;
169 
170 	/* Start each Application Processor */
171 	start_all_aps();
172 
173 	set_interrupt_apic_ids();
174 
175 #if defined(DEV_ACPI) && MAXMEMDOM > 1
176 	acpi_pxm_set_cpu_locality();
177 #endif
178 }
179 
180 /*
181  * AP CPU's call this to initialize themselves.
182  */
183 void
init_secondary(void)184 init_secondary(void)
185 {
186 	struct pcpu *pc;
187 	struct nmi_pcpu *np;
188 	struct user_segment_descriptor *gdt;
189 	struct region_descriptor ap_gdt;
190 	u_int64_t cr0;
191 	int cpu, gsel_tss, x;
192 
193 	/* Set by the startup code for us to use */
194 	cpu = bootAP;
195 
196 	/* Update microcode before doing anything else. */
197 	ucode_load_ap(cpu);
198 
199 	/* Initialize the PCPU area. */
200 	pc = bootpcpu;
201 	pcpu_init(pc, cpu, sizeof(struct pcpu));
202 	dpcpu_init(dpcpu, cpu);
203 	pc->pc_apic_id = cpu_apic_ids[cpu];
204 	pc->pc_prvspace = pc;
205 	pc->pc_curthread = 0;
206 	pc->pc_tssp = &pc->pc_common_tss;
207 	pc->pc_rsp0 = 0;
208 	pc->pc_pti_rsp0 = (((vm_offset_t)&pc->pc_pti_stack +
209 	    PC_PTI_STACK_SZ * sizeof(uint64_t)) & ~0xful);
210 	gdt = pc->pc_gdt;
211 	pc->pc_tss = (struct system_segment_descriptor *)&gdt[GPROC0_SEL];
212 	pc->pc_fs32p = &gdt[GUFS32_SEL];
213 	pc->pc_gs32p = &gdt[GUGS32_SEL];
214 	pc->pc_ldt = (struct system_segment_descriptor *)&gdt[GUSERLDT_SEL];
215 	pc->pc_ucr3_load_mask = PMAP_UCR3_NOMASK;
216 	/* See comment in pmap_bootstrap(). */
217 	pc->pc_pcid_next = PMAP_PCID_KERN + 2;
218 	pc->pc_pcid_gen = 1;
219 	pc->pc_kpmap_store.pm_pcid = PMAP_PCID_KERN;
220 	pc->pc_kpmap_store.pm_gen = 1;
221 
222 	pc->pc_smp_tlb_gen = 1;
223 
224 	/* Init tss */
225 	pc->pc_common_tss = __pcpu[0].pc_common_tss;
226 	pc->pc_common_tss.tss_iobase = sizeof(struct amd64tss) +
227 	    IOPERM_BITMAP_SIZE;
228 	pc->pc_common_tss.tss_rsp0 = 0;
229 
230 	/* The doublefault stack runs on IST1. */
231 	np = ((struct nmi_pcpu *)&doublefault_stack[DBLFAULT_STACK_SIZE]) - 1;
232 	np->np_pcpu = (register_t)pc;
233 	pc->pc_common_tss.tss_ist1 = (long)np;
234 
235 	/* The NMI stack runs on IST2. */
236 	np = ((struct nmi_pcpu *)&nmi_stack[NMI_STACK_SIZE]) - 1;
237 	np->np_pcpu = (register_t)pc;
238 	pc->pc_common_tss.tss_ist2 = (long)np;
239 
240 	/* The MC# stack runs on IST3. */
241 	np = ((struct nmi_pcpu *)&mce_stack[MCE_STACK_SIZE]) - 1;
242 	np->np_pcpu = (register_t)pc;
243 	pc->pc_common_tss.tss_ist3 = (long)np;
244 
245 	/* The DB# stack runs on IST4. */
246 	np = ((struct nmi_pcpu *)&dbg_stack[DBG_STACK_SIZE]) - 1;
247 	np->np_pcpu = (register_t)pc;
248 	pc->pc_common_tss.tss_ist4 = (long)np;
249 
250 	/* Prepare private GDT */
251 	gdt_segs[GPROC0_SEL].ssd_base = (long)&pc->pc_common_tss;
252 	for (x = 0; x < NGDT; x++) {
253 		if (x != GPROC0_SEL && x != GPROC0_SEL + 1 &&
254 		    x != GUSERLDT_SEL && x != GUSERLDT_SEL + 1)
255 			ssdtosd(&gdt_segs[x], &gdt[x]);
256 	}
257 	ssdtosyssd(&gdt_segs[GPROC0_SEL],
258 	    (struct system_segment_descriptor *)&gdt[GPROC0_SEL]);
259 	ap_gdt.rd_limit = NGDT * sizeof(gdt[0]) - 1;
260 	ap_gdt.rd_base = (u_long)gdt;
261 	lgdt(&ap_gdt);			/* does magic intra-segment return */
262 
263 	wrmsr(MSR_FSBASE, 0);		/* User value */
264 	wrmsr(MSR_GSBASE, (uint64_t)pc);
265 	wrmsr(MSR_KGSBASE, 0);		/* User value */
266 	fix_cpuid();
267 
268 	lidt(&r_idt);
269 
270 	gsel_tss = GSEL(GPROC0_SEL, SEL_KPL);
271 	ltr(gsel_tss);
272 
273 	/*
274 	 * Set to a known state:
275 	 * Set by mpboot.s: CR0_PG, CR0_PE
276 	 * Set by cpu_setregs: CR0_NE, CR0_MP, CR0_TS, CR0_WP, CR0_AM
277 	 */
278 	cr0 = rcr0();
279 	cr0 &= ~(CR0_CD | CR0_NW | CR0_EM);
280 	load_cr0(cr0);
281 
282 	amd64_conf_fast_syscall();
283 
284 	/* signal our startup to the BSP. */
285 	mp_naps++;
286 
287 	/* Spin until the BSP releases the AP's. */
288 	while (atomic_load_acq_int(&aps_ready) == 0)
289 		ia32_pause();
290 
291 	init_secondary_tail();
292 }
293 
294 static void
amd64_mp_alloc_pcpu(void)295 amd64_mp_alloc_pcpu(void)
296 {
297 	vm_page_t m;
298 	int cpu;
299 
300 	/* Allocate pcpu areas to the correct domain. */
301 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
302 #ifdef NUMA
303 		m = NULL;
304 		if (vm_ndomains > 1) {
305 			m = vm_page_alloc_noobj_domain(
306 			    acpi_pxm_get_cpu_locality(cpu_apic_ids[cpu]),
307 			    VM_ALLOC_ZERO);
308 		}
309 		if (m == NULL)
310 #endif
311 			m = vm_page_alloc_noobj(VM_ALLOC_ZERO);
312 		if (m == NULL)
313 			panic("cannot alloc pcpu page for cpu %d", cpu);
314 		pmap_qenter((vm_offset_t)&__pcpu[cpu], &m, 1);
315 	}
316 }
317 
318 /*
319  * start each AP in our list
320  */
321 int
start_all_aps(void)322 start_all_aps(void)
323 {
324 	vm_page_t m_boottramp, m_pml4, m_pdp, m_pd[4];
325 	pml5_entry_t old_pml45;
326 	pml4_entry_t *v_pml4;
327 	pdp_entry_t *v_pdp;
328 	pd_entry_t *v_pd;
329 	vm_paddr_t boot_address;
330 	u_int32_t mpbioswarmvec;
331 	int apic_id, cpu, domain, i;
332 	u_char mpbiosreason;
333 
334 	amd64_mp_alloc_pcpu();
335 	mtx_init(&ap_boot_mtx, "ap boot", NULL, MTX_SPIN);
336 
337 	MPASS(bootMP_size <= PAGE_SIZE);
338 	m_boottramp = vm_page_alloc_noobj_contig(0, 1, 0,
339 	    (1ULL << 20), /* Trampoline should be below 1M for real mode */
340 	    PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
341 	boot_address = VM_PAGE_TO_PHYS(m_boottramp);
342 
343 	/* Create a transient 1:1 mapping of low 4G */
344 	if (la57) {
345 		m_pml4 = pmap_page_alloc_below_4g(true);
346 		v_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pml4));
347 	} else {
348 		v_pml4 = &kernel_pmap->pm_pmltop[0];
349 	}
350 	m_pdp = pmap_page_alloc_below_4g(true);
351 	v_pdp = (pdp_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pdp));
352 	m_pd[0] = pmap_page_alloc_below_4g(false);
353 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[0]));
354 	for (i = 0; i < NPDEPG; i++)
355 		v_pd[i] = (i << PDRSHIFT) | X86_PG_V | X86_PG_RW | X86_PG_A |
356 		    X86_PG_M | PG_PS;
357 	m_pd[1] = pmap_page_alloc_below_4g(false);
358 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[1]));
359 	for (i = 0; i < NPDEPG; i++)
360 		v_pd[i] = (NBPDP + (i << PDRSHIFT)) | X86_PG_V | X86_PG_RW |
361 		    X86_PG_A | X86_PG_M | PG_PS;
362 	m_pd[2] = pmap_page_alloc_below_4g(false);
363 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[2]));
364 	for (i = 0; i < NPDEPG; i++)
365 		v_pd[i] = (2UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
366 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
367 	m_pd[3] = pmap_page_alloc_below_4g(false);
368 	v_pd = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m_pd[3]));
369 	for (i = 0; i < NPDEPG; i++)
370 		v_pd[i] = (3UL * NBPDP + (i << PDRSHIFT)) | X86_PG_V |
371 		    X86_PG_RW | X86_PG_A | X86_PG_M | PG_PS;
372 	v_pdp[0] = VM_PAGE_TO_PHYS(m_pd[0]) | X86_PG_V |
373 	    X86_PG_RW | X86_PG_A | X86_PG_M;
374 	v_pdp[1] = VM_PAGE_TO_PHYS(m_pd[1]) | X86_PG_V |
375 	    X86_PG_RW | X86_PG_A | X86_PG_M;
376 	v_pdp[2] = VM_PAGE_TO_PHYS(m_pd[2]) | X86_PG_V |
377 	    X86_PG_RW | X86_PG_A | X86_PG_M;
378 	v_pdp[3] = VM_PAGE_TO_PHYS(m_pd[3]) | X86_PG_V |
379 	    X86_PG_RW | X86_PG_A | X86_PG_M;
380 	old_pml45 = kernel_pmap->pm_pmltop[0];
381 	if (la57) {
382 		kernel_pmap->pm_pmltop[0] = VM_PAGE_TO_PHYS(m_pml4) |
383 		    X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
384 	}
385 	v_pml4[0] = VM_PAGE_TO_PHYS(m_pdp) | X86_PG_V |
386 	    X86_PG_RW | X86_PG_A | X86_PG_M;
387 	pmap_invalidate_all(kernel_pmap);
388 
389 	/* copy the AP 1st level boot code */
390 	bcopy(mptramp_start, (void *)PHYS_TO_DMAP(boot_address), bootMP_size);
391 	if (bootverbose)
392 		printf("AP boot address %#lx\n", boot_address);
393 
394 	/* save the current value of the warm-start vector */
395 	if (!efi_boot)
396 		mpbioswarmvec = *((u_int32_t *) WARMBOOT_OFF);
397 	outb(CMOS_REG, BIOS_RESET);
398 	mpbiosreason = inb(CMOS_DATA);
399 
400 	/* setup a vector to our boot code */
401 	if (!efi_boot) {
402 		*((volatile u_short *)WARMBOOT_OFF) = WARMBOOT_TARGET;
403 		*((volatile u_short *)WARMBOOT_SEG) = (boot_address >> 4);
404 	}
405 	outb(CMOS_REG, BIOS_RESET);
406 	outb(CMOS_DATA, BIOS_WARM);	/* 'warm-start' */
407 
408 	/* start each AP */
409 	domain = 0;
410 	for (cpu = 1; cpu < mp_ncpus; cpu++) {
411 		apic_id = cpu_apic_ids[cpu];
412 #ifdef NUMA
413 		if (vm_ndomains > 1)
414 			domain = acpi_pxm_get_cpu_locality(apic_id);
415 #endif
416 		/* allocate and set up an idle stack data page */
417 		bootstacks[cpu] = kmem_malloc(kstack_pages * PAGE_SIZE,
418 		    M_WAITOK | M_ZERO);
419 		doublefault_stack = kmem_malloc(DBLFAULT_STACK_SIZE,
420 		    M_WAITOK | M_ZERO);
421 		mce_stack = kmem_malloc(MCE_STACK_SIZE,
422 		    M_WAITOK | M_ZERO);
423 		nmi_stack = kmem_malloc_domainset(
424 		    DOMAINSET_PREF(domain), NMI_STACK_SIZE, M_WAITOK | M_ZERO);
425 		dbg_stack = kmem_malloc_domainset(
426 		    DOMAINSET_PREF(domain), DBG_STACK_SIZE, M_WAITOK | M_ZERO);
427 		dpcpu = kmem_malloc_domainset(DOMAINSET_PREF(domain),
428 		    DPCPU_SIZE, M_WAITOK | M_ZERO);
429 
430 		bootpcpu = &__pcpu[cpu];
431 		bootSTK = (char *)bootstacks[cpu] +
432 		    kstack_pages * PAGE_SIZE - 8;
433 		bootAP = cpu;
434 
435 		/* attempt to start the Application Processor */
436 		if (!start_ap(apic_id, boot_address)) {
437 			/* restore the warmstart vector */
438 			if (!efi_boot)
439 				*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
440 			panic("AP #%d (PHY# %d) failed!", cpu, apic_id);
441 		}
442 
443 		CPU_SET(cpu, &all_cpus);	/* record AP in CPU map */
444 	}
445 
446 	/* restore the warmstart vector */
447 	if (!efi_boot)
448 		*(u_int32_t *)WARMBOOT_OFF = mpbioswarmvec;
449 
450 	outb(CMOS_REG, BIOS_RESET);
451 	outb(CMOS_DATA, mpbiosreason);
452 
453 	/* Destroy transient 1:1 mapping */
454 	kernel_pmap->pm_pmltop[0] = old_pml45;
455 	invlpg(0);
456 	if (la57)
457 		vm_page_free(m_pml4);
458 	vm_page_free(m_pd[3]);
459 	vm_page_free(m_pd[2]);
460 	vm_page_free(m_pd[1]);
461 	vm_page_free(m_pd[0]);
462 	vm_page_free(m_pdp);
463 	vm_page_free(m_boottramp);
464 
465 	/* number of APs actually started */
466 	return (mp_naps);
467 }
468 
469 /*
470  * This function starts the AP (application processor) identified
471  * by the APIC ID 'physicalCpu'.  It does quite a "song and dance"
472  * to accomplish this.  This is necessary because of the nuances
473  * of the different hardware we might encounter.  It isn't pretty,
474  * but it seems to work.
475  */
476 static int
start_ap(int apic_id,vm_paddr_t boot_address)477 start_ap(int apic_id, vm_paddr_t boot_address)
478 {
479 	int vector, ms;
480 	int cpus;
481 
482 	/* calculate the vector */
483 	vector = (boot_address >> 12) & 0xff;
484 
485 	/* used as a watchpoint to signal AP startup */
486 	cpus = mp_naps;
487 
488 	ipi_startup(apic_id, vector);
489 
490 	/* Wait up to 5 seconds for it to start. */
491 	for (ms = 0; ms < 5000; ms++) {
492 		if (mp_naps > cpus)
493 			return 1;	/* return SUCCESS */
494 		DELAY(1000);
495 	}
496 	return 0;		/* return FAILURE */
497 }
498 
499 /*
500  * Flush the TLB on other CPU's
501  */
502 
503 /*
504  * These variables are initialized at startup to reflect how each of
505  * the different kinds of invalidations should be performed on the
506  * current machine and environment.
507  */
508 static enum invl_op_codes invl_op_tlb;
509 static enum invl_op_codes invl_op_pgrng;
510 static enum invl_op_codes invl_op_pg;
511 
512 /*
513  * Scoreboard of IPI completion notifications from target to IPI initiator.
514  *
515  * Each CPU can initiate shootdown IPI independently from other CPUs.
516  * Initiator enters critical section, then fills its local PCPU
517  * shootdown info (pc_smp_tlb_ vars), then clears scoreboard generation
518  * at location (cpu, my_cpuid) for each target cpu.  After that IPI is
519  * sent to all targets which scan for zeroed scoreboard generation
520  * words.  Upon finding such word the shootdown data is read from
521  * corresponding cpu's pcpu, and generation is set.  Meantime initiator
522  * loops waiting for all zeroed generations in scoreboard to update.
523  */
524 static uint32_t *invl_scoreboard;
525 
526 static void
invl_scoreboard_init(void * arg __unused)527 invl_scoreboard_init(void *arg __unused)
528 {
529 	u_int i;
530 
531 	invl_scoreboard = malloc(sizeof(uint32_t) * (mp_maxid + 1) *
532 	    (mp_maxid + 1), M_DEVBUF, M_WAITOK);
533 	for (i = 0; i < (mp_maxid + 1) * (mp_maxid + 1); i++)
534 		invl_scoreboard[i] = 1;
535 
536 	if (pmap_pcid_enabled) {
537 		if (invpcid_works) {
538 			if (pti)
539 				invl_op_tlb = INVL_OP_TLB_INVPCID_PTI;
540 			else
541 				invl_op_tlb = INVL_OP_TLB_INVPCID;
542 			invl_op_pgrng = INVL_OP_PGRNG_INVPCID;
543 			invl_op_pg = INVL_OP_PG_INVPCID;
544 		} else {
545 			invl_op_tlb = INVL_OP_TLB_PCID;
546 			invl_op_pgrng = INVL_OP_PGRNG_PCID;
547 			invl_op_pg = INVL_OP_PG_PCID;
548 		}
549 	} else {
550 		invl_op_tlb = INVL_OP_TLB;
551 		invl_op_pgrng = INVL_OP_PGRNG;
552 		invl_op_pg = INVL_OP_PG;
553 	}
554 }
555 SYSINIT(invl_ops, SI_SUB_SMP - 1, SI_ORDER_ANY, invl_scoreboard_init, NULL);
556 
557 static uint32_t *
invl_scoreboard_getcpu(u_int cpu)558 invl_scoreboard_getcpu(u_int cpu)
559 {
560 	return (invl_scoreboard + cpu * (mp_maxid + 1));
561 }
562 
563 static uint32_t *
invl_scoreboard_slot(u_int cpu)564 invl_scoreboard_slot(u_int cpu)
565 {
566 	return (invl_scoreboard_getcpu(cpu) + PCPU_GET(cpuid));
567 }
568 
569 /*
570  * Used by the pmap to request cache or TLB invalidation on local and
571  * remote processors.  Mask provides the set of remote CPUs that are
572  * to be signalled with the invalidation IPI.  As an optimization, the
573  * curcpu_cb callback is invoked on the calling CPU in a critical
574  * section while waiting for the remote CPUs to complete the operation.
575  *
576  * The callback function is called unconditionally on the caller's
577  * underlying processor, even when this processor is not set in the
578  * mask.  So, the callback function must be prepared to handle such
579  * spurious invocations.
580  *
581  * Interrupts must be enabled when calling the function with smp
582  * started, to avoid deadlock with other IPIs that are protected with
583  * smp_ipi_mtx spinlock at the initiator side.
584  *
585  * Function must be called with the thread pinned, and it unpins on
586  * completion.
587  */
588 void
smp_targeted_tlb_shootdown_native(pmap_t pmap,vm_offset_t addr1,vm_offset_t addr2,smp_invl_cb_t curcpu_cb,enum invl_op_codes op)589 smp_targeted_tlb_shootdown_native(pmap_t pmap, vm_offset_t addr1, vm_offset_t addr2,
590     smp_invl_cb_t curcpu_cb, enum invl_op_codes op)
591 {
592 	cpuset_t mask;
593 	uint32_t generation, *p_cpudone;
594 	int cpu;
595 	bool is_all;
596 
597 	/*
598 	 * It is not necessary to signal other CPUs while booting or
599 	 * when in the debugger.
600 	 */
601 	if (__predict_false(kdb_active || KERNEL_PANICKED() || !smp_started))
602 		goto local_cb;
603 
604 	KASSERT(curthread->td_pinned > 0, ("curthread not pinned"));
605 
606 	/*
607 	 * Make a stable copy of the set of CPUs on which the pmap is active.
608 	 * See if we have to interrupt other CPUs.
609 	 */
610 	CPU_COPY(pmap_invalidate_cpu_mask(pmap), &mask);
611 	is_all = CPU_CMP(&mask, &all_cpus) == 0;
612 	CPU_CLR(curcpu, &mask);
613 	if (CPU_EMPTY(&mask))
614 		goto local_cb;
615 
616 	/*
617 	 * Initiator must have interrupts enabled, which prevents
618 	 * non-invalidation IPIs that take smp_ipi_mtx spinlock,
619 	 * from deadlocking with us.  On the other hand, preemption
620 	 * must be disabled to pin initiator to the instance of the
621 	 * pcpu pc_smp_tlb data and scoreboard line.
622 	 */
623 	KASSERT((read_rflags() & PSL_I) != 0,
624 	    ("smp_targeted_tlb_shootdown: interrupts disabled"));
625 	critical_enter();
626 
627 	PCPU_SET(smp_tlb_addr1, addr1);
628 	PCPU_SET(smp_tlb_addr2, addr2);
629 	PCPU_SET(smp_tlb_pmap, pmap);
630 	generation = PCPU_GET(smp_tlb_gen);
631 	if (++generation == 0)
632 		generation = 1;
633 	PCPU_SET(smp_tlb_gen, generation);
634 	PCPU_SET(smp_tlb_op, op);
635 	/* Fence between filling smp_tlb fields and clearing scoreboard. */
636 	atomic_thread_fence_rel();
637 
638 	CPU_FOREACH_ISSET(cpu, &mask) {
639 		KASSERT(*invl_scoreboard_slot(cpu) != 0,
640 		    ("IPI scoreboard is zero, initiator %d target %d",
641 		    curcpu, cpu));
642 		*invl_scoreboard_slot(cpu) = 0;
643 	}
644 
645 	/*
646 	 * IPI acts as a fence between writing to the scoreboard above
647 	 * (zeroing slot) and reading from it below (wait for
648 	 * acknowledgment).
649 	 */
650 	if (is_all) {
651 		ipi_all_but_self(IPI_INVLOP);
652 	} else {
653 		ipi_selected(mask, IPI_INVLOP);
654 	}
655 	curcpu_cb(pmap, addr1, addr2);
656 	CPU_FOREACH_ISSET(cpu, &mask) {
657 		p_cpudone = invl_scoreboard_slot(cpu);
658 		while (atomic_load_int(p_cpudone) != generation)
659 			ia32_pause();
660 	}
661 
662 	/*
663 	 * Unpin before leaving critical section.  If the thread owes
664 	 * preemption, this allows scheduler to select thread on any
665 	 * CPU from its cpuset.
666 	 */
667 	sched_unpin();
668 	critical_exit();
669 
670 	return;
671 
672 local_cb:
673 	critical_enter();
674 	curcpu_cb(pmap, addr1, addr2);
675 	sched_unpin();
676 	critical_exit();
677 }
678 
679 void
smp_masked_invltlb(pmap_t pmap,smp_invl_cb_t curcpu_cb)680 smp_masked_invltlb(pmap_t pmap, smp_invl_cb_t curcpu_cb)
681 {
682 	smp_targeted_tlb_shootdown(pmap, 0, 0, curcpu_cb, invl_op_tlb);
683 #ifdef COUNT_XINVLTLB_HITS
684 	ipi_global++;
685 #endif
686 }
687 
688 void
smp_masked_invlpg(vm_offset_t addr,pmap_t pmap,smp_invl_cb_t curcpu_cb)689 smp_masked_invlpg(vm_offset_t addr, pmap_t pmap, smp_invl_cb_t curcpu_cb)
690 {
691 	smp_targeted_tlb_shootdown(pmap, addr, 0, curcpu_cb, invl_op_pg);
692 #ifdef COUNT_XINVLTLB_HITS
693 	ipi_page++;
694 #endif
695 }
696 
697 void
smp_masked_invlpg_range(vm_offset_t addr1,vm_offset_t addr2,pmap_t pmap,smp_invl_cb_t curcpu_cb)698 smp_masked_invlpg_range(vm_offset_t addr1, vm_offset_t addr2, pmap_t pmap,
699     smp_invl_cb_t curcpu_cb)
700 {
701 	smp_targeted_tlb_shootdown(pmap, addr1, addr2, curcpu_cb,
702 	    invl_op_pgrng);
703 #ifdef COUNT_XINVLTLB_HITS
704 	ipi_range++;
705 	ipi_range_size += (addr2 - addr1) / PAGE_SIZE;
706 #endif
707 }
708 
709 void
smp_cache_flush(smp_invl_cb_t curcpu_cb)710 smp_cache_flush(smp_invl_cb_t curcpu_cb)
711 {
712 	smp_targeted_tlb_shootdown(kernel_pmap, 0, 0, curcpu_cb, INVL_OP_CACHE);
713 }
714 
715 /*
716  * Handlers for TLB related IPIs
717  */
718 static void
invltlb_handler(pmap_t smp_tlb_pmap)719 invltlb_handler(pmap_t smp_tlb_pmap)
720 {
721 #ifdef COUNT_XINVLTLB_HITS
722 	xhits_gbl[PCPU_GET(cpuid)]++;
723 #endif /* COUNT_XINVLTLB_HITS */
724 #ifdef COUNT_IPIS
725 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
726 #endif /* COUNT_IPIS */
727 
728 	if (smp_tlb_pmap == kernel_pmap)
729 		invltlb_glob();
730 	else
731 		invltlb();
732 }
733 
734 static void
invltlb_invpcid_handler(pmap_t smp_tlb_pmap)735 invltlb_invpcid_handler(pmap_t smp_tlb_pmap)
736 {
737 	struct invpcid_descr d;
738 
739 #ifdef COUNT_XINVLTLB_HITS
740 	xhits_gbl[PCPU_GET(cpuid)]++;
741 #endif /* COUNT_XINVLTLB_HITS */
742 #ifdef COUNT_IPIS
743 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
744 #endif /* COUNT_IPIS */
745 
746 	d.pcid = pmap_get_pcid(smp_tlb_pmap);
747 	d.pad = 0;
748 	d.addr = 0;
749 	invpcid(&d, smp_tlb_pmap == kernel_pmap ? INVPCID_CTXGLOB :
750 	    INVPCID_CTX);
751 }
752 
753 static void
invltlb_invpcid_pti_handler(pmap_t smp_tlb_pmap)754 invltlb_invpcid_pti_handler(pmap_t smp_tlb_pmap)
755 {
756 	struct invpcid_descr d;
757 
758 #ifdef COUNT_XINVLTLB_HITS
759 	xhits_gbl[PCPU_GET(cpuid)]++;
760 #endif /* COUNT_XINVLTLB_HITS */
761 #ifdef COUNT_IPIS
762 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
763 #endif /* COUNT_IPIS */
764 
765 	d.pcid = pmap_get_pcid(smp_tlb_pmap);
766 	d.pad = 0;
767 	d.addr = 0;
768 	if (smp_tlb_pmap == kernel_pmap) {
769 		/*
770 		 * This invalidation actually needs to clear kernel
771 		 * mappings from the TLB in the current pmap, but
772 		 * since we were asked for the flush in the kernel
773 		 * pmap, achieve it by performing global flush.
774 		 */
775 		invpcid(&d, INVPCID_CTXGLOB);
776 	} else {
777 		invpcid(&d, INVPCID_CTX);
778 		if (smp_tlb_pmap == PCPU_GET(curpmap) &&
779 		    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
780 			PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
781 	}
782 }
783 
784 static void
invltlb_pcid_handler(pmap_t smp_tlb_pmap)785 invltlb_pcid_handler(pmap_t smp_tlb_pmap)
786 {
787 #ifdef COUNT_XINVLTLB_HITS
788 	xhits_gbl[PCPU_GET(cpuid)]++;
789 #endif /* COUNT_XINVLTLB_HITS */
790 #ifdef COUNT_IPIS
791 	(*ipi_invltlb_counts[PCPU_GET(cpuid)])++;
792 #endif /* COUNT_IPIS */
793 
794 	if (smp_tlb_pmap == kernel_pmap) {
795 		invltlb_glob();
796 	} else {
797 		/*
798 		 * The current pmap might not be equal to
799 		 * smp_tlb_pmap.  The clearing of the pm_gen in
800 		 * pmap_invalidate_all() takes care of TLB
801 		 * invalidation when switching to the pmap on this
802 		 * CPU.
803 		 */
804 		if (smp_tlb_pmap == PCPU_GET(curpmap)) {
805 			load_cr3(smp_tlb_pmap->pm_cr3 |
806 			    pmap_get_pcid(smp_tlb_pmap));
807 			if (smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3)
808 				PCPU_SET(ucr3_load_mask, ~CR3_PCID_SAVE);
809 		}
810 	}
811 }
812 
813 static void
invlpg_handler(vm_offset_t smp_tlb_addr1)814 invlpg_handler(vm_offset_t smp_tlb_addr1)
815 {
816 #ifdef COUNT_XINVLTLB_HITS
817 	xhits_pg[PCPU_GET(cpuid)]++;
818 #endif /* COUNT_XINVLTLB_HITS */
819 #ifdef COUNT_IPIS
820 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
821 #endif /* COUNT_IPIS */
822 
823 	invlpg(smp_tlb_addr1);
824 }
825 
826 static void
invlpg_invpcid_handler(pmap_t smp_tlb_pmap,vm_offset_t smp_tlb_addr1)827 invlpg_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
828 {
829 	struct invpcid_descr d;
830 
831 #ifdef COUNT_XINVLTLB_HITS
832 	xhits_pg[PCPU_GET(cpuid)]++;
833 #endif /* COUNT_XINVLTLB_HITS */
834 #ifdef COUNT_IPIS
835 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
836 #endif /* COUNT_IPIS */
837 
838 	pmap_invlpg(smp_tlb_pmap, smp_tlb_addr1);
839 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
840 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
841 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
842 		d.pcid = pmap_get_pcid(smp_tlb_pmap) | PMAP_PCID_USER_PT;
843 		d.pad = 0;
844 		d.addr = smp_tlb_addr1;
845 		invpcid(&d, INVPCID_ADDR);
846 	}
847 }
848 
849 static void
invlpg_pcid_handler(pmap_t smp_tlb_pmap,vm_offset_t smp_tlb_addr1)850 invlpg_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1)
851 {
852 	uint64_t kcr3, ucr3;
853 	uint32_t pcid;
854 
855 #ifdef COUNT_XINVLTLB_HITS
856 	xhits_pg[PCPU_GET(cpuid)]++;
857 #endif /* COUNT_XINVLTLB_HITS */
858 #ifdef COUNT_IPIS
859 	(*ipi_invlpg_counts[PCPU_GET(cpuid)])++;
860 #endif /* COUNT_IPIS */
861 
862 	invlpg(smp_tlb_addr1);
863 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
864 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
865 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
866 		pcid = pmap_get_pcid(smp_tlb_pmap);
867 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
868 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
869 		pmap_pti_pcid_invlpg(ucr3, kcr3, smp_tlb_addr1);
870 	}
871 }
872 
873 static void
invlrng_handler(vm_offset_t smp_tlb_addr1,vm_offset_t smp_tlb_addr2)874 invlrng_handler(vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
875 {
876 	vm_offset_t addr;
877 
878 #ifdef COUNT_XINVLTLB_HITS
879 	xhits_rng[PCPU_GET(cpuid)]++;
880 #endif /* COUNT_XINVLTLB_HITS */
881 #ifdef COUNT_IPIS
882 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
883 #endif /* COUNT_IPIS */
884 
885 	addr = smp_tlb_addr1;
886 	do {
887 		invlpg(addr);
888 		addr += PAGE_SIZE;
889 	} while (addr < smp_tlb_addr2);
890 }
891 
892 static void
invlrng_invpcid_handler(pmap_t smp_tlb_pmap,vm_offset_t smp_tlb_addr1,vm_offset_t smp_tlb_addr2)893 invlrng_invpcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
894     vm_offset_t smp_tlb_addr2)
895 {
896 	struct invpcid_descr d;
897 	vm_offset_t addr;
898 
899 #ifdef COUNT_XINVLTLB_HITS
900 	xhits_rng[PCPU_GET(cpuid)]++;
901 #endif /* COUNT_XINVLTLB_HITS */
902 #ifdef COUNT_IPIS
903 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
904 #endif /* COUNT_IPIS */
905 
906 	addr = smp_tlb_addr1;
907 	if (smp_tlb_pmap == kernel_pmap && PCPU_GET(pcid_invlpg_workaround)) {
908 		struct invpcid_descr d = { 0 };
909 
910 		invpcid(&d, INVPCID_CTXGLOB);
911 	} else {
912 		do {
913 			invlpg(addr);
914 			addr += PAGE_SIZE;
915 		} while (addr < smp_tlb_addr2);
916 	}
917 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
918 	    smp_tlb_pmap->pm_ucr3 != PMAP_NO_CR3 &&
919 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
920 		d.pcid = pmap_get_pcid(smp_tlb_pmap) | PMAP_PCID_USER_PT;
921 		d.pad = 0;
922 		d.addr = smp_tlb_addr1;
923 		do {
924 			invpcid(&d, INVPCID_ADDR);
925 			d.addr += PAGE_SIZE;
926 		} while (d.addr < smp_tlb_addr2);
927 	}
928 }
929 
930 static void
invlrng_pcid_handler(pmap_t smp_tlb_pmap,vm_offset_t smp_tlb_addr1,vm_offset_t smp_tlb_addr2)931 invlrng_pcid_handler(pmap_t smp_tlb_pmap, vm_offset_t smp_tlb_addr1,
932     vm_offset_t smp_tlb_addr2)
933 {
934 	vm_offset_t addr;
935 	uint64_t kcr3, ucr3;
936 	uint32_t pcid;
937 
938 #ifdef COUNT_XINVLTLB_HITS
939 	xhits_rng[PCPU_GET(cpuid)]++;
940 #endif /* COUNT_XINVLTLB_HITS */
941 #ifdef COUNT_IPIS
942 	(*ipi_invlrng_counts[PCPU_GET(cpuid)])++;
943 #endif /* COUNT_IPIS */
944 
945 	addr = smp_tlb_addr1;
946 	do {
947 		invlpg(addr);
948 		addr += PAGE_SIZE;
949 	} while (addr < smp_tlb_addr2);
950 	if (smp_tlb_pmap == PCPU_GET(curpmap) &&
951 	    (ucr3 = smp_tlb_pmap->pm_ucr3) != PMAP_NO_CR3 &&
952 	    PCPU_GET(ucr3_load_mask) == PMAP_UCR3_NOMASK) {
953 		pcid = pmap_get_pcid(smp_tlb_pmap);
954 		kcr3 = smp_tlb_pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
955 		ucr3 |= pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
956 		pmap_pti_pcid_invlrng(ucr3, kcr3, smp_tlb_addr1, smp_tlb_addr2);
957 	}
958 }
959 
960 static void
invlcache_handler(void)961 invlcache_handler(void)
962 {
963 #ifdef COUNT_IPIS
964 	(*ipi_invlcache_counts[PCPU_GET(cpuid)])++;
965 #endif /* COUNT_IPIS */
966 	wbinvd();
967 }
968 
969 static void
invlop_handler_one_req(enum invl_op_codes smp_tlb_op,pmap_t smp_tlb_pmap,vm_offset_t smp_tlb_addr1,vm_offset_t smp_tlb_addr2)970 invlop_handler_one_req(enum invl_op_codes smp_tlb_op, pmap_t smp_tlb_pmap,
971     vm_offset_t smp_tlb_addr1, vm_offset_t smp_tlb_addr2)
972 {
973 	switch (smp_tlb_op) {
974 	case INVL_OP_TLB:
975 		invltlb_handler(smp_tlb_pmap);
976 		break;
977 	case INVL_OP_TLB_INVPCID:
978 		invltlb_invpcid_handler(smp_tlb_pmap);
979 		break;
980 	case INVL_OP_TLB_INVPCID_PTI:
981 		invltlb_invpcid_pti_handler(smp_tlb_pmap);
982 		break;
983 	case INVL_OP_TLB_PCID:
984 		invltlb_pcid_handler(smp_tlb_pmap);
985 		break;
986 	case INVL_OP_PGRNG:
987 		invlrng_handler(smp_tlb_addr1, smp_tlb_addr2);
988 		break;
989 	case INVL_OP_PGRNG_INVPCID:
990 		invlrng_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1,
991 		    smp_tlb_addr2);
992 		break;
993 	case INVL_OP_PGRNG_PCID:
994 		invlrng_pcid_handler(smp_tlb_pmap, smp_tlb_addr1,
995 		    smp_tlb_addr2);
996 		break;
997 	case INVL_OP_PG:
998 		invlpg_handler(smp_tlb_addr1);
999 		break;
1000 	case INVL_OP_PG_INVPCID:
1001 		invlpg_invpcid_handler(smp_tlb_pmap, smp_tlb_addr1);
1002 		break;
1003 	case INVL_OP_PG_PCID:
1004 		invlpg_pcid_handler(smp_tlb_pmap, smp_tlb_addr1);
1005 		break;
1006 	case INVL_OP_CACHE:
1007 		invlcache_handler();
1008 		break;
1009 	default:
1010 		__assert_unreachable();
1011 		break;
1012 	}
1013 }
1014 
1015 void
invlop_handler(void)1016 invlop_handler(void)
1017 {
1018 	struct pcpu *initiator_pc;
1019 	pmap_t smp_tlb_pmap;
1020 	vm_offset_t smp_tlb_addr1, smp_tlb_addr2;
1021 	u_int initiator_cpu_id;
1022 	enum invl_op_codes smp_tlb_op;
1023 	uint32_t *scoreboard, smp_tlb_gen;
1024 
1025 	scoreboard = invl_scoreboard_getcpu(PCPU_GET(cpuid));
1026 	for (;;) {
1027 		for (initiator_cpu_id = 0; initiator_cpu_id <= mp_maxid;
1028 		    initiator_cpu_id++) {
1029 			if (atomic_load_int(&scoreboard[initiator_cpu_id]) == 0)
1030 				break;
1031 		}
1032 		if (initiator_cpu_id > mp_maxid)
1033 			break;
1034 		initiator_pc = cpuid_to_pcpu[initiator_cpu_id];
1035 
1036 		/*
1037 		 * This acquire fence and its corresponding release
1038 		 * fence in smp_targeted_tlb_shootdown() is between
1039 		 * reading zero scoreboard slot and accessing PCPU of
1040 		 * initiator for pc_smp_tlb values.
1041 		 */
1042 		atomic_thread_fence_acq();
1043 		smp_tlb_pmap = initiator_pc->pc_smp_tlb_pmap;
1044 		smp_tlb_addr1 = initiator_pc->pc_smp_tlb_addr1;
1045 		smp_tlb_addr2 = initiator_pc->pc_smp_tlb_addr2;
1046 		smp_tlb_op = initiator_pc->pc_smp_tlb_op;
1047 		smp_tlb_gen = initiator_pc->pc_smp_tlb_gen;
1048 
1049 		/*
1050 		 * Ensure that we do not make our scoreboard
1051 		 * notification visible to the initiator until the
1052 		 * pc_smp_tlb values are read.  The corresponding
1053 		 * fence is implicitly provided by the barrier in the
1054 		 * IPI send operation before the APIC ICR register
1055 		 * write.
1056 		 *
1057 		 * As an optimization, the request is acknowledged
1058 		 * before the actual invalidation is performed.  It is
1059 		 * safe because target CPU cannot return to userspace
1060 		 * before handler finishes. Only NMI can preempt the
1061 		 * handler, but NMI would see the kernel handler frame
1062 		 * and not touch not-invalidated user page table.
1063 		 */
1064 		atomic_thread_fence_acq();
1065 		atomic_store_int(&scoreboard[initiator_cpu_id], smp_tlb_gen);
1066 
1067 		invlop_handler_one_req(smp_tlb_op, smp_tlb_pmap, smp_tlb_addr1,
1068 		    smp_tlb_addr2);
1069 	}
1070 }
1071