1 /*	$NetBSD: fil.c,v 1.18 2016/04/04 00:44:06 christos Exp $	*/
2 
3 /*
4  * Copyright (C) 2012 by Darren Reed.
5  *
6  * See the IPFILTER.LICENCE file for details on licencing.
7  *
8  * Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $
9  *
10  */
11 #if defined(KERNEL) || defined(_KERNEL)
12 # undef KERNEL
13 # undef _KERNEL
14 # define        KERNEL	1
15 # define        _KERNEL	1
16 #endif
17 #include <sys/errno.h>
18 #include <sys/types.h>
19 #include <sys/param.h>
20 #include <sys/time.h>
21 #if defined(_KERNEL) && defined(__FreeBSD_version) && \
22     (__FreeBSD_version >= 220000)
23 # if (__FreeBSD_version >= 400000)
24 #  if !defined(IPFILTER_LKM)
25 #   include "opt_inet6.h"
26 #  endif
27 #  if (__FreeBSD_version == 400019)
28 #   define CSUM_DELAY_DATA
29 #  endif
30 # endif
31 # include <sys/filio.h>
32 #else
33 # include <sys/ioctl.h>
34 #endif
35 #if (defined(__SVR4) || defined(__svr4__)) && defined(sun)
36 # include <sys/filio.h>
37 #endif
38 #if !defined(_AIX51)
39 # include <sys/fcntl.h>
40 #endif
41 #if defined(_KERNEL)
42 # include <sys/systm.h>
43 # include <sys/file.h>
44 #else
45 # include <stdio.h>
46 # include <string.h>
47 # include <stdlib.h>
48 # include <stddef.h>
49 # include <sys/file.h>
50 # define _KERNEL
51 # ifdef __OpenBSD__
52 struct file;
53 # endif
54 # include <sys/uio.h>
55 # undef _KERNEL
56 #endif
57 #if !defined(__SVR4) && !defined(__svr4__) && !defined(__hpux) && \
58     !defined(linux)
59 # include <sys/mbuf.h>
60 #else
61 # if !defined(linux)
62 #  include <sys/byteorder.h>
63 # endif
64 # if (SOLARIS2 < 5) && defined(sun)
65 #  include <sys/dditypes.h>
66 # endif
67 #endif
68 #ifdef __hpux
69 # define _NET_ROUTE_INCLUDED
70 #endif
71 #if !defined(linux)
72 # include <sys/protosw.h>
73 #endif
74 #include <sys/socket.h>
75 #include <net/if.h>
76 #ifdef sun
77 # include <net/af.h>
78 #endif
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #if defined(__sgi) && defined(IFF_DRVRLOCK) /* IRIX 6 */
83 # include <sys/hashing.h>
84 # include <netinet/in_var.h>
85 #endif
86 #include <netinet/tcp.h>
87 #if (!defined(__sgi) && !defined(AIX)) || defined(_KERNEL)
88 # include <netinet/udp.h>
89 # include <netinet/ip_icmp.h>
90 #endif
91 #ifdef __hpux
92 # undef _NET_ROUTE_INCLUDED
93 #endif
94 #ifdef __osf__
95 # undef _RADIX_H_
96 #endif
97 #include "netinet/ip_compat.h"
98 #ifdef	USE_INET6
99 # include <netinet/icmp6.h>
100 # if !SOLARIS && defined(_KERNEL) && !defined(__osf__) && !defined(__hpux)
101 #  include <netinet6/in6_var.h>
102 # endif
103 #endif
104 #include "netinet/ip_fil.h"
105 #include "netinet/ip_nat.h"
106 #include "netinet/ip_frag.h"
107 #include "netinet/ip_state.h"
108 #include "netinet/ip_proxy.h"
109 #include "netinet/ip_auth.h"
110 #ifdef IPFILTER_SCAN
111 # include "netinet/ip_scan.h"
112 #endif
113 #include "netinet/ip_sync.h"
114 #include "netinet/ip_lookup.h"
115 #include "netinet/ip_pool.h"
116 #include "netinet/ip_htable.h"
117 #ifdef IPFILTER_COMPILED
118 # include "netinet/ip_rules.h"
119 #endif
120 #if defined(IPFILTER_BPF) && defined(_KERNEL)
121 # include <net/bpf.h>
122 #endif
123 #if defined(__FreeBSD_version) && (__FreeBSD_version >= 300000)
124 # include <sys/malloc.h>
125 #endif
126 #include "netinet/ipl.h"
127 
128 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
129 # include <sys/callout.h>
130 extern struct callout ipf_slowtimer_ch;
131 #endif
132 #if defined(__OpenBSD__)
133 # include <sys/timeout.h>
134 extern struct timeout ipf_slowtimer_ch;
135 #endif
136 /* END OF INCLUDES */
137 
138 #if !defined(lint)
139 #if defined(__NetBSD__)
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: fil.c,v 1.18 2016/04/04 00:44:06 christos Exp $");
142 #else
143 static const char sccsid[] = "@(#)fil.c	1.36 6/5/96 (C) 1993-2000 Darren Reed";
144 static const char rcsid[] = "@(#)Id: fil.c,v 1.1.1.2 2012/07/22 13:45:07 darrenr Exp $";
145 #endif
146 #endif
147 
148 #ifndef	_KERNEL
149 # include "ipf.h"
150 # include "ipt.h"
151 extern	int	opts;
152 extern	int	blockreason;
153 #endif /* _KERNEL */
154 
155 #define	LBUMP(x)	softc->x++
156 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
157 
158 static	INLINE int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
159 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
160 static	u_32_t		ipf_checkripso(u_char *);
161 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
162 #ifdef	IPFILTER_LOG
163 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
164 #endif
165 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
166 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **, int);
167 static	ipfunc_t	ipf_findfunc(ipfunc_t);
168 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
169 					i6addr_t *, i6addr_t *);
170 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
171 static	int		ipf_fr_matcharray(fr_info_t *, int *);
172 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int, void *);
173 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);;
174 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
175 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
176 				    ipfgeniter_t *);
177 static	void		ipf_getstat(ipf_main_softc_t *,
178 				    struct friostat *, int);
179 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
180 static	void		ipf_group_free(frgroup_t *);
181 static	int		ipf_grpmapfini(struct ipf_main_softc_s *, frentry_t *);
182 static	int		ipf_grpmapinit(struct ipf_main_softc_s *, frentry_t *);
183 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
184 					frentry_t *, int);
185 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
186 static	INLINE int	ipf_pr_ah(fr_info_t *);
187 static	INLINE void	ipf_pr_esp(fr_info_t *);
188 static	INLINE void	ipf_pr_gre(fr_info_t *);
189 static	INLINE void	ipf_pr_udp(fr_info_t *);
190 static	INLINE void	ipf_pr_tcp(fr_info_t *);
191 static	INLINE void	ipf_pr_icmp(fr_info_t *);
192 static	INLINE void	ipf_pr_ipv4hdr(fr_info_t *);
193 static	INLINE void	ipf_pr_short(fr_info_t *, int);
194 static	INLINE int	ipf_pr_tcpcommon(fr_info_t *);
195 static	INLINE int	ipf_pr_udpcommon(fr_info_t *);
196 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
197 					int, int);
198 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
199 					       frentry_t *, int);
200 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *, void *);
201 static	void		ipf_token_flush(ipf_main_softc_t *);
202 static	void		ipf_token_unlink(ipf_main_softc_t *, ipftoken_t *);
203 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *, const char *);
204 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
205 					       void **);
206 static	int		ipf_updateipid(fr_info_t *);
207 static	int		ipf_settimeout(struct ipf_main_softc_s *,
208 				       struct ipftuneable *, ipftuneval_t *);
209 
210 
211 /*
212  * bit values for identifying presence of individual IP options
213  * All of these tables should be ordered by increasing key value on the left
214  * hand side to allow for binary searching of the array and include a trailer
215  * with a 0 for the bitmask for linear searches to easily find the end with.
216  */
217 static const	struct	optlist	ipopts[20] = {
218 	{ IPOPT_NOP,	0x000001 },
219 	{ IPOPT_RR,	0x000002 },
220 	{ IPOPT_ZSU,	0x000004 },
221 	{ IPOPT_MTUP,	0x000008 },
222 	{ IPOPT_MTUR,	0x000010 },
223 	{ IPOPT_ENCODE,	0x000020 },
224 	{ IPOPT_TS,	0x000040 },
225 	{ IPOPT_TR,	0x000080 },
226 	{ IPOPT_SECURITY, 0x000100 },
227 	{ IPOPT_LSRR,	0x000200 },
228 	{ IPOPT_E_SEC,	0x000400 },
229 	{ IPOPT_CIPSO,	0x000800 },
230 	{ IPOPT_SATID,	0x001000 },
231 	{ IPOPT_SSRR,	0x002000 },
232 	{ IPOPT_ADDEXT,	0x004000 },
233 	{ IPOPT_VISA,	0x008000 },
234 	{ IPOPT_IMITD,	0x010000 },
235 	{ IPOPT_EIP,	0x020000 },
236 	{ IPOPT_FINN,	0x040000 },
237 	{ 0,		0x000000 }
238 };
239 
240 #ifdef USE_INET6
241 static struct optlist ip6exthdr[] = {
242 	{ IPPROTO_HOPOPTS,		0x000001 },
243 	{ IPPROTO_IPV6,			0x000002 },
244 	{ IPPROTO_ROUTING,		0x000004 },
245 	{ IPPROTO_FRAGMENT,		0x000008 },
246 	{ IPPROTO_ESP,			0x000010 },
247 	{ IPPROTO_AH,			0x000020 },
248 	{ IPPROTO_NONE,			0x000040 },
249 	{ IPPROTO_DSTOPTS,		0x000080 },
250 	{ IPPROTO_MOBILITY,		0x000100 },
251 	{ 0,				0 }
252 };
253 #endif
254 
255 /*
256  * bit values for identifying presence of individual IP security options
257  */
258 static const	struct	optlist	secopt[8] = {
259 	{ IPSO_CLASS_RES4,	0x01 },
260 	{ IPSO_CLASS_TOPS,	0x02 },
261 	{ IPSO_CLASS_SECR,	0x04 },
262 	{ IPSO_CLASS_RES3,	0x08 },
263 	{ IPSO_CLASS_CONF,	0x10 },
264 	{ IPSO_CLASS_UNCL,	0x20 },
265 	{ IPSO_CLASS_RES2,	0x40 },
266 	{ IPSO_CLASS_RES1,	0x80 }
267 };
268 
269 char	ipfilter_version[] = IPL_VERSION;
270 
271 int	ipf_features = 0
272 #ifdef	IPFILTER_LKM
273 		| IPF_FEAT_LKM
274 #endif
275 #ifdef	IPFILTER_LOG
276 		| IPF_FEAT_LOG
277 #endif
278 		| IPF_FEAT_LOOKUP
279 #ifdef	IPFILTER_BPF
280 		| IPF_FEAT_BPF
281 #endif
282 #ifdef	IPFILTER_COMPILED
283 		| IPF_FEAT_COMPILED
284 #endif
285 #ifdef	IPFILTER_CKSUM
286 		| IPF_FEAT_CKSUM
287 #endif
288 		| IPF_FEAT_SYNC
289 #ifdef	IPFILTER_SCAN
290 		| IPF_FEAT_SCAN
291 #endif
292 #ifdef	USE_INET6
293 		| IPF_FEAT_IPV6
294 #endif
295 	;
296 
297 
298 /*
299  * Table of functions available for use with call rules.
300  */
301 static ipfunc_resolve_t ipf_availfuncs[] = {
302 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
303 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
304 	{ "",	       NULL,	      NULL,	      NULL }
305 };
306 
307 static ipftuneable_t ipf_main_tuneables[] = {
308 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
309 		"ipf_flags",		0,	0xffffffff,
310 		stsizeof(ipf_main_softc_t, ipf_flags),
311 		0,			NULL,	NULL },
312 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
313 		"active",		0,	0,
314 		stsizeof(ipf_main_softc_t, ipf_active),
315 		IPFT_RDONLY,		NULL,	NULL },
316 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
317 		"control_forwarding",	0, 1,
318 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
319 		0,			NULL,	NULL },
320 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
321 		"update_ipid",		0,	1,
322 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
323 		0,			NULL,	NULL },
324 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
325 		"chksrc",		0,	1,
326 		stsizeof(ipf_main_softc_t, ipf_chksrc),
327 		0,			NULL,	NULL },
328 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
329 		"min_ttl",		0,	1,
330 		stsizeof(ipf_main_softc_t, ipf_minttl),
331 		0,			NULL,	NULL },
332 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
333 		"icmp_minfragmtu",	0,	1,
334 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
335 		0,			NULL,	NULL },
336 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
337 		"default_pass",		0,	0xffffffff,
338 		stsizeof(ipf_main_softc_t, ipf_pass),
339 		0,			NULL,	NULL },
340 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
341 		"tcp_idle_timeout",	1,	0x7fffffff,
342 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
343 		0,			NULL,	ipf_settimeout },
344 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
345 		"tcp_close_wait",	1,	0x7fffffff,
346 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
347 		0,			NULL,	ipf_settimeout },
348 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
349 		"tcp_last_ack",		1,	0x7fffffff,
350 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
351 		0,			NULL,	ipf_settimeout },
352 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
353 		"tcp_timeout",		1,	0x7fffffff,
354 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
355 		0,			NULL,	ipf_settimeout },
356 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
357 		"tcp_syn_sent",		1,	0x7fffffff,
358 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
359 		0,			NULL,	ipf_settimeout },
360 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
361 		"tcp_syn_received",	1,	0x7fffffff,
362 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
363 		0,			NULL,	ipf_settimeout },
364 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
365 		"tcp_closed",		1,	0x7fffffff,
366 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
367 		0,			NULL,	ipf_settimeout },
368 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
369 		"tcp_half_closed",	1,	0x7fffffff,
370 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
371 		0,			NULL,	ipf_settimeout },
372 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
373 		"tcp_time_wait",	1,	0x7fffffff,
374 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
375 		0,			NULL,	ipf_settimeout },
376 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
377 		"udp_timeout",		1,	0x7fffffff,
378 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
379 		0,			NULL,	ipf_settimeout },
380 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
381 		"udp_ack_timeout",	1,	0x7fffffff,
382 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
383 		0,			NULL,	ipf_settimeout },
384 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
385 		"icmp_timeout",		1,	0x7fffffff,
386 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
387 		0,			NULL,	ipf_settimeout },
388 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
389 		"icmp_ack_timeout",	1,	0x7fffffff,
390 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
391 		0,			NULL,	ipf_settimeout },
392 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
393 		"ip_timeout",		1,	0x7fffffff,
394 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
395 		0,			NULL,	ipf_settimeout },
396 #if defined(INSTANCES) && defined(_KERNEL)
397 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
398 		"intercept_loopback",	0,	1,
399 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
400 		0,			NULL,	ipf_set_loopback },
401 #endif
402 	{ { 0 },
403 		NULL,			0,	0,
404 		0,
405 		0,			NULL,	NULL }
406 };
407 
408 
409 /*
410  * The next section of code is a a collection of small routines that set
411  * fields in the fr_info_t structure passed based on properties of the
412  * current packet.  There are different routines for the same protocol
413  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
414  * will "special" inspection for setup, is now more easily done by adding
415  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
416  * adding more code to a growing switch statement.
417  */
418 #ifdef USE_INET6
419 static	INLINE int	ipf_pr_ah6(fr_info_t *);
420 static	INLINE void	ipf_pr_esp6(fr_info_t *);
421 static	INLINE void	ipf_pr_gre6(fr_info_t *);
422 static	INLINE void	ipf_pr_udp6(fr_info_t *);
423 static	INLINE void	ipf_pr_tcp6(fr_info_t *);
424 static	INLINE void	ipf_pr_icmp6(fr_info_t *);
425 static	INLINE void	ipf_pr_ipv6hdr(fr_info_t *);
426 static	INLINE void	ipf_pr_short6(fr_info_t *, int);
427 static	INLINE int	ipf_pr_hopopts6(fr_info_t *);
428 static	INLINE int	ipf_pr_mobility6(fr_info_t *);
429 static	INLINE int	ipf_pr_routing6(fr_info_t *);
430 static	INLINE int	ipf_pr_dstopts6(fr_info_t *);
431 static	INLINE int	ipf_pr_fragment6(fr_info_t *);
432 static	INLINE struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
433 
434 
435 /* ------------------------------------------------------------------------ */
436 /* Function:    ipf_pr_short6                                               */
437 /* Returns:     void                                                        */
438 /* Parameters:  fin(I)  - pointer to packet information                     */
439 /*              xmin(I) - minimum header size                               */
440 /*                                                                          */
441 /* IPv6 Only                                                                */
442 /* This is function enforces the 'is a packet too short to be legit' rule   */
443 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
444 /* for ipf_pr_short() for more details.                                     */
445 /* ------------------------------------------------------------------------ */
446 static INLINE void
ipf_pr_short6(fr_info_t * fin,int xmin)447 ipf_pr_short6(fr_info_t *fin, int xmin)
448 {
449 
450 	if (fin->fin_dlen < xmin)
451 		fin->fin_flx |= FI_SHORT;
452 }
453 
454 
455 /* ------------------------------------------------------------------------ */
456 /* Function:    ipf_pr_ipv6hdr                                              */
457 /* Returns:     void                                                        */
458 /* Parameters:  fin(I) - pointer to packet information                      */
459 /*                                                                          */
460 /* IPv6 Only                                                                */
461 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
462 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
463 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
464 /* of that possibility arising.                                             */
465 /* ------------------------------------------------------------------------ */
466 static INLINE void
ipf_pr_ipv6hdr(fr_info_t * fin)467 ipf_pr_ipv6hdr(fr_info_t *fin)
468 {
469 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
470 	int p, go = 1, i, hdrcount;
471 	fr_ip_t *fi = &fin->fin_fi;
472 
473 	fin->fin_off = 0;
474 
475 	fi->fi_tos = 0;
476 	fi->fi_optmsk = 0;
477 	fi->fi_secmsk = 0;
478 	fi->fi_auth = 0;
479 
480 	p = ip6->ip6_nxt;
481 	fin->fin_crc = p;
482 	fi->fi_ttl = ip6->ip6_hlim;
483 	fi->fi_src.in6 = ip6->ip6_src;
484 	fin->fin_crc += fi->fi_src.i6[0];
485 	fin->fin_crc += fi->fi_src.i6[1];
486 	fin->fin_crc += fi->fi_src.i6[2];
487 	fin->fin_crc += fi->fi_src.i6[3];
488 	fi->fi_dst.in6 = ip6->ip6_dst;
489 	fin->fin_crc += fi->fi_dst.i6[0];
490 	fin->fin_crc += fi->fi_dst.i6[1];
491 	fin->fin_crc += fi->fi_dst.i6[2];
492 	fin->fin_crc += fi->fi_dst.i6[3];
493 	fin->fin_id = 0;
494 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
495 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
496 
497 	hdrcount = 0;
498 	while (go && !(fin->fin_flx & FI_SHORT)) {
499 		switch (p)
500 		{
501 		case IPPROTO_UDP :
502 			ipf_pr_udp6(fin);
503 			go = 0;
504 			break;
505 
506 		case IPPROTO_TCP :
507 			ipf_pr_tcp6(fin);
508 			go = 0;
509 			break;
510 
511 		case IPPROTO_ICMPV6 :
512 			ipf_pr_icmp6(fin);
513 			go = 0;
514 			break;
515 
516 		case IPPROTO_GRE :
517 			ipf_pr_gre6(fin);
518 			go = 0;
519 			break;
520 
521 		case IPPROTO_HOPOPTS :
522 			p = ipf_pr_hopopts6(fin);
523 			break;
524 
525 		case IPPROTO_MOBILITY :
526 			p = ipf_pr_mobility6(fin);
527 			break;
528 
529 		case IPPROTO_DSTOPTS :
530 			p = ipf_pr_dstopts6(fin);
531 			break;
532 
533 		case IPPROTO_ROUTING :
534 			p = ipf_pr_routing6(fin);
535 			break;
536 
537 		case IPPROTO_AH :
538 			p = ipf_pr_ah6(fin);
539 			break;
540 
541 		case IPPROTO_ESP :
542 			ipf_pr_esp6(fin);
543 			go = 0;
544 			break;
545 
546 		case IPPROTO_IPV6 :
547 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
548 				if (ip6exthdr[i].ol_val == p) {
549 					fin->fin_flx |= ip6exthdr[i].ol_bit;
550 					break;
551 				}
552 			go = 0;
553 			break;
554 
555 		case IPPROTO_NONE :
556 			go = 0;
557 			break;
558 
559 		case IPPROTO_FRAGMENT :
560 			p = ipf_pr_fragment6(fin);
561 			/*
562 			 * Given that the only fragments we want to let through
563 			 * (where fin_off != 0) are those where the non-first
564 			 * fragments only have data, we can safely stop looking
565 			 * at headers if this is a non-leading fragment.
566 			 */
567 			if (fin->fin_off != 0)
568 				go = 0;
569 			break;
570 
571 		default :
572 			go = 0;
573 			break;
574 		}
575 		hdrcount++;
576 
577 		/*
578 		 * It is important to note that at this point, for the
579 		 * extension headers (go != 0), the entire header may not have
580 		 * been pulled up when the code gets to this point.  This is
581 		 * only done for "go != 0" because the other header handlers
582 		 * will all pullup their complete header.  The other indicator
583 		 * of an incomplete packet is that this was just an extension
584 		 * header.
585 		 */
586 		if ((go != 0) && (p != IPPROTO_NONE) &&
587 		    (ipf_pr_pullup(fin, 0) == -1)) {
588 			p = IPPROTO_NONE;
589 			break;
590 		}
591 	}
592 
593 	/*
594 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
595 	 * and destroy whatever packet was here.  The caller of this function
596 	 * expects us to return if there is a problem with ipf_pullup.
597 	 */
598 	if (fin->fin_m == NULL) {
599 		ipf_main_softc_t *softc = fin->fin_main_soft;
600 
601 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
602 		return;
603 	}
604 
605 	fi->fi_p = p;
606 
607 	/*
608 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
609 	 * "go != 0" imples the above loop hasn't arrived at a layer 4 header.
610 	 */
611 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
612 		ipf_main_softc_t *softc = fin->fin_main_soft;
613 
614 		fin->fin_flx |= FI_BAD;
615 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
616 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
617 	}
618 }
619 
620 
621 /* ------------------------------------------------------------------------ */
622 /* Function:    ipf_pr_ipv6exthdr                                           */
623 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
624 /*                                 or NULL if there is a prolblem.          */
625 /* Parameters:  fin(I)      - pointer to packet information                 */
626 /*              multiple(I) - flag indicating yes/no if multiple occurances */
627 /*                            of this extension header are allowed.         */
628 /*              proto(I)    - protocol number for this extension header     */
629 /*                                                                          */
630 /* IPv6 Only                                                                */
631 /* This function embodies a number of common checks that all IPv6 extension */
632 /* headers must be subjected to.  For example, making sure the packet is    */
633 /* big enough for it to be in, checking if it is repeated and setting a     */
634 /* flag to indicate its presence.                                           */
635 /* ------------------------------------------------------------------------ */
636 static INLINE struct ip6_ext *
ipf_pr_ipv6exthdr(fr_info_t * fin,int multiple,int proto)637 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
638 {
639 	ipf_main_softc_t *softc = fin->fin_main_soft;
640 	struct ip6_ext *hdr;
641 	u_short shift;
642 	int i;
643 
644 	fin->fin_flx |= FI_V6EXTHDR;
645 
646 				/* 8 is default length of extension hdr */
647 	if ((fin->fin_dlen - 8) < 0) {
648 		fin->fin_flx |= FI_SHORT;
649 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
650 		return NULL;
651 	}
652 
653 	if (ipf_pr_pullup(fin, 8) == -1) {
654 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
655 		return NULL;
656 	}
657 
658 	hdr = fin->fin_dp;
659 	switch (proto)
660 	{
661 	case IPPROTO_FRAGMENT :
662 		shift = 8;
663 		break;
664 	default :
665 		shift = 8 + (hdr->ip6e_len << 3);
666 		break;
667 	}
668 
669 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
670 		fin->fin_flx |= FI_BAD;
671 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
672 		return NULL;
673 	}
674 
675 	fin->fin_dp = (char *)fin->fin_dp + shift;
676 	fin->fin_dlen -= shift;
677 
678 	/*
679 	 * If we have seen a fragment header, do not set any flags to indicate
680 	 * the presence of this extension header as it has no impact on the
681 	 * end result until after it has been defragmented.
682 	 */
683 	if (fin->fin_flx & FI_FRAG)
684 		return hdr;
685 
686 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
687 		if (ip6exthdr[i].ol_val == proto) {
688 			/*
689 			 * Most IPv6 extension headers are only allowed once.
690 			 */
691 			if ((multiple == 0) &&
692 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0))
693 				fin->fin_flx |= FI_BAD;
694 			else
695 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
696 			break;
697 		}
698 
699 	return hdr;
700 }
701 
702 
703 /* ------------------------------------------------------------------------ */
704 /* Function:    ipf_pr_hopopts6                                             */
705 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
706 /* Parameters:  fin(I) - pointer to packet information                      */
707 /*                                                                          */
708 /* IPv6 Only                                                                */
709 /* This is function checks pending hop by hop options extension header      */
710 /* ------------------------------------------------------------------------ */
711 static INLINE int
ipf_pr_hopopts6(fr_info_t * fin)712 ipf_pr_hopopts6(fr_info_t *fin)
713 {
714 	struct ip6_ext *hdr;
715 
716 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
717 	if (hdr == NULL)
718 		return IPPROTO_NONE;
719 	return hdr->ip6e_nxt;
720 }
721 
722 
723 /* ------------------------------------------------------------------------ */
724 /* Function:    ipf_pr_mobility6                                            */
725 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
726 /* Parameters:  fin(I) - pointer to packet information                      */
727 /*                                                                          */
728 /* IPv6 Only                                                                */
729 /* This is function checks the IPv6 mobility extension header               */
730 /* ------------------------------------------------------------------------ */
731 static INLINE int
ipf_pr_mobility6(fr_info_t * fin)732 ipf_pr_mobility6(fr_info_t *fin)
733 {
734 	struct ip6_ext *hdr;
735 
736 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
737 	if (hdr == NULL)
738 		return IPPROTO_NONE;
739 	return hdr->ip6e_nxt;
740 }
741 
742 
743 /* ------------------------------------------------------------------------ */
744 /* Function:    ipf_pr_routing6                                             */
745 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
746 /* Parameters:  fin(I) - pointer to packet information                      */
747 /*                                                                          */
748 /* IPv6 Only                                                                */
749 /* This is function checks pending routing extension header                 */
750 /* ------------------------------------------------------------------------ */
751 static INLINE int
ipf_pr_routing6(fr_info_t * fin)752 ipf_pr_routing6(fr_info_t *fin)
753 {
754 	struct ip6_routing *hdr;
755 
756 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
757 	if (hdr == NULL)
758 		return IPPROTO_NONE;
759 
760 	switch (hdr->ip6r_type)
761 	{
762 	case 0 :
763 		/*
764 		 * Nasty extension header length?
765 		 */
766 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
767 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
768 			ipf_main_softc_t *softc = fin->fin_main_soft;
769 
770 			fin->fin_flx |= FI_BAD;
771 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
772 			return IPPROTO_NONE;
773 		}
774 		break;
775 
776 	default :
777 		break;
778 	}
779 
780 	return hdr->ip6r_nxt;
781 }
782 
783 
784 /* ------------------------------------------------------------------------ */
785 /* Function:    ipf_pr_fragment6                                            */
786 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
787 /* Parameters:  fin(I) - pointer to packet information                      */
788 /*                                                                          */
789 /* IPv6 Only                                                                */
790 /* Examine the IPv6 fragment header and extract fragment offset information.*/
791 /*                                                                          */
792 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
793 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
794 /* packets with a fragment header can fit into.  They are as follows:       */
795 /*                                                                          */
796 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
797 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
798 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
799 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
800 /* 5.  [IPV6][0-n EH][FH][data]                                             */
801 /*                                                                          */
802 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
803 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
804 /*                                                                          */
805 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
806 /* scenario in which they happen is in extreme circumstances that are most  */
807 /* likely to be an indication of an attack rather than normal traffic.      */
808 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
809 /* are two rules that can be used to guard against type 3 packets: L4       */
810 /* headers must always be in a packet that has the offset field set to 0    */
811 /* and no packet is allowed to overlay that where offset = 0.               */
812 /* ------------------------------------------------------------------------ */
813 static INLINE int
ipf_pr_fragment6(fr_info_t * fin)814 ipf_pr_fragment6(fr_info_t *fin)
815 {
816 	ipf_main_softc_t *softc = fin->fin_main_soft;
817 	struct ip6_frag *frag;
818 
819 	fin->fin_flx |= FI_FRAG;
820 
821 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
822 	if (frag == NULL) {
823 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
824 		return IPPROTO_NONE;
825 	}
826 
827 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
828 		/*
829 		 * Any fragment that isn't the last fragment must have its
830 		 * length as a multiple of 8.
831 		 */
832 		if ((fin->fin_plen & 7) != 0)
833 			fin->fin_flx |= FI_BAD;
834 	}
835 
836 	fin->fin_fraghdr = frag;
837 	fin->fin_id = frag->ip6f_ident;
838 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
839 	if (fin->fin_off != 0)
840 		fin->fin_flx |= FI_FRAGBODY;
841 
842 	/*
843 	 * Jumbograms aren't handled, so the max. length is 64k
844 	 */
845 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535)
846 		  fin->fin_flx |= FI_BAD;
847 
848 	/*
849 	 * We don't know where the transport layer header (or whatever is next
850 	 * is), as it could be behind destination options (amongst others) so
851 	 * return the fragment header as the type of packet this is.  Note that
852 	 * this effectively disables the fragment cache for > 1 protocol at a
853 	 * time.
854 	 */
855 	return frag->ip6f_nxt;
856 }
857 
858 
859 /* ------------------------------------------------------------------------ */
860 /* Function:    ipf_pr_dstopts6                                             */
861 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
862 /* Parameters:  fin(I) - pointer to packet information                      */
863 /*                                                                          */
864 /* IPv6 Only                                                                */
865 /* This is function checks pending destination options extension header     */
866 /* ------------------------------------------------------------------------ */
867 static INLINE int
ipf_pr_dstopts6(fr_info_t * fin)868 ipf_pr_dstopts6(fr_info_t *fin)
869 {
870 	ipf_main_softc_t *softc = fin->fin_main_soft;
871 	struct ip6_ext *hdr;
872 
873 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
874 	if (hdr == NULL) {
875 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
876 		return IPPROTO_NONE;
877 	}
878 	return hdr->ip6e_nxt;
879 }
880 
881 
882 /* ------------------------------------------------------------------------ */
883 /* Function:    ipf_pr_icmp6                                                */
884 /* Returns:     void                                                        */
885 /* Parameters:  fin(I) - pointer to packet information                      */
886 /*                                                                          */
887 /* IPv6 Only                                                                */
888 /* This routine is mainly concerned with determining the minimum valid size */
889 /* for an ICMPv6 packet.                                                    */
890 /* ------------------------------------------------------------------------ */
891 static INLINE void
ipf_pr_icmp6(fr_info_t * fin)892 ipf_pr_icmp6(fr_info_t *fin)
893 {
894 	int minicmpsz = sizeof(struct icmp6_hdr);
895 	struct icmp6_hdr *icmp6;
896 
897 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
898 		ipf_main_softc_t *softc = fin->fin_main_soft;
899 
900 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
901 		return;
902 	}
903 
904 	if (fin->fin_dlen > 1) {
905 		ip6_t *ip6;
906 
907 		icmp6 = fin->fin_dp;
908 
909 		fin->fin_data[0] = *(u_short *)icmp6;
910 
911 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
912 			fin->fin_flx |= FI_ICMPQUERY;
913 
914 		switch (icmp6->icmp6_type)
915 		{
916 		case ICMP6_ECHO_REPLY :
917 		case ICMP6_ECHO_REQUEST :
918 			if (fin->fin_dlen >= 6)
919 				fin->fin_data[1] = icmp6->icmp6_id;
920 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
921 			break;
922 
923 		case ICMP6_DST_UNREACH :
924 		case ICMP6_PACKET_TOO_BIG :
925 		case ICMP6_TIME_EXCEEDED :
926 		case ICMP6_PARAM_PROB :
927 			fin->fin_flx |= FI_ICMPERR;
928 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
929 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
930 				break;
931 
932 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
933 				if (ipf_coalesce(fin) != 1)
934 					return;
935 			}
936 
937 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
938 				return;
939 
940 			/*
941 			 * If the destination of this packet doesn't match the
942 			 * source of the original packet then this packet is
943 			 * not correct.
944 			 */
945 			icmp6 = fin->fin_dp;
946 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
947 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
948 				    &ip6->ip6_src))
949 				fin->fin_flx |= FI_BAD;
950 			break;
951 		default :
952 			break;
953 		}
954 	}
955 
956 	ipf_pr_short6(fin, minicmpsz);
957 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
958 		u_char p = fin->fin_p;
959 
960 		fin->fin_p = IPPROTO_ICMPV6;
961 		ipf_checkv6sum(fin);
962 		fin->fin_p = p;
963 	}
964 }
965 
966 
967 /* ------------------------------------------------------------------------ */
968 /* Function:    ipf_pr_udp6                                                 */
969 /* Returns:     void                                                        */
970 /* Parameters:  fin(I) - pointer to packet information                      */
971 /*                                                                          */
972 /* IPv6 Only                                                                */
973 /* Analyse the packet for IPv6/UDP properties.                              */
974 /* Is not expected to be called for fragmented packets.                     */
975 /* ------------------------------------------------------------------------ */
976 static INLINE void
ipf_pr_udp6(fr_info_t * fin)977 ipf_pr_udp6(fr_info_t *fin)
978 {
979 
980 	if (ipf_pr_udpcommon(fin) == 0) {
981 		u_char p = fin->fin_p;
982 
983 		fin->fin_p = IPPROTO_UDP;
984 		ipf_checkv6sum(fin);
985 		fin->fin_p = p;
986 	}
987 }
988 
989 
990 /* ------------------------------------------------------------------------ */
991 /* Function:    ipf_pr_tcp6                                                 */
992 /* Returns:     void                                                        */
993 /* Parameters:  fin(I) - pointer to packet information                      */
994 /*                                                                          */
995 /* IPv6 Only                                                                */
996 /* Analyse the packet for IPv6/TCP properties.                              */
997 /* Is not expected to be called for fragmented packets.                     */
998 /* ------------------------------------------------------------------------ */
999 static INLINE void
ipf_pr_tcp6(fr_info_t * fin)1000 ipf_pr_tcp6(fr_info_t *fin)
1001 {
1002 
1003 	if (ipf_pr_tcpcommon(fin) == 0) {
1004 		u_char p = fin->fin_p;
1005 
1006 		fin->fin_p = IPPROTO_TCP;
1007 		ipf_checkv6sum(fin);
1008 		fin->fin_p = p;
1009 	}
1010 }
1011 
1012 
1013 /* ------------------------------------------------------------------------ */
1014 /* Function:    ipf_pr_esp6                                                 */
1015 /* Returns:     void                                                        */
1016 /* Parameters:  fin(I) - pointer to packet information                      */
1017 /*                                                                          */
1018 /* IPv6 Only                                                                */
1019 /* Analyse the packet for ESP properties.                                   */
1020 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1021 /* even though the newer ESP packets must also have a sequence number that  */
1022 /* is 32bits as well, it is not possible(?) to determine the version from a */
1023 /* simple packet header.                                                    */
1024 /* ------------------------------------------------------------------------ */
1025 static INLINE void
ipf_pr_esp6(fr_info_t * fin)1026 ipf_pr_esp6(fr_info_t *fin)
1027 {
1028 
1029 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1030 		ipf_main_softc_t *softc = fin->fin_main_soft;
1031 
1032 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1033 		return;
1034 	}
1035 }
1036 
1037 
1038 /* ------------------------------------------------------------------------ */
1039 /* Function:    ipf_pr_ah6                                                  */
1040 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1041 /* Parameters:  fin(I) - pointer to packet information                      */
1042 /*                                                                          */
1043 /* IPv6 Only                                                                */
1044 /* Analyse the packet for AH properties.                                    */
1045 /* The minimum length is taken to be the combination of all fields in the   */
1046 /* header being present and no authentication data (null algorithm used.)   */
1047 /* ------------------------------------------------------------------------ */
1048 static INLINE int
ipf_pr_ah6(fr_info_t * fin)1049 ipf_pr_ah6(fr_info_t *fin)
1050 {
1051 	authhdr_t *ah;
1052 
1053 	fin->fin_flx |= FI_AH;
1054 
1055 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1056 	if (ah == NULL) {
1057 		ipf_main_softc_t *softc = fin->fin_main_soft;
1058 
1059 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1060 		return IPPROTO_NONE;
1061 	}
1062 
1063 	ipf_pr_short6(fin, sizeof(*ah));
1064 
1065 	/*
1066 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1067 	 * enough data to satisfy ah_next (the very first one.)
1068 	 */
1069 	return ah->ah_next;
1070 }
1071 
1072 
1073 /* ------------------------------------------------------------------------ */
1074 /* Function:    ipf_pr_gre6                                                 */
1075 /* Returns:     void                                                        */
1076 /* Parameters:  fin(I) - pointer to packet information                      */
1077 /*                                                                          */
1078 /* Analyse the packet for GRE properties.                                   */
1079 /* ------------------------------------------------------------------------ */
1080 static INLINE void
ipf_pr_gre6(fr_info_t * fin)1081 ipf_pr_gre6(fr_info_t *fin)
1082 {
1083 	grehdr_t *gre;
1084 
1085 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1086 		ipf_main_softc_t *softc = fin->fin_main_soft;
1087 
1088 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1089 		return;
1090 	}
1091 
1092 	gre = fin->fin_dp;
1093 	if (GRE_REV(gre->gr_flags) == 1)
1094 		fin->fin_data[0] = gre->gr_call;
1095 }
1096 #endif	/* USE_INET6 */
1097 
1098 
1099 /* ------------------------------------------------------------------------ */
1100 /* Function:    ipf_pr_pullup                                               */
1101 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1102 /* Parameters:  fin(I)  - pointer to packet information                     */
1103 /*              plen(I) - length (excluding L3 header) to pullup            */
1104 /*                                                                          */
1105 /* Short inline function to cut down on code duplication to perform a call  */
1106 /* to ipf_pullup to ensure there is the required amount of data,            */
1107 /* consecutively in the packet buffer.                                      */
1108 /*                                                                          */
1109 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1110 /* points to the first byte after the complete layer 3 header, which will   */
1111 /* include all of the known extension headers for IPv6 or options for IPv4. */
1112 /*                                                                          */
1113 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1114 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1115 /* - fin_ip) to what is passed through.                                     */
1116 /* ------------------------------------------------------------------------ */
1117 int
ipf_pr_pullup(fr_info_t * fin,int plen)1118 ipf_pr_pullup(fr_info_t *fin, int plen)
1119 {
1120 	ipf_main_softc_t *softc = fin->fin_main_soft;
1121 
1122 	if (fin->fin_m != NULL) {
1123 		if (fin->fin_dp != NULL)
1124 			plen += (char *)fin->fin_dp -
1125 				((char *)fin->fin_ip + fin->fin_hlen);
1126 		plen += fin->fin_hlen;
1127 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1128 #if defined(_KERNEL)
1129 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1130 				DT(ipf_pullup_fail);
1131 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1132 				return -1;
1133 			}
1134 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1135 #else
1136 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1137 			/*
1138 			 * Fake ipf_pullup failing
1139 			 */
1140 			fin->fin_reason = FRB_PULLUP;
1141 			*fin->fin_mp = NULL;
1142 			fin->fin_m = NULL;
1143 			fin->fin_ip = NULL;
1144 			return -1;
1145 #endif
1146 		}
1147 	}
1148 	return 0;
1149 }
1150 
1151 
1152 /* ------------------------------------------------------------------------ */
1153 /* Function:    ipf_pr_short                                                */
1154 /* Returns:     void                                                        */
1155 /* Parameters:  fin(I)  - pointer to packet information                     */
1156 /*              xmin(I) - minimum header size                               */
1157 /*                                                                          */
1158 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1159 /* applying here is that the packet must not be fragmented within the layer */
1160 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1161 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1162 /* entire layer 4 header must be present (min).                             */
1163 /* ------------------------------------------------------------------------ */
1164 static INLINE void
ipf_pr_short(fr_info_t * fin,int xmin)1165 ipf_pr_short(fr_info_t *fin, int xmin)
1166 {
1167 
1168 	if (fin->fin_off == 0) {
1169 		if (fin->fin_dlen < xmin)
1170 			fin->fin_flx |= FI_SHORT;
1171 	} else if (fin->fin_off < xmin) {
1172 		fin->fin_flx |= FI_SHORT;
1173 	}
1174 }
1175 
1176 
1177 /* ------------------------------------------------------------------------ */
1178 /* Function:    ipf_pr_icmp                                                 */
1179 /* Returns:     void                                                        */
1180 /* Parameters:  fin(I) - pointer to packet information                      */
1181 /*                                                                          */
1182 /* IPv4 Only                                                                */
1183 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1184 /* except extrememly bad packets, both type and code will be present.       */
1185 /* The expected minimum size of an ICMP packet is very much dependent on    */
1186 /* the type of it.                                                          */
1187 /*                                                                          */
1188 /* XXX - other ICMP sanity checks?                                          */
1189 /* ------------------------------------------------------------------------ */
1190 static INLINE void
ipf_pr_icmp(fr_info_t * fin)1191 ipf_pr_icmp(fr_info_t *fin)
1192 {
1193 	ipf_main_softc_t *softc = fin->fin_main_soft;
1194 	int minicmpsz = sizeof(struct icmp);
1195 	icmphdr_t *icmp;
1196 	ip_t *oip;
1197 
1198 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1199 
1200 	if (fin->fin_off != 0) {
1201 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1202 		return;
1203 	}
1204 
1205 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1206 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1207 		return;
1208 	}
1209 
1210 	icmp = fin->fin_dp;
1211 
1212 	fin->fin_data[0] = *(u_short *)icmp;
1213 	fin->fin_data[1] = icmp->icmp_id;
1214 
1215 	switch (icmp->icmp_type)
1216 	{
1217 	case ICMP_ECHOREPLY :
1218 	case ICMP_ECHO :
1219 	/* Router discovery messaes - RFC 1256 */
1220 	case ICMP_ROUTERADVERT :
1221 	case ICMP_ROUTERSOLICIT :
1222 		fin->fin_flx |= FI_ICMPQUERY;
1223 		minicmpsz = ICMP_MINLEN;
1224 		break;
1225 	/*
1226 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1227 	 * 3 * timestamp(3 * 4)
1228 	 */
1229 	case ICMP_TSTAMP :
1230 	case ICMP_TSTAMPREPLY :
1231 		fin->fin_flx |= FI_ICMPQUERY;
1232 		minicmpsz = 20;
1233 		break;
1234 	/*
1235 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1236 	 * mask(4)
1237 	 */
1238 	case ICMP_IREQ :
1239 	case ICMP_IREQREPLY :
1240 	case ICMP_MASKREQ :
1241 	case ICMP_MASKREPLY :
1242 		fin->fin_flx |= FI_ICMPQUERY;
1243 		minicmpsz = 12;
1244 		break;
1245 	/*
1246 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1247 	 */
1248 	case ICMP_UNREACH :
1249 #ifdef icmp_nextmtu
1250 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1251 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu)
1252 				fin->fin_flx |= FI_BAD;
1253 		}
1254 #endif
1255 	case ICMP_SOURCEQUENCH :
1256 	case ICMP_REDIRECT :
1257 	case ICMP_TIMXCEED :
1258 	case ICMP_PARAMPROB :
1259 		fin->fin_flx |= FI_ICMPERR;
1260 		if (ipf_coalesce(fin) != 1) {
1261 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1262 			return;
1263 		}
1264 
1265 		/*
1266 		 * ICMP error packets should not be generated for IP
1267 		 * packets that are a fragment that isn't the first
1268 		 * fragment.
1269 		 */
1270 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1271 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0)
1272 			fin->fin_flx |= FI_BAD;
1273 
1274 		/*
1275 		 * If the destination of this packet doesn't match the
1276 		 * source of the original packet then this packet is
1277 		 * not correct.
1278 		 */
1279 		if (oip->ip_src.s_addr != fin->fin_daddr)
1280 			fin->fin_flx |= FI_BAD;
1281 		break;
1282 	default :
1283 		break;
1284 	}
1285 
1286 	ipf_pr_short(fin, minicmpsz);
1287 
1288 	ipf_checkv4sum(fin);
1289 }
1290 
1291 
1292 /* ------------------------------------------------------------------------ */
1293 /* Function:    ipf_pr_tcpcommon                                            */
1294 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1295 /* Parameters:  fin(I) - pointer to packet information                      */
1296 /*                                                                          */
1297 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1298 /* and make some checks with how they interact with other fields.           */
1299 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1300 /* valid and mark the packet as bad if not.                                 */
1301 /* ------------------------------------------------------------------------ */
1302 static INLINE int
ipf_pr_tcpcommon(fr_info_t * fin)1303 ipf_pr_tcpcommon(fr_info_t *fin)
1304 {
1305 	ipf_main_softc_t *softc = fin->fin_main_soft;
1306 	int flags, tlen;
1307 	tcphdr_t *tcp;
1308 
1309 	fin->fin_flx |= FI_TCPUDP;
1310 	if (fin->fin_off != 0) {
1311 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1312 		return 0;
1313 	}
1314 
1315 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1316 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1317 		return -1;
1318 	}
1319 
1320 	tcp = fin->fin_dp;
1321 	if (fin->fin_dlen > 3) {
1322 		fin->fin_sport = ntohs(tcp->th_sport);
1323 		fin->fin_dport = ntohs(tcp->th_dport);
1324 	}
1325 
1326 	if ((fin->fin_flx & FI_SHORT) != 0) {
1327 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1328 		return 1;
1329 	}
1330 
1331 	/*
1332 	 * Use of the TCP data offset *must* result in a value that is at
1333 	 * least the same size as the TCP header.
1334 	 */
1335 	tlen = TCP_OFF(tcp) << 2;
1336 	if (tlen < sizeof(tcphdr_t)) {
1337 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1338 		fin->fin_flx |= FI_BAD;
1339 		return 1;
1340 	}
1341 
1342 	flags = tcp->th_flags;
1343 	fin->fin_tcpf = tcp->th_flags;
1344 
1345 	/*
1346 	 * If the urgent flag is set, then the urgent pointer must
1347 	 * also be set and vice versa.  Good TCP packets do not have
1348 	 * just one of these set.
1349 	 */
1350 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1351 		fin->fin_flx |= FI_BAD;
1352 #if 0
1353 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1354 		/*
1355 		 * Ignore this case (#if 0) as it shows up in "real"
1356 		 * traffic with bogus values in the urgent pointer field.
1357 		 */
1358 		fin->fin_flx |= FI_BAD;
1359 #endif
1360 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1361 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1362 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1363 		fin->fin_flx |= FI_BAD;
1364 #if 1
1365 	} else if (((flags & TH_SYN) != 0) &&
1366 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1367 		/*
1368 		 * SYN with URG and PUSH set is not for normal TCP but it is
1369 		 * possible(?) with T/TCP...but who uses T/TCP?
1370 		 */
1371 		fin->fin_flx |= FI_BAD;
1372 #endif
1373 	} else if (!(flags & TH_ACK)) {
1374 		/*
1375 		 * If the ack bit isn't set, then either the SYN or
1376 		 * RST bit must be set.  If the SYN bit is set, then
1377 		 * we expect the ACK field to be 0.  If the ACK is
1378 		 * not set and if URG, PSH or FIN are set, consdier
1379 		 * that to indicate a bad TCP packet.
1380 		 */
1381 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1382 			/*
1383 			 * Cisco PIX sets the ACK field to a random value.
1384 			 * In light of this, do not set FI_BAD until a patch
1385 			 * is available from Cisco to ensure that
1386 			 * interoperability between existing systems is
1387 			 * achieved.
1388 			 */
1389 			/*fin->fin_flx |= FI_BAD*/;
1390 		} else if (!(flags & (TH_RST|TH_SYN))) {
1391 			fin->fin_flx |= FI_BAD;
1392 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1393 			fin->fin_flx |= FI_BAD;
1394 		}
1395 	}
1396 	if (fin->fin_flx & FI_BAD) {
1397 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1398 		return 1;
1399 	}
1400 
1401 	/*
1402 	 * At this point, it's not exactly clear what is to be gained by
1403 	 * marking up which TCP options are and are not present.  The one we
1404 	 * are most interested in is the TCP window scale.  This is only in
1405 	 * a SYN packet [RFC1323] so we don't need this here...?
1406 	 * Now if we were to analyse the header for passive fingerprinting,
1407 	 * then that might add some weight to adding this...
1408 	 */
1409 	if (tlen == sizeof(tcphdr_t)) {
1410 		return 0;
1411 	}
1412 
1413 	if (ipf_pr_pullup(fin, tlen) == -1) {
1414 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1415 		return -1;
1416 	}
1417 
1418 #if 0
1419 	tcp = fin->fin_dp;
1420 	ip = fin->fin_ip;
1421 	s = (u_char *)(tcp + 1);
1422 	off = IP_HL(ip) << 2;
1423 # ifdef _KERNEL
1424 	if (fin->fin_mp != NULL) {
1425 		mb_t *m = *fin->fin_mp;
1426 
1427 		if (off + tlen > M_LEN(m))
1428 			return;
1429 	}
1430 # endif
1431 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1432 		opt = *s;
1433 		if (opt == '\0')
1434 			break;
1435 		else if (opt == TCPOPT_NOP)
1436 			ol = 1;
1437 		else {
1438 			if (tlen < 2)
1439 				break;
1440 			ol = (int)*(s + 1);
1441 			if (ol < 2 || ol > tlen)
1442 				break;
1443 		}
1444 
1445 		for (i = 9, mv = 4; mv >= 0; ) {
1446 			op = ipopts + i;
1447 			if (opt == (u_char)op->ol_val) {
1448 				optmsk |= op->ol_bit;
1449 				break;
1450 			}
1451 		}
1452 		tlen -= ol;
1453 		s += ol;
1454 	}
1455 #endif /* 0 */
1456 
1457 	return 0;
1458 }
1459 
1460 
1461 
1462 /* ------------------------------------------------------------------------ */
1463 /* Function:    ipf_pr_udpcommon                                            */
1464 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1465 /* Parameters:  fin(I) - pointer to packet information                      */
1466 /*                                                                          */
1467 /* Extract the UDP source and destination ports, if present.  If compiled   */
1468 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1469 /* ------------------------------------------------------------------------ */
1470 static INLINE int
ipf_pr_udpcommon(fr_info_t * fin)1471 ipf_pr_udpcommon(fr_info_t *fin)
1472 {
1473 	udphdr_t *udp;
1474 
1475 	fin->fin_flx |= FI_TCPUDP;
1476 
1477 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1478 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1479 			ipf_main_softc_t *softc = fin->fin_main_soft;
1480 
1481 			fin->fin_flx |= FI_SHORT;
1482 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1483 			return 1;
1484 		}
1485 
1486 		udp = fin->fin_dp;
1487 
1488 		fin->fin_sport = ntohs(udp->uh_sport);
1489 		fin->fin_dport = ntohs(udp->uh_dport);
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 
1496 /* ------------------------------------------------------------------------ */
1497 /* Function:    ipf_pr_tcp                                                  */
1498 /* Returns:     void                                                        */
1499 /* Parameters:  fin(I) - pointer to packet information                      */
1500 /*                                                                          */
1501 /* IPv4 Only                                                                */
1502 /* Analyse the packet for IPv4/TCP properties.                              */
1503 /* ------------------------------------------------------------------------ */
1504 static INLINE void
ipf_pr_tcp(fr_info_t * fin)1505 ipf_pr_tcp(fr_info_t *fin)
1506 {
1507 
1508 	ipf_pr_short(fin, sizeof(tcphdr_t));
1509 
1510 	if (ipf_pr_tcpcommon(fin) == 0)
1511 		ipf_checkv4sum(fin);
1512 }
1513 
1514 
1515 /* ------------------------------------------------------------------------ */
1516 /* Function:    ipf_pr_udp                                                  */
1517 /* Returns:     void                                                        */
1518 /* Parameters:  fin(I) - pointer to packet information                      */
1519 /*                                                                          */
1520 /* IPv4 Only                                                                */
1521 /* Analyse the packet for IPv4/UDP properties.                              */
1522 /* ------------------------------------------------------------------------ */
1523 static INLINE void
ipf_pr_udp(fr_info_t * fin)1524 ipf_pr_udp(fr_info_t *fin)
1525 {
1526 
1527 	ipf_pr_short(fin, sizeof(udphdr_t));
1528 
1529 	if (ipf_pr_udpcommon(fin) == 0)
1530 		ipf_checkv4sum(fin);
1531 }
1532 
1533 
1534 /* ------------------------------------------------------------------------ */
1535 /* Function:    ipf_pr_esp                                                  */
1536 /* Returns:     void                                                        */
1537 /* Parameters:  fin(I) - pointer to packet information                      */
1538 /*                                                                          */
1539 /* Analyse the packet for ESP properties.                                   */
1540 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1541 /* even though the newer ESP packets must also have a sequence number that  */
1542 /* is 32bits as well, it is not possible(?) to determine the version from a */
1543 /* simple packet header.                                                    */
1544 /* ------------------------------------------------------------------------ */
1545 static INLINE void
ipf_pr_esp(fr_info_t * fin)1546 ipf_pr_esp(fr_info_t *fin)
1547 {
1548 
1549 	if (fin->fin_off == 0) {
1550 		ipf_pr_short(fin, 8);
1551 		if (ipf_pr_pullup(fin, 8) == -1) {
1552 			ipf_main_softc_t *softc = fin->fin_main_soft;
1553 
1554 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1555 		}
1556 	}
1557 }
1558 
1559 
1560 /* ------------------------------------------------------------------------ */
1561 /* Function:    ipf_pr_ah                                                   */
1562 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1563 /* Parameters:  fin(I) - pointer to packet information                      */
1564 /*                                                                          */
1565 /* Analyse the packet for AH properties.                                    */
1566 /* The minimum length is taken to be the combination of all fields in the   */
1567 /* header being present and no authentication data (null algorithm used.)   */
1568 /* ------------------------------------------------------------------------ */
1569 static INLINE int
ipf_pr_ah(fr_info_t * fin)1570 ipf_pr_ah(fr_info_t *fin)
1571 {
1572 	ipf_main_softc_t *softc = fin->fin_main_soft;
1573 	authhdr_t *ah;
1574 	int len;
1575 
1576 	fin->fin_flx |= FI_AH;
1577 	ipf_pr_short(fin, sizeof(*ah));
1578 
1579 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1580 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1581 		return IPPROTO_NONE;
1582 	}
1583 
1584 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1585 		DT(fr_v4_ah_pullup_1);
1586 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1587 		return IPPROTO_NONE;
1588 	}
1589 
1590 	ah = (authhdr_t *)fin->fin_dp;
1591 
1592 	len = (ah->ah_plen + 2) << 2;
1593 	ipf_pr_short(fin, len);
1594 	if (ipf_pr_pullup(fin, len) == -1) {
1595 		DT(fr_v4_ah_pullup_2);
1596 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1597 		return IPPROTO_NONE;
1598 	}
1599 
1600 	/*
1601 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1602 	 * header.
1603 	 */
1604 	fin->fin_dp = (char *)fin->fin_dp + len;
1605 	fin->fin_dlen -= len;
1606 	return ah->ah_next;
1607 }
1608 
1609 
1610 /* ------------------------------------------------------------------------ */
1611 /* Function:    ipf_pr_gre                                                  */
1612 /* Returns:     void                                                        */
1613 /* Parameters:  fin(I) - pointer to packet information                      */
1614 /*                                                                          */
1615 /* Analyse the packet for GRE properties.                                   */
1616 /* ------------------------------------------------------------------------ */
1617 static INLINE void
ipf_pr_gre(fr_info_t * fin)1618 ipf_pr_gre(fr_info_t *fin)
1619 {
1620 	ipf_main_softc_t *softc = fin->fin_main_soft;
1621 	grehdr_t *gre;
1622 
1623 	ipf_pr_short(fin, sizeof(grehdr_t));
1624 
1625 	if (fin->fin_off != 0) {
1626 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1627 		return;
1628 	}
1629 
1630 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1631 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1632 		return;
1633 	}
1634 
1635 	gre = fin->fin_dp;
1636 	if (GRE_REV(gre->gr_flags) == 1)
1637 		fin->fin_data[0] = gre->gr_call;
1638 }
1639 
1640 
1641 /* ------------------------------------------------------------------------ */
1642 /* Function:    ipf_pr_ipv4hdr                                              */
1643 /* Returns:     void                                                        */
1644 /* Parameters:  fin(I) - pointer to packet information                      */
1645 /*                                                                          */
1646 /* IPv4 Only                                                                */
1647 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1648 /* Check all options present and flag their presence if any exist.          */
1649 /* ------------------------------------------------------------------------ */
1650 static INLINE void
ipf_pr_ipv4hdr(fr_info_t * fin)1651 ipf_pr_ipv4hdr(fr_info_t *fin)
1652 {
1653 	u_short optmsk = 0, secmsk = 0, auth = 0;
1654 	int hlen, ol, mv, p, i;
1655 	const struct optlist *op;
1656 	u_char *s, opt;
1657 	u_short off;
1658 	fr_ip_t *fi;
1659 	ip_t *ip;
1660 
1661 	fi = &fin->fin_fi;
1662 	hlen = fin->fin_hlen;
1663 
1664 	ip = fin->fin_ip;
1665 	p = ip->ip_p;
1666 	fi->fi_p = p;
1667 	fin->fin_crc = p;
1668 	fi->fi_tos = ip->ip_tos;
1669 	fin->fin_id = ip->ip_id;
1670 	off = ntohs(ip->ip_off);
1671 
1672 	/* Get both TTL and protocol */
1673 	fi->fi_p = ip->ip_p;
1674 	fi->fi_ttl = ip->ip_ttl;
1675 
1676 	/* Zero out bits not used in IPv6 address */
1677 	fi->fi_src.i6[1] = 0;
1678 	fi->fi_src.i6[2] = 0;
1679 	fi->fi_src.i6[3] = 0;
1680 	fi->fi_dst.i6[1] = 0;
1681 	fi->fi_dst.i6[2] = 0;
1682 	fi->fi_dst.i6[3] = 0;
1683 
1684 	fi->fi_saddr = ip->ip_src.s_addr;
1685 	fin->fin_crc += fi->fi_saddr;
1686 	fi->fi_daddr = ip->ip_dst.s_addr;
1687 	fin->fin_crc += fi->fi_daddr;
1688 	if (IN_CLASSD(fi->fi_daddr))
1689 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1690 
1691 	/*
1692 	 * set packet attribute flags based on the offset and
1693 	 * calculate the byte offset that it represents.
1694 	 */
1695 	off &= IP_MF|IP_OFFMASK;
1696 	if (off != 0) {
1697 		int morefrag = off & IP_MF;
1698 
1699 		fi->fi_flx |= FI_FRAG;
1700 		off &= IP_OFFMASK;
1701 		if (off != 0) {
1702 			fin->fin_flx |= FI_FRAGBODY;
1703 			off <<= 3;
1704 			if ((off + fin->fin_dlen > 65535) ||
1705 			    (fin->fin_dlen == 0) ||
1706 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1707 				/*
1708 				 * The length of the packet, starting at its
1709 				 * offset cannot exceed 65535 (0xffff) as the
1710 				 * length of an IP packet is only 16 bits.
1711 				 *
1712 				 * Any fragment that isn't the last fragment
1713 				 * must have a length greater than 0 and it
1714 				 * must be an even multiple of 8.
1715 				 */
1716 				fi->fi_flx |= FI_BAD;
1717 			}
1718 		}
1719 	}
1720 	fin->fin_off = off;
1721 
1722 	/*
1723 	 * Call per-protocol setup and checking
1724 	 */
1725 	if (p == IPPROTO_AH) {
1726 		/*
1727 		 * Treat AH differently because we expect there to be another
1728 		 * layer 4 header after it.
1729 		 */
1730 		p = ipf_pr_ah(fin);
1731 	}
1732 
1733 	switch (p)
1734 	{
1735 	case IPPROTO_UDP :
1736 		ipf_pr_udp(fin);
1737 		break;
1738 	case IPPROTO_TCP :
1739 		ipf_pr_tcp(fin);
1740 		break;
1741 	case IPPROTO_ICMP :
1742 		ipf_pr_icmp(fin);
1743 		break;
1744 	case IPPROTO_ESP :
1745 		ipf_pr_esp(fin);
1746 		break;
1747 	case IPPROTO_GRE :
1748 		ipf_pr_gre(fin);
1749 		break;
1750 	}
1751 
1752 	ip = fin->fin_ip;
1753 	if (ip == NULL)
1754 		return;
1755 
1756 	/*
1757 	 * If it is a standard IP header (no options), set the flag fields
1758 	 * which relate to options to 0.
1759 	 */
1760 	if (hlen == sizeof(*ip)) {
1761 		fi->fi_optmsk = 0;
1762 		fi->fi_secmsk = 0;
1763 		fi->fi_auth = 0;
1764 		return;
1765 	}
1766 
1767 	/*
1768 	 * So the IP header has some IP options attached.  Walk the entire
1769 	 * list of options present with this packet and set flags to indicate
1770 	 * which ones are here and which ones are not.  For the somewhat out
1771 	 * of date and obscure security classification options, set a flag to
1772 	 * represent which classification is present.
1773 	 */
1774 	fi->fi_flx |= FI_OPTIONS;
1775 
1776 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1777 		opt = *s;
1778 		if (opt == '\0')
1779 			break;
1780 		else if (opt == IPOPT_NOP)
1781 			ol = 1;
1782 		else {
1783 			if (hlen < 2)
1784 				break;
1785 			ol = (int)*(s + 1);
1786 			if (ol < 2 || ol > hlen)
1787 				break;
1788 		}
1789 		for (i = 9, mv = 4; mv >= 0; ) {
1790 			op = ipopts + i;
1791 
1792 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1793 				u_32_t doi;
1794 
1795 				switch (opt)
1796 				{
1797 				case IPOPT_SECURITY :
1798 					if (optmsk & op->ol_bit) {
1799 						fin->fin_flx |= FI_BAD;
1800 					} else {
1801 						doi = ipf_checkripso(s);
1802 						secmsk = doi >> 16;
1803 						auth = doi & 0xffff;
1804 					}
1805 					break;
1806 
1807 				case IPOPT_CIPSO :
1808 
1809 					if (optmsk & op->ol_bit) {
1810 						fin->fin_flx |= FI_BAD;
1811 					} else {
1812 						doi = ipf_checkcipso(fin,
1813 								     s, ol);
1814 						secmsk = doi >> 16;
1815 						auth = doi & 0xffff;
1816 					}
1817 					break;
1818 				}
1819 				optmsk |= op->ol_bit;
1820 			}
1821 
1822 			if (opt < op->ol_val)
1823 				i -= mv;
1824 			else
1825 				i += mv;
1826 			mv--;
1827 		}
1828 		hlen -= ol;
1829 		s += ol;
1830 	}
1831 
1832 	/*
1833 	 *
1834 	 */
1835 	if (auth && !(auth & 0x0100))
1836 		auth &= 0xff00;
1837 	fi->fi_optmsk = optmsk;
1838 	fi->fi_secmsk = secmsk;
1839 	fi->fi_auth = auth;
1840 }
1841 
1842 
1843 /* ------------------------------------------------------------------------ */
1844 /* Function:    ipf_checkripso                                              */
1845 /* Returns:     void                                                        */
1846 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1847 /*                                                                          */
1848 /* ------------------------------------------------------------------------ */
1849 static u_32_t
ipf_checkripso(u_char * s)1850 ipf_checkripso(u_char *s)
1851 {
1852 	const struct optlist *sp;
1853 	u_short secmsk = 0, auth = 0;
1854 	u_char sec;
1855 	int j, m;
1856 
1857 	sec = *(s + 2);	/* classification */
1858 	for (j = 3, m = 2; m >= 0; ) {
1859 		sp = secopt + j;
1860 		if (sec == sp->ol_val) {
1861 			secmsk |= sp->ol_bit;
1862 			auth = *(s + 3);
1863 			auth *= 256;
1864 			auth += *(s + 4);
1865 			break;
1866 		}
1867 		if (sec < sp->ol_val)
1868 			j -= m;
1869 		else
1870 			j += m;
1871 		m--;
1872 	}
1873 
1874 	return (secmsk << 16) | auth;
1875 }
1876 
1877 
1878 /* ------------------------------------------------------------------------ */
1879 /* Function:    ipf_checkcipso                                              */
1880 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1881 /* Parameters:  fin(IO) - pointer to packet information                     */
1882 /*              s(I)    - pointer to start of CIPSO option                  */
1883 /*              ol(I)   - length of CIPSO option field                      */
1884 /*                                                                          */
1885 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1886 /* header and returns that whilst also storing the highest sensitivity      */
1887 /* value found in the fr_info_t structure.                                  */
1888 /*                                                                          */
1889 /* No attempt is made to extract the category bitmaps as these are defined  */
1890 /* by the user (rather than the protocol) and can be rather numerous on the */
1891 /* end nodes.                                                               */
1892 /* ------------------------------------------------------------------------ */
1893 static u_32_t
ipf_checkcipso(fr_info_t * fin,u_char * s,int ol)1894 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1895 {
1896 	ipf_main_softc_t *softc = fin->fin_main_soft;
1897 	fr_ip_t *fi;
1898 	u_32_t doi;
1899 	u_char *t, tag, tlen, sensitivity;
1900 	int len;
1901 
1902 	if (ol < 6 || ol > 40) {
1903 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1904 		fin->fin_flx |= FI_BAD;
1905 		return 0;
1906 	}
1907 
1908 	fi = &fin->fin_fi;
1909 	fi->fi_sensitivity = 0;
1910 	/*
1911 	 * The DOI field MUST be there.
1912 	 */
1913 	bcopy(s + 2, &doi, sizeof(doi));
1914 
1915 	t = (u_char *)s + 6;
1916 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1917 		tag = *t;
1918 		tlen = *(t + 1);
1919 		if (tlen > len || tlen < 4 || tlen > 34) {
1920 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1921 			fin->fin_flx |= FI_BAD;
1922 			return 0;
1923 		}
1924 
1925 		sensitivity = 0;
1926 		/*
1927 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1928 		 * draft (16 July 1992) that has expired.
1929 		 */
1930 		if (tag == 0) {
1931 			fin->fin_flx |= FI_BAD;
1932 			continue;
1933 		} else if (tag == 1) {
1934 			if (*(t + 2) != 0) {
1935 				fin->fin_flx |= FI_BAD;
1936 				continue;
1937 			}
1938 			sensitivity = *(t + 3);
1939 			/* Category bitmap for categories 0-239 */
1940 
1941 		} else if (tag == 4) {
1942 			if (*(t + 2) != 0) {
1943 				fin->fin_flx |= FI_BAD;
1944 				continue;
1945 			}
1946 			sensitivity = *(t + 3);
1947 			/* Enumerated categories, 16bits each, upto 15 */
1948 
1949 		} else if (tag == 5) {
1950 			if (*(t + 2) != 0) {
1951 				fin->fin_flx |= FI_BAD;
1952 				continue;
1953 			}
1954 			sensitivity = *(t + 3);
1955 			/* Range of categories (2*16bits), up to 7 pairs */
1956 
1957 		} else if (tag > 127) {
1958 			/* Custom defined DOI */
1959 			;
1960 		} else {
1961 			fin->fin_flx |= FI_BAD;
1962 			continue;
1963 		}
1964 
1965 		if (sensitivity > fi->fi_sensitivity)
1966 			fi->fi_sensitivity = sensitivity;
1967 	}
1968 
1969 	return doi;
1970 }
1971 
1972 
1973 /* ------------------------------------------------------------------------ */
1974 /* Function:    ipf_makefrip                                                */
1975 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
1976 /* Parameters:  hlen(I) - length of IP packet header                        */
1977 /*              ip(I)   - pointer to the IP header                          */
1978 /*              fin(IO) - pointer to packet information                     */
1979 /*                                                                          */
1980 /* Compact the IP header into a structure which contains just the info.     */
1981 /* which is useful for comparing IP headers with and store this information */
1982 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1983 /* this function will be called with either an IPv4 or IPv6 packet.         */
1984 /* ------------------------------------------------------------------------ */
1985 int
ipf_makefrip(int hlen,ip_t * ip,fr_info_t * fin)1986 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
1987 {
1988 	ipf_main_softc_t *softc = fin->fin_main_soft;
1989 	int v;
1990 
1991 	fin->fin_depth = 0;
1992 	fin->fin_hlen = (u_short)hlen;
1993 	fin->fin_ip = ip;
1994 	fin->fin_rule = 0xffffffff;
1995 	fin->fin_group[0] = -1;
1996 	fin->fin_group[1] = '\0';
1997 	fin->fin_dp = (char *)ip + hlen;
1998 
1999 	v = fin->fin_v;
2000 	if (v == 4) {
2001 		fin->fin_plen = ntohs(ip->ip_len);
2002 		fin->fin_dlen = fin->fin_plen - hlen;
2003 		ipf_pr_ipv4hdr(fin);
2004 #ifdef	USE_INET6
2005 	} else if (v == 6) {
2006 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2007 		fin->fin_dlen = fin->fin_plen;
2008 		fin->fin_plen += hlen;
2009 
2010 		ipf_pr_ipv6hdr(fin);
2011 #endif
2012 	}
2013 	if (fin->fin_ip == NULL) {
2014 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2015 		return -1;
2016 	}
2017 	return 0;
2018 }
2019 
2020 
2021 /* ------------------------------------------------------------------------ */
2022 /* Function:    ipf_portcheck                                               */
2023 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2024 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2025 /*              pop(I) - port number to evaluate                            */
2026 /*                                                                          */
2027 /* Perform a comparison of a port number against some other(s), using a     */
2028 /* structure with compare information stored in it.                         */
2029 /* ------------------------------------------------------------------------ */
2030 static INLINE int
ipf_portcheck(frpcmp_t * frp,u_32_t pop)2031 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2032 {
2033 	int err = 1;
2034 	u_32_t po;
2035 
2036 	po = frp->frp_port;
2037 
2038 	/*
2039 	 * Do opposite test to that required and continue if that succeeds.
2040 	 */
2041 	switch (frp->frp_cmp)
2042 	{
2043 	case FR_EQUAL :
2044 		if (pop != po) /* EQUAL */
2045 			err = 0;
2046 		break;
2047 	case FR_NEQUAL :
2048 		if (pop == po) /* NOTEQUAL */
2049 			err = 0;
2050 		break;
2051 	case FR_LESST :
2052 		if (pop >= po) /* LESSTHAN */
2053 			err = 0;
2054 		break;
2055 	case FR_GREATERT :
2056 		if (pop <= po) /* GREATERTHAN */
2057 			err = 0;
2058 		break;
2059 	case FR_LESSTE :
2060 		if (pop > po) /* LT or EQ */
2061 			err = 0;
2062 		break;
2063 	case FR_GREATERTE :
2064 		if (pop < po) /* GT or EQ */
2065 			err = 0;
2066 		break;
2067 	case FR_OUTRANGE :
2068 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2069 			err = 0;
2070 		break;
2071 	case FR_INRANGE :
2072 		if (pop <= po || pop >= frp->frp_top) /* In range */
2073 			err = 0;
2074 		break;
2075 	case FR_INCRANGE :
2076 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2077 			err = 0;
2078 		break;
2079 	default :
2080 		break;
2081 	}
2082 	return err;
2083 }
2084 
2085 
2086 /* ------------------------------------------------------------------------ */
2087 /* Function:    ipf_tcpudpchk                                               */
2088 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2089 /* Parameters:  fda(I) - pointer to packet information                      */
2090 /*              ft(I)  - pointer to structure with comparison data          */
2091 /*                                                                          */
2092 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2093 /* structure containing information that we want to match against.          */
2094 /* ------------------------------------------------------------------------ */
2095 int
ipf_tcpudpchk(fr_ip_t * fi,frtuc_t * ft)2096 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2097 {
2098 	int err = 1;
2099 
2100 	/*
2101 	 * Both ports should *always* be in the first fragment.
2102 	 * So far, I cannot find any cases where they can not be.
2103 	 *
2104 	 * compare destination ports
2105 	 */
2106 	if (ft->ftu_dcmp)
2107 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2108 
2109 	/*
2110 	 * compare source ports
2111 	 */
2112 	if (err && ft->ftu_scmp)
2113 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2114 
2115 	/*
2116 	 * If we don't have all the TCP/UDP header, then how can we
2117 	 * expect to do any sort of match on it ?  If we were looking for
2118 	 * TCP flags, then NO match.  If not, then match (which should
2119 	 * satisfy the "short" class too).
2120 	 */
2121 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2122 		if (fi->fi_flx & FI_SHORT)
2123 			return !(ft->ftu_tcpf | ft->ftu_tcpfm);
2124 		/*
2125 		 * Match the flags ?  If not, abort this match.
2126 		 */
2127 		if (ft->ftu_tcpfm &&
2128 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2129 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2130 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2131 			err = 0;
2132 		}
2133 	}
2134 	return err;
2135 }
2136 
2137 
2138 /* ------------------------------------------------------------------------ */
2139 /* Function:    ipf_check_ipf                                               */
2140 /* Returns:     int - 0 == match, else no match                             */
2141 /* Parameters:  fin(I)     - pointer to packet information                  */
2142 /*              fr(I)      - pointer to filter rule                         */
2143 /*              portcmp(I) - flag indicating whether to attempt matching on */
2144 /*                           TCP/UDP port data.                             */
2145 /*                                                                          */
2146 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2147 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2148 /* this function.                                                           */
2149 /* ------------------------------------------------------------------------ */
2150 static INLINE int
ipf_check_ipf(fr_info_t * fin,frentry_t * fr,int portcmp)2151 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2152 {
2153 	u_32_t	*ld, *lm, *lip;
2154 	fripf_t *fri;
2155 	fr_ip_t *fi;
2156 	int i;
2157 
2158 	fi = &fin->fin_fi;
2159 	fri = fr->fr_ipf;
2160 	lip = (u_32_t *)fi;
2161 	lm = (u_32_t *)&fri->fri_mip;
2162 	ld = (u_32_t *)&fri->fri_ip;
2163 
2164 	/*
2165 	 * first 32 bits to check coversion:
2166 	 * IP version, TOS, TTL, protocol
2167 	 */
2168 	i = ((*lip & *lm) != *ld);
2169 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2170 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2171 	if (i)
2172 		return 1;
2173 
2174 	/*
2175 	 * Next 32 bits is a constructed bitmask indicating which IP options
2176 	 * are present (if any) in this packet.
2177 	 */
2178 	lip++, lm++, ld++;
2179 	i = ((*lip & *lm) != *ld);
2180 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2181 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2182 	if (i != 0)
2183 		return 1;
2184 
2185 	lip++, lm++, ld++;
2186 	/*
2187 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2188 	 */
2189 	/*
2190 	 * Check the source address.
2191 	 */
2192 	if (fr->fr_satype == FRI_LOOKUP) {
2193 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2194 				      fi->fi_v, lip, fin->fin_plen);
2195 		if (i == -1)
2196 			return 1;
2197 		lip += 3;
2198 		lm += 3;
2199 		ld += 3;
2200 	} else {
2201 		i = ((*lip & *lm) != *ld);
2202 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2203 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2204 		if (fi->fi_v == 6) {
2205 			lip++, lm++, ld++;
2206 			i |= ((*lip & *lm) != *ld);
2207 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2208 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2209 			lip++, lm++, ld++;
2210 			i |= ((*lip & *lm) != *ld);
2211 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2212 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2213 			lip++, lm++, ld++;
2214 			i |= ((*lip & *lm) != *ld);
2215 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2216 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2217 		} else {
2218 			lip += 3;
2219 			lm += 3;
2220 			ld += 3;
2221 		}
2222 	}
2223 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2224 	if (i != 0)
2225 		return 1;
2226 
2227 	/*
2228 	 * Check the destination address.
2229 	 */
2230 	lip++, lm++, ld++;
2231 	if (fr->fr_datype == FRI_LOOKUP) {
2232 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2233 				      fi->fi_v, lip, fin->fin_plen);
2234 		if (i == -1)
2235 			return 1;
2236 		lip += 3;
2237 		lm += 3;
2238 		ld += 3;
2239 	} else {
2240 		i = ((*lip & *lm) != *ld);
2241 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2242 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2243 		if (fi->fi_v == 6) {
2244 			lip++, lm++, ld++;
2245 			i |= ((*lip & *lm) != *ld);
2246 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2247 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2248 			lip++, lm++, ld++;
2249 			i |= ((*lip & *lm) != *ld);
2250 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2251 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2252 			lip++, lm++, ld++;
2253 			i |= ((*lip & *lm) != *ld);
2254 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2255 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2256 		} else {
2257 			lip += 3;
2258 			lm += 3;
2259 			ld += 3;
2260 		}
2261 	}
2262 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2263 	if (i != 0)
2264 		return 1;
2265 	/*
2266 	 * IP addresses matched.  The next 32bits contains:
2267 	 * mast of old IP header security & authentication bits.
2268 	 */
2269 	lip++, lm++, ld++;
2270 	i = (*ld - (*lip & *lm));
2271 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2272 
2273 	/*
2274 	 * Next we have 32 bits of packet flags.
2275 	 */
2276 	lip++, lm++, ld++;
2277 	i |= (*ld - (*lip & *lm));
2278 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2279 
2280 	if (i == 0) {
2281 		/*
2282 		 * If a fragment, then only the first has what we're
2283 		 * looking for here...
2284 		 */
2285 		if (portcmp) {
2286 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2287 				i = 1;
2288 		} else {
2289 			if (fr->fr_dcmp || fr->fr_scmp ||
2290 			    fr->fr_tcpf || fr->fr_tcpfm)
2291 				i = 1;
2292 			if (fr->fr_icmpm || fr->fr_icmp) {
2293 				if (((fi->fi_p != IPPROTO_ICMP) &&
2294 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2295 				    fin->fin_off || (fin->fin_dlen < 2))
2296 					i = 1;
2297 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2298 					 fr->fr_icmp) {
2299 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2300 						 fin->fin_data[0],
2301 						 fr->fr_icmpm, fr->fr_icmp));
2302 					i = 1;
2303 				}
2304 			}
2305 		}
2306 	}
2307 	return i;
2308 }
2309 
2310 
2311 /* ------------------------------------------------------------------------ */
2312 /* Function:    ipf_scanlist                                                */
2313 /* Returns:     int - result flags of scanning filter list                  */
2314 /* Parameters:  fin(I) - pointer to packet information                      */
2315 /*              pass(I) - default result to return for filtering            */
2316 /*                                                                          */
2317 /* Check the input/output list of rules for a match to the current packet.  */
2318 /* If a match is found, the value of fr_flags from the rule becomes the     */
2319 /* return value and fin->fin_fr points to the matched rule.                 */
2320 /*                                                                          */
2321 /* This function may be called recusively upto 16 times (limit inbuilt.)    */
2322 /* When unwinding, it should finish up with fin_depth as 0.                 */
2323 /*                                                                          */
2324 /* Could be per interface, but this gets real nasty when you don't have,    */
2325 /* or can't easily change, the kernel source code to .                      */
2326 /* ------------------------------------------------------------------------ */
2327 int
ipf_scanlist(fr_info_t * fin,u_32_t pass)2328 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2329 {
2330 	ipf_main_softc_t *softc = fin->fin_main_soft;
2331 	int rulen, portcmp, off, skip;
2332 	struct frentry *fr, *fnext;
2333 	u_32_t passt, passo;
2334 
2335 	/*
2336 	 * Do not allow nesting deeper than 16 levels.
2337 	 */
2338 	if (fin->fin_depth >= 16)
2339 		return pass;
2340 
2341 	fr = fin->fin_fr;
2342 
2343 	/*
2344 	 * If there are no rules in this list, return now.
2345 	 */
2346 	if (fr == NULL)
2347 		return pass;
2348 
2349 	skip = 0;
2350 	portcmp = 0;
2351 	fin->fin_depth++;
2352 	fin->fin_fr = NULL;
2353 	off = fin->fin_off;
2354 
2355 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2356 		portcmp = 1;
2357 
2358 	for (rulen = 0; fr; fr = fnext, rulen++) {
2359 		fnext = fr->fr_next;
2360 		if (skip != 0) {
2361 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2362 			skip--;
2363 			continue;
2364 		}
2365 
2366 		/*
2367 		 * In all checks below, a null (zero) value in the
2368 		 * filter struture is taken to mean a wildcard.
2369 		 *
2370 		 * check that we are working for the right interface
2371 		 */
2372 #ifdef	_KERNEL
2373 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2374 			continue;
2375 #else
2376 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2377 			printf("\n");
2378 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2379 				  FR_ISPASS(pass) ? 'p' :
2380 				  FR_ISACCOUNT(pass) ? 'A' :
2381 				  FR_ISAUTH(pass) ? 'a' :
2382 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2383 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2384 			continue;
2385 		FR_VERBOSE((":i"));
2386 #endif
2387 
2388 		switch (fr->fr_type)
2389 		{
2390 		case FR_T_IPF :
2391 		case FR_T_IPF_BUILTIN :
2392 			if (ipf_check_ipf(fin, fr, portcmp))
2393 				continue;
2394 			break;
2395 #if defined(IPFILTER_BPF)
2396 		case FR_T_BPFOPC :
2397 		case FR_T_BPFOPC_BUILTIN :
2398 		    {
2399 			u_char *mc;
2400 			int wlen;
2401 
2402 			if (*fin->fin_mp == NULL)
2403 				continue;
2404 			if (fin->fin_family != fr->fr_family)
2405 				continue;
2406 			mc = (u_char *)fin->fin_m;
2407 			wlen = fin->fin_dlen + fin->fin_hlen;
2408 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2409 				continue;
2410 			break;
2411 		    }
2412 #endif
2413 		case FR_T_CALLFUNC_BUILTIN :
2414 		    {
2415 			frentry_t *f;
2416 
2417 			f = (*fr->fr_func)(fin, &pass);
2418 			if (f != NULL)
2419 				fr = f;
2420 			else
2421 				continue;
2422 			break;
2423 		    }
2424 
2425 		case FR_T_IPFEXPR :
2426 		case FR_T_IPFEXPR_BUILTIN :
2427 			if (fin->fin_family != fr->fr_family)
2428 				continue;
2429 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2430 				continue;
2431 			break;
2432 
2433 		default :
2434 			break;
2435 		}
2436 
2437 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2438 			if (fin->fin_nattag == NULL)
2439 				continue;
2440 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2441 				continue;
2442 		}
2443 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2444 
2445 		passt = fr->fr_flags;
2446 
2447 		/*
2448 		 * If the rule is a "call now" rule, then call the function
2449 		 * in the rule, if it exists and use the results from that.
2450 		 * If the function pointer is bad, just make like we ignore
2451 		 * it, except for increasing the hit counter.
2452 		 */
2453 		if ((passt & FR_CALLNOW) != 0) {
2454 			frentry_t *frs;
2455 
2456 			ATOMIC_INC64(fr->fr_hits);
2457 			if ((fr->fr_func == NULL) ||
2458 			    (fr->fr_func == (ipfunc_t)-1))
2459 				continue;
2460 
2461 			frs = fin->fin_fr;
2462 			fin->fin_fr = fr;
2463 			fr = (*fr->fr_func)(fin, &passt);
2464 			if (fr == NULL) {
2465 				fin->fin_fr = frs;
2466 				continue;
2467 			}
2468 			passt = fr->fr_flags;
2469 		}
2470 		fin->fin_fr = fr;
2471 
2472 #ifdef  IPFILTER_LOG
2473 		/*
2474 		 * Just log this packet...
2475 		 */
2476 		if ((passt & FR_LOGMASK) == FR_LOG) {
2477 			if (ipf_log_pkt(fin, passt) == -1) {
2478 				if (passt & FR_LOGORBLOCK) {
2479 					DT(frb_logfail);
2480 					passt &= ~FR_CMDMASK;
2481 					passt |= FR_BLOCK|FR_QUICK;
2482 					fin->fin_reason = FRB_LOGFAIL;
2483 				}
2484 			}
2485 		}
2486 #endif /* IPFILTER_LOG */
2487 
2488 		MUTEX_ENTER(&fr->fr_lock);
2489 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2490 		fr->fr_hits++;
2491 		MUTEX_EXIT(&fr->fr_lock);
2492 		fin->fin_rule = rulen;
2493 
2494 		passo = pass;
2495 		if (FR_ISSKIP(passt)) {
2496 			skip = fr->fr_arg;
2497 			continue;
2498 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2499 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2500 			pass = passt;
2501 		}
2502 
2503 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2504 			fin->fin_icode = fr->fr_icode;
2505 
2506 		if (fr->fr_group != -1) {
2507 			(void) strncpy(fin->fin_group,
2508 				       FR_NAME(fr, fr_group),
2509 				       strlen(FR_NAME(fr, fr_group)));
2510 		} else {
2511 			fin->fin_group[0] = '\0';
2512 		}
2513 
2514 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2515 
2516 		if (fr->fr_grphead != NULL) {
2517 			fin->fin_fr = fr->fr_grphead->fg_start;
2518 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2519 
2520 			if (FR_ISDECAPS(passt))
2521 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2522 			else
2523 				passt = ipf_scanlist(fin, pass);
2524 
2525 			if (fin->fin_fr == NULL) {
2526 				fin->fin_rule = rulen;
2527 				if (fr->fr_group != -1)
2528 					(void) strncpy(fin->fin_group,
2529 						       fr->fr_names +
2530 						       fr->fr_group,
2531 						       strlen(fr->fr_names +
2532 							      fr->fr_group));
2533 				fin->fin_fr = fr;
2534 				passt = pass;
2535 			}
2536 			pass = passt;
2537 		}
2538 
2539 		if (pass & FR_QUICK) {
2540 			/*
2541 			 * Finally, if we've asked to track state for this
2542 			 * packet, set it up.  Add state for "quick" rules
2543 			 * here so that if the action fails we can consider
2544 			 * the rule to "not match" and keep on processing
2545 			 * filter rules.
2546 			 */
2547 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2548 			    !(fin->fin_flx & FI_STATE)) {
2549 				int out = fin->fin_out;
2550 
2551 				fin->fin_fr = fr;
2552 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2553 					LBUMPD(ipf_stats[out], fr_ads);
2554 				} else {
2555 					LBUMPD(ipf_stats[out], fr_bads);
2556 					pass = passo;
2557 					continue;
2558 				}
2559 			}
2560 			break;
2561 		}
2562 	}
2563 	fin->fin_depth--;
2564 	return pass;
2565 }
2566 
2567 
2568 /* ------------------------------------------------------------------------ */
2569 /* Function:    ipf_acctpkt                                                 */
2570 /* Returns:     frentry_t* - always returns NULL                            */
2571 /* Parameters:  fin(I) - pointer to packet information                      */
2572 /*              passp(IO) - pointer to current/new filter decision (unused) */
2573 /*                                                                          */
2574 /* Checks a packet against accounting rules, if there are any for the given */
2575 /* IP protocol version.                                                     */
2576 /*                                                                          */
2577 /* N.B.: this function returns NULL to match the prototype used by other    */
2578 /* functions called from the IPFilter "mainline" in ipf_check().            */
2579 /* ------------------------------------------------------------------------ */
2580 frentry_t *
ipf_acctpkt(fr_info_t * fin,u_32_t * passp)2581 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2582 {
2583 	ipf_main_softc_t *softc = fin->fin_main_soft;
2584 	char group[FR_GROUPLEN];
2585 	frentry_t *fr, *frsave;
2586 	u_32_t pass, rulen;
2587 
2588 	passp = passp;
2589 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2590 
2591 	if (fr != NULL) {
2592 		frsave = fin->fin_fr;
2593 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2594 		rulen = fin->fin_rule;
2595 		fin->fin_fr = fr;
2596 		pass = ipf_scanlist(fin, FR_NOMATCH);
2597 		if (FR_ISACCOUNT(pass)) {
2598 			LBUMPD(ipf_stats[0], fr_acct);
2599 		}
2600 		fin->fin_fr = frsave;
2601 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2602 		fin->fin_rule = rulen;
2603 	}
2604 	return NULL;
2605 }
2606 
2607 
2608 /* ------------------------------------------------------------------------ */
2609 /* Function:    ipf_firewall                                                */
2610 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2611 /*                           were found, returns NULL.                      */
2612 /* Parameters:  fin(I) - pointer to packet information                      */
2613 /*              passp(IO) - pointer to current/new filter decision (unused) */
2614 /*                                                                          */
2615 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2616 /* there are any matches.  The first check is to see if a match can be seen */
2617 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2618 /* matching rule is found, take any appropriate actions as defined by the   */
2619 /* rule - except logging.                                                   */
2620 /* ------------------------------------------------------------------------ */
2621 static frentry_t *
ipf_firewall(fr_info_t * fin,u_32_t * passp)2622 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2623 {
2624 	ipf_main_softc_t *softc = fin->fin_main_soft;
2625 	frentry_t *fr;
2626 	u_32_t pass;
2627 	int out;
2628 
2629 	out = fin->fin_out;
2630 	pass = *passp;
2631 
2632 	/*
2633 	 * This rule cache will only affect packets that are not being
2634 	 * statefully filtered.
2635 	 */
2636 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2637 	if (fin->fin_fr != NULL)
2638 		pass = ipf_scanlist(fin, softc->ipf_pass);
2639 
2640 	if ((pass & FR_NOMATCH)) {
2641 		LBUMPD(ipf_stats[out], fr_nom);
2642 	}
2643 	fr = fin->fin_fr;
2644 
2645 	/*
2646 	 * Apply packets per second rate-limiting to a rule as required.
2647 	 */
2648 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2649 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2650 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2651 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2652 		pass |= FR_BLOCK;
2653 		LBUMPD(ipf_stats[out], fr_ppshit);
2654 		fin->fin_reason = FRB_PPSRATE;
2655 	}
2656 
2657 	/*
2658 	 * If we fail to add a packet to the authorization queue, then we
2659 	 * drop the packet later.  However, if it was added then pretend
2660 	 * we've dropped it already.
2661 	 */
2662 	if (FR_ISAUTH(pass)) {
2663 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2664 			DT1(frb_authnew, fr_info_t *, fin);
2665 			fin->fin_m = *fin->fin_mp = NULL;
2666 			fin->fin_reason = FRB_AUTHNEW;
2667 			fin->fin_error = 0;
2668 		} else {
2669 			IPFERROR(1);
2670 			fin->fin_error = ENOSPC;
2671 		}
2672 	}
2673 
2674 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2675 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2676 		(void) (*fr->fr_func)(fin, &pass);
2677 
2678 	/*
2679 	 * If a rule is a pre-auth rule, check again in the list of rules
2680 	 * loaded for authenticated use.  It does not particulary matter
2681 	 * if this search fails because a "preauth" result, from a rule,
2682 	 * is treated as "not a pass", hence the packet is blocked.
2683 	 */
2684 	if (FR_ISPREAUTH(pass)) {
2685 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2686 	}
2687 
2688 	/*
2689 	 * If the rule has "keep frag" and the packet is actually a fragment,
2690 	 * then create a fragment state entry.
2691 	 */
2692 	if ((pass & (FR_KEEPFRAG|FR_KEEPSTATE)) == FR_KEEPFRAG) {
2693 		if (fin->fin_flx & FI_FRAG) {
2694 			if (ipf_frag_new(softc, fin, pass) == -1) {
2695 				LBUMP(ipf_stats[out].fr_bnfr);
2696 			} else {
2697 				LBUMP(ipf_stats[out].fr_nfr);
2698 			}
2699 		} else {
2700 			LBUMP(ipf_stats[out].fr_cfr);
2701 		}
2702 	}
2703 
2704 	fr = fin->fin_fr;
2705 	*passp = pass;
2706 
2707 	return fr;
2708 }
2709 
2710 
2711 /* ------------------------------------------------------------------------ */
2712 /* Function:    ipf_check                                                   */
2713 /* Returns:     int -  0 == packet allowed through,                         */
2714 /*              User space:                                                 */
2715 /*                    -1 == packet blocked                                  */
2716 /*                     1 == packet not matched                              */
2717 /*                    -2 == requires authentication                         */
2718 /*              Kernel:                                                     */
2719 /*                   > 0 == filter error # for packet                       */
2720 /* Parameters: ip(I)   - pointer to start of IPv4/6 packet                  */
2721 /*             hlen(I) - length of header                                   */
2722 /*             ifp(I)  - pointer to interface this packet is on             */
2723 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2724 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2725 /*                       IP packet.                                         */
2726 /* Solaris & HP-UX ONLY :                                                   */
2727 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2728 /*                       interface & direction.                             */
2729 /*                                                                          */
2730 /* ipf_check() is the master function for all IPFilter packet processing.   */
2731 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2732 /* authorisation (or pre-authorisation), presence of related state info.,   */
2733 /* generating log entries, IP packet accounting, routing of packets as      */
2734 /* directed by firewall rules and of course whether or not to allow the     */
2735 /* packet to be further processed by the kernel.                            */
2736 /*                                                                          */
2737 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2738 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2739 /* by "mp" changed to a new buffer.                                         */
2740 /* ------------------------------------------------------------------------ */
2741 int
ipf_check(void * ctx,ip_t * ip,int hlen,void * ifp,int out,void * qif,mb_t ** mp)2742 ipf_check(void *ctx, ip_t *ip, int hlen, void *ifp, int out,
2743 #if defined(_KERNEL) && defined(MENTAT)
2744     void *qif,
2745 #endif
2746     mb_t **mp)
2747 {
2748 	/*
2749 	 * The above really sucks, but short of writing a diff
2750 	 */
2751 	ipf_main_softc_t *softc = ctx;
2752 	fr_info_t frinfo;
2753 	fr_info_t *fin = &frinfo;
2754 	u_32_t pass = softc->ipf_pass;
2755 	frentry_t *fr = NULL;
2756 	int v = IP_V(ip);
2757 	mb_t *mc = NULL;
2758 	mb_t *m;
2759 	/*
2760 	 * The first part of ipf_check() deals with making sure that what goes
2761 	 * into the filtering engine makes some sense.  Information about the
2762 	 * the packet is distilled, collected into a fr_info_t structure and
2763 	 * the an attempt to ensure the buffer the packet is in is big enough
2764 	 * to hold all the required packet headers.
2765 	 */
2766 #ifdef	_KERNEL
2767 # ifdef MENTAT
2768 	qpktinfo_t *qpi = qif;
2769 
2770 #  ifdef __sparc
2771 	if ((u_int)ip & 0x3)
2772 		return 2;
2773 #  endif
2774 # else
2775 	SPL_INT(s);
2776 # endif
2777 
2778 	if (softc->ipf_running <= 0) {
2779 		return 0;
2780 	}
2781 
2782 	bzero((char *)fin, sizeof(*fin));
2783 
2784 # ifdef MENTAT
2785 	if (qpi->qpi_flags & QF_BROADCAST)
2786 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2787 	if (qpi->qpi_flags & QF_MULTICAST)
2788 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2789 	m = qpi->qpi_m;
2790 	fin->fin_qfm = m;
2791 	fin->fin_qpi = qpi;
2792 # else /* MENTAT */
2793 
2794 	m = *mp;
2795 
2796 #  if defined(M_MCAST)
2797 	if ((m->m_flags & M_MCAST) != 0)
2798 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2799 #  endif
2800 #  if defined(M_MLOOP)
2801 	if ((m->m_flags & M_MLOOP) != 0)
2802 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2803 #  endif
2804 #  if defined(M_BCAST)
2805 	if ((m->m_flags & M_BCAST) != 0)
2806 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2807 #  endif
2808 #  ifdef M_CANFASTFWD
2809 	/*
2810 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2811 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2812 	 * XXX get a "can-fast-forward" filter rule.
2813 	 */
2814 	m->m_flags &= ~M_CANFASTFWD;
2815 #  endif /* M_CANFASTFWD */
2816 #  if defined(CSUM_DELAY_DATA) && (!defined(__FreeBSD_version) || \
2817 				   (__FreeBSD_version < 501108))
2818 	/*
2819 	 * disable delayed checksums.
2820 	 */
2821 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2822 		in_delayed_cksum(m);
2823 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2824 	}
2825 #  endif /* CSUM_DELAY_DATA */
2826 # endif /* MENTAT */
2827 #else
2828 	bzero((char *)fin, sizeof(*fin));
2829 	m = *mp;
2830 # if defined(M_MCAST)
2831 	if ((m->m_flags & M_MCAST) != 0)
2832 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2833 # endif
2834 # if defined(M_MLOOP)
2835 	if ((m->m_flags & M_MLOOP) != 0)
2836 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2837 # endif
2838 # if defined(M_BCAST)
2839 	if ((m->m_flags & M_BCAST) != 0)
2840 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2841 # endif
2842 #endif /* _KERNEL */
2843 
2844 	fin->fin_v = v;
2845 	fin->fin_m = m;
2846 	fin->fin_ip = ip;
2847 	fin->fin_mp = mp;
2848 	fin->fin_out = out;
2849 	fin->fin_ifp = ifp;
2850 	fin->fin_error = ENETUNREACH;
2851 	fin->fin_hlen = (u_short)hlen;
2852 	fin->fin_dp = (char *)ip + hlen;
2853 	fin->fin_main_soft = softc;
2854 
2855 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2856 
2857 	SPL_NET(s);
2858 
2859 #ifdef	USE_INET6
2860 	if (v == 6) {
2861 		LBUMP(ipf_stats[out].fr_ipv6);
2862 		/*
2863 		 * Jumbo grams are quite likely too big for internal buffer
2864 		 * structures to handle comfortably, for now, so just drop
2865 		 * them.
2866 		 */
2867 		if (((ip6_t *)ip)->ip6_plen == 0) {
2868 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2869 			pass = FR_BLOCK|FR_NOMATCH;
2870 			fin->fin_reason = FRB_JUMBO;
2871 			goto finished;
2872 		}
2873 		fin->fin_family = AF_INET6;
2874 	} else
2875 #endif
2876 	{
2877 		fin->fin_family = AF_INET;
2878 	}
2879 
2880 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2881 		DT1(frb_makefrip, fr_info_t *, fin);
2882 		pass = FR_BLOCK|FR_NOMATCH;
2883 		fin->fin_reason = FRB_MAKEFRIP;
2884 		goto finished;
2885 	}
2886 
2887 	/*
2888 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2889 	 * becomes NULL and so we have no packet to free.
2890 	 */
2891 	if (*fin->fin_mp == NULL)
2892 		goto finished;
2893 
2894 	if (!out) {
2895 		if (v == 4) {
2896 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2897 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2898 				fin->fin_flx |= FI_BADSRC;
2899 			}
2900 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2901 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2902 				fin->fin_flx |= FI_LOWTTL;
2903 			}
2904 		}
2905 #ifdef USE_INET6
2906 		else  if (v == 6) {
2907 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2908 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2909 				fin->fin_flx |= FI_LOWTTL;
2910 			}
2911 		}
2912 #endif
2913 	}
2914 
2915 	if (fin->fin_flx & FI_SHORT) {
2916 		LBUMPD(ipf_stats[out], fr_short);
2917 	}
2918 
2919 	READ_ENTER(&softc->ipf_mutex);
2920 
2921 	if (!out) {
2922 		switch (fin->fin_v)
2923 		{
2924 		case 4 :
2925 			if (ipf_nat_checkin(fin, &pass) == -1) {
2926 				goto filterdone;
2927 			}
2928 			break;
2929 #ifdef USE_INET6
2930 		case 6 :
2931 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2932 				goto filterdone;
2933 			}
2934 			break;
2935 #endif
2936 		default :
2937 			break;
2938 		}
2939 	}
2940 	/*
2941 	 * Check auth now.
2942 	 * If a packet is found in the auth table, then skip checking
2943 	 * the access lists for permission but we do need to consider
2944 	 * the result as if it were from the ACL's.  In addition, being
2945 	 * found in the auth table means it has been seen before, so do
2946 	 * not pass it through accounting (again), lest it be counted twice.
2947 	 */
2948 	fr = ipf_auth_check(fin, &pass);
2949 	if (!out && (fr == NULL))
2950 		(void) ipf_acctpkt(fin, NULL);
2951 
2952 	if (fr == NULL) {
2953 		if ((fin->fin_flx & FI_FRAG) != 0)
2954 			fr = ipf_frag_known(fin, &pass);
2955 
2956 		if (fr == NULL)
2957 			fr = ipf_state_check(fin, &pass);
2958 	}
2959 
2960 	if ((pass & FR_NOMATCH) || (fr == NULL))
2961 		fr = ipf_firewall(fin, &pass);
2962 
2963 	/*
2964 	 * If we've asked to track state for this packet, set it up.
2965 	 * Here rather than ipf_firewall because ipf_checkauth may decide
2966 	 * to return a packet for "keep state"
2967 	 */
2968 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2969 	    !(fin->fin_flx & FI_STATE)) {
2970 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2971 			LBUMP(ipf_stats[out].fr_ads);
2972 		} else {
2973 			LBUMP(ipf_stats[out].fr_bads);
2974 			if (FR_ISPASS(pass)) {
2975 				DT(frb_stateadd);
2976 				pass &= ~FR_CMDMASK;
2977 				pass |= FR_BLOCK;
2978 				fin->fin_reason = FRB_STATEADD;
2979 			}
2980 		}
2981 	}
2982 
2983 	fin->fin_fr = fr;
2984 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
2985 		fin->fin_dif = &fr->fr_dif;
2986 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
2987 	}
2988 
2989 	/*
2990 	 * Only count/translate packets which will be passed on, out the
2991 	 * interface.
2992 	 */
2993 	if (out && FR_ISPASS(pass)) {
2994 		(void) ipf_acctpkt(fin, NULL);
2995 
2996 		switch (fin->fin_v)
2997 		{
2998 		case 4 :
2999 			if (ipf_nat_checkout(fin, &pass) == -1) {
3000 				;
3001 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3002 				if (ipf_updateipid(fin) == -1) {
3003 					DT(frb_updateipid);
3004 					LBUMP(ipf_stats[1].fr_ipud);
3005 					pass &= ~FR_CMDMASK;
3006 					pass |= FR_BLOCK;
3007 					fin->fin_reason = FRB_UPDATEIPID;
3008 				} else {
3009 					LBUMP(ipf_stats[0].fr_ipud);
3010 				}
3011 			}
3012 			break;
3013 #ifdef USE_INET6
3014 		case 6 :
3015 			(void) ipf_nat6_checkout(fin, &pass);
3016 			break;
3017 #endif
3018 		default :
3019 			break;
3020 		}
3021 	}
3022 
3023 filterdone:
3024 #ifdef	IPFILTER_LOG
3025 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3026 		(void) ipf_dolog(fin, &pass);
3027 	}
3028 #endif
3029 
3030 	/*
3031 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3032 	 * will work when called from inside of fr_fastroute.  Although
3033 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3034 	 * impact on code execution.
3035 	 */
3036 	fin->fin_flx &= ~FI_STATE;
3037 
3038 #if defined(FASTROUTE_RECURSION)
3039 	/*
3040 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3041 	 * a packet below can sometimes cause a recursive call into IPFilter.
3042 	 * On those platforms where that does happen, we need to hang onto
3043 	 * the filter rule just in case someone decides to remove or flush it
3044 	 * in the meantime.
3045 	 */
3046 	if (fr != NULL) {
3047 		MUTEX_ENTER(&fr->fr_lock);
3048 		fr->fr_ref++;
3049 		MUTEX_EXIT(&fr->fr_lock);
3050 	}
3051 
3052 	RWLOCK_EXIT(&softc->ipf_mutex);
3053 #endif
3054 
3055 	if ((pass & FR_RETMASK) != 0) {
3056 		/*
3057 		 * Should we return an ICMP packet to indicate error
3058 		 * status passing through the packet filter ?
3059 		 * WARNING: ICMP error packets AND TCP RST packets should
3060 		 * ONLY be sent in repsonse to incoming packets.  Sending
3061 		 * them in response to outbound packets can result in a
3062 		 * panic on some operating systems.
3063 		 */
3064 		if (!out) {
3065 			if (pass & FR_RETICMP) {
3066 				int dst;
3067 
3068 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3069 					dst = 1;
3070 				else
3071 					dst = 0;
3072 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3073 							 dst);
3074 				LBUMP(ipf_stats[0].fr_ret);
3075 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3076 				   !(fin->fin_flx & FI_SHORT)) {
3077 				if (((fin->fin_flx & FI_OOW) != 0) ||
3078 				    (ipf_send_reset(fin) == 0)) {
3079 					LBUMP(ipf_stats[1].fr_ret);
3080 				}
3081 			}
3082 
3083 			/*
3084 			 * When using return-* with auth rules, the auth code
3085 			 * takes over disposing of this packet.
3086 			 */
3087 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3088 				DT1(frb_authcapture, fr_info_t *, fin);
3089 				fin->fin_m = *fin->fin_mp = NULL;
3090 				fin->fin_reason = FRB_AUTHCAPTURE;
3091 				m = NULL;
3092 			}
3093 		} else {
3094 			if (pass & FR_RETRST) {
3095 				fin->fin_error = ECONNRESET;
3096 			}
3097 		}
3098 	}
3099 
3100 	/*
3101 	 * After the above so that ICMP unreachables and TCP RSTs get
3102 	 * created properly.
3103 	 */
3104 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3105 		ipf_nat_uncreate(fin);
3106 
3107 	/*
3108 	 * If we didn't drop off the bottom of the list of rules (and thus
3109 	 * the 'current' rule fr is not NULL), then we may have some extra
3110 	 * instructions about what to do with a packet.
3111 	 * Once we're finished return to our caller, freeing the packet if
3112 	 * we are dropping it.
3113 	 */
3114 	if (fr != NULL) {
3115 		frdest_t *fdp;
3116 
3117 		/*
3118 		 * Generate a duplicated packet first because ipf_fastroute
3119 		 * can lead to fin_m being free'd... not good.
3120 		 */
3121 		fdp = fin->fin_dif;
3122 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3123 		    (fdp->fd_ptr != (void *)-1) && (fin->fin_m != NULL)) {
3124 			mc = M_COPY(fin->fin_m);
3125 			if (mc != NULL)
3126 				ipf_fastroute(mc, &mc, fin, fdp);
3127 		}
3128 
3129 		fdp = fin->fin_tif;
3130 		if (!out && (pass & FR_FASTROUTE)) {
3131 			/*
3132 			 * For fastroute rule, no destination interface defined
3133 			 * so pass NULL as the frdest_t parameter
3134 			 */
3135 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3136 			m = *mp = NULL;
3137 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3138 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3139 			/* this is for to rules: */
3140 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3141 			m = *mp = NULL;
3142 		}
3143 
3144 #if defined(FASTROUTE_RECURSION)
3145 		(void) ipf_derefrule(softc, &fr);
3146 #endif
3147 	}
3148 #if !defined(FASTROUTE_RECURSION)
3149 	RWLOCK_EXIT(&softc->ipf_mutex);
3150 #endif
3151 
3152 finished:
3153 	if (!FR_ISPASS(pass)) {
3154 		LBUMP(ipf_stats[out].fr_block);
3155 		if (*mp != NULL) {
3156 #ifdef _KERNEL
3157 			FREE_MB_T(*mp);
3158 #endif
3159 			m = *mp = NULL;
3160 		}
3161 	} else {
3162 		LBUMP(ipf_stats[out].fr_pass);
3163 #if defined(_KERNEL) && defined(__sgi)
3164 		if ((fin->fin_hbuf != NULL) &&
3165 		    (mtod(fin->fin_m, struct ip *) != fin->fin_ip)) {
3166 			COPYBACK(fin->fin_m, 0, fin->fin_plen, fin->fin_hbuf);
3167 		}
3168 #endif
3169 	}
3170 
3171 	SPL_X(s);
3172 
3173 #ifdef _KERNEL
3174 	if (FR_ISPASS(pass))
3175 		return 0;
3176 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3177 	return fin->fin_error;
3178 #else /* _KERNEL */
3179 	if (*mp != NULL)
3180 		(*mp)->mb_ifp = fin->fin_ifp;
3181 	blockreason = fin->fin_reason;
3182 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3183 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3184 		if ((pass & FR_NOMATCH) != 0)
3185 			return 1;
3186 
3187 	if ((pass & FR_RETMASK) != 0)
3188 		switch (pass & FR_RETMASK)
3189 		{
3190 		case FR_RETRST :
3191 			return 3;
3192 		case FR_RETICMP :
3193 			return 4;
3194 		case FR_FAKEICMP :
3195 			return 5;
3196 		}
3197 
3198 	switch (pass & FR_CMDMASK)
3199 	{
3200 	case FR_PASS :
3201 		return 0;
3202 	case FR_BLOCK :
3203 		return -1;
3204 	case FR_AUTH :
3205 		return -2;
3206 	case FR_ACCOUNT :
3207 		return -3;
3208 	case FR_PREAUTH :
3209 		return -4;
3210 	}
3211 	return 2;
3212 #endif /* _KERNEL */
3213 }
3214 
3215 
3216 #ifdef	IPFILTER_LOG
3217 /* ------------------------------------------------------------------------ */
3218 /* Function:    ipf_dolog                                                   */
3219 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3220 /* Parameters:  fin(I) - pointer to packet information                      */
3221 /*              passp(IO) - pointer to current/new filter decision (unused) */
3222 /*                                                                          */
3223 /* Checks flags set to see how a packet should be logged, if it is to be    */
3224 /* logged.  Adjust statistics based on its success or not.                  */
3225 /* ------------------------------------------------------------------------ */
3226 frentry_t *
ipf_dolog(fr_info_t * fin,u_32_t * passp)3227 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3228 {
3229 	ipf_main_softc_t *softc = fin->fin_main_soft;
3230 	u_32_t pass;
3231 	int out;
3232 
3233 	out = fin->fin_out;
3234 	pass = *passp;
3235 
3236 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3237 		pass |= FF_LOGNOMATCH;
3238 		LBUMPD(ipf_stats[out], fr_npkl);
3239 		goto logit;
3240 
3241 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3242 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3243 		if ((pass & FR_LOGMASK) != FR_LOGP)
3244 			pass |= FF_LOGPASS;
3245 		LBUMPD(ipf_stats[out], fr_ppkl);
3246 		goto logit;
3247 
3248 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3249 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3250 		if ((pass & FR_LOGMASK) != FR_LOGB)
3251 			pass |= FF_LOGBLOCK;
3252 		LBUMPD(ipf_stats[out], fr_bpkl);
3253 
3254 logit:
3255 		if (ipf_log_pkt(fin, pass) == -1) {
3256 			/*
3257 			 * If the "or-block" option has been used then
3258 			 * block the packet if we failed to log it.
3259 			 */
3260 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3261 				DT1(frb_logfail2, u_int, pass);
3262 				pass &= ~FR_CMDMASK;
3263 				pass |= FR_BLOCK;
3264 				fin->fin_reason = FRB_LOGFAIL2;
3265 			}
3266 		}
3267 		*passp = pass;
3268 	}
3269 
3270 	return fin->fin_fr;
3271 }
3272 #endif /* IPFILTER_LOG */
3273 
3274 
3275 /* ------------------------------------------------------------------------ */
3276 /* Function:    ipf_cksum                                                   */
3277 /* Returns:     u_short - IP header checksum                                */
3278 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3279 /*              len(I)  - length of buffer in bytes                         */
3280 /*                                                                          */
3281 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3282 /*                                                                          */
3283 /* N.B.: addr should be 16bit aligned.                                      */
3284 /* ------------------------------------------------------------------------ */
3285 u_short
ipf_cksum(u_short * addr,int len)3286 ipf_cksum(u_short *addr, int len)
3287 {
3288 	u_32_t sum = 0;
3289 
3290 	for (sum = 0; len > 1; len -= 2)
3291 		sum += *addr++;
3292 
3293 	/* mop up an odd byte, if necessary */
3294 	if (len == 1)
3295 		sum += *(u_char *)addr;
3296 
3297 	/*
3298 	 * add back carry outs from top 16 bits to low 16 bits
3299 	 */
3300 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3301 	sum += (sum >> 16);			/* add carry */
3302 	return (u_short)(~sum);
3303 }
3304 
3305 
3306 /* ------------------------------------------------------------------------ */
3307 /* Function:    fr_cksum                                                    */
3308 /* Returns:     u_short - layer 4 checksum                                  */
3309 /* Parameters:  fin(I)     - pointer to packet information                  */
3310 /*              ip(I)      - pointer to IP header                           */
3311 /*              l4proto(I) - protocol to caclulate checksum for             */
3312 /*              l4hdr(I)   - pointer to layer 4 header                      */
3313 /*                                                                          */
3314 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3315 /* in the IP header "ip" to seed it.                                        */
3316 /*                                                                          */
3317 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3318 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3319 /* odd sizes.                                                               */
3320 /*                                                                          */
3321 /* Expects ip_len and ip_off to be in network byte order when called.       */
3322 /* ------------------------------------------------------------------------ */
3323 u_short
fr_cksum(fr_info_t * fin,ip_t * ip,int l4proto,void * l4hdr)3324 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3325 {
3326 	u_short *sp, slen, sumsave, *csump;
3327 	u_int sum, sum2;
3328 	int hlen;
3329 	int off;
3330 #ifdef	USE_INET6
3331 	ip6_t *ip6;
3332 #endif
3333 
3334 	csump = NULL;
3335 	sumsave = 0;
3336 	sp = NULL;
3337 	slen = 0;
3338 	hlen = 0;
3339 	sum = 0;
3340 
3341 	sum = htons((u_short)l4proto);
3342 	/*
3343 	 * Add up IP Header portion
3344 	 */
3345 #ifdef	USE_INET6
3346 	if (IP_V(ip) == 4) {
3347 #endif
3348 		hlen = IP_HL(ip) << 2;
3349 		off = hlen;
3350 		sp = (u_short *)&ip->ip_src;
3351 		sum += *sp++;	/* ip_src */
3352 		sum += *sp++;
3353 		sum += *sp++;	/* ip_dst */
3354 		sum += *sp++;
3355 #ifdef	USE_INET6
3356 	} else if (IP_V(ip) == 6) {
3357 		ip6 = (ip6_t *)ip;
3358 		hlen = sizeof(*ip6);
3359 		off = ((char *)fin->fin_dp - (char *)fin->fin_ip);
3360 		sp = (u_short *)&ip6->ip6_src;
3361 		sum += *sp++;	/* ip6_src */
3362 		sum += *sp++;
3363 		sum += *sp++;
3364 		sum += *sp++;
3365 		sum += *sp++;
3366 		sum += *sp++;
3367 		sum += *sp++;
3368 		sum += *sp++;
3369 		/* This needs to be routing header aware. */
3370 		sum += *sp++;	/* ip6_dst */
3371 		sum += *sp++;
3372 		sum += *sp++;
3373 		sum += *sp++;
3374 		sum += *sp++;
3375 		sum += *sp++;
3376 		sum += *sp++;
3377 		sum += *sp++;
3378 	} else {
3379 		return 0xffff;
3380 	}
3381 #endif
3382 	slen = fin->fin_plen - off;
3383 	sum += htons(slen);
3384 
3385 	switch (l4proto)
3386 	{
3387 	case IPPROTO_UDP :
3388 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3389 		break;
3390 
3391 	case IPPROTO_TCP :
3392 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3393 		break;
3394 	case IPPROTO_ICMP :
3395 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3396 		sum = 0;	/* Pseudo-checksum is not included */
3397 		break;
3398 #ifdef USE_INET6
3399 	case IPPROTO_ICMPV6 :
3400 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3401 		break;
3402 #endif
3403 	default :
3404 		break;
3405 	}
3406 
3407 	if (csump != NULL) {
3408 		sumsave = *csump;
3409 		*csump = 0;
3410 	}
3411 
3412 	sum2 = ipf_pcksum(fin, off, sum);
3413 	if (csump != NULL)
3414 		*csump = sumsave;
3415 	return sum2;
3416 }
3417 
3418 
3419 /* ------------------------------------------------------------------------ */
3420 /* Function:    ipf_findgroup                                               */
3421 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3422 /* Parameters:  softc(I) - pointer to soft context main structure           */
3423 /*              group(I) - group name to search for                         */
3424 /*              unit(I)  - device to which this group belongs               */
3425 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3426 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3427 /*                         to where to add the next (last) group or where   */
3428 /*                         to delete group from.                            */
3429 /*                                                                          */
3430 /* Search amongst the defined groups for a particular group number.         */
3431 /* ------------------------------------------------------------------------ */
3432 frgroup_t *
ipf_findgroup(ipf_main_softc_t * softc,char * group,minor_t unit,int set,frgroup_t *** fgpp)3433 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3434     frgroup_t ***fgpp)
3435 {
3436 	frgroup_t *fg, **fgp;
3437 
3438 	/*
3439 	 * Which list of groups to search in is dependent on which list of
3440 	 * rules are being operated on.
3441 	 */
3442 	fgp = &softc->ipf_groups[unit][set];
3443 
3444 	while ((fg = *fgp) != NULL) {
3445 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3446 			break;
3447 		else
3448 			fgp = &fg->fg_next;
3449 	}
3450 	if (fgpp != NULL)
3451 		*fgpp = fgp;
3452 	return fg;
3453 }
3454 
3455 
3456 /* ------------------------------------------------------------------------ */
3457 /* Function:    ipf_group_add                                               */
3458 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3459 /*                            != NULL == pointer to the group               */
3460 /* Parameters:  softc(I) - pointer to soft context main structure           */
3461 /*              num(I)   - group number to add                              */
3462 /*              head(I)  - rule pointer that is using this as the head      */
3463 /*              flags(I) - rule flags which describe the type of rule it is */
3464 /*              unit(I)  - device to which this group will belong to        */
3465 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3466 /* Write Locks: ipf_mutex                                                   */
3467 /*                                                                          */
3468 /* Add a new group head, or if it already exists, increase the reference    */
3469 /* count to it.                                                             */
3470 /* ------------------------------------------------------------------------ */
3471 frgroup_t *
ipf_group_add(ipf_main_softc_t * softc,char * group,void * head,u_32_t flags,minor_t unit,int set)3472 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3473     minor_t unit, int set)
3474 {
3475 	frgroup_t *fg, **fgp;
3476 	u_32_t gflags;
3477 
3478 	if (group == NULL)
3479 		return NULL;
3480 
3481 	if (unit == IPL_LOGIPF && *group == '\0')
3482 		return NULL;
3483 
3484 	fgp = NULL;
3485 	gflags = flags & FR_INOUT;
3486 
3487 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3488 	if (fg != NULL) {
3489 		if (fg->fg_head == NULL && head != NULL)
3490 			fg->fg_head = head;
3491 		if (fg->fg_flags == 0)
3492 			fg->fg_flags = gflags;
3493 		else if (gflags != fg->fg_flags)
3494 			return NULL;
3495 		fg->fg_ref++;
3496 		return fg;
3497 	}
3498 
3499 	KMALLOC(fg, frgroup_t *);
3500 	if (fg != NULL) {
3501 		fg->fg_head = head;
3502 		fg->fg_start = NULL;
3503 		fg->fg_next = *fgp;
3504 		bcopy(group, fg->fg_name, strlen(group) + 1);
3505 		fg->fg_flags = gflags;
3506 		fg->fg_ref = 1;
3507 		fg->fg_set = &softc->ipf_groups[unit][set];
3508 		*fgp = fg;
3509 	}
3510 	return fg;
3511 }
3512 
3513 
3514 /* ------------------------------------------------------------------------ */
3515 /* Function:    ipf_group_del                                               */
3516 /* Returns:     int      - number of rules deleted                          */
3517 /* Parameters:  softc(I) - pointer to soft context main structure           */
3518 /*              group(I) - group name to delete                             */
3519 /*              fr(I)    - filter rule from which group is referenced       */
3520 /* Write Locks: ipf_mutex                                                   */
3521 /*                                                                          */
3522 /* This function is called whenever a reference to a group is to be dropped */
3523 /* and thus its reference count needs to be lowered and the group free'd if */
3524 /* the reference count reaches zero. Passing in fr is really for the sole   */
3525 /* purpose of knowing when the head rule is being deleted.                  */
3526 /* ------------------------------------------------------------------------ */
3527 void
ipf_group_del(ipf_main_softc_t * softc,frgroup_t * group,frentry_t * fr)3528 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3529 {
3530 
3531 	if (group->fg_head == fr)
3532 		group->fg_head = NULL;
3533 
3534 	group->fg_ref--;
3535 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3536 		ipf_group_free(group);
3537 }
3538 
3539 
3540 /* ------------------------------------------------------------------------ */
3541 /* Function:    ipf_group_free                                              */
3542 /* Returns:     Nil                                                         */
3543 /* Parameters:  group(I) - pointer to filter rule group                     */
3544 /*                                                                          */
3545 /* Remove the group from the list of groups and free it.                    */
3546 /* ------------------------------------------------------------------------ */
3547 static void
ipf_group_free(frgroup_t * group)3548 ipf_group_free(frgroup_t *group)
3549 {
3550 	frgroup_t **gp;
3551 
3552 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3553 		if (*gp == group) {
3554 			*gp = group->fg_next;
3555 			break;
3556 		}
3557 	}
3558 	KFREE(group);
3559 }
3560 
3561 
3562 /* ------------------------------------------------------------------------ */
3563 /* Function:    ipf_group_flush                                             */
3564 /* Returns:     int      - number of rules flush from group                 */
3565 /* Parameters:  softc(I) - pointer to soft context main structure           */
3566 /* Parameters:  group(I) - pointer to filter rule group                     */
3567 /*                                                                          */
3568 /* Remove all of the rules that currently are listed under the given group. */
3569 /* ------------------------------------------------------------------------ */
3570 static int
ipf_group_flush(ipf_main_softc_t * softc,frgroup_t * group)3571 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3572 {
3573 	int gone = 0;
3574 
3575 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3576 
3577 	return gone;
3578 }
3579 
3580 
3581 /* ------------------------------------------------------------------------ */
3582 /* Function:    ipf_getrulen                                                */
3583 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3584 /* Parameters:  softc(I) - pointer to soft context main structure           */
3585 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3586 /*              flags(I) - which set of rules to find the rule in           */
3587 /*              group(I) - group name                                       */
3588 /*              n(I)     - rule number to find                              */
3589 /*                                                                          */
3590 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3591 /* group # g doesn't exist or there are less than n rules in the group.     */
3592 /* ------------------------------------------------------------------------ */
3593 frentry_t *
ipf_getrulen(ipf_main_softc_t * softc,int unit,char * group,u_32_t n)3594 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3595 {
3596 	frentry_t *fr;
3597 	frgroup_t *fg;
3598 
3599 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3600 	if (fg == NULL)
3601 		return NULL;
3602 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3603 		;
3604 	if (n != 0)
3605 		return NULL;
3606 	return fr;
3607 }
3608 
3609 
3610 /* ------------------------------------------------------------------------ */
3611 /* Function:    ipf_flushlist                                               */
3612 /* Returns:     int - >= 0 - number of flushed rules                        */
3613 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3614 /*              nfreedp(O) - pointer to int where flush count is stored     */
3615 /*              listp(I)   - pointer to list to flush pointer               */
3616 /* Write Locks: ipf_mutex                                                   */
3617 /*                                                                          */
3618 /* Recursively flush rules from the list, descending groups as they are     */
3619 /* encountered.  if a rule is the head of a group and it has lost all its   */
3620 /* group members, then also delete the group reference.  nfreedp is needed  */
3621 /* to store the accumulating count of rules removed, whereas the returned   */
3622 /* value is just the number removed from the current list.  The latter is   */
3623 /* needed to correctly adjust reference counts on rules that define groups. */
3624 /*                                                                          */
3625 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3626 /* ------------------------------------------------------------------------ */
3627 static int
ipf_flushlist(ipf_main_softc_t * softc,int * nfreedp,frentry_t ** listp)3628 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3629 {
3630 	int freed = 0;
3631 	frentry_t *fp;
3632 
3633 	while ((fp = *listp) != NULL) {
3634 		if ((fp->fr_type & FR_T_BUILTIN) ||
3635 		    !(fp->fr_flags & FR_COPIED)) {
3636 			listp = &fp->fr_next;
3637 			continue;
3638 		}
3639 		*listp = fp->fr_next;
3640 		if (fp->fr_next != NULL)
3641 			fp->fr_next->fr_pnext = fp->fr_pnext;
3642 		fp->fr_pnext = NULL;
3643 
3644 		if (fp->fr_grphead != NULL) {
3645 			freed += ipf_group_flush(softc, fp->fr_grphead);
3646 			fp->fr_names[fp->fr_grhead] = '\0';
3647 		}
3648 
3649 		if (fp->fr_icmpgrp != NULL) {
3650 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3651 			fp->fr_names[fp->fr_icmphead] = '\0';
3652 		}
3653 
3654 		if (fp->fr_srctrack.ht_max_nodes)
3655 			ipf_rb_ht_flush(&fp->fr_srctrack);
3656 
3657 		fp->fr_next = NULL;
3658 
3659 		ASSERT(fp->fr_ref > 0);
3660 		if (ipf_derefrule(softc, &fp) == 0)
3661 			freed++;
3662 	}
3663 	*nfreedp += freed;
3664 	return freed;
3665 }
3666 
3667 
3668 /* ------------------------------------------------------------------------ */
3669 /* Function:    ipf_flush                                                   */
3670 /* Returns:     int - >= 0 - number of flushed rules                        */
3671 /* Parameters:  softc(I) - pointer to soft context main structure           */
3672 /*              unit(I)  - device for which to flush rules                  */
3673 /*              flags(I) - which set of rules to flush                      */
3674 /*                                                                          */
3675 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3676 /* and IPv6) as defined by the value of flags.                              */
3677 /* ------------------------------------------------------------------------ */
3678 int
ipf_flush(ipf_main_softc_t * softc,minor_t unit,int flags)3679 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3680 {
3681 	int flushed = 0, set;
3682 
3683 	WRITE_ENTER(&softc->ipf_mutex);
3684 
3685 	set = softc->ipf_active;
3686 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3687 		set = 1 - set;
3688 
3689 	if (flags & FR_OUTQUE) {
3690 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3691 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3692 	}
3693 	if (flags & FR_INQUE) {
3694 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3695 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3696 	}
3697 
3698 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3699 				    flags & (FR_INQUE|FR_OUTQUE));
3700 
3701 	RWLOCK_EXIT(&softc->ipf_mutex);
3702 
3703 	if (unit == IPL_LOGIPF) {
3704 		int tmp;
3705 
3706 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3707 		if (tmp >= 0)
3708 			flushed += tmp;
3709 	}
3710 	return flushed;
3711 }
3712 
3713 
3714 /* ------------------------------------------------------------------------ */
3715 /* Function:    ipf_flush_groups                                            */
3716 /* Returns:     int - >= 0 - number of flushed rules                        */
3717 /* Parameters:  softc(I)  - soft context pointerto work with                */
3718 /*              grhead(I) - pointer to the start of the group list to flush */
3719 /*              flags(I)  - which set of rules to flush                     */
3720 /*                                                                          */
3721 /* Walk through all of the groups under the given group head and remove all */
3722 /* of those that match the flags passed in. The for loop here is bit more   */
3723 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3724 /* may end up removing not only the structure pointed to by "fg" but also   */
3725 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3726 /* removed from the group then it is necessary to start again.              */
3727 /* ------------------------------------------------------------------------ */
3728 static int
ipf_flush_groups(ipf_main_softc_t * softc,frgroup_t ** grhead,int flags)3729 ipf_flush_groups( ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3730 {
3731 	frentry_t *fr, **frp;
3732 	frgroup_t *fg, **fgp;
3733 	int flushed = 0;
3734 	int removed = 0;
3735 
3736 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3737 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3738 			fg = fg->fg_next;
3739 		if (fg == NULL)
3740 			break;
3741 		removed = 0;
3742 		frp = &fg->fg_start;
3743 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3744 			if ((fr->fr_flags & flags) == 0) {
3745 				frp = &fr->fr_next;
3746 			} else {
3747 				if (fr->fr_next != NULL)
3748 					fr->fr_next->fr_pnext = fr->fr_pnext;
3749 				*frp = fr->fr_next;
3750 				fr->fr_pnext = NULL;
3751 				fr->fr_next = NULL;
3752 				(void) ipf_derefrule(softc, &fr);
3753 				flushed++;
3754 				removed++;
3755 			}
3756 		}
3757 		if (removed == 0)
3758 			fgp = &fg->fg_next;
3759 	}
3760 	return flushed;
3761 }
3762 
3763 
3764 /* ------------------------------------------------------------------------ */
3765 /* Function:    memstr                                                      */
3766 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3767 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3768 /*              dst(I)  - pointer to byte sequence to search                */
3769 /*              slen(I) - match length                                      */
3770 /*              dlen(I) - length available to search in                     */
3771 /*                                                                          */
3772 /* Search dst for a sequence of bytes matching those at src and extend for  */
3773 /* slen bytes.                                                              */
3774 /* ------------------------------------------------------------------------ */
3775 char *
memstr(const char * src,char * dst,size_t slen,size_t dlen)3776 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3777 {
3778 	char *s = NULL;
3779 
3780 	while (dlen >= slen) {
3781 		if (memcmp(src, dst, slen) == 0) {
3782 			s = dst;
3783 			break;
3784 		}
3785 		dst++;
3786 		dlen--;
3787 	}
3788 	return s;
3789 }
3790 
3791 
3792 /* ------------------------------------------------------------------------ */
3793 /* Function:    ipf_fixskip                                                 */
3794 /* Returns:     Nil                                                         */
3795 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3796 /*              rp(I)        - rule added/removed with skip in it.          */
3797 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3798 /*                             depending on whether a rule was just added   */
3799 /*                             or removed.                                  */
3800 /*                                                                          */
3801 /* Adjust all the rules in a list which would have skip'd past the position */
3802 /* where we are inserting to skip to the right place given the change.      */
3803 /* ------------------------------------------------------------------------ */
3804 void
ipf_fixskip(frentry_t ** listp,frentry_t * rp,int addremove)3805 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3806 {
3807 	int rules, rn;
3808 	frentry_t *fp;
3809 
3810 	rules = 0;
3811 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3812 		rules++;
3813 
3814 	if (!fp)
3815 		return;
3816 
3817 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3818 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3819 			fp->fr_arg += addremove;
3820 }
3821 
3822 
3823 #ifdef	_KERNEL
3824 /* ------------------------------------------------------------------------ */
3825 /* Function:    count4bits                                                  */
3826 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3827 /* Parameters:  ip(I) - 32bit IP address                                    */
3828 /*                                                                          */
3829 /* IPv4 ONLY                                                                */
3830 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3831 /* consecutive 1's is different to that passed, return -1, else return #    */
3832 /* of bits.                                                                 */
3833 /* ------------------------------------------------------------------------ */
3834 int
count4bits(u_32_t ip)3835 count4bits(u_32_t ip)
3836 {
3837 	u_32_t	ipn;
3838 	int	cnt = 0, i, j;
3839 
3840 	ip = ipn = ntohl(ip);
3841 	for (i = 32; i; i--, ipn *= 2)
3842 		if (ipn & 0x80000000)
3843 			cnt++;
3844 		else
3845 			break;
3846 	ipn = 0;
3847 	for (i = 32, j = cnt; i; i--, j--) {
3848 		ipn *= 2;
3849 		if (j > 0)
3850 			ipn++;
3851 	}
3852 	if (ipn == ip)
3853 		return cnt;
3854 	return -1;
3855 }
3856 
3857 
3858 /* ------------------------------------------------------------------------ */
3859 /* Function:    count6bits                                                  */
3860 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3861 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3862 /*                                                                          */
3863 /* IPv6 ONLY                                                                */
3864 /* count consecutive 1's in bit mask.                                       */
3865 /* ------------------------------------------------------------------------ */
3866 # ifdef USE_INET6
3867 int
count6bits(u_32_t * msk)3868 count6bits(u_32_t *msk)
3869 {
3870 	int i = 0, k;
3871 	u_32_t j;
3872 
3873 	for (k = 3; k >= 0; k--)
3874 		if (msk[k] == 0xffffffff)
3875 			i += 32;
3876 		else {
3877 			for (j = msk[k]; j; j <<= 1)
3878 				if (j & 0x80000000)
3879 					i++;
3880 		}
3881 	return i;
3882 }
3883 # endif
3884 #endif /* _KERNEL */
3885 
3886 
3887 /* ------------------------------------------------------------------------ */
3888 /* Function:    ipf_synclist                                                */
3889 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3890 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3891 /*              ifp(I) - interface pointer for limiting sync lookups        */
3892 /* Write Locks: ipf_mutex                                                   */
3893 /*                                                                          */
3894 /* Walk through a list of filter rules and resolve any interface names into */
3895 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3896 /* used in the rule.  The interface pointer is used to limit the lookups to */
3897 /* a specific set of matching names if it is non-NULL.                      */
3898 /* Errors can occur when resolving the destination name of to/dup-to fields */
3899 /* when the name points to a pool and that pool doest not exist. If this    */
3900 /* does happen then it is necessary to check if there are any lookup refs   */
3901 /* that need to be dropped before returning with an error.                  */
3902 /* ------------------------------------------------------------------------ */
3903 static int
ipf_synclist(ipf_main_softc_t * softc,frentry_t * fr,void * ifp)3904 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3905 {
3906 	frentry_t *frt, *start = fr;
3907 	frdest_t *fdp;
3908 	char *name;
3909 	int error;
3910 	void *ifa;
3911 	int v, i;
3912 
3913 	error = 0;
3914 
3915 	for (; fr; fr = fr->fr_next) {
3916 		if (fr->fr_family == AF_INET)
3917 			v = 4;
3918 		else if (fr->fr_family == AF_INET6)
3919 			v = 6;
3920 		else
3921 			v = 0;
3922 
3923 		/*
3924 		 * Lookup all the interface names that are part of the rule.
3925 		 */
3926 		for (i = 0; i < 4; i++) {
3927 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3928 				continue;
3929 			if (fr->fr_ifnames[i] == -1)
3930 				continue;
3931 			name = FR_NAME(fr, fr_ifnames[i]);
3932 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3933 		}
3934 
3935 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3936 			if (fr->fr_satype != FRI_NORMAL &&
3937 			    fr->fr_satype != FRI_LOOKUP) {
3938 				ifa = ipf_resolvenic(softc, fr->fr_names +
3939 						     fr->fr_sifpidx, v);
3940 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3941 					    &fr->fr_src6, &fr->fr_smsk6);
3942 			}
3943 			if (fr->fr_datype != FRI_NORMAL &&
3944 			    fr->fr_datype != FRI_LOOKUP) {
3945 				ifa = ipf_resolvenic(softc, fr->fr_names +
3946 						     fr->fr_sifpidx, v);
3947 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3948 					    &fr->fr_dst6, &fr->fr_dmsk6);
3949 			}
3950 		}
3951 
3952 		fdp = &fr->fr_tifs[0];
3953 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3954 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3955 			if (error != 0)
3956 				goto unwind;
3957 		}
3958 
3959 		fdp = &fr->fr_tifs[1];
3960 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3961 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3962 			if (error != 0)
3963 				goto unwind;
3964 		}
3965 
3966 		fdp = &fr->fr_dif;
3967 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3968 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3969 			if (error != 0)
3970 				goto unwind;
3971 		}
3972 
3973 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3974 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3975 			fr->fr_srcptr = ipf_lookup_res_num(softc,
3976 							   fr->fr_srctype,
3977 							   IPL_LOGIPF,
3978 							   fr->fr_srcnum,
3979 							   &fr->fr_srcfunc);
3980 		}
3981 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3982 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3983 			fr->fr_dstptr = ipf_lookup_res_num(softc,
3984 							   fr->fr_dsttype,
3985 							   IPL_LOGIPF,
3986 							   fr->fr_dstnum,
3987 							   &fr->fr_dstfunc);
3988 		}
3989 	}
3990 	return 0;
3991 
3992 unwind:
3993 	for (frt = start; frt != fr; fr = fr->fr_next) {
3994 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3995 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
3996 				ipf_lookup_deref(softc, frt->fr_srctype,
3997 						 frt->fr_srcptr);
3998 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3999 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
4000 				ipf_lookup_deref(softc, frt->fr_dsttype,
4001 						 frt->fr_dstptr);
4002 	}
4003 	return error;
4004 }
4005 
4006 
4007 /* ------------------------------------------------------------------------ */
4008 /* Function:    ipf_sync                                                    */
4009 /* Returns:     void                                                        */
4010 /* Parameters:  Nil                                                         */
4011 /*                                                                          */
4012 /* ipf_sync() is called when we suspect that the interface list or          */
4013 /* information about interfaces (like IP#) has changed.  Go through all     */
4014 /* filter rules, NAT entries and the state table and check if anything      */
4015 /* needs to be changed/updated.                                             */
4016 /* ------------------------------------------------------------------------ */
4017 int
ipf_sync(ipf_main_softc_t * softc,void * ifp)4018 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4019 {
4020 	int i;
4021 
4022 # if !SOLARIS
4023 	ipf_nat_sync(softc, ifp);
4024 	ipf_state_sync(softc, ifp);
4025 	ipf_lookup_sync(softc, ifp);
4026 # endif
4027 
4028 	WRITE_ENTER(&softc->ipf_mutex);
4029 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4030 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4031 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4032 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4033 
4034 	for (i = 0; i < IPL_LOGSIZE; i++) {
4035 		frgroup_t *g;
4036 
4037 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4038 			(void) ipf_synclist(softc, g->fg_start, ifp);
4039 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4040 			(void) ipf_synclist(softc, g->fg_start, ifp);
4041 	}
4042 	RWLOCK_EXIT(&softc->ipf_mutex);
4043 
4044 	return 0;
4045 }
4046 
4047 
4048 /*
4049  * In the functions below, bcopy() is called because the pointer being
4050  * copied _from_ in this instance is a pointer to a char buf (which could
4051  * end up being unaligned) and on the kernel's local stack.
4052  */
4053 /* ------------------------------------------------------------------------ */
4054 /* Function:    copyinptr                                                   */
4055 /* Returns:     int - 0 = success, else failure                             */
4056 /* Parameters:  src(I)  - pointer to the source address                     */
4057 /*              dst(I)  - destination address                               */
4058 /*              size(I) - number of bytes to copy                           */
4059 /*                                                                          */
4060 /* Copy a block of data in from user space, given a pointer to the pointer  */
4061 /* to start copying from (src) and a pointer to where to store it (dst).    */
4062 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4063 /* ------------------------------------------------------------------------ */
4064 int
copyinptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4065 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4066 {
4067 	void *ca;
4068 	int error;
4069 
4070 # if SOLARIS
4071 	error = COPYIN(src, &ca, sizeof(ca));
4072 	if (error != 0)
4073 		return error;
4074 # else
4075 	bcopy(src, (void *)&ca, sizeof(ca));
4076 # endif
4077 	error = COPYIN(ca, dst, size);
4078 	if (error != 0) {
4079 		IPFERROR(3);
4080 		error = EFAULT;
4081 	}
4082 	return error;
4083 }
4084 
4085 
4086 /* ------------------------------------------------------------------------ */
4087 /* Function:    copyoutptr                                                  */
4088 /* Returns:     int - 0 = success, else failure                             */
4089 /* Parameters:  src(I)  - pointer to the source address                     */
4090 /*              dst(I)  - destination address                               */
4091 /*              size(I) - number of bytes to copy                           */
4092 /*                                                                          */
4093 /* Copy a block of data out to user space, given a pointer to the pointer   */
4094 /* to start copying from (src) and a pointer to where to store it (dst).    */
4095 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4096 /* ------------------------------------------------------------------------ */
4097 int
copyoutptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4098 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4099 {
4100 	void *ca;
4101 	int error;
4102 
4103 	bcopy(dst, &ca, sizeof(ca));
4104 	error = COPYOUT(src, ca, size);
4105 	if (error != 0) {
4106 		IPFERROR(4);
4107 		error = EFAULT;
4108 	}
4109 	return error;
4110 }
4111 #ifdef	_KERNEL
4112 #endif
4113 
4114 
4115 /* ------------------------------------------------------------------------ */
4116 /* Function:    ipf_lock                                                    */
4117 /* Returns:     int      - 0 = success, else error                          */
4118 /* Parameters:  data(I)  - pointer to lock value to set                     */
4119 /*              lockp(O) - pointer to location to store old lock value      */
4120 /*                                                                          */
4121 /* Get the new value for the lock integer, set it and return the old value  */
4122 /* in *lockp.                                                               */
4123 /* ------------------------------------------------------------------------ */
4124 int
ipf_lock(void * data,int * lockp)4125 ipf_lock(void *data, int *lockp)
4126 {
4127 	int arg, err;
4128 
4129 	err = BCOPYIN(data, &arg, sizeof(arg));
4130 	if (err != 0)
4131 		return EFAULT;
4132 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4133 	if (err != 0)
4134 		return EFAULT;
4135 	*lockp = arg;
4136 	return 0;
4137 }
4138 
4139 
4140 /* ------------------------------------------------------------------------ */
4141 /* Function:    ipf_getstat                                                 */
4142 /* Returns:     Nil                                                         */
4143 /* Parameters:  softc(I) - pointer to soft context main structure           */
4144 /*              fiop(I)  - pointer to ipfilter stats structure              */
4145 /*              rev(I)   - version claim by program doing ioctl             */
4146 /*                                                                          */
4147 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4148 /* structure.                                                               */
4149 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4150 /* program is looking for. This ensure that validation of the version it    */
4151 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4152 /* allow older binaries to work but kernels without it will not.            */
4153 /* ------------------------------------------------------------------------ */
4154 /*ARGSUSED*/
4155 static void
ipf_getstat(ipf_main_softc_t * softc,friostat_t * fiop,int rev)4156 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4157 {
4158 	int i;
4159 
4160 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4161 	      sizeof(ipf_statistics_t) * 2);
4162 	fiop->f_locks[IPL_LOGSTATE] = -1;
4163 	fiop->f_locks[IPL_LOGNAT] = -1;
4164 	fiop->f_locks[IPL_LOGIPF] = -1;
4165 	fiop->f_locks[IPL_LOGAUTH] = -1;
4166 
4167 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4168 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4169 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4170 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4171 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4172 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4173 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4174 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4175 
4176 	fiop->f_ticks = softc->ipf_ticks;
4177 	fiop->f_active = softc->ipf_active;
4178 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4179 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4180 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4181 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4182 
4183 	fiop->f_running = softc->ipf_running;
4184 	for (i = 0; i < IPL_LOGSIZE; i++) {
4185 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4186 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4187 	}
4188 #ifdef  IPFILTER_LOG
4189 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4190 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4191 	fiop->f_logging = 1;
4192 #else
4193 	fiop->f_log_ok = 0;
4194 	fiop->f_log_fail = 0;
4195 	fiop->f_logging = 0;
4196 #endif
4197 	fiop->f_defpass = softc->ipf_pass;
4198 	fiop->f_features = ipf_features;
4199 
4200 #ifdef IPFILTER_COMPAT
4201 	snprintf(fiop->f_version, sizeof(fiop->f_version),
4202 		 "IP Filter: v%d.%d.%d", (rev / 1000000) % 100,
4203 		 (rev / 10000) % 100, (rev / 100) % 100);
4204 #else
4205 	rev = rev;
4206 	(void) strncpy(fiop->f_version, ipfilter_version,
4207 		       sizeof(fiop->f_version));
4208         fiop->f_version[sizeof(fiop->f_version) - 1] = '\0';
4209 #endif
4210 }
4211 
4212 
4213 #ifdef	USE_INET6
4214 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4215 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4216 	-1,			/* 1: UNUSED */
4217 	-1,			/* 2: UNUSED */
4218 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4219 	-1,			/* 4: ICMP_SOURCEQUENCH */
4220 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4221 	-1,			/* 6: UNUSED */
4222 	-1,			/* 7: UNUSED */
4223 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4224 	-1,			/* 9: UNUSED */
4225 	-1,			/* 10: UNUSED */
4226 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4227 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4228 	-1,			/* 13: ICMP_TSTAMP */
4229 	-1,			/* 14: ICMP_TSTAMPREPLY */
4230 	-1,			/* 15: ICMP_IREQ */
4231 	-1,			/* 16: ICMP_IREQREPLY */
4232 	-1,			/* 17: ICMP_MASKREQ */
4233 	-1,			/* 18: ICMP_MASKREPLY */
4234 };
4235 
4236 
4237 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4238 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4239 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4240 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4241 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4242 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4243 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4244 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4245 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4246 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4247 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4248 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4249 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4250 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4251 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4252 };
4253 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4254 #endif
4255 
4256 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4257 
4258 
4259 /* ------------------------------------------------------------------------ */
4260 /* Function:    ipf_matchicmpqueryreply                                     */
4261 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4262 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4263 /*              ic(I)   - ICMP information                                  */
4264 /*              icmp(I) - ICMP packet header                                */
4265 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4266 /*                                                                          */
4267 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4268 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4269 /* else return 0 for no match.                                              */
4270 /* ------------------------------------------------------------------------ */
4271 int
ipf_matchicmpqueryreply(int v,icmpinfo_t * ic,icmphdr_t * icmp,int rev)4272 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4273 {
4274 	int ictype;
4275 
4276 	ictype = ic->ici_type;
4277 
4278 	if (v == 4) {
4279 		/*
4280 		 * If we matched its type on the way in, then when going out
4281 		 * it will still be the same type.
4282 		 */
4283 		if ((!rev && (icmp->icmp_type == ictype)) ||
4284 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4285 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4286 				return 1;
4287 			if (icmp->icmp_id == ic->ici_id)
4288 				return 1;
4289 		}
4290 	}
4291 #ifdef	USE_INET6
4292 	else if (v == 6) {
4293 		if ((!rev && (icmp->icmp_type == ictype)) ||
4294 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4295 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4296 				return 1;
4297 			if (icmp->icmp_id == ic->ici_id)
4298 				return 1;
4299 		}
4300 	}
4301 #endif
4302 	return 0;
4303 }
4304 
4305 
4306 /* ------------------------------------------------------------------------ */
4307 /* Function:    frrequest                                                   */
4308 /* Returns:     int - 0 == success, > 0 == errno value                      */
4309 /* Parameters:  unit(I)     - device for which this is for                  */
4310 /*              req(I)      - ioctl command (SIOC*)                         */
4311 /*              data(I)     - pointr to ioctl data                          */
4312 /*              set(I)      - 1 or 0 (filter set)                           */
4313 /*              makecopy(I) - flag indicating whether data points to a rule */
4314 /*                            in kernel space & hence doesn't need copying. */
4315 /*                                                                          */
4316 /* This function handles all the requests which operate on the list of      */
4317 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4318 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4319 /* names are resolved here and other sanity checks are made on the content  */
4320 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4321 /* then make sure they are created and initialised before exiting.          */
4322 /* ------------------------------------------------------------------------ */
4323 int
frrequest(ipf_main_softc_t * softc,int unit,ioctlcmd_t req,void * data,int set,int makecopy)4324 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, void *data,
4325     int set, int makecopy)
4326 {
4327 	int error = 0, in, family, addrem, need_free = 0;
4328 	frentry_t frd, *fp, *f, **fprev, **ftail;
4329 	void *ptr, *uptr;
4330 	u_int *p, *pp;
4331 	frgroup_t *fg;
4332 	char *group;
4333 
4334 	ptr = NULL;
4335 	fg = NULL;
4336 	fp = &frd;
4337 	if (makecopy != 0) {
4338 		bzero(fp, sizeof(frd));
4339 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4340 		if (error) {
4341 			return error;
4342 		}
4343 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4344 			IPFERROR(6);
4345 			return EINVAL;
4346 		}
4347 		KMALLOCS(f, frentry_t *, fp->fr_size);
4348 		if (f == NULL) {
4349 			IPFERROR(131);
4350 			return ENOMEM;
4351 		}
4352 		bzero(f, fp->fr_size);
4353 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4354 				    fp->fr_size);
4355 		if (error) {
4356 			KFREES(f, fp->fr_size);
4357 			return error;
4358 		}
4359 
4360 		fp = f;
4361 		f = NULL;
4362 		fp->fr_next = NULL;
4363 		fp->fr_dnext = NULL;
4364 		fp->fr_pnext = NULL;
4365 		fp->fr_pdnext = NULL;
4366 		fp->fr_grp = NULL;
4367 		fp->fr_grphead = NULL;
4368 		fp->fr_icmpgrp = NULL;
4369 		fp->fr_isc = (void *)-1;
4370 		fp->fr_ptr = NULL;
4371 		fp->fr_ref = 0;
4372 		fp->fr_flags |= FR_COPIED;
4373 	} else {
4374 		fp = (frentry_t *)data;
4375 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4376 			IPFERROR(7);
4377 			return EINVAL;
4378 		}
4379 		fp->fr_flags &= ~FR_COPIED;
4380 	}
4381 
4382 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4383 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4384 		IPFERROR(8);
4385 		error = EINVAL;
4386 		goto donenolock;
4387 	}
4388 
4389 	family = fp->fr_family;
4390 	uptr = fp->fr_data;
4391 
4392 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4393 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4394 		addrem = 0;
4395 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4396 		addrem = 1;
4397 	else if (req == (ioctlcmd_t)SIOCZRLST)
4398 		addrem = 2;
4399 	else {
4400 		IPFERROR(9);
4401 		error = EINVAL;
4402 		goto donenolock;
4403 	}
4404 
4405 	/*
4406 	 * Only filter rules for IPv4 or IPv6 are accepted.
4407 	 */
4408 	if (family == AF_INET) {
4409 		/*EMPTY*/;
4410 #ifdef	USE_INET6
4411 	} else if (family == AF_INET6) {
4412 		/*EMPTY*/;
4413 #endif
4414 	} else if (family != 0) {
4415 		IPFERROR(10);
4416 		error = EINVAL;
4417 		goto donenolock;
4418 	}
4419 
4420 	/*
4421 	 * If the rule is being loaded from user space, i.e. we had to copy it
4422 	 * into kernel space, then do not trust the function pointer in the
4423 	 * rule.
4424 	 */
4425 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4426 		if (ipf_findfunc(fp->fr_func) == NULL) {
4427 			IPFERROR(11);
4428 			error = ESRCH;
4429 			goto donenolock;
4430 		}
4431 
4432 		if (addrem == 0) {
4433 			error = ipf_funcinit(softc, fp);
4434 			if (error != 0)
4435 				goto donenolock;
4436 		}
4437 	}
4438 	if ((fp->fr_flags & FR_CALLNOW) &&
4439 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4440 		IPFERROR(142);
4441 		error = ESRCH;
4442 		goto donenolock;
4443 	}
4444 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4445 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4446 		IPFERROR(143);
4447 		error = ESRCH;
4448 		goto donenolock;
4449 	}
4450 
4451 	ptr = NULL;
4452 
4453 	if (FR_ISACCOUNT(fp->fr_flags))
4454 		unit = IPL_LOGCOUNT;
4455 
4456 	/*
4457 	 * Check that each group name in the rule has a start index that
4458 	 * is valid.
4459 	 */
4460 	if (fp->fr_icmphead != -1) {
4461 		if ((fp->fr_icmphead < 0) ||
4462 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4463 			IPFERROR(136);
4464 			error = EINVAL;
4465 			goto donenolock;
4466 		}
4467 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4468 			fp->fr_names[fp->fr_icmphead] = '\0';
4469 	}
4470 
4471 	if (fp->fr_grhead != -1) {
4472 		if ((fp->fr_grhead < 0) ||
4473 		    (fp->fr_grhead >= fp->fr_namelen)) {
4474 			IPFERROR(137);
4475 			error = EINVAL;
4476 			goto donenolock;
4477 		}
4478 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4479 			fp->fr_names[fp->fr_grhead] = '\0';
4480 	}
4481 
4482 	if (fp->fr_group != -1) {
4483 		if ((fp->fr_group < 0) ||
4484 		    (fp->fr_group >= fp->fr_namelen)) {
4485 			IPFERROR(138);
4486 			error = EINVAL;
4487 			goto donenolock;
4488 		}
4489 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4490 			/*
4491 			 * Allow loading rules that are in groups to cause
4492 			 * them to be created if they don't already exit.
4493 			 */
4494 			group = FR_NAME(fp, fr_group);
4495 			if (addrem == 0) {
4496 				fg = ipf_group_add(softc, group, NULL,
4497 						   fp->fr_flags, unit, set);
4498 				if (fg == NULL) {
4499 					IPFERROR(152);
4500 					error = ESRCH;
4501 					goto donenolock;
4502 				}
4503 				fp->fr_grp = fg;
4504 			} else {
4505 				fg = ipf_findgroup(softc, group, unit,
4506 						   set, NULL);
4507 				if (fg == NULL) {
4508 					IPFERROR(12);
4509 					error = ESRCH;
4510 					goto donenolock;
4511 				}
4512 			}
4513 
4514 			if (fg->fg_flags == 0) {
4515 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4516 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4517 				IPFERROR(13);
4518 				error = ESRCH;
4519 				goto donenolock;
4520 			}
4521 		}
4522 	} else {
4523 		/*
4524 		 * If a rule is going to be part of a group then it does
4525 		 * not matter whether it is an in or out rule, but if it
4526 		 * isn't in a group, then it does...
4527 		 */
4528 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4529 			IPFERROR(14);
4530 			error = EINVAL;
4531 			goto donenolock;
4532 		}
4533 	}
4534 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4535 
4536 	/*
4537 	 * Work out which rule list this change is being applied to.
4538 	 */
4539 	ftail = NULL;
4540 	fprev = NULL;
4541 	if (unit == IPL_LOGAUTH) {
4542 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4543 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4544 		    (fp->fr_dif.fd_ptr != NULL) ||
4545 		    (fp->fr_flags & FR_FASTROUTE)) {
4546 			IPFERROR(145);
4547 			error = EINVAL;
4548 			goto donenolock;
4549 		}
4550 		fprev = ipf_auth_rulehead(softc);
4551 	} else {
4552 		if (FR_ISACCOUNT(fp->fr_flags))
4553 			fprev = &softc->ipf_acct[in][set];
4554 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4555 			fprev = &softc->ipf_rules[in][set];
4556 	}
4557 	if (fprev == NULL) {
4558 		IPFERROR(15);
4559 		error = ESRCH;
4560 		goto donenolock;
4561 	}
4562 
4563 	if (fg != NULL)
4564 		fprev = &fg->fg_start;
4565 
4566 	/*
4567 	 * Copy in extra data for the rule.
4568 	 */
4569 	if (fp->fr_dsize != 0) {
4570 		if (makecopy != 0) {
4571 			KMALLOCS(ptr, void *, fp->fr_dsize);
4572 			if (ptr == NULL) {
4573 				IPFERROR(16);
4574 				error = ENOMEM;
4575 				goto donenolock;
4576 			}
4577 
4578 			/*
4579 			 * The bcopy case is for when the data is appended
4580 			 * to the rule by ipf_in_compat().
4581 			 */
4582 			if (uptr >= (void *)fp &&
4583 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4584 				bcopy(uptr, ptr, fp->fr_dsize);
4585 				error = 0;
4586 			} else {
4587 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4588 				if (error != 0) {
4589 					IPFERROR(17);
4590 					error = EFAULT;
4591 					goto donenolock;
4592 				}
4593 			}
4594 		} else {
4595 			ptr = uptr;
4596 		}
4597 		fp->fr_data = ptr;
4598 	} else {
4599 		fp->fr_data = NULL;
4600 	}
4601 
4602 	/*
4603 	 * Perform per-rule type sanity checks of their members.
4604 	 * All code after this needs to be aware that allocated memory
4605 	 * may need to be free'd before exiting.
4606 	 */
4607 	switch (fp->fr_type & ~FR_T_BUILTIN)
4608 	{
4609 #if defined(IPFILTER_BPF)
4610 	case FR_T_BPFOPC :
4611 		if (fp->fr_dsize == 0) {
4612 			IPFERROR(19);
4613 			error = EINVAL;
4614 			break;
4615 		}
4616 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4617 			IPFERROR(20);
4618 			error = EINVAL;
4619 			break;
4620 		}
4621 		break;
4622 #endif
4623 	case FR_T_IPF :
4624 		/*
4625 		 * Preparation for error case at the bottom of this function.
4626 		 */
4627 		if (fp->fr_datype == FRI_LOOKUP)
4628 			fp->fr_dstptr = NULL;
4629 		if (fp->fr_satype == FRI_LOOKUP)
4630 			fp->fr_srcptr = NULL;
4631 
4632 		if (fp->fr_dsize != sizeof(fripf_t)) {
4633 			IPFERROR(21);
4634 			error = EINVAL;
4635 			break;
4636 		}
4637 
4638 		/*
4639 		 * Allowing a rule with both "keep state" and "with oow" is
4640 		 * pointless because adding a state entry to the table will
4641 		 * fail with the out of window (oow) flag set.
4642 		 */
4643 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4644 			IPFERROR(22);
4645 			error = EINVAL;
4646 			break;
4647 		}
4648 
4649 		switch (fp->fr_satype)
4650 		{
4651 		case FRI_BROADCAST :
4652 		case FRI_DYNAMIC :
4653 		case FRI_NETWORK :
4654 		case FRI_NETMASKED :
4655 		case FRI_PEERADDR :
4656 			if (fp->fr_sifpidx < 0) {
4657 				IPFERROR(23);
4658 				error = EINVAL;
4659 			}
4660 			break;
4661 		case FRI_LOOKUP :
4662 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4663 						       &fp->fr_src6,
4664 						       &fp->fr_smsk6);
4665 			if (fp->fr_srcfunc == NULL) {
4666 				IPFERROR(132);
4667 				error = ESRCH;
4668 				break;
4669 			}
4670 			break;
4671 		case FRI_NORMAL :
4672 			break;
4673 		default :
4674 			IPFERROR(133);
4675 			error = EINVAL;
4676 			break;
4677 		}
4678 		if (error != 0)
4679 			break;
4680 
4681 		switch (fp->fr_datype)
4682 		{
4683 		case FRI_BROADCAST :
4684 		case FRI_DYNAMIC :
4685 		case FRI_NETWORK :
4686 		case FRI_NETMASKED :
4687 		case FRI_PEERADDR :
4688 			if (fp->fr_difpidx < 0) {
4689 				IPFERROR(24);
4690 				error = EINVAL;
4691 			}
4692 			break;
4693 		case FRI_LOOKUP :
4694 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4695 						       &fp->fr_dst6,
4696 						       &fp->fr_dmsk6);
4697 			if (fp->fr_dstfunc == NULL) {
4698 				IPFERROR(134);
4699 				error = ESRCH;
4700 			}
4701 			break;
4702 		case FRI_NORMAL :
4703 			break;
4704 		default :
4705 			IPFERROR(135);
4706 			error = EINVAL;
4707 		}
4708 		break;
4709 
4710 	case FR_T_NONE :
4711 	case FR_T_CALLFUNC :
4712 	case FR_T_COMPIPF :
4713 		break;
4714 
4715 	case FR_T_IPFEXPR :
4716 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4717 			IPFERROR(25);
4718 			error = EINVAL;
4719 		}
4720 		break;
4721 
4722 	default :
4723 		IPFERROR(26);
4724 		error = EINVAL;
4725 		break;
4726 	}
4727 	if (error != 0)
4728 		goto donenolock;
4729 
4730 	if (fp->fr_tif.fd_name != -1) {
4731 		if ((fp->fr_tif.fd_name < 0) ||
4732 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4733 			IPFERROR(139);
4734 			error = EINVAL;
4735 			goto donenolock;
4736 		}
4737 	}
4738 
4739 	if (fp->fr_dif.fd_name != -1) {
4740 		if ((fp->fr_dif.fd_name < 0) ||
4741 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4742 			IPFERROR(140);
4743 			error = EINVAL;
4744 			goto donenolock;
4745 		}
4746 	}
4747 
4748 	if (fp->fr_rif.fd_name != -1) {
4749 		if ((fp->fr_rif.fd_name < 0) ||
4750 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4751 			IPFERROR(141);
4752 			error = EINVAL;
4753 			goto donenolock;
4754 		}
4755 	}
4756 
4757 	/*
4758 	 * Lookup all the interface names that are part of the rule.
4759 	 */
4760 	error = ipf_synclist(softc, fp, NULL);
4761 	if (error != 0)
4762 		goto donenolock;
4763 	fp->fr_statecnt = 0;
4764 	if (fp->fr_srctrack.ht_max_nodes != 0)
4765 		ipf_rb_ht_init(&fp->fr_srctrack);
4766 
4767 	/*
4768 	 * Look for an existing matching filter rule, but don't include the
4769 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4770 	 * This elminates rules which are indentical being loaded.  Checksum
4771 	 * the constant part of the filter rule to make comparisons quicker
4772 	 * (this meaning no pointers are included).
4773 	 */
4774 	for (fp->fr_cksum = 0, p = (u_int *)&fp->fr_func, pp = &fp->fr_cksum;
4775 	     p < pp; p++)
4776 		fp->fr_cksum += *p;
4777 	pp = (u_int *)((char *)fp->fr_caddr + fp->fr_dsize);
4778 	for (p = (u_int *)fp->fr_data; p < pp; p++)
4779 		fp->fr_cksum += *p;
4780 
4781 	WRITE_ENTER(&softc->ipf_mutex);
4782 
4783 	/*
4784 	 * Now that the filter rule lists are locked, we can walk the
4785 	 * chain of them without fear.
4786 	 */
4787 	ftail = fprev;
4788 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4789 		if (fp->fr_collect <= f->fr_collect) {
4790 			ftail = fprev;
4791 			f = NULL;
4792 			break;
4793 		}
4794 		fprev = ftail;
4795 	}
4796 
4797 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4798 		DT2(rule_cmp, frentry_t *, fp, frentry_t *, f);
4799 		if ((fp->fr_cksum != f->fr_cksum) ||
4800 		    (fp->fr_size != f->fr_size) ||
4801 		    (f->fr_dsize != fp->fr_dsize))
4802 			continue;
4803 		if (bcmp((char *)&f->fr_func, (char *)&fp->fr_func,
4804 			 fp->fr_size - offsetof(struct frentry, fr_func)) != 0)
4805 			continue;
4806 		if ((!ptr && !f->fr_data) ||
4807 		    (ptr && f->fr_data &&
4808 		     !bcmp((char *)ptr, (char *)f->fr_data, f->fr_dsize)))
4809 			break;
4810 	}
4811 
4812 	/*
4813 	 * If zero'ing statistics, copy current to caller and zero.
4814 	 */
4815 	if (addrem == 2) {
4816 		if (f == NULL) {
4817 			IPFERROR(27);
4818 			error = ESRCH;
4819 		} else {
4820 			/*
4821 			 * Copy and reduce lock because of impending copyout.
4822 			 * Well we should, but if we do then the atomicity of
4823 			 * this call and the correctness of fr_hits and
4824 			 * fr_bytes cannot be guaranteed.  As it is, this code
4825 			 * only resets them to 0 if they are successfully
4826 			 * copied out into user space.
4827 			 */
4828 			bcopy((char *)f, (char *)fp, f->fr_size);
4829 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4830 
4831 			/*
4832 			 * When we copy this rule back out, set the data
4833 			 * pointer to be what it was in user space.
4834 			 */
4835 			fp->fr_data = uptr;
4836 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4837 
4838 			if (error == 0) {
4839 				if ((f->fr_dsize != 0) && (uptr != NULL))
4840 					error = COPYOUT(f->fr_data, uptr,
4841 							f->fr_dsize);
4842 					if (error != 0) {
4843 						IPFERROR(28);
4844 						error = EFAULT;
4845 					}
4846 				if (error == 0) {
4847 					f->fr_hits = 0;
4848 					f->fr_bytes = 0;
4849 				}
4850 			}
4851 		}
4852 
4853 		if (makecopy != 0) {
4854 			if (ptr != NULL) {
4855 				KFREES(ptr, fp->fr_dsize);
4856 			}
4857 			KFREES(fp, fp->fr_size);
4858 		}
4859 		RWLOCK_EXIT(&softc->ipf_mutex);
4860 		return error;
4861 	}
4862 
4863   	if (!f) {
4864 		/*
4865 		 * At the end of this, ftail must point to the place where the
4866 		 * new rule is to be saved/inserted/added.
4867 		 * For SIOCAD*FR, this should be the last rule in the group of
4868 		 * rules that have equal fr_collect fields.
4869 		 * For SIOCIN*FR, ...
4870 		 */
4871 		if (req == (ioctlcmd_t)SIOCADAFR ||
4872 		    req == (ioctlcmd_t)SIOCADIFR) {
4873 
4874 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4875 				if (f->fr_collect > fp->fr_collect)
4876 					break;
4877 				ftail = &f->fr_next;
4878 				fprev = ftail;
4879 			}
4880 			ftail = fprev;
4881 			f = NULL;
4882 			ptr = NULL;
4883 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4884 			   req == (ioctlcmd_t)SIOCINIFR) {
4885 			while ((f = *fprev) != NULL) {
4886 				if (f->fr_collect >= fp->fr_collect)
4887 					break;
4888 				fprev = &f->fr_next;
4889 			}
4890   			ftail = fprev;
4891   			if (fp->fr_hits != 0) {
4892 				while (fp->fr_hits && (f = *ftail)) {
4893 					if (f->fr_collect != fp->fr_collect)
4894 						break;
4895 					fprev = ftail;
4896   					ftail = &f->fr_next;
4897 					fp->fr_hits--;
4898 				}
4899   			}
4900   			f = NULL;
4901   			ptr = NULL;
4902 		}
4903 	}
4904 
4905 	/*
4906 	 * Request to remove a rule.
4907 	 */
4908 	if (addrem == 1) {
4909 		if (!f) {
4910 			IPFERROR(29);
4911 			error = ESRCH;
4912 		} else {
4913 			/*
4914 			 * Do not allow activity from user space to interfere
4915 			 * with rules not loaded that way.
4916 			 */
4917 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4918 				IPFERROR(30);
4919 				error = EPERM;
4920 				goto done;
4921 			}
4922 
4923 			/*
4924 			 * Return EBUSY if the rule is being reference by
4925 			 * something else (eg state information.)
4926 			 */
4927 			if (f->fr_ref > 1) {
4928 				IPFERROR(31);
4929 				error = EBUSY;
4930 				goto done;
4931 			}
4932 #ifdef	IPFILTER_SCAN
4933 			if (f->fr_isctag != -1 &&
4934 			    (f->fr_isc != (struct ipscan *)-1))
4935 				ipf_scan_detachfr(f);
4936 #endif
4937 
4938 			if (unit == IPL_LOGAUTH) {
4939 				error = ipf_auth_precmd(softc, req, f, ftail);
4940 				goto done;
4941 			}
4942 
4943 			ipf_rule_delete(softc, f, unit, set);
4944 
4945 			need_free = makecopy;
4946 		}
4947 	} else {
4948 		/*
4949 		 * Not removing, so we must be adding/inserting a rule.
4950 		 */
4951 		if (f != NULL) {
4952 			IPFERROR(32);
4953 			error = EEXIST;
4954 			goto done;
4955 		}
4956 		if (unit == IPL_LOGAUTH) {
4957 			error = ipf_auth_precmd(softc, req, fp, ftail);
4958 			goto done;
4959 		}
4960 
4961 		MUTEX_NUKE(&fp->fr_lock);
4962 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
4963 		if (fp->fr_die != 0)
4964 			ipf_rule_expire_insert(softc, fp, set);
4965 
4966 		fp->fr_hits = 0;
4967 		if (makecopy != 0)
4968 			fp->fr_ref = 1;
4969 		fp->fr_pnext = ftail;
4970 		fp->fr_next = *ftail;
4971 		if (fp->fr_next != NULL)
4972 			fp->fr_next->fr_pnext = &fp->fr_next;
4973 		*ftail = fp;
4974 		if (addrem == 0)
4975 			ipf_fixskip(ftail, fp, 1);
4976 
4977 		fp->fr_icmpgrp = NULL;
4978 		if (fp->fr_icmphead != -1) {
4979 			group = FR_NAME(fp, fr_icmphead);
4980 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
4981 			fp->fr_icmpgrp = fg;
4982 		}
4983 
4984 		fp->fr_grphead = NULL;
4985 		if (fp->fr_grhead != -1) {
4986 			group = FR_NAME(fp, fr_grhead);
4987 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
4988 					   unit, set);
4989 			fp->fr_grphead = fg;
4990 		}
4991 	}
4992 done:
4993 	RWLOCK_EXIT(&softc->ipf_mutex);
4994 donenolock:
4995 	if (need_free || (error != 0)) {
4996 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
4997 			if ((fp->fr_satype == FRI_LOOKUP) &&
4998 			    (fp->fr_srcptr != NULL))
4999 				ipf_lookup_deref(softc, fp->fr_srctype,
5000 						 fp->fr_srcptr);
5001 			if ((fp->fr_datype == FRI_LOOKUP) &&
5002 			    (fp->fr_dstptr != NULL))
5003 				ipf_lookup_deref(softc, fp->fr_dsttype,
5004 						 fp->fr_dstptr);
5005 		}
5006 		if (fp->fr_grp != NULL) {
5007 			WRITE_ENTER(&softc->ipf_mutex);
5008 			ipf_group_del(softc, fp->fr_grp, fp);
5009 			RWLOCK_EXIT(&softc->ipf_mutex);
5010 		}
5011 		if ((ptr != NULL) && (makecopy != 0)) {
5012 			KFREES(ptr, fp->fr_dsize);
5013 		}
5014 		KFREES(fp, fp->fr_size);
5015 	}
5016 	return (error);
5017 }
5018 
5019 
5020 /* ------------------------------------------------------------------------ */
5021 /* Function:   ipf_rule_delete                                              */
5022 /* Returns:    Nil                                                          */
5023 /* Parameters: softc(I) - pointer to soft context main structure            */
5024 /*             f(I)     - pointer to the rule being deleted                 */
5025 /*             ftail(I) - pointer to the pointer to f                       */
5026 /*             unit(I)  - device for which this is for                      */
5027 /*             set(I)   - 1 or 0 (filter set)                               */
5028 /*                                                                          */
5029 /* This function attempts to do what it can to delete a filter rule: remove */
5030 /* it from any linked lists and remove any groups it is responsible for.    */
5031 /* But in the end, removing a rule can only drop the reference count - we   */
5032 /* must use that as the guide for whether or not it can be freed.           */
5033 /* ------------------------------------------------------------------------ */
5034 static void
ipf_rule_delete(ipf_main_softc_t * softc,frentry_t * f,int unit,int set)5035 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5036 {
5037 
5038 	/*
5039 	 * If fr_pdnext is set, then the rule is on the expire list, so
5040 	 * remove it from there.
5041 	 */
5042 	if (f->fr_pdnext != NULL) {
5043 		*f->fr_pdnext = f->fr_dnext;
5044 		if (f->fr_dnext != NULL)
5045 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5046 		f->fr_pdnext = NULL;
5047 		f->fr_dnext = NULL;
5048 	}
5049 
5050 	ipf_fixskip(f->fr_pnext, f, -1);
5051 	if (f->fr_pnext != NULL)
5052 		*f->fr_pnext = f->fr_next;
5053 	if (f->fr_next != NULL)
5054 		f->fr_next->fr_pnext = f->fr_pnext;
5055 	f->fr_pnext = NULL;
5056 	f->fr_next = NULL;
5057 
5058 	(void) ipf_derefrule(softc, &f);
5059 }
5060 
5061 /* ------------------------------------------------------------------------ */
5062 /* Function:   ipf_rule_expire_insert                                       */
5063 /* Returns:    Nil                                                          */
5064 /* Parameters: softc(I) - pointer to soft context main structure            */
5065 /*             f(I)     - pointer to rule to be added to expire list        */
5066 /*             set(I)   - 1 or 0 (filter set)                               */
5067 /*                                                                          */
5068 /* If the new rule has a given expiration time, insert it into the list of  */
5069 /* expiring rules with the ones to be removed first added to the front of   */
5070 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5071 /* expiration interval checks.                                              */
5072 /* ------------------------------------------------------------------------ */
5073 static void
ipf_rule_expire_insert(ipf_main_softc_t * softc,frentry_t * f,int set)5074 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5075 {
5076 	frentry_t *fr;
5077 
5078 	/*
5079 	 */
5080 
5081 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5082 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5083 	     fr = fr->fr_dnext) {
5084 		if (f->fr_die < fr->fr_die)
5085 			break;
5086 		if (fr->fr_dnext == NULL) {
5087 			/*
5088 			 * We've got to the last rule and everything
5089 			 * wanted to be expired before this new node,
5090 			 * so we have to tack it on the end...
5091 			 */
5092 			fr->fr_dnext = f;
5093 			f->fr_pdnext = &fr->fr_dnext;
5094 			fr = NULL;
5095 			break;
5096 		}
5097 	}
5098 
5099 	if (softc->ipf_rule_explist[set] == NULL) {
5100 		softc->ipf_rule_explist[set] = f;
5101 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5102 	} else if (fr != NULL) {
5103 		f->fr_dnext = fr;
5104 		f->fr_pdnext = fr->fr_pdnext;
5105 		fr->fr_pdnext = &f->fr_dnext;
5106 	}
5107 }
5108 
5109 
5110 /* ------------------------------------------------------------------------ */
5111 /* Function:   ipf_findlookup                                               */
5112 /* Returns:    NULL = failure, else success                                 */
5113 /* Parameters: softc(I) - pointer to soft context main structure            */
5114 /*             unit(I)  - ipf device we want to find match for              */
5115 /*             fp(I)    - rule for which lookup is for                      */
5116 /*             addrp(I) - pointer to lookup information in address struct   */
5117 /*             maskp(O) - pointer to lookup information for storage         */
5118 /*                                                                          */
5119 /* When using pools and hash tables to store addresses for matching in      */
5120 /* rules, it is necessary to resolve both the object referred to by the     */
5121 /* name or address (and return that pointer) and also provide the means by  */
5122 /* which to determine if an address belongs to that object to make the      */
5123 /* packet matching quicker.                                                 */
5124 /* ------------------------------------------------------------------------ */
5125 static void *
ipf_findlookup(ipf_main_softc_t * softc,int unit,frentry_t * fr,i6addr_t * addrp,i6addr_t * maskp)5126 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5127     i6addr_t *addrp, i6addr_t *maskp)
5128 {
5129 	void *ptr = NULL;
5130 
5131 	switch (addrp->iplookupsubtype)
5132 	{
5133 	case 0 :
5134 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5135 					 addrp->iplookupnum,
5136 					 &maskp->iplookupfunc);
5137 		break;
5138 	case 1 :
5139 		if (addrp->iplookupname < 0)
5140 			break;
5141 		if (addrp->iplookupname >= fr->fr_namelen)
5142 			break;
5143 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5144 					  fr->fr_names + addrp->iplookupname,
5145 					  &maskp->iplookupfunc);
5146 		break;
5147 	default :
5148 		break;
5149 	}
5150 
5151 	return ptr;
5152 }
5153 
5154 
5155 /* ------------------------------------------------------------------------ */
5156 /* Function:    ipf_funcinit                                                */
5157 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5158 /* Parameters:  softc(I) - pointer to soft context main structure           */
5159 /*              fr(I)    - pointer to filter rule                           */
5160 /*                                                                          */
5161 /* If a rule is a call rule, then check if the function it points to needs  */
5162 /* an init function to be called now the rule has been loaded.              */
5163 /* ------------------------------------------------------------------------ */
5164 static int
ipf_funcinit(ipf_main_softc_t * softc,frentry_t * fr)5165 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5166 {
5167 	ipfunc_resolve_t *ft;
5168 	int err;
5169 
5170 	IPFERROR(34);
5171 	err = ESRCH;
5172 
5173 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5174 		if (ft->ipfu_addr == fr->fr_func) {
5175 			err = 0;
5176 			if (ft->ipfu_init != NULL)
5177 				err = (*ft->ipfu_init)(softc, fr);
5178 			break;
5179 		}
5180 	return err;
5181 }
5182 
5183 
5184 /* ------------------------------------------------------------------------ */
5185 /* Function:    ipf_funcfini                                                */
5186 /* Returns:     Nil                                                         */
5187 /* Parameters:  softc(I) - pointer to soft context main structure           */
5188 /*              fr(I)    - pointer to filter rule                           */
5189 /*                                                                          */
5190 /* For a given filter rule, call the matching "fini" function if the rule   */
5191 /* is using a known function that would have resulted in the "init" being   */
5192 /* called for ealier.                                                       */
5193 /* ------------------------------------------------------------------------ */
5194 static void
ipf_funcfini(ipf_main_softc_t * softc,frentry_t * fr)5195 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5196 {
5197 	ipfunc_resolve_t *ft;
5198 
5199 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5200 		if (ft->ipfu_addr == fr->fr_func) {
5201 			if (ft->ipfu_fini != NULL)
5202 				(void) (*ft->ipfu_fini)(softc, fr);
5203 			break;
5204 		}
5205 }
5206 
5207 
5208 /* ------------------------------------------------------------------------ */
5209 /* Function:    ipf_findfunc                                                */
5210 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5211 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5212 /*                                                                          */
5213 /* Look for a function in the table of known functions.                     */
5214 /* ------------------------------------------------------------------------ */
5215 static ipfunc_t
ipf_findfunc(ipfunc_t funcptr)5216 ipf_findfunc(ipfunc_t funcptr)
5217 {
5218 	ipfunc_resolve_t *ft;
5219 
5220 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5221 		if (ft->ipfu_addr == funcptr)
5222 			return funcptr;
5223 	return NULL;
5224 }
5225 
5226 
5227 /* ------------------------------------------------------------------------ */
5228 /* Function:    ipf_resolvefunc                                             */
5229 /* Returns:     int - 0 == success, else error                              */
5230 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5231 /*                                                                          */
5232 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5233 /* This will either be the function name (if the pointer is set) or the     */
5234 /* function pointer if the name is set.  When found, fill in the other one  */
5235 /* so that the entire, complete, structure can be copied back to user space.*/
5236 /* ------------------------------------------------------------------------ */
5237 int
ipf_resolvefunc(ipf_main_softc_t * softc,void * data)5238 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5239 {
5240 	ipfunc_resolve_t res, *ft;
5241 	int error;
5242 
5243 	error = BCOPYIN(data, &res, sizeof(res));
5244 	if (error != 0) {
5245 		IPFERROR(123);
5246 		return EFAULT;
5247 	}
5248 
5249 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5250 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5251 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5252 				    sizeof(res.ipfu_name)) == 0) {
5253 				res.ipfu_addr = ft->ipfu_addr;
5254 				res.ipfu_init = ft->ipfu_init;
5255 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5256 					IPFERROR(35);
5257 					return EFAULT;
5258 				}
5259 				return 0;
5260 			}
5261 	}
5262 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5263 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5264 			if (ft->ipfu_addr == res.ipfu_addr) {
5265 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5266 					       sizeof(res.ipfu_name));
5267 				res.ipfu_init = ft->ipfu_init;
5268 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5269 					IPFERROR(36);
5270 					return EFAULT;
5271 				}
5272 				return 0;
5273 			}
5274 	}
5275 	IPFERROR(37);
5276 	return ESRCH;
5277 }
5278 
5279 
5280 #if !defined(_KERNEL) || (!defined(__NetBSD__) && !defined(__OpenBSD__) && \
5281      !defined(__FreeBSD__)) || \
5282     FREEBSD_LT_REV(501000) || NETBSD_LT_REV(105000000) || \
5283     OPENBSD_LT_REV(200006)
5284 /*
5285  * From: NetBSD
5286  * ppsratecheck(): packets (or events) per second limitation.
5287  */
5288 int
ppsratecheck(lasttime,curpps,maxpps)5289 ppsratecheck(lasttime, curpps, maxpps)
5290 	struct timeval *lasttime;
5291 	int *curpps;
5292 	int maxpps;	/* maximum pps allowed */
5293 {
5294 	struct timeval tv, delta;
5295 	int rv;
5296 
5297 	GETKTIME(&tv);
5298 
5299 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5300 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5301 	if (delta.tv_usec < 0) {
5302 		delta.tv_sec--;
5303 		delta.tv_usec += 1000000;
5304 	}
5305 
5306 	/*
5307 	 * check for 0,0 is so that the message will be seen at least once.
5308 	 * if more than one second have passed since the last update of
5309 	 * lasttime, reset the counter.
5310 	 *
5311 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5312 	 * try to use *curpps for stat purposes as well.
5313 	 */
5314 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5315 	    delta.tv_sec >= 1) {
5316 		*lasttime = tv;
5317 		*curpps = 0;
5318 		rv = 1;
5319 	} else if (maxpps < 0)
5320 		rv = 1;
5321 	else if (*curpps < maxpps)
5322 		rv = 1;
5323 	else
5324 		rv = 0;
5325 	*curpps = *curpps + 1;
5326 
5327 	return (rv);
5328 }
5329 #endif
5330 
5331 
5332 /* ------------------------------------------------------------------------ */
5333 /* Function:    ipf_derefrule                                               */
5334 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5335 /* Parameters:  fr(I) - pointer to filter rule                              */
5336 /*                                                                          */
5337 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5338 /* free it and any associated storage space being used by it.               */
5339 /* ------------------------------------------------------------------------ */
5340 int
ipf_derefrule(ipf_main_softc_t * softc,frentry_t ** frp)5341 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5342 {
5343 	frentry_t *fr;
5344 	frdest_t *fdp;
5345 
5346 	fr = *frp;
5347 	*frp = NULL;
5348 
5349 	MUTEX_ENTER(&fr->fr_lock);
5350 	fr->fr_ref--;
5351 	if (fr->fr_ref == 0) {
5352 		MUTEX_EXIT(&fr->fr_lock);
5353 		MUTEX_DESTROY(&fr->fr_lock);
5354 
5355 		ipf_funcfini(softc, fr);
5356 
5357 		fdp = &fr->fr_tif;
5358 		if (fdp->fd_type == FRD_DSTLIST)
5359 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5360 
5361 		fdp = &fr->fr_rif;
5362 		if (fdp->fd_type == FRD_DSTLIST)
5363 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5364 
5365 		fdp = &fr->fr_dif;
5366 		if (fdp->fd_type == FRD_DSTLIST)
5367 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5368 
5369 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5370 		    fr->fr_satype == FRI_LOOKUP)
5371 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5372 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5373 		    fr->fr_datype == FRI_LOOKUP)
5374 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5375 
5376 		if (fr->fr_grp != NULL)
5377 			ipf_group_del(softc, fr->fr_grp, fr);
5378 
5379 		if (fr->fr_grphead != NULL)
5380 			ipf_group_del(softc, fr->fr_grphead, fr);
5381 
5382 		if (fr->fr_icmpgrp != NULL)
5383 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5384 
5385 		if ((fr->fr_flags & FR_COPIED) != 0) {
5386 			if (fr->fr_dsize) {
5387 				KFREES(fr->fr_data, fr->fr_dsize);
5388 			}
5389 			KFREES(fr, fr->fr_size);
5390 			return 0;
5391 		}
5392 		return 1;
5393 	} else {
5394 		MUTEX_EXIT(&fr->fr_lock);
5395 	}
5396 	return -1;
5397 }
5398 
5399 
5400 /* ------------------------------------------------------------------------ */
5401 /* Function:    ipf_grpmapinit                                              */
5402 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5403 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5404 /*                                                                          */
5405 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5406 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5407 /* ------------------------------------------------------------------------ */
5408 static int
ipf_grpmapinit(ipf_main_softc_t * softc,frentry_t * fr)5409 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5410 {
5411 	char name[FR_GROUPLEN];
5412 	iphtable_t *iph;
5413 
5414 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5415 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5416 	if (iph == NULL) {
5417 		IPFERROR(38);
5418 		return ESRCH;
5419 	}
5420 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5421 		IPFERROR(39);
5422 		return ESRCH;
5423 	}
5424 	iph->iph_ref++;
5425 	fr->fr_ptr = iph;
5426 	return 0;
5427 }
5428 
5429 
5430 /* ------------------------------------------------------------------------ */
5431 /* Function:    ipf_grpmapfini                                              */
5432 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5433 /* Parameters:  softc(I) - pointer to soft context main structure           */
5434 /*              fr(I)    - pointer to rule to release hash table for        */
5435 /*                                                                          */
5436 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5437 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5438 /* ------------------------------------------------------------------------ */
5439 static int
ipf_grpmapfini(ipf_main_softc_t * softc,frentry_t * fr)5440 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5441 {
5442 	iphtable_t *iph;
5443 	iph = fr->fr_ptr;
5444 	if (iph != NULL)
5445 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5446 	return 0;
5447 }
5448 
5449 
5450 /* ------------------------------------------------------------------------ */
5451 /* Function:    ipf_srcgrpmap                                               */
5452 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5453 /* Parameters:  fin(I)    - pointer to packet information                   */
5454 /*              passp(IO) - pointer to current/new filter decision (unused) */
5455 /*                                                                          */
5456 /* Look for a rule group head in a hash table, using the source address as  */
5457 /* the key, and descend into that group and continue matching rules against */
5458 /* the packet.                                                              */
5459 /* ------------------------------------------------------------------------ */
5460 frentry_t *
ipf_srcgrpmap(fr_info_t * fin,u_32_t * passp)5461 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5462 {
5463 	frgroup_t *fg;
5464 	void *rval;
5465 
5466 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5467 				 &fin->fin_src);
5468 	if (rval == NULL)
5469 		return NULL;
5470 
5471 	fg = rval;
5472 	fin->fin_fr = fg->fg_start;
5473 	(void) ipf_scanlist(fin, *passp);
5474 	return fin->fin_fr;
5475 }
5476 
5477 
5478 /* ------------------------------------------------------------------------ */
5479 /* Function:    ipf_dstgrpmap                                               */
5480 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5481 /* Parameters:  fin(I)    - pointer to packet information                   */
5482 /*              passp(IO) - pointer to current/new filter decision (unused) */
5483 /*                                                                          */
5484 /* Look for a rule group head in a hash table, using the destination        */
5485 /* address as the key, and descend into that group and continue matching    */
5486 /* rules against  the packet.                                               */
5487 /* ------------------------------------------------------------------------ */
5488 frentry_t *
ipf_dstgrpmap(fr_info_t * fin,u_32_t * passp)5489 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5490 {
5491 	frgroup_t *fg;
5492 	void *rval;
5493 
5494 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5495 				 &fin->fin_dst);
5496 	if (rval == NULL)
5497 		return NULL;
5498 
5499 	fg = rval;
5500 	fin->fin_fr = fg->fg_start;
5501 	(void) ipf_scanlist(fin, *passp);
5502 	return fin->fin_fr;
5503 }
5504 
5505 /*
5506  * Queue functions
5507  * ===============
5508  * These functions manage objects on queues for efficient timeouts.  There
5509  * are a number of system defined queues as well as user defined timeouts.
5510  * It is expected that a lock is held in the domain in which the queue
5511  * belongs (i.e. either state or NAT) when calling any of these functions
5512  * that prevents ipf_freetimeoutqueue() from being called at the same time
5513  * as any other.
5514  */
5515 
5516 
5517 /* ------------------------------------------------------------------------ */
5518 /* Function:    ipf_addtimeoutqueue                                         */
5519 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5520 /*                               timeout queue with given interval.         */
5521 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5522 /*                           of interface queues.                           */
5523 /*              seconds(I) - timeout value in seconds for this queue.       */
5524 /*                                                                          */
5525 /* This routine first looks for a timeout queue that matches the interval   */
5526 /* being requested.  If it finds one, increments the reference counter and  */
5527 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5528 /* inserts it at the top of the list.                                       */
5529 /*                                                                          */
5530 /* Locking.                                                                 */
5531 /* It is assumed that the caller of this function has an appropriate lock   */
5532 /* held (exclusively) in the domain that encompases 'parent'.               */
5533 /* ------------------------------------------------------------------------ */
5534 ipftq_t *
ipf_addtimeoutqueue(ipf_main_softc_t * softc,ipftq_t ** parent,u_int seconds)5535 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5536 {
5537 	ipftq_t *ifq;
5538 	u_int period;
5539 
5540 	period = seconds * IPF_HZ_DIVIDE;
5541 
5542 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5543 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5544 		if (ifq->ifq_ttl == period) {
5545 			/*
5546 			 * Reset the delete flag, if set, so the structure
5547 			 * gets reused rather than freed and reallocated.
5548 			 */
5549 			MUTEX_ENTER(&ifq->ifq_lock);
5550 			ifq->ifq_flags &= ~IFQF_DELETE;
5551 			ifq->ifq_ref++;
5552 			MUTEX_EXIT(&ifq->ifq_lock);
5553 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5554 
5555 			return ifq;
5556 		}
5557 	}
5558 
5559 	KMALLOC(ifq, ipftq_t *);
5560 	if (ifq != NULL) {
5561 		MUTEX_NUKE(&ifq->ifq_lock);
5562 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5563 		ifq->ifq_next = *parent;
5564 		ifq->ifq_pnext = parent;
5565 		ifq->ifq_flags = IFQF_USER;
5566 		ifq->ifq_ref++;
5567 		*parent = ifq;
5568 		softc->ipf_userifqs++;
5569 	}
5570 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5571 	return ifq;
5572 }
5573 
5574 
5575 /* ------------------------------------------------------------------------ */
5576 /* Function:    ipf_deletetimeoutqueue                                      */
5577 /* Returns:     int    - new reference count value of the timeout queue     */
5578 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5579 /* Locks:       ifq->ifq_lock                                               */
5580 /*                                                                          */
5581 /* This routine must be called when we're discarding a pointer to a timeout */
5582 /* queue object, taking care of the reference counter.                      */
5583 /*                                                                          */
5584 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5585 /* check the list of user defined timeout queues and call the free function */
5586 /* below (currently commented out) to stop memory leaking.  It is done this */
5587 /* way because the locking may not be sufficient to safely do a free when   */
5588 /* this function is called.                                                 */
5589 /* ------------------------------------------------------------------------ */
5590 int
ipf_deletetimeoutqueue(ipftq_t * ifq)5591 ipf_deletetimeoutqueue(ipftq_t *ifq)
5592 {
5593 
5594 	ifq->ifq_ref--;
5595 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5596 		ifq->ifq_flags |= IFQF_DELETE;
5597 	}
5598 
5599 	return ifq->ifq_ref;
5600 }
5601 
5602 
5603 /* ------------------------------------------------------------------------ */
5604 /* Function:    ipf_freetimeoutqueue                                        */
5605 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5606 /* Returns:     Nil                                                         */
5607 /*                                                                          */
5608 /* Locking:                                                                 */
5609 /* It is assumed that the caller of this function has an appropriate lock   */
5610 /* held (exclusively) in the domain that encompases the callers "domain".   */
5611 /* The ifq_lock for this structure should not be held.                      */
5612 /*                                                                          */
5613 /* Remove a user defined timeout queue from the list of queues it is in and */
5614 /* tidy up after this is done.                                              */
5615 /* ------------------------------------------------------------------------ */
5616 void
ipf_freetimeoutqueue(ipf_main_softc_t * softc,ipftq_t * ifq)5617 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5618 {
5619 
5620 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5621 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5622 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5623 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5624 		       ifq->ifq_ref);
5625 		return;
5626 	}
5627 
5628 	/*
5629 	 * Remove from its position in the list.
5630 	 */
5631 	*ifq->ifq_pnext = ifq->ifq_next;
5632 	if (ifq->ifq_next != NULL)
5633 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5634 	ifq->ifq_next = NULL;
5635 	ifq->ifq_pnext = NULL;
5636 
5637 	MUTEX_DESTROY(&ifq->ifq_lock);
5638 	ATOMIC_DEC(softc->ipf_userifqs);
5639 	KFREE(ifq);
5640 }
5641 
5642 
5643 /* ------------------------------------------------------------------------ */
5644 /* Function:    ipf_deletequeueentry                                        */
5645 /* Returns:     Nil                                                         */
5646 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5647 /*                                                                          */
5648 /* Remove a tail queue entry from its queue and make it an orphan.          */
5649 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5650 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5651 /* the correct lock(s) may not be held that would make it safe to do so.    */
5652 /* ------------------------------------------------------------------------ */
5653 void
ipf_deletequeueentry(ipftqent_t * tqe)5654 ipf_deletequeueentry(ipftqent_t *tqe)
5655 {
5656 	ipftq_t *ifq;
5657 
5658 	ifq = tqe->tqe_ifq;
5659 
5660 	MUTEX_ENTER(&ifq->ifq_lock);
5661 
5662 	if (tqe->tqe_pnext != NULL) {
5663 		*tqe->tqe_pnext = tqe->tqe_next;
5664 		if (tqe->tqe_next != NULL)
5665 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5666 		else    /* we must be the tail anyway */
5667 			ifq->ifq_tail = tqe->tqe_pnext;
5668 
5669 		tqe->tqe_pnext = NULL;
5670 		tqe->tqe_ifq = NULL;
5671 	}
5672 
5673 	(void) ipf_deletetimeoutqueue(ifq);
5674 	ASSERT(ifq->ifq_ref > 0);
5675 
5676 	MUTEX_EXIT(&ifq->ifq_lock);
5677 }
5678 
5679 
5680 /* ------------------------------------------------------------------------ */
5681 /* Function:    ipf_queuefront                                              */
5682 /* Returns:     Nil                                                         */
5683 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5684 /*                                                                          */
5685 /* Move a queue entry to the front of the queue, if it isn't already there. */
5686 /* ------------------------------------------------------------------------ */
5687 void
ipf_queuefront(ipftqent_t * tqe)5688 ipf_queuefront(ipftqent_t *tqe)
5689 {
5690 	ipftq_t *ifq;
5691 
5692 	ifq = tqe->tqe_ifq;
5693 	if (ifq == NULL)
5694 		return;
5695 
5696 	MUTEX_ENTER(&ifq->ifq_lock);
5697 	if (ifq->ifq_head != tqe) {
5698 		*tqe->tqe_pnext = tqe->tqe_next;
5699 		if (tqe->tqe_next)
5700 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5701 		else
5702 			ifq->ifq_tail = tqe->tqe_pnext;
5703 
5704 		tqe->tqe_next = ifq->ifq_head;
5705 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5706 		ifq->ifq_head = tqe;
5707 		tqe->tqe_pnext = &ifq->ifq_head;
5708 	}
5709 	MUTEX_EXIT(&ifq->ifq_lock);
5710 }
5711 
5712 
5713 /* ------------------------------------------------------------------------ */
5714 /* Function:    ipf_queueback                                               */
5715 /* Returns:     Nil                                                         */
5716 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5717 /*              tqe(I)   - pointer to timeout queue entry                   */
5718 /*                                                                          */
5719 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5720 /* We use use ticks to calculate the expiration and mark for when we last   */
5721 /* touched the structure.                                                   */
5722 /* ------------------------------------------------------------------------ */
5723 void
ipf_queueback(u_long ticks,ipftqent_t * tqe)5724 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5725 {
5726 	ipftq_t *ifq;
5727 
5728 	ifq = tqe->tqe_ifq;
5729 	if (ifq == NULL)
5730 		return;
5731 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5732 	tqe->tqe_touched = ticks;
5733 
5734 	MUTEX_ENTER(&ifq->ifq_lock);
5735 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5736 		/*
5737 		 * Remove from list
5738 		 */
5739 		*tqe->tqe_pnext = tqe->tqe_next;
5740 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5741 
5742 		/*
5743 		 * Make it the last entry.
5744 		 */
5745 		tqe->tqe_next = NULL;
5746 		tqe->tqe_pnext = ifq->ifq_tail;
5747 		*ifq->ifq_tail = tqe;
5748 		ifq->ifq_tail = &tqe->tqe_next;
5749 	}
5750 	MUTEX_EXIT(&ifq->ifq_lock);
5751 }
5752 
5753 
5754 /* ------------------------------------------------------------------------ */
5755 /* Function:    ipf_queueappend                                             */
5756 /* Returns:     Nil                                                         */
5757 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5758 /*              tqe(I)    - pointer to timeout queue entry                  */
5759 /*              ifq(I)    - pointer to timeout queue                        */
5760 /*              parent(I) - owing object pointer                            */
5761 /*                                                                          */
5762 /* Add a new item to this queue and put it on the very end.                 */
5763 /* We use use ticks to calculate the expiration and mark for when we last   */
5764 /* touched the structure.                                                   */
5765 /* ------------------------------------------------------------------------ */
5766 void
ipf_queueappend(u_long ticks,ipftqent_t * tqe,ipftq_t * ifq,void * parent)5767 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5768 {
5769 
5770 	MUTEX_ENTER(&ifq->ifq_lock);
5771 	tqe->tqe_parent = parent;
5772 	tqe->tqe_pnext = ifq->ifq_tail;
5773 	*ifq->ifq_tail = tqe;
5774 	ifq->ifq_tail = &tqe->tqe_next;
5775 	tqe->tqe_next = NULL;
5776 	tqe->tqe_ifq = ifq;
5777 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5778 	tqe->tqe_touched = ticks;
5779 	ifq->ifq_ref++;
5780 	MUTEX_EXIT(&ifq->ifq_lock);
5781 }
5782 
5783 
5784 /* ------------------------------------------------------------------------ */
5785 /* Function:    ipf_movequeue                                               */
5786 /* Returns:     Nil                                                         */
5787 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5788 /*              oifp(I) - old timeout queue entry was on                    */
5789 /*              nifp(I) - new timeout queue to put entry on                 */
5790 /*                                                                          */
5791 /* Move a queue entry from one timeout queue to another timeout queue.      */
5792 /* If it notices that the current entry is already last and does not need   */
5793 /* to move queue, the return.                                               */
5794 /* ------------------------------------------------------------------------ */
5795 void
ipf_movequeue(u_long ticks,ipftqent_t * tqe,ipftq_t * oifq,ipftq_t * nifq)5796 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5797 {
5798 
5799 	/*
5800 	 * If the queue hasn't changed and we last touched this entry at the
5801 	 * same ipf time, then we're not going to achieve anything by either
5802 	 * changing the ttl or moving it on the queue.
5803 	 */
5804 	if (oifq == nifq && tqe->tqe_touched == ticks)
5805 		return;
5806 
5807 	/*
5808 	 * For any of this to be outside the lock, there is a risk that two
5809 	 * packets entering simultaneously, with one changing to a different
5810 	 * queue and one not, could end up with things in a bizarre state.
5811 	 */
5812 	MUTEX_ENTER(&oifq->ifq_lock);
5813 
5814 	tqe->tqe_touched = ticks;
5815 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5816 	/*
5817 	 * Is the operation here going to be a no-op ?
5818 	 */
5819 	if (oifq == nifq) {
5820 		if ((tqe->tqe_next == NULL) ||
5821 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5822 			MUTEX_EXIT(&oifq->ifq_lock);
5823 			return;
5824 		}
5825 	}
5826 
5827 	/*
5828 	 * Remove from the old queue
5829 	 */
5830 	*tqe->tqe_pnext = tqe->tqe_next;
5831 	if (tqe->tqe_next)
5832 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5833 	else
5834 		oifq->ifq_tail = tqe->tqe_pnext;
5835 	tqe->tqe_next = NULL;
5836 
5837 	/*
5838 	 * If we're moving from one queue to another, release the
5839 	 * lock on the old queue and get a lock on the new queue.
5840 	 * For user defined queues, if we're moving off it, call
5841 	 * delete in case it can now be freed.
5842 	 */
5843 	if (oifq != nifq) {
5844 		tqe->tqe_ifq = NULL;
5845 
5846 		(void) ipf_deletetimeoutqueue(oifq);
5847 
5848 		MUTEX_EXIT(&oifq->ifq_lock);
5849 
5850 		MUTEX_ENTER(&nifq->ifq_lock);
5851 
5852 		tqe->tqe_ifq = nifq;
5853 		nifq->ifq_ref++;
5854 	}
5855 
5856 	/*
5857 	 * Add to the bottom of the new queue
5858 	 */
5859 	tqe->tqe_pnext = nifq->ifq_tail;
5860 	*nifq->ifq_tail = tqe;
5861 	nifq->ifq_tail = &tqe->tqe_next;
5862 	MUTEX_EXIT(&nifq->ifq_lock);
5863 }
5864 
5865 
5866 /* ------------------------------------------------------------------------ */
5867 /* Function:    ipf_updateipid                                              */
5868 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5869 /* Parameters:  fin(I) - pointer to packet information                      */
5870 /*                                                                          */
5871 /* When we are doing NAT, change the IP of every packet to represent a      */
5872 /* single sequence of packets coming from the host, hiding any host         */
5873 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5874 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5875 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5876 /* has no match in the cache, return an error.                              */
5877 /* ------------------------------------------------------------------------ */
5878 static int
ipf_updateipid(fr_info_t * fin)5879 ipf_updateipid(fr_info_t *fin)
5880 {
5881 	u_short id, ido, sums;
5882 	u_32_t sumd, sum;
5883 	ip_t *ip;
5884 
5885 	if (fin->fin_off != 0) {
5886 		sum = ipf_frag_ipidknown(fin);
5887 		if (sum == 0xffffffff)
5888 			return -1;
5889 		sum &= 0xffff;
5890 		id = (u_short)sum;
5891 	} else {
5892 		id = ipf_nextipid(fin);
5893 		if (fin->fin_off == 0 && (fin->fin_flx & FI_FRAG) != 0)
5894 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
5895 	}
5896 
5897 	ip = fin->fin_ip;
5898 	ido = ntohs(ip->ip_id);
5899 	if (id == ido)
5900 		return 0;
5901 	ip->ip_id = htons(id);
5902 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5903 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5904 	sum += sumd;
5905 	sum = (sum >> 16) + (sum & 0xffff);
5906 	sum = (sum >> 16) + (sum & 0xffff);
5907 	sums = ~(u_short)sum;
5908 	ip->ip_sum = htons(sums);
5909 	return 0;
5910 }
5911 
5912 
5913 #ifdef	NEED_FRGETIFNAME
5914 /* ------------------------------------------------------------------------ */
5915 /* Function:    ipf_getifname                                               */
5916 /* Returns:     char *    - pointer to interface name                       */
5917 /* Parameters:  ifp(I)    - pointer to network interface                    */
5918 /*              buffer(O) - pointer to where to store interface name        */
5919 /*                                                                          */
5920 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5921 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5922 /* as a NULL pointer then return a pointer to a static array.               */
5923 /* ------------------------------------------------------------------------ */
5924 char *
ipf_getifname(ifp,buffer)5925 ipf_getifname(ifp, buffer)
5926 	struct ifnet *ifp;
5927 	char *buffer;
5928 {
5929 	static char namebuf[LIFNAMSIZ];
5930 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5931      defined(__sgi) || defined(linux) || defined(_AIX51) || \
5932      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5933 	int unit, space;
5934 	char temp[20];
5935 	char *s;
5936 # endif
5937 
5938 	if (buffer == NULL)
5939 		buffer = namebuf;
5940 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5941 	buffer[LIFNAMSIZ - 1] = '\0';
5942 # if defined(MENTAT) || defined(__FreeBSD__) || defined(__osf__) || \
5943      defined(__sgi) || defined(_AIX51) || \
5944      (defined(sun) && !defined(__SVR4) && !defined(__svr4__))
5945 	for (s = buffer; *s; s++)
5946 		;
5947 	unit = ifp->if_unit;
5948 	space = LIFNAMSIZ - (s - buffer);
5949 	if ((space > 0) && (unit >= 0)) {
5950 		snprintf(temp, sizeof(temp), "%d", unit);
5951 		(void) strncpy(s, temp, space);
5952 		s[space - 1] = '\0';
5953 	}
5954 # endif
5955 	return buffer;
5956 }
5957 #endif
5958 
5959 
5960 /* ------------------------------------------------------------------------ */
5961 /* Function:    ipf_ioctlswitch                                             */
5962 /* Returns:     int     - -1 continue processing, else ioctl return value   */
5963 /* Parameters:  unit(I) - device unit opened                                */
5964 /*              data(I) - pointer to ioctl data                             */
5965 /*              cmd(I)  - ioctl command                                     */
5966 /*              mode(I) - mode value                                        */
5967 /*              uid(I)  - uid making the ioctl call                         */
5968 /*              ctx(I)  - pointer to context data                           */
5969 /*                                                                          */
5970 /* Based on the value of unit, call the appropriate ioctl handler or return */
5971 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
5972 /* for the device in order to execute the ioctl.  A special case is made    */
5973 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
5974 /* The context data pointer is passed through as this is used as the key    */
5975 /* for locating a matching token for continued access for walking lists,    */
5976 /* etc.                                                                     */
5977 /* ------------------------------------------------------------------------ */
5978 int
ipf_ioctlswitch(ipf_main_softc_t * softc,int unit,void * data,ioctlcmd_t cmd,int mode,int uid,void * ctx)5979 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
5980     int mode, int uid, void *ctx)
5981 {
5982 	int error = 0;
5983 
5984 	switch (cmd)
5985 	{
5986 	case SIOCIPFINTERROR :
5987 		error = BCOPYOUT(&softc->ipf_interror, data,
5988 				 sizeof(softc->ipf_interror));
5989 		if (error != 0) {
5990 			IPFERROR(40);
5991 			error = EFAULT;
5992 		}
5993 		return error;
5994 	default :
5995 		break;
5996 	}
5997 
5998 	switch (unit)
5999 	{
6000 	case IPL_LOGIPF :
6001 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6002 		break;
6003 	case IPL_LOGNAT :
6004 		if (softc->ipf_running > 0) {
6005 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6006 					      uid, ctx);
6007 		} else {
6008 			IPFERROR(42);
6009 			error = EIO;
6010 		}
6011 		break;
6012 	case IPL_LOGSTATE :
6013 		if (softc->ipf_running > 0) {
6014 			error = ipf_state_ioctl(softc, data, cmd, mode,
6015 						uid, ctx);
6016 		} else {
6017 			IPFERROR(43);
6018 			error = EIO;
6019 		}
6020 		break;
6021 	case IPL_LOGAUTH :
6022 		if (softc->ipf_running > 0) {
6023 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6024 					       uid, ctx);
6025 		} else {
6026 			IPFERROR(44);
6027 			error = EIO;
6028 		}
6029 		break;
6030 	case IPL_LOGSYNC :
6031 		if (softc->ipf_running > 0) {
6032 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6033 					       uid, ctx);
6034 		} else {
6035 			error = EIO;
6036 			IPFERROR(45);
6037 		}
6038 		break;
6039 	case IPL_LOGSCAN :
6040 #ifdef IPFILTER_SCAN
6041 		if (softc->ipf_running > 0)
6042 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6043 					       uid, ctx);
6044 		else
6045 #endif
6046 		{
6047 			error = EIO;
6048 			IPFERROR(46);
6049 		}
6050 		break;
6051 	case IPL_LOGLOOKUP :
6052 		if (softc->ipf_running > 0) {
6053 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6054 						 uid, ctx);
6055 		} else {
6056 			error = EIO;
6057 			IPFERROR(47);
6058 		}
6059 		break;
6060 	default :
6061 		IPFERROR(48);
6062 		error = EIO;
6063 		break;
6064 	}
6065 
6066 	return error;
6067 }
6068 
6069 
6070 /*
6071  * This array defines the expected size of objects coming into the kernel
6072  * for the various recognised object types. The first column is flags (see
6073  * below), 2nd column is current size, 3rd column is the version number of
6074  * when the current size became current.
6075  * Flags:
6076  * 1 = minimum size, not absolute size
6077  */
6078 static	int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6079 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6080 	{ 1,	sizeof(struct friostat),	5010000 },
6081 	{ 0,	sizeof(struct fr_info),		5010000 },
6082 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6083 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6084 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6085 	{ 0,	sizeof(struct natstat),		5010000 },
6086 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6087 	{ 1,	sizeof(struct nat_save),	5010000 },
6088 	{ 0,	sizeof(struct natlookup),	5010000 },
6089 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6090 	{ 0,	sizeof(struct ips_stat),	5010000 },
6091 	{ 0,	sizeof(struct frauth),		5010000 },
6092 	{ 0,	sizeof(struct ipftune),		4010100 },
6093 	{ 0,	sizeof(struct nat),		5010000 },
6094 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6095 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6096 	{ 0,	sizeof(struct ipftable),	4011400 },
6097 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6098 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6099 	{ 1,	0,				0	}, /* IPFEXPR */
6100 	{ 0,	0,				0	}, /* PROXYCTL */
6101 	{ 0,	sizeof (struct fripf),		5010000	}
6102 };
6103 
6104 
6105 /* ------------------------------------------------------------------------ */
6106 /* Function:    ipf_inobj                                                   */
6107 /* Returns:     int     - 0 = success, else failure                         */
6108 /* Parameters:  softc(I) - soft context pointerto work with                 */
6109 /*              data(I)  - pointer to ioctl data                            */
6110 /*              objp(O)  - where to store ipfobj structure                  */
6111 /*              ptr(I)   - pointer to data to copy out                      */
6112 /*              type(I)  - type of structure being moved                    */
6113 /*                                                                          */
6114 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6115 /* add things to check for version numbers, sizes, etc, to make it backward */
6116 /* compatible at the ABI for user land.                                     */
6117 /* If objp is not NULL then we assume that the caller wants to see what is  */
6118 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6119 /* the caller what version of ipfilter the ioctl program was written to.    */
6120 /* ------------------------------------------------------------------------ */
6121 int
ipf_inobj(ipf_main_softc_t * softc,void * data,ipfobj_t * objp,void * ptr,int type)6122 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6123     int type)
6124 {
6125 	ipfobj_t obj;
6126 	int error;
6127 	int size;
6128 
6129 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6130 		IPFERROR(49);
6131 		return EINVAL;
6132 	}
6133 
6134 	if (objp == NULL)
6135 		objp = &obj;
6136 	error = BCOPYIN(data, objp, sizeof(*objp));
6137 	if (error != 0) {
6138 		IPFERROR(124);
6139 		return EFAULT;
6140 	}
6141 
6142 	if (objp->ipfo_type != type) {
6143 		IPFERROR(50);
6144 		return EINVAL;
6145 	}
6146 
6147 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6148 		if ((ipf_objbytes[type][0] & 1) != 0) {
6149 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6150 				IPFERROR(51);
6151 				return EINVAL;
6152 			}
6153 			size =  ipf_objbytes[type][1];
6154 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6155 			size =  objp->ipfo_size;
6156 		} else {
6157 			IPFERROR(52);
6158 			return EINVAL;
6159 		}
6160 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6161 		if (error != 0) {
6162 			IPFERROR(55);
6163 			error = EFAULT;
6164 		}
6165 	} else {
6166 #ifdef  IPFILTER_COMPAT
6167 		error = ipf_in_compat(softc, objp, ptr, 0);
6168 #else
6169 		IPFERROR(54);
6170 		error = EINVAL;
6171 #endif
6172 	}
6173 	return error;
6174 }
6175 
6176 
6177 /* ------------------------------------------------------------------------ */
6178 /* Function:    ipf_inobjsz                                                 */
6179 /* Returns:     int     - 0 = success, else failure                         */
6180 /* Parameters:  softc(I) - soft context pointerto work with                 */
6181 /*              data(I)  - pointer to ioctl data                            */
6182 /*              ptr(I)   - pointer to store real data in                    */
6183 /*              type(I)  - type of structure being moved                    */
6184 /*              sz(I)    - size of data to copy                             */
6185 /*                                                                          */
6186 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6187 /* but it must not be smaller than the size defined for the type and the    */
6188 /* type must allow for varied sized objects.  The extra requirement here is */
6189 /* that sz must match the size of the object being passed in - this is not  */
6190 /* not possible nor required in ipf_inobj().                                */
6191 /* ------------------------------------------------------------------------ */
6192 int
ipf_inobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6193 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6194 {
6195 	ipfobj_t obj;
6196 	int error;
6197 
6198 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6199 		IPFERROR(56);
6200 		return EINVAL;
6201 	}
6202 
6203 	error = BCOPYIN(data, &obj, sizeof(obj));
6204 	if (error != 0) {
6205 		IPFERROR(125);
6206 		return EFAULT;
6207 	}
6208 
6209 	if (obj.ipfo_type != type) {
6210 		IPFERROR(58);
6211 		return EINVAL;
6212 	}
6213 
6214 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6215 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6216 		    (sz < ipf_objbytes[type][1])) {
6217 			IPFERROR(57);
6218 			return EINVAL;
6219 		}
6220 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6221 		if (error != 0) {
6222 			IPFERROR(61);
6223 			error = EFAULT;
6224 		}
6225 	} else {
6226 #ifdef	IPFILTER_COMPAT
6227 		error = ipf_in_compat(softc, &obj, ptr, sz);
6228 #else
6229 		IPFERROR(60);
6230 		error = EINVAL;
6231 #endif
6232 	}
6233 	return error;
6234 }
6235 
6236 
6237 /* ------------------------------------------------------------------------ */
6238 /* Function:    ipf_outobjsz                                                */
6239 /* Returns:     int     - 0 = success, else failure                         */
6240 /* Parameters:  data(I) - pointer to ioctl data                             */
6241 /*              ptr(I)  - pointer to store real data in                     */
6242 /*              type(I) - type of structure being moved                     */
6243 /*              sz(I)   - size of data to copy                              */
6244 /*                                                                          */
6245 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6246 /* but it must not be smaller than the size defined for the type and the    */
6247 /* type must allow for varied sized objects.  The extra requirement here is */
6248 /* that sz must match the size of the object being passed in - this is not  */
6249 /* not possible nor required in ipf_outobj().                               */
6250 /* ------------------------------------------------------------------------ */
6251 int
ipf_outobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6252 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6253 {
6254 	ipfobj_t obj;
6255 	int error;
6256 
6257 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6258 		IPFERROR(62);
6259 		return EINVAL;
6260 	}
6261 
6262 	error = BCOPYIN(data, &obj, sizeof(obj));
6263 	if (error != 0) {
6264 		IPFERROR(127);
6265 		return EFAULT;
6266 	}
6267 
6268 	if (obj.ipfo_type != type) {
6269 		IPFERROR(63);
6270 		return EINVAL;
6271 	}
6272 
6273 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6274 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6275 		    (sz < ipf_objbytes[type][1])) {
6276 			IPFERROR(146);
6277 			return EINVAL;
6278 		}
6279 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6280 		if (error != 0) {
6281 			IPFERROR(66);
6282 			error = EFAULT;
6283 		}
6284 	} else {
6285 #ifdef	IPFILTER_COMPAT
6286 		error = ipf_out_compat(softc, &obj, ptr);
6287 #else
6288 		IPFERROR(65);
6289 		error = EINVAL;
6290 #endif
6291 	}
6292 	return error;
6293 }
6294 
6295 
6296 /* ------------------------------------------------------------------------ */
6297 /* Function:    ipf_outobj                                                  */
6298 /* Returns:     int     - 0 = success, else failure                         */
6299 /* Parameters:  data(I) - pointer to ioctl data                             */
6300 /*              ptr(I)  - pointer to store real data in                     */
6301 /*              type(I) - type of structure being moved                     */
6302 /*                                                                          */
6303 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6304 /* future, we add things to check for version numbers, sizes, etc, to make  */
6305 /* it backward  compatible at the ABI for user land.                        */
6306 /* ------------------------------------------------------------------------ */
6307 int
ipf_outobj(ipf_main_softc_t * softc,void * data,void * ptr,int type)6308 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6309 {
6310 	ipfobj_t obj;
6311 	int error;
6312 
6313 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6314 		IPFERROR(67);
6315 		return EINVAL;
6316 	}
6317 
6318 	error = BCOPYIN(data, &obj, sizeof(obj));
6319 	if (error != 0) {
6320 		IPFERROR(126);
6321 		return EFAULT;
6322 	}
6323 
6324 	if (obj.ipfo_type != type) {
6325 		IPFERROR(68);
6326 		return EINVAL;
6327 	}
6328 
6329 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6330 		if ((ipf_objbytes[type][0] & 1) != 0) {
6331 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6332 				IPFERROR(69);
6333 				return EINVAL;
6334 			}
6335 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6336 			IPFERROR(70);
6337 			return EINVAL;
6338 		}
6339 
6340 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6341 		if (error != 0) {
6342 			IPFERROR(73);
6343 			error = EFAULT;
6344 		}
6345 	} else {
6346 #ifdef	IPFILTER_COMPAT
6347 		error = ipf_out_compat(softc, &obj, ptr);
6348 #else
6349 		IPFERROR(72);
6350 		error = EINVAL;
6351 #endif
6352 	}
6353 	return error;
6354 }
6355 
6356 
6357 /* ------------------------------------------------------------------------ */
6358 /* Function:    ipf_outobjk                                                 */
6359 /* Returns:     int     - 0 = success, else failure                         */
6360 /* Parameters:  obj(I)  - pointer to data description structure             */
6361 /*              ptr(I)  - pointer to kernel data to copy out                */
6362 /*                                                                          */
6363 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6364 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6365 /* already populated with information and now we just need to use it.       */
6366 /* There is no need for this function to have a "type" parameter as there   */
6367 /* is no point in validating information that comes from the kernel with    */
6368 /* itself.                                                                  */
6369 /* ------------------------------------------------------------------------ */
6370 int
ipf_outobjk(ipf_main_softc_t * softc,ipfobj_t * obj,void * ptr)6371 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6372 {
6373 	int type = obj->ipfo_type;
6374 	int error;
6375 
6376 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6377 		IPFERROR(147);
6378 		return EINVAL;
6379 	}
6380 
6381 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6382 		if ((ipf_objbytes[type][0] & 1) != 0) {
6383 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6384 				IPFERROR(148);
6385 				return EINVAL;
6386 			}
6387 
6388 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6389 			IPFERROR(149);
6390 			return EINVAL;
6391 		}
6392 
6393 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6394 		if (error != 0) {
6395 			IPFERROR(150);
6396 			error = EFAULT;
6397 		}
6398 	} else {
6399 #ifdef  IPFILTER_COMPAT
6400 		error = ipf_out_compat(softc, obj, ptr);
6401 #else
6402 		IPFERROR(151);
6403 		error = EINVAL;
6404 #endif
6405 	}
6406 	return error;
6407 }
6408 
6409 
6410 /* ------------------------------------------------------------------------ */
6411 /* Function:    ipf_checkl4sum                                              */
6412 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6413 /* Parameters:  fin(I) - pointer to packet information                      */
6414 /*                                                                          */
6415 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6416 /* not possible, return without indicating a failure or success but in a    */
6417 /* way that is ditinguishable. This function should only be called by the   */
6418 /* ipf_checkv6sum() for each platform.                                      */
6419 /* ------------------------------------------------------------------------ */
6420 int
ipf_checkl4sum(fr_info_t * fin)6421 ipf_checkl4sum(fr_info_t *fin)
6422 {
6423 	u_short sum, hdrsum, *csump;
6424 	udphdr_t *udp;
6425 	int dosum;
6426 
6427 	/*
6428 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6429 	 * isn't already considered "bad", then validate the checksum.  If
6430 	 * this check fails then considered the packet to be "bad".
6431 	 */
6432 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6433 		return 1;
6434 
6435 	csump = NULL;
6436 	hdrsum = 0;
6437 	dosum = 0;
6438 	sum = 0;
6439 
6440 	switch (fin->fin_p)
6441 	{
6442 	case IPPROTO_TCP :
6443 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6444 		dosum = 1;
6445 		break;
6446 
6447 	case IPPROTO_UDP :
6448 		udp = fin->fin_dp;
6449 		if (udp->uh_sum != 0) {
6450 			csump = &udp->uh_sum;
6451 			dosum = 1;
6452 		}
6453 		break;
6454 
6455 #ifdef USE_INET6
6456 	case IPPROTO_ICMPV6 :
6457 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6458 		dosum = 1;
6459 		break;
6460 #endif
6461 
6462 	case IPPROTO_ICMP :
6463 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6464 		dosum = 1;
6465 		break;
6466 
6467 	default :
6468 		return 1;
6469 		/*NOTREACHED*/
6470 	}
6471 
6472 	if (csump != NULL)
6473 		hdrsum = *csump;
6474 
6475 	if (dosum) {
6476 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6477 	}
6478 #if !defined(_KERNEL)
6479 	if (sum == hdrsum) {
6480 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6481 	} else {
6482 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6483 	}
6484 #endif
6485 	DT2(l4sums, u_short, hdrsum, u_short, sum);
6486 	if (hdrsum == sum) {
6487 		fin->fin_cksum = FI_CK_SUMOK;
6488 		return 0;
6489 	}
6490 	fin->fin_cksum = FI_CK_BAD;
6491 	return -1;
6492 }
6493 
6494 
6495 /* ------------------------------------------------------------------------ */
6496 /* Function:    ipf_ifpfillv4addr                                           */
6497 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6498 /* Parameters:  atype(I)   - type of network address update to perform      */
6499 /*              sin(I)     - pointer to source of address information       */
6500 /*              mask(I)    - pointer to source of netmask information       */
6501 /*              inp(I)     - pointer to destination address store           */
6502 /*              inpmask(I) - pointer to destination netmask store           */
6503 /*                                                                          */
6504 /* Given a type of network address update (atype) to perform, copy          */
6505 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6506 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6507 /* which case the operation fails.  For all values of atype other than      */
6508 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6509 /* value.                                                                   */
6510 /* ------------------------------------------------------------------------ */
6511 int
ipf_ifpfillv4addr(int atype,struct sockaddr_in * sin,struct sockaddr_in * mask,struct in_addr * inp,struct in_addr * inpmask)6512 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6513     struct in_addr *inp, struct in_addr *inpmask)
6514 {
6515 	if (inpmask != NULL && atype != FRI_NETMASKED)
6516 		inpmask->s_addr = 0xffffffff;
6517 
6518 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6519 		if (atype == FRI_NETMASKED) {
6520 			if (inpmask == NULL)
6521 				return -1;
6522 			inpmask->s_addr = mask->sin_addr.s_addr;
6523 		}
6524 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6525 	} else {
6526 		inp->s_addr = sin->sin_addr.s_addr;
6527 	}
6528 	return 0;
6529 }
6530 
6531 
6532 #ifdef	USE_INET6
6533 /* ------------------------------------------------------------------------ */
6534 /* Function:    ipf_ifpfillv6addr                                           */
6535 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6536 /* Parameters:  atype(I)   - type of network address update to perform      */
6537 /*              sin(I)     - pointer to source of address information       */
6538 /*              mask(I)    - pointer to source of netmask information       */
6539 /*              inp(I)     - pointer to destination address store           */
6540 /*              inpmask(I) - pointer to destination netmask store           */
6541 /*                                                                          */
6542 /* Given a type of network address update (atype) to perform, copy          */
6543 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6544 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6545 /* which case the operation fails.  For all values of atype other than      */
6546 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6547 /* value.                                                                   */
6548 /* ------------------------------------------------------------------------ */
6549 int
ipf_ifpfillv6addr(int atype,struct sockaddr_in6 * sin,struct sockaddr_in6 * mask,i6addr_t * inp,i6addr_t * inpmask)6550 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6551     struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6552 {
6553 	i6addr_t *src, *and;
6554 
6555 	src = (i6addr_t *)&sin->sin6_addr;
6556 	and = (i6addr_t *)&mask->sin6_addr;
6557 
6558 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6559 		inpmask->i6[0] = 0xffffffff;
6560 		inpmask->i6[1] = 0xffffffff;
6561 		inpmask->i6[2] = 0xffffffff;
6562 		inpmask->i6[3] = 0xffffffff;
6563 	}
6564 
6565 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6566 		if (atype == FRI_NETMASKED) {
6567 			if (inpmask == NULL)
6568 				return -1;
6569 			inpmask->i6[0] = and->i6[0];
6570 			inpmask->i6[1] = and->i6[1];
6571 			inpmask->i6[2] = and->i6[2];
6572 			inpmask->i6[3] = and->i6[3];
6573 		}
6574 
6575 		inp->i6[0] = src->i6[0] & and->i6[0];
6576 		inp->i6[1] = src->i6[1] & and->i6[1];
6577 		inp->i6[2] = src->i6[2] & and->i6[2];
6578 		inp->i6[3] = src->i6[3] & and->i6[3];
6579 	} else {
6580 		inp->i6[0] = src->i6[0];
6581 		inp->i6[1] = src->i6[1];
6582 		inp->i6[2] = src->i6[2];
6583 		inp->i6[3] = src->i6[3];
6584 	}
6585 	return 0;
6586 }
6587 #endif
6588 
6589 
6590 /* ------------------------------------------------------------------------ */
6591 /* Function:    ipf_matchtag                                                */
6592 /* Returns:     0 == mismatch, 1 == match.                                  */
6593 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6594 /*              tag2(I) - pointer to second tag to compare                  */
6595 /*                                                                          */
6596 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6597 /* considered to be a match or not match, respectively.  The tag is 16      */
6598 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6599 /* compare the ints instead, for speed. tag1 is the master of the           */
6600 /* comparison.  This function should only be called with both tag1 and tag2 */
6601 /* as non-NULL pointers.                                                    */
6602 /* ------------------------------------------------------------------------ */
6603 int
ipf_matchtag(ipftag_t * tag1,ipftag_t * tag2)6604 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6605 {
6606 	if (tag1 == tag2)
6607 		return 1;
6608 
6609 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6610 		return 1;
6611 
6612 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6613 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6614 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6615 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6616 		return 1;
6617 	return 0;
6618 }
6619 
6620 
6621 /* ------------------------------------------------------------------------ */
6622 /* Function:    ipf_coalesce                                                */
6623 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6624 /* Parameters:  fin(I) - pointer to packet information                      */
6625 /*                                                                          */
6626 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6627 /* If this call returns a failure then the buffers have also been freed.    */
6628 /* ------------------------------------------------------------------------ */
6629 int
ipf_coalesce(fr_info_t * fin)6630 ipf_coalesce(fr_info_t *fin)
6631 {
6632 
6633 	if ((fin->fin_flx & FI_COALESCE) != 0)
6634 		return 1;
6635 
6636 	/*
6637 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6638 	 * return but do not indicate success or failure.
6639 	 */
6640 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6641 		return 0;
6642 
6643 #if defined(_KERNEL)
6644 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6645 		ipf_main_softc_t *softc = fin->fin_main_soft;
6646 
6647 		DT1(frb_coalesce, fr_info_t *, fin);
6648 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6649 # ifdef MENTAT
6650 		FREE_MB_T(*fin->fin_mp);
6651 # endif
6652 		fin->fin_reason = FRB_COALESCE;
6653 		*fin->fin_mp = NULL;
6654 		fin->fin_m = NULL;
6655 		return -1;
6656 	}
6657 #else
6658 	fin = fin;	/* LINT */
6659 #endif
6660 	return 1;
6661 }
6662 
6663 
6664 /*
6665  * The following table lists all of the tunable variables that can be
6666  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6667  * in the table below is as follows:
6668  *
6669  * pointer to value, name of value, minimum, maximum, size of the value's
6670  *     container, value attribute flags
6671  *
6672  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6673  * means the value can only be written to when IPFilter is loaded but disabled.
6674  * The obvious implication is if neither of these are set then the value can be
6675  * changed at any time without harm.
6676  */
6677 
6678 
6679 /* ------------------------------------------------------------------------ */
6680 /* Function:    ipf_tune_findbycookie                                       */
6681 /* Returns:     NULL = search failed, else pointer to tune struct           */
6682 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6683 /*              next(O)   - pointer to place to store the cookie for the    */
6684 /*                          "next" tuneable, if it is desired.              */
6685 /*                                                                          */
6686 /* This function is used to walk through all of the existing tunables with  */
6687 /* successive calls.  It searches the known tunables for the one which has  */
6688 /* a matching value for "cookie" - ie its address.  When returning a match, */
6689 /* the next one to be found may be returned inside next.                    */
6690 /* ------------------------------------------------------------------------ */
6691 static ipftuneable_t *
ipf_tune_findbycookie(ipftuneable_t ** ptop,void * cookie,void ** next)6692 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6693 {
6694 	ipftuneable_t *ta, **tap;
6695 
6696 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6697 		if (ta == cookie) {
6698 			if (next != NULL) {
6699 				/*
6700 				 * If the next entry in the array has a name
6701 				 * present, then return a pointer to it for
6702 				 * where to go next, else return a pointer to
6703 				 * the dynaminc list as a key to search there
6704 				 * next.  This facilitates a weak linking of
6705 				 * the two "lists" together.
6706 				 */
6707 				if ((ta + 1)->ipft_name != NULL)
6708 					*next = ta + 1;
6709 				else
6710 					*next = ptop;
6711 			}
6712 			return ta;
6713 		}
6714 
6715 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6716 		if (tap == cookie) {
6717 			if (next != NULL)
6718 				*next = &ta->ipft_next;
6719 			return ta;
6720 		}
6721 
6722 	if (next != NULL)
6723 		*next = NULL;
6724 	return NULL;
6725 }
6726 
6727 
6728 /* ------------------------------------------------------------------------ */
6729 /* Function:    ipf_tune_findbyname                                         */
6730 /* Returns:     NULL = search failed, else pointer to tune struct           */
6731 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6732 /*                                                                          */
6733 /* Search the static array of tuneables and the list of dynamic tuneables   */
6734 /* for an entry with a matching name.  If we can find one, return a pointer */
6735 /* to the matching structure.                                               */
6736 /* ------------------------------------------------------------------------ */
6737 static ipftuneable_t *
ipf_tune_findbyname(ipftuneable_t * top,const char * name)6738 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6739 {
6740 	ipftuneable_t *ta;
6741 
6742 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6743 		if (!strcmp(ta->ipft_name, name)) {
6744 			return ta;
6745 		}
6746 
6747 	return NULL;
6748 }
6749 
6750 
6751 /* ------------------------------------------------------------------------ */
6752 /* Function:    ipf_tune_add_array                                          */
6753 /* Returns:     int - 0 == success, else failure                            */
6754 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6755 /*                                                                          */
6756 /* Appends tune structures from the array passed in (newtune) to the end of */
6757 /* the current list of "dynamic" tuneable parameters.                       */
6758 /* If any entry to be added is already present (by name) then the operation */
6759 /* is aborted - entries that have been added are removed before returning.  */
6760 /* An entry with no name (NULL) is used as the indication that the end of   */
6761 /* the array has been reached.                                              */
6762 /* ------------------------------------------------------------------------ */
6763 int
ipf_tune_add_array(ipf_main_softc_t * softc,ipftuneable_t * newtune)6764 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6765 {
6766 	ipftuneable_t *nt, *dt;
6767 	int error = 0;
6768 
6769 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6770 		error = ipf_tune_add(softc, nt);
6771 		if (error != 0) {
6772 			for (dt = newtune; dt != nt; dt++) {
6773 				(void) ipf_tune_del(softc, dt);
6774 			}
6775 		}
6776 	}
6777 
6778 	return error;
6779 }
6780 
6781 
6782 /* ------------------------------------------------------------------------ */
6783 /* Function:    ipf_tune_array_link                                         */
6784 /* Returns:     0 == success, -1 == failure                                 */
6785 /* Parameters:  softc(I) - soft context pointerto work with                 */
6786 /*              array(I) - pointer to an array of tuneables                 */
6787 /*                                                                          */
6788 /* Given an array of tunables (array), append them to the current list of   */
6789 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6790 /* the array for being appended to the list, initialise all of the next     */
6791 /* pointers so we don't need to walk parts of it with ++ and others with    */
6792 /* next. The array is expected to have an entry with a NULL name as the     */
6793 /* terminator. Trying to add an array with no non-NULL names will return as */
6794 /* a failure.                                                               */
6795 /* ------------------------------------------------------------------------ */
6796 int
ipf_tune_array_link(ipf_main_softc_t * softc,ipftuneable_t * array)6797 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6798 {
6799 	ipftuneable_t *t, **p;
6800 
6801 	t = array;
6802 	if (t->ipft_name == NULL)
6803 		return -1;
6804 
6805 	for (; t[1].ipft_name != NULL; t++)
6806 		t[0].ipft_next = &t[1];
6807 	t->ipft_next = NULL;
6808 
6809 	/*
6810 	 * Since a pointer to the last entry isn't kept, we need to find it
6811 	 * each time we want to add new variables to the list.
6812 	 */
6813 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6814 		if (t->ipft_name == NULL)
6815 			break;
6816 	*p = array;
6817 
6818 	return 0;
6819 }
6820 
6821 
6822 /* ------------------------------------------------------------------------ */
6823 /* Function:    ipf_tune_array_unlink                                       */
6824 /* Returns:     0 == success, -1 == failure                                 */
6825 /* Parameters:  softc(I) - soft context pointerto work with                 */
6826 /*              array(I) - pointer to an array of tuneables                 */
6827 /*                                                                          */
6828 /* ------------------------------------------------------------------------ */
6829 int
ipf_tune_array_unlink(ipf_main_softc_t * softc,ipftuneable_t * array)6830 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6831 {
6832 	ipftuneable_t *t, **p;
6833 
6834 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6835 		if (t == array)
6836 			break;
6837 	if (t == NULL)
6838 		return -1;
6839 
6840 	for (; t[1].ipft_name != NULL; t++)
6841 		;
6842 
6843 	*p = t->ipft_next;
6844 
6845 	return 0;
6846 }
6847 
6848 
6849 /* ------------------------------------------------------------------------ */
6850 /* Function:   ipf_tune_array_copy                                          */
6851 /* Returns:    NULL = failure, else pointer to new array                    */
6852 /* Parameters: base(I)     - pointer to structure base                      */
6853 /*             size(I)     - size of the array at template                  */
6854 /*             template(I) - original array to copy                         */
6855 /*                                                                          */
6856 /* Allocate memory for a new set of tuneable values and copy everything     */
6857 /* from template into the new region of memory.  The new region is full of  */
6858 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6859 /*                                                                          */
6860 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6861 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6862 /* location of the tuneable value inside the structure pointed to by base.  */
6863 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6864 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
6865 /* ipftp_void that points to the stored value.                              */
6866 /* ------------------------------------------------------------------------ */
6867 ipftuneable_t *
ipf_tune_array_copy(void * base,size_t size,ipftuneable_t * template)6868 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6869 {
6870 	ipftuneable_t *copy;
6871 	int i;
6872 
6873 
6874 	KMALLOCS(copy, ipftuneable_t *, size);
6875 	if (copy == NULL) {
6876 		return NULL;
6877 	}
6878 	bcopy(template, copy, size);
6879 
6880 	for (i = 0; copy[i].ipft_name; i++) {
6881 		copy[i].ipft_una.ipftp_offset += (u_long)base;
6882 		copy[i].ipft_next = copy + i + 1;
6883 	}
6884 
6885 	return copy;
6886 }
6887 
6888 
6889 /* ------------------------------------------------------------------------ */
6890 /* Function:    ipf_tune_add                                                */
6891 /* Returns:     int - 0 == success, else failure                            */
6892 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
6893 /*                                                                          */
6894 /* Appends tune structures from the array passed in (newtune) to the end of */
6895 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
6896 /* owner of the object is not expected to ever change "ipft_next".          */
6897 /* ------------------------------------------------------------------------ */
6898 int
ipf_tune_add(ipf_main_softc_t * softc,ipftuneable_t * newtune)6899 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6900 {
6901 	ipftuneable_t *ta, **tap;
6902 
6903 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6904 	if (ta != NULL) {
6905 		IPFERROR(74);
6906 		return EEXIST;
6907 	}
6908 
6909 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6910 		;
6911 
6912 	newtune->ipft_next = NULL;
6913 	*tap = newtune;
6914 	return 0;
6915 }
6916 
6917 
6918 /* ------------------------------------------------------------------------ */
6919 /* Function:    ipf_tune_del                                                */
6920 /* Returns:     int - 0 == success, else failure                            */
6921 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
6922 /*                        current dynamic tuneables                         */
6923 /*                                                                          */
6924 /* Search for the tune structure, by pointer, in the list of those that are */
6925 /* dynamically added at run time.  If found, adjust the list so that this   */
6926 /* structure is no longer part of it.                                       */
6927 /* ------------------------------------------------------------------------ */
6928 int
ipf_tune_del(ipf_main_softc_t * softc,ipftuneable_t * oldtune)6929 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6930 {
6931 	ipftuneable_t *ta, **tap;
6932 	int error = 0;
6933 
6934 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
6935 	     tap = &ta->ipft_next) {
6936 		if (ta == oldtune) {
6937 			*tap = oldtune->ipft_next;
6938 			oldtune->ipft_next = NULL;
6939 			break;
6940 		}
6941 	}
6942 
6943 	if (ta == NULL) {
6944 		error = ESRCH;
6945 		IPFERROR(75);
6946 	}
6947 	return error;
6948 }
6949 
6950 
6951 /* ------------------------------------------------------------------------ */
6952 /* Function:    ipf_tune_del_array                                          */
6953 /* Returns:     int - 0 == success, else failure                            */
6954 /* Parameters:  oldtune - pointer to tuneables array                        */
6955 /*                                                                          */
6956 /* Remove each tuneable entry in the array from the list of "dynamic"       */
6957 /* tunables.  If one entry should fail to be found, an error will be        */
6958 /* returned and no further ones removed.                                    */
6959 /* An entry with a NULL name is used as the indicator of the last entry in  */
6960 /* the array.                                                               */
6961 /* ------------------------------------------------------------------------ */
6962 int
ipf_tune_del_array(ipf_main_softc_t * softc,ipftuneable_t * oldtune)6963 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6964 {
6965 	ipftuneable_t *ot;
6966 	int error = 0;
6967 
6968 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
6969 		error = ipf_tune_del(softc, ot);
6970 		if (error != 0)
6971 			break;
6972 	}
6973 
6974 	return error;
6975 
6976 }
6977 
6978 
6979 /* ------------------------------------------------------------------------ */
6980 /* Function:    ipf_tune                                                    */
6981 /* Returns:     int - 0 == success, else failure                            */
6982 /* Parameters:  cmd(I)  - ioctl command number                              */
6983 /*              data(I) - pointer to ioctl data structure                   */
6984 /*                                                                          */
6985 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
6986 /* three ioctls provide the means to access and control global variables    */
6987 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
6988 /* changed without rebooting, reloading or recompiling.  The initialisation */
6989 /* and 'destruction' routines of the various components of ipfilter are all */
6990 /* each responsible for handling their own values being too big.            */
6991 /* ------------------------------------------------------------------------ */
6992 int
ipf_ipftune(ipf_main_softc_t * softc,ioctlcmd_t cmd,void * data)6993 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
6994 {
6995 	ipftuneable_t *ta;
6996 	ipftune_t tu;
6997 	void *cookie;
6998 	int error;
6999 
7000 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7001 	if (error != 0)
7002 		return error;
7003 
7004 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7005 	cookie = tu.ipft_cookie;
7006 	ta = NULL;
7007 
7008 	switch (cmd)
7009 	{
7010 	case SIOCIPFGETNEXT :
7011 		/*
7012 		 * If cookie is non-NULL, assume it to be a pointer to the last
7013 		 * entry we looked at, so find it (if possible) and return a
7014 		 * pointer to the next one after it.  The last entry in the
7015 		 * the table is a NULL entry, so when we get to it, set cookie
7016 		 * to NULL and return that, indicating end of list, erstwhile
7017 		 * if we come in with cookie set to NULL, we are starting anew
7018 		 * at the front of the list.
7019 		 */
7020 		if (cookie != NULL) {
7021 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7022 						   cookie, &tu.ipft_cookie);
7023 		} else {
7024 			ta = softc->ipf_tuners;
7025 			tu.ipft_cookie = ta + 1;
7026 		}
7027 		if (ta != NULL) {
7028 			/*
7029 			 * Entry found, but does the data pointed to by that
7030 			 * row fit in what we can return?
7031 			 */
7032 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7033 				IPFERROR(76);
7034 				return EINVAL;
7035 			}
7036 
7037 			tu.ipft_vlong = 0;
7038 			if (ta->ipft_sz == sizeof(u_long))
7039 				tu.ipft_vlong = *ta->ipft_plong;
7040 			else if (ta->ipft_sz == sizeof(u_int))
7041 				tu.ipft_vint = *ta->ipft_pint;
7042 			else if (ta->ipft_sz == sizeof(u_short))
7043 				tu.ipft_vshort = *ta->ipft_pshort;
7044 			else if (ta->ipft_sz == sizeof(u_char))
7045 				tu.ipft_vchar = *ta->ipft_pchar;
7046 
7047 			tu.ipft_sz = ta->ipft_sz;
7048 			tu.ipft_min = ta->ipft_min;
7049 			tu.ipft_max = ta->ipft_max;
7050 			tu.ipft_flags = ta->ipft_flags;
7051 			bcopy(ta->ipft_name, tu.ipft_name,
7052 			      MIN(sizeof(tu.ipft_name),
7053 				  strlen(ta->ipft_name) + 1));
7054 		}
7055 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7056 		break;
7057 
7058 	case SIOCIPFGET :
7059 	case SIOCIPFSET :
7060 		/*
7061 		 * Search by name or by cookie value for a particular entry
7062 		 * in the tuning paramter table.
7063 		 */
7064 		IPFERROR(77);
7065 		error = ESRCH;
7066 		if (cookie != NULL) {
7067 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7068 						   cookie, NULL);
7069 			if (ta != NULL)
7070 				error = 0;
7071 		} else if (tu.ipft_name[0] != '\0') {
7072 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7073 						 tu.ipft_name);
7074 			if (ta != NULL)
7075 				error = 0;
7076 		}
7077 		if (error != 0)
7078 			break;
7079 
7080 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7081 			/*
7082 			 * Fetch the tuning parameters for a particular value
7083 			 */
7084 			tu.ipft_vlong = 0;
7085 			if (ta->ipft_sz == sizeof(u_long))
7086 				tu.ipft_vlong = *ta->ipft_plong;
7087 			else if (ta->ipft_sz == sizeof(u_int))
7088 				tu.ipft_vint = *ta->ipft_pint;
7089 			else if (ta->ipft_sz == sizeof(u_short))
7090 				tu.ipft_vshort = *ta->ipft_pshort;
7091 			else if (ta->ipft_sz == sizeof(u_char))
7092 				tu.ipft_vchar = *ta->ipft_pchar;
7093 			tu.ipft_cookie = ta;
7094 			tu.ipft_sz = ta->ipft_sz;
7095 			tu.ipft_min = ta->ipft_min;
7096 			tu.ipft_max = ta->ipft_max;
7097 			tu.ipft_flags = ta->ipft_flags;
7098 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7099 
7100 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7101 			/*
7102 			 * Set an internal parameter.  The hard part here is
7103 			 * getting the new value safely and correctly out of
7104 			 * the kernel (given we only know its size, not type.)
7105 			 */
7106 			u_long in;
7107 
7108 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7109 			    (softc->ipf_running > 0)) {
7110 				IPFERROR(78);
7111 				error = EBUSY;
7112 				break;
7113 			}
7114 
7115 			in = tu.ipft_vlong;
7116 			if (in < ta->ipft_min || in > ta->ipft_max) {
7117 				IPFERROR(79);
7118 				error = EINVAL;
7119 				break;
7120 			}
7121 
7122 			if (ta->ipft_func != NULL) {
7123 				SPL_INT(s);
7124 
7125 				SPL_NET(s);
7126 				error = (*ta->ipft_func)(softc, ta,
7127 							 &tu.ipft_un);
7128 				SPL_X(s);
7129 
7130 			} else if (ta->ipft_sz == sizeof(u_long)) {
7131 				tu.ipft_vlong = *ta->ipft_plong;
7132 				*ta->ipft_plong = in;
7133 
7134 			} else if (ta->ipft_sz == sizeof(u_int)) {
7135 				tu.ipft_vint = *ta->ipft_pint;
7136 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7137 
7138 			} else if (ta->ipft_sz == sizeof(u_short)) {
7139 				tu.ipft_vshort = *ta->ipft_pshort;
7140 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7141 
7142 			} else if (ta->ipft_sz == sizeof(u_char)) {
7143 				tu.ipft_vchar = *ta->ipft_pchar;
7144 				*ta->ipft_pchar = (u_char)(in & 0xff);
7145 			}
7146 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7147 		}
7148 		break;
7149 
7150 	default :
7151 		IPFERROR(80);
7152 		error = EINVAL;
7153 		break;
7154 	}
7155 
7156 	return error;
7157 }
7158 
7159 
7160 /* ------------------------------------------------------------------------ */
7161 /* Function:    ipf_zerostats                                               */
7162 /* Returns:     int - 0 = success, else failure                             */
7163 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7164 /*                                                                          */
7165 /* Copies the current statistics out to userspace and then zero's the       */
7166 /* current ones in the kernel. The lock is only held across the bzero() as  */
7167 /* the copyout may result in paging (ie network activity.)                  */
7168 /* ------------------------------------------------------------------------ */
7169 int
ipf_zerostats(ipf_main_softc_t * softc,void * data)7170 ipf_zerostats(ipf_main_softc_t *softc, void *data)
7171 {
7172 	friostat_t fio;
7173 	ipfobj_t obj;
7174 	int error;
7175 
7176 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7177 	if (error != 0)
7178 		return error;
7179 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7180 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7181 	if (error != 0)
7182 		return error;
7183 
7184 	WRITE_ENTER(&softc->ipf_mutex);
7185 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7186 	RWLOCK_EXIT(&softc->ipf_mutex);
7187 
7188 	return 0;
7189 }
7190 
7191 
7192 /* ------------------------------------------------------------------------ */
7193 /* Function:    ipf_resolvedest                                             */
7194 /* Returns:     Nil                                                         */
7195 /* Parameters:  softc(I) - pointer to soft context main structure           */
7196 /*              base(I)  - where strings are stored                         */
7197 /*              fdp(IO)  - pointer to destination information to resolve    */
7198 /*              v(I)     - IP protocol version to match                     */
7199 /*                                                                          */
7200 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7201 /* if a matching name can be found for the particular IP protocol version   */
7202 /* then store the interface pointer in the frdest struct.  If no match is   */
7203 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7204 /* indicate there is no information at all in the structure.                */
7205 /* ------------------------------------------------------------------------ */
7206 int
ipf_resolvedest(ipf_main_softc_t * softc,char * base,frdest_t * fdp,int v)7207 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7208 {
7209 	int errval = 0;
7210 	void *ifp;
7211 
7212 	ifp = NULL;
7213 
7214 	if (fdp->fd_name != -1) {
7215 		if (fdp->fd_type == FRD_DSTLIST) {
7216 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7217 						  IPLT_DSTLIST,
7218 						  base + fdp->fd_name,
7219 						  NULL);
7220 			if (ifp == NULL) {
7221 				IPFERROR(144);
7222 				errval = ESRCH;
7223 			}
7224 		} else {
7225 			ifp = GETIFP(base + fdp->fd_name, v);
7226 			if (ifp == NULL)
7227 				ifp = (void *)-1;
7228 			if ((ifp != NULL) && (ifp != (void *)-1))
7229 				fdp->fd_local = ipf_deliverlocal(softc, v, ifp,
7230 								 &fdp->fd_ip6);
7231 		}
7232 	}
7233 	fdp->fd_ptr = ifp;
7234 
7235 	return errval;
7236 }
7237 
7238 
7239 /* ------------------------------------------------------------------------ */
7240 /* Function:    ipf_resolvenic                                              */
7241 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7242 /*                      pointer to interface structure for NIC              */
7243 /* Parameters:  softc(I)- pointer to soft context main structure            */
7244 /*              name(I) - complete interface name                           */
7245 /*              v(I)    - IP protocol version                               */
7246 /*                                                                          */
7247 /* Look for a network interface structure that firstly has a matching name  */
7248 /* to that passed in and that is also being used for that IP protocol       */
7249 /* version (necessary on some platforms where there are separate listings   */
7250 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7251 /*                                                                          */
7252 /* ------------------------------------------------------------------------ */
7253 void *
ipf_resolvenic(ipf_main_softc_t * softc,char * name,int v)7254 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7255 {
7256 	void *nic;
7257 
7258 	softc = softc;	/* gcc -Wextra */
7259 	if (name[0] == '\0')
7260 		return NULL;
7261 
7262 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7263 		return NULL;
7264 	}
7265 
7266 	nic = GETIFP(name, v);
7267 	if (nic == NULL)
7268 		nic = (void *)-1;
7269 	return nic;
7270 }
7271 
7272 
7273 /* ------------------------------------------------------------------------ */
7274 /* Function:    ipf_token_expire                                            */
7275 /* Returns:     None.                                                       */
7276 /* Parameters:  softc(I) - pointer to soft context main structure           */
7277 /*                                                                          */
7278 /* This function is run every ipf tick to see if there are any tokens that  */
7279 /* have been held for too long and need to be freed up.                     */
7280 /* ------------------------------------------------------------------------ */
7281 void
ipf_token_expire(ipf_main_softc_t * softc)7282 ipf_token_expire(ipf_main_softc_t *softc)
7283 {
7284 	ipftoken_t *it;
7285 
7286 	WRITE_ENTER(&softc->ipf_tokens);
7287 	while ((it = softc->ipf_token_head) != NULL) {
7288 		if (it->ipt_die > softc->ipf_ticks)
7289 			break;
7290 
7291 		ipf_token_deref(softc, it);
7292 	}
7293 	RWLOCK_EXIT(&softc->ipf_tokens);
7294 }
7295 
7296 
7297 /* ------------------------------------------------------------------------ */
7298 /* Function:    ipf_token_flush                                             */
7299 /* Returns:     None.                                                       */
7300 /* Parameters:  softc(I) - pointer to soft context main structure           */
7301 /*                                                                          */
7302 /* Loop through all of the existing tokens and call deref to see if they    */
7303 /* can be freed. Normally a function like this might just loop on           */
7304 /* ipf_token_head but there is a chance that a token might have a ref count */
7305 /* of greater than one and in that case the the reference would drop twice  */
7306 /* by code that is only entitled to drop it once.                           */
7307 /* ------------------------------------------------------------------------ */
7308 static void
ipf_token_flush(ipf_main_softc_t * softc)7309 ipf_token_flush(ipf_main_softc_t *softc)
7310 {
7311 	ipftoken_t *it, *next;
7312 
7313 	WRITE_ENTER(&softc->ipf_tokens);
7314 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7315 		next = it->ipt_next;
7316 		(void) ipf_token_deref(softc, it);
7317 	}
7318 	RWLOCK_EXIT(&softc->ipf_tokens);
7319 }
7320 
7321 
7322 /* ------------------------------------------------------------------------ */
7323 /* Function:    ipf_token_del                                               */
7324 /* Returns:     int     - 0 = success, else error                           */
7325 /* Parameters:  softc(I)- pointer to soft context main structure            */
7326 /*              type(I) - the token type to match                           */
7327 /*              uid(I)  - uid owning the token                              */
7328 /*              ptr(I)  - context pointer for the token                     */
7329 /*                                                                          */
7330 /* This function looks for a a token in the current list that matches up    */
7331 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7332 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7333 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7334 /* enables debugging to distinguish between the two paths that ultimately   */
7335 /* lead to a token to be deleted.                                           */
7336 /* ------------------------------------------------------------------------ */
7337 int
ipf_token_del(ipf_main_softc_t * softc,int type,int uid,void * ptr)7338 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7339 {
7340 	ipftoken_t *it;
7341 	int error;
7342 
7343 	IPFERROR(82);
7344 	error = ESRCH;
7345 
7346 	WRITE_ENTER(&softc->ipf_tokens);
7347 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7348 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7349 		    uid == it->ipt_uid) {
7350 			it->ipt_complete = 2;
7351 			ipf_token_deref(softc, it);
7352 			error = 0;
7353 			break;
7354 		}
7355 	}
7356 	RWLOCK_EXIT(&softc->ipf_tokens);
7357 
7358 	return error;
7359 }
7360 
7361 
7362 /* ------------------------------------------------------------------------ */
7363 /* Function:    ipf_token_mark_complete                                     */
7364 /* Returns:     None.                                                       */
7365 /* Parameters:  token(I) - pointer to token structure                       */
7366 /*                                                                          */
7367 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7368 /* ------------------------------------------------------------------------ */
7369 void
ipf_token_mark_complete(ipftoken_t * token)7370 ipf_token_mark_complete(ipftoken_t *token)
7371 {
7372 	if (token->ipt_complete == 0)
7373 		token->ipt_complete = 1;
7374 }
7375 
7376 
7377 /* ------------------------------------------------------------------------ */
7378 /* Function:    ipf_token_find                                               */
7379 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7380 /* Parameters:  softc(I)- pointer to soft context main structure            */
7381 /*              type(I) - the token type to match                           */
7382 /*              uid(I)  - uid owning the token                              */
7383 /*              ptr(I)  - context pointer for the token                     */
7384 /*                                                                          */
7385 /* This function looks for a live token in the list of current tokens that  */
7386 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7387 /* allocated.  If one is found then it is moved to the top of the list of   */
7388 /* currently active tokens.                                                 */
7389 /* ------------------------------------------------------------------------ */
7390 ipftoken_t *
ipf_token_find(ipf_main_softc_t * softc,int type,int uid,void * ptr)7391 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7392 {
7393 	ipftoken_t *it, *new;
7394 
7395 	KMALLOC(new, ipftoken_t *);
7396 	if (new != NULL)
7397 		bzero((char *)new, sizeof(*new));
7398 
7399 	WRITE_ENTER(&softc->ipf_tokens);
7400 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7401 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7402 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7403 			break;
7404 	}
7405 
7406 	if (it == NULL) {
7407 		it = new;
7408 		new = NULL;
7409 		if (it == NULL) {
7410 			RWLOCK_EXIT(&softc->ipf_tokens);
7411 			return NULL;
7412 		}
7413 		it->ipt_ctx = ptr;
7414 		it->ipt_uid = uid;
7415 		it->ipt_type = type;
7416 		it->ipt_ref = 1;
7417 	} else {
7418 		if (new != NULL) {
7419 			KFREE(new);
7420 			new = NULL;
7421 		}
7422 
7423 		if (it->ipt_complete > 0)
7424 			it = NULL;
7425 		else
7426 			ipf_token_unlink(softc, it);
7427 	}
7428 
7429 	if (it != NULL) {
7430 		it->ipt_pnext = softc->ipf_token_tail;
7431 		*softc->ipf_token_tail = it;
7432 		softc->ipf_token_tail = &it->ipt_next;
7433 		it->ipt_next = NULL;
7434 		it->ipt_ref++;
7435 
7436 		it->ipt_die = softc->ipf_ticks + 20;
7437 	}
7438 
7439 	RWLOCK_EXIT(&softc->ipf_tokens);
7440 
7441 	return it;
7442 }
7443 
7444 
7445 /* ------------------------------------------------------------------------ */
7446 /* Function:    ipf_token_unlink                                            */
7447 /* Returns:     None.                                                       */
7448 /* Parameters:  softc(I) - pointer to soft context main structure           */
7449 /*              token(I) - pointer to token structure                       */
7450 /* Write Locks: ipf_tokens                                                  */
7451 /*                                                                          */
7452 /* This function unlinks a token structure from the linked list of tokens   */
7453 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7454 /* but the tail does due to the linked list implementation.                 */
7455 /* ------------------------------------------------------------------------ */
7456 static void
ipf_token_unlink(ipf_main_softc_t * softc,ipftoken_t * token)7457 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7458 {
7459 
7460 	if (softc->ipf_token_tail == &token->ipt_next)
7461 		softc->ipf_token_tail = token->ipt_pnext;
7462 
7463 	*token->ipt_pnext = token->ipt_next;
7464 	if (token->ipt_next != NULL)
7465 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7466 	token->ipt_next = NULL;
7467 	token->ipt_pnext = NULL;
7468 }
7469 
7470 
7471 /* ------------------------------------------------------------------------ */
7472 /* Function:    ipf_token_deref                                             */
7473 /* Returns:     int      - 0 == token freed, else reference count           */
7474 /* Parameters:  softc(I) - pointer to soft context main structure           */
7475 /*              token(I) - pointer to token structure                       */
7476 /* Write Locks: ipf_tokens                                                  */
7477 /*                                                                          */
7478 /* Drop the reference count on the token structure and if it drops to zero, */
7479 /* call the dereference function for the token type because it is then      */
7480 /* possible to free the token data structure.                               */
7481 /* ------------------------------------------------------------------------ */
7482 int
ipf_token_deref(ipf_main_softc_t * softc,ipftoken_t * token)7483 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7484 {
7485 	void *data, **datap;
7486 
7487 	ASSERT(token->ipt_ref > 0);
7488 	token->ipt_ref--;
7489 	if (token->ipt_ref > 0)
7490 		return token->ipt_ref;
7491 
7492 	data = token->ipt_data;
7493 	datap = &data;
7494 
7495 	if ((data != NULL) && (data != (void *)-1)) {
7496 		switch (token->ipt_type)
7497 		{
7498 		case IPFGENITER_IPF :
7499 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7500 			break;
7501 		case IPFGENITER_IPNAT :
7502 			WRITE_ENTER(&softc->ipf_nat);
7503 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7504 			RWLOCK_EXIT(&softc->ipf_nat);
7505 			break;
7506 		case IPFGENITER_NAT :
7507 			ipf_nat_deref(softc, (nat_t **)datap);
7508 			break;
7509 		case IPFGENITER_STATE :
7510 			ipf_state_deref(softc, (ipstate_t **)datap);
7511 			break;
7512 		case IPFGENITER_FRAG :
7513 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7514 			break;
7515 		case IPFGENITER_NATFRAG :
7516 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7517 			break;
7518 		case IPFGENITER_HOSTMAP :
7519 			WRITE_ENTER(&softc->ipf_nat);
7520 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7521 			RWLOCK_EXIT(&softc->ipf_nat);
7522 			break;
7523 		default :
7524 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7525 			break;
7526 		}
7527 	}
7528 
7529 	ipf_token_unlink(softc, token);
7530 	KFREE(token);
7531 	return 0;
7532 }
7533 
7534 
7535 /* ------------------------------------------------------------------------ */
7536 /* Function:    ipf_nextrule                                                */
7537 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7538 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7539 /*              fr(I)       - pointer to filter rule                        */
7540 /*              out(I)      - 1 == out rules, 0 == input rules              */
7541 /*                                                                          */
7542 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7543 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7544 /* last rule in the list. When walking rule lists, it is either input or    */
7545 /* output rules that are returned, never both.                              */
7546 /* ------------------------------------------------------------------------ */
7547 static frentry_t *
ipf_nextrule(ipf_main_softc_t * softc,int active,int unit,frentry_t * fr,int out)7548 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit,
7549     frentry_t *fr, int out)
7550 {
7551 	frentry_t *next;
7552 	frgroup_t *fg;
7553 
7554 	if (fr != NULL && fr->fr_group != -1) {
7555 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7556 				   unit, active, NULL);
7557 		if (fg != NULL)
7558 			fg = fg->fg_next;
7559 	} else {
7560 		fg = softc->ipf_groups[unit][active];
7561 	}
7562 
7563 	while (fg != NULL) {
7564 		next = fg->fg_start;
7565 		while (next != NULL) {
7566 			if (out) {
7567 				if (next->fr_flags & FR_OUTQUE)
7568 					return next;
7569 			} else if (next->fr_flags & FR_INQUE) {
7570 				return next;
7571 			}
7572 			next = next->fr_next;
7573 		}
7574 		if (next == NULL)
7575 			fg = fg->fg_next;
7576 	}
7577 
7578 	return NULL;
7579 }
7580 
7581 /* ------------------------------------------------------------------------ */
7582 /* Function:    ipf_getnextrule                                             */
7583 /* Returns:     int - 0 = success, else error                               */
7584 /* Parameters:  softc(I)- pointer to soft context main structure            */
7585 /*              t(I)   - pointer to destination information to resolve      */
7586 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7587 /*                                                                          */
7588 /* This function's first job is to bring in the ipfruleiter_t structure via */
7589 /* the ipfobj_t structure to determine what should be the next rule to      */
7590 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7591 /* find the 'next rule'.  This may include searching rule group lists or    */
7592 /* just be as simple as looking at the 'next' field in the rule structure.  */
7593 /* When we have found the rule to return, increase its reference count and  */
7594 /* if we used an existing rule to get here, decrease its reference count.   */
7595 /* ------------------------------------------------------------------------ */
7596 int
ipf_getnextrule(ipf_main_softc_t * softc,ipftoken_t * t,void * ptr)7597 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7598 {
7599 	frentry_t *fr, *next, zero;
7600 	ipfruleiter_t it;
7601 	int error, out;
7602 	frgroup_t *fg;
7603 	ipfobj_t obj;
7604 	int predict;
7605 	char *dst;
7606 	int unit;
7607 
7608 	if (t == NULL || ptr == NULL) {
7609 		IPFERROR(84);
7610 		return EFAULT;
7611 	}
7612 
7613 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7614 	if (error != 0)
7615 		return error;
7616 
7617 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7618 		IPFERROR(85);
7619 		return EINVAL;
7620 	}
7621 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7622 		IPFERROR(86);
7623 		return EINVAL;
7624 	}
7625 	if (it.iri_nrules == 0) {
7626 		IPFERROR(87);
7627 		return ENOSPC;
7628 	}
7629 	if (it.iri_rule == NULL) {
7630 		IPFERROR(88);
7631 		return EFAULT;
7632 	}
7633 
7634 	fg = NULL;
7635 	fr = t->ipt_data;
7636 	if ((it.iri_inout & F_OUT) != 0)
7637 		out = 1;
7638 	else
7639 		out = 0;
7640 	if ((it.iri_inout & F_ACIN) != 0)
7641 		unit = IPL_LOGCOUNT;
7642 	else
7643 		unit = IPL_LOGIPF;
7644 
7645 	READ_ENTER(&softc->ipf_mutex);
7646 	if (fr == NULL) {
7647 		if (*it.iri_group == '\0') {
7648 			if (unit == IPL_LOGCOUNT) {
7649 				next = softc->ipf_acct[out][it.iri_active];
7650 			} else {
7651 				next = softc->ipf_rules[out][it.iri_active];
7652 			}
7653 			if (next == NULL)
7654 				next = ipf_nextrule(softc, it.iri_active,
7655 						    unit, NULL, out);
7656 		} else {
7657 			fg = ipf_findgroup(softc, it.iri_group, unit,
7658 					   it.iri_active, NULL);
7659 			if (fg != NULL)
7660 				next = fg->fg_start;
7661 			else
7662 				next = NULL;
7663 		}
7664 	} else {
7665 		next = fr->fr_next;
7666 		if (next == NULL)
7667 			next = ipf_nextrule(softc, it.iri_active, unit,
7668 					    fr, out);
7669 	}
7670 
7671 	if (next != NULL && next->fr_next != NULL)
7672 		predict = 1;
7673 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7674 		predict = 1;
7675 	else
7676 		predict = 0;
7677 
7678 	if (fr != NULL)
7679 		(void) ipf_derefrule(softc, &fr);
7680 
7681 	obj.ipfo_type = IPFOBJ_FRENTRY;
7682 	dst = (char *)it.iri_rule;
7683 
7684 	if (next != NULL) {
7685 		obj.ipfo_size = next->fr_size;
7686 		MUTEX_ENTER(&next->fr_lock);
7687 		next->fr_ref++;
7688 		MUTEX_EXIT(&next->fr_lock);
7689 		t->ipt_data = next;
7690 	} else {
7691 		obj.ipfo_size = sizeof(frentry_t);
7692 		bzero(&zero, sizeof(zero));
7693 		next = &zero;
7694 		t->ipt_data = NULL;
7695 	}
7696 	it.iri_rule = predict ? next : NULL;
7697 	if (predict == 0)
7698 		ipf_token_mark_complete(t);
7699 
7700 	RWLOCK_EXIT(&softc->ipf_mutex);
7701 
7702 	obj.ipfo_ptr = dst;
7703 	error = ipf_outobjk(softc, &obj, next);
7704 	if (error == 0 && t->ipt_data != NULL) {
7705 		dst += obj.ipfo_size;
7706 		if (next->fr_data != NULL) {
7707 			ipfobj_t dobj;
7708 
7709 			if (next->fr_type == FR_T_IPFEXPR)
7710 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7711 			else
7712 				dobj.ipfo_type = IPFOBJ_FRIPF;
7713 			dobj.ipfo_size = next->fr_dsize;
7714 			dobj.ipfo_rev = obj.ipfo_rev;
7715 			dobj.ipfo_ptr = dst;
7716 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7717 		}
7718 	}
7719 
7720 	if ((fr != NULL) && (next == &zero))
7721 		(void) ipf_derefrule(softc, &fr);
7722 
7723 	return error;
7724 }
7725 
7726 
7727 /* ------------------------------------------------------------------------ */
7728 /* Function:    ipf_frruleiter                                              */
7729 /* Returns:     int - 0 = success, else error                               */
7730 /* Parameters:  softc(I)- pointer to soft context main structure            */
7731 /*              data(I) - the token type to match                           */
7732 /*              uid(I)  - uid owning the token                              */
7733 /*              ptr(I)  - context pointer for the token                     */
7734 /*                                                                          */
7735 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7736 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7737 /* the process doing the ioctl and use that to ask for the next rule.       */
7738 /* ------------------------------------------------------------------------ */
7739 static int
ipf_frruleiter(ipf_main_softc_t * softc,void * data,int uid,void * ctx)7740 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7741 {
7742 	ipftoken_t *token;
7743 	ipfruleiter_t it;
7744 	ipfobj_t obj;
7745 	int error;
7746 
7747 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7748 	if (token != NULL) {
7749 		error = ipf_getnextrule(softc, token, data);
7750 		WRITE_ENTER(&softc->ipf_tokens);
7751 		ipf_token_deref(softc, token);
7752 		RWLOCK_EXIT(&softc->ipf_tokens);
7753 	} else {
7754 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7755 		if (error != 0)
7756 			return error;
7757 		it.iri_rule = NULL;
7758 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7759 	}
7760 
7761 	return error;
7762 }
7763 
7764 
7765 /* ------------------------------------------------------------------------ */
7766 /* Function:    ipf_geniter                                                 */
7767 /* Returns:     int - 0 = success, else error                               */
7768 /* Parameters:  softc(I) - pointer to soft context main structure           */
7769 /*              token(I) - pointer to ipftoken_t structure                  */
7770 /*              itp(I)   - pointer to iterator data                         */
7771 /*                                                                          */
7772 /* Decide which iterator function to call using information passed through  */
7773 /* the ipfgeniter_t structure at itp.                                       */
7774 /* ------------------------------------------------------------------------ */
7775 static int
ipf_geniter(ipf_main_softc_t * softc,ipftoken_t * token,ipfgeniter_t * itp)7776 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7777 {
7778 	int error;
7779 
7780 	switch (itp->igi_type)
7781 	{
7782 	case IPFGENITER_FRAG :
7783 		error = ipf_frag_pkt_next(softc, token, itp);
7784 		break;
7785 	default :
7786 		IPFERROR(92);
7787 		error = EINVAL;
7788 		break;
7789 	}
7790 
7791 	return error;
7792 }
7793 
7794 
7795 /* ------------------------------------------------------------------------ */
7796 /* Function:    ipf_genericiter                                             */
7797 /* Returns:     int - 0 = success, else error                               */
7798 /* Parameters:  softc(I)- pointer to soft context main structure            */
7799 /*              data(I) - the token type to match                           */
7800 /*              uid(I)  - uid owning the token                              */
7801 /*              ptr(I)  - context pointer for the token                     */
7802 /*                                                                          */
7803 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7804 /* ------------------------------------------------------------------------ */
7805 int
ipf_genericiter(ipf_main_softc_t * softc,void * data,int uid,void * ctx)7806 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7807 {
7808 	ipftoken_t *token;
7809 	ipfgeniter_t iter;
7810 	int error;
7811 
7812 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7813 	if (error != 0)
7814 		return error;
7815 
7816 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7817 	if (token != NULL) {
7818 		token->ipt_subtype = iter.igi_type;
7819 		error = ipf_geniter(softc, token, &iter);
7820 		WRITE_ENTER(&softc->ipf_tokens);
7821 		ipf_token_deref(softc, token);
7822 		RWLOCK_EXIT(&softc->ipf_tokens);
7823 	} else {
7824 		IPFERROR(93);
7825 		error = 0;
7826 	}
7827 
7828 	return error;
7829 }
7830 
7831 
7832 /* ------------------------------------------------------------------------ */
7833 /* Function:    ipf_ipf_ioctl                                               */
7834 /* Returns:     int - 0 = success, else error                               */
7835 /* Parameters:  softc(I)- pointer to soft context main structure           */
7836 /*              data(I) - the token type to match                           */
7837 /*              cmd(I)  - the ioctl command number                          */
7838 /*              mode(I) - mode flags for the ioctl                          */
7839 /*              uid(I)  - uid owning the token                              */
7840 /*              ptr(I)  - context pointer for the token                     */
7841 /*                                                                          */
7842 /* This function handles all of the ioctl command that are actually isssued */
7843 /* to the /dev/ipl device.                                                  */
7844 /* ------------------------------------------------------------------------ */
7845 int
ipf_ipf_ioctl(ipf_main_softc_t * softc,void * data,ioctlcmd_t cmd,int mode,int uid,void * ctx)7846 ipf_ipf_ioctl(ipf_main_softc_t *softc, void *data, ioctlcmd_t cmd, int mode,
7847     int uid, void *ctx)
7848 {
7849 	friostat_t fio;
7850 	int error, tmp;
7851 	ipfobj_t obj;
7852 	SPL_INT(s);
7853 
7854 	switch (cmd)
7855 	{
7856 	case SIOCFRENB :
7857 		if (!(mode & FWRITE)) {
7858 			IPFERROR(94);
7859 			error = EPERM;
7860 		} else {
7861 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7862 			if (error != 0) {
7863 				IPFERROR(95);
7864 				error = EFAULT;
7865 				break;
7866 			}
7867 
7868 			WRITE_ENTER(&softc->ipf_global);
7869 			if (tmp) {
7870 				if (softc->ipf_running > 0)
7871 					error = 0;
7872 				else
7873 					error = ipfattach(softc);
7874 				if (error == 0)
7875 					softc->ipf_running = 1;
7876 				else
7877 					(void) ipfdetach(softc);
7878 			} else {
7879 				if (softc->ipf_running == 1)
7880 					error = ipfdetach(softc);
7881 				else
7882 					error = 0;
7883 				if (error == 0)
7884 					softc->ipf_running = -1;
7885 			}
7886 			RWLOCK_EXIT(&softc->ipf_global);
7887 		}
7888 		break;
7889 
7890 	case SIOCIPFSET :
7891 		if (!(mode & FWRITE)) {
7892 			IPFERROR(96);
7893 			error = EPERM;
7894 			break;
7895 		}
7896 		/* FALLTHRU */
7897 	case SIOCIPFGETNEXT :
7898 	case SIOCIPFGET :
7899 		error = ipf_ipftune(softc, cmd, (void *)data);
7900 		break;
7901 
7902 	case SIOCSETFF :
7903 		if (!(mode & FWRITE)) {
7904 			IPFERROR(97);
7905 			error = EPERM;
7906 		} else {
7907 			error = BCOPYIN(data, &softc->ipf_flags,
7908 					sizeof(softc->ipf_flags));
7909 			if (error != 0) {
7910 				IPFERROR(98);
7911 				error = EFAULT;
7912 			}
7913 		}
7914 		break;
7915 
7916 	case SIOCGETFF :
7917 		error = BCOPYOUT(&softc->ipf_flags, data,
7918 				 sizeof(softc->ipf_flags));
7919 		if (error != 0) {
7920 			IPFERROR(99);
7921 			error = EFAULT;
7922 		}
7923 		break;
7924 
7925 	case SIOCFUNCL :
7926 		error = ipf_resolvefunc(softc, (void *)data);
7927 		break;
7928 
7929 	case SIOCINAFR :
7930 	case SIOCRMAFR :
7931 	case SIOCADAFR :
7932 	case SIOCZRLST :
7933 		if (!(mode & FWRITE)) {
7934 			IPFERROR(100);
7935 			error = EPERM;
7936 		} else {
7937 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
7938 					  softc->ipf_active, 1);
7939 		}
7940 		break;
7941 
7942 	case SIOCINIFR :
7943 	case SIOCRMIFR :
7944 	case SIOCADIFR :
7945 		if (!(mode & FWRITE)) {
7946 			IPFERROR(101);
7947 			error = EPERM;
7948 		} else {
7949 			error = frrequest(softc, IPL_LOGIPF, cmd, data,
7950 					  1 - softc->ipf_active, 1);
7951 		}
7952 		break;
7953 
7954 	case SIOCSWAPA :
7955 		if (!(mode & FWRITE)) {
7956 			IPFERROR(102);
7957 			error = EPERM;
7958 		} else {
7959 			WRITE_ENTER(&softc->ipf_mutex);
7960 			error = BCOPYOUT(&softc->ipf_active, data,
7961 					 sizeof(softc->ipf_active));
7962 			if (error != 0) {
7963 				IPFERROR(103);
7964 				error = EFAULT;
7965 			} else {
7966 				softc->ipf_active = 1 - softc->ipf_active;
7967 			}
7968 			RWLOCK_EXIT(&softc->ipf_mutex);
7969 		}
7970 		break;
7971 
7972 	case SIOCGETFS :
7973 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
7974 				  IPFOBJ_IPFSTAT);
7975 		if (error != 0)
7976 			break;
7977 		ipf_getstat(softc, &fio, obj.ipfo_rev);
7978 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
7979 		break;
7980 
7981 	case SIOCFRZST :
7982 		if (!(mode & FWRITE)) {
7983 			IPFERROR(104);
7984 			error = EPERM;
7985 		} else
7986 			error = ipf_zerostats(softc, data);
7987 		break;
7988 
7989 	case SIOCIPFFL :
7990 		if (!(mode & FWRITE)) {
7991 			IPFERROR(105);
7992 			error = EPERM;
7993 		} else {
7994 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7995 			if (!error) {
7996 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
7997 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
7998 				if (error != 0) {
7999 					IPFERROR(106);
8000 					error = EFAULT;
8001 				}
8002 			} else {
8003 				IPFERROR(107);
8004 				error = EFAULT;
8005 			}
8006 		}
8007 		break;
8008 
8009 #ifdef USE_INET6
8010 	case SIOCIPFL6 :
8011 		if (!(mode & FWRITE)) {
8012 			IPFERROR(108);
8013 			error = EPERM;
8014 		} else {
8015 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8016 			if (!error) {
8017 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8018 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8019 				if (error != 0) {
8020 					IPFERROR(109);
8021 					error = EFAULT;
8022 				}
8023 			} else {
8024 				IPFERROR(110);
8025 				error = EFAULT;
8026 			}
8027 		}
8028 		break;
8029 #endif
8030 
8031 	case SIOCSTLCK :
8032 		if (!(mode & FWRITE)) {
8033 			IPFERROR(122);
8034 			error = EPERM;
8035 		} else {
8036 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8037 			if (error == 0) {
8038 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8039 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8040 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8041 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8042 			} else {
8043 				IPFERROR(111);
8044 				error = EFAULT;
8045 			}
8046 		}
8047 		break;
8048 
8049 #ifdef	IPFILTER_LOG
8050 	case SIOCIPFFB :
8051 		if (!(mode & FWRITE)) {
8052 			IPFERROR(112);
8053 			error = EPERM;
8054 		} else {
8055 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8056 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8057 			if (error) {
8058 				IPFERROR(113);
8059 				error = EFAULT;
8060 			}
8061 		}
8062 		break;
8063 #endif /* IPFILTER_LOG */
8064 
8065 	case SIOCFRSYN :
8066 		if (!(mode & FWRITE)) {
8067 			IPFERROR(114);
8068 			error = EPERM;
8069 		} else {
8070 			WRITE_ENTER(&softc->ipf_global);
8071 #if (defined(MENTAT) && defined(_KERNEL)) && !defined(INSTANCES)
8072 			error = ipfsync();
8073 #else
8074 			ipf_sync(softc, NULL);
8075 			error = 0;
8076 #endif
8077 			RWLOCK_EXIT(&softc->ipf_global);
8078 
8079 		}
8080 		break;
8081 
8082 	case SIOCGFRST :
8083 		error = ipf_outobj(softc, (void *)data,
8084 				   ipf_frag_stats(softc->ipf_frag_soft),
8085 				   IPFOBJ_FRAGSTAT);
8086 		break;
8087 
8088 #ifdef	IPFILTER_LOG
8089 	case FIONREAD :
8090 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8091 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8092 		break;
8093 #endif
8094 
8095 	case SIOCIPFITER :
8096 		SPL_SCHED(s);
8097 		error = ipf_frruleiter(softc, data, uid, ctx);
8098 		SPL_X(s);
8099 		break;
8100 
8101 	case SIOCGENITER :
8102 		SPL_SCHED(s);
8103 		error = ipf_genericiter(softc, data, uid, ctx);
8104 		SPL_X(s);
8105 		break;
8106 
8107 	case SIOCIPFDELTOK :
8108 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8109 		if (error == 0) {
8110 			SPL_SCHED(s);
8111 			error = ipf_token_del(softc, tmp, uid, ctx);
8112 			SPL_X(s);
8113 		}
8114 		break;
8115 
8116 	default :
8117 		IPFERROR(115);
8118 		error = EINVAL;
8119 		break;
8120 	}
8121 
8122 	return error;
8123 }
8124 
8125 
8126 /* ------------------------------------------------------------------------ */
8127 /* Function:    ipf_decaps                                                  */
8128 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8129 /*                           flags indicating packet filtering decision.    */
8130 /* Parameters:  fin(I)     - pointer to packet information                  */
8131 /*              pass(I)    - IP protocol version to match                   */
8132 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8133 /*                                                                          */
8134 /* This function is called for packets that are wrapt up in other packets,  */
8135 /* for example, an IP packet that is the entire data segment for another IP */
8136 /* packet.  If the basic constraints for this are satisfied, change the     */
8137 /* buffer to point to the start of the inner packet and start processing    */
8138 /* rules belonging to the head group this rule specifies.                   */
8139 /* ------------------------------------------------------------------------ */
8140 u_32_t
ipf_decaps(fr_info_t * fin,u_32_t pass,int l5proto)8141 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8142 {
8143 	fr_info_t fin2, *fino = NULL;
8144 	int elen, hlen, nh;
8145 	grehdr_t gre;
8146 	ip_t *ip;
8147 	mb_t *m;
8148 
8149 	if ((fin->fin_flx & FI_COALESCE) == 0)
8150 		if (ipf_coalesce(fin) == -1)
8151 			goto cantdecaps;
8152 
8153 	m = fin->fin_m;
8154 	hlen = fin->fin_hlen;
8155 
8156 	switch (fin->fin_p)
8157 	{
8158 	case IPPROTO_UDP :
8159 		/*
8160 		 * In this case, the specific protocol being decapsulated
8161 		 * inside UDP frames comes from the rule.
8162 		 */
8163 		nh = fin->fin_fr->fr_icode;
8164 		break;
8165 
8166 	case IPPROTO_GRE :	/* 47 */
8167 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8168 		hlen += sizeof(grehdr_t);
8169 		if (gre.gr_R|gre.gr_s)
8170 			goto cantdecaps;
8171 		if (gre.gr_C)
8172 			hlen += 4;
8173 		if (gre.gr_K)
8174 			hlen += 4;
8175 		if (gre.gr_S)
8176 			hlen += 4;
8177 
8178 		nh = IPPROTO_IP;
8179 
8180 		/*
8181 		 * If the routing options flag is set, validate that it is
8182 		 * there and bounce over it.
8183 		 */
8184 #if 0
8185 		/* This is really heavy weight and lots of room for error, */
8186 		/* so for now, put it off and get the simple stuff right.  */
8187 		if (gre.gr_R) {
8188 			u_char off, len, *s;
8189 			u_short af;
8190 			int end;
8191 
8192 			end = 0;
8193 			s = fin->fin_dp;
8194 			s += hlen;
8195 			aplen = fin->fin_plen - hlen;
8196 			while (aplen > 3) {
8197 				af = (s[0] << 8) | s[1];
8198 				off = s[2];
8199 				len = s[3];
8200 				aplen -= 4;
8201 				s += 4;
8202 				if (af == 0 && len == 0) {
8203 					end = 1;
8204 					break;
8205 				}
8206 				if (aplen < len)
8207 					break;
8208 				s += len;
8209 				aplen -= len;
8210 			}
8211 			if (end != 1)
8212 				goto cantdecaps;
8213 			hlen = s - (u_char *)fin->fin_dp;
8214 		}
8215 #endif
8216 		break;
8217 
8218 #ifdef IPPROTO_IPIP
8219 	case IPPROTO_IPIP :	/* 4 */
8220 #endif
8221 		nh = IPPROTO_IP;
8222 		break;
8223 
8224 	default :	/* Includes ESP, AH is special for IPv4 */
8225 		goto cantdecaps;
8226 	}
8227 
8228 	switch (nh)
8229 	{
8230 	case IPPROTO_IP :
8231 	case IPPROTO_IPV6 :
8232 		break;
8233 	default :
8234 		goto cantdecaps;
8235 	}
8236 
8237 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8238 	fino = fin;
8239 	fin = &fin2;
8240 	elen = hlen;
8241 #if defined(MENTAT) && defined(_KERNEL)
8242 	m->b_rptr += elen;
8243 #else
8244 	m->m_data += elen;
8245 	m->m_len -= elen;
8246 #endif
8247 	fin->fin_plen -= elen;
8248 
8249 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8250 
8251 	/*
8252 	 * Make sure we have at least enough data for the network layer
8253 	 * header.
8254 	 */
8255 	if (IP_V(ip) == 4)
8256 		hlen = IP_HL(ip) << 2;
8257 #ifdef USE_INET6
8258 	else if (IP_V(ip) == 6)
8259 		hlen = sizeof(ip6_t);
8260 #endif
8261 	else
8262 		goto cantdecaps2;
8263 
8264 	if (fin->fin_plen < hlen)
8265 		goto cantdecaps2;
8266 
8267 	fin->fin_dp = (char *)ip + hlen;
8268 
8269 	if (IP_V(ip) == 4) {
8270 		/*
8271 		 * Perform IPv4 header checksum validation.
8272 		 */
8273 		if (ipf_cksum((u_short *)ip, hlen))
8274 			goto cantdecaps2;
8275 	}
8276 
8277 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8278 cantdecaps2:
8279 		if (m != NULL) {
8280 #if defined(MENTAT) && defined(_KERNEL)
8281 			m->b_rptr -= elen;
8282 #else
8283 			m->m_data -= elen;
8284 			m->m_len += elen;
8285 #endif
8286 		}
8287 cantdecaps:
8288 		DT1(frb_decapfrip, fr_info_t *, fin);
8289 		pass &= ~FR_CMDMASK;
8290 		pass |= FR_BLOCK|FR_QUICK;
8291 		fin->fin_reason = FRB_DECAPFRIP;
8292 		return -1;
8293 	}
8294 
8295 	pass = ipf_scanlist(fin, pass);
8296 
8297 	/*
8298 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8299 	 * that is local to the decapsulation processing and back into the
8300 	 * one we were called with.
8301 	 */
8302 	fino->fin_flx = fin->fin_flx;
8303 	fino->fin_rev = fin->fin_rev;
8304 	fino->fin_icode = fin->fin_icode;
8305 	fino->fin_rule = fin->fin_rule;
8306 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8307 	fino->fin_fr = fin->fin_fr;
8308 	fino->fin_error = fin->fin_error;
8309 	fino->fin_mp = fin->fin_mp;
8310 	fino->fin_m = fin->fin_m;
8311 	m = fin->fin_m;
8312 	if (m != NULL) {
8313 #if defined(MENTAT) && defined(_KERNEL)
8314 		m->b_rptr -= elen;
8315 #else
8316 		m->m_data -= elen;
8317 		m->m_len += elen;
8318 #endif
8319 	}
8320 	return pass;
8321 }
8322 
8323 
8324 /* ------------------------------------------------------------------------ */
8325 /* Function:    ipf_matcharray_load                                         */
8326 /* Returns:     int         - 0 = success, else error                       */
8327 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8328 /*              data(I)     - pointer to ioctl data                         */
8329 /*              objp(I)     - ipfobj_t structure to load data into          */
8330 /*              arrayptr(I) - pointer to location to store array pointer    */
8331 /*                                                                          */
8332 /* This function loads in a mathing array through the ipfobj_t struct that  */
8333 /* describes it.  Sanity checking and array size limitations are enforced   */
8334 /* in this function to prevent userspace from trying to load in something   */
8335 /* that is insanely big.  Once the size of the array is known, the memory   */
8336 /* required is malloc'd and returned through changing *arrayptr.  The       */
8337 /* contents of the array are verified before returning.  Only in the event  */
8338 /* of a successful call is the caller required to free up the malloc area.  */
8339 /* ------------------------------------------------------------------------ */
8340 int
ipf_matcharray_load(ipf_main_softc_t * softc,void * data,ipfobj_t * objp,int ** arrayptr)8341 ipf_matcharray_load(ipf_main_softc_t *softc, void *data, ipfobj_t *objp,
8342     int **arrayptr)
8343 {
8344 	int arraysize, *array, error;
8345 
8346 	*arrayptr = NULL;
8347 
8348 	error = BCOPYIN(data, objp, sizeof(*objp));
8349 	if (error != 0) {
8350 		IPFERROR(116);
8351 		return EFAULT;
8352 	}
8353 
8354 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8355 		IPFERROR(117);
8356 		return EINVAL;
8357 	}
8358 
8359 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8360 	    (objp->ipfo_size > 1024)) {
8361 		IPFERROR(118);
8362 		return EINVAL;
8363 	}
8364 
8365 	arraysize = objp->ipfo_size * sizeof(*array);
8366 	KMALLOCS(array, int *, arraysize);
8367 	if (array == NULL) {
8368 		IPFERROR(119);
8369 		return ENOMEM;
8370 	}
8371 
8372 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8373 	if (error != 0) {
8374 		KFREES(array, arraysize);
8375 		IPFERROR(120);
8376 		return EFAULT;
8377 	}
8378 
8379 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8380 		KFREES(array, arraysize);
8381 		IPFERROR(121);
8382 		return EINVAL;
8383 	}
8384 
8385 	*arrayptr = array;
8386 	return 0;
8387 }
8388 
8389 
8390 /* ------------------------------------------------------------------------ */
8391 /* Function:    ipf_matcharray_verify                                       */
8392 /* Returns:     Nil                                                         */
8393 /* Parameters:  array(I)     - pointer to matching array                    */
8394 /*              arraysize(I) - number of elements in the array              */
8395 /*                                                                          */
8396 /* Verify the contents of a matching array by stepping through each element */
8397 /* in it.  The actual commands in the array are not verified for            */
8398 /* correctness, only that all of the sizes are correctly within limits.     */
8399 /* ------------------------------------------------------------------------ */
8400 int
ipf_matcharray_verify(int * array,int arraysize)8401 ipf_matcharray_verify(int *array, int arraysize)
8402 {
8403 	int i, nelem, maxidx;
8404 	ipfexp_t *e;
8405 
8406 	nelem = arraysize / sizeof(*array);
8407 
8408 	/*
8409 	 * Currently, it makes no sense to have an array less than 6
8410 	 * elements long - the initial size at the from, a single operation
8411 	 * (minimum 4 in length) and a trailer, for a total of 6.
8412 	 */
8413 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8414 		return -1;
8415 	}
8416 
8417 	/*
8418 	 * Verify the size of data pointed to by array with how long
8419 	 * the array claims to be itself.
8420 	 */
8421 	if (array[0] * sizeof(*array) != arraysize) {
8422 		return -1;
8423 	}
8424 
8425 	maxidx = nelem - 1;
8426 	/*
8427 	 * The last opcode in this array should be an IPF_EXP_END.
8428 	 */
8429 	if (array[maxidx] != IPF_EXP_END) {
8430 		return -1;
8431 	}
8432 
8433 	for (i = 1; i < maxidx; ) {
8434 		e = (ipfexp_t *)(array + i);
8435 
8436 		/*
8437 		 * The length of the bits to check must be at least 1
8438 		 * (or else there is nothing to comapre with!) and it
8439 		 * cannot exceed the length of the data present.
8440 		 */
8441 		if ((e->ipfe_size < 1 ) ||
8442 		    (e->ipfe_size + i > maxidx)) {
8443 			return -1;
8444 		}
8445 		i += e->ipfe_size;
8446 	}
8447 	return 0;
8448 }
8449 
8450 
8451 /* ------------------------------------------------------------------------ */
8452 /* Function:    ipf_fr_matcharray                                           */
8453 /* Returns:     int      - 0 = match failed, else positive match            */
8454 /* Parameters:  fin(I)   - pointer to packet information                    */
8455 /*              array(I) - pointer to matching array                        */
8456 /*                                                                          */
8457 /* This function is used to apply a matching array against a packet and     */
8458 /* return an indication of whether or not the packet successfully matches   */
8459 /* all of the commands in it.                                               */
8460 /* ------------------------------------------------------------------------ */
8461 static int
ipf_fr_matcharray(fr_info_t * fin,int * array)8462 ipf_fr_matcharray(fr_info_t *fin, int *array)
8463 {
8464 	int i, n, *x, rv, p;
8465 	ipfexp_t *e;
8466 
8467 	rv = 0;
8468 	n = array[0];
8469 	x = array + 1;
8470 
8471 	for (; n > 0; x += 3 + x[3], rv = 0) {
8472 		e = (ipfexp_t *)x;
8473 		if (e->ipfe_cmd == IPF_EXP_END)
8474 			break;
8475 		n -= e->ipfe_size;
8476 
8477 		/*
8478 		 * The upper 16 bits currently store the protocol value.
8479 		 * This is currently used with TCP and UDP port compares and
8480 		 * allows "tcp.port = 80" without requiring an explicit
8481 		 " "ip.pr = tcp" first.
8482 		 */
8483 		p = e->ipfe_cmd >> 16;
8484 		if ((p != 0) && (p != fin->fin_p))
8485 			break;
8486 
8487 		switch (e->ipfe_cmd)
8488 		{
8489 		case IPF_EXP_IP_PR :
8490 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8491 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8492 			}
8493 			break;
8494 
8495 		case IPF_EXP_IP_SRCADDR :
8496 			if (fin->fin_v != 4)
8497 				break;
8498 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8499 				rv |= ((fin->fin_saddr &
8500 					e->ipfe_arg0[i * 2 + 1]) ==
8501 				       e->ipfe_arg0[i * 2]);
8502 			}
8503 			break;
8504 
8505 		case IPF_EXP_IP_DSTADDR :
8506 			if (fin->fin_v != 4)
8507 				break;
8508 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8509 				rv |= ((fin->fin_daddr &
8510 					e->ipfe_arg0[i * 2 + 1]) ==
8511 				       e->ipfe_arg0[i * 2]);
8512 			}
8513 			break;
8514 
8515 		case IPF_EXP_IP_ADDR :
8516 			if (fin->fin_v != 4)
8517 				break;
8518 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8519 				rv |= ((fin->fin_saddr &
8520 					e->ipfe_arg0[i * 2 + 1]) ==
8521 				       e->ipfe_arg0[i * 2]) ||
8522 				      ((fin->fin_daddr &
8523 					e->ipfe_arg0[i * 2 + 1]) ==
8524 				       e->ipfe_arg0[i * 2]);
8525 			}
8526 			break;
8527 
8528 #ifdef USE_INET6
8529 		case IPF_EXP_IP6_SRCADDR :
8530 			if (fin->fin_v != 6)
8531 				break;
8532 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8533 				rv |= IP6_MASKEQ(&fin->fin_src6,
8534 						 &e->ipfe_arg0[i * 8 + 4],
8535 						 &e->ipfe_arg0[i * 8]);
8536 			}
8537 			break;
8538 
8539 		case IPF_EXP_IP6_DSTADDR :
8540 			if (fin->fin_v != 6)
8541 				break;
8542 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8543 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8544 						 &e->ipfe_arg0[i * 8 + 4],
8545 						 &e->ipfe_arg0[i * 8]);
8546 			}
8547 			break;
8548 
8549 		case IPF_EXP_IP6_ADDR :
8550 			if (fin->fin_v != 6)
8551 				break;
8552 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8553 				rv |= IP6_MASKEQ(&fin->fin_src6,
8554 						 &e->ipfe_arg0[i * 8 + 4],
8555 						 &e->ipfe_arg0[i * 8]) ||
8556 				      IP6_MASKEQ(&fin->fin_dst6,
8557 						 &e->ipfe_arg0[i * 8 + 4],
8558 						 &e->ipfe_arg0[i * 8]);
8559 			}
8560 			break;
8561 #endif
8562 
8563 		case IPF_EXP_UDP_PORT :
8564 		case IPF_EXP_TCP_PORT :
8565 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8566 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8567 				      (fin->fin_dport == e->ipfe_arg0[i]);
8568 			}
8569 			break;
8570 
8571 		case IPF_EXP_UDP_SPORT :
8572 		case IPF_EXP_TCP_SPORT :
8573 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8574 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8575 			}
8576 			break;
8577 
8578 		case IPF_EXP_UDP_DPORT :
8579 		case IPF_EXP_TCP_DPORT :
8580 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8581 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8582 			}
8583 			break;
8584 
8585 		case IPF_EXP_TCP_FLAGS :
8586 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8587 				rv |= ((fin->fin_tcpf &
8588 					e->ipfe_arg0[i * 2 + 1]) ==
8589 				       e->ipfe_arg0[i * 2]);
8590 			}
8591 			break;
8592 		}
8593 		rv ^= e->ipfe_not;
8594 
8595 		if (rv == 0)
8596 			break;
8597 	}
8598 
8599 	return rv;
8600 }
8601 
8602 
8603 /* ------------------------------------------------------------------------ */
8604 /* Function:    ipf_queueflush                                              */
8605 /* Returns:     int - number of entries flushed (0 = none)                  */
8606 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8607 /*              deletefn(I) - function to call to delete entry              */
8608 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8609 /*              userqs(I)   - top of the list of user defined timeouts      */
8610 /*                                                                          */
8611 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8612 /* need to try a bit harder to free up some space.  The algorithm used here */
8613 /* split into two parts but both halves have the same goal: to reduce the   */
8614 /* number of connections considered to be "active" to the low watermark.    */
8615 /* There are two steps in doing this:                                       */
8616 /* 1) Remove any TCP connections that are already considered to be "closed" */
8617 /*    but have not yet been removed from the state table.  The two states   */
8618 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8619 /*    candidates for this style of removal.  If freeing up entries in       */
8620 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8621 /*    we do not go on to step 2.                                            */
8622 /*                                                                          */
8623 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8624 /*    they are within the given window we are considering.  Where the       */
8625 /*    window starts and the steps taken to increase its size depend upon    */
8626 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8627 /*    last 30 seconds is not touched.                                       */
8628 /*                                              touched                     */
8629 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8630 /*           |          |        |           |     |     |                  */
8631 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8632 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8633 /*                                                                          */
8634 /* Points to note:                                                          */
8635 /* - tqe_die is the time, in the future, when entries die.                  */
8636 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8637 /*   ticks.                                                                 */
8638 /* - tqe_touched is when the entry was last used by NAT/state               */
8639 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8640 /*   ipf_ticks any given timeout queue and vice versa.                      */
8641 /* - both tqe_die and tqe_touched increase over time                        */
8642 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8643 /*   bottom and therefore the smallest values of each are at the top        */
8644 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8645 /*   queues representing each of the TCP states                             */
8646 /*                                                                          */
8647 /* We start by setting up a maximum range to scan for things to move of     */
8648 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8649 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8650 /* we start again with a new value for "iend" and "istart".  This is        */
8651 /* continued until we either finish the scan of 30 second intervals or the  */
8652 /* low water mark is reached.                                               */
8653 /* ------------------------------------------------------------------------ */
8654 int
ipf_queueflush(ipf_main_softc_t * softc,ipftq_delete_fn_t deletefn,ipftq_t * ipfqs,ipftq_t * userqs,u_int * activep,int size,int low)8655 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8656     ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8657 {
8658 	u_long interval, istart, iend;
8659 	ipftq_t *ifq, *ifqnext;
8660 	ipftqent_t *tqe, *tqn;
8661 	int removed = 0;
8662 
8663 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8664 		tqn = tqe->tqe_next;
8665 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8666 			removed++;
8667 	}
8668 	if ((*activep * 100 / size) > low) {
8669 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8670 		     ((tqe = tqn) != NULL); ) {
8671 			tqn = tqe->tqe_next;
8672 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8673 				removed++;
8674 		}
8675 	}
8676 
8677 	if ((*activep * 100 / size) <= low) {
8678 		return removed;
8679 	}
8680 
8681 	/*
8682 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8683 	 *       used then the operations are upgraded to floating point
8684 	 *       and kernels don't like floating point...
8685 	 */
8686 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8687 		istart = IPF_TTLVAL(86400 * 4);
8688 		interval = IPF_TTLVAL(43200);
8689 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8690 		istart = IPF_TTLVAL(43200);
8691 		interval = IPF_TTLVAL(1800);
8692 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8693 		istart = IPF_TTLVAL(1800);
8694 		interval = IPF_TTLVAL(30);
8695 	} else {
8696 		return 0;
8697 	}
8698 	if (istart > softc->ipf_ticks) {
8699 		if (softc->ipf_ticks - interval < interval)
8700 			istart = interval;
8701 		else
8702 			istart = (softc->ipf_ticks / interval) * interval;
8703 	}
8704 
8705 	iend = softc->ipf_ticks - interval;
8706 
8707 	while ((*activep * 100 / size) > low) {
8708 		u_long try;
8709 
8710 		try = softc->ipf_ticks - istart;
8711 
8712 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8713 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8714 				if (try < tqe->tqe_touched)
8715 					break;
8716 				tqn = tqe->tqe_next;
8717 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8718 					removed++;
8719 			}
8720 		}
8721 
8722 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8723 			ifqnext = ifq->ifq_next;
8724 
8725 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8726 				if (try < tqe->tqe_touched)
8727 					break;
8728 				tqn = tqe->tqe_next;
8729 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8730 					removed++;
8731 			}
8732 		}
8733 
8734 		if (try >= iend) {
8735 			if (interval == IPF_TTLVAL(43200)) {
8736 				interval = IPF_TTLVAL(1800);
8737 			} else if (interval == IPF_TTLVAL(1800)) {
8738 				interval = IPF_TTLVAL(30);
8739 			} else {
8740 				break;
8741 			}
8742 			if (interval >= softc->ipf_ticks)
8743 				break;
8744 
8745 			iend = softc->ipf_ticks - interval;
8746 		}
8747 		istart -= interval;
8748 	}
8749 
8750 	return removed;
8751 }
8752 
8753 
8754 /* ------------------------------------------------------------------------ */
8755 /* Function:    ipf_deliverlocal                                            */
8756 /* Returns:     int - 1 = local address, 0 = non-local address              */
8757 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8758 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8759 /*              ifp(I)       - network interface pointer                    */
8760 /*              ipaddr(I)    - IPv4/6 destination address                   */
8761 /*                                                                          */
8762 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8763 /* the network interface represented by ifp.                                */
8764 /* ------------------------------------------------------------------------ */
8765 int
ipf_deliverlocal(ipf_main_softc_t * softc,int ipversion,void * ifp,i6addr_t * ipaddr)8766 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8767     i6addr_t *ipaddr)
8768 {
8769 	i6addr_t addr;
8770 	int islocal = 0;
8771 
8772 	if (ipversion == 4) {
8773 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8774 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8775 				islocal = 1;
8776 		}
8777 
8778 #ifdef USE_INET6
8779 	} else if (ipversion == 6) {
8780 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8781 			if (IP6_EQ(&addr, ipaddr))
8782 				islocal = 1;
8783 		}
8784 #endif
8785 	}
8786 
8787 	return islocal;
8788 }
8789 
8790 
8791 /* ------------------------------------------------------------------------ */
8792 /* Function:    ipf_settimeout                                              */
8793 /* Returns:     int - 0 = success, -1 = failure                             */
8794 /* Parameters:  softc(I) - pointer to soft context main structure           */
8795 /*              t(I)     - pointer to tuneable array entry                  */
8796 /*              p(I)     - pointer to values passed in to apply             */
8797 /*                                                                          */
8798 /* This function is called to set the timeout values for each distinct      */
8799 /* queue timeout that is available.  When called, it calls into both the    */
8800 /* state and NAT code, telling them to update their timeout queues.         */
8801 /* ------------------------------------------------------------------------ */
8802 static int
ipf_settimeout(struct ipf_main_softc_s * softc,ipftuneable_t * t,ipftuneval_t * p)8803 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8804     ipftuneval_t *p)
8805 {
8806 
8807 	/*
8808 	 * ipf_interror should be set by the functions called here, not
8809 	 * by this function - it's just a middle man.
8810 	 */
8811 	if (ipf_state_settimeout(softc, t, p) == -1)
8812 		return -1;
8813 	if (ipf_nat_settimeout(softc, t, p) == -1)
8814 		return -1;
8815 	return 0;
8816 }
8817 
8818 
8819 /* ------------------------------------------------------------------------ */
8820 /* Function:    ipf_apply_timeout                                           */
8821 /* Returns:     int - 0 = success, -1 = failure                             */
8822 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8823 /*              seconds(I) - pointer to values passed in to apply           */
8824 /*                                                                          */
8825 /* This function applies a timeout of "seconds" to the timeout queue that   */
8826 /* is pointed to by "head".  All entries on this list have an expiration    */
8827 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8828 /* function should only be called when the delta is non-zero, the task is   */
8829 /* to walk the entire list and apply the change.  The sort order will not   */
8830 /* change.  The only catch is that this is O(n) across the list, so if the  */
8831 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8832 /* could take a relatively long time to work through them all.              */
8833 /* ------------------------------------------------------------------------ */
8834 void
ipf_apply_timeout(ipftq_t * head,u_int seconds)8835 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8836 {
8837 	u_int oldtimeout, newtimeout;
8838 	ipftqent_t *tqe;
8839 	int delta;
8840 
8841 	MUTEX_ENTER(&head->ifq_lock);
8842 	oldtimeout = head->ifq_ttl;
8843 	newtimeout = IPF_TTLVAL(seconds);
8844 	delta = oldtimeout - newtimeout;
8845 
8846 	head->ifq_ttl = newtimeout;
8847 
8848 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8849 		tqe->tqe_die += delta;
8850 	}
8851 	MUTEX_EXIT(&head->ifq_lock);
8852 }
8853 
8854 
8855 /* ------------------------------------------------------------------------ */
8856 /* Function:   ipf_settimeout_tcp                                           */
8857 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8858 /* Parameters: t(I)   - pointer to tuneable to change                       */
8859 /*             p(I)   - pointer to new timeout information                  */
8860 /*             tab(I) - pointer to table of TCP queues                      */
8861 /*                                                                          */
8862 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8863 /* updates all of the entries on the relevant timeout queue by calling      */
8864 /* ipf_apply_timeout().                                                     */
8865 /* ------------------------------------------------------------------------ */
8866 int
ipf_settimeout_tcp(ipftuneable_t * t,ipftuneval_t * p,ipftq_t * tab)8867 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8868 {
8869 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8870 	    !strcmp(t->ipft_name, "tcp_established")) {
8871 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8872 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8873 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8874 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8875 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8876 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8877 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8878 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8879 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8880 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
8881 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8882 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8883 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8884 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
8885 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8886 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8887 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8888 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8889 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8890 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
8891 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8892 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8893 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8894 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8895 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8896 	} else {
8897 		/*
8898 		 * ipf_interror isn't set here because it should be set
8899 		 * by whatever called this function.
8900 		 */
8901 		return -1;
8902 	}
8903 	return 0;
8904 }
8905 
8906 
8907 /* ------------------------------------------------------------------------ */
8908 /* Function:   ipf_main_soft_create                                         */
8909 /* Returns:    NULL = failure, else success                                 */
8910 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8911 /*                                                                          */
8912 /* Create the foundation soft context structure. In circumstances where it  */
8913 /* is not required to dynamically allocate the context, a pointer can be    */
8914 /* passed in (rather than NULL) to a structure to be initialised.           */
8915 /* The main thing of interest is that a number of locks are initialised     */
8916 /* here instead of in the where might be expected - in the relevant create  */
8917 /* function elsewhere.  This is done because the current locking design has */
8918 /* some areas where these locks are used outside of their module.           */
8919 /* Possibly the most important exercise that is done here is setting of all */
8920 /* the timeout values, allowing them to be changed before init().           */
8921 /* ------------------------------------------------------------------------ */
8922 void *
ipf_main_soft_create(void * arg)8923 ipf_main_soft_create(void *arg)
8924 {
8925 	ipf_main_softc_t *softc;
8926 
8927 	if (arg == NULL) {
8928 		KMALLOC(softc, ipf_main_softc_t *);
8929 		if (softc == NULL)
8930 			return NULL;
8931 	} else {
8932 		softc = arg;
8933 	}
8934 
8935 	bzero((char *)softc, sizeof(*softc));
8936 
8937 	/*
8938 	 * This serves as a flag as to whether or not the softc should be
8939 	 * free'd when _destroy is called.
8940 	 */
8941 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
8942 
8943 	softc->ipf_tuners = ipf_tune_array_copy(softc,
8944 						sizeof(ipf_main_tuneables),
8945 						ipf_main_tuneables);
8946 	if (softc->ipf_tuners == NULL) {
8947 		ipf_main_soft_destroy(softc);
8948 		return NULL;
8949 	}
8950 
8951 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
8952 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
8953 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
8954 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
8955 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
8956 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
8957 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
8958 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
8959 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
8960 
8961 	softc->ipf_token_head = NULL;
8962 	softc->ipf_token_tail = &softc->ipf_token_head;
8963 
8964 	softc->ipf_tcpidletimeout = FIVE_DAYS;
8965 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
8966 	softc->ipf_tcplastack = IPF_TTLVAL(30);
8967 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
8968 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
8969 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
8970 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
8971 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
8972 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
8973 	softc->ipf_udptimeout = IPF_TTLVAL(120);
8974 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
8975 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
8976 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
8977 	softc->ipf_iptimeout = IPF_TTLVAL(60);
8978 
8979 #if defined(IPFILTER_DEFAULT_BLOCK)
8980 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
8981 #else
8982 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
8983 #endif
8984 	softc->ipf_minttl = 4;
8985 	softc->ipf_icmpminfragmtu = 68;
8986 	softc->ipf_flags = IPF_LOGGING;
8987 
8988 	return softc;
8989 }
8990 
8991 /* ------------------------------------------------------------------------ */
8992 /* Function:   ipf_main_soft_init                                           */
8993 /* Returns:    0 = success, -1 = failure                                    */
8994 /* Parameters: softc(I) - pointer to soft context main structure            */
8995 /*                                                                          */
8996 /* A null-op function that exists as a placeholder so that the flow in      */
8997 /* other functions is obvious.                                              */
8998 /* ------------------------------------------------------------------------ */
8999 /*ARGSUSED*/
9000 int
ipf_main_soft_init(ipf_main_softc_t * softc)9001 ipf_main_soft_init(ipf_main_softc_t *softc)
9002 {
9003 	return 0;
9004 }
9005 
9006 
9007 /* ------------------------------------------------------------------------ */
9008 /* Function:   ipf_main_soft_destroy                                        */
9009 /* Returns:    void                                                         */
9010 /* Parameters: softc(I) - pointer to soft context main structure            */
9011 /*                                                                          */
9012 /* Undo everything that we did in ipf_main_soft_create.                     */
9013 /*                                                                          */
9014 /* The most important check that needs to be made here is whether or not    */
9015 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9016 /* value is stored in ipf_dynamic_main.                                     */
9017 /* ------------------------------------------------------------------------ */
9018 /*ARGSUSED*/
9019 void
ipf_main_soft_destroy(ipf_main_softc_t * softc)9020 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9021 {
9022 
9023 	RW_DESTROY(&softc->ipf_frag);
9024 	RW_DESTROY(&softc->ipf_poolrw);
9025 	RW_DESTROY(&softc->ipf_nat);
9026 	RW_DESTROY(&softc->ipf_state);
9027 	RW_DESTROY(&softc->ipf_tokens);
9028 	RW_DESTROY(&softc->ipf_mutex);
9029 	RW_DESTROY(&softc->ipf_global);
9030 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9031 	MUTEX_DESTROY(&softc->ipf_rw);
9032 
9033 	if (softc->ipf_tuners != NULL) {
9034 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9035 	}
9036 	if (softc->ipf_dynamic_softc == 1) {
9037 		KFREE(softc);
9038 	}
9039 }
9040 
9041 
9042 /* ------------------------------------------------------------------------ */
9043 /* Function:   ipf_main_soft_fini                                           */
9044 /* Returns:    0 = success, -1 = failure                                    */
9045 /* Parameters: softc(I) - pointer to soft context main structure            */
9046 /*                                                                          */
9047 /* Clean out the rules which have been added since _init was last called,   */
9048 /* the only dynamic part of the mainline.                                   */
9049 /* ------------------------------------------------------------------------ */
9050 int
ipf_main_soft_fini(ipf_main_softc_t * softc)9051 ipf_main_soft_fini(ipf_main_softc_t *softc)
9052 {
9053 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9054 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9055 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9056 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9057 
9058 	return 0;
9059 }
9060 
9061 
9062 /* ------------------------------------------------------------------------ */
9063 /* Function:   ipf_main_load                                                */
9064 /* Returns:    0 = success, -1 = failure                                    */
9065 /* Parameters: none                                                         */
9066 /*                                                                          */
9067 /* Handle global initialisation that needs to be done for the base part of  */
9068 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9069 /* arrays that get used by the state/NAT code.                              */
9070 /* ------------------------------------------------------------------------ */
9071 int
ipf_main_load(void)9072 ipf_main_load(void)
9073 {
9074 	int i;
9075 
9076 	/* fill icmp reply type table */
9077 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9078 		icmpreplytype4[i] = -1;
9079 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9080 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9081 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9082 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9083 
9084 #ifdef  USE_INET6
9085 	/* fill icmp reply type table */
9086 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9087 		icmpreplytype6[i] = -1;
9088 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9089 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9090 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9091 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9092 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9093 #endif
9094 
9095 	return 0;
9096 }
9097 
9098 
9099 /* ------------------------------------------------------------------------ */
9100 /* Function:   ipf_main_unload                                              */
9101 /* Returns:    0 = success, -1 = failure                                    */
9102 /* Parameters: none                                                         */
9103 /*                                                                          */
9104 /* A null-op function that exists as a placeholder so that the flow in      */
9105 /* other functions is obvious.                                              */
9106 /* ------------------------------------------------------------------------ */
9107 int
ipf_main_unload(void)9108 ipf_main_unload(void)
9109 {
9110 	return 0;
9111 }
9112 
9113 
9114 /* ------------------------------------------------------------------------ */
9115 /* Function:   ipf_load_all                                                 */
9116 /* Returns:    0 = success, -1 = failure                                    */
9117 /* Parameters: none                                                         */
9118 /*                                                                          */
9119 /* Work through all of the subsystems inside IPFilter and call the load     */
9120 /* function for each in an order that won't lead to a crash :)              */
9121 /* ------------------------------------------------------------------------ */
9122 int
ipf_load_all(void)9123 ipf_load_all(void)
9124 {
9125 	if (ipf_main_load() == -1)
9126 		return -1;
9127 
9128 	if (ipf_state_main_load() == -1)
9129 		return -1;
9130 
9131 	if (ipf_nat_main_load() == -1)
9132 		return -1;
9133 
9134 	if (ipf_frag_main_load() == -1)
9135 		return -1;
9136 
9137 	if (ipf_auth_main_load() == -1)
9138 		return -1;
9139 
9140 	if (ipf_proxy_main_load() == -1)
9141 		return -1;
9142 
9143 	return 0;
9144 }
9145 
9146 
9147 /* ------------------------------------------------------------------------ */
9148 /* Function:   ipf_unload_all                                               */
9149 /* Returns:    0 = success, -1 = failure                                    */
9150 /* Parameters: none                                                         */
9151 /*                                                                          */
9152 /* Work through all of the subsystems inside IPFilter and call the unload   */
9153 /* function for each in an order that won't lead to a crash :)              */
9154 /* ------------------------------------------------------------------------ */
9155 int
ipf_unload_all(void)9156 ipf_unload_all(void)
9157 {
9158 	if (ipf_proxy_main_unload() == -1)
9159 		return -1;
9160 
9161 	if (ipf_auth_main_unload() == -1)
9162 		return -1;
9163 
9164 	if (ipf_frag_main_unload() == -1)
9165 		return -1;
9166 
9167 	if (ipf_nat_main_unload() == -1)
9168 		return -1;
9169 
9170 	if (ipf_state_main_unload() == -1)
9171 		return -1;
9172 
9173 	if (ipf_main_unload() == -1)
9174 		return -1;
9175 
9176 	return 0;
9177 }
9178 
9179 
9180 /* ------------------------------------------------------------------------ */
9181 /* Function:   ipf_create_all                                               */
9182 /* Returns:    NULL = failure, else success                                 */
9183 /* Parameters: arg(I) - pointer to soft context main structure              */
9184 /*                                                                          */
9185 /* Work through all of the subsystems inside IPFilter and call the create   */
9186 /* function for each in an order that won't lead to a crash :)              */
9187 /* ------------------------------------------------------------------------ */
9188 ipf_main_softc_t *
ipf_create_all(void * arg)9189 ipf_create_all(void *arg)
9190 {
9191 	ipf_main_softc_t *softc;
9192 
9193 	softc = ipf_main_soft_create(arg);
9194 	if (softc == NULL)
9195 		return NULL;
9196 
9197 #ifdef IPFILTER_LOG
9198 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9199 	if (softc->ipf_log_soft == NULL) {
9200 		ipf_destroy_all(softc);
9201 		return NULL;
9202 	}
9203 #endif
9204 
9205 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9206 	if (softc->ipf_lookup_soft == NULL) {
9207 		ipf_destroy_all(softc);
9208 		return NULL;
9209 	}
9210 
9211 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9212 	if (softc->ipf_sync_soft == NULL) {
9213 		ipf_destroy_all(softc);
9214 		return NULL;
9215 	}
9216 
9217 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9218 	if (softc->ipf_state_soft == NULL) {
9219 		ipf_destroy_all(softc);
9220 		return NULL;
9221 	}
9222 
9223 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9224 	if (softc->ipf_nat_soft == NULL) {
9225 		ipf_destroy_all(softc);
9226 		return NULL;
9227 	}
9228 
9229 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9230 	if (softc->ipf_frag_soft == NULL) {
9231 		ipf_destroy_all(softc);
9232 		return NULL;
9233 	}
9234 
9235 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9236 	if (softc->ipf_auth_soft == NULL) {
9237 		ipf_destroy_all(softc);
9238 		return NULL;
9239 	}
9240 
9241 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9242 	if (softc->ipf_proxy_soft == NULL) {
9243 		ipf_destroy_all(softc);
9244 		return NULL;
9245 	}
9246 
9247 	return softc;
9248 }
9249 
9250 
9251 /* ------------------------------------------------------------------------ */
9252 /* Function:   ipf_destroy_all                                              */
9253 /* Returns:    void                                                         */
9254 /* Parameters: softc(I) - pointer to soft context main structure            */
9255 /*                                                                          */
9256 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9257 /* function for each in an order that won't lead to a crash :)              */
9258 /*                                                                          */
9259 /* Every one of these functions is expected to succeed, so there is no      */
9260 /* checking of return values.                                               */
9261 /* ------------------------------------------------------------------------ */
9262 void
ipf_destroy_all(ipf_main_softc_t * softc)9263 ipf_destroy_all(ipf_main_softc_t *softc)
9264 {
9265 
9266 	if (softc->ipf_state_soft != NULL) {
9267 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9268 		softc->ipf_state_soft = NULL;
9269 	}
9270 
9271 	if (softc->ipf_nat_soft != NULL) {
9272 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9273 		softc->ipf_nat_soft = NULL;
9274 	}
9275 
9276 	if (softc->ipf_frag_soft != NULL) {
9277 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9278 		softc->ipf_frag_soft = NULL;
9279 	}
9280 
9281 	if (softc->ipf_auth_soft != NULL) {
9282 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9283 		softc->ipf_auth_soft = NULL;
9284 	}
9285 
9286 	if (softc->ipf_proxy_soft != NULL) {
9287 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9288 		softc->ipf_proxy_soft = NULL;
9289 	}
9290 
9291 	if (softc->ipf_sync_soft != NULL) {
9292 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9293 		softc->ipf_sync_soft = NULL;
9294 	}
9295 
9296 	if (softc->ipf_lookup_soft != NULL) {
9297 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9298 		softc->ipf_lookup_soft = NULL;
9299 	}
9300 
9301 #ifdef IPFILTER_LOG
9302 	if (softc->ipf_log_soft != NULL) {
9303 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9304 		softc->ipf_log_soft = NULL;
9305 	}
9306 #endif
9307 
9308 	ipf_main_soft_destroy(softc);
9309 }
9310 
9311 
9312 /* ------------------------------------------------------------------------ */
9313 /* Function:   ipf_init_all                                                 */
9314 /* Returns:    0 = success, -1 = failure                                    */
9315 /* Parameters: softc(I) - pointer to soft context main structure            */
9316 /*                                                                          */
9317 /* Work through all of the subsystems inside IPFilter and call the init     */
9318 /* function for each in an order that won't lead to a crash :)              */
9319 /* ------------------------------------------------------------------------ */
9320 int
ipf_init_all(ipf_main_softc_t * softc)9321 ipf_init_all(ipf_main_softc_t *softc)
9322 {
9323 
9324 	if (ipf_main_soft_init(softc) == -1)
9325 		return -1;
9326 
9327 #ifdef IPFILTER_LOG
9328 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9329 		return -1;
9330 #endif
9331 
9332 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9333 		return -1;
9334 
9335 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9336 		return -1;
9337 
9338 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9339 		return -1;
9340 
9341 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9342 		return -1;
9343 
9344 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9345 		return -1;
9346 
9347 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9348 		return -1;
9349 
9350 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9351 		return -1;
9352 
9353 	return 0;
9354 }
9355 
9356 
9357 /* ------------------------------------------------------------------------ */
9358 /* Function:   ipf_fini_all                                                 */
9359 /* Returns:    0 = success, -1 = failure                                    */
9360 /* Parameters: softc(I) - pointer to soft context main structure            */
9361 /*                                                                          */
9362 /* Work through all of the subsystems inside IPFilter and call the fini     */
9363 /* function for each in an order that won't lead to a crash :)              */
9364 /* ------------------------------------------------------------------------ */
9365 int
ipf_fini_all(ipf_main_softc_t * softc)9366 ipf_fini_all(ipf_main_softc_t *softc)
9367 {
9368 
9369 	ipf_token_flush(softc);
9370 
9371 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9372 		return -1;
9373 
9374 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9375 		return -1;
9376 
9377 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9378 		return -1;
9379 
9380 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9381 		return -1;
9382 
9383 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9384 		return -1;
9385 
9386 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9387 		return -1;
9388 
9389 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9390 		return -1;
9391 
9392 #ifdef IPFILTER_LOG
9393 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9394 		return -1;
9395 #endif
9396 
9397 	if (ipf_main_soft_fini(softc) == -1)
9398 		return -1;
9399 
9400 	return 0;
9401 }
9402 
9403 
9404 /* ------------------------------------------------------------------------ */
9405 /* Function:    ipf_rule_expire                                             */
9406 /* Returns:     Nil                                                         */
9407 /* Parameters:  softc(I) - pointer to soft context main structure           */
9408 /*                                                                          */
9409 /* At present this function exists just to support temporary addition of    */
9410 /* firewall rules. Both inactive and active lists are scanned for items to  */
9411 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9412 /* loaded in.                                                               */
9413 /* ------------------------------------------------------------------------ */
9414 void
ipf_rule_expire(ipf_main_softc_t * softc)9415 ipf_rule_expire(ipf_main_softc_t *softc)
9416 {
9417 	frentry_t *fr;
9418 
9419 	if ((softc->ipf_rule_explist[0] == NULL) &&
9420 	    (softc->ipf_rule_explist[1] == NULL))
9421 		return;
9422 
9423 	WRITE_ENTER(&softc->ipf_mutex);
9424 
9425 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9426 		/*
9427 		 * Because the list is kept sorted on insertion, the fist
9428 		 * one that dies in the future means no more work to do.
9429 		 */
9430 		if (fr->fr_die > softc->ipf_ticks)
9431 			break;
9432 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9433 	}
9434 
9435 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9436 		/*
9437 		 * Because the list is kept sorted on insertion, the fist
9438 		 * one that dies in the future means no more work to do.
9439 		 */
9440 		if (fr->fr_die > softc->ipf_ticks)
9441 			break;
9442 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9443 	}
9444 
9445 	RWLOCK_EXIT(&softc->ipf_mutex);
9446 }
9447 
9448 
9449 static int ipf_ht_node_cmp(const struct host_node_s *, const struct host_node_s *);
9450 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9451 				 i6addr_t *);
9452 
RBI_CODE(ipf_rb,host_node_t,hn_entry,ipf_ht_node_cmp)9453 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9454 
9455 
9456 /* ------------------------------------------------------------------------ */
9457 /* Function:    ipf_ht_node_cmp                                             */
9458 /* Returns:     int   - 0 == nodes are the same, ..                         */
9459 /* Parameters:  k1(I) - pointer to first key to compare                     */
9460 /*              k2(I) - pointer to second key to compare                    */
9461 /*                                                                          */
9462 /* The "key" for the node is a combination of two fields: the address       */
9463 /* family and the address itself.                                           */
9464 /*                                                                          */
9465 /* Because we're not actually interpreting the address data, it isn't       */
9466 /* necessary to convert them to/from network/host byte order. The mask is   */
9467 /* just used to remove bits that aren't significant - it doesn't matter     */
9468 /* where they are, as long as they're always in the same place.             */
9469 /*                                                                          */
9470 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9471 /* this is where individual ones will differ the most - but not true for    */
9472 /* for /48's, etc.                                                          */
9473 /* ------------------------------------------------------------------------ */
9474 static int
9475 ipf_ht_node_cmp(const struct host_node_s *k1, const struct host_node_s *k2)
9476 {
9477 	int i;
9478 
9479 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9480 	if (i != 0)
9481 		return i;
9482 
9483 	if (k1->hn_addr.adf_family == AF_INET)
9484 		return (k2->hn_addr.adf_addr.in4.s_addr -
9485 			k1->hn_addr.adf_addr.in4.s_addr);
9486 
9487 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9488 	if (i != 0)
9489 		return i;
9490 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9491 	if (i != 0)
9492 		return i;
9493 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9494 	if (i != 0)
9495 		return i;
9496 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9497 	return i;
9498 }
9499 
9500 
9501 /* ------------------------------------------------------------------------ */
9502 /* Function:    ipf_ht_node_make_key                                        */
9503 /* Returns:     Nil                                                         */
9504 /* parameters:  htp(I)    - pointer to address tracking structure           */
9505 /*              key(I)    - where to store masked address for lookup        */
9506 /*              family(I) - protocol family of address                      */
9507 /*              addr(I)   - pointer to network address                      */
9508 /*                                                                          */
9509 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9510 /* copy the address passed in into the key structure whilst masking out the */
9511 /* bits that we don't want.                                                 */
9512 /*                                                                          */
9513 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9514 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9515 /* have to be wary of that and not allow 32-128 to happen.                  */
9516 /* ------------------------------------------------------------------------ */
9517 static void
ipf_ht_node_make_key(host_track_t * htp,host_node_t * key,int family,i6addr_t * addr)9518 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9519     i6addr_t *addr)
9520 {
9521 	key->hn_addr.adf_family = family;
9522 	if (family == AF_INET) {
9523 		u_32_t mask;
9524 		int bits;
9525 
9526 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9527 		bits = htp->ht_netmask;
9528 		if (bits >= 32) {
9529 			mask = 0xffffffff;
9530 		} else {
9531 			mask = htonl(0xffffffff << (32 - bits));
9532 		}
9533 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9534 #ifdef USE_INET6
9535 	} else {
9536 		int bits = htp->ht_netmask;
9537 
9538 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9539 		if (bits > 96) {
9540 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9541 					     htonl(0xffffffff << (128 - bits));
9542 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9543 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9544 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9545 		} else if (bits > 64) {
9546 			key->hn_addr.adf_addr.i6[3] = 0;
9547 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9548 					     htonl(0xffffffff << (96 - bits));
9549 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9550 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9551 		} else if (bits > 32) {
9552 			key->hn_addr.adf_addr.i6[3] = 0;
9553 			key->hn_addr.adf_addr.i6[2] = 0;
9554 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9555 					     htonl(0xffffffff << (64 - bits));
9556 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9557 		} else {
9558 			key->hn_addr.adf_addr.i6[3] = 0;
9559 			key->hn_addr.adf_addr.i6[2] = 0;
9560 			key->hn_addr.adf_addr.i6[1] = 0;
9561 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9562 					     htonl(0xffffffff << (32 - bits));
9563 		}
9564 #endif
9565 	}
9566 }
9567 
9568 
9569 /* ------------------------------------------------------------------------ */
9570 /* Function:    ipf_ht_node_add                                             */
9571 /* Returns:     int       - 0 == success,  -1 == failure                    */
9572 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9573 /*              htp(I)    - pointer to address tracking structure           */
9574 /*              family(I) - protocol family of address                      */
9575 /*              addr(I)   - pointer to network address                      */
9576 /*                                                                          */
9577 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9578 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9579 /*                                                                          */
9580 /* After preparing the key with the address information to find, look in    */
9581 /* the red-black tree to see if the address is known. A successful call to  */
9582 /* this function can mean one of two things: a new node was added to the    */
9583 /* tree or a matching node exists and we're able to bump up its activity.   */
9584 /* ------------------------------------------------------------------------ */
9585 int
ipf_ht_node_add(ipf_main_softc_t * softc,host_track_t * htp,int family,i6addr_t * addr)9586 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9587     i6addr_t *addr)
9588 {
9589 	host_node_t *h;
9590 	host_node_t k;
9591 
9592 	ipf_ht_node_make_key(htp, &k, family, addr);
9593 
9594 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9595 	if (h == NULL) {
9596 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9597 			return -1;
9598 		KMALLOC(h, host_node_t *);
9599 		if (h == NULL) {
9600 			DT(ipf_rb_no_mem);
9601 			LBUMP(ipf_rb_no_mem);
9602 			return -1;
9603 		}
9604 
9605 		/*
9606 		 * If there was a macro to initialise the RB node then that
9607 		 * would get used here, but there isn't...
9608 		 */
9609 		bzero((char *)h, sizeof(*h));
9610 		h->hn_addr = k.hn_addr;
9611 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9612 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9613 		htp->ht_cur_nodes++;
9614 	} else {
9615 		if ((htp->ht_max_per_node != 0) &&
9616 		    (h->hn_active >= htp->ht_max_per_node)) {
9617 			DT(ipf_rb_node_max);
9618 			LBUMP(ipf_rb_node_max);
9619 			return -1;
9620 		}
9621 	}
9622 
9623 	h->hn_active++;
9624 
9625 	return 0;
9626 }
9627 
9628 
9629 /* ------------------------------------------------------------------------ */
9630 /* Function:    ipf_ht_node_del                                             */
9631 /* Returns:     int       - 0 == success,  -1 == failure                    */
9632 /* parameters:  htp(I)    - pointer to address tracking structure           */
9633 /*              family(I) - protocol family of address                      */
9634 /*              addr(I)   - pointer to network address                      */
9635 /*                                                                          */
9636 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9637 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9638 /*                                                                          */
9639 /* Try and find the address passed in amongst the leaves on this tree to    */
9640 /* be friend. If found then drop the active account for that node drops by  */
9641 /* one. If that count reaches 0, it is time to free it all up.              */
9642 /* ------------------------------------------------------------------------ */
9643 int
ipf_ht_node_del(host_track_t * htp,int family,i6addr_t * addr)9644 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9645 {
9646 	host_node_t *h;
9647 	host_node_t k;
9648 
9649 	ipf_ht_node_make_key(htp, &k, family, addr);
9650 
9651 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9652 	if (h == NULL) {
9653 		return -1;
9654 	} else {
9655 		h->hn_active--;
9656 		if (h->hn_active == 0) {
9657 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9658 			htp->ht_cur_nodes--;
9659 			KFREE(h);
9660 		}
9661 	}
9662 
9663 	return 0;
9664 }
9665 
9666 
9667 /* ------------------------------------------------------------------------ */
9668 /* Function:    ipf_rb_ht_init                                              */
9669 /* Returns:     Nil                                                         */
9670 /* Parameters:  head(I) - pointer to host tracking structure                */
9671 /*                                                                          */
9672 /* Initialise the host tracking structure to be ready for use above.        */
9673 /* ------------------------------------------------------------------------ */
9674 void
ipf_rb_ht_init(host_track_t * head)9675 ipf_rb_ht_init(host_track_t *head)
9676 {
9677 	memset(head, 0, sizeof(*head));
9678 	RBI_INIT(ipf_rb, &head->ht_root);
9679 }
9680 
9681 
9682 /* ------------------------------------------------------------------------ */
9683 /* Function:    ipf_rb_ht_freenode                                          */
9684 /* Returns:     Nil                                                         */
9685 /* Parameters:  head(I) - pointer to host tracking structure                */
9686 /*              arg(I)  - additional argument from walk caller              */
9687 /*                                                                          */
9688 /* Free an actual host_node_t structure.                                    */
9689 /* ------------------------------------------------------------------------ */
9690 void
ipf_rb_ht_freenode(host_node_t * node,void * arg)9691 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9692 {
9693 	KFREE(node);
9694 }
9695 
9696 
9697 /* ------------------------------------------------------------------------ */
9698 /* Function:    ipf_rb_ht_flush                                             */
9699 /* Returns:     Nil                                                         */
9700 /* Parameters:  head(I) - pointer to host tracking structure                */
9701 /*                                                                          */
9702 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9703 /* and free'ing each one.                                                   */
9704 /* ------------------------------------------------------------------------ */
9705 void
ipf_rb_ht_flush(host_track_t * head)9706 ipf_rb_ht_flush(host_track_t *head)
9707 {
9708 	/* XXX - May use node members after freeing the node. */
9709 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9710 }
9711 
9712 
9713 /* ------------------------------------------------------------------------ */
9714 /* Function:    ipf_slowtimer                                               */
9715 /* Returns:     Nil                                                         */
9716 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9717 /*                                                                          */
9718 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9719 /* expectation of this being called twice per second.                       */
9720 /* ------------------------------------------------------------------------ */
9721 void
ipf_slowtimer(ipf_main_softc_t * softc)9722 ipf_slowtimer(ipf_main_softc_t *softc)
9723 {
9724 
9725 	ipf_token_expire(softc);
9726 	ipf_frag_expire(softc);
9727 	ipf_state_expire(softc);
9728 	ipf_nat_expire(softc);
9729 	ipf_auth_expire(softc);
9730 	ipf_lookup_expire(softc);
9731 	ipf_rule_expire(softc);
9732 	ipf_sync_expire(softc);
9733 	softc->ipf_ticks++;
9734 #   if defined(__OpenBSD__)
9735 	timeout_add(&ipf_slowtimer_ch, hz/2);
9736 #   endif
9737 }
9738 
9739 
9740 /* ------------------------------------------------------------------------ */
9741 /* Function:    ipf_inet_mask_add                                           */
9742 /* Returns:     Nil                                                         */
9743 /* Parameters:  bits(I) - pointer to nat context information                */
9744 /*              mtab(I) - pointer to mask hash table structure              */
9745 /*                                                                          */
9746 /* When called, bits represents the mask of a new NAT rule that has just    */
9747 /* been added. This function inserts a bitmask into the array of masks to   */
9748 /* search when searching for a matching NAT rule for a packet.              */
9749 /* Prevention of duplicate masks is achieved by checking the use count for  */
9750 /* a given netmask.                                                         */
9751 /* ------------------------------------------------------------------------ */
9752 void
ipf_inet_mask_add(int bits,ipf_v4_masktab_t * mtab)9753 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9754 {
9755 	u_32_t mask;
9756 	int i, j;
9757 
9758 	mtab->imt4_masks[bits]++;
9759 	if (mtab->imt4_masks[bits] > 1)
9760 		return;
9761 
9762 	if (bits == 0)
9763 		mask = 0;
9764 	else
9765 		mask = 0xffffffff << (32 - bits);
9766 
9767 	for (i = 0; i < 33; i++) {
9768 		if (ntohl(mtab->imt4_active[i]) < mask) {
9769 			for (j = 32; j > i; j--)
9770 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9771 			mtab->imt4_active[i] = htonl(mask);
9772 			break;
9773 		}
9774 	}
9775 	mtab->imt4_max++;
9776 }
9777 
9778 
9779 /* ------------------------------------------------------------------------ */
9780 /* Function:    ipf_inet_mask_del                                           */
9781 /* Returns:     Nil                                                         */
9782 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9783 /*              mtab(I) - pointer to mask hash table structure              */
9784 /*                                                                          */
9785 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9786 /* netmasks stored inside of mtab.                                          */
9787 /* ------------------------------------------------------------------------ */
9788 void
ipf_inet_mask_del(int bits,ipf_v4_masktab_t * mtab)9789 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9790 {
9791 	u_32_t mask;
9792 	int i, j;
9793 
9794 	mtab->imt4_masks[bits]--;
9795 	if (mtab->imt4_masks[bits] > 0)
9796 		return;
9797 
9798 	mask = htonl(0xffffffff << (32 - bits));
9799 	for (i = 0; i < 33; i++) {
9800 		if (mtab->imt4_active[i] == mask) {
9801 			for (j = i + 1; j < 33; j++)
9802 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9803 			break;
9804 		}
9805 	}
9806 	mtab->imt4_max--;
9807 	ASSERT(mtab->imt4_max >= 0);
9808 }
9809 
9810 
9811 #ifdef USE_INET6
9812 /* ------------------------------------------------------------------------ */
9813 /* Function:    ipf_inet6_mask_add                                          */
9814 /* Returns:     Nil                                                         */
9815 /* Parameters:  bits(I) - number of bits set in mask                        */
9816 /*              mask(I) - pointer to mask to add                            */
9817 /*              mtab(I) - pointer to mask hash table structure              */
9818 /*                                                                          */
9819 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9820 /* has just been added. This function inserts a bitmask into the array of   */
9821 /* masks to search when searching for a matching NAT rule for a packet.     */
9822 /* Prevention of duplicate masks is achieved by checking the use count for  */
9823 /* a given netmask.                                                         */
9824 /* ------------------------------------------------------------------------ */
9825 void
ipf_inet6_mask_add(int bits,i6addr_t * mask,ipf_v6_masktab_t * mtab)9826 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9827 {
9828 	i6addr_t zero;
9829 	int i, j;
9830 
9831 	mtab->imt6_masks[bits]++;
9832 	if (mtab->imt6_masks[bits] > 1)
9833 		return;
9834 
9835 	if (bits == 0) {
9836 		mask = &zero;
9837 		zero.i6[0] = 0;
9838 		zero.i6[1] = 0;
9839 		zero.i6[2] = 0;
9840 		zero.i6[3] = 0;
9841 	}
9842 
9843 	for (i = 0; i < 129; i++) {
9844 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9845 			for (j = 128; j > i; j--)
9846 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9847 			mtab->imt6_active[i] = *mask;
9848 			break;
9849 		}
9850 	}
9851 	mtab->imt6_max++;
9852 }
9853 
9854 
9855 /* ------------------------------------------------------------------------ */
9856 /* Function:    ipf_inet6_mask_del                                          */
9857 /* Returns:     Nil                                                         */
9858 /* Parameters:  bits(I) - number of bits set in mask                        */
9859 /*              mask(I) - pointer to mask to remove                         */
9860 /*              mtab(I) - pointer to mask hash table structure              */
9861 /*                                                                          */
9862 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9863 /* netmasks stored inside of mtab.                                          */
9864 /* ------------------------------------------------------------------------ */
9865 void
ipf_inet6_mask_del(int bits,i6addr_t * mask,ipf_v6_masktab_t * mtab)9866 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9867 {
9868 	i6addr_t zero;
9869 	int i, j;
9870 
9871 	mtab->imt6_masks[bits]--;
9872 	if (mtab->imt6_masks[bits] > 0)
9873 		return;
9874 
9875 	if (bits == 0)
9876 		mask = &zero;
9877 	zero.i6[0] = 0;
9878 	zero.i6[1] = 0;
9879 	zero.i6[2] = 0;
9880 	zero.i6[3] = 0;
9881 
9882 	for (i = 0; i < 129; i++) {
9883 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9884 			for (j = i + 1; j < 129; j++) {
9885 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9886 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9887 					break;
9888 			}
9889 			break;
9890 		}
9891 	}
9892 	mtab->imt6_max--;
9893 	ASSERT(mtab->imt6_max >= 0);
9894 }
9895 #endif
9896