xref: /freebsd/sys/netpfil/ipfilter/netinet/fil.c (revision c43829a7)
1 
2 /*
3  * Copyright (C) 2012 by Darren Reed.
4  *
5  * See the IPFILTER.LICENCE file for details on licencing.
6  *
7  * Copyright 2008 Sun Microsystems.
8  *
9  * $Id$
10  *
11  */
12 #if defined(KERNEL) || defined(_KERNEL)
13 # undef KERNEL
14 # undef _KERNEL
15 # define        KERNEL	1
16 # define        _KERNEL	1
17 #endif
18 #include <sys/errno.h>
19 #include <sys/types.h>
20 #include <sys/param.h>
21 #include <sys/time.h>
22 #if defined(_KERNEL) && defined(__FreeBSD__)
23 #  if !defined(IPFILTER_LKM)
24 #   include "opt_inet6.h"
25 #  endif
26 # include <sys/filio.h>
27 #else
28 # include <sys/ioctl.h>
29 #endif
30 #if defined(__SVR4) || defined(sun) /* SOLARIS */
31 # include <sys/filio.h>
32 #endif
33 # include <sys/fcntl.h>
34 #if defined(_KERNEL)
35 # include <sys/systm.h>
36 # include <sys/file.h>
37 #else
38 # include <stdio.h>
39 # include <string.h>
40 # include <stdlib.h>
41 # include <stddef.h>
42 # include <sys/file.h>
43 # define _KERNEL
44 # include <sys/uio.h>
45 # undef _KERNEL
46 #endif
47 #if !defined(__SVR4)
48 # include <sys/mbuf.h>
49 #else
50 # include <sys/byteorder.h>
51 # if (SOLARIS2 < 5) && defined(sun)
52 #  include <sys/dditypes.h>
53 # endif
54 #endif
55 # include <sys/protosw.h>
56 #include <sys/socket.h>
57 #include <net/if.h>
58 #ifdef sun
59 # include <net/af.h>
60 #endif
61 #include <netinet/in.h>
62 #include <netinet/in_systm.h>
63 #include <netinet/ip.h>
64 #include <netinet/tcp.h>
65 # include <netinet/udp.h>
66 # include <netinet/ip_icmp.h>
67 #include "netinet/ip_compat.h"
68 #ifdef	USE_INET6
69 # include <netinet/icmp6.h>
70 # if !SOLARIS && defined(_KERNEL)
71 #  include <netinet6/in6_var.h>
72 # endif
73 #endif
74 #include "netinet/ip_fil.h"
75 #include "netinet/ip_nat.h"
76 #include "netinet/ip_frag.h"
77 #include "netinet/ip_state.h"
78 #include "netinet/ip_proxy.h"
79 #include "netinet/ip_auth.h"
80 #ifdef IPFILTER_SCAN
81 # include "netinet/ip_scan.h"
82 #endif
83 #include "netinet/ip_sync.h"
84 #include "netinet/ip_lookup.h"
85 #include "netinet/ip_pool.h"
86 #include "netinet/ip_htable.h"
87 #ifdef IPFILTER_COMPILED
88 # include "netinet/ip_rules.h"
89 #endif
90 #if defined(IPFILTER_BPF) && defined(_KERNEL)
91 # include <net/bpf.h>
92 #endif
93 #if defined(__FreeBSD__)
94 # include <sys/malloc.h>
95 #endif
96 #include "netinet/ipl.h"
97 
98 #if defined(__NetBSD__) && (__NetBSD_Version__ >= 104230000)
99 # include <sys/callout.h>
100 extern struct callout ipf_slowtimer_ch;
101 #endif
102 /* END OF INCLUDES */
103 
104 
105 #ifndef	_KERNEL
106 # include "ipf.h"
107 # include "ipt.h"
108 extern	int	opts;
109 extern	int	blockreason;
110 #endif /* _KERNEL */
111 
112 #define FASTROUTE_RECURSION
113 
114 #define	LBUMP(x)	softc->x++
115 #define	LBUMPD(x, y)	do { softc->x.y++; DT(y); } while (0)
116 
117 static	inline int	ipf_check_ipf(fr_info_t *, frentry_t *, int);
118 static	u_32_t		ipf_checkcipso(fr_info_t *, u_char *, int);
119 static	u_32_t		ipf_checkripso(u_char *);
120 static	u_32_t		ipf_decaps(fr_info_t *, u_32_t, int);
121 #ifdef IPFILTER_LOG
122 static	frentry_t	*ipf_dolog(fr_info_t *, u_32_t *);
123 #endif
124 static	int		ipf_flushlist(ipf_main_softc_t *, int *, frentry_t **);
125 static	int		ipf_flush_groups(ipf_main_softc_t *, frgroup_t **,
126 					      int);
127 static	ipfunc_t	ipf_findfunc(ipfunc_t);
128 static	void		*ipf_findlookup(ipf_main_softc_t *, int, frentry_t *,
129 					     i6addr_t *, i6addr_t *);
130 static	frentry_t	*ipf_firewall(fr_info_t *, u_32_t *);
131 static	int		ipf_fr_matcharray(fr_info_t *, int *);
132 static	int		ipf_frruleiter(ipf_main_softc_t *, void *, int,
133 					    void *);
134 static	void		ipf_funcfini(ipf_main_softc_t *, frentry_t *);
135 static	int		ipf_funcinit(ipf_main_softc_t *, frentry_t *);
136 static	int		ipf_geniter(ipf_main_softc_t *, ipftoken_t *,
137 					 ipfgeniter_t *);
138 static	void		ipf_getstat(ipf_main_softc_t *,
139 					 struct friostat *, int);
140 static	int		ipf_group_flush(ipf_main_softc_t *, frgroup_t *);
141 static	void		ipf_group_free(frgroup_t *);
142 static	int		ipf_grpmapfini(struct ipf_main_softc_s *,
143 					    frentry_t *);
144 static	int		ipf_grpmapinit(struct ipf_main_softc_s *,
145 					    frentry_t *);
146 static	frentry_t	*ipf_nextrule(ipf_main_softc_t *, int, int,
147 					   frentry_t *, int);
148 static	int		ipf_portcheck(frpcmp_t *, u_32_t);
149 static	inline int	ipf_pr_ah(fr_info_t *);
150 static	inline void	ipf_pr_esp(fr_info_t *);
151 static	inline void	ipf_pr_gre(fr_info_t *);
152 static	inline void	ipf_pr_udp(fr_info_t *);
153 static	inline void	ipf_pr_tcp(fr_info_t *);
154 static	inline void	ipf_pr_icmp(fr_info_t *);
155 static	inline void	ipf_pr_ipv4hdr(fr_info_t *);
156 static	inline void	ipf_pr_short(fr_info_t *, int);
157 static	inline int	ipf_pr_tcpcommon(fr_info_t *);
158 static	inline int	ipf_pr_udpcommon(fr_info_t *);
159 static	void		ipf_rule_delete(ipf_main_softc_t *, frentry_t *f,
160 					     int, int);
161 static	void		ipf_rule_expire_insert(ipf_main_softc_t *,
162 						    frentry_t *, int);
163 static	int		ipf_synclist(ipf_main_softc_t *, frentry_t *,
164 					  void *);
165 static	void		ipf_token_flush(ipf_main_softc_t *);
166 static	void		ipf_token_unlink(ipf_main_softc_t *,
167 					      ipftoken_t *);
168 static	ipftuneable_t	*ipf_tune_findbyname(ipftuneable_t *,
169 						  const char *);
170 static	ipftuneable_t	*ipf_tune_findbycookie(ipftuneable_t **, void *,
171 						    void **);
172 static	int		ipf_updateipid(fr_info_t *);
173 static	int		ipf_settimeout(struct ipf_main_softc_s *,
174 					    struct ipftuneable *,
175 					    ipftuneval_t *);
176 #if !defined(_KERNEL) || SOLARIS
177 static	int		ppsratecheck(struct timeval *, int *, int);
178 #endif
179 
180 
181 /*
182  * bit values for identifying presence of individual IP options
183  * All of these tables should be ordered by increasing key value on the left
184  * hand side to allow for binary searching of the array and include a trailer
185  * with a 0 for the bitmask for linear searches to easily find the end with.
186  */
187 static const	struct	optlist	ipopts[] = {
188 	{ IPOPT_NOP,	0x000001 },
189 	{ IPOPT_RR,	0x000002 },
190 	{ IPOPT_ZSU,	0x000004 },
191 	{ IPOPT_MTUP,	0x000008 },
192 	{ IPOPT_MTUR,	0x000010 },
193 	{ IPOPT_ENCODE,	0x000020 },
194 	{ IPOPT_TS,	0x000040 },
195 	{ IPOPT_TR,	0x000080 },
196 	{ IPOPT_SECURITY, 0x000100 },
197 	{ IPOPT_LSRR,	0x000200 },
198 	{ IPOPT_E_SEC,	0x000400 },
199 	{ IPOPT_CIPSO,	0x000800 },
200 	{ IPOPT_SATID,	0x001000 },
201 	{ IPOPT_SSRR,	0x002000 },
202 	{ IPOPT_ADDEXT,	0x004000 },
203 	{ IPOPT_VISA,	0x008000 },
204 	{ IPOPT_IMITD,	0x010000 },
205 	{ IPOPT_EIP,	0x020000 },
206 	{ IPOPT_FINN,	0x040000 },
207 	{ 0,		0x000000 }
208 };
209 
210 #ifdef USE_INET6
211 static const struct optlist ip6exthdr[] = {
212 	{ IPPROTO_HOPOPTS,		0x000001 },
213 	{ IPPROTO_IPV6,			0x000002 },
214 	{ IPPROTO_ROUTING,		0x000004 },
215 	{ IPPROTO_FRAGMENT,		0x000008 },
216 	{ IPPROTO_ESP,			0x000010 },
217 	{ IPPROTO_AH,			0x000020 },
218 	{ IPPROTO_NONE,			0x000040 },
219 	{ IPPROTO_DSTOPTS,		0x000080 },
220 	{ IPPROTO_MOBILITY,		0x000100 },
221 	{ 0,				0 }
222 };
223 #endif
224 
225 /*
226  * bit values for identifying presence of individual IP security options
227  */
228 static const	struct	optlist	secopt[] = {
229 	{ IPSO_CLASS_RES4,	0x01 },
230 	{ IPSO_CLASS_TOPS,	0x02 },
231 	{ IPSO_CLASS_SECR,	0x04 },
232 	{ IPSO_CLASS_RES3,	0x08 },
233 	{ IPSO_CLASS_CONF,	0x10 },
234 	{ IPSO_CLASS_UNCL,	0x20 },
235 	{ IPSO_CLASS_RES2,	0x40 },
236 	{ IPSO_CLASS_RES1,	0x80 }
237 };
238 
239 char	ipfilter_version[] = IPL_VERSION;
240 
241 int	ipf_features = 0
242 #ifdef	IPFILTER_LKM
243 		| IPF_FEAT_LKM
244 #endif
245 #ifdef	IPFILTER_LOG
246 		| IPF_FEAT_LOG
247 #endif
248 		| IPF_FEAT_LOOKUP
249 #ifdef	IPFILTER_BPF
250 		| IPF_FEAT_BPF
251 #endif
252 #ifdef	IPFILTER_COMPILED
253 		| IPF_FEAT_COMPILED
254 #endif
255 #ifdef	IPFILTER_CKSUM
256 		| IPF_FEAT_CKSUM
257 #endif
258 		| IPF_FEAT_SYNC
259 #ifdef	IPFILTER_SCAN
260 		| IPF_FEAT_SCAN
261 #endif
262 #ifdef	USE_INET6
263 		| IPF_FEAT_IPV6
264 #endif
265 	;
266 
267 
268 /*
269  * Table of functions available for use with call rules.
270  */
271 static ipfunc_resolve_t ipf_availfuncs[] = {
272 	{ "srcgrpmap", ipf_srcgrpmap, ipf_grpmapinit, ipf_grpmapfini },
273 	{ "dstgrpmap", ipf_dstgrpmap, ipf_grpmapinit, ipf_grpmapfini },
274 	{ "",	      NULL,	      NULL,	      NULL }
275 };
276 
277 static ipftuneable_t ipf_main_tuneables[] = {
278 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_flags) },
279 		"ipf_flags",		0,	0xffffffff,
280 		stsizeof(ipf_main_softc_t, ipf_flags),
281 		0,			NULL,	NULL },
282 	{ { (void *)offsetof(struct ipf_main_softc_s, ipf_active) },
283 		"active",		0,	0,
284 		stsizeof(ipf_main_softc_t, ipf_active),
285 		IPFT_RDONLY,		NULL,	NULL },
286 	{ { (void *)offsetof(ipf_main_softc_t, ipf_control_forwarding) },
287 		"control_forwarding",	0, 1,
288 		stsizeof(ipf_main_softc_t, ipf_control_forwarding),
289 		0,			NULL,	NULL },
290 	{ { (void *)offsetof(ipf_main_softc_t, ipf_update_ipid) },
291 		"update_ipid",		0,	1,
292 		stsizeof(ipf_main_softc_t, ipf_update_ipid),
293 		0,			NULL,	NULL },
294 	{ { (void *)offsetof(ipf_main_softc_t, ipf_chksrc) },
295 		"chksrc",		0,	1,
296 		stsizeof(ipf_main_softc_t, ipf_chksrc),
297 		0,			NULL,	NULL },
298 	{ { (void *)offsetof(ipf_main_softc_t, ipf_minttl) },
299 		"min_ttl",		0,	1,
300 		stsizeof(ipf_main_softc_t, ipf_minttl),
301 		0,			NULL,	NULL },
302 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpminfragmtu) },
303 		"icmp_minfragmtu",	0,	1,
304 		stsizeof(ipf_main_softc_t, ipf_icmpminfragmtu),
305 		0,			NULL,	NULL },
306 	{ { (void *)offsetof(ipf_main_softc_t, ipf_pass) },
307 		"default_pass",		0,	0xffffffff,
308 		stsizeof(ipf_main_softc_t, ipf_pass),
309 		0,			NULL,	NULL },
310 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpidletimeout) },
311 		"tcp_idle_timeout",	1,	0x7fffffff,
312 		stsizeof(ipf_main_softc_t, ipf_tcpidletimeout),
313 		0,			NULL,	ipf_settimeout },
314 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosewait) },
315 		"tcp_close_wait",	1,	0x7fffffff,
316 		stsizeof(ipf_main_softc_t, ipf_tcpclosewait),
317 		0,			NULL,	ipf_settimeout },
318 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcplastack) },
319 		"tcp_last_ack",		1,	0x7fffffff,
320 		stsizeof(ipf_main_softc_t, ipf_tcplastack),
321 		0,			NULL,	ipf_settimeout },
322 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimeout) },
323 		"tcp_timeout",		1,	0x7fffffff,
324 		stsizeof(ipf_main_softc_t, ipf_tcptimeout),
325 		0,			NULL,	ipf_settimeout },
326 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynsent) },
327 		"tcp_syn_sent",		1,	0x7fffffff,
328 		stsizeof(ipf_main_softc_t, ipf_tcpsynsent),
329 		0,			NULL,	ipf_settimeout },
330 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpsynrecv) },
331 		"tcp_syn_received",	1,	0x7fffffff,
332 		stsizeof(ipf_main_softc_t, ipf_tcpsynrecv),
333 		0,			NULL,	ipf_settimeout },
334 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcpclosed) },
335 		"tcp_closed",		1,	0x7fffffff,
336 		stsizeof(ipf_main_softc_t, ipf_tcpclosed),
337 		0,			NULL,	ipf_settimeout },
338 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcphalfclosed) },
339 		"tcp_half_closed",	1,	0x7fffffff,
340 		stsizeof(ipf_main_softc_t, ipf_tcphalfclosed),
341 		0,			NULL,	ipf_settimeout },
342 	{ { (void *)offsetof(ipf_main_softc_t, ipf_tcptimewait) },
343 		"tcp_time_wait",	1,	0x7fffffff,
344 		stsizeof(ipf_main_softc_t, ipf_tcptimewait),
345 		0,			NULL,	ipf_settimeout },
346 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udptimeout) },
347 		"udp_timeout",		1,	0x7fffffff,
348 		stsizeof(ipf_main_softc_t, ipf_udptimeout),
349 		0,			NULL,	ipf_settimeout },
350 	{ { (void *)offsetof(ipf_main_softc_t, ipf_udpacktimeout) },
351 		"udp_ack_timeout",	1,	0x7fffffff,
352 		stsizeof(ipf_main_softc_t, ipf_udpacktimeout),
353 		0,			NULL,	ipf_settimeout },
354 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmptimeout) },
355 		"icmp_timeout",		1,	0x7fffffff,
356 		stsizeof(ipf_main_softc_t, ipf_icmptimeout),
357 		0,			NULL,	ipf_settimeout },
358 	{ { (void *)offsetof(ipf_main_softc_t, ipf_icmpacktimeout) },
359 		"icmp_ack_timeout",	1,	0x7fffffff,
360 		stsizeof(ipf_main_softc_t, ipf_icmpacktimeout),
361 		0,			NULL,	ipf_settimeout },
362 	{ { (void *)offsetof(ipf_main_softc_t, ipf_iptimeout) },
363 		"ip_timeout",		1,	0x7fffffff,
364 		stsizeof(ipf_main_softc_t, ipf_iptimeout),
365 		0,			NULL,	ipf_settimeout },
366 #if defined(INSTANCES) && defined(_KERNEL)
367 	{ { (void *)offsetof(ipf_main_softc_t, ipf_get_loopback) },
368 		"intercept_loopback",	0,	1,
369 		stsizeof(ipf_main_softc_t, ipf_get_loopback),
370 		0,			NULL,	ipf_set_loopback },
371 #endif
372 	{ { 0 },
373 		NULL,			0,	0,
374 		0,
375 		0,			NULL,	NULL }
376 };
377 
378 
379 /*
380  * The next section of code is a collection of small routines that set
381  * fields in the fr_info_t structure passed based on properties of the
382  * current packet.  There are different routines for the same protocol
383  * for each of IPv4 and IPv6.  Adding a new protocol, for which there
384  * will "special" inspection for setup, is now more easily done by adding
385  * a new routine and expanding the ipf_pr_ipinit*() function rather than by
386  * adding more code to a growing switch statement.
387  */
388 #ifdef USE_INET6
389 static	inline int	ipf_pr_ah6(fr_info_t *);
390 static	inline void	ipf_pr_esp6(fr_info_t *);
391 static	inline void	ipf_pr_gre6(fr_info_t *);
392 static	inline void	ipf_pr_udp6(fr_info_t *);
393 static	inline void	ipf_pr_tcp6(fr_info_t *);
394 static	inline void	ipf_pr_icmp6(fr_info_t *);
395 static	inline void	ipf_pr_ipv6hdr(fr_info_t *);
396 static	inline void	ipf_pr_short6(fr_info_t *, int);
397 static	inline int	ipf_pr_hopopts6(fr_info_t *);
398 static	inline int	ipf_pr_mobility6(fr_info_t *);
399 static	inline int	ipf_pr_routing6(fr_info_t *);
400 static	inline int	ipf_pr_dstopts6(fr_info_t *);
401 static	inline int	ipf_pr_fragment6(fr_info_t *);
402 static	inline struct ip6_ext *ipf_pr_ipv6exthdr(fr_info_t *, int, int);
403 
404 
405 /* ------------------------------------------------------------------------ */
406 /* Function:    ipf_pr_short6                                               */
407 /* Returns:     void                                                        */
408 /* Parameters:  fin(I)  - pointer to packet information                     */
409 /*              xmin(I) - minimum header size                               */
410 /*                                                                          */
411 /* IPv6 Only                                                                */
412 /* This is function enforces the 'is a packet too short to be legit' rule   */
413 /* for IPv6 and marks the packet with FI_SHORT if so.  See function comment */
414 /* for ipf_pr_short() for more details.                                     */
415 /* ------------------------------------------------------------------------ */
416 static inline void
ipf_pr_short6(fr_info_t * fin,int xmin)417 ipf_pr_short6(fr_info_t *fin, int xmin)
418 {
419 
420 	if (fin->fin_dlen < xmin)
421 		fin->fin_flx |= FI_SHORT;
422 }
423 
424 
425 /* ------------------------------------------------------------------------ */
426 /* Function:    ipf_pr_ipv6hdr                                              */
427 /* Returns:     void                                                        */
428 /* Parameters:  fin(I) - pointer to packet information                      */
429 /*                                                                          */
430 /* IPv6 Only                                                                */
431 /* Copy values from the IPv6 header into the fr_info_t struct and call the  */
432 /* per-protocol analyzer if it exists.  In validating the packet, a protocol*/
433 /* analyzer may pullup or free the packet itself so we need to be vigiliant */
434 /* of that possibility arising.                                             */
435 /* ------------------------------------------------------------------------ */
436 static inline void
ipf_pr_ipv6hdr(fr_info_t * fin)437 ipf_pr_ipv6hdr(fr_info_t *fin)
438 {
439 	ip6_t *ip6 = (ip6_t *)fin->fin_ip;
440 	int p, go = 1, i, hdrcount;
441 	fr_ip_t *fi = &fin->fin_fi;
442 
443 	fin->fin_off = 0;
444 
445 	fi->fi_tos = 0;
446 	fi->fi_optmsk = 0;
447 	fi->fi_secmsk = 0;
448 	fi->fi_auth = 0;
449 
450 	p = ip6->ip6_nxt;
451 	fin->fin_crc = p;
452 	fi->fi_ttl = ip6->ip6_hlim;
453 	fi->fi_src.in6 = ip6->ip6_src;
454 	fin->fin_crc += fi->fi_src.i6[0];
455 	fin->fin_crc += fi->fi_src.i6[1];
456 	fin->fin_crc += fi->fi_src.i6[2];
457 	fin->fin_crc += fi->fi_src.i6[3];
458 	fi->fi_dst.in6 = ip6->ip6_dst;
459 	fin->fin_crc += fi->fi_dst.i6[0];
460 	fin->fin_crc += fi->fi_dst.i6[1];
461 	fin->fin_crc += fi->fi_dst.i6[2];
462 	fin->fin_crc += fi->fi_dst.i6[3];
463 	fin->fin_id = 0;
464 	if (IN6_IS_ADDR_MULTICAST(&fi->fi_dst.in6))
465 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
466 
467 	hdrcount = 0;
468 	while (go && !(fin->fin_flx & FI_SHORT)) {
469 		switch (p)
470 		{
471 		case IPPROTO_UDP :
472 			ipf_pr_udp6(fin);
473 			go = 0;
474 			break;
475 
476 		case IPPROTO_TCP :
477 			ipf_pr_tcp6(fin);
478 			go = 0;
479 			break;
480 
481 		case IPPROTO_ICMPV6 :
482 			ipf_pr_icmp6(fin);
483 			go = 0;
484 			break;
485 
486 		case IPPROTO_GRE :
487 			ipf_pr_gre6(fin);
488 			go = 0;
489 			break;
490 
491 		case IPPROTO_HOPOPTS :
492 			p = ipf_pr_hopopts6(fin);
493 			break;
494 
495 		case IPPROTO_MOBILITY :
496 			p = ipf_pr_mobility6(fin);
497 			break;
498 
499 		case IPPROTO_DSTOPTS :
500 			p = ipf_pr_dstopts6(fin);
501 			break;
502 
503 		case IPPROTO_ROUTING :
504 			p = ipf_pr_routing6(fin);
505 			break;
506 
507 		case IPPROTO_AH :
508 			p = ipf_pr_ah6(fin);
509 			break;
510 
511 		case IPPROTO_ESP :
512 			ipf_pr_esp6(fin);
513 			go = 0;
514 			break;
515 
516 		case IPPROTO_IPV6 :
517 			for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
518 				if (ip6exthdr[i].ol_val == p) {
519 					fin->fin_flx |= ip6exthdr[i].ol_bit;
520 					break;
521 				}
522 			go = 0;
523 			break;
524 
525 		case IPPROTO_NONE :
526 			go = 0;
527 			break;
528 
529 		case IPPROTO_FRAGMENT :
530 			p = ipf_pr_fragment6(fin);
531 			/*
532 			 * Given that the only fragments we want to let through
533 			 * (where fin_off != 0) are those where the non-first
534 			 * fragments only have data, we can safely stop looking
535 			 * at headers if this is a non-leading fragment.
536 			 */
537 			if (fin->fin_off != 0)
538 				go = 0;
539 			break;
540 
541 		default :
542 			go = 0;
543 			break;
544 		}
545 		hdrcount++;
546 
547 		/*
548 		 * It is important to note that at this point, for the
549 		 * extension headers (go != 0), the entire header may not have
550 		 * been pulled up when the code gets to this point.  This is
551 		 * only done for "go != 0" because the other header handlers
552 		 * will all pullup their complete header.  The other indicator
553 		 * of an incomplete packet is that this was just an extension
554 		 * header.
555 		 */
556 		if ((go != 0) && (p != IPPROTO_NONE) &&
557 		    (ipf_pr_pullup(fin, 0) == -1)) {
558 			p = IPPROTO_NONE;
559 			break;
560 		}
561 	}
562 
563 	/*
564 	 * Some of the above functions, like ipf_pr_esp6(), can call ipf_pullup
565 	 * and destroy whatever packet was here.  The caller of this function
566 	 * expects us to return if there is a problem with ipf_pullup.
567 	 */
568 	if (fin->fin_m == NULL) {
569 		ipf_main_softc_t *softc = fin->fin_main_soft;
570 
571 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_bad);
572 		return;
573 	}
574 
575 	fi->fi_p = p;
576 
577 	/*
578 	 * IPv6 fragment case 1 - see comment for ipf_pr_fragment6().
579 	 * "go != 0" implies the above loop hasn't arrived at a layer 4 header.
580 	 */
581 	if ((go != 0) && (fin->fin_flx & FI_FRAG) && (fin->fin_off == 0)) {
582 		ipf_main_softc_t *softc = fin->fin_main_soft;
583 
584 		fin->fin_flx |= FI_BAD;
585 		DT2(ipf_fi_bad_ipv6_frag_1, fr_info_t *, fin, int, go);
586 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_badfrag);
587 		LBUMP(ipf_stats[fin->fin_out].fr_v6_bad);
588 	}
589 }
590 
591 
592 /* ------------------------------------------------------------------------ */
593 /* Function:    ipf_pr_ipv6exthdr                                           */
594 /* Returns:     struct ip6_ext * - pointer to the start of the next header  */
595 /*                                 or NULL if there is a prolblem.          */
596 /* Parameters:  fin(I)      - pointer to packet information                 */
597 /*              multiple(I) - flag indicating yes/no if multiple occurances */
598 /*                            of this extension header are allowed.         */
599 /*              proto(I)    - protocol number for this extension header     */
600 /*                                                                          */
601 /* IPv6 Only                                                                */
602 /* This function embodies a number of common checks that all IPv6 extension */
603 /* headers must be subjected to.  For example, making sure the packet is    */
604 /* big enough for it to be in, checking if it is repeated and setting a     */
605 /* flag to indicate its presence.                                           */
606 /* ------------------------------------------------------------------------ */
607 static inline struct ip6_ext *
ipf_pr_ipv6exthdr(fr_info_t * fin,int multiple,int proto)608 ipf_pr_ipv6exthdr(fr_info_t *fin, int multiple, int proto)
609 {
610 	ipf_main_softc_t *softc = fin->fin_main_soft;
611 	struct ip6_ext *hdr;
612 	u_short shift;
613 	int i;
614 
615 	fin->fin_flx |= FI_V6EXTHDR;
616 
617 				/* 8 is default length of extension hdr */
618 	if ((fin->fin_dlen - 8) < 0) {
619 		fin->fin_flx |= FI_SHORT;
620 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_short);
621 		return (NULL);
622 	}
623 
624 	if (ipf_pr_pullup(fin, 8) == -1) {
625 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_pullup);
626 		return (NULL);
627 	}
628 
629 	hdr = fin->fin_dp;
630 	switch (proto)
631 	{
632 	case IPPROTO_FRAGMENT :
633 		shift = 8;
634 		break;
635 	default :
636 		shift = 8 + (hdr->ip6e_len << 3);
637 		break;
638 	}
639 
640 	if (shift > fin->fin_dlen) {	/* Nasty extension header length? */
641 		fin->fin_flx |= FI_BAD;
642 		DT3(ipf_fi_bad_pr_ipv6exthdr_len, fr_info_t *, fin, u_short, shift, u_short, fin->fin_dlen);
643 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ext_hlen);
644 		return (NULL);
645 	}
646 
647 	fin->fin_dp = (char *)fin->fin_dp + shift;
648 	fin->fin_dlen -= shift;
649 
650 	/*
651 	 * If we have seen a fragment header, do not set any flags to indicate
652 	 * the presence of this extension header as it has no impact on the
653 	 * end result until after it has been defragmented.
654 	 */
655 	if (fin->fin_flx & FI_FRAG)
656 		return (hdr);
657 
658 	for (i = 0; ip6exthdr[i].ol_bit != 0; i++)
659 		if (ip6exthdr[i].ol_val == proto) {
660 			/*
661 			 * Most IPv6 extension headers are only allowed once.
662 			 */
663 			if ((multiple == 0) &&
664 			    ((fin->fin_optmsk & ip6exthdr[i].ol_bit) != 0)) {
665 				fin->fin_flx |= FI_BAD;
666 				DT2(ipf_fi_bad_ipv6exthdr_once, fr_info_t *, fin, u_int, (fin->fin_optmsk & ip6exthdr[i].ol_bit));
667 			} else
668 				fin->fin_optmsk |= ip6exthdr[i].ol_bit;
669 			break;
670 		}
671 
672 	return (hdr);
673 }
674 
675 
676 /* ------------------------------------------------------------------------ */
677 /* Function:    ipf_pr_hopopts6                                             */
678 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
679 /* Parameters:  fin(I) - pointer to packet information                      */
680 /*                                                                          */
681 /* IPv6 Only                                                                */
682 /* This is function checks pending hop by hop options extension header      */
683 /* ------------------------------------------------------------------------ */
684 static inline int
ipf_pr_hopopts6(fr_info_t * fin)685 ipf_pr_hopopts6(fr_info_t *fin)
686 {
687 	struct ip6_ext *hdr;
688 
689 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
690 	if (hdr == NULL)
691 		return (IPPROTO_NONE);
692 	return (hdr->ip6e_nxt);
693 }
694 
695 
696 /* ------------------------------------------------------------------------ */
697 /* Function:    ipf_pr_mobility6                                            */
698 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
699 /* Parameters:  fin(I) - pointer to packet information                      */
700 /*                                                                          */
701 /* IPv6 Only                                                                */
702 /* This is function checks the IPv6 mobility extension header               */
703 /* ------------------------------------------------------------------------ */
704 static inline int
ipf_pr_mobility6(fr_info_t * fin)705 ipf_pr_mobility6(fr_info_t *fin)
706 {
707 	struct ip6_ext *hdr;
708 
709 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_MOBILITY);
710 	if (hdr == NULL)
711 		return (IPPROTO_NONE);
712 	return (hdr->ip6e_nxt);
713 }
714 
715 
716 /* ------------------------------------------------------------------------ */
717 /* Function:    ipf_pr_routing6                                             */
718 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
719 /* Parameters:  fin(I) - pointer to packet information                      */
720 /*                                                                          */
721 /* IPv6 Only                                                                */
722 /* This is function checks pending routing extension header                 */
723 /* ------------------------------------------------------------------------ */
724 static inline int
ipf_pr_routing6(fr_info_t * fin)725 ipf_pr_routing6(fr_info_t *fin)
726 {
727 	struct ip6_routing *hdr;
728 
729 	hdr = (struct ip6_routing *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_ROUTING);
730 	if (hdr == NULL)
731 		return (IPPROTO_NONE);
732 
733 	switch (hdr->ip6r_type)
734 	{
735 	case 0 :
736 		/*
737 		 * Nasty extension header length?
738 		 */
739 		if (((hdr->ip6r_len >> 1) < hdr->ip6r_segleft) ||
740 		    (hdr->ip6r_segleft && (hdr->ip6r_len & 1))) {
741 			ipf_main_softc_t *softc = fin->fin_main_soft;
742 
743 			fin->fin_flx |= FI_BAD;
744 			DT1(ipf_fi_bad_routing6, fr_info_t *, fin);
745 			LBUMPD(ipf_stats[fin->fin_out], fr_v6_rh_bad);
746 			return (IPPROTO_NONE);
747 		}
748 		break;
749 
750 	default :
751 		break;
752 	}
753 
754 	return (hdr->ip6r_nxt);
755 }
756 
757 
758 /* ------------------------------------------------------------------------ */
759 /* Function:    ipf_pr_fragment6                                            */
760 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
761 /* Parameters:  fin(I) - pointer to packet information                      */
762 /*                                                                          */
763 /* IPv6 Only                                                                */
764 /* Examine the IPv6 fragment header and extract fragment offset information.*/
765 /*                                                                          */
766 /* Fragments in IPv6 are extraordinarily difficult to deal with - much more */
767 /* so than in IPv4.  There are 5 cases of fragments with IPv6 that all      */
768 /* packets with a fragment header can fit into.  They are as follows:       */
769 /*                                                                          */
770 /* 1.  [IPv6][0-n EH][FH][0-n EH] (no L4HDR present)                        */
771 /* 2.  [IPV6][0-n EH][FH][0-n EH][L4HDR part] (short)                       */
772 /* 3.  [IPV6][0-n EH][FH][L4HDR part][0-n data] (short)                     */
773 /* 4.  [IPV6][0-n EH][FH][0-n EH][L4HDR][0-n data]                          */
774 /* 5.  [IPV6][0-n EH][FH][data]                                             */
775 /*                                                                          */
776 /* IPV6 = IPv6 header, FH = Fragment Header,                                */
777 /* 0-n EH = 0 or more extension headers, 0-n data = 0 or more bytes of data */
778 /*                                                                          */
779 /* Packets that match 1, 2, 3 will be dropped as the only reasonable        */
780 /* scenario in which they happen is in extreme circumstances that are most  */
781 /* likely to be an indication of an attack rather than normal traffic.      */
782 /* A type 3 packet may be sent by an attacked after a type 4 packet.  There */
783 /* are two rules that can be used to guard against type 3 packets: L4       */
784 /* headers must always be in a packet that has the offset field set to 0    */
785 /* and no packet is allowed to overlay that where offset = 0.               */
786 /* ------------------------------------------------------------------------ */
787 static inline int
ipf_pr_fragment6(fr_info_t * fin)788 ipf_pr_fragment6(fr_info_t *fin)
789 {
790 	ipf_main_softc_t *softc = fin->fin_main_soft;
791 	struct ip6_frag *frag;
792 
793 	fin->fin_flx |= FI_FRAG;
794 
795 	frag = (struct ip6_frag *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_FRAGMENT);
796 	if (frag == NULL) {
797 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_frag_bad);
798 		return (IPPROTO_NONE);
799 	}
800 
801 	if ((frag->ip6f_offlg & IP6F_MORE_FRAG) != 0) {
802 		/*
803 		 * Any fragment that isn't the last fragment must have its
804 		 * length as a multiple of 8.
805 		 */
806 		if ((fin->fin_plen & 7) != 0) {
807 			fin->fin_flx |= FI_BAD;
808 			DT2(ipf_fi_bad_frag_not_8, fr_info_t *, fin, u_int, (fin->fin_plen & 7));
809 		}
810 	}
811 
812 	fin->fin_fraghdr = frag;
813 	fin->fin_id = frag->ip6f_ident;
814 	fin->fin_off = ntohs(frag->ip6f_offlg & IP6F_OFF_MASK);
815 	if (fin->fin_off != 0)
816 		fin->fin_flx |= FI_FRAGBODY;
817 
818 	/*
819 	 * Jumbograms aren't handled, so the max. length is 64k
820 	 */
821 	if ((fin->fin_off << 3) + fin->fin_dlen > 65535) {
822 		  fin->fin_flx |= FI_BAD;
823 		  DT2(ipf_fi_bad_jumbogram, fr_info_t *, fin, u_int, ((fin->fin_off << 3) + fin->fin_dlen));
824 	}
825 
826 	/*
827 	 * We don't know where the transport layer header (or whatever is next
828 	 * is), as it could be behind destination options (amongst others) so
829 	* return the fragment header as the type of packet this is.  Note that
830 	 * this effectively disables the fragment cache for > 1 protocol at a
831 	 * time.
832 	 */
833 	return (frag->ip6f_nxt);
834 }
835 
836 
837 /* ------------------------------------------------------------------------ */
838 /* Function:    ipf_pr_dstopts6                                             */
839 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
840 /* Parameters:  fin(I) - pointer to packet information                      */
841 /*                                                                          */
842 /* IPv6 Only                                                                */
843 /* This is function checks pending destination options extension header     */
844 /* ------------------------------------------------------------------------ */
845 static inline int
ipf_pr_dstopts6(fr_info_t * fin)846 ipf_pr_dstopts6(fr_info_t *fin)
847 {
848 	ipf_main_softc_t *softc = fin->fin_main_soft;
849 	struct ip6_ext *hdr;
850 
851 	hdr = ipf_pr_ipv6exthdr(fin, 0, IPPROTO_DSTOPTS);
852 	if (hdr == NULL) {
853 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_dst_bad);
854 		return (IPPROTO_NONE);
855 	}
856 	return (hdr->ip6e_nxt);
857 }
858 
859 
860 /* ------------------------------------------------------------------------ */
861 /* Function:    ipf_pr_icmp6                                                */
862 /* Returns:     void                                                        */
863 /* Parameters:  fin(I) - pointer to packet information                      */
864 /*                                                                          */
865 /* IPv6 Only                                                                */
866 /* This routine is mainly concerned with determining the minimum valid size */
867 /* for an ICMPv6 packet.                                                    */
868 /* ------------------------------------------------------------------------ */
869 static inline void
ipf_pr_icmp6(fr_info_t * fin)870 ipf_pr_icmp6(fr_info_t *fin)
871 {
872 	int minicmpsz = sizeof(struct icmp6_hdr);
873 	struct icmp6_hdr *icmp6;
874 
875 	if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN - sizeof(ip6_t)) == -1) {
876 		ipf_main_softc_t *softc = fin->fin_main_soft;
877 
878 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_icmp6_pullup);
879 		return;
880 	}
881 
882 	if (fin->fin_dlen > 1) {
883 		ip6_t *ip6;
884 
885 		icmp6 = fin->fin_dp;
886 
887 		fin->fin_data[0] = *(u_short *)icmp6;
888 
889 		if ((icmp6->icmp6_type & ICMP6_INFOMSG_MASK) != 0)
890 			fin->fin_flx |= FI_ICMPQUERY;
891 
892 		switch (icmp6->icmp6_type)
893 		{
894 		case ICMP6_ECHO_REPLY :
895 		case ICMP6_ECHO_REQUEST :
896 			if (fin->fin_dlen >= 6)
897 				fin->fin_data[1] = icmp6->icmp6_id;
898 			minicmpsz = ICMP6ERR_MINPKTLEN - sizeof(ip6_t);
899 			break;
900 
901 		case ICMP6_DST_UNREACH :
902 		case ICMP6_PACKET_TOO_BIG :
903 		case ICMP6_TIME_EXCEEDED :
904 		case ICMP6_PARAM_PROB :
905 			fin->fin_flx |= FI_ICMPERR;
906 			minicmpsz = ICMP6ERR_IPICMPHLEN - sizeof(ip6_t);
907 			if (fin->fin_plen < ICMP6ERR_IPICMPHLEN)
908 				break;
909 
910 			if (M_LEN(fin->fin_m) < fin->fin_plen) {
911 				if (ipf_coalesce(fin) != 1)
912 					return;
913 			}
914 
915 			if (ipf_pr_pullup(fin, ICMP6ERR_MINPKTLEN) == -1)
916 				return;
917 
918 			/*
919 			 * If the destination of this packet doesn't match the
920 			 * source of the original packet then this packet is
921 			 * not correct.
922 			 */
923 			icmp6 = fin->fin_dp;
924 			ip6 = (ip6_t *)((char *)icmp6 + ICMPERR_ICMPHLEN);
925 			if (IP6_NEQ(&fin->fin_fi.fi_dst,
926 				    (i6addr_t *)&ip6->ip6_src)) {
927 				fin->fin_flx |= FI_BAD;
928 				DT1(ipf_fi_bad_icmp6, fr_info_t *, fin);
929 			}
930 			break;
931 		default :
932 			break;
933 		}
934 	}
935 
936 	ipf_pr_short6(fin, minicmpsz);
937 	if ((fin->fin_flx & (FI_SHORT|FI_BAD)) == 0) {
938 		u_char p = fin->fin_p;
939 
940 		fin->fin_p = IPPROTO_ICMPV6;
941 		ipf_checkv6sum(fin);
942 		fin->fin_p = p;
943 	}
944 }
945 
946 
947 /* ------------------------------------------------------------------------ */
948 /* Function:    ipf_pr_udp6                                                 */
949 /* Returns:     void                                                        */
950 /* Parameters:  fin(I) - pointer to packet information                      */
951 /*                                                                          */
952 /* IPv6 Only                                                                */
953 /* Analyse the packet for IPv6/UDP properties.                              */
954 /* Is not expected to be called for fragmented packets.                     */
955 /* ------------------------------------------------------------------------ */
956 static inline void
ipf_pr_udp6(fr_info_t * fin)957 ipf_pr_udp6(fr_info_t *fin)
958 {
959 
960 	if (ipf_pr_udpcommon(fin) == 0) {
961 		u_char p = fin->fin_p;
962 
963 		fin->fin_p = IPPROTO_UDP;
964 		ipf_checkv6sum(fin);
965 		fin->fin_p = p;
966 	}
967 }
968 
969 
970 /* ------------------------------------------------------------------------ */
971 /* Function:    ipf_pr_tcp6                                                 */
972 /* Returns:     void                                                        */
973 /* Parameters:  fin(I) - pointer to packet information                      */
974 /*                                                                          */
975 /* IPv6 Only                                                                */
976 /* Analyse the packet for IPv6/TCP properties.                              */
977 /* Is not expected to be called for fragmented packets.                     */
978 /* ------------------------------------------------------------------------ */
979 static inline void
ipf_pr_tcp6(fr_info_t * fin)980 ipf_pr_tcp6(fr_info_t *fin)
981 {
982 
983 	if (ipf_pr_tcpcommon(fin) == 0) {
984 		u_char p = fin->fin_p;
985 
986 		fin->fin_p = IPPROTO_TCP;
987 		ipf_checkv6sum(fin);
988 		fin->fin_p = p;
989 	}
990 }
991 
992 
993 /* ------------------------------------------------------------------------ */
994 /* Function:    ipf_pr_esp6                                                 */
995 /* Returns:     void                                                        */
996 /* Parameters:  fin(I) - pointer to packet information                      */
997 /*                                                                          */
998 /* IPv6 Only                                                                */
999 /* Analyse the packet for ESP properties.                                   */
1000 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1001 /* even though the newer ESP packets must also have a sequence number that  */
1002 /* is 32bits as well, it is not possible(?) to determine the version from a */
1003 /* simple packet header.                                                    */
1004 /* ------------------------------------------------------------------------ */
1005 static inline void
ipf_pr_esp6(fr_info_t * fin)1006 ipf_pr_esp6(fr_info_t *fin)
1007 {
1008 
1009 	if ((fin->fin_off == 0) && (ipf_pr_pullup(fin, 8) == -1)) {
1010 		ipf_main_softc_t *softc = fin->fin_main_soft;
1011 
1012 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_esp_pullup);
1013 		return;
1014 	}
1015 }
1016 
1017 
1018 /* ------------------------------------------------------------------------ */
1019 /* Function:    ipf_pr_ah6                                                  */
1020 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1021 /* Parameters:  fin(I) - pointer to packet information                      */
1022 /*                                                                          */
1023 /* IPv6 Only                                                                */
1024 /* Analyse the packet for AH properties.                                    */
1025 /* The minimum length is taken to be the combination of all fields in the   */
1026 /* header being present and no authentication data (null algorithm used.)   */
1027 /* ------------------------------------------------------------------------ */
1028 static inline int
ipf_pr_ah6(fr_info_t * fin)1029 ipf_pr_ah6(fr_info_t *fin)
1030 {
1031 	authhdr_t *ah;
1032 
1033 	fin->fin_flx |= FI_AH;
1034 
1035 	ah = (authhdr_t *)ipf_pr_ipv6exthdr(fin, 0, IPPROTO_HOPOPTS);
1036 	if (ah == NULL) {
1037 		ipf_main_softc_t *softc = fin->fin_main_soft;
1038 
1039 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_ah_bad);
1040 		return (IPPROTO_NONE);
1041 	}
1042 
1043 	ipf_pr_short6(fin, sizeof(*ah));
1044 
1045 	/*
1046 	 * No need for another pullup, ipf_pr_ipv6exthdr() will pullup
1047 	 * enough data to satisfy ah_next (the very first one.)
1048 	 */
1049 	return (ah->ah_next);
1050 }
1051 
1052 
1053 /* ------------------------------------------------------------------------ */
1054 /* Function:    ipf_pr_gre6                                                 */
1055 /* Returns:     void                                                        */
1056 /* Parameters:  fin(I) - pointer to packet information                      */
1057 /*                                                                          */
1058 /* Analyse the packet for GRE properties.                                   */
1059 /* ------------------------------------------------------------------------ */
1060 static inline void
ipf_pr_gre6(fr_info_t * fin)1061 ipf_pr_gre6(fr_info_t *fin)
1062 {
1063 	grehdr_t *gre;
1064 
1065 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1066 		ipf_main_softc_t *softc = fin->fin_main_soft;
1067 
1068 		LBUMPD(ipf_stats[fin->fin_out], fr_v6_gre_pullup);
1069 		return;
1070 	}
1071 
1072 	gre = fin->fin_dp;
1073 	if (GRE_REV(gre->gr_flags) == 1)
1074 		fin->fin_data[0] = gre->gr_call;
1075 }
1076 #endif	/* USE_INET6 */
1077 
1078 
1079 /* ------------------------------------------------------------------------ */
1080 /* Function:    ipf_pr_pullup                                               */
1081 /* Returns:     int     - 0 == pullup succeeded, -1 == failure              */
1082 /* Parameters:  fin(I)  - pointer to packet information                     */
1083 /*              plen(I) - length (excluding L3 header) to pullup            */
1084 /*                                                                          */
1085 /* Short inline function to cut down on code duplication to perform a call  */
1086 /* to ipf_pullup to ensure there is the required amount of data,            */
1087 /* consecutively in the packet buffer.                                      */
1088 /*                                                                          */
1089 /* This function pulls up 'extra' data at the location of fin_dp.  fin_dp   */
1090 /* points to the first byte after the complete layer 3 header, which will   */
1091 /* include all of the known extension headers for IPv6 or options for IPv4. */
1092 /*                                                                          */
1093 /* Since fr_pullup() expects the total length of bytes to be pulled up, it  */
1094 /* is necessary to add those we can already assume to be pulled up (fin_dp  */
1095 /* - fin_ip) to what is passed through.                                     */
1096 /* ------------------------------------------------------------------------ */
1097 int
ipf_pr_pullup(fr_info_t * fin,int plen)1098 ipf_pr_pullup(fr_info_t *fin, int plen)
1099 {
1100 	ipf_main_softc_t *softc = fin->fin_main_soft;
1101 
1102 	if (fin->fin_m != NULL) {
1103 		if (fin->fin_dp != NULL)
1104 			plen += (char *)fin->fin_dp -
1105 				((char *)fin->fin_ip + fin->fin_hlen);
1106 		plen += fin->fin_hlen;
1107 		if (M_LEN(fin->fin_m) < plen + fin->fin_ipoff) {
1108 #if defined(_KERNEL)
1109 			if (ipf_pullup(fin->fin_m, fin, plen) == NULL) {
1110 				DT1(ipf_pullup_fail, fr_info_t *, fin);
1111 				LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1112 				fin->fin_reason = FRB_PULLUP;
1113 				fin->fin_flx |= FI_BAD;
1114 				return (-1);
1115 			}
1116 			LBUMP(ipf_stats[fin->fin_out].fr_pull[0]);
1117 #else
1118 			LBUMP(ipf_stats[fin->fin_out].fr_pull[1]);
1119 			/*
1120 			 * Fake ipf_pullup failing
1121 			 */
1122 			fin->fin_reason = FRB_PULLUP;
1123 			*fin->fin_mp = NULL;
1124 			fin->fin_m = NULL;
1125 			fin->fin_ip = NULL;
1126 			fin->fin_flx |= FI_BAD;
1127 			return (-1);
1128 #endif
1129 		}
1130 	}
1131 	return (0);
1132 }
1133 
1134 
1135 /* ------------------------------------------------------------------------ */
1136 /* Function:    ipf_pr_short                                                */
1137 /* Returns:     void                                                        */
1138 /* Parameters:  fin(I)  - pointer to packet information                     */
1139 /*              xmin(I) - minimum header size                               */
1140 /*                                                                          */
1141 /* Check if a packet is "short" as defined by xmin.  The rule we are        */
1142 /* applying here is that the packet must not be fragmented within the layer */
1143 /* 4 header.  That is, it must not be a fragment that has its offset set to */
1144 /* start within the layer 4 header (hdrmin) or if it is at offset 0, the    */
1145 /* entire layer 4 header must be present (min).                             */
1146 /* ------------------------------------------------------------------------ */
1147 static inline void
ipf_pr_short(fr_info_t * fin,int xmin)1148 ipf_pr_short(fr_info_t *fin, int xmin)
1149 {
1150 
1151 	if (fin->fin_off == 0) {
1152 		if (fin->fin_dlen < xmin)
1153 			fin->fin_flx |= FI_SHORT;
1154 	} else if (fin->fin_off < xmin) {
1155 		fin->fin_flx |= FI_SHORT;
1156 	}
1157 }
1158 
1159 
1160 /* ------------------------------------------------------------------------ */
1161 /* Function:    ipf_pr_icmp                                                 */
1162 /* Returns:     void                                                        */
1163 /* Parameters:  fin(I) - pointer to packet information                      */
1164 /*                                                                          */
1165 /* IPv4 Only                                                                */
1166 /* Do a sanity check on the packet for ICMP (v4).  In nearly all cases,     */
1167 /* except extrememly bad packets, both type and code will be present.       */
1168 /* The expected minimum size of an ICMP packet is very much dependent on    */
1169 /* the type of it.                                                          */
1170 /*                                                                          */
1171 /* XXX - other ICMP sanity checks?                                          */
1172 /* ------------------------------------------------------------------------ */
1173 static inline void
ipf_pr_icmp(fr_info_t * fin)1174 ipf_pr_icmp(fr_info_t *fin)
1175 {
1176 	ipf_main_softc_t *softc = fin->fin_main_soft;
1177 	int minicmpsz = sizeof(struct icmp);
1178 	icmphdr_t *icmp;
1179 	ip_t *oip;
1180 
1181 	ipf_pr_short(fin, ICMPERR_ICMPHLEN);
1182 
1183 	if (fin->fin_off != 0) {
1184 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_frag);
1185 		return;
1186 	}
1187 
1188 	if (ipf_pr_pullup(fin, ICMPERR_ICMPHLEN) == -1) {
1189 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_icmp_pullup);
1190 		return;
1191 	}
1192 
1193 	icmp = fin->fin_dp;
1194 
1195 	fin->fin_data[0] = *(u_short *)icmp;
1196 	fin->fin_data[1] = icmp->icmp_id;
1197 
1198 	switch (icmp->icmp_type)
1199 	{
1200 	case ICMP_ECHOREPLY :
1201 	case ICMP_ECHO :
1202 	/* Router discovery messaes - RFC 1256 */
1203 	case ICMP_ROUTERADVERT :
1204 	case ICMP_ROUTERSOLICIT :
1205 		fin->fin_flx |= FI_ICMPQUERY;
1206 		minicmpsz = ICMP_MINLEN;
1207 		break;
1208 	/*
1209 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1210 	 * 3 * timestamp(3 * 4)
1211 	 */
1212 	case ICMP_TSTAMP :
1213 	case ICMP_TSTAMPREPLY :
1214 		fin->fin_flx |= FI_ICMPQUERY;
1215 		minicmpsz = 20;
1216 		break;
1217 	/*
1218 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) +
1219 	 * mask(4)
1220 	 */
1221 	case ICMP_IREQ :
1222 	case ICMP_IREQREPLY :
1223 	case ICMP_MASKREQ :
1224 	case ICMP_MASKREPLY :
1225 		fin->fin_flx |= FI_ICMPQUERY;
1226 		minicmpsz = 12;
1227 		break;
1228 	/*
1229 	 * type(1) + code(1) + cksum(2) + id(2) seq(2) + ip(20+)
1230 	 */
1231 	case ICMP_UNREACH :
1232 #ifdef icmp_nextmtu
1233 		if (icmp->icmp_code == ICMP_UNREACH_NEEDFRAG) {
1234 			if (icmp->icmp_nextmtu < softc->ipf_icmpminfragmtu) {
1235 				fin->fin_flx |= FI_BAD;
1236 				DT3(ipf_fi_bad_icmp_nextmtu, fr_info_t *, fin, u_int, icmp->icmp_nextmtu, u_int, softc->ipf_icmpminfragmtu);
1237 			}
1238 		}
1239 #endif
1240 		/* FALLTHROUGH */
1241 	case ICMP_SOURCEQUENCH :
1242 	case ICMP_REDIRECT :
1243 	case ICMP_TIMXCEED :
1244 	case ICMP_PARAMPROB :
1245 		fin->fin_flx |= FI_ICMPERR;
1246 		if (ipf_coalesce(fin) != 1) {
1247 			LBUMPD(ipf_stats[fin->fin_out], fr_icmp_coalesce);
1248 			return;
1249 		}
1250 
1251 		/*
1252 		 * ICMP error packets should not be generated for IP
1253 		 * packets that are a fragment that isn't the first
1254 		 * fragment.
1255 		 */
1256 		oip = (ip_t *)((char *)fin->fin_dp + ICMPERR_ICMPHLEN);
1257 		if ((ntohs(oip->ip_off) & IP_OFFMASK) != 0) {
1258 			fin->fin_flx |= FI_BAD;
1259 			DT2(ipf_fi_bad_icmp_err, fr_info_t, fin, u_int, (ntohs(oip->ip_off) & IP_OFFMASK));
1260 		}
1261 
1262 		/*
1263 		 * If the destination of this packet doesn't match the
1264 		 * source of the original packet then this packet is
1265 		 * not correct.
1266 		 */
1267 		if (oip->ip_src.s_addr != fin->fin_daddr) {
1268 			fin->fin_flx |= FI_BAD;
1269 			DT1(ipf_fi_bad_src_ne_dst, fr_info_t *, fin);
1270 		}
1271 		break;
1272 	default :
1273 		break;
1274 	}
1275 
1276 	ipf_pr_short(fin, minicmpsz);
1277 
1278 	ipf_checkv4sum(fin);
1279 }
1280 
1281 
1282 /* ------------------------------------------------------------------------ */
1283 /* Function:    ipf_pr_tcpcommon                                            */
1284 /* Returns:     int    - 0 = header ok, 1 = bad packet, -1 = buffer error   */
1285 /* Parameters:  fin(I) - pointer to packet information                      */
1286 /*                                                                          */
1287 /* TCP header sanity checking.  Look for bad combinations of TCP flags,     */
1288 /* and make some checks with how they interact with other fields.           */
1289 /* If compiled with IPFILTER_CKSUM, check to see if the TCP checksum is     */
1290 /* valid and mark the packet as bad if not.                                 */
1291 /* ------------------------------------------------------------------------ */
1292 static inline int
ipf_pr_tcpcommon(fr_info_t * fin)1293 ipf_pr_tcpcommon(fr_info_t *fin)
1294 {
1295 	ipf_main_softc_t *softc = fin->fin_main_soft;
1296 	int flags, tlen;
1297 	tcphdr_t *tcp;
1298 
1299 	fin->fin_flx |= FI_TCPUDP;
1300 	if (fin->fin_off != 0) {
1301 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_frag);
1302 		return (0);
1303 	}
1304 
1305 	if (ipf_pr_pullup(fin, sizeof(*tcp)) == -1) {
1306 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1307 		return (-1);
1308 	}
1309 
1310 	tcp = fin->fin_dp;
1311 	if (fin->fin_dlen > 3) {
1312 		fin->fin_sport = ntohs(tcp->th_sport);
1313 		fin->fin_dport = ntohs(tcp->th_dport);
1314 	}
1315 
1316 	if ((fin->fin_flx & FI_SHORT) != 0) {
1317 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_short);
1318 		return (1);
1319 	}
1320 
1321 	/*
1322 	 * Use of the TCP data offset *must* result in a value that is at
1323 	 * least the same size as the TCP header.
1324 	 */
1325 	tlen = TCP_OFF(tcp) << 2;
1326 	if (tlen < sizeof(tcphdr_t)) {
1327 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_small);
1328 		fin->fin_flx |= FI_BAD;
1329 		DT3(ipf_fi_bad_tlen, fr_info_t, fin, u_int, tlen, u_int, sizeof(tcphdr_t));
1330 		return (1);
1331 	}
1332 
1333 	flags = tcp->th_flags;
1334 	fin->fin_tcpf = tcp->th_flags;
1335 
1336 	/*
1337 	 * If the urgent flag is set, then the urgent pointer must
1338 	 * also be set and vice versa.  Good TCP packets do not have
1339 	 * just one of these set.
1340 	 */
1341 	if ((flags & TH_URG) != 0 && (tcp->th_urp == 0)) {
1342 		fin->fin_flx |= FI_BAD;
1343 		DT3(ipf_fi_bad_th_urg, fr_info_t*, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1344 #if 0
1345 	} else if ((flags & TH_URG) == 0 && (tcp->th_urp != 0)) {
1346 		/*
1347 		 * Ignore this case (#if 0) as it shows up in "real"
1348 		 * traffic with bogus values in the urgent pointer field.
1349 		 */
1350 		fin->fin_flx |= FI_BAD;
1351 		DT3(ipf_fi_bad_th_urg0, fr_info_t *, fin, u_int, (flags & TH_URG), u_int, tcp->th_urp);
1352 #endif
1353 	} else if (((flags & (TH_SYN|TH_FIN)) != 0) &&
1354 		   ((flags & (TH_RST|TH_ACK)) == TH_RST)) {
1355 		/* TH_FIN|TH_RST|TH_ACK seems to appear "naturally" */
1356 		fin->fin_flx |= FI_BAD;
1357 		DT1(ipf_fi_bad_th_fin_rst_ack, fr_info_t, fin);
1358 #if 1
1359 	} else if (((flags & TH_SYN) != 0) &&
1360 		   ((flags & (TH_URG|TH_PUSH)) != 0)) {
1361 		/*
1362 		 * SYN with URG and PUSH set is not for normal TCP but it is
1363 		 * possible(?) with T/TCP...but who uses T/TCP?
1364 		 */
1365 		fin->fin_flx |= FI_BAD;
1366 		DT1(ipf_fi_bad_th_syn_urg_psh, fr_info_t *, fin);
1367 #endif
1368 	} else if (!(flags & TH_ACK)) {
1369 		/*
1370 		 * If the ack bit isn't set, then either the SYN or
1371 		 * RST bit must be set.  If the SYN bit is set, then
1372 		 * we expect the ACK field to be 0.  If the ACK is
1373 		 * not set and if URG, PSH or FIN are set, consdier
1374 		 * that to indicate a bad TCP packet.
1375 		 */
1376 		if ((flags == TH_SYN) && (tcp->th_ack != 0)) {
1377 			/*
1378 			 * Cisco PIX sets the ACK field to a random value.
1379 			 * In light of this, do not set FI_BAD until a patch
1380 			 * is available from Cisco to ensure that
1381 			 * interoperability between existing systems is
1382 			 * achieved.
1383 			 */
1384 			/*fin->fin_flx |= FI_BAD*/;
1385 			/*DT1(ipf_fi_bad_th_syn_ack, fr_info_t *, fin);*/
1386 		} else if (!(flags & (TH_RST|TH_SYN))) {
1387 			fin->fin_flx |= FI_BAD;
1388 			DT1(ipf_fi_bad_th_rst_syn, fr_info_t *, fin);
1389 		} else if ((flags & (TH_URG|TH_PUSH|TH_FIN)) != 0) {
1390 			fin->fin_flx |= FI_BAD;
1391 			DT1(ipf_fi_bad_th_urg_push_fin, fr_info_t *, fin);
1392 		}
1393 	}
1394 	if (fin->fin_flx & FI_BAD) {
1395 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_bad_flags);
1396 		return (1);
1397 	}
1398 
1399 	/*
1400 	 * At this point, it's not exactly clear what is to be gained by
1401 	 * marking up which TCP options are and are not present.  The one we
1402 	 * are most interested in is the TCP window scale.  This is only in
1403 	 * a SYN packet [RFC1323] so we don't need this here...?
1404 	 * Now if we were to analyse the header for passive fingerprinting,
1405 	 * then that might add some weight to adding this...
1406 	 */
1407 	if (tlen == sizeof(tcphdr_t)) {
1408 		return (0);
1409 	}
1410 
1411 	if (ipf_pr_pullup(fin, tlen) == -1) {
1412 		LBUMPD(ipf_stats[fin->fin_out], fr_tcp_pullup);
1413 		return (-1);
1414 	}
1415 
1416 #if 0
1417 	tcp = fin->fin_dp;
1418 	ip = fin->fin_ip;
1419 	s = (u_char *)(tcp + 1);
1420 	off = IP_HL(ip) << 2;
1421 # ifdef _KERNEL
1422 	if (fin->fin_mp != NULL) {
1423 		mb_t *m = *fin->fin_mp;
1424 
1425 		if (off + tlen > M_LEN(m))
1426 			return;
1427 	}
1428 # endif
1429 	for (tlen -= (int)sizeof(*tcp); tlen > 0; ) {
1430 		opt = *s;
1431 		if (opt == '\0')
1432 			break;
1433 		else if (opt == TCPOPT_NOP)
1434 			ol = 1;
1435 		else {
1436 			if (tlen < 2)
1437 				break;
1438 			ol = (int)*(s + 1);
1439 			if (ol < 2 || ol > tlen)
1440 				break;
1441 		}
1442 
1443 		for (i = 9, mv = 4; mv >= 0; ) {
1444 			op = ipopts + i;
1445 			if (opt == (u_char)op->ol_val) {
1446 				optmsk |= op->ol_bit;
1447 				break;
1448 			}
1449 		}
1450 		tlen -= ol;
1451 		s += ol;
1452 	}
1453 #endif /* 0 */
1454 
1455 	return (0);
1456 }
1457 
1458 
1459 
1460 /* ------------------------------------------------------------------------ */
1461 /* Function:    ipf_pr_udpcommon                                            */
1462 /* Returns:     int    - 0 = header ok, 1 = bad packet                      */
1463 /* Parameters:  fin(I) - pointer to packet information                      */
1464 /*                                                                          */
1465 /* Extract the UDP source and destination ports, if present.  If compiled   */
1466 /* with IPFILTER_CKSUM, check to see if the UDP checksum is valid.          */
1467 /* ------------------------------------------------------------------------ */
1468 static inline int
ipf_pr_udpcommon(fr_info_t * fin)1469 ipf_pr_udpcommon(fr_info_t *fin)
1470 {
1471 	udphdr_t *udp;
1472 
1473 	fin->fin_flx |= FI_TCPUDP;
1474 
1475 	if (!fin->fin_off && (fin->fin_dlen > 3)) {
1476 		if (ipf_pr_pullup(fin, sizeof(*udp)) == -1) {
1477 			ipf_main_softc_t *softc = fin->fin_main_soft;
1478 
1479 			fin->fin_flx |= FI_SHORT;
1480 			LBUMPD(ipf_stats[fin->fin_out], fr_udp_pullup);
1481 			return (1);
1482 		}
1483 
1484 		udp = fin->fin_dp;
1485 
1486 		fin->fin_sport = ntohs(udp->uh_sport);
1487 		fin->fin_dport = ntohs(udp->uh_dport);
1488 	}
1489 
1490 	return (0);
1491 }
1492 
1493 
1494 /* ------------------------------------------------------------------------ */
1495 /* Function:    ipf_pr_tcp                                                  */
1496 /* Returns:     void                                                        */
1497 /* Parameters:  fin(I) - pointer to packet information                      */
1498 /*                                                                          */
1499 /* IPv4 Only                                                                */
1500 /* Analyse the packet for IPv4/TCP properties.                              */
1501 /* ------------------------------------------------------------------------ */
1502 static inline void
ipf_pr_tcp(fr_info_t * fin)1503 ipf_pr_tcp(fr_info_t *fin)
1504 {
1505 
1506 	ipf_pr_short(fin, sizeof(tcphdr_t));
1507 
1508 	if (ipf_pr_tcpcommon(fin) == 0)
1509 		ipf_checkv4sum(fin);
1510 }
1511 
1512 
1513 /* ------------------------------------------------------------------------ */
1514 /* Function:    ipf_pr_udp                                                  */
1515 /* Returns:     void                                                        */
1516 /* Parameters:  fin(I) - pointer to packet information                      */
1517 /*                                                                          */
1518 /* IPv4 Only                                                                */
1519 /* Analyse the packet for IPv4/UDP properties.                              */
1520 /* ------------------------------------------------------------------------ */
1521 static inline void
ipf_pr_udp(fr_info_t * fin)1522 ipf_pr_udp(fr_info_t *fin)
1523 {
1524 
1525 	ipf_pr_short(fin, sizeof(udphdr_t));
1526 
1527 	if (ipf_pr_udpcommon(fin) == 0)
1528 		ipf_checkv4sum(fin);
1529 }
1530 
1531 
1532 /* ------------------------------------------------------------------------ */
1533 /* Function:    ipf_pr_esp                                                  */
1534 /* Returns:     void                                                        */
1535 /* Parameters:  fin(I) - pointer to packet information                      */
1536 /*                                                                          */
1537 /* Analyse the packet for ESP properties.                                   */
1538 /* The minimum length is taken to be the SPI (32bits) plus a tail (32bits)  */
1539 /* even though the newer ESP packets must also have a sequence number that  */
1540 /* is 32bits as well, it is not possible(?) to determine the version from a */
1541 /* simple packet header.                                                    */
1542 /* ------------------------------------------------------------------------ */
1543 static inline void
ipf_pr_esp(fr_info_t * fin)1544 ipf_pr_esp(fr_info_t *fin)
1545 {
1546 
1547 	if (fin->fin_off == 0) {
1548 		ipf_pr_short(fin, 8);
1549 		if (ipf_pr_pullup(fin, 8) == -1) {
1550 			ipf_main_softc_t *softc = fin->fin_main_soft;
1551 
1552 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_esp_pullup);
1553 		}
1554 	}
1555 }
1556 
1557 
1558 /* ------------------------------------------------------------------------ */
1559 /* Function:    ipf_pr_ah                                                   */
1560 /* Returns:     int    - value of the next header or IPPROTO_NONE if error  */
1561 /* Parameters:  fin(I) - pointer to packet information                      */
1562 /*                                                                          */
1563 /* Analyse the packet for AH properties.                                    */
1564 /* The minimum length is taken to be the combination of all fields in the   */
1565 /* header being present and no authentication data (null algorithm used.)   */
1566 /* ------------------------------------------------------------------------ */
1567 static inline int
ipf_pr_ah(fr_info_t * fin)1568 ipf_pr_ah(fr_info_t *fin)
1569 {
1570 	ipf_main_softc_t *softc = fin->fin_main_soft;
1571 	authhdr_t *ah;
1572 	int len;
1573 
1574 	fin->fin_flx |= FI_AH;
1575 	ipf_pr_short(fin, sizeof(*ah));
1576 
1577 	if (((fin->fin_flx & FI_SHORT) != 0) || (fin->fin_off != 0)) {
1578 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_ah_bad);
1579 		return (IPPROTO_NONE);
1580 	}
1581 
1582 	if (ipf_pr_pullup(fin, sizeof(*ah)) == -1) {
1583 		DT(fr_v4_ah_pullup_1);
1584 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1585 		return (IPPROTO_NONE);
1586 	}
1587 
1588 	ah = (authhdr_t *)fin->fin_dp;
1589 
1590 	len = (ah->ah_plen + 2) << 2;
1591 	ipf_pr_short(fin, len);
1592 	if (ipf_pr_pullup(fin, len) == -1) {
1593 		DT(fr_v4_ah_pullup_2);
1594 		LBUMP(ipf_stats[fin->fin_out].fr_v4_ah_pullup);
1595 		return (IPPROTO_NONE);
1596 	}
1597 
1598 	/*
1599 	 * Adjust fin_dp and fin_dlen for skipping over the authentication
1600 	 * header.
1601 	 */
1602 	fin->fin_dp = (char *)fin->fin_dp + len;
1603 	fin->fin_dlen -= len;
1604 	return (ah->ah_next);
1605 }
1606 
1607 
1608 /* ------------------------------------------------------------------------ */
1609 /* Function:    ipf_pr_gre                                                  */
1610 /* Returns:     void                                                        */
1611 /* Parameters:  fin(I) - pointer to packet information                      */
1612 /*                                                                          */
1613 /* Analyse the packet for GRE properties.                                   */
1614 /* ------------------------------------------------------------------------ */
1615 static inline void
ipf_pr_gre(fr_info_t * fin)1616 ipf_pr_gre(fr_info_t *fin)
1617 {
1618 	ipf_main_softc_t *softc = fin->fin_main_soft;
1619 	grehdr_t *gre;
1620 
1621 	ipf_pr_short(fin, sizeof(grehdr_t));
1622 
1623 	if (fin->fin_off != 0) {
1624 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_frag);
1625 		return;
1626 	}
1627 
1628 	if (ipf_pr_pullup(fin, sizeof(grehdr_t)) == -1) {
1629 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_gre_pullup);
1630 		return;
1631 	}
1632 
1633 	gre = fin->fin_dp;
1634 	if (GRE_REV(gre->gr_flags) == 1)
1635 		fin->fin_data[0] = gre->gr_call;
1636 }
1637 
1638 
1639 /* ------------------------------------------------------------------------ */
1640 /* Function:    ipf_pr_ipv4hdr                                              */
1641 /* Returns:     void                                                        */
1642 /* Parameters:  fin(I) - pointer to packet information                      */
1643 /*                                                                          */
1644 /* IPv4 Only                                                                */
1645 /* Analyze the IPv4 header and set fields in the fr_info_t structure.       */
1646 /* Check all options present and flag their presence if any exist.          */
1647 /* ------------------------------------------------------------------------ */
1648 static inline void
ipf_pr_ipv4hdr(fr_info_t * fin)1649 ipf_pr_ipv4hdr(fr_info_t *fin)
1650 {
1651 	u_short optmsk = 0, secmsk = 0, auth = 0;
1652 	int hlen, ol, mv, p, i;
1653 	const struct optlist *op;
1654 	u_char *s, opt;
1655 	u_short off;
1656 	fr_ip_t *fi;
1657 	ip_t *ip;
1658 
1659 	fi = &fin->fin_fi;
1660 	hlen = fin->fin_hlen;
1661 
1662 	ip = fin->fin_ip;
1663 	p = ip->ip_p;
1664 	fi->fi_p = p;
1665 	fin->fin_crc = p;
1666 	fi->fi_tos = ip->ip_tos;
1667 	fin->fin_id = ntohs(ip->ip_id);
1668 	off = ntohs(ip->ip_off);
1669 
1670 	/* Get both TTL and protocol */
1671 	fi->fi_p = ip->ip_p;
1672 	fi->fi_ttl = ip->ip_ttl;
1673 
1674 	/* Zero out bits not used in IPv6 address */
1675 	fi->fi_src.i6[1] = 0;
1676 	fi->fi_src.i6[2] = 0;
1677 	fi->fi_src.i6[3] = 0;
1678 	fi->fi_dst.i6[1] = 0;
1679 	fi->fi_dst.i6[2] = 0;
1680 	fi->fi_dst.i6[3] = 0;
1681 
1682 	fi->fi_saddr = ip->ip_src.s_addr;
1683 	fin->fin_crc += fi->fi_saddr;
1684 	fi->fi_daddr = ip->ip_dst.s_addr;
1685 	fin->fin_crc += fi->fi_daddr;
1686 	if (IN_MULTICAST(ntohl(fi->fi_daddr)))
1687 		fin->fin_flx |= FI_MULTICAST|FI_MBCAST;
1688 
1689 	/*
1690 	 * set packet attribute flags based on the offset and
1691 	 * calculate the byte offset that it represents.
1692 	 */
1693 	off &= IP_MF|IP_OFFMASK;
1694 	if (off != 0) {
1695 		int morefrag = off & IP_MF;
1696 
1697 		fi->fi_flx |= FI_FRAG;
1698 		off &= IP_OFFMASK;
1699 		if (off == 1 && p == IPPROTO_TCP) {
1700 			fin->fin_flx |= FI_SHORT;	/* RFC 3128 */
1701 			DT1(ipf_fi_tcp_frag_off_1, fr_info_t *, fin);
1702 		}
1703 		if (off != 0) {
1704 			fin->fin_flx |= FI_FRAGBODY;
1705 			off <<= 3;
1706 			if ((off + fin->fin_dlen > 65535) ||
1707 			    (fin->fin_dlen == 0) ||
1708 			    ((morefrag != 0) && ((fin->fin_dlen & 7) != 0))) {
1709 				/*
1710 				 * The length of the packet, starting at its
1711 				 * offset cannot exceed 65535 (0xffff) as the
1712 				 * length of an IP packet is only 16 bits.
1713 				 *
1714 				 * Any fragment that isn't the last fragment
1715 				 * must have a length greater than 0 and it
1716 				 * must be an even multiple of 8.
1717 				 */
1718 				fi->fi_flx |= FI_BAD;
1719 				DT1(ipf_fi_bad_fragbody_gt_65535, fr_info_t *, fin);
1720 			}
1721 		}
1722 	}
1723 	fin->fin_off = off;
1724 
1725 	/*
1726 	 * Call per-protocol setup and checking
1727 	 */
1728 	if (p == IPPROTO_AH) {
1729 		/*
1730 		 * Treat AH differently because we expect there to be another
1731 		 * layer 4 header after it.
1732 		 */
1733 		p = ipf_pr_ah(fin);
1734 	}
1735 
1736 	switch (p)
1737 	{
1738 	case IPPROTO_UDP :
1739 		ipf_pr_udp(fin);
1740 		break;
1741 	case IPPROTO_TCP :
1742 		ipf_pr_tcp(fin);
1743 		break;
1744 	case IPPROTO_ICMP :
1745 		ipf_pr_icmp(fin);
1746 		break;
1747 	case IPPROTO_ESP :
1748 		ipf_pr_esp(fin);
1749 		break;
1750 	case IPPROTO_GRE :
1751 		ipf_pr_gre(fin);
1752 		break;
1753 	}
1754 
1755 	ip = fin->fin_ip;
1756 	if (ip == NULL)
1757 		return;
1758 
1759 	/*
1760 	 * If it is a standard IP header (no options), set the flag fields
1761 	 * which relate to options to 0.
1762 	 */
1763 	if (hlen == sizeof(*ip)) {
1764 		fi->fi_optmsk = 0;
1765 		fi->fi_secmsk = 0;
1766 		fi->fi_auth = 0;
1767 		return;
1768 	}
1769 
1770 	/*
1771 	 * So the IP header has some IP options attached.  Walk the entire
1772 	 * list of options present with this packet and set flags to indicate
1773 	 * which ones are here and which ones are not.  For the somewhat out
1774 	 * of date and obscure security classification options, set a flag to
1775 	 * represent which classification is present.
1776 	 */
1777 	fi->fi_flx |= FI_OPTIONS;
1778 
1779 	for (s = (u_char *)(ip + 1), hlen -= (int)sizeof(*ip); hlen > 0; ) {
1780 		opt = *s;
1781 		if (opt == '\0')
1782 			break;
1783 		else if (opt == IPOPT_NOP)
1784 			ol = 1;
1785 		else {
1786 			if (hlen < 2)
1787 				break;
1788 			ol = (int)*(s + 1);
1789 			if (ol < 2 || ol > hlen)
1790 				break;
1791 		}
1792 		for (i = 9, mv = 4; mv >= 0; ) {
1793 			op = ipopts + i;
1794 
1795 			if ((opt == (u_char)op->ol_val) && (ol > 4)) {
1796 				u_32_t doi;
1797 
1798 				switch (opt)
1799 				{
1800 				case IPOPT_SECURITY :
1801 					if (optmsk & op->ol_bit) {
1802 						fin->fin_flx |= FI_BAD;
1803 						DT2(ipf_fi_bad_ipopt_security, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1804 					} else {
1805 						doi = ipf_checkripso(s);
1806 						secmsk = doi >> 16;
1807 						auth = doi & 0xffff;
1808 					}
1809 					break;
1810 
1811 				case IPOPT_CIPSO :
1812 
1813 					if (optmsk & op->ol_bit) {
1814 						fin->fin_flx |= FI_BAD;
1815 						DT2(ipf_fi_bad_ipopt_cipso, fr_info_t *, fin, u_short, (optmsk & op->ol_bit));
1816 					} else {
1817 						doi = ipf_checkcipso(fin,
1818 								     s, ol);
1819 						secmsk = doi >> 16;
1820 						auth = doi & 0xffff;
1821 					}
1822 					break;
1823 				}
1824 				optmsk |= op->ol_bit;
1825 			}
1826 
1827 			if (opt < op->ol_val)
1828 				i -= mv;
1829 			else
1830 				i += mv;
1831 			mv--;
1832 		}
1833 		hlen -= ol;
1834 		s += ol;
1835 	}
1836 
1837 	/*
1838 	 *
1839 	 */
1840 	if (auth && !(auth & 0x0100))
1841 		auth &= 0xff00;
1842 	fi->fi_optmsk = optmsk;
1843 	fi->fi_secmsk = secmsk;
1844 	fi->fi_auth = auth;
1845 }
1846 
1847 
1848 /* ------------------------------------------------------------------------ */
1849 /* Function:    ipf_checkripso                                              */
1850 /* Returns:     void                                                        */
1851 /* Parameters:  s(I)   - pointer to start of RIPSO option                   */
1852 /*                                                                          */
1853 /* ------------------------------------------------------------------------ */
1854 static u_32_t
ipf_checkripso(u_char * s)1855 ipf_checkripso(u_char *s)
1856 {
1857 	const struct optlist *sp;
1858 	u_short secmsk = 0, auth = 0;
1859 	u_char sec;
1860 	int j, m;
1861 
1862 	sec = *(s + 2);	/* classification */
1863 	for (j = 3, m = 2; m >= 0; ) {
1864 		sp = secopt + j;
1865 		if (sec == sp->ol_val) {
1866 			secmsk |= sp->ol_bit;
1867 			auth = *(s + 3);
1868 			auth *= 256;
1869 			auth += *(s + 4);
1870 			break;
1871 		}
1872 		if (sec < sp->ol_val)
1873 			j -= m;
1874 		else
1875 			j += m;
1876 		m--;
1877 	}
1878 
1879 	return (secmsk << 16) | auth;
1880 }
1881 
1882 
1883 /* ------------------------------------------------------------------------ */
1884 /* Function:    ipf_checkcipso                                              */
1885 /* Returns:     u_32_t  - 0 = failure, else the doi from the header         */
1886 /* Parameters:  fin(IO) - pointer to packet information                     */
1887 /*              s(I)    - pointer to start of CIPSO option                  */
1888 /*              ol(I)   - length of CIPSO option field                      */
1889 /*                                                                          */
1890 /* This function returns the domain of integrity (DOI) field from the CIPSO */
1891 /* header and returns that whilst also storing the highest sensitivity      */
1892 /* value found in the fr_info_t structure.                                  */
1893 /*                                                                          */
1894 /* No attempt is made to extract the category bitmaps as these are defined  */
1895 /* by the user (rather than the protocol) and can be rather numerous on the */
1896 /* end nodes.                                                               */
1897 /* ------------------------------------------------------------------------ */
1898 static u_32_t
ipf_checkcipso(fr_info_t * fin,u_char * s,int ol)1899 ipf_checkcipso(fr_info_t *fin, u_char *s, int ol)
1900 {
1901 	ipf_main_softc_t *softc = fin->fin_main_soft;
1902 	fr_ip_t *fi;
1903 	u_32_t doi;
1904 	u_char *t, tag, tlen, sensitivity;
1905 	int len;
1906 
1907 	if (ol < 6 || ol > 40) {
1908 		LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_bad);
1909 		fin->fin_flx |= FI_BAD;
1910 		DT2(ipf_fi_bad_checkcipso_ol, fr_info_t *, fin, u_int, ol);
1911 		return (0);
1912 	}
1913 
1914 	fi = &fin->fin_fi;
1915 	fi->fi_sensitivity = 0;
1916 	/*
1917 	 * The DOI field MUST be there.
1918 	 */
1919 	bcopy(s + 2, &doi, sizeof(doi));
1920 
1921 	t = (u_char *)s + 6;
1922 	for (len = ol - 6; len >= 2; len -= tlen, t+= tlen) {
1923 		tag = *t;
1924 		tlen = *(t + 1);
1925 		if (tlen > len || tlen < 4 || tlen > 34) {
1926 			LBUMPD(ipf_stats[fin->fin_out], fr_v4_cipso_tlen);
1927 			fin->fin_flx |= FI_BAD;
1928 			DT2(ipf_fi_bad_checkcipso_tlen, fr_info_t *, fin, u_int, tlen);
1929 			return (0);
1930 		}
1931 
1932 		sensitivity = 0;
1933 		/*
1934 		 * Tag numbers 0, 1, 2, 5 are laid out in the CIPSO Internet
1935 		 * draft (16 July 1992) that has expired.
1936 		 */
1937 		if (tag == 0) {
1938 			fin->fin_flx |= FI_BAD;
1939 			DT2(ipf_fi_bad_checkcipso_tag, fr_info_t *, fin, u_int, tag);
1940 			continue;
1941 		} else if (tag == 1) {
1942 			if (*(t + 2) != 0) {
1943 				fin->fin_flx |= FI_BAD;
1944 				DT2(ipf_fi_bad_checkcipso_tag1_t2, fr_info_t *, fin, u_int, (*t + 2));
1945 				continue;
1946 			}
1947 			sensitivity = *(t + 3);
1948 			/* Category bitmap for categories 0-239 */
1949 
1950 		} else if (tag == 4) {
1951 			if (*(t + 2) != 0) {
1952 				fin->fin_flx |= FI_BAD;
1953 				DT2(ipf_fi_bad_checkcipso_tag4_t2, fr_info_t *, fin, u_int, (*t + 2));
1954 				continue;
1955 			}
1956 			sensitivity = *(t + 3);
1957 			/* Enumerated categories, 16bits each, upto 15 */
1958 
1959 		} else if (tag == 5) {
1960 			if (*(t + 2) != 0) {
1961 				fin->fin_flx |= FI_BAD;
1962 				DT2(ipf_fi_bad_checkcipso_tag5_t2, fr_info_t *, fin, u_int, (*t + 2));
1963 				continue;
1964 			}
1965 			sensitivity = *(t + 3);
1966 			/* Range of categories (2*16bits), up to 7 pairs */
1967 
1968 		} else if (tag > 127) {
1969 			/* Custom defined DOI */
1970 			;
1971 		} else {
1972 			fin->fin_flx |= FI_BAD;
1973 			DT2(ipf_fi_bad_checkcipso_tag127, fr_info_t *, fin, u_int, tag);
1974 			continue;
1975 		}
1976 
1977 		if (sensitivity > fi->fi_sensitivity)
1978 			fi->fi_sensitivity = sensitivity;
1979 	}
1980 
1981 	return (doi);
1982 }
1983 
1984 
1985 /* ------------------------------------------------------------------------ */
1986 /* Function:    ipf_makefrip                                                */
1987 /* Returns:     int     - 0 == packet ok, -1 == packet freed                */
1988 /* Parameters:  hlen(I) - length of IP packet header                        */
1989 /*              ip(I)   - pointer to the IP header                          */
1990 /*              fin(IO) - pointer to packet information                     */
1991 /*                                                                          */
1992 /* Compact the IP header into a structure which contains just the info.     */
1993 /* which is useful for comparing IP headers with and store this information */
1994 /* in the fr_info_t structure pointer to by fin.  At present, it is assumed */
1995 /* this function will be called with either an IPv4 or IPv6 packet.         */
1996 /* ------------------------------------------------------------------------ */
1997 int
ipf_makefrip(int hlen,ip_t * ip,fr_info_t * fin)1998 ipf_makefrip(int hlen, ip_t *ip, fr_info_t *fin)
1999 {
2000 	ipf_main_softc_t *softc = fin->fin_main_soft;
2001 	int v;
2002 
2003 	fin->fin_depth = 0;
2004 	fin->fin_hlen = (u_short)hlen;
2005 	fin->fin_ip = ip;
2006 	fin->fin_rule = 0xffffffff;
2007 	fin->fin_group[0] = -1;
2008 	fin->fin_group[1] = '\0';
2009 	fin->fin_dp = (char *)ip + hlen;
2010 
2011 	v = fin->fin_v;
2012 	if (v == 4) {
2013 		fin->fin_plen = ntohs(ip->ip_len);
2014 		fin->fin_dlen = fin->fin_plen - hlen;
2015 		ipf_pr_ipv4hdr(fin);
2016 #ifdef	USE_INET6
2017 	} else if (v == 6) {
2018 		fin->fin_plen = ntohs(((ip6_t *)ip)->ip6_plen);
2019 		fin->fin_dlen = fin->fin_plen;
2020 		fin->fin_plen += hlen;
2021 
2022 		ipf_pr_ipv6hdr(fin);
2023 #endif
2024 	}
2025 	if (fin->fin_ip == NULL) {
2026 		LBUMP(ipf_stats[fin->fin_out].fr_ip_freed);
2027 		return (-1);
2028 	}
2029 	return (0);
2030 }
2031 
2032 
2033 /* ------------------------------------------------------------------------ */
2034 /* Function:    ipf_portcheck                                               */
2035 /* Returns:     int - 1 == port matched, 0 == port match failed             */
2036 /* Parameters:  frp(I) - pointer to port check `expression'                 */
2037 /*              pop(I) - port number to evaluate                            */
2038 /*                                                                          */
2039 /* Perform a comparison of a port number against some other(s), using a     */
2040 /* structure with compare information stored in it.                         */
2041 /* ------------------------------------------------------------------------ */
2042 static inline int
ipf_portcheck(frpcmp_t * frp,u_32_t pop)2043 ipf_portcheck(frpcmp_t *frp, u_32_t pop)
2044 {
2045 	int err = 1;
2046 	u_32_t po;
2047 
2048 	po = frp->frp_port;
2049 
2050 	/*
2051 	 * Do opposite test to that required and continue if that succeeds.
2052 	 */
2053 	switch (frp->frp_cmp)
2054 	{
2055 	case FR_EQUAL :
2056 		if (pop != po) /* EQUAL */
2057 			err = 0;
2058 		break;
2059 	case FR_NEQUAL :
2060 		if (pop == po) /* NOTEQUAL */
2061 			err = 0;
2062 		break;
2063 	case FR_LESST :
2064 		if (pop >= po) /* LESSTHAN */
2065 			err = 0;
2066 		break;
2067 	case FR_GREATERT :
2068 		if (pop <= po) /* GREATERTHAN */
2069 			err = 0;
2070 		break;
2071 	case FR_LESSTE :
2072 		if (pop > po) /* LT or EQ */
2073 			err = 0;
2074 		break;
2075 	case FR_GREATERTE :
2076 		if (pop < po) /* GT or EQ */
2077 			err = 0;
2078 		break;
2079 	case FR_OUTRANGE :
2080 		if (pop >= po && pop <= frp->frp_top) /* Out of range */
2081 			err = 0;
2082 		break;
2083 	case FR_INRANGE :
2084 		if (pop <= po || pop >= frp->frp_top) /* In range */
2085 			err = 0;
2086 		break;
2087 	case FR_INCRANGE :
2088 		if (pop < po || pop > frp->frp_top) /* Inclusive range */
2089 			err = 0;
2090 		break;
2091 	default :
2092 		break;
2093 	}
2094 	return (err);
2095 }
2096 
2097 
2098 /* ------------------------------------------------------------------------ */
2099 /* Function:    ipf_tcpudpchk                                               */
2100 /* Returns:     int - 1 == protocol matched, 0 == check failed              */
2101 /* Parameters:  fda(I) - pointer to packet information                      */
2102 /*              ft(I)  - pointer to structure with comparison data          */
2103 /*                                                                          */
2104 /* Compares the current pcket (assuming it is TCP/UDP) information with a   */
2105 /* structure containing information that we want to match against.          */
2106 /* ------------------------------------------------------------------------ */
2107 int
ipf_tcpudpchk(fr_ip_t * fi,frtuc_t * ft)2108 ipf_tcpudpchk(fr_ip_t *fi, frtuc_t *ft)
2109 {
2110 	int err = 1;
2111 
2112 	/*
2113 	 * Both ports should *always* be in the first fragment.
2114 	 * So far, I cannot find any cases where they can not be.
2115 	 *
2116 	 * compare destination ports
2117 	 */
2118 	if (ft->ftu_dcmp)
2119 		err = ipf_portcheck(&ft->ftu_dst, fi->fi_ports[1]);
2120 
2121 	/*
2122 	 * compare source ports
2123 	 */
2124 	if (err && ft->ftu_scmp)
2125 		err = ipf_portcheck(&ft->ftu_src, fi->fi_ports[0]);
2126 
2127 	/*
2128 	 * If we don't have all the TCP/UDP header, then how can we
2129 	 * expect to do any sort of match on it ?  If we were looking for
2130 	 * TCP flags, then NO match.  If not, then match (which should
2131 	 * satisfy the "short" class too).
2132 	 */
2133 	if (err && (fi->fi_p == IPPROTO_TCP)) {
2134 		if (fi->fi_flx & FI_SHORT)
2135 			return (!(ft->ftu_tcpf | ft->ftu_tcpfm));
2136 		/*
2137 		 * Match the flags ?  If not, abort this match.
2138 		 */
2139 		if (ft->ftu_tcpfm &&
2140 		    ft->ftu_tcpf != (fi->fi_tcpf & ft->ftu_tcpfm)) {
2141 			FR_DEBUG(("f. %#x & %#x != %#x\n", fi->fi_tcpf,
2142 				 ft->ftu_tcpfm, ft->ftu_tcpf));
2143 			err = 0;
2144 		}
2145 	}
2146 	return (err);
2147 }
2148 
2149 
2150 /* ------------------------------------------------------------------------ */
2151 /* Function:    ipf_check_ipf                                               */
2152 /* Returns:     int - 0 == match, else no match                             */
2153 /* Parameters:  fin(I)     - pointer to packet information                  */
2154 /*              fr(I)      - pointer to filter rule                         */
2155 /*              portcmp(I) - flag indicating whether to attempt matching on */
2156 /*                           TCP/UDP port data.                             */
2157 /*                                                                          */
2158 /* Check to see if a packet matches an IPFilter rule.  Checks of addresses, */
2159 /* port numbers, etc, for "standard" IPFilter rules are all orchestrated in */
2160 /* this function.                                                           */
2161 /* ------------------------------------------------------------------------ */
2162 static inline int
ipf_check_ipf(fr_info_t * fin,frentry_t * fr,int portcmp)2163 ipf_check_ipf(fr_info_t *fin, frentry_t *fr, int portcmp)
2164 {
2165 	u_32_t	*ld, *lm, *lip;
2166 	fripf_t *fri;
2167 	fr_ip_t *fi;
2168 	int i;
2169 
2170 	fi = &fin->fin_fi;
2171 	fri = fr->fr_ipf;
2172 	lip = (u_32_t *)fi;
2173 	lm = (u_32_t *)&fri->fri_mip;
2174 	ld = (u_32_t *)&fri->fri_ip;
2175 
2176 	/*
2177 	 * first 32 bits to check coversion:
2178 	 * IP version, TOS, TTL, protocol
2179 	 */
2180 	i = ((*lip & *lm) != *ld);
2181 	FR_DEBUG(("0. %#08x & %#08x != %#08x\n",
2182 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2183 	if (i)
2184 		return (1);
2185 
2186 	/*
2187 	 * Next 32 bits is a constructed bitmask indicating which IP options
2188 	 * are present (if any) in this packet.
2189 	 */
2190 	lip++, lm++, ld++;
2191 	i = ((*lip & *lm) != *ld);
2192 	FR_DEBUG(("1. %#08x & %#08x != %#08x\n",
2193 		   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2194 	if (i != 0)
2195 		return (1);
2196 
2197 	lip++, lm++, ld++;
2198 	/*
2199 	 * Unrolled loops (4 each, for 32 bits) for address checks.
2200 	 */
2201 	/*
2202 	 * Check the source address.
2203 	 */
2204 	if (fr->fr_satype == FRI_LOOKUP) {
2205 		i = (*fr->fr_srcfunc)(fin->fin_main_soft, fr->fr_srcptr,
2206 				      fi->fi_v, lip, fin->fin_plen);
2207 		if (i == -1)
2208 			return (1);
2209 		lip += 3;
2210 		lm += 3;
2211 		ld += 3;
2212 	} else {
2213 		i = ((*lip & *lm) != *ld);
2214 		FR_DEBUG(("2a. %#08x & %#08x != %#08x\n",
2215 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2216 		if (fi->fi_v == 6) {
2217 			lip++, lm++, ld++;
2218 			i |= ((*lip & *lm) != *ld);
2219 			FR_DEBUG(("2b. %#08x & %#08x != %#08x\n",
2220 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2221 			lip++, lm++, ld++;
2222 			i |= ((*lip & *lm) != *ld);
2223 			FR_DEBUG(("2c. %#08x & %#08x != %#08x\n",
2224 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2225 			lip++, lm++, ld++;
2226 			i |= ((*lip & *lm) != *ld);
2227 			FR_DEBUG(("2d. %#08x & %#08x != %#08x\n",
2228 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2229 		} else {
2230 			lip += 3;
2231 			lm += 3;
2232 			ld += 3;
2233 		}
2234 	}
2235 	i ^= (fr->fr_flags & FR_NOTSRCIP) >> 6;
2236 	if (i != 0)
2237 		return (1);
2238 
2239 	/*
2240 	 * Check the destination address.
2241 	 */
2242 	lip++, lm++, ld++;
2243 	if (fr->fr_datype == FRI_LOOKUP) {
2244 		i = (*fr->fr_dstfunc)(fin->fin_main_soft, fr->fr_dstptr,
2245 				      fi->fi_v, lip, fin->fin_plen);
2246 		if (i == -1)
2247 			return (1);
2248 		lip += 3;
2249 		lm += 3;
2250 		ld += 3;
2251 	} else {
2252 		i = ((*lip & *lm) != *ld);
2253 		FR_DEBUG(("3a. %#08x & %#08x != %#08x\n",
2254 			   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2255 		if (fi->fi_v == 6) {
2256 			lip++, lm++, ld++;
2257 			i |= ((*lip & *lm) != *ld);
2258 			FR_DEBUG(("3b. %#08x & %#08x != %#08x\n",
2259 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2260 			lip++, lm++, ld++;
2261 			i |= ((*lip & *lm) != *ld);
2262 			FR_DEBUG(("3c. %#08x & %#08x != %#08x\n",
2263 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2264 			lip++, lm++, ld++;
2265 			i |= ((*lip & *lm) != *ld);
2266 			FR_DEBUG(("3d. %#08x & %#08x != %#08x\n",
2267 				   ntohl(*lip), ntohl(*lm), ntohl(*ld)));
2268 		} else {
2269 			lip += 3;
2270 			lm += 3;
2271 			ld += 3;
2272 		}
2273 	}
2274 	i ^= (fr->fr_flags & FR_NOTDSTIP) >> 7;
2275 	if (i != 0)
2276 		return (1);
2277 	/*
2278 	 * IP addresses matched.  The next 32bits contains:
2279 	 * mast of old IP header security & authentication bits.
2280 	 */
2281 	lip++, lm++, ld++;
2282 	i = (*ld - (*lip & *lm));
2283 	FR_DEBUG(("4. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2284 
2285 	/*
2286 	 * Next we have 32 bits of packet flags.
2287 	 */
2288 	lip++, lm++, ld++;
2289 	i |= (*ld - (*lip & *lm));
2290 	FR_DEBUG(("5. %#08x & %#08x != %#08x\n", *lip, *lm, *ld));
2291 
2292 	if (i == 0) {
2293 		/*
2294 		 * If a fragment, then only the first has what we're
2295 		 * looking for here...
2296 		 */
2297 		if (portcmp) {
2298 			if (!ipf_tcpudpchk(&fin->fin_fi, &fr->fr_tuc))
2299 				i = 1;
2300 		} else {
2301 			if (fr->fr_dcmp || fr->fr_scmp ||
2302 			    fr->fr_tcpf || fr->fr_tcpfm)
2303 				i = 1;
2304 			if (fr->fr_icmpm || fr->fr_icmp) {
2305 				if (((fi->fi_p != IPPROTO_ICMP) &&
2306 				     (fi->fi_p != IPPROTO_ICMPV6)) ||
2307 				    fin->fin_off || (fin->fin_dlen < 2))
2308 					i = 1;
2309 				else if ((fin->fin_data[0] & fr->fr_icmpm) !=
2310 					 fr->fr_icmp) {
2311 					FR_DEBUG(("i. %#x & %#x != %#x\n",
2312 						 fin->fin_data[0],
2313 						 fr->fr_icmpm, fr->fr_icmp));
2314 					i = 1;
2315 				}
2316 			}
2317 		}
2318 	}
2319 	return (i);
2320 }
2321 
2322 
2323 /* ------------------------------------------------------------------------ */
2324 /* Function:    ipf_scanlist                                                */
2325 /* Returns:     int - result flags of scanning filter list                  */
2326 /* Parameters:  fin(I) - pointer to packet information                      */
2327 /*              pass(I) - default result to return for filtering            */
2328 /*                                                                          */
2329 /* Check the input/output list of rules for a match to the current packet.  */
2330 /* If a match is found, the value of fr_flags from the rule becomes the     */
2331 /* return value and fin->fin_fr points to the matched rule.                 */
2332 /*                                                                          */
2333 /* This function may be called recursively upto 16 times (limit inbuilt.)   */
2334 /* When unwinding, it should finish up with fin_depth as 0.                 */
2335 /*                                                                          */
2336 /* Could be per interface, but this gets real nasty when you don't have,    */
2337 /* or can't easily change, the kernel source code to .                      */
2338 /* ------------------------------------------------------------------------ */
2339 int
ipf_scanlist(fr_info_t * fin,u_32_t pass)2340 ipf_scanlist(fr_info_t *fin, u_32_t pass)
2341 {
2342 	ipf_main_softc_t *softc = fin->fin_main_soft;
2343 	int rulen, portcmp, off, skip;
2344 	struct frentry *fr, *fnext;
2345 	u_32_t passt, passo;
2346 
2347 	/*
2348 	 * Do not allow nesting deeper than 16 levels.
2349 	 */
2350 	if (fin->fin_depth >= 16)
2351 		return (pass);
2352 
2353 	fr = fin->fin_fr;
2354 
2355 	/*
2356 	* If there are no rules in this list, return now.
2357 	 */
2358 	if (fr == NULL)
2359 		return (pass);
2360 
2361 	skip = 0;
2362 	portcmp = 0;
2363 	fin->fin_depth++;
2364 	fin->fin_fr = NULL;
2365 	off = fin->fin_off;
2366 
2367 	if ((fin->fin_flx & FI_TCPUDP) && (fin->fin_dlen > 3) && !off)
2368 		portcmp = 1;
2369 
2370 	for (rulen = 0; fr; fr = fnext, rulen++) {
2371 		fnext = fr->fr_next;
2372 		if (skip != 0) {
2373 			FR_VERBOSE(("SKIP %d (%#x)\n", skip, fr->fr_flags));
2374 			skip--;
2375 			continue;
2376 		}
2377 
2378 		/*
2379 		 * In all checks below, a null (zero) value in the
2380 		 * filter struture is taken to mean a wildcard.
2381 		 *
2382 		 * check that we are working for the right interface
2383 		 */
2384 #ifdef	_KERNEL
2385 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2386 			continue;
2387 #else
2388 		if (opts & (OPT_VERBOSE|OPT_DEBUG))
2389 			printf("\n");
2390 		FR_VERBOSE(("%c", FR_ISSKIP(pass) ? 's' :
2391 				  FR_ISPASS(pass) ? 'p' :
2392 				  FR_ISACCOUNT(pass) ? 'A' :
2393 				  FR_ISAUTH(pass) ? 'a' :
2394 				  (pass & FR_NOMATCH) ? 'n' :'b'));
2395 		if (fr->fr_ifa && fr->fr_ifa != fin->fin_ifp)
2396 			continue;
2397 		FR_VERBOSE((":i"));
2398 #endif
2399 
2400 		switch (fr->fr_type)
2401 		{
2402 		case FR_T_IPF :
2403 		case FR_T_IPF_BUILTIN :
2404 			if (ipf_check_ipf(fin, fr, portcmp))
2405 				continue;
2406 			break;
2407 #if defined(IPFILTER_BPF)
2408 		case FR_T_BPFOPC :
2409 		case FR_T_BPFOPC_BUILTIN :
2410 		    {
2411 			u_char *mc;
2412 			int wlen;
2413 
2414 			if (*fin->fin_mp == NULL)
2415 				continue;
2416 			if (fin->fin_family != fr->fr_family)
2417 				continue;
2418 			mc = (u_char *)fin->fin_m;
2419 			wlen = fin->fin_dlen + fin->fin_hlen;
2420 			if (!bpf_filter(fr->fr_data, mc, wlen, 0))
2421 				continue;
2422 			break;
2423 		    }
2424 #endif
2425 		case FR_T_CALLFUNC_BUILTIN :
2426 		    {
2427 			frentry_t *f;
2428 
2429 			f = (*fr->fr_func)(fin, &pass);
2430 			if (f != NULL)
2431 				fr = f;
2432 			else
2433 				continue;
2434 			break;
2435 		    }
2436 
2437 		case FR_T_IPFEXPR :
2438 		case FR_T_IPFEXPR_BUILTIN :
2439 			if (fin->fin_family != fr->fr_family)
2440 				continue;
2441 			if (ipf_fr_matcharray(fin, fr->fr_data) == 0)
2442 				continue;
2443 			break;
2444 
2445 		default :
2446 			break;
2447 		}
2448 
2449 		if ((fin->fin_out == 0) && (fr->fr_nattag.ipt_num[0] != 0)) {
2450 			if (fin->fin_nattag == NULL)
2451 				continue;
2452 			if (ipf_matchtag(&fr->fr_nattag, fin->fin_nattag) == 0)
2453 				continue;
2454 		}
2455 		FR_VERBOSE(("=%d/%d.%d *", fr->fr_grhead, fr->fr_group, rulen));
2456 
2457 		passt = fr->fr_flags;
2458 
2459 		/*
2460 		 * If the rule is a "call now" rule, then call the function
2461 		 * in the rule, if it exists and use the results from that.
2462 		 * If the function pointer is bad, just make like we ignore
2463 		 * it, except for increasing the hit counter.
2464 		 */
2465 		if ((passt & FR_CALLNOW) != 0) {
2466 			frentry_t *frs;
2467 
2468 			ATOMIC_INC64(fr->fr_hits);
2469 			if ((fr->fr_func == NULL) ||
2470 			    (fr->fr_func == (ipfunc_t)-1))
2471 				continue;
2472 
2473 			frs = fin->fin_fr;
2474 			fin->fin_fr = fr;
2475 			fr = (*fr->fr_func)(fin, &passt);
2476 			if (fr == NULL) {
2477 				fin->fin_fr = frs;
2478 				continue;
2479 			}
2480 			passt = fr->fr_flags;
2481 		}
2482 		fin->fin_fr = fr;
2483 
2484 #ifdef  IPFILTER_LOG
2485 		/*
2486 		 * Just log this packet...
2487 		 */
2488 		if ((passt & FR_LOGMASK) == FR_LOG) {
2489 			if (ipf_log_pkt(fin, passt) == -1) {
2490 				if (passt & FR_LOGORBLOCK) {
2491 					DT(frb_logfail);
2492 					passt &= ~FR_CMDMASK;
2493 					passt |= FR_BLOCK|FR_QUICK;
2494 					fin->fin_reason = FRB_LOGFAIL;
2495 				}
2496 			}
2497 		}
2498 #endif /* IPFILTER_LOG */
2499 
2500 		MUTEX_ENTER(&fr->fr_lock);
2501 		fr->fr_bytes += (U_QUAD_T)fin->fin_plen;
2502 		fr->fr_hits++;
2503 		MUTEX_EXIT(&fr->fr_lock);
2504 		fin->fin_rule = rulen;
2505 
2506 		passo = pass;
2507 		if (FR_ISSKIP(passt)) {
2508 			skip = fr->fr_arg;
2509 			continue;
2510 		} else if (((passt & FR_LOGMASK) != FR_LOG) &&
2511 			   ((passt & FR_LOGMASK) != FR_DECAPSULATE)) {
2512 			pass = passt;
2513 		}
2514 
2515 		if (passt & (FR_RETICMP|FR_FAKEICMP))
2516 			fin->fin_icode = fr->fr_icode;
2517 
2518 		if (fr->fr_group != -1) {
2519 			(void) strncpy(fin->fin_group,
2520 				       FR_NAME(fr, fr_group),
2521 				       strlen(FR_NAME(fr, fr_group)));
2522 		} else {
2523 			fin->fin_group[0] = '\0';
2524 		}
2525 
2526 		FR_DEBUG(("pass %#x/%#x/%x\n", passo, pass, passt));
2527 
2528 		if (fr->fr_grphead != NULL) {
2529 			fin->fin_fr = fr->fr_grphead->fg_start;
2530 			FR_VERBOSE(("group %s\n", FR_NAME(fr, fr_grhead)));
2531 
2532 			if (FR_ISDECAPS(passt))
2533 				passt = ipf_decaps(fin, pass, fr->fr_icode);
2534 			else
2535 				passt = ipf_scanlist(fin, pass);
2536 
2537 			if (fin->fin_fr == NULL) {
2538 				fin->fin_rule = rulen;
2539 				if (fr->fr_group != -1)
2540 					(void) strncpy(fin->fin_group,
2541 						       fr->fr_names +
2542 						       fr->fr_group,
2543 						       strlen(fr->fr_names +
2544 							      fr->fr_group));
2545 				fin->fin_fr = fr;
2546 				passt = pass;
2547 			}
2548 			pass = passt;
2549 		}
2550 
2551 		if (pass & FR_QUICK) {
2552 			/*
2553 			 * Finally, if we've asked to track state for this
2554 			 * packet, set it up.  Add state for "quick" rules
2555 			 * here so that if the action fails we can consider
2556 			 * the rule to "not match" and keep on processing
2557 			 * filter rules.
2558 			 */
2559 			if ((pass & FR_KEEPSTATE) && !FR_ISAUTH(pass) &&
2560 			    !(fin->fin_flx & FI_STATE)) {
2561 				int out = fin->fin_out;
2562 
2563 				fin->fin_fr = fr;
2564 				if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2565 					LBUMPD(ipf_stats[out], fr_ads);
2566 				} else {
2567 					LBUMPD(ipf_stats[out], fr_bads);
2568 					pass = passo;
2569 					continue;
2570 				}
2571 			}
2572 			break;
2573 		}
2574 	}
2575 	fin->fin_depth--;
2576 	return (pass);
2577 }
2578 
2579 
2580 /* ------------------------------------------------------------------------ */
2581 /* Function:    ipf_acctpkt                                                 */
2582 /* Returns:     frentry_t* - always returns NULL                            */
2583 /* Parameters:  fin(I) - pointer to packet information                      */
2584 /*              passp(IO) - pointer to current/new filter decision (unused) */
2585 /*                                                                          */
2586 /* Checks a packet against accounting rules, if there are any for the given */
2587 /* IP protocol version.                                                     */
2588 /*                                                                          */
2589 /* N.B.: this function returns NULL to match the prototype used by other    */
2590 /* functions called from the IPFilter "mainline" in ipf_check().            */
2591 /* ------------------------------------------------------------------------ */
2592 frentry_t *
ipf_acctpkt(fr_info_t * fin,u_32_t * passp)2593 ipf_acctpkt(fr_info_t *fin, u_32_t *passp)
2594 {
2595 	ipf_main_softc_t *softc = fin->fin_main_soft;
2596 	char group[FR_GROUPLEN];
2597 	frentry_t *fr, *frsave;
2598 	u_32_t pass, rulen;
2599 
2600 	passp = passp;
2601 	fr = softc->ipf_acct[fin->fin_out][softc->ipf_active];
2602 
2603 	if (fr != NULL) {
2604 		frsave = fin->fin_fr;
2605 		bcopy(fin->fin_group, group, FR_GROUPLEN);
2606 		rulen = fin->fin_rule;
2607 		fin->fin_fr = fr;
2608 		pass = ipf_scanlist(fin, FR_NOMATCH);
2609 		if (FR_ISACCOUNT(pass)) {
2610 			LBUMPD(ipf_stats[0], fr_acct);
2611 		}
2612 		fin->fin_fr = frsave;
2613 		bcopy(group, fin->fin_group, FR_GROUPLEN);
2614 		fin->fin_rule = rulen;
2615 	}
2616 	return (NULL);
2617 }
2618 
2619 
2620 /* ------------------------------------------------------------------------ */
2621 /* Function:    ipf_firewall                                                */
2622 /* Returns:     frentry_t* - returns pointer to matched rule, if no matches */
2623 /*                           were found, returns NULL.                      */
2624 /* Parameters:  fin(I) - pointer to packet information                      */
2625 /*              passp(IO) - pointer to current/new filter decision (unused) */
2626 /*                                                                          */
2627 /* Applies an appropriate set of firewall rules to the packet, to see if    */
2628 /* there are any matches.  The first check is to see if a match can be seen */
2629 /* in the cache.  If not, then search an appropriate list of rules.  Once a */
2630 /* matching rule is found, take any appropriate actions as defined by the   */
2631 /* rule - except logging.                                                   */
2632 /* ------------------------------------------------------------------------ */
2633 static frentry_t *
ipf_firewall(fr_info_t * fin,u_32_t * passp)2634 ipf_firewall(fr_info_t *fin, u_32_t *passp)
2635 {
2636 	ipf_main_softc_t *softc = fin->fin_main_soft;
2637 	frentry_t *fr;
2638 	u_32_t pass;
2639 	int out;
2640 
2641 	out = fin->fin_out;
2642 	pass = *passp;
2643 
2644 	/*
2645 	 * This rule cache will only affect packets that are not being
2646 	 * statefully filtered.
2647 	 */
2648 	fin->fin_fr = softc->ipf_rules[out][softc->ipf_active];
2649 	if (fin->fin_fr != NULL)
2650 		pass = ipf_scanlist(fin, softc->ipf_pass);
2651 
2652 	if ((pass & FR_NOMATCH)) {
2653 		LBUMPD(ipf_stats[out], fr_nom);
2654 	}
2655 	fr = fin->fin_fr;
2656 
2657 	/*
2658 	 * Apply packets per second rate-limiting to a rule as required.
2659 	 */
2660 	if ((fr != NULL) && (fr->fr_pps != 0) &&
2661 	    !ppsratecheck(&fr->fr_lastpkt, &fr->fr_curpps, fr->fr_pps)) {
2662 		DT2(frb_ppsrate, fr_info_t *, fin, frentry_t *, fr);
2663 		pass &= ~(FR_CMDMASK|FR_RETICMP|FR_RETRST);
2664 		pass |= FR_BLOCK;
2665 		LBUMPD(ipf_stats[out], fr_ppshit);
2666 		fin->fin_reason = FRB_PPSRATE;
2667 	}
2668 
2669 	/*
2670 	 * If we fail to add a packet to the authorization queue, then we
2671 	 * drop the packet later.  However, if it was added then pretend
2672 	 * we've dropped it already.
2673 	 */
2674 	if (FR_ISAUTH(pass)) {
2675 		if (ipf_auth_new(fin->fin_m, fin) != 0) {
2676 			DT1(frb_authnew, fr_info_t *, fin);
2677 			fin->fin_m = *fin->fin_mp = NULL;
2678 			fin->fin_reason = FRB_AUTHNEW;
2679 			fin->fin_error = 0;
2680 		} else {
2681 			IPFERROR(1);
2682 			fin->fin_error = ENOSPC;
2683 		}
2684 	}
2685 
2686 	if ((fr != NULL) && (fr->fr_func != NULL) &&
2687 	    (fr->fr_func != (ipfunc_t)-1) && !(pass & FR_CALLNOW))
2688 		(void) (*fr->fr_func)(fin, &pass);
2689 
2690 	/*
2691 	 * If a rule is a pre-auth rule, check again in the list of rules
2692 	 * loaded for authenticated use.  It does not particulary matter
2693 	 * if this search fails because a "preauth" result, from a rule,
2694 	 * is treated as "not a pass", hence the packet is blocked.
2695 	 */
2696 	if (FR_ISPREAUTH(pass)) {
2697 		pass = ipf_auth_pre_scanlist(softc, fin, pass);
2698 	}
2699 
2700 	/*
2701 	 * If the rule has "keep frag" and the packet is actually a fragment,
2702 	 * then create a fragment state entry.
2703 	 */
2704 	if (pass & FR_KEEPFRAG) {
2705 		if (fin->fin_flx & FI_FRAG) {
2706 			if (ipf_frag_new(softc, fin, pass) == -1) {
2707 				LBUMP(ipf_stats[out].fr_bnfr);
2708 			} else {
2709 				LBUMP(ipf_stats[out].fr_nfr);
2710 			}
2711 		} else {
2712 			LBUMP(ipf_stats[out].fr_cfr);
2713 		}
2714 	}
2715 
2716 	fr = fin->fin_fr;
2717 	*passp = pass;
2718 
2719 	return (fr);
2720 }
2721 
2722 
2723 /* ------------------------------------------------------------------------ */
2724 /* Function:    ipf_check                                                   */
2725 /* Returns:     int -  0 == packet allowed through,                         */
2726 /*              User space:                                                 */
2727 /*                    -1 == packet blocked                                  */
2728 /*                     1 == packet not matched                              */
2729 /*                    -2 == requires authentication                         */
2730 /*              Kernel:                                                     */
2731 /*                   > 0 == filter error # for packet                       */
2732 /* Parameters: ctx(I)  - pointer to the instance context                    */
2733 /*             ip(I)   - pointer to start of IPv4/6 packet                  */
2734 /*             hlen(I) - length of header                                   */
2735 /*             ifp(I)  - pointer to interface this packet is on             */
2736 /*             out(I)  - 0 == packet going in, 1 == packet going out        */
2737 /*             mp(IO)  - pointer to caller's buffer pointer that holds this */
2738 /*                       IP packet.                                         */
2739 /* Solaris:                                                                 */
2740 /*             qpi(I)  - pointer to STREAMS queue information for this      */
2741 /*                       interface & direction.                             */
2742 /*                                                                          */
2743 /* ipf_check() is the master function for all IPFilter packet processing.   */
2744 /* It orchestrates: Network Address Translation (NAT), checking for packet  */
2745 /* authorisation (or pre-authorisation), presence of related state info.,   */
2746 /* generating log entries, IP packet accounting, routing of packets as      */
2747 /* directed by firewall rules and of course whether or not to allow the     */
2748 /* packet to be further processed by the kernel.                            */
2749 /*                                                                          */
2750 /* For packets blocked, the contents of "mp" will be NULL'd and the buffer  */
2751 /* freed.  Packets passed may be returned with the pointer pointed to by    */
2752 /* by "mp" changed to a new buffer.                                         */
2753 /* ------------------------------------------------------------------------ */
2754 int
ipf_check(void * ctx,ip_t * ip,int hlen,struct ifnet * ifp,int out,void * qif,mb_t ** mp)2755 ipf_check(void *ctx, ip_t *ip, int hlen, struct ifnet *ifp, int out
2756 #if defined(_KERNEL) && SOLARIS
2757 	, void* qif, mb_t **mp)
2758 #else
2759 	, mb_t **mp)
2760 #endif
2761 {
2762 	/*
2763 	 * The above really sucks, but short of writing a diff
2764 	 */
2765 	ipf_main_softc_t *softc = ctx;
2766 	fr_info_t frinfo;
2767 	fr_info_t *fin = &frinfo;
2768 	u_32_t pass = softc->ipf_pass;
2769 	frentry_t *fr = NULL;
2770 	int v = IP_V(ip);
2771 	mb_t *mc = NULL;
2772 	mb_t *m;
2773 	/*
2774 	 * The first part of ipf_check() deals with making sure that what goes
2775 	 * into the filtering engine makes some sense.  Information about the
2776 	 * the packet is distilled, collected into a fr_info_t structure and
2777 	 * the an attempt to ensure the buffer the packet is in is big enough
2778 	 * to hold all the required packet headers.
2779 	 */
2780 #ifdef	_KERNEL
2781 # if SOLARIS
2782 	qpktinfo_t *qpi = qif;
2783 
2784 #  ifdef __sparc
2785 	if ((u_int)ip & 0x3)
2786 		return (2);
2787 #  endif
2788 # else
2789 	SPL_INT(s);
2790 # endif
2791 
2792 	if (softc->ipf_running <= 0) {
2793 		return (0);
2794 	}
2795 
2796 	bzero((char *)fin, sizeof(*fin));
2797 
2798 # if SOLARIS
2799 	if (qpi->qpi_flags & QF_BROADCAST)
2800 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2801 	if (qpi->qpi_flags & QF_MULTICAST)
2802 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2803 	m = qpi->qpi_m;
2804 	fin->fin_qfm = m;
2805 	fin->fin_qpi = qpi;
2806 # else /* SOLARIS */
2807 
2808 	m = *mp;
2809 
2810 #  if defined(M_MCAST)
2811 	if ((m->m_flags & M_MCAST) != 0)
2812 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2813 #  endif
2814 #  if defined(M_MLOOP)
2815 	if ((m->m_flags & M_MLOOP) != 0)
2816 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2817 #  endif
2818 #  if defined(M_BCAST)
2819 	if ((m->m_flags & M_BCAST) != 0)
2820 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2821 #  endif
2822 #  ifdef M_CANFASTFWD
2823 	/*
2824 	 * XXX For now, IP Filter and fast-forwarding of cached flows
2825 	 * XXX are mutually exclusive.  Eventually, IP Filter should
2826 	 * XXX get a "can-fast-forward" filter rule.
2827 	 */
2828 	m->m_flags &= ~M_CANFASTFWD;
2829 #  endif /* M_CANFASTFWD */
2830 #  if defined(CSUM_DELAY_DATA) && !defined(__FreeBSD__)
2831 	/*
2832 	 * disable delayed checksums.
2833 	 */
2834 	if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2835 		in_delayed_cksum(m);
2836 		m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA;
2837 	}
2838 #  endif /* CSUM_DELAY_DATA */
2839 # endif /* SOLARIS */
2840 #else
2841 	bzero((char *)fin, sizeof(*fin));
2842 	m = *mp;
2843 # if defined(M_MCAST)
2844 	if ((m->m_flags & M_MCAST) != 0)
2845 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2846 # endif
2847 # if defined(M_MLOOP)
2848 	if ((m->m_flags & M_MLOOP) != 0)
2849 		fin->fin_flx |= FI_MBCAST|FI_MULTICAST;
2850 # endif
2851 # if defined(M_BCAST)
2852 	if ((m->m_flags & M_BCAST) != 0)
2853 		fin->fin_flx |= FI_MBCAST|FI_BROADCAST;
2854 # endif
2855 #endif /* _KERNEL */
2856 
2857 	fin->fin_v = v;
2858 	fin->fin_m = m;
2859 	fin->fin_ip = ip;
2860 	fin->fin_mp = mp;
2861 	fin->fin_out = out;
2862 	fin->fin_ifp = ifp;
2863 	fin->fin_error = ENETUNREACH;
2864 	fin->fin_hlen = (u_short)hlen;
2865 	fin->fin_dp = (char *)ip + hlen;
2866 	fin->fin_main_soft = softc;
2867 
2868 	fin->fin_ipoff = (char *)ip - MTOD(m, char *);
2869 
2870 	SPL_NET(s);
2871 
2872 #ifdef	USE_INET6
2873 	if (v == 6) {
2874 		LBUMP(ipf_stats[out].fr_ipv6);
2875 		/*
2876 		 * Jumbo grams are quite likely too big for internal buffer
2877 		 * structures to handle comfortably, for now, so just drop
2878 		 * them.
2879 		 */
2880 		if (((ip6_t *)ip)->ip6_plen == 0) {
2881 			DT1(frb_jumbo, ip6_t *, (ip6_t *)ip);
2882 			pass = FR_BLOCK|FR_NOMATCH;
2883 			fin->fin_reason = FRB_JUMBO;
2884 			goto finished;
2885 		}
2886 		fin->fin_family = AF_INET6;
2887 	} else
2888 #endif
2889 	{
2890 		fin->fin_family = AF_INET;
2891 	}
2892 
2893 	if (ipf_makefrip(hlen, ip, fin) == -1) {
2894 		DT1(frb_makefrip, fr_info_t *, fin);
2895 		pass = FR_BLOCK|FR_NOMATCH;
2896 		fin->fin_reason = FRB_MAKEFRIP;
2897 		goto finished;
2898 	}
2899 
2900 	/*
2901 	 * For at least IPv6 packets, if a m_pullup() fails then this pointer
2902 	 * becomes NULL and so we have no packet to free.
2903 	 */
2904 	if (*fin->fin_mp == NULL)
2905 		goto finished;
2906 
2907 	if (!out) {
2908 		if (v == 4) {
2909 			if (softc->ipf_chksrc && !ipf_verifysrc(fin)) {
2910 				LBUMPD(ipf_stats[0], fr_v4_badsrc);
2911 				fin->fin_flx |= FI_BADSRC;
2912 			}
2913 			if (fin->fin_ip->ip_ttl < softc->ipf_minttl) {
2914 				LBUMPD(ipf_stats[0], fr_v4_badttl);
2915 				fin->fin_flx |= FI_LOWTTL;
2916 			}
2917 		}
2918 #ifdef USE_INET6
2919 		else  if (v == 6) {
2920 			if (((ip6_t *)ip)->ip6_hlim < softc->ipf_minttl) {
2921 				LBUMPD(ipf_stats[0], fr_v6_badttl);
2922 				fin->fin_flx |= FI_LOWTTL;
2923 			}
2924 		}
2925 #endif
2926 	}
2927 
2928 	if (fin->fin_flx & FI_SHORT) {
2929 		LBUMPD(ipf_stats[out], fr_short);
2930 	}
2931 
2932 	READ_ENTER(&softc->ipf_mutex);
2933 
2934 	if (!out) {
2935 		switch (fin->fin_v)
2936 		{
2937 		case 4 :
2938 			if (ipf_nat_checkin(fin, &pass) == -1) {
2939 				goto filterdone;
2940 			}
2941 			break;
2942 #ifdef USE_INET6
2943 		case 6 :
2944 			if (ipf_nat6_checkin(fin, &pass) == -1) {
2945 				goto filterdone;
2946 			}
2947 			break;
2948 #endif
2949 		default :
2950 			break;
2951 		}
2952 	}
2953 	/*
2954 	 * Check auth now.
2955 	 * If a packet is found in the auth table, then skip checking
2956 	 * the access lists for permission but we do need to consider
2957 	 * the result as if it were from the ACL's.  In addition, being
2958 	 * found in the auth table means it has been seen before, so do
2959 	 * not pass it through accounting (again), lest it be counted twice.
2960 	 */
2961 	fr = ipf_auth_check(fin, &pass);
2962 	if (!out && (fr == NULL))
2963 		(void) ipf_acctpkt(fin, NULL);
2964 
2965 	if (fr == NULL) {
2966 		if ((fin->fin_flx & FI_FRAG) != 0)
2967 			fr = ipf_frag_known(fin, &pass);
2968 
2969 		if (fr == NULL)
2970 			fr = ipf_state_check(fin, &pass);
2971 	}
2972 
2973 	if ((pass & FR_NOMATCH) || (fr == NULL))
2974 		fr = ipf_firewall(fin, &pass);
2975 
2976 	/*
2977 	 * If we've asked to track state for this packet, set it up.
2978 	 * Here rather than ipf_firewall because ipf_checkauth may decide
2979 	* to return a packet for "keep state"
2980 	 */
2981 	if ((pass & FR_KEEPSTATE) && (fin->fin_m != NULL) &&
2982 	    !(fin->fin_flx & FI_STATE)) {
2983 		if (ipf_state_add(softc, fin, NULL, 0) == 0) {
2984 			LBUMP(ipf_stats[out].fr_ads);
2985 		} else {
2986 			LBUMP(ipf_stats[out].fr_bads);
2987 			if (FR_ISPASS(pass)) {
2988 				DT(frb_stateadd);
2989 				pass &= ~FR_CMDMASK;
2990 				pass |= FR_BLOCK;
2991 				fin->fin_reason = FRB_STATEADD;
2992 			}
2993 		}
2994 	}
2995 
2996 	fin->fin_fr = fr;
2997 	if ((fr != NULL) && !(fin->fin_flx & FI_STATE)) {
2998 		fin->fin_dif = &fr->fr_dif;
2999 		fin->fin_tif = &fr->fr_tifs[fin->fin_rev];
3000 	}
3001 
3002 	/*
3003 	 * Only count/translate packets which will be passed on, out the
3004 	 * interface.
3005 	 */
3006 	if (out && FR_ISPASS(pass)) {
3007 		(void) ipf_acctpkt(fin, NULL);
3008 
3009 		switch (fin->fin_v)
3010 		{
3011 		case 4 :
3012 			if (ipf_nat_checkout(fin, &pass) == -1) {
3013 				;
3014 			} else if ((softc->ipf_update_ipid != 0) && (v == 4)) {
3015 				if (ipf_updateipid(fin) == -1) {
3016 					DT(frb_updateipid);
3017 					LBUMP(ipf_stats[1].fr_ipud);
3018 					pass &= ~FR_CMDMASK;
3019 					pass |= FR_BLOCK;
3020 					fin->fin_reason = FRB_UPDATEIPID;
3021 				} else {
3022 					LBUMP(ipf_stats[0].fr_ipud);
3023 				}
3024 			}
3025 			break;
3026 #ifdef USE_INET6
3027 		case 6 :
3028 			(void) ipf_nat6_checkout(fin, &pass);
3029 			break;
3030 #endif
3031 		default :
3032 			break;
3033 		}
3034 	}
3035 
3036 filterdone:
3037 #ifdef	IPFILTER_LOG
3038 	if ((softc->ipf_flags & FF_LOGGING) || (pass & FR_LOGMASK)) {
3039 		(void) ipf_dolog(fin, &pass);
3040 	}
3041 #endif
3042 
3043 	/*
3044 	 * The FI_STATE flag is cleared here so that calling ipf_state_check
3045 	 * will work when called from inside of fr_fastroute.  Although
3046 	 * there is a similar flag, FI_NATED, for NAT, it does have the same
3047 	 * impact on code execution.
3048 	 */
3049 	fin->fin_flx &= ~FI_STATE;
3050 
3051 #if defined(FASTROUTE_RECURSION)
3052 	/*
3053 	 * Up the reference on fr_lock and exit ipf_mutex. The generation of
3054 	 * a packet below can sometimes cause a recursive call into IPFilter.
3055 	 * On those platforms where that does happen, we need to hang onto
3056 	 * the filter rule just in case someone decides to remove or flush it
3057 	 * in the meantime.
3058 	 */
3059 	if (fr != NULL) {
3060 		MUTEX_ENTER(&fr->fr_lock);
3061 		fr->fr_ref++;
3062 		MUTEX_EXIT(&fr->fr_lock);
3063 	}
3064 
3065 	RWLOCK_EXIT(&softc->ipf_mutex);
3066 #endif
3067 
3068 	if ((pass & FR_RETMASK) != 0) {
3069 		/*
3070 		* Should we return an ICMP packet to indicate error
3071 		 * status passing through the packet filter ?
3072 		 * WARNING: ICMP error packets AND TCP RST packets should
3073 		 * ONLY be sent in repsonse to incoming packets.  Sending
3074 		 * them in response to outbound packets can result in a
3075 		 * panic on some operating systems.
3076 		 */
3077 		if (!out) {
3078 			if (pass & FR_RETICMP) {
3079 				int dst;
3080 
3081 				if ((pass & FR_RETMASK) == FR_FAKEICMP)
3082 					dst = 1;
3083 				else
3084 					dst = 0;
3085 				(void) ipf_send_icmp_err(ICMP_UNREACH, fin,
3086 							 dst);
3087 				LBUMP(ipf_stats[0].fr_ret);
3088 			} else if (((pass & FR_RETMASK) == FR_RETRST) &&
3089 				   !(fin->fin_flx & FI_SHORT)) {
3090 				if (((fin->fin_flx & FI_OOW) != 0) ||
3091 				    (ipf_send_reset(fin) == 0)) {
3092 					LBUMP(ipf_stats[1].fr_ret);
3093 				}
3094 			}
3095 
3096 			/*
3097 			 * When using return-* with auth rules, the auth code
3098 			 * takes over disposing of this packet.
3099 			 */
3100 			if (FR_ISAUTH(pass) && (fin->fin_m != NULL)) {
3101 				DT1(frb_authcapture, fr_info_t *, fin);
3102 				fin->fin_m = *fin->fin_mp = NULL;
3103 				fin->fin_reason = FRB_AUTHCAPTURE;
3104 				m = NULL;
3105 			}
3106 		} else {
3107 			if (pass & FR_RETRST) {
3108 				fin->fin_error = ECONNRESET;
3109 			}
3110 		}
3111 	}
3112 
3113 	/*
3114 	 * After the above so that ICMP unreachables and TCP RSTs get
3115 	 * created properly.
3116 	 */
3117 	if (FR_ISBLOCK(pass) && (fin->fin_flx & FI_NEWNAT))
3118 		ipf_nat_uncreate(fin);
3119 
3120 	/*
3121 	 * If we didn't drop off the bottom of the list of rules (and thus
3122 	 * the 'current' rule fr is not NULL), then we may have some extra
3123 	 * instructions about what to do with a packet.
3124 	* Once we're finished return to our caller, freeing the packet if
3125 	 * we are dropping it.
3126 	 */
3127 	if (fr != NULL) {
3128 		frdest_t *fdp;
3129 
3130 		/*
3131 		 * Generate a duplicated packet first because ipf_fastroute
3132 		 * can lead to fin_m being free'd... not good.
3133 		 */
3134 		fdp = fin->fin_dif;
3135 		if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3136 		    (fdp->fd_ptr != (void *)-1)) {
3137 			mc = M_COPY(fin->fin_m);
3138 			if (mc != NULL)
3139 				ipf_fastroute(mc, &mc, fin, fdp);
3140 		}
3141 
3142 		fdp = fin->fin_tif;
3143 		if (!out && (pass & FR_FASTROUTE)) {
3144 			/*
3145 			 * For fastroute rule, no destination interface defined
3146 			 * so pass NULL as the frdest_t parameter
3147 			 */
3148 			(void) ipf_fastroute(fin->fin_m, mp, fin, NULL);
3149 			m = *mp = NULL;
3150 		} else if ((fdp != NULL) && (fdp->fd_ptr != NULL) &&
3151 			   (fdp->fd_ptr != (struct ifnet *)-1)) {
3152 			/* this is for to rules: */
3153 			ipf_fastroute(fin->fin_m, mp, fin, fdp);
3154 			m = *mp = NULL;
3155 		}
3156 
3157 #if defined(FASTROUTE_RECURSION)
3158 		(void) ipf_derefrule(softc, &fr);
3159 #endif
3160 	}
3161 #if !defined(FASTROUTE_RECURSION)
3162 	RWLOCK_EXIT(&softc->ipf_mutex);
3163 #endif
3164 
3165 finished:
3166 	if (!FR_ISPASS(pass)) {
3167 		LBUMP(ipf_stats[out].fr_block);
3168 		if (*mp != NULL) {
3169 #ifdef _KERNEL
3170 			FREE_MB_T(*mp);
3171 #endif
3172 			m = *mp = NULL;
3173 		}
3174 	} else {
3175 		LBUMP(ipf_stats[out].fr_pass);
3176 	}
3177 
3178 	SPL_X(s);
3179 
3180 	if (fin->fin_m == NULL && fin->fin_flx & FI_BAD &&
3181 	    fin->fin_reason == FRB_PULLUP) {
3182 		/* m_pullup() has freed the mbuf */
3183 		LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3184 		return (-1);
3185 	}
3186 
3187 
3188 #ifdef _KERNEL
3189 	if (FR_ISPASS(pass))
3190 		return (0);
3191 	LBUMP(ipf_stats[out].fr_blocked[fin->fin_reason]);
3192 	return (fin->fin_error);
3193 #else /* _KERNEL */
3194 	if (*mp != NULL)
3195 		(*mp)->mb_ifp = fin->fin_ifp;
3196 	blockreason = fin->fin_reason;
3197 	FR_VERBOSE(("fin_flx %#x pass %#x ", fin->fin_flx, pass));
3198 	/*if ((pass & FR_CMDMASK) == (softc->ipf_pass & FR_CMDMASK))*/
3199 		if ((pass & FR_NOMATCH) != 0)
3200 			return (1);
3201 
3202 	if ((pass & FR_RETMASK) != 0)
3203 		switch (pass & FR_RETMASK)
3204 		{
3205 		case FR_RETRST :
3206 			return (3);
3207 		case FR_RETICMP :
3208 			return (4);
3209 		case FR_FAKEICMP :
3210 			return (5);
3211 		}
3212 
3213 	switch (pass & FR_CMDMASK)
3214 	{
3215 	case FR_PASS :
3216 		return (0);
3217 	case FR_BLOCK :
3218 		return (-1);
3219 	case FR_AUTH :
3220 		return (-2);
3221 	case FR_ACCOUNT :
3222 		return (-3);
3223 	case FR_PREAUTH :
3224 		return (-4);
3225 	}
3226 	return (2);
3227 #endif /* _KERNEL */
3228 }
3229 
3230 
3231 #ifdef	IPFILTER_LOG
3232 /* ------------------------------------------------------------------------ */
3233 /* Function:    ipf_dolog                                                   */
3234 /* Returns:     frentry_t* - returns contents of fin_fr (no change made)    */
3235 /* Parameters:  fin(I) - pointer to packet information                      */
3236 /*              passp(IO) - pointer to current/new filter decision (unused) */
3237 /*                                                                          */
3238 /* Checks flags set to see how a packet should be logged, if it is to be    */
3239 /* logged.  Adjust statistics based on its success or not.                  */
3240 /* ------------------------------------------------------------------------ */
3241 frentry_t *
ipf_dolog(fr_info_t * fin,u_32_t * passp)3242 ipf_dolog(fr_info_t *fin, u_32_t *passp)
3243 {
3244 	ipf_main_softc_t *softc = fin->fin_main_soft;
3245 	u_32_t pass;
3246 	int out;
3247 
3248 	out = fin->fin_out;
3249 	pass = *passp;
3250 
3251 	if ((softc->ipf_flags & FF_LOGNOMATCH) && (pass & FR_NOMATCH)) {
3252 		pass |= FF_LOGNOMATCH;
3253 		LBUMPD(ipf_stats[out], fr_npkl);
3254 		goto logit;
3255 
3256 	} else if (((pass & FR_LOGMASK) == FR_LOGP) ||
3257 	    (FR_ISPASS(pass) && (softc->ipf_flags & FF_LOGPASS))) {
3258 		if ((pass & FR_LOGMASK) != FR_LOGP)
3259 			pass |= FF_LOGPASS;
3260 		LBUMPD(ipf_stats[out], fr_ppkl);
3261 		goto logit;
3262 
3263 	} else if (((pass & FR_LOGMASK) == FR_LOGB) ||
3264 		   (FR_ISBLOCK(pass) && (softc->ipf_flags & FF_LOGBLOCK))) {
3265 		if ((pass & FR_LOGMASK) != FR_LOGB)
3266 			pass |= FF_LOGBLOCK;
3267 		LBUMPD(ipf_stats[out], fr_bpkl);
3268 
3269 logit:
3270 		if (ipf_log_pkt(fin, pass) == -1) {
3271 			/*
3272 			 * If the "or-block" option has been used then
3273 			 * block the packet if we failed to log it.
3274 			 */
3275 			if ((pass & FR_LOGORBLOCK) && FR_ISPASS(pass)) {
3276 				DT1(frb_logfail2, u_int, pass);
3277 				pass &= ~FR_CMDMASK;
3278 				pass |= FR_BLOCK;
3279 				fin->fin_reason = FRB_LOGFAIL2;
3280 			}
3281 		}
3282 		*passp = pass;
3283 	}
3284 
3285 	return (fin->fin_fr);
3286 }
3287 #endif /* IPFILTER_LOG */
3288 
3289 
3290 /* ------------------------------------------------------------------------ */
3291 /* Function:    ipf_cksum                                                   */
3292 /* Returns:     u_short - IP header checksum                                */
3293 /* Parameters:  addr(I) - pointer to start of buffer to checksum            */
3294 /*              len(I)  - length of buffer in bytes                         */
3295 /*                                                                          */
3296 /* Calculate the two's complement 16 bit checksum of the buffer passed.     */
3297 /*                                                                          */
3298 /* N.B.: addr should be 16bit aligned.                                      */
3299 /* ------------------------------------------------------------------------ */
3300 u_short
ipf_cksum(u_short * addr,int len)3301 ipf_cksum(u_short *addr, int len)
3302 {
3303 	u_32_t sum = 0;
3304 
3305 	for (sum = 0; len > 1; len -= 2)
3306 		sum += *addr++;
3307 
3308 	/* mop up an odd byte, if necessary */
3309 	if (len == 1)
3310 		sum += *(u_char *)addr;
3311 
3312 	/*
3313 	 * add back carry outs from top 16 bits to low 16 bits
3314 	 */
3315 	sum = (sum >> 16) + (sum & 0xffff);	/* add hi 16 to low 16 */
3316 	sum += (sum >> 16);			/* add carry */
3317 	return (u_short)(~sum);
3318 }
3319 
3320 
3321 /* ------------------------------------------------------------------------ */
3322 /* Function:    fr_cksum                                                    */
3323 /* Returns:     u_short - layer 4 checksum                                  */
3324 /* Parameters:  fin(I)     - pointer to packet information                  */
3325 /*              ip(I)      - pointer to IP header                           */
3326 /*              l4proto(I) - protocol to caclulate checksum for             */
3327 /*              l4hdr(I)   - pointer to layer 4 header                      */
3328 /*                                                                          */
3329 /* Calculates the TCP checksum for the packet held in "m", using the data   */
3330 /* in the IP header "ip" to seed it.                                        */
3331 /*                                                                          */
3332 /* NB: This function assumes we've pullup'd enough for all of the IP header */
3333 /* and the TCP header.  We also assume that data blocks aren't allocated in */
3334 /* odd sizes.                                                               */
3335 /*                                                                          */
3336 /* Expects ip_len and ip_off to be in network byte order when called.       */
3337 /* ------------------------------------------------------------------------ */
3338 u_short
fr_cksum(fr_info_t * fin,ip_t * ip,int l4proto,void * l4hdr)3339 fr_cksum(fr_info_t *fin, ip_t *ip, int l4proto, void *l4hdr)
3340 {
3341 	u_short *sp, slen, sumsave, *csump;
3342 	u_int sum, sum2;
3343 	int hlen;
3344 	int off;
3345 #ifdef	USE_INET6
3346 	ip6_t *ip6;
3347 #endif
3348 
3349 	csump = NULL;
3350 	sumsave = 0;
3351 	sp = NULL;
3352 	slen = 0;
3353 	hlen = 0;
3354 	sum = 0;
3355 
3356 	sum = htons((u_short)l4proto);
3357 	/*
3358 	 * Add up IP Header portion
3359 	 */
3360 #ifdef	USE_INET6
3361 	if (IP_V(ip) == 4) {
3362 #endif
3363 		hlen = IP_HL(ip) << 2;
3364 		off = hlen;
3365 		sp = (u_short *)&ip->ip_src;
3366 		sum += *sp++;	/* ip_src */
3367 		sum += *sp++;
3368 		sum += *sp++;	/* ip_dst */
3369 		sum += *sp++;
3370 		slen = fin->fin_plen - off;
3371 		sum += htons(slen);
3372 #ifdef	USE_INET6
3373 	} else if (IP_V(ip) == 6) {
3374 		mb_t *m;
3375 
3376 		m = fin->fin_m;
3377 		ip6 = (ip6_t *)ip;
3378 		off = ((caddr_t)ip6 - m->m_data) + sizeof(struct ip6_hdr);
3379 		int len = ntohs(ip6->ip6_plen) - (off - sizeof(*ip6));
3380 		return (ipf_pcksum6(m, ip6, off, len));
3381 	} else {
3382 		return (0xffff);
3383 	}
3384 #endif
3385 
3386 	switch (l4proto)
3387 	{
3388 	case IPPROTO_UDP :
3389 		csump = &((udphdr_t *)l4hdr)->uh_sum;
3390 		break;
3391 
3392 	case IPPROTO_TCP :
3393 		csump = &((tcphdr_t *)l4hdr)->th_sum;
3394 		break;
3395 	case IPPROTO_ICMP :
3396 		csump = &((icmphdr_t *)l4hdr)->icmp_cksum;
3397 		sum = 0;	/* Pseudo-checksum is not included */
3398 		break;
3399 #ifdef USE_INET6
3400 	case IPPROTO_ICMPV6 :
3401 		csump = &((struct icmp6_hdr *)l4hdr)->icmp6_cksum;
3402 		break;
3403 #endif
3404 	default :
3405 		break;
3406 	}
3407 
3408 	if (csump != NULL) {
3409 		sumsave = *csump;
3410 		*csump = 0;
3411 	}
3412 
3413 	sum2 = ipf_pcksum(fin, off, sum);
3414 	if (csump != NULL)
3415 		*csump = sumsave;
3416 	return (sum2);
3417 }
3418 
3419 
3420 /* ------------------------------------------------------------------------ */
3421 /* Function:    ipf_findgroup                                               */
3422 /* Returns:     frgroup_t * - NULL = group not found, else pointer to group */
3423 /* Parameters:  softc(I) - pointer to soft context main structure           */
3424 /*              group(I) - group name to search for                         */
3425 /*              unit(I)  - device to which this group belongs               */
3426 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3427 /*              fgpp(O)  - pointer to place to store pointer to the pointer */
3428 /*                         to where to add the next (last) group or where   */
3429 /*                         to delete group from.                            */
3430 /*                                                                          */
3431 /* Search amongst the defined groups for a particular group number.         */
3432 /* ------------------------------------------------------------------------ */
3433 frgroup_t *
ipf_findgroup(ipf_main_softc_t * softc,char * group,minor_t unit,int set,frgroup_t *** fgpp)3434 ipf_findgroup(ipf_main_softc_t *softc, char *group, minor_t unit, int set,
3435 	frgroup_t ***fgpp)
3436 {
3437 	frgroup_t *fg, **fgp;
3438 
3439 	/*
3440 	 * Which list of groups to search in is dependent on which list of
3441 	 * rules are being operated on.
3442 	 */
3443 	fgp = &softc->ipf_groups[unit][set];
3444 
3445 	while ((fg = *fgp) != NULL) {
3446 		if (strncmp(group, fg->fg_name, FR_GROUPLEN) == 0)
3447 			break;
3448 		else
3449 			fgp = &fg->fg_next;
3450 	}
3451 	if (fgpp != NULL)
3452 		*fgpp = fgp;
3453 	return (fg);
3454 }
3455 
3456 
3457 /* ------------------------------------------------------------------------ */
3458 /* Function:    ipf_group_add                                               */
3459 /* Returns:     frgroup_t * - NULL == did not create group,                 */
3460 /*                            != NULL == pointer to the group               */
3461 /* Parameters:  softc(I) - pointer to soft context main structure           */
3462 /*              num(I)   - group number to add                              */
3463 /*              head(I)  - rule pointer that is using this as the head      */
3464 /*              flags(I) - rule flags which describe the type of rule it is */
3465 /*              unit(I)  - device to which this group will belong to        */
3466 /*              set(I)   - which set of rules (inactive/inactive) this is   */
3467 /* Write Locks: ipf_mutex                                                   */
3468 /*                                                                          */
3469 /* Add a new group head, or if it already exists, increase the reference    */
3470 /* count to it.                                                             */
3471 /* ------------------------------------------------------------------------ */
3472 frgroup_t *
ipf_group_add(ipf_main_softc_t * softc,char * group,void * head,u_32_t flags,minor_t unit,int set)3473 ipf_group_add(ipf_main_softc_t *softc, char *group, void *head, u_32_t flags,
3474 	minor_t unit, int set)
3475 {
3476 	frgroup_t *fg, **fgp;
3477 	u_32_t gflags;
3478 
3479 	if (group == NULL)
3480 		return (NULL);
3481 
3482 	if (unit == IPL_LOGIPF && *group == '\0')
3483 		return (NULL);
3484 
3485 	fgp = NULL;
3486 	gflags = flags & FR_INOUT;
3487 
3488 	fg = ipf_findgroup(softc, group, unit, set, &fgp);
3489 	if (fg != NULL) {
3490 		if (fg->fg_head == NULL && head != NULL)
3491 			fg->fg_head = head;
3492 		if (fg->fg_flags == 0)
3493 			fg->fg_flags = gflags;
3494 		else if (gflags != fg->fg_flags)
3495 			return (NULL);
3496 		fg->fg_ref++;
3497 		return (fg);
3498 	}
3499 
3500 	KMALLOC(fg, frgroup_t *);
3501 	if (fg != NULL) {
3502 		fg->fg_head = head;
3503 		fg->fg_start = NULL;
3504 		fg->fg_next = *fgp;
3505 		bcopy(group, fg->fg_name, strlen(group) + 1);
3506 		fg->fg_flags = gflags;
3507 		fg->fg_ref = 1;
3508 		fg->fg_set = &softc->ipf_groups[unit][set];
3509 		*fgp = fg;
3510 	}
3511 	return (fg);
3512 }
3513 
3514 
3515 /* ------------------------------------------------------------------------ */
3516 /* Function:    ipf_group_del                                               */
3517 /* Returns:     int      - number of rules deleted                          */
3518 /* Parameters:  softc(I) - pointer to soft context main structure           */
3519 /*              group(I) - group name to delete                             */
3520 /*              fr(I)    - filter rule from which group is referenced       */
3521 /* Write Locks: ipf_mutex                                                   */
3522 /*                                                                          */
3523 /* This function is called whenever a reference to a group is to be dropped */
3524 /* and thus its reference count needs to be lowered and the group free'd if */
3525 /* the reference count reaches zero. Passing in fr is really for the sole   */
3526 /* purpose of knowing when the head rule is being deleted.                  */
3527 /* ------------------------------------------------------------------------ */
3528 void
ipf_group_del(ipf_main_softc_t * softc,frgroup_t * group,frentry_t * fr)3529 ipf_group_del(ipf_main_softc_t *softc, frgroup_t *group, frentry_t *fr)
3530 {
3531 
3532 	if (group->fg_head == fr)
3533 		group->fg_head = NULL;
3534 
3535 	group->fg_ref--;
3536 	if ((group->fg_ref == 0) && (group->fg_start == NULL))
3537 		ipf_group_free(group);
3538 }
3539 
3540 
3541 /* ------------------------------------------------------------------------ */
3542 /* Function:    ipf_group_free                                              */
3543 /* Returns:     Nil                                                         */
3544 /* Parameters:  group(I) - pointer to filter rule group                     */
3545 /*                                                                          */
3546 /* Remove the group from the list of groups and free it.                    */
3547 /* ------------------------------------------------------------------------ */
3548 static void
ipf_group_free(frgroup_t * group)3549 ipf_group_free(frgroup_t *group)
3550 {
3551 	frgroup_t **gp;
3552 
3553 	for (gp = group->fg_set; *gp != NULL; gp = &(*gp)->fg_next) {
3554 		if (*gp == group) {
3555 			*gp = group->fg_next;
3556 			break;
3557 		}
3558 	}
3559 	KFREE(group);
3560 }
3561 
3562 
3563 /* ------------------------------------------------------------------------ */
3564 /* Function:    ipf_group_flush                                             */
3565 /* Returns:     int      - number of rules flush from group                 */
3566 /* Parameters:  softc(I) - pointer to soft context main structure           */
3567 /* Parameters:  group(I) - pointer to filter rule group                     */
3568 /*                                                                          */
3569 /* Remove all of the rules that currently are listed under the given group. */
3570 /* ------------------------------------------------------------------------ */
3571 static int
ipf_group_flush(ipf_main_softc_t * softc,frgroup_t * group)3572 ipf_group_flush(ipf_main_softc_t *softc, frgroup_t *group)
3573 {
3574 	int gone = 0;
3575 
3576 	(void) ipf_flushlist(softc, &gone, &group->fg_start);
3577 
3578 	return (gone);
3579 }
3580 
3581 
3582 /* ------------------------------------------------------------------------ */
3583 /* Function:    ipf_getrulen                                                */
3584 /* Returns:     frentry_t * - NULL == not found, else pointer to rule n     */
3585 /* Parameters:  softc(I) - pointer to soft context main structure           */
3586 /* Parameters:  unit(I)  - device for which to count the rule's number      */
3587 /*              flags(I) - which set of rules to find the rule in           */
3588 /*              group(I) - group name                                       */
3589 /*              n(I)     - rule number to find                              */
3590 /*                                                                          */
3591 /* Find rule # n in group # g and return a pointer to it.  Return NULl if   */
3592 /* group # g doesn't exist or there are less than n rules in the group.     */
3593 /* ------------------------------------------------------------------------ */
3594 frentry_t *
ipf_getrulen(ipf_main_softc_t * softc,int unit,char * group,u_32_t n)3595 ipf_getrulen(ipf_main_softc_t *softc, int unit, char *group, u_32_t n)
3596 {
3597 	frentry_t *fr;
3598 	frgroup_t *fg;
3599 
3600 	fg = ipf_findgroup(softc, group, unit, softc->ipf_active, NULL);
3601 	if (fg == NULL)
3602 		return (NULL);
3603 	for (fr = fg->fg_start; fr && n; fr = fr->fr_next, n--)
3604 		;
3605 	if (n != 0)
3606 		return (NULL);
3607 	return (fr);
3608 }
3609 
3610 
3611 /* ------------------------------------------------------------------------ */
3612 /* Function:    ipf_flushlist                                               */
3613 /* Returns:     int - >= 0 - number of flushed rules                        */
3614 /* Parameters:  softc(I)   - pointer to soft context main structure         */
3615 /*              nfreedp(O) - pointer to int where flush count is stored     */
3616 /*              listp(I)   - pointer to list to flush pointer               */
3617 /* Write Locks: ipf_mutex                                                   */
3618 /*                                                                          */
3619 /* Recursively flush rules from the list, descending groups as they are     */
3620 /* encountered.  if a rule is the head of a group and it has lost all its   */
3621 /* group members, then also delete the group reference.  nfreedp is needed  */
3622 /* to store the accumulating count of rules removed, whereas the returned   */
3623 /* value is just the number removed from the current list.  The latter is   */
3624 /* needed to correctly adjust reference counts on rules that define groups. */
3625 /*                                                                          */
3626 /* NOTE: Rules not loaded from user space cannot be flushed.                */
3627 /* ------------------------------------------------------------------------ */
3628 static int
ipf_flushlist(ipf_main_softc_t * softc,int * nfreedp,frentry_t ** listp)3629 ipf_flushlist(ipf_main_softc_t *softc, int *nfreedp, frentry_t **listp)
3630 {
3631 	int freed = 0;
3632 	frentry_t *fp;
3633 
3634 	while ((fp = *listp) != NULL) {
3635 		if ((fp->fr_type & FR_T_BUILTIN) ||
3636 		    !(fp->fr_flags & FR_COPIED)) {
3637 			listp = &fp->fr_next;
3638 			continue;
3639 		}
3640 		*listp = fp->fr_next;
3641 		if (fp->fr_next != NULL)
3642 			fp->fr_next->fr_pnext = fp->fr_pnext;
3643 		fp->fr_pnext = NULL;
3644 
3645 		if (fp->fr_grphead != NULL) {
3646 			freed += ipf_group_flush(softc, fp->fr_grphead);
3647 			fp->fr_names[fp->fr_grhead] = '\0';
3648 		}
3649 
3650 		if (fp->fr_icmpgrp != NULL) {
3651 			freed += ipf_group_flush(softc, fp->fr_icmpgrp);
3652 			fp->fr_names[fp->fr_icmphead] = '\0';
3653 		}
3654 
3655 		if (fp->fr_srctrack.ht_max_nodes)
3656 			ipf_rb_ht_flush(&fp->fr_srctrack);
3657 
3658 		fp->fr_next = NULL;
3659 
3660 		ASSERT(fp->fr_ref > 0);
3661 		if (ipf_derefrule(softc, &fp) == 0)
3662 			freed++;
3663 	}
3664 	*nfreedp += freed;
3665 	return (freed);
3666 }
3667 
3668 
3669 /* ------------------------------------------------------------------------ */
3670 /* Function:    ipf_flush                                                   */
3671 /* Returns:     int - >= 0 - number of flushed rules                        */
3672 /* Parameters:  softc(I) - pointer to soft context main structure           */
3673 /*              unit(I)  - device for which to flush rules                  */
3674 /*              flags(I) - which set of rules to flush                      */
3675 /*                                                                          */
3676 /* Calls flushlist() for all filter rules (accounting, firewall - both IPv4 */
3677 /* and IPv6) as defined by the value of flags.                              */
3678 /* ------------------------------------------------------------------------ */
3679 int
ipf_flush(ipf_main_softc_t * softc,minor_t unit,int flags)3680 ipf_flush(ipf_main_softc_t *softc, minor_t unit, int flags)
3681 {
3682 	int flushed = 0, set;
3683 
3684 	WRITE_ENTER(&softc->ipf_mutex);
3685 
3686 	set = softc->ipf_active;
3687 	if ((flags & FR_INACTIVE) == FR_INACTIVE)
3688 		set = 1 - set;
3689 
3690 	if (flags & FR_OUTQUE) {
3691 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[1][set]);
3692 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[1][set]);
3693 	}
3694 	if (flags & FR_INQUE) {
3695 		ipf_flushlist(softc, &flushed, &softc->ipf_rules[0][set]);
3696 		ipf_flushlist(softc, &flushed, &softc->ipf_acct[0][set]);
3697 	}
3698 
3699 	flushed += ipf_flush_groups(softc, &softc->ipf_groups[unit][set],
3700 				    flags & (FR_INQUE|FR_OUTQUE));
3701 
3702 	RWLOCK_EXIT(&softc->ipf_mutex);
3703 
3704 	if (unit == IPL_LOGIPF) {
3705 		int tmp;
3706 
3707 		tmp = ipf_flush(softc, IPL_LOGCOUNT, flags);
3708 		if (tmp >= 0)
3709 			flushed += tmp;
3710 	}
3711 	return (flushed);
3712 }
3713 
3714 
3715 /* ------------------------------------------------------------------------ */
3716 /* Function:    ipf_flush_groups                                            */
3717 /* Returns:     int - >= 0 - number of flushed rules                        */
3718 /* Parameters:  softc(I)  - soft context pointerto work with                */
3719 /*              grhead(I) - pointer to the start of the group list to flush */
3720 /*              flags(I)  - which set of rules to flush                     */
3721 /*                                                                          */
3722 /* Walk through all of the groups under the given group head and remove all */
3723 /* of those that match the flags passed in. The for loop here is bit more   */
3724 /* complicated than usual because the removal of a rule with ipf_derefrule  */
3725 /* may end up removing not only the structure pointed to by "fg" but also   */
3726 /* what is fg_next and fg_next after that. So if a filter rule is actually  */
3727 /* removed from the group then it is necessary to start again.              */
3728 /* ------------------------------------------------------------------------ */
3729 static int
ipf_flush_groups(ipf_main_softc_t * softc,frgroup_t ** grhead,int flags)3730 ipf_flush_groups(ipf_main_softc_t *softc, frgroup_t **grhead, int flags)
3731 {
3732 	frentry_t *fr, **frp;
3733 	frgroup_t *fg, **fgp;
3734 	int flushed = 0;
3735 	int removed = 0;
3736 
3737 	for (fgp = grhead; (fg = *fgp) != NULL; ) {
3738 		while ((fg != NULL) && ((fg->fg_flags & flags) == 0))
3739 			fg = fg->fg_next;
3740 		if (fg == NULL)
3741 			break;
3742 		removed = 0;
3743 		frp = &fg->fg_start;
3744 		while ((removed == 0) && ((fr = *frp) != NULL)) {
3745 			if ((fr->fr_flags & flags) == 0) {
3746 				frp = &fr->fr_next;
3747 			} else {
3748 				if (fr->fr_next != NULL)
3749 					fr->fr_next->fr_pnext = fr->fr_pnext;
3750 				*frp = fr->fr_next;
3751 				fr->fr_pnext = NULL;
3752 				fr->fr_next = NULL;
3753 				(void) ipf_derefrule(softc, &fr);
3754 				flushed++;
3755 				removed++;
3756 			}
3757 		}
3758 		if (removed == 0)
3759 			fgp = &fg->fg_next;
3760 	}
3761 	return (flushed);
3762 }
3763 
3764 
3765 /* ------------------------------------------------------------------------ */
3766 /* Function:    memstr                                                      */
3767 /* Returns:     char *  - NULL if failed, != NULL pointer to matching bytes */
3768 /* Parameters:  src(I)  - pointer to byte sequence to match                 */
3769 /*              dst(I)  - pointer to byte sequence to search                */
3770 /*              slen(I) - match length                                      */
3771 /*              dlen(I) - length available to search in                     */
3772 /*                                                                          */
3773 /* Search dst for a sequence of bytes matching those at src and extend for  */
3774 /* slen bytes.                                                              */
3775 /* ------------------------------------------------------------------------ */
3776 char *
memstr(const char * src,char * dst,size_t slen,size_t dlen)3777 memstr(const char *src, char *dst, size_t slen, size_t dlen)
3778 {
3779 	char *s = NULL;
3780 
3781 	while (dlen >= slen) {
3782 		if (bcmp(src, dst, slen) == 0) {
3783 			s = dst;
3784 			break;
3785 		}
3786 		dst++;
3787 		dlen--;
3788 	}
3789 	return (s);
3790 }
3791 /* ------------------------------------------------------------------------ */
3792 /* Function:    ipf_fixskip                                                 */
3793 /* Returns:     Nil                                                         */
3794 /* Parameters:  listp(IO)    - pointer to start of list with skip rule      */
3795 /*              rp(I)        - rule added/removed with skip in it.          */
3796 /*              addremove(I) - adjustment (-1/+1) to make to skip count,    */
3797 /*                             depending on whether a rule was just added   */
3798 /*                             or removed.                                  */
3799 /*                                                                          */
3800 /* Adjust all the rules in a list which would have skip'd past the position */
3801 /* where we are inserting to skip to the right place given the change.      */
3802 /* ------------------------------------------------------------------------ */
3803 void
ipf_fixskip(frentry_t ** listp,frentry_t * rp,int addremove)3804 ipf_fixskip(frentry_t **listp, frentry_t *rp, int addremove)
3805 {
3806 	int rules, rn;
3807 	frentry_t *fp;
3808 
3809 	rules = 0;
3810 	for (fp = *listp; (fp != NULL) && (fp != rp); fp = fp->fr_next)
3811 		rules++;
3812 
3813 	if (fp == NULL)
3814 		return;
3815 
3816 	for (rn = 0, fp = *listp; fp && (fp != rp); fp = fp->fr_next, rn++)
3817 		if (FR_ISSKIP(fp->fr_flags) && (rn + fp->fr_arg >= rules))
3818 			fp->fr_arg += addremove;
3819 }
3820 
3821 
3822 #ifdef	_KERNEL
3823 /* ------------------------------------------------------------------------ */
3824 /* Function:    count4bits                                                  */
3825 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3826 /* Parameters:  ip(I) - 32bit IP address                                    */
3827 /*                                                                          */
3828 /* IPv4 ONLY                                                                */
3829 /* count consecutive 1's in bit mask.  If the mask generated by counting    */
3830 /* consecutive 1's is different to that passed, return -1, else return #    */
3831 /* of bits.                                                                 */
3832 /* ------------------------------------------------------------------------ */
3833 int
count4bits(u_32_t ip)3834 count4bits(u_32_t ip)
3835 {
3836 	u_32_t	ipn;
3837 	int	cnt = 0, i, j;
3838 
3839 	ip = ipn = ntohl(ip);
3840 	for (i = 32; i; i--, ipn *= 2)
3841 		if (ipn & 0x80000000)
3842 			cnt++;
3843 		else
3844 			break;
3845 	ipn = 0;
3846 	for (i = 32, j = cnt; i; i--, j--) {
3847 		ipn *= 2;
3848 		if (j > 0)
3849 			ipn++;
3850 	}
3851 	if (ipn == ip)
3852 		return (cnt);
3853 	return (-1);
3854 }
3855 
3856 
3857 /* ------------------------------------------------------------------------ */
3858 /* Function:    count6bits                                                  */
3859 /* Returns:     int - >= 0 - number of consecutive bits in input            */
3860 /* Parameters:  msk(I) - pointer to start of IPv6 bitmask                   */
3861 /*                                                                          */
3862 /* IPv6 ONLY                                                                */
3863 /* count consecutive 1's in bit mask.                                       */
3864 /* ------------------------------------------------------------------------ */
3865 # ifdef USE_INET6
3866 int
count6bits(u_32_t * msk)3867 count6bits(u_32_t *msk)
3868 {
3869 	int i = 0, k;
3870 	u_32_t j;
3871 
3872 	for (k = 3; k >= 0; k--)
3873 		if (msk[k] == 0xffffffff)
3874 			i += 32;
3875 		else {
3876 			for (j = msk[k]; j; j <<= 1)
3877 				if (j & 0x80000000)
3878 					i++;
3879 		}
3880 	return (i);
3881 }
3882 # endif
3883 #endif /* _KERNEL */
3884 
3885 
3886 /* ------------------------------------------------------------------------ */
3887 /* Function:    ipf_synclist                                                */
3888 /* Returns:     int    - 0 = no failures, else indication of first failure  */
3889 /* Parameters:  fr(I)  - start of filter list to sync interface names for   */
3890 /*              ifp(I) - interface pointer for limiting sync lookups        */
3891 /* Write Locks: ipf_mutex                                                   */
3892 /*                                                                          */
3893 /* Walk through a list of filter rules and resolve any interface names into */
3894 /* pointers.  Where dynamic addresses are used, also update the IP address  */
3895 /* used in the rule.  The interface pointer is used to limit the lookups to */
3896 /* a specific set of matching names if it is non-NULL.                      */
3897 /* Errors can occur when resolving the destination name of to/dup-to fields */
3898 /* when the name points to a pool and that pool doest not exist. If this    */
3899 /* does happen then it is necessary to check if there are any lookup refs   */
3900 /* that need to be dropped before returning with an error.                  */
3901 /* ------------------------------------------------------------------------ */
3902 static int
ipf_synclist(ipf_main_softc_t * softc,frentry_t * fr,void * ifp)3903 ipf_synclist(ipf_main_softc_t *softc, frentry_t *fr, void *ifp)
3904 {
3905 	frentry_t *frt, *start = fr;
3906 	frdest_t *fdp;
3907 	char *name;
3908 	int error;
3909 	void *ifa;
3910 	int v, i;
3911 
3912 	error = 0;
3913 
3914 	for (; fr; fr = fr->fr_next) {
3915 		if (fr->fr_family == AF_INET)
3916 			v = 4;
3917 		else if (fr->fr_family == AF_INET6)
3918 			v = 6;
3919 		else
3920 			v = 0;
3921 
3922 		/*
3923 		 * Lookup all the interface names that are part of the rule.
3924 		 */
3925 		for (i = 0; i < FR_NUM(fr->fr_ifas); i++) {
3926 			if ((ifp != NULL) && (fr->fr_ifas[i] != ifp))
3927 				continue;
3928 			if (fr->fr_ifnames[i] == -1)
3929 				continue;
3930 			name = FR_NAME(fr, fr_ifnames[i]);
3931 			fr->fr_ifas[i] = ipf_resolvenic(softc, name, v);
3932 		}
3933 
3934 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
3935 			if (fr->fr_satype != FRI_NORMAL &&
3936 			    fr->fr_satype != FRI_LOOKUP) {
3937 				ifa = ipf_resolvenic(softc, fr->fr_names +
3938 						     fr->fr_sifpidx, v);
3939 				ipf_ifpaddr(softc, v, fr->fr_satype, ifa,
3940 					    &fr->fr_src6, &fr->fr_smsk6);
3941 			}
3942 			if (fr->fr_datype != FRI_NORMAL &&
3943 			    fr->fr_datype != FRI_LOOKUP) {
3944 				ifa = ipf_resolvenic(softc, fr->fr_names +
3945 						     fr->fr_sifpidx, v);
3946 				ipf_ifpaddr(softc, v, fr->fr_datype, ifa,
3947 					    &fr->fr_dst6, &fr->fr_dmsk6);
3948 			}
3949 		}
3950 
3951 		fdp = &fr->fr_tifs[0];
3952 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3953 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3954 			if (error != 0)
3955 				goto unwind;
3956 		}
3957 
3958 		fdp = &fr->fr_tifs[1];
3959 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3960 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3961 			if (error != 0)
3962 				goto unwind;
3963 		}
3964 
3965 		fdp = &fr->fr_dif;
3966 		if ((ifp == NULL) || (fdp->fd_ptr == ifp)) {
3967 			error = ipf_resolvedest(softc, fr->fr_names, fdp, v);
3968 			if (error != 0)
3969 				goto unwind;
3970 		}
3971 
3972 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3973 		    (fr->fr_satype == FRI_LOOKUP) && (fr->fr_srcptr == NULL)) {
3974 			fr->fr_srcptr = ipf_lookup_res_num(softc,
3975 							   fr->fr_srctype,
3976 							   IPL_LOGIPF,
3977 							   fr->fr_srcnum,
3978 							   &fr->fr_srcfunc);
3979 		}
3980 		if (((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3981 		    (fr->fr_datype == FRI_LOOKUP) && (fr->fr_dstptr == NULL)) {
3982 			fr->fr_dstptr = ipf_lookup_res_num(softc,
3983 							   fr->fr_dsttype,
3984 							   IPL_LOGIPF,
3985 							   fr->fr_dstnum,
3986 							   &fr->fr_dstfunc);
3987 		}
3988 	}
3989 	return (0);
3990 
3991 unwind:
3992 	for (frt = start; frt != fr; fr = fr->fr_next) {
3993 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3994 		    (frt->fr_satype == FRI_LOOKUP) && (frt->fr_srcptr != NULL))
3995 				ipf_lookup_deref(softc, frt->fr_srctype,
3996 						 frt->fr_srcptr);
3997 		if (((frt->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) &&
3998 		    (frt->fr_datype == FRI_LOOKUP) && (frt->fr_dstptr != NULL))
3999 				ipf_lookup_deref(softc, frt->fr_dsttype,
4000 						 frt->fr_dstptr);
4001 	}
4002 	return (error);
4003 }
4004 
4005 
4006 /* ------------------------------------------------------------------------ */
4007 /* Function:    ipf_sync                                                    */
4008 /* Returns:     void                                                        */
4009 /* Parameters:  Nil                                                         */
4010 /*                                                                          */
4011 /* ipf_sync() is called when we suspect that the interface list or          */
4012 /* information about interfaces (like IP#) has changed.  Go through all     */
4013 /* filter rules, NAT entries and the state table and check if anything      */
4014 /* needs to be changed/updated.                                             */
4015 /* ------------------------------------------------------------------------ */
4016 int
ipf_sync(ipf_main_softc_t * softc,void * ifp)4017 ipf_sync(ipf_main_softc_t *softc, void *ifp)
4018 {
4019 	int i;
4020 
4021 #if !SOLARIS
4022 	ipf_nat_sync(softc, ifp);
4023 	ipf_state_sync(softc, ifp);
4024 	ipf_lookup_sync(softc, ifp);
4025 #endif
4026 
4027 	WRITE_ENTER(&softc->ipf_mutex);
4028 	(void) ipf_synclist(softc, softc->ipf_acct[0][softc->ipf_active], ifp);
4029 	(void) ipf_synclist(softc, softc->ipf_acct[1][softc->ipf_active], ifp);
4030 	(void) ipf_synclist(softc, softc->ipf_rules[0][softc->ipf_active], ifp);
4031 	(void) ipf_synclist(softc, softc->ipf_rules[1][softc->ipf_active], ifp);
4032 
4033 	for (i = 0; i < IPL_LOGSIZE; i++) {
4034 		frgroup_t *g;
4035 
4036 		for (g = softc->ipf_groups[i][0]; g != NULL; g = g->fg_next)
4037 			(void) ipf_synclist(softc, g->fg_start, ifp);
4038 		for (g = softc->ipf_groups[i][1]; g != NULL; g = g->fg_next)
4039 			(void) ipf_synclist(softc, g->fg_start, ifp);
4040 	}
4041 	RWLOCK_EXIT(&softc->ipf_mutex);
4042 
4043 	return (0);
4044 }
4045 
4046 
4047 /*
4048  * In the functions below, bcopy() is called because the pointer being
4049  * copied _from_ in this instance is a pointer to a char buf (which could
4050  * end up being unaligned) and on the kernel's local stack.
4051  */
4052 /* ------------------------------------------------------------------------ */
4053 /* Function:    copyinptr                                                   */
4054 /* Returns:     int - 0 = success, else failure                             */
4055 /* Parameters:  src(I)  - pointer to the source address                     */
4056 /*              dst(I)  - destination address                               */
4057 /*              size(I) - number of bytes to copy                           */
4058 /*                                                                          */
4059 /* Copy a block of data in from user space, given a pointer to the pointer  */
4060 /* to start copying from (src) and a pointer to where to store it (dst).    */
4061 /* NB: src - pointer to user space pointer, dst - kernel space pointer      */
4062 /* ------------------------------------------------------------------------ */
4063 int
copyinptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4064 copyinptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4065 {
4066 	caddr_t ca;
4067 	int error;
4068 
4069 #if SOLARIS
4070 	error = COPYIN(src, &ca, sizeof(ca));
4071 	if (error != 0)
4072 		return (error);
4073 #else
4074 	bcopy(src, (caddr_t)&ca, sizeof(ca));
4075 #endif
4076 	error = COPYIN(ca, dst, size);
4077 	if (error != 0) {
4078 		IPFERROR(3);
4079 		error = EFAULT;
4080 	}
4081 	return (error);
4082 }
4083 
4084 
4085 /* ------------------------------------------------------------------------ */
4086 /* Function:    copyoutptr                                                  */
4087 /* Returns:     int - 0 = success, else failure                             */
4088 /* Parameters:  src(I)  - pointer to the source address                     */
4089 /*              dst(I)  - destination address                               */
4090 /*              size(I) - number of bytes to copy                           */
4091 /*                                                                          */
4092 /* Copy a block of data out to user space, given a pointer to the pointer   */
4093 /* to start copying from (src) and a pointer to where to store it (dst).    */
4094 /* NB: src - kernel space pointer, dst - pointer to user space pointer.     */
4095 /* ------------------------------------------------------------------------ */
4096 int
copyoutptr(ipf_main_softc_t * softc,void * src,void * dst,size_t size)4097 copyoutptr(ipf_main_softc_t *softc, void *src, void *dst, size_t size)
4098 {
4099 	caddr_t ca;
4100 	int error;
4101 
4102 	bcopy(dst, (caddr_t)&ca, sizeof(ca));
4103 	error = COPYOUT(src, ca, size);
4104 	if (error != 0) {
4105 		IPFERROR(4);
4106 		error = EFAULT;
4107 	}
4108 	return (error);
4109 }
4110 
4111 
4112 /* ------------------------------------------------------------------------ */
4113 /* Function:    ipf_lock                                                    */
4114 /* Returns:     int      - 0 = success, else error                          */
4115 /* Parameters:  data(I)  - pointer to lock value to set                     */
4116 /*              lockp(O) - pointer to location to store old lock value      */
4117 /*                                                                          */
4118 /* Get the new value for the lock integer, set it and return the old value  */
4119 /* in *lockp.                                                               */
4120 /* ------------------------------------------------------------------------ */
4121 int
ipf_lock(caddr_t data,int * lockp)4122 ipf_lock(caddr_t data, int *lockp)
4123 {
4124 	int arg, err;
4125 
4126 	err = BCOPYIN(data, &arg, sizeof(arg));
4127 	if (err != 0)
4128 		return (EFAULT);
4129 	err = BCOPYOUT(lockp, data, sizeof(*lockp));
4130 	if (err != 0)
4131 		return (EFAULT);
4132 	*lockp = arg;
4133 	return (0);
4134 }
4135 
4136 
4137 /* ------------------------------------------------------------------------ */
4138 /* Function:    ipf_getstat                                                 */
4139 /* Returns:     Nil                                                         */
4140 /* Parameters:  softc(I) - pointer to soft context main structure           */
4141 /*              fiop(I)  - pointer to ipfilter stats structure              */
4142 /*              rev(I)   - version claim by program doing ioctl             */
4143 /*                                                                          */
4144 /* Stores a copy of current pointers, counters, etc, in the friostat        */
4145 /* structure.                                                               */
4146 /* If IPFILTER_COMPAT is compiled, we pretend to be whatever version the    */
4147 /* program is looking for. This ensure that validation of the version it    */
4148 /* expects will always succeed. Thus kernels with IPFILTER_COMPAT will      */
4149 /* allow older binaries to work but kernels without it will not.            */
4150 /* ------------------------------------------------------------------------ */
4151 /*ARGSUSED*/
4152 static void
ipf_getstat(ipf_main_softc_t * softc,friostat_t * fiop,int rev)4153 ipf_getstat(ipf_main_softc_t *softc, friostat_t *fiop, int rev)
4154 {
4155 	int i;
4156 
4157 	bcopy((char *)softc->ipf_stats, (char *)fiop->f_st,
4158 	      sizeof(ipf_statistics_t) * 2);
4159 	fiop->f_locks[IPL_LOGSTATE] = -1;
4160 	fiop->f_locks[IPL_LOGNAT] = -1;
4161 	fiop->f_locks[IPL_LOGIPF] = -1;
4162 	fiop->f_locks[IPL_LOGAUTH] = -1;
4163 
4164 	fiop->f_ipf[0][0] = softc->ipf_rules[0][0];
4165 	fiop->f_acct[0][0] = softc->ipf_acct[0][0];
4166 	fiop->f_ipf[0][1] = softc->ipf_rules[0][1];
4167 	fiop->f_acct[0][1] = softc->ipf_acct[0][1];
4168 	fiop->f_ipf[1][0] = softc->ipf_rules[1][0];
4169 	fiop->f_acct[1][0] = softc->ipf_acct[1][0];
4170 	fiop->f_ipf[1][1] = softc->ipf_rules[1][1];
4171 	fiop->f_acct[1][1] = softc->ipf_acct[1][1];
4172 
4173 	fiop->f_ticks = softc->ipf_ticks;
4174 	fiop->f_active = softc->ipf_active;
4175 	fiop->f_froute[0] = softc->ipf_frouteok[0];
4176 	fiop->f_froute[1] = softc->ipf_frouteok[1];
4177 	fiop->f_rb_no_mem = softc->ipf_rb_no_mem;
4178 	fiop->f_rb_node_max = softc->ipf_rb_node_max;
4179 
4180 	fiop->f_running = softc->ipf_running;
4181 	for (i = 0; i < IPL_LOGSIZE; i++) {
4182 		fiop->f_groups[i][0] = softc->ipf_groups[i][0];
4183 		fiop->f_groups[i][1] = softc->ipf_groups[i][1];
4184 	}
4185 #ifdef  IPFILTER_LOG
4186 	fiop->f_log_ok = ipf_log_logok(softc, IPL_LOGIPF);
4187 	fiop->f_log_fail = ipf_log_failures(softc, IPL_LOGIPF);
4188 	fiop->f_logging = 1;
4189 #else
4190 	fiop->f_log_ok = 0;
4191 	fiop->f_log_fail = 0;
4192 	fiop->f_logging = 0;
4193 #endif
4194 	fiop->f_defpass = softc->ipf_pass;
4195 	fiop->f_features = ipf_features;
4196 
4197 #ifdef IPFILTER_COMPAT
4198 	snprintf(fiop->f_version, sizeof(friostat.f_version), "IP Filter: v%d.%d.%d",
4199 		(rev / 1000000) % 100,
4200 		(rev / 10000) % 100,
4201 		(rev / 100) % 100);
4202 #else
4203 	rev = rev;
4204 	(void) strncpy(fiop->f_version, ipfilter_version,
4205 		       sizeof(fiop->f_version));
4206 #endif
4207 }
4208 
4209 
4210 #ifdef	USE_INET6
4211 int icmptoicmp6types[ICMP_MAXTYPE+1] = {
4212 	ICMP6_ECHO_REPLY,	/* 0: ICMP_ECHOREPLY */
4213 	-1,			/* 1: UNUSED */
4214 	-1,			/* 2: UNUSED */
4215 	ICMP6_DST_UNREACH,	/* 3: ICMP_UNREACH */
4216 	-1,			/* 4: ICMP_SOURCEQUENCH */
4217 	ND_REDIRECT,		/* 5: ICMP_REDIRECT */
4218 	-1,			/* 6: UNUSED */
4219 	-1,			/* 7: UNUSED */
4220 	ICMP6_ECHO_REQUEST,	/* 8: ICMP_ECHO */
4221 	-1,			/* 9: UNUSED */
4222 	-1,			/* 10: UNUSED */
4223 	ICMP6_TIME_EXCEEDED,	/* 11: ICMP_TIMXCEED */
4224 	ICMP6_PARAM_PROB,	/* 12: ICMP_PARAMPROB */
4225 	-1,			/* 13: ICMP_TSTAMP */
4226 	-1,			/* 14: ICMP_TSTAMPREPLY */
4227 	-1,			/* 15: ICMP_IREQ */
4228 	-1,			/* 16: ICMP_IREQREPLY */
4229 	-1,			/* 17: ICMP_MASKREQ */
4230 	-1,			/* 18: ICMP_MASKREPLY */
4231 };
4232 
4233 
4234 int	icmptoicmp6unreach[ICMP_MAX_UNREACH] = {
4235 	ICMP6_DST_UNREACH_ADDR,		/* 0: ICMP_UNREACH_NET */
4236 	ICMP6_DST_UNREACH_ADDR,		/* 1: ICMP_UNREACH_HOST */
4237 	-1,				/* 2: ICMP_UNREACH_PROTOCOL */
4238 	ICMP6_DST_UNREACH_NOPORT,	/* 3: ICMP_UNREACH_PORT */
4239 	-1,				/* 4: ICMP_UNREACH_NEEDFRAG */
4240 	ICMP6_DST_UNREACH_NOTNEIGHBOR,	/* 5: ICMP_UNREACH_SRCFAIL */
4241 	ICMP6_DST_UNREACH_ADDR,		/* 6: ICMP_UNREACH_NET_UNKNOWN */
4242 	ICMP6_DST_UNREACH_ADDR,		/* 7: ICMP_UNREACH_HOST_UNKNOWN */
4243 	-1,				/* 8: ICMP_UNREACH_ISOLATED */
4244 	ICMP6_DST_UNREACH_ADMIN,	/* 9: ICMP_UNREACH_NET_PROHIB */
4245 	ICMP6_DST_UNREACH_ADMIN,	/* 10: ICMP_UNREACH_HOST_PROHIB */
4246 	-1,				/* 11: ICMP_UNREACH_TOSNET */
4247 	-1,				/* 12: ICMP_UNREACH_TOSHOST */
4248 	ICMP6_DST_UNREACH_ADMIN,	/* 13: ICMP_UNREACH_ADMIN_PROHIBIT */
4249 };
4250 int	icmpreplytype6[ICMP6_MAXTYPE + 1];
4251 #endif
4252 
4253 int	icmpreplytype4[ICMP_MAXTYPE + 1];
4254 
4255 
4256 /* ------------------------------------------------------------------------ */
4257 /* Function:    ipf_matchicmpqueryreply                                     */
4258 /* Returns:     int - 1 if "icmp" is a valid reply to "ic" else 0.          */
4259 /* Parameters:  v(I)    - IP protocol version (4 or 6)                      */
4260 /*              ic(I)   - ICMP information                                  */
4261 /*              icmp(I) - ICMP packet header                                */
4262 /*              rev(I)  - direction (0 = forward/1 = reverse) of packet     */
4263 /*                                                                          */
4264 /* Check if the ICMP packet defined by the header pointed to by icmp is a   */
4265 /* reply to one as described by what's in ic.  If it is a match, return 1,  */
4266 /* else return 0 for no match.                                              */
4267 /* ------------------------------------------------------------------------ */
4268 int
ipf_matchicmpqueryreply(int v,icmpinfo_t * ic,icmphdr_t * icmp,int rev)4269 ipf_matchicmpqueryreply(int v, icmpinfo_t *ic, icmphdr_t *icmp, int rev)
4270 {
4271 	int ictype;
4272 
4273 	ictype = ic->ici_type;
4274 
4275 	if (v == 4) {
4276 		/*
4277 		 * If we matched its type on the way in, then when going out
4278 		 * it will still be the same type.
4279 		 */
4280 		if ((!rev && (icmp->icmp_type == ictype)) ||
4281 		    (rev && (icmpreplytype4[ictype] == icmp->icmp_type))) {
4282 			if (icmp->icmp_type != ICMP_ECHOREPLY)
4283 				return (1);
4284 			if (icmp->icmp_id == ic->ici_id)
4285 				return (1);
4286 		}
4287 	}
4288 #ifdef	USE_INET6
4289 	else if (v == 6) {
4290 		if ((!rev && (icmp->icmp_type == ictype)) ||
4291 		    (rev && (icmpreplytype6[ictype] == icmp->icmp_type))) {
4292 			if (icmp->icmp_type != ICMP6_ECHO_REPLY)
4293 				return (1);
4294 			if (icmp->icmp_id == ic->ici_id)
4295 				return (1);
4296 		}
4297 	}
4298 #endif
4299 	return (0);
4300 }
4301 
4302 
4303 /*
4304  * IFNAMES are located in the variable length field starting at
4305  * frentry.fr_names. As pointers within the struct cannot be passed
4306  * to the kernel from ipf(8), an offset is used. An offset of -1 means it
4307  * is unused (invalid). If it is used (valid) it is an offset to the
4308  * character string of an interface name or a comment. The following
4309  * macros will assist those who follow to understand the code.
4310  */
4311 #define IPF_IFNAME_VALID(_a)	(_a != -1)
4312 #define IPF_IFNAME_INVALID(_a)	(_a == -1)
4313 #define IPF_IFNAMES_DIFFERENT(_a)	\
4314 	!((IPF_IFNAME_INVALID(fr1->_a) &&	\
4315 	IPF_IFNAME_INVALID(fr2->_a)) ||	\
4316 	(IPF_IFNAME_VALID(fr1->_a) &&	\
4317 	IPF_IFNAME_VALID(fr2->_a) &&	\
4318 	!strcmp(FR_NAME(fr1, _a), FR_NAME(fr2, _a))))
4319 #define IPF_FRDEST_DIFFERENT(_a)	\
4320 	(memcmp(&fr1->_a.fd_addr, &fr2->_a.fd_addr,	\
4321 	offsetof(frdest_t, fd_name) - offsetof(frdest_t, fd_addr)) ||	\
4322 	IPF_IFNAMES_DIFFERENT(_a.fd_name))
4323 
4324 
4325 /* ------------------------------------------------------------------------ */
4326 /* Function:    ipf_rule_compare                                            */
4327 /* Parameters:  fr1(I) - first rule structure to compare                    */
4328 /*              fr2(I) - second rule structure to compare                   */
4329 /* Returns:     int    - 0 == rules are the same, else mismatch             */
4330 /*                                                                          */
4331 /* Compare two rules and return 0 if they match or a number indicating      */
4332 /* which of the individual checks failed.                                   */
4333 /* ------------------------------------------------------------------------ */
4334 static int
ipf_rule_compare(frentry_t * fr1,frentry_t * fr2)4335 ipf_rule_compare(frentry_t *fr1, frentry_t *fr2)
4336 {
4337 	int i;
4338 
4339 	if (fr1->fr_cksum != fr2->fr_cksum)
4340 		return (1);
4341 	if (fr1->fr_size != fr2->fr_size)
4342 		return (2);
4343 	if (fr1->fr_dsize != fr2->fr_dsize)
4344 		return (3);
4345 	if (bcmp((char *)&fr1->fr_func, (char *)&fr2->fr_func, FR_CMPSIZ)
4346 	    != 0)
4347 		return (4);
4348 	/*
4349 	 * XXX:	There is still a bug here as different rules with the
4350 	 *	the same interfaces but in a different order will compare
4351 	 *	differently. But since multiple interfaces in a rule doesn't
4352 	 *	work anyway a simple straightforward compare is performed
4353 	 *	here. Ultimately frentry_t creation will need to be
4354 	 *	revisited in ipf_y.y. While the other issue, recognition
4355 	 *	of only the first interface in a list of interfaces will
4356 	 *	need to be separately addressed along with why only four.
4357 	 */
4358 	for (i = 0; i < FR_NUM(fr1->fr_ifnames); i++) {
4359 		/*
4360 		 * XXX:	It's either the same index or uninitialized.
4361 		 * 	We assume this because multiple interfaces
4362 		 *	referenced by the same rule doesn't work anyway.
4363 		 */
4364 		if (IPF_IFNAMES_DIFFERENT(fr_ifnames[i]))
4365 			return (5);
4366 	}
4367 
4368 	if (IPF_FRDEST_DIFFERENT(fr_tif))
4369 		return (6);
4370 	if (IPF_FRDEST_DIFFERENT(fr_rif))
4371 		return (7);
4372 	if (IPF_FRDEST_DIFFERENT(fr_dif))
4373 		return (8);
4374 	if (!fr1->fr_data && !fr2->fr_data)
4375 		return (0);	/* move along, nothing to see here */
4376 	if (fr1->fr_data && fr2->fr_data) {
4377 		if (bcmp(fr1->fr_caddr, fr2->fr_caddr, fr1->fr_dsize) == 0)
4378 			return (0);	/* same */
4379 	}
4380 	return (9);
4381 }
4382 
4383 
4384 /* ------------------------------------------------------------------------ */
4385 /* Function:    frrequest                                                   */
4386 /* Returns:     int - 0 == success, > 0 == errno value                      */
4387 /* Parameters:  unit(I)     - device for which this is for                  */
4388 /*              req(I)      - ioctl command (SIOC*)                         */
4389 /*              data(I)     - pointr to ioctl data                          */
4390 /*              set(I)      - 1 or 0 (filter set)                           */
4391 /*              makecopy(I) - flag indicating whether data points to a rule */
4392 /*                            in kernel space & hence doesn't need copying. */
4393 /*                                                                          */
4394 /* This function handles all the requests which operate on the list of      */
4395 /* filter rules.  This includes adding, deleting, insertion.  It is also    */
4396 /* responsible for creating groups when a "head" rule is loaded.  Interface */
4397 /* names are resolved here and other sanity checks are made on the content  */
4398 /* of the rule structure being loaded.  If a rule has user defined timeouts */
4399 /* then make sure they are created and initialised before exiting.          */
4400 /* ------------------------------------------------------------------------ */
4401 int
frrequest(ipf_main_softc_t * softc,int unit,ioctlcmd_t req,caddr_t data,int set,int makecopy)4402 frrequest(ipf_main_softc_t *softc, int unit, ioctlcmd_t req, caddr_t data,
4403 	int set, int makecopy)
4404 {
4405 	int error = 0, in, family, need_free = 0;
4406 	enum {	OP_ADD,		/* add rule */
4407 		OP_REM,		/* remove rule */
4408 		OP_ZERO 	/* zero statistics and counters */ }
4409 		addrem = OP_ADD;
4410 	frentry_t frd, *fp, *f, **fprev, **ftail;
4411 	void *ptr, *uptr, *cptr;
4412 	u_int *p, *pp;
4413 	frgroup_t *fg;
4414 	char *group;
4415 
4416 	ptr = NULL;
4417 	cptr = NULL;
4418 	fg = NULL;
4419 	fp = &frd;
4420 	if (makecopy != 0) {
4421 		bzero(fp, sizeof(frd));
4422 		error = ipf_inobj(softc, data, NULL, fp, IPFOBJ_FRENTRY);
4423 		if (error) {
4424 			return (error);
4425 		}
4426 		if ((fp->fr_type & FR_T_BUILTIN) != 0) {
4427 			IPFERROR(6);
4428 			return (EINVAL);
4429 		}
4430 		KMALLOCS(f, frentry_t *, fp->fr_size);
4431 		if (f == NULL) {
4432 			IPFERROR(131);
4433 			return (ENOMEM);
4434 		}
4435 		bzero(f, fp->fr_size);
4436 		error = ipf_inobjsz(softc, data, f, IPFOBJ_FRENTRY,
4437 				    fp->fr_size);
4438 		if (error) {
4439 			KFREES(f, fp->fr_size);
4440 			return (error);
4441 		}
4442 
4443 		fp = f;
4444 		f = NULL;
4445 		fp->fr_next = NULL;
4446 		fp->fr_dnext = NULL;
4447 		fp->fr_pnext = NULL;
4448 		fp->fr_pdnext = NULL;
4449 		fp->fr_grp = NULL;
4450 		fp->fr_grphead = NULL;
4451 		fp->fr_icmpgrp = NULL;
4452 		fp->fr_isc = (void *)-1;
4453 		fp->fr_ptr = NULL;
4454 		fp->fr_ref = 0;
4455 		fp->fr_flags |= FR_COPIED;
4456 	} else {
4457 		fp = (frentry_t *)data;
4458 		if ((fp->fr_type & FR_T_BUILTIN) == 0) {
4459 			IPFERROR(7);
4460 			return (EINVAL);
4461 		}
4462 		fp->fr_flags &= ~FR_COPIED;
4463 	}
4464 
4465 	if (((fp->fr_dsize == 0) && (fp->fr_data != NULL)) ||
4466 	    ((fp->fr_dsize != 0) && (fp->fr_data == NULL))) {
4467 		IPFERROR(8);
4468 		error = EINVAL;
4469 		goto donenolock;
4470 	}
4471 
4472 	family = fp->fr_family;
4473 	uptr = fp->fr_data;
4474 
4475 	if (req == (ioctlcmd_t)SIOCINAFR || req == (ioctlcmd_t)SIOCINIFR ||
4476 	    req == (ioctlcmd_t)SIOCADAFR || req == (ioctlcmd_t)SIOCADIFR)
4477 		addrem = OP_ADD;	/* Add rule */
4478 	else if (req == (ioctlcmd_t)SIOCRMAFR || req == (ioctlcmd_t)SIOCRMIFR)
4479 		addrem = OP_REM;		/* Remove rule */
4480 	else if (req == (ioctlcmd_t)SIOCZRLST)
4481 		addrem = OP_ZERO;	/* Zero statistics and counters */
4482 	else {
4483 		IPFERROR(9);
4484 		error = EINVAL;
4485 		goto donenolock;
4486 	}
4487 
4488 	/*
4489 	 * Only filter rules for IPv4 or IPv6 are accepted.
4490 	 */
4491 	if (family == AF_INET) {
4492 		/*EMPTY*/;
4493 #ifdef	USE_INET6
4494 	} else if (family == AF_INET6) {
4495 		/*EMPTY*/;
4496 #endif
4497 	} else if (family != 0) {
4498 		IPFERROR(10);
4499 		error = EINVAL;
4500 		goto donenolock;
4501 	}
4502 
4503 	/*
4504 	 * If the rule is being loaded from user space, i.e. we had to copy it
4505 	 * into kernel space, then do not trust the function pointer in the
4506 	 * rule.
4507 	 */
4508 	if ((makecopy == 1) && (fp->fr_func != NULL)) {
4509 		if (ipf_findfunc(fp->fr_func) == NULL) {
4510 			IPFERROR(11);
4511 			error = ESRCH;
4512 			goto donenolock;
4513 		}
4514 
4515 		if (addrem == OP_ADD) {
4516 			error = ipf_funcinit(softc, fp);
4517 			if (error != 0)
4518 				goto donenolock;
4519 		}
4520 	}
4521 	if ((fp->fr_flags & FR_CALLNOW) &&
4522 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4523 		IPFERROR(142);
4524 		error = ESRCH;
4525 		goto donenolock;
4526 	}
4527 	if (((fp->fr_flags & FR_CMDMASK) == FR_CALL) &&
4528 	    ((fp->fr_func == NULL) || (fp->fr_func == (ipfunc_t)-1))) {
4529 		IPFERROR(143);
4530 		error = ESRCH;
4531 		goto donenolock;
4532 	}
4533 
4534 	ptr = NULL;
4535 	cptr = NULL;
4536 
4537 	if (FR_ISACCOUNT(fp->fr_flags))
4538 		unit = IPL_LOGCOUNT;
4539 
4540 	/*
4541 	 * Check that each group name in the rule has a start index that
4542 	 * is valid.
4543 	 */
4544 	if (fp->fr_icmphead != -1) {
4545 		if ((fp->fr_icmphead < 0) ||
4546 		    (fp->fr_icmphead >= fp->fr_namelen)) {
4547 			IPFERROR(136);
4548 			error = EINVAL;
4549 			goto donenolock;
4550 		}
4551 		if (!strcmp(FR_NAME(fp, fr_icmphead), "0"))
4552 			fp->fr_names[fp->fr_icmphead] = '\0';
4553 	}
4554 
4555 	if (fp->fr_grhead != -1) {
4556 		if ((fp->fr_grhead < 0) ||
4557 		    (fp->fr_grhead >= fp->fr_namelen)) {
4558 			IPFERROR(137);
4559 			error = EINVAL;
4560 			goto donenolock;
4561 		}
4562 		if (!strcmp(FR_NAME(fp, fr_grhead), "0"))
4563 			fp->fr_names[fp->fr_grhead] = '\0';
4564 	}
4565 
4566 	if (fp->fr_group != -1) {
4567 		if ((fp->fr_group < 0) ||
4568 		    (fp->fr_group >= fp->fr_namelen)) {
4569 			IPFERROR(138);
4570 			error = EINVAL;
4571 			goto donenolock;
4572 		}
4573 		if ((req != (int)SIOCZRLST) && (fp->fr_group != -1)) {
4574 			/*
4575 			 * Allow loading rules that are in groups to cause
4576 			 * them to be created if they don't already exit.
4577 			 */
4578 			group = FR_NAME(fp, fr_group);
4579 			if (addrem == OP_ADD) {
4580 				fg = ipf_group_add(softc, group, NULL,
4581 						   fp->fr_flags, unit, set);
4582 				fp->fr_grp = fg;
4583 			} else {
4584 				fg = ipf_findgroup(softc, group, unit,
4585 						   set, NULL);
4586 				if (fg == NULL) {
4587 					IPFERROR(12);
4588 					error = ESRCH;
4589 					goto donenolock;
4590 				}
4591 			}
4592 
4593 			if (fg->fg_flags == 0) {
4594 				fg->fg_flags = fp->fr_flags & FR_INOUT;
4595 			} else if (fg->fg_flags != (fp->fr_flags & FR_INOUT)) {
4596 				IPFERROR(13);
4597 				error = ESRCH;
4598 				goto donenolock;
4599 			}
4600 		}
4601 	} else {
4602 		/*
4603 		 * If a rule is going to be part of a group then it does
4604 		 * not matter whether it is an in or out rule, but if it
4605 		 * isn't in a group, then it does...
4606 		 */
4607 		if ((fp->fr_flags & (FR_INQUE|FR_OUTQUE)) == 0) {
4608 			IPFERROR(14);
4609 			error = EINVAL;
4610 			goto donenolock;
4611 		}
4612 	}
4613 	in = (fp->fr_flags & FR_INQUE) ? 0 : 1;
4614 
4615 	/*
4616 	 * Work out which rule list this change is being applied to.
4617 	 */
4618 	ftail = NULL;
4619 	fprev = NULL;
4620 	if (unit == IPL_LOGAUTH) {
4621 		if ((fp->fr_tifs[0].fd_ptr != NULL) ||
4622 		    (fp->fr_tifs[1].fd_ptr != NULL) ||
4623 		    (fp->fr_dif.fd_ptr != NULL) ||
4624 		    (fp->fr_flags & FR_FASTROUTE)) {
4625 			softc->ipf_interror = 145;
4626 			error = EINVAL;
4627 			goto donenolock;
4628 		}
4629 		fprev = ipf_auth_rulehead(softc);
4630 	} else {
4631 		if (FR_ISACCOUNT(fp->fr_flags))
4632 			fprev = &softc->ipf_acct[in][set];
4633 		else if ((fp->fr_flags & (FR_OUTQUE|FR_INQUE)) != 0)
4634 			fprev = &softc->ipf_rules[in][set];
4635 	}
4636 	if (fprev == NULL) {
4637 		IPFERROR(15);
4638 		error = ESRCH;
4639 		goto donenolock;
4640 	}
4641 
4642 	if (fg != NULL)
4643 		fprev = &fg->fg_start;
4644 
4645 	/*
4646 	 * Copy in extra data for the rule.
4647 	 */
4648 	if (fp->fr_dsize != 0) {
4649 		if (makecopy != 0) {
4650 			KMALLOCS(ptr, void *, fp->fr_dsize);
4651 			if (ptr == NULL) {
4652 				IPFERROR(16);
4653 				error = ENOMEM;
4654 				goto donenolock;
4655 			}
4656 
4657 			/*
4658 			 * The bcopy case is for when the data is appended
4659 			 * to the rule by ipf_in_compat().
4660 			 */
4661 			if (uptr >= (void *)fp &&
4662 			    uptr < (void *)((char *)fp + fp->fr_size)) {
4663 				bcopy(uptr, ptr, fp->fr_dsize);
4664 				error = 0;
4665 			} else {
4666 				error = COPYIN(uptr, ptr, fp->fr_dsize);
4667 				if (error != 0) {
4668 					IPFERROR(17);
4669 					error = EFAULT;
4670 					goto donenolock;
4671 				}
4672 			}
4673 		} else {
4674 			ptr = uptr;
4675 		}
4676 		fp->fr_data = ptr;
4677 	} else {
4678 		fp->fr_data = NULL;
4679 	}
4680 
4681 	/*
4682 	 * Perform per-rule type sanity checks of their members.
4683 	 * All code after this needs to be aware that allocated memory
4684 	 * may need to be free'd before exiting.
4685 	 */
4686 	switch (fp->fr_type & ~FR_T_BUILTIN)
4687 	{
4688 #if defined(IPFILTER_BPF)
4689 	case FR_T_BPFOPC :
4690 		if (fp->fr_dsize == 0) {
4691 			IPFERROR(19);
4692 			error = EINVAL;
4693 			break;
4694 		}
4695 		if (!bpf_validate(ptr, fp->fr_dsize/sizeof(struct bpf_insn))) {
4696 			IPFERROR(20);
4697 			error = EINVAL;
4698 			break;
4699 		}
4700 		break;
4701 #endif
4702 	case FR_T_IPF :
4703 		/*
4704 		 * Preparation for error case at the bottom of this function.
4705 		 */
4706 		if (fp->fr_datype == FRI_LOOKUP)
4707 			fp->fr_dstptr = NULL;
4708 		if (fp->fr_satype == FRI_LOOKUP)
4709 			fp->fr_srcptr = NULL;
4710 
4711 		if (fp->fr_dsize != sizeof(fripf_t)) {
4712 			IPFERROR(21);
4713 			error = EINVAL;
4714 			break;
4715 		}
4716 
4717 		/*
4718 		 * Allowing a rule with both "keep state" and "with oow" is
4719 		 * pointless because adding a state entry to the table will
4720 		 * fail with the out of window (oow) flag set.
4721 		 */
4722 		if ((fp->fr_flags & FR_KEEPSTATE) && (fp->fr_flx & FI_OOW)) {
4723 			IPFERROR(22);
4724 			error = EINVAL;
4725 			break;
4726 		}
4727 
4728 		switch (fp->fr_satype)
4729 		{
4730 		case FRI_BROADCAST :
4731 		case FRI_DYNAMIC :
4732 		case FRI_NETWORK :
4733 		case FRI_NETMASKED :
4734 		case FRI_PEERADDR :
4735 			if (fp->fr_sifpidx < 0) {
4736 				IPFERROR(23);
4737 				error = EINVAL;
4738 			}
4739 			break;
4740 		case FRI_LOOKUP :
4741 			fp->fr_srcptr = ipf_findlookup(softc, unit, fp,
4742 						       &fp->fr_src6,
4743 						       &fp->fr_smsk6);
4744 			if (fp->fr_srcfunc == NULL) {
4745 				IPFERROR(132);
4746 				error = ESRCH;
4747 				break;
4748 			}
4749 			break;
4750 		case FRI_NORMAL :
4751 			break;
4752 		default :
4753 			IPFERROR(133);
4754 			error = EINVAL;
4755 			break;
4756 		}
4757 		if (error != 0)
4758 			break;
4759 
4760 		switch (fp->fr_datype)
4761 		{
4762 		case FRI_BROADCAST :
4763 		case FRI_DYNAMIC :
4764 		case FRI_NETWORK :
4765 		case FRI_NETMASKED :
4766 		case FRI_PEERADDR :
4767 			if (fp->fr_difpidx < 0) {
4768 				IPFERROR(24);
4769 				error = EINVAL;
4770 			}
4771 			break;
4772 		case FRI_LOOKUP :
4773 			fp->fr_dstptr = ipf_findlookup(softc, unit, fp,
4774 						       &fp->fr_dst6,
4775 						       &fp->fr_dmsk6);
4776 			if (fp->fr_dstfunc == NULL) {
4777 				IPFERROR(134);
4778 				error = ESRCH;
4779 			}
4780 			break;
4781 		case FRI_NORMAL :
4782 			break;
4783 		default :
4784 			IPFERROR(135);
4785 			error = EINVAL;
4786 		}
4787 		break;
4788 
4789 	case FR_T_NONE :
4790 	case FR_T_CALLFUNC :
4791 	case FR_T_COMPIPF :
4792 		break;
4793 
4794 	case FR_T_IPFEXPR :
4795 		if (ipf_matcharray_verify(fp->fr_data, fp->fr_dsize) == -1) {
4796 			IPFERROR(25);
4797 			error = EINVAL;
4798 		}
4799 		break;
4800 
4801 	default :
4802 		IPFERROR(26);
4803 		error = EINVAL;
4804 		break;
4805 	}
4806 	if (error != 0)
4807 		goto donenolock;
4808 
4809 	if (fp->fr_tif.fd_name != -1) {
4810 		if ((fp->fr_tif.fd_name < 0) ||
4811 		    (fp->fr_tif.fd_name >= fp->fr_namelen)) {
4812 			IPFERROR(139);
4813 			error = EINVAL;
4814 			goto donenolock;
4815 		}
4816 	}
4817 
4818 	if (fp->fr_dif.fd_name != -1) {
4819 		if ((fp->fr_dif.fd_name < 0) ||
4820 		    (fp->fr_dif.fd_name >= fp->fr_namelen)) {
4821 			IPFERROR(140);
4822 			error = EINVAL;
4823 			goto donenolock;
4824 		}
4825 	}
4826 
4827 	if (fp->fr_rif.fd_name != -1) {
4828 		if ((fp->fr_rif.fd_name < 0) ||
4829 		    (fp->fr_rif.fd_name >= fp->fr_namelen)) {
4830 			IPFERROR(141);
4831 			error = EINVAL;
4832 			goto donenolock;
4833 		}
4834 	}
4835 
4836 	/*
4837 	 * Lookup all the interface names that are part of the rule.
4838 	 */
4839 	error = ipf_synclist(softc, fp, NULL);
4840 	if (error != 0)
4841 		goto donenolock;
4842 	fp->fr_statecnt = 0;
4843 	if (fp->fr_srctrack.ht_max_nodes != 0)
4844 		ipf_rb_ht_init(&fp->fr_srctrack);
4845 
4846 	/*
4847 	 * Look for an existing matching filter rule, but don't include the
4848 	 * next or interface pointer in the comparison (fr_next, fr_ifa).
4849 	 * This elminates rules which are indentical being loaded.  Checksum
4850 	 * the constant part of the filter rule to make comparisons quicker
4851 	 * (this meaning no pointers are included).
4852 	 */
4853 	pp = (u_int *)(fp->fr_caddr + fp->fr_dsize);
4854 	for (fp->fr_cksum = 0, p = (u_int *)fp->fr_data; p < pp; p++)
4855 		fp->fr_cksum += *p;
4856 
4857 	WRITE_ENTER(&softc->ipf_mutex);
4858 
4859 	/*
4860 	 * Now that the filter rule lists are locked, we can walk the
4861 	 * chain of them without fear.
4862 	 */
4863 	ftail = fprev;
4864 	for (f = *ftail; (f = *ftail) != NULL; ftail = &f->fr_next) {
4865 		if (fp->fr_collect <= f->fr_collect) {
4866 			ftail = fprev;
4867 			f = NULL;
4868 			break;
4869 		}
4870 		fprev = ftail;
4871 	}
4872 
4873 	for (; (f = *ftail) != NULL; ftail = &f->fr_next) {
4874 		if (ipf_rule_compare(fp, f) == 0)
4875 			break;
4876 	}
4877 
4878 	/*
4879 	 * If zero'ing statistics, copy current to caller and zero.
4880 	 */
4881 	if (addrem == OP_ZERO) {
4882 		if (f == NULL) {
4883 			IPFERROR(27);
4884 			error = ESRCH;
4885 		} else {
4886 			/*
4887 			 * Copy and reduce lock because of impending copyout.
4888 			 * Well we should, but if we do then the atomicity of
4889 			 * this call and the correctness of fr_hits and
4890 			 * fr_bytes cannot be guaranteed.  As it is, this code
4891 			 * only resets them to 0 if they are successfully
4892 			 * copied out into user space.
4893 			 */
4894 			bcopy((char *)f, (char *)fp, f->fr_size);
4895 			/* MUTEX_DOWNGRADE(&softc->ipf_mutex); */
4896 
4897 			/*
4898 			 * When we copy this rule back out, set the data
4899 			 * pointer to be what it was in user space.
4900 			 */
4901 			fp->fr_data = uptr;
4902 			error = ipf_outobj(softc, data, fp, IPFOBJ_FRENTRY);
4903 
4904 			if (error == 0) {
4905 				if ((f->fr_dsize != 0) && (uptr != NULL)) {
4906 					error = COPYOUT(f->fr_data, uptr,
4907 							f->fr_dsize);
4908 					if (error == 0) {
4909 						f->fr_hits = 0;
4910 						f->fr_bytes = 0;
4911 					} else {
4912 						IPFERROR(28);
4913 						error = EFAULT;
4914 					}
4915 				}
4916 			}
4917 		}
4918 
4919 		if (makecopy != 0) {
4920 			if (ptr != NULL) {
4921 				KFREES(ptr, fp->fr_dsize);
4922 			}
4923 			KFREES(fp, fp->fr_size);
4924 		}
4925 		RWLOCK_EXIT(&softc->ipf_mutex);
4926 		return (error);
4927 	}
4928 
4929 	if (f == NULL) {
4930 		/*
4931 		 * At the end of this, ftail must point to the place where the
4932 		 * new rule is to be saved/inserted/added.
4933 		 * For SIOCAD*FR, this should be the last rule in the group of
4934 		 * rules that have equal fr_collect fields.
4935 		 * For SIOCIN*FR, ...
4936 		 */
4937 		if (req == (ioctlcmd_t)SIOCADAFR ||
4938 		    req == (ioctlcmd_t)SIOCADIFR) {
4939 
4940 			for (ftail = fprev; (f = *ftail) != NULL; ) {
4941 				if (f->fr_collect > fp->fr_collect)
4942 					break;
4943 				ftail = &f->fr_next;
4944 				fprev = ftail;
4945 			}
4946 			ftail = fprev;
4947 			f = NULL;
4948 			ptr = NULL;
4949 		} else if (req == (ioctlcmd_t)SIOCINAFR ||
4950 			   req == (ioctlcmd_t)SIOCINIFR) {
4951 			while ((f = *fprev) != NULL) {
4952 				if (f->fr_collect >= fp->fr_collect)
4953 					break;
4954 				fprev = &f->fr_next;
4955 			}
4956   			ftail = fprev;
4957   			if (fp->fr_hits != 0) {
4958 				while (fp->fr_hits && (f = *ftail)) {
4959 					if (f->fr_collect != fp->fr_collect)
4960 						break;
4961 					fprev = ftail;
4962   					ftail = &f->fr_next;
4963 					fp->fr_hits--;
4964 				}
4965   			}
4966   			f = NULL;
4967   			ptr = NULL;
4968 		}
4969 	}
4970 
4971 	/*
4972 	 * Request to remove a rule.
4973 	 */
4974 	if (addrem == OP_REM) {
4975 		if (f == NULL) {
4976 			IPFERROR(29);
4977 			error = ESRCH;
4978 		} else {
4979 			/*
4980 			 * Do not allow activity from user space to interfere
4981 			 * with rules not loaded that way.
4982 			 */
4983 			if ((makecopy == 1) && !(f->fr_flags & FR_COPIED)) {
4984 				IPFERROR(30);
4985 				error = EPERM;
4986 				goto done;
4987 			}
4988 
4989 			/*
4990 			 * Return EBUSY if the rule is being reference by
4991 			 * something else (eg state information.)
4992 			 */
4993 			if (f->fr_ref > 1) {
4994 				IPFERROR(31);
4995 				error = EBUSY;
4996 				goto done;
4997 			}
4998 #ifdef	IPFILTER_SCAN
4999 			if (f->fr_isctag != -1 &&
5000 			    (f->fr_isc != (struct ipscan *)-1))
5001 				ipf_scan_detachfr(f);
5002 #endif
5003 
5004 			if (unit == IPL_LOGAUTH) {
5005 				error = ipf_auth_precmd(softc, req, f, ftail);
5006 				goto done;
5007 			}
5008 
5009 			ipf_rule_delete(softc, f, unit, set);
5010 
5011 			need_free = makecopy;
5012 		}
5013 	} else {
5014 		/*
5015 		 * Not removing, so we must be adding/inserting a rule.
5016 		 */
5017 		if (f != NULL) {
5018 			IPFERROR(32);
5019 			error = EEXIST;
5020 			goto done;
5021 		}
5022 		if (unit == IPL_LOGAUTH) {
5023 			error = ipf_auth_precmd(softc, req, fp, ftail);
5024 			goto done;
5025 		}
5026 
5027 		MUTEX_NUKE(&fp->fr_lock);
5028 		MUTEX_INIT(&fp->fr_lock, "filter rule lock");
5029 		if (fp->fr_die != 0)
5030 			ipf_rule_expire_insert(softc, fp, set);
5031 
5032 		fp->fr_hits = 0;
5033 		if (makecopy != 0)
5034 			fp->fr_ref = 1;
5035 		fp->fr_pnext = ftail;
5036 		fp->fr_next = *ftail;
5037 		if (fp->fr_next != NULL)
5038 			fp->fr_next->fr_pnext = &fp->fr_next;
5039 		*ftail = fp;
5040 		ipf_fixskip(ftail, fp, 1);
5041 
5042 		fp->fr_icmpgrp = NULL;
5043 		if (fp->fr_icmphead != -1) {
5044 			group = FR_NAME(fp, fr_icmphead);
5045 			fg = ipf_group_add(softc, group, fp, 0, unit, set);
5046 			fp->fr_icmpgrp = fg;
5047 		}
5048 
5049 		fp->fr_grphead = NULL;
5050 		if (fp->fr_grhead != -1) {
5051 			group = FR_NAME(fp, fr_grhead);
5052 			fg = ipf_group_add(softc, group, fp, fp->fr_flags,
5053 					   unit, set);
5054 			fp->fr_grphead = fg;
5055 		}
5056 	}
5057 done:
5058 	RWLOCK_EXIT(&softc->ipf_mutex);
5059 donenolock:
5060 	if (need_free || (error != 0)) {
5061 		if ((fp->fr_type & ~FR_T_BUILTIN) == FR_T_IPF) {
5062 			if ((fp->fr_satype == FRI_LOOKUP) &&
5063 			    (fp->fr_srcptr != NULL))
5064 				ipf_lookup_deref(softc, fp->fr_srctype,
5065 						 fp->fr_srcptr);
5066 			if ((fp->fr_datype == FRI_LOOKUP) &&
5067 			    (fp->fr_dstptr != NULL))
5068 				ipf_lookup_deref(softc, fp->fr_dsttype,
5069 						 fp->fr_dstptr);
5070 		}
5071 		if (fp->fr_grp != NULL) {
5072 			WRITE_ENTER(&softc->ipf_mutex);
5073 			ipf_group_del(softc, fp->fr_grp, fp);
5074 			RWLOCK_EXIT(&softc->ipf_mutex);
5075 		}
5076 		if ((ptr != NULL) && (makecopy != 0)) {
5077 			KFREES(ptr, fp->fr_dsize);
5078 		}
5079 		KFREES(fp, fp->fr_size);
5080 	}
5081 	return (error);
5082 }
5083 
5084 
5085 /* ------------------------------------------------------------------------ */
5086 /* Function:   ipf_rule_delete                                              */
5087 /* Returns:    Nil                                                          */
5088 /* Parameters: softc(I) - pointer to soft context main structure            */
5089 /*             f(I)     - pointer to the rule being deleted                 */
5090 /*             ftail(I) - pointer to the pointer to f                       */
5091 /*             unit(I)  - device for which this is for                      */
5092 /*             set(I)   - 1 or 0 (filter set)                               */
5093 /*                                                                          */
5094 /* This function attempts to do what it can to delete a filter rule: remove */
5095 /* it from any linked lists and remove any groups it is responsible for.    */
5096 /* But in the end, removing a rule can only drop the reference count - we   */
5097 /* must use that as the guide for whether or not it can be freed.           */
5098 /* ------------------------------------------------------------------------ */
5099 static void
ipf_rule_delete(ipf_main_softc_t * softc,frentry_t * f,int unit,int set)5100 ipf_rule_delete(ipf_main_softc_t *softc, frentry_t *f, int unit, int set)
5101 {
5102 
5103 	/*
5104 	 * If fr_pdnext is set, then the rule is on the expire list, so
5105 	 * remove it from there.
5106 	 */
5107 	if (f->fr_pdnext != NULL) {
5108 		*f->fr_pdnext = f->fr_dnext;
5109 		if (f->fr_dnext != NULL)
5110 			f->fr_dnext->fr_pdnext = f->fr_pdnext;
5111 		f->fr_pdnext = NULL;
5112 		f->fr_dnext = NULL;
5113 	}
5114 
5115 	ipf_fixskip(f->fr_pnext, f, -1);
5116 	if (f->fr_pnext != NULL)
5117 		*f->fr_pnext = f->fr_next;
5118 	if (f->fr_next != NULL)
5119 		f->fr_next->fr_pnext = f->fr_pnext;
5120 	f->fr_pnext = NULL;
5121 	f->fr_next = NULL;
5122 
5123 	(void) ipf_derefrule(softc, &f);
5124 }
5125 
5126 /* ------------------------------------------------------------------------ */
5127 /* Function:   ipf_rule_expire_insert                                       */
5128 /* Returns:    Nil                                                          */
5129 /* Parameters: softc(I) - pointer to soft context main structure            */
5130 /*             f(I)     - pointer to rule to be added to expire list        */
5131 /*             set(I)   - 1 or 0 (filter set)                               */
5132 /*                                                                          */
5133 /* If the new rule has a given expiration time, insert it into the list of  */
5134 /* expiring rules with the ones to be removed first added to the front of   */
5135 /* the list. The insertion is O(n) but it is kept sorted for quick scans at */
5136 /* expiration interval checks.                                              */
5137 /* ------------------------------------------------------------------------ */
5138 static void
ipf_rule_expire_insert(ipf_main_softc_t * softc,frentry_t * f,int set)5139 ipf_rule_expire_insert(ipf_main_softc_t *softc, frentry_t *f, int set)
5140 {
5141 	frentry_t *fr;
5142 
5143 	/*
5144 	 */
5145 
5146 	f->fr_die = softc->ipf_ticks + IPF_TTLVAL(f->fr_die);
5147 	for (fr = softc->ipf_rule_explist[set]; fr != NULL;
5148 	     fr = fr->fr_dnext) {
5149 		if (f->fr_die < fr->fr_die)
5150 			break;
5151 		if (fr->fr_dnext == NULL) {
5152 			/*
5153 			 * We've got to the last rule and everything
5154 			 * wanted to be expired before this new node,
5155 			 * so we have to tack it on the end...
5156 			 */
5157 			fr->fr_dnext = f;
5158 			f->fr_pdnext = &fr->fr_dnext;
5159 			fr = NULL;
5160 			break;
5161 		}
5162 	}
5163 
5164 	if (softc->ipf_rule_explist[set] == NULL) {
5165 		softc->ipf_rule_explist[set] = f;
5166 		f->fr_pdnext = &softc->ipf_rule_explist[set];
5167 	} else if (fr != NULL) {
5168 		f->fr_dnext = fr;
5169 		f->fr_pdnext = fr->fr_pdnext;
5170 		fr->fr_pdnext = &f->fr_dnext;
5171 	}
5172 }
5173 
5174 
5175 /* ------------------------------------------------------------------------ */
5176 /* Function:   ipf_findlookup                                               */
5177 /* Returns:    NULL = failure, else success                                 */
5178 /* Parameters: softc(I) - pointer to soft context main structure            */
5179 /*             unit(I)  - ipf device we want to find match for              */
5180 /*             fp(I)    - rule for which lookup is for                      */
5181 /*             addrp(I) - pointer to lookup information in address struct   */
5182 /*             maskp(O) - pointer to lookup information for storage         */
5183 /*                                                                          */
5184 /* When using pools and hash tables to store addresses for matching in      */
5185 /* rules, it is necessary to resolve both the object referred to by the     */
5186 /* name or address (and return that pointer) and also provide the means by  */
5187 /* which to determine if an address belongs to that object to make the      */
5188 /* packet matching quicker.                                                 */
5189 /* ------------------------------------------------------------------------ */
5190 static void *
ipf_findlookup(ipf_main_softc_t * softc,int unit,frentry_t * fr,i6addr_t * addrp,i6addr_t * maskp)5191 ipf_findlookup(ipf_main_softc_t *softc, int unit, frentry_t *fr,
5192 	i6addr_t *addrp, i6addr_t *maskp)
5193 {
5194 	void *ptr = NULL;
5195 
5196 	switch (addrp->iplookupsubtype)
5197 	{
5198 	case 0 :
5199 		ptr = ipf_lookup_res_num(softc, unit, addrp->iplookuptype,
5200 					 addrp->iplookupnum,
5201 					 &maskp->iplookupfunc);
5202 		break;
5203 	case 1 :
5204 		if (addrp->iplookupname < 0)
5205 			break;
5206 		if (addrp->iplookupname >= fr->fr_namelen)
5207 			break;
5208 		ptr = ipf_lookup_res_name(softc, unit, addrp->iplookuptype,
5209 					  fr->fr_names + addrp->iplookupname,
5210 					  &maskp->iplookupfunc);
5211 		break;
5212 	default :
5213 		break;
5214 	}
5215 
5216 	return (ptr);
5217 }
5218 
5219 
5220 /* ------------------------------------------------------------------------ */
5221 /* Function:    ipf_funcinit                                                */
5222 /* Returns:     int - 0 == success, else ESRCH: cannot resolve rule details */
5223 /* Parameters:  softc(I) - pointer to soft context main structure           */
5224 /*              fr(I)    - pointer to filter rule                           */
5225 /*                                                                          */
5226 /* If a rule is a call rule, then check if the function it points to needs  */
5227 /* an init function to be called now the rule has been loaded.              */
5228 /* ------------------------------------------------------------------------ */
5229 static int
ipf_funcinit(ipf_main_softc_t * softc,frentry_t * fr)5230 ipf_funcinit(ipf_main_softc_t *softc, frentry_t *fr)
5231 {
5232 	ipfunc_resolve_t *ft;
5233 	int err;
5234 
5235 	IPFERROR(34);
5236 	err = ESRCH;
5237 
5238 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5239 		if (ft->ipfu_addr == fr->fr_func) {
5240 			err = 0;
5241 			if (ft->ipfu_init != NULL)
5242 				err = (*ft->ipfu_init)(softc, fr);
5243 			break;
5244 		}
5245 	return (err);
5246 }
5247 
5248 
5249 /* ------------------------------------------------------------------------ */
5250 /* Function:    ipf_funcfini                                                */
5251 /* Returns:     Nil                                                         */
5252 /* Parameters:  softc(I) - pointer to soft context main structure           */
5253 /*              fr(I)    - pointer to filter rule                           */
5254 /*                                                                          */
5255 /* For a given filter rule, call the matching "fini" function if the rule   */
5256 /* is using a known function that would have resulted in the "init" being   */
5257 /* called for ealier.                                                       */
5258 /* ------------------------------------------------------------------------ */
5259 static void
ipf_funcfini(ipf_main_softc_t * softc,frentry_t * fr)5260 ipf_funcfini(ipf_main_softc_t *softc, frentry_t *fr)
5261 {
5262 	ipfunc_resolve_t *ft;
5263 
5264 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5265 		if (ft->ipfu_addr == fr->fr_func) {
5266 			if (ft->ipfu_fini != NULL)
5267 				(void) (*ft->ipfu_fini)(softc, fr);
5268 			break;
5269 		}
5270 }
5271 
5272 
5273 /* ------------------------------------------------------------------------ */
5274 /* Function:    ipf_findfunc                                                */
5275 /* Returns:     ipfunc_t - pointer to function if found, else NULL          */
5276 /* Parameters:  funcptr(I) - function pointer to lookup                     */
5277 /*                                                                          */
5278 /* Look for a function in the table of known functions.                     */
5279 /* ------------------------------------------------------------------------ */
5280 static ipfunc_t
ipf_findfunc(ipfunc_t funcptr)5281 ipf_findfunc(ipfunc_t funcptr)
5282 {
5283 	ipfunc_resolve_t *ft;
5284 
5285 	for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5286 		if (ft->ipfu_addr == funcptr)
5287 			return (funcptr);
5288 	return (NULL);
5289 }
5290 
5291 
5292 /* ------------------------------------------------------------------------ */
5293 /* Function:    ipf_resolvefunc                                             */
5294 /* Returns:     int - 0 == success, else error                              */
5295 /* Parameters:  data(IO) - ioctl data pointer to ipfunc_resolve_t struct    */
5296 /*                                                                          */
5297 /* Copy in a ipfunc_resolve_t structure and then fill in the missing field. */
5298 /* This will either be the function name (if the pointer is set) or the     */
5299 /* function pointer if the name is set.  When found, fill in the other one  */
5300 /* so that the entire, complete, structure can be copied back to user space.*/
5301 /* ------------------------------------------------------------------------ */
5302 int
ipf_resolvefunc(ipf_main_softc_t * softc,void * data)5303 ipf_resolvefunc(ipf_main_softc_t *softc, void *data)
5304 {
5305 	ipfunc_resolve_t res, *ft;
5306 	int error;
5307 
5308 	error = BCOPYIN(data, &res, sizeof(res));
5309 	if (error != 0) {
5310 		IPFERROR(123);
5311 		return (EFAULT);
5312 	}
5313 
5314 	if (res.ipfu_addr == NULL && res.ipfu_name[0] != '\0') {
5315 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5316 			if (strncmp(res.ipfu_name, ft->ipfu_name,
5317 				    sizeof(res.ipfu_name)) == 0) {
5318 				res.ipfu_addr = ft->ipfu_addr;
5319 				res.ipfu_init = ft->ipfu_init;
5320 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5321 					IPFERROR(35);
5322 					return (EFAULT);
5323 				}
5324 				return (0);
5325 			}
5326 	}
5327 	if (res.ipfu_addr != NULL && res.ipfu_name[0] == '\0') {
5328 		for (ft = ipf_availfuncs; ft->ipfu_addr != NULL; ft++)
5329 			if (ft->ipfu_addr == res.ipfu_addr) {
5330 				(void) strncpy(res.ipfu_name, ft->ipfu_name,
5331 					       sizeof(res.ipfu_name));
5332 				res.ipfu_init = ft->ipfu_init;
5333 				if (COPYOUT(&res, data, sizeof(res)) != 0) {
5334 					IPFERROR(36);
5335 					return (EFAULT);
5336 				}
5337 				return (0);
5338 			}
5339 	}
5340 	IPFERROR(37);
5341 	return (ESRCH);
5342 }
5343 
5344 
5345 #if !defined(_KERNEL) || SOLARIS
5346 /*
5347  * From: NetBSD
5348  * ppsratecheck(): packets (or events) per second limitation.
5349  */
5350 int
ppsratecheck(struct timeval * lasttime,int * curpps,int maxpps)5351 ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
5352 	/* maxpps: maximum pps allowed */
5353 {
5354 	struct timeval tv, delta;
5355 	int rv;
5356 
5357 	GETKTIME(&tv);
5358 
5359 	delta.tv_sec = tv.tv_sec - lasttime->tv_sec;
5360 	delta.tv_usec = tv.tv_usec - lasttime->tv_usec;
5361 	if (delta.tv_usec < 0) {
5362 		delta.tv_sec--;
5363 		delta.tv_usec += 1000000;
5364 	}
5365 
5366 	/*
5367 	 * check for 0,0 is so that the message will be seen at least once.
5368 	 * if more than one second have passed since the last update of
5369 	 * lasttime, reset the counter.
5370 	 *
5371 	 * we do increment *curpps even in *curpps < maxpps case, as some may
5372 	 * try to use *curpps for stat purposes as well.
5373 	 */
5374 	if ((lasttime->tv_sec == 0 && lasttime->tv_usec == 0) ||
5375 	    delta.tv_sec >= 1) {
5376 		*lasttime = tv;
5377 		*curpps = 0;
5378 		rv = 1;
5379 	} else if (maxpps < 0)
5380 		rv = 1;
5381 	else if (*curpps < maxpps)
5382 		rv = 1;
5383 	else
5384 		rv = 0;
5385 	*curpps = *curpps + 1;
5386 
5387 	return (rv);
5388 }
5389 #endif
5390 
5391 
5392 /* ------------------------------------------------------------------------ */
5393 /* Function:    ipf_derefrule                                               */
5394 /* Returns:     int   - 0 == rule freed up, else rule not freed             */
5395 /* Parameters:  fr(I) - pointer to filter rule                              */
5396 /*                                                                          */
5397 /* Decrement the reference counter to a rule by one.  If it reaches zero,   */
5398 /* free it and any associated storage space being used by it.               */
5399 /* ------------------------------------------------------------------------ */
5400 int
ipf_derefrule(ipf_main_softc_t * softc,frentry_t ** frp)5401 ipf_derefrule(ipf_main_softc_t *softc, frentry_t **frp)
5402 {
5403 	frentry_t *fr;
5404 	frdest_t *fdp;
5405 
5406 	fr = *frp;
5407 	*frp = NULL;
5408 
5409 	MUTEX_ENTER(&fr->fr_lock);
5410 	fr->fr_ref--;
5411 	if (fr->fr_ref == 0) {
5412 		MUTEX_EXIT(&fr->fr_lock);
5413 		MUTEX_DESTROY(&fr->fr_lock);
5414 
5415 		ipf_funcfini(softc, fr);
5416 
5417 		fdp = &fr->fr_tif;
5418 		if (fdp->fd_type == FRD_DSTLIST)
5419 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5420 
5421 		fdp = &fr->fr_rif;
5422 		if (fdp->fd_type == FRD_DSTLIST)
5423 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5424 
5425 		fdp = &fr->fr_dif;
5426 		if (fdp->fd_type == FRD_DSTLIST)
5427 			ipf_lookup_deref(softc, IPLT_DSTLIST, fdp->fd_ptr);
5428 
5429 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5430 		    fr->fr_satype == FRI_LOOKUP)
5431 			ipf_lookup_deref(softc, fr->fr_srctype, fr->fr_srcptr);
5432 		if ((fr->fr_type & ~FR_T_BUILTIN) == FR_T_IPF &&
5433 		    fr->fr_datype == FRI_LOOKUP)
5434 			ipf_lookup_deref(softc, fr->fr_dsttype, fr->fr_dstptr);
5435 
5436 		if (fr->fr_grp != NULL)
5437 			ipf_group_del(softc, fr->fr_grp, fr);
5438 
5439 		if (fr->fr_grphead != NULL)
5440 			ipf_group_del(softc, fr->fr_grphead, fr);
5441 
5442 		if (fr->fr_icmpgrp != NULL)
5443 			ipf_group_del(softc, fr->fr_icmpgrp, fr);
5444 
5445 		if ((fr->fr_flags & FR_COPIED) != 0) {
5446 			if (fr->fr_dsize) {
5447 				KFREES(fr->fr_data, fr->fr_dsize);
5448 			}
5449 			KFREES(fr, fr->fr_size);
5450 			return (0);
5451 		}
5452 		return (1);
5453 	} else {
5454 		MUTEX_EXIT(&fr->fr_lock);
5455 	}
5456 	return (-1);
5457 }
5458 
5459 
5460 /* ------------------------------------------------------------------------ */
5461 /* Function:    ipf_grpmapinit                                              */
5462 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5463 /* Parameters:  fr(I) - pointer to rule to find hash table for              */
5464 /*                                                                          */
5465 /* Looks for group hash table fr_arg and stores a pointer to it in fr_ptr.  */
5466 /* fr_ptr is later used by ipf_srcgrpmap and ipf_dstgrpmap.                 */
5467 /* ------------------------------------------------------------------------ */
5468 static int
ipf_grpmapinit(ipf_main_softc_t * softc,frentry_t * fr)5469 ipf_grpmapinit(ipf_main_softc_t *softc, frentry_t *fr)
5470 {
5471 	char name[FR_GROUPLEN];
5472 	iphtable_t *iph;
5473 
5474 	(void) snprintf(name, sizeof(name), "%d", fr->fr_arg);
5475 	iph = ipf_lookup_find_htable(softc, IPL_LOGIPF, name);
5476 	if (iph == NULL) {
5477 		IPFERROR(38);
5478 		return (ESRCH);
5479 	}
5480 	if ((iph->iph_flags & FR_INOUT) != (fr->fr_flags & FR_INOUT)) {
5481 		IPFERROR(39);
5482 		return (ESRCH);
5483 	}
5484 	iph->iph_ref++;
5485 	fr->fr_ptr = iph;
5486 	return (0);
5487 }
5488 
5489 
5490 /* ------------------------------------------------------------------------ */
5491 /* Function:    ipf_grpmapfini                                              */
5492 /* Returns:     int - 0 == success, else ESRCH because table entry not found*/
5493 /* Parameters:  softc(I) - pointer to soft context main structure           */
5494 /*              fr(I)    - pointer to rule to release hash table for        */
5495 /*                                                                          */
5496 /* For rules that have had ipf_grpmapinit called, ipf_lookup_deref needs to */
5497 /* be called to undo what ipf_grpmapinit caused to be done.                 */
5498 /* ------------------------------------------------------------------------ */
5499 static int
ipf_grpmapfini(ipf_main_softc_t * softc,frentry_t * fr)5500 ipf_grpmapfini(ipf_main_softc_t *softc, frentry_t *fr)
5501 {
5502 	iphtable_t *iph;
5503 	iph = fr->fr_ptr;
5504 	if (iph != NULL)
5505 		ipf_lookup_deref(softc, IPLT_HASH, iph);
5506 	return (0);
5507 }
5508 
5509 
5510 /* ------------------------------------------------------------------------ */
5511 /* Function:    ipf_srcgrpmap                                               */
5512 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5513 /* Parameters:  fin(I)    - pointer to packet information                   */
5514 /*              passp(IO) - pointer to current/new filter decision (unused) */
5515 /*                                                                          */
5516 /* Look for a rule group head in a hash table, using the source address as  */
5517 /* the key, and descend into that group and continue matching rules against */
5518 /* the packet.                                                              */
5519 /* ------------------------------------------------------------------------ */
5520 frentry_t *
ipf_srcgrpmap(fr_info_t * fin,u_32_t * passp)5521 ipf_srcgrpmap(fr_info_t *fin, u_32_t *passp)
5522 {
5523 	frgroup_t *fg;
5524 	void *rval;
5525 
5526 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5527 				 &fin->fin_src);
5528 	if (rval == NULL)
5529 		return (NULL);
5530 
5531 	fg = rval;
5532 	fin->fin_fr = fg->fg_start;
5533 	(void) ipf_scanlist(fin, *passp);
5534 	return (fin->fin_fr);
5535 }
5536 
5537 
5538 /* ------------------------------------------------------------------------ */
5539 /* Function:    ipf_dstgrpmap                                               */
5540 /* Returns:     frentry_t * - pointer to "new last matching" rule or NULL   */
5541 /* Parameters:  fin(I)    - pointer to packet information                   */
5542 /*              passp(IO) - pointer to current/new filter decision (unused) */
5543 /*                                                                          */
5544 /* Look for a rule group head in a hash table, using the destination        */
5545 /* address as the key, and descend into that group and continue matching    */
5546 /* rules against  the packet.                                               */
5547 /* ------------------------------------------------------------------------ */
5548 frentry_t *
ipf_dstgrpmap(fr_info_t * fin,u_32_t * passp)5549 ipf_dstgrpmap(fr_info_t *fin, u_32_t *passp)
5550 {
5551 	frgroup_t *fg;
5552 	void *rval;
5553 
5554 	rval = ipf_iphmfindgroup(fin->fin_main_soft, fin->fin_fr->fr_ptr,
5555 				 &fin->fin_dst);
5556 	if (rval == NULL)
5557 		return (NULL);
5558 
5559 	fg = rval;
5560 	fin->fin_fr = fg->fg_start;
5561 	(void) ipf_scanlist(fin, *passp);
5562 	return (fin->fin_fr);
5563 }
5564 
5565 /*
5566  * Queue functions
5567  * ===============
5568  * These functions manage objects on queues for efficient timeouts.  There
5569  * are a number of system defined queues as well as user defined timeouts.
5570  * It is expected that a lock is held in the domain in which the queue
5571  * belongs (i.e. either state or NAT) when calling any of these functions
5572  * that prevents ipf_freetimeoutqueue() from being called at the same time
5573  * as any other.
5574  */
5575 
5576 
5577 /* ------------------------------------------------------------------------ */
5578 /* Function:    ipf_addtimeoutqueue                                         */
5579 /* Returns:     struct ifqtq * - NULL if malloc fails, else pointer to      */
5580 /*                               timeout queue with given interval.         */
5581 /* Parameters:  parent(I)  - pointer to pointer to parent node of this list */
5582 /*                           of interface queues.                           */
5583 /*              seconds(I) - timeout value in seconds for this queue.       */
5584 /*                                                                          */
5585 /* This routine first looks for a timeout queue that matches the interval   */
5586 /* being requested.  If it finds one, increments the reference counter and  */
5587 /* returns a pointer to it.  If none are found, it allocates a new one and  */
5588 /* inserts it at the top of the list.                                       */
5589 /*                                                                          */
5590 /* Locking.                                                                 */
5591 /* It is assumed that the caller of this function has an appropriate lock   */
5592 /* held (exclusively) in the domain that encompases 'parent'.               */
5593 /* ------------------------------------------------------------------------ */
5594 ipftq_t *
ipf_addtimeoutqueue(ipf_main_softc_t * softc,ipftq_t ** parent,u_int seconds)5595 ipf_addtimeoutqueue(ipf_main_softc_t *softc, ipftq_t **parent, u_int seconds)
5596 {
5597 	ipftq_t *ifq;
5598 	u_int period;
5599 
5600 	period = seconds * IPF_HZ_DIVIDE;
5601 
5602 	MUTEX_ENTER(&softc->ipf_timeoutlock);
5603 	for (ifq = *parent; ifq != NULL; ifq = ifq->ifq_next) {
5604 		if (ifq->ifq_ttl == period) {
5605 			/*
5606 			 * Reset the delete flag, if set, so the structure
5607 			 * gets reused rather than freed and reallocated.
5608 			 */
5609 			MUTEX_ENTER(&ifq->ifq_lock);
5610 			ifq->ifq_flags &= ~IFQF_DELETE;
5611 			ifq->ifq_ref++;
5612 			MUTEX_EXIT(&ifq->ifq_lock);
5613 			MUTEX_EXIT(&softc->ipf_timeoutlock);
5614 
5615 			return (ifq);
5616 		}
5617 	}
5618 
5619 	KMALLOC(ifq, ipftq_t *);
5620 	if (ifq != NULL) {
5621 		MUTEX_NUKE(&ifq->ifq_lock);
5622 		IPFTQ_INIT(ifq, period, "ipftq mutex");
5623 		ifq->ifq_next = *parent;
5624 		ifq->ifq_pnext = parent;
5625 		ifq->ifq_flags = IFQF_USER;
5626 		ifq->ifq_ref++;
5627 		*parent = ifq;
5628 		softc->ipf_userifqs++;
5629 	}
5630 	MUTEX_EXIT(&softc->ipf_timeoutlock);
5631 	return (ifq);
5632 }
5633 
5634 
5635 /* ------------------------------------------------------------------------ */
5636 /* Function:    ipf_deletetimeoutqueue                                      */
5637 /* Returns:     int    - new reference count value of the timeout queue     */
5638 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5639 /* Locks:       ifq->ifq_lock                                               */
5640 /*                                                                          */
5641 /* This routine must be called when we're discarding a pointer to a timeout */
5642 /* queue object, taking care of the reference counter.                      */
5643 /*                                                                          */
5644 /* Now that this just sets a DELETE flag, it requires the expire code to    */
5645 /* check the list of user defined timeout queues and call the free function */
5646 /* below (currently commented out) to stop memory leaking.  It is done this */
5647 /* way because the locking may not be sufficient to safely do a free when   */
5648 /* this function is called.                                                 */
5649 /* ------------------------------------------------------------------------ */
5650 int
ipf_deletetimeoutqueue(ipftq_t * ifq)5651 ipf_deletetimeoutqueue(ipftq_t *ifq)
5652 {
5653 
5654 	ifq->ifq_ref--;
5655 	if ((ifq->ifq_ref == 0) && ((ifq->ifq_flags & IFQF_USER) != 0)) {
5656 		ifq->ifq_flags |= IFQF_DELETE;
5657 	}
5658 
5659 	return (ifq->ifq_ref);
5660 }
5661 
5662 
5663 /* ------------------------------------------------------------------------ */
5664 /* Function:    ipf_freetimeoutqueue                                        */
5665 /* Parameters:  ifq(I) - timeout queue which is losing a reference.         */
5666 /* Returns:     Nil                                                         */
5667 /*                                                                          */
5668 /* Locking:                                                                 */
5669 /* It is assumed that the caller of this function has an appropriate lock   */
5670 /* held (exclusively) in the domain that encompases the callers "domain".   */
5671 /* The ifq_lock for this structure should not be held.                      */
5672 /*                                                                          */
5673 /* Remove a user defined timeout queue from the list of queues it is in and */
5674 /* tidy up after this is done.                                              */
5675 /* ------------------------------------------------------------------------ */
5676 void
ipf_freetimeoutqueue(ipf_main_softc_t * softc,ipftq_t * ifq)5677 ipf_freetimeoutqueue(ipf_main_softc_t *softc, ipftq_t *ifq)
5678 {
5679 
5680 	if (((ifq->ifq_flags & IFQF_DELETE) == 0) || (ifq->ifq_ref != 0) ||
5681 	    ((ifq->ifq_flags & IFQF_USER) == 0)) {
5682 		printf("ipf_freetimeoutqueue(%lx) flags 0x%x ttl %d ref %d\n",
5683 		       (u_long)ifq, ifq->ifq_flags, ifq->ifq_ttl,
5684 		       ifq->ifq_ref);
5685 		return;
5686 	}
5687 
5688 	/*
5689 	 * Remove from its position in the list.
5690 	 */
5691 	*ifq->ifq_pnext = ifq->ifq_next;
5692 	if (ifq->ifq_next != NULL)
5693 		ifq->ifq_next->ifq_pnext = ifq->ifq_pnext;
5694 	ifq->ifq_next = NULL;
5695 	ifq->ifq_pnext = NULL;
5696 
5697 	MUTEX_DESTROY(&ifq->ifq_lock);
5698 	ATOMIC_DEC(softc->ipf_userifqs);
5699 	KFREE(ifq);
5700 }
5701 
5702 
5703 /* ------------------------------------------------------------------------ */
5704 /* Function:    ipf_deletequeueentry                                        */
5705 /* Returns:     Nil                                                         */
5706 /* Parameters:  tqe(I) - timeout queue entry to delete                      */
5707 /*                                                                          */
5708 /* Remove a tail queue entry from its queue and make it an orphan.          */
5709 /* ipf_deletetimeoutqueue is called to make sure the reference count on the */
5710 /* queue is correct.  We can't, however, call ipf_freetimeoutqueue because  */
5711 /* the correct lock(s) may not be held that would make it safe to do so.    */
5712 /* ------------------------------------------------------------------------ */
5713 void
ipf_deletequeueentry(ipftqent_t * tqe)5714 ipf_deletequeueentry(ipftqent_t *tqe)
5715 {
5716 	ipftq_t *ifq;
5717 
5718 	ifq = tqe->tqe_ifq;
5719 
5720 	MUTEX_ENTER(&ifq->ifq_lock);
5721 
5722 	if (tqe->tqe_pnext != NULL) {
5723 		*tqe->tqe_pnext = tqe->tqe_next;
5724 		if (tqe->tqe_next != NULL)
5725 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5726 		else    /* we must be the tail anyway */
5727 			ifq->ifq_tail = tqe->tqe_pnext;
5728 
5729 		tqe->tqe_pnext = NULL;
5730 		tqe->tqe_ifq = NULL;
5731 	}
5732 
5733 	(void) ipf_deletetimeoutqueue(ifq);
5734 	ASSERT(ifq->ifq_ref > 0);
5735 
5736 	MUTEX_EXIT(&ifq->ifq_lock);
5737 }
5738 
5739 
5740 /* ------------------------------------------------------------------------ */
5741 /* Function:    ipf_queuefront                                              */
5742 /* Returns:     Nil                                                         */
5743 /* Parameters:  tqe(I) - pointer to timeout queue entry                     */
5744 /*                                                                          */
5745 /* Move a queue entry to the front of the queue, if it isn't already there. */
5746 /* ------------------------------------------------------------------------ */
5747 void
ipf_queuefront(ipftqent_t * tqe)5748 ipf_queuefront(ipftqent_t *tqe)
5749 {
5750 	ipftq_t *ifq;
5751 
5752 	ifq = tqe->tqe_ifq;
5753 	if (ifq == NULL)
5754 		return;
5755 
5756 	MUTEX_ENTER(&ifq->ifq_lock);
5757 	if (ifq->ifq_head != tqe) {
5758 		*tqe->tqe_pnext = tqe->tqe_next;
5759 		if (tqe->tqe_next)
5760 			tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5761 		else
5762 			ifq->ifq_tail = tqe->tqe_pnext;
5763 
5764 		tqe->tqe_next = ifq->ifq_head;
5765 		ifq->ifq_head->tqe_pnext = &tqe->tqe_next;
5766 		ifq->ifq_head = tqe;
5767 		tqe->tqe_pnext = &ifq->ifq_head;
5768 	}
5769 	MUTEX_EXIT(&ifq->ifq_lock);
5770 }
5771 
5772 
5773 /* ------------------------------------------------------------------------ */
5774 /* Function:    ipf_queueback                                               */
5775 /* Returns:     Nil                                                         */
5776 /* Parameters:  ticks(I) - ipf tick time to use with this call              */
5777 /*              tqe(I)   - pointer to timeout queue entry                   */
5778 /*                                                                          */
5779 /* Move a queue entry to the back of the queue, if it isn't already there.  */
5780 /* We use use ticks to calculate the expiration and mark for when we last   */
5781 /* touched the structure.                                                   */
5782 /* ------------------------------------------------------------------------ */
5783 void
ipf_queueback(u_long ticks,ipftqent_t * tqe)5784 ipf_queueback(u_long ticks, ipftqent_t *tqe)
5785 {
5786 	ipftq_t *ifq;
5787 
5788 	ifq = tqe->tqe_ifq;
5789 	if (ifq == NULL)
5790 		return;
5791 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5792 	tqe->tqe_touched = ticks;
5793 
5794 	MUTEX_ENTER(&ifq->ifq_lock);
5795 	if (tqe->tqe_next != NULL) {		/* at the end already ? */
5796 		/*
5797 		 * Remove from list
5798 		 */
5799 		*tqe->tqe_pnext = tqe->tqe_next;
5800 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5801 
5802 		/*
5803 		 * Make it the last entry.
5804 		 */
5805 		tqe->tqe_next = NULL;
5806 		tqe->tqe_pnext = ifq->ifq_tail;
5807 		*ifq->ifq_tail = tqe;
5808 		ifq->ifq_tail = &tqe->tqe_next;
5809 	}
5810 	MUTEX_EXIT(&ifq->ifq_lock);
5811 }
5812 
5813 
5814 /* ------------------------------------------------------------------------ */
5815 /* Function:    ipf_queueappend                                             */
5816 /* Returns:     Nil                                                         */
5817 /* Parameters:  ticks(I)  - ipf tick time to use with this call             */
5818 /*              tqe(I)    - pointer to timeout queue entry                  */
5819 /*              ifq(I)    - pointer to timeout queue                        */
5820 /*              parent(I) - owing object pointer                            */
5821 /*                                                                          */
5822 /* Add a new item to this queue and put it on the very end.                 */
5823 /* We use use ticks to calculate the expiration and mark for when we last   */
5824 /* touched the structure.                                                   */
5825 /* ------------------------------------------------------------------------ */
5826 void
ipf_queueappend(u_long ticks,ipftqent_t * tqe,ipftq_t * ifq,void * parent)5827 ipf_queueappend(u_long ticks, ipftqent_t *tqe, ipftq_t *ifq, void *parent)
5828 {
5829 
5830 	MUTEX_ENTER(&ifq->ifq_lock);
5831 	tqe->tqe_parent = parent;
5832 	tqe->tqe_pnext = ifq->ifq_tail;
5833 	*ifq->ifq_tail = tqe;
5834 	ifq->ifq_tail = &tqe->tqe_next;
5835 	tqe->tqe_next = NULL;
5836 	tqe->tqe_ifq = ifq;
5837 	tqe->tqe_die = ticks + ifq->ifq_ttl;
5838 	tqe->tqe_touched = ticks;
5839 	ifq->ifq_ref++;
5840 	MUTEX_EXIT(&ifq->ifq_lock);
5841 }
5842 
5843 
5844 /* ------------------------------------------------------------------------ */
5845 /* Function:    ipf_movequeue                                               */
5846 /* Returns:     Nil                                                         */
5847 /* Parameters:  tq(I)   - pointer to timeout queue information              */
5848 /*              oifp(I) - old timeout queue entry was on                    */
5849 /*              nifp(I) - new timeout queue to put entry on                 */
5850 /*                                                                          */
5851 /* Move a queue entry from one timeout queue to another timeout queue.      */
5852 /* If it notices that the current entry is already last and does not need   */
5853 /* to move queue, the return.                                               */
5854 /* ------------------------------------------------------------------------ */
5855 void
ipf_movequeue(u_long ticks,ipftqent_t * tqe,ipftq_t * oifq,ipftq_t * nifq)5856 ipf_movequeue(u_long ticks, ipftqent_t *tqe, ipftq_t *oifq, ipftq_t *nifq)
5857 {
5858 
5859 	/*
5860 	 * If the queue hasn't changed and we last touched this entry at the
5861 	 * same ipf time, then we're not going to achieve anything by either
5862 	 * changing the ttl or moving it on the queue.
5863 	 */
5864 	if (oifq == nifq && tqe->tqe_touched == ticks)
5865 		return;
5866 
5867 	/*
5868 	 * For any of this to be outside the lock, there is a risk that two
5869 	 * packets entering simultaneously, with one changing to a different
5870 	 * queue and one not, could end up with things in a bizarre state.
5871 	 */
5872 	MUTEX_ENTER(&oifq->ifq_lock);
5873 
5874 	tqe->tqe_touched = ticks;
5875 	tqe->tqe_die = ticks + nifq->ifq_ttl;
5876 	/*
5877 	 * Is the operation here going to be a no-op ?
5878 	 */
5879 	if (oifq == nifq) {
5880 		if ((tqe->tqe_next == NULL) ||
5881 		    (tqe->tqe_next->tqe_die == tqe->tqe_die)) {
5882 			MUTEX_EXIT(&oifq->ifq_lock);
5883 			return;
5884 		}
5885 	}
5886 
5887 	/*
5888 	 * Remove from the old queue
5889 	 */
5890 	*tqe->tqe_pnext = tqe->tqe_next;
5891 	if (tqe->tqe_next)
5892 		tqe->tqe_next->tqe_pnext = tqe->tqe_pnext;
5893 	else
5894 		oifq->ifq_tail = tqe->tqe_pnext;
5895 	tqe->tqe_next = NULL;
5896 
5897 	/*
5898 	 * If we're moving from one queue to another, release the
5899 	 * lock on the old queue and get a lock on the new queue.
5900 	 * For user defined queues, if we're moving off it, call
5901 	 * delete in case it can now be freed.
5902 	 */
5903 	if (oifq != nifq) {
5904 		tqe->tqe_ifq = NULL;
5905 
5906 		(void) ipf_deletetimeoutqueue(oifq);
5907 
5908 		MUTEX_EXIT(&oifq->ifq_lock);
5909 
5910 		MUTEX_ENTER(&nifq->ifq_lock);
5911 
5912 		tqe->tqe_ifq = nifq;
5913 		nifq->ifq_ref++;
5914 	}
5915 
5916 	/*
5917 	 * Add to the bottom of the new queue
5918 	 */
5919 	tqe->tqe_pnext = nifq->ifq_tail;
5920 	*nifq->ifq_tail = tqe;
5921 	nifq->ifq_tail = &tqe->tqe_next;
5922 	MUTEX_EXIT(&nifq->ifq_lock);
5923 }
5924 
5925 
5926 /* ------------------------------------------------------------------------ */
5927 /* Function:    ipf_updateipid                                              */
5928 /* Returns:     int - 0 == success, -1 == error (packet should be droppped) */
5929 /* Parameters:  fin(I) - pointer to packet information                      */
5930 /*                                                                          */
5931 /* When we are doing NAT, change the IP of every packet to represent a      */
5932 /* single sequence of packets coming from the host, hiding any host         */
5933 /* specific sequencing that might otherwise be revealed.  If the packet is  */
5934 /* a fragment, then store the 'new' IPid in the fragment cache and look up  */
5935 /* the fragment cache for non-leading fragments.  If a non-leading fragment */
5936 /* has no match in the cache, return an error.                              */
5937 /* ------------------------------------------------------------------------ */
5938 static int
ipf_updateipid(fr_info_t * fin)5939 ipf_updateipid(fr_info_t *fin)
5940 {
5941 	u_short id, ido, sums;
5942 	u_32_t sumd, sum;
5943 	ip_t *ip;
5944 
5945 	ip = fin->fin_ip;
5946 	ido = ntohs(ip->ip_id);
5947 	if (fin->fin_off != 0) {
5948 		sum = ipf_frag_ipidknown(fin);
5949 		if (sum == 0xffffffff)
5950 			return (-1);
5951 		sum &= 0xffff;
5952 		id = (u_short)sum;
5953 		ip->ip_id = htons(id);
5954 	} else {
5955 		ip_fillid(ip);
5956 		id = ntohs(ip->ip_id);
5957 		if ((fin->fin_flx & FI_FRAG) != 0)
5958 			(void) ipf_frag_ipidnew(fin, (u_32_t)id);
5959 	}
5960 
5961 	if (id == ido)
5962 		return (0);
5963 	CALC_SUMD(ido, id, sumd);	/* DESTRUCTIVE MACRO! id,ido change */
5964 	sum = (~ntohs(ip->ip_sum)) & 0xffff;
5965 	sum += sumd;
5966 	sum = (sum >> 16) + (sum & 0xffff);
5967 	sum = (sum >> 16) + (sum & 0xffff);
5968 	sums = ~(u_short)sum;
5969 	ip->ip_sum = htons(sums);
5970 	return (0);
5971 }
5972 
5973 
5974 #ifdef	NEED_FRGETIFNAME
5975 /* ------------------------------------------------------------------------ */
5976 /* Function:    ipf_getifname                                               */
5977 /* Returns:     char *    - pointer to interface name                       */
5978 /* Parameters:  ifp(I)    - pointer to network interface                    */
5979 /*              buffer(O) - pointer to where to store interface name        */
5980 /*                                                                          */
5981 /* Constructs an interface name in the buffer passed.  The buffer passed is */
5982 /* expected to be at least LIFNAMSIZ in bytes big.  If buffer is passed in  */
5983 /* as a NULL pointer then return a pointer to a static array.               */
5984 /* ------------------------------------------------------------------------ */
5985 char *
ipf_getifname(struct ifnet * ifp,char * buffer)5986 ipf_getifname(struct ifnet *ifp, char *buffer)
5987 {
5988 	static char namebuf[LIFNAMSIZ];
5989 # if SOLARIS || defined(__FreeBSD__)
5990 	int unit, space;
5991 	char temp[20];
5992 	char *s;
5993 # endif
5994 
5995 	if (buffer == NULL)
5996 		buffer = namebuf;
5997 	(void) strncpy(buffer, ifp->if_name, LIFNAMSIZ);
5998 	buffer[LIFNAMSIZ - 1] = '\0';
5999 # if SOLARIS || defined(__FreeBSD__)
6000 	for (s = buffer; *s; s++)
6001 		;
6002 	unit = ifp->if_unit;
6003 	space = LIFNAMSIZ - (s - buffer);
6004 	if ((space > 0) && (unit >= 0)) {
6005 		(void) snprintf(temp, sizeof(name), "%d", unit);
6006 		(void) strncpy(s, temp, space);
6007 	}
6008 # endif
6009 	return (buffer);
6010 }
6011 #endif
6012 
6013 
6014 /* ------------------------------------------------------------------------ */
6015 /* Function:    ipf_ioctlswitch                                             */
6016 /* Returns:     int     - -1 continue processing, else ioctl return value   */
6017 /* Parameters:  unit(I) - device unit opened                                */
6018 /*              data(I) - pointer to ioctl data                             */
6019 /*              cmd(I)  - ioctl command                                     */
6020 /*              mode(I) - mode value                                        */
6021 /*              uid(I)  - uid making the ioctl call                         */
6022 /*              ctx(I)  - pointer to context data                           */
6023 /*                                                                          */
6024 /* Based on the value of unit, call the appropriate ioctl handler or return */
6025 /* EIO if ipfilter is not running.   Also checks if write perms are req'd   */
6026 /* for the device in order to execute the ioctl.  A special case is made    */
6027 /* SIOCIPFINTERROR so that the same code isn't required in every handler.   */
6028 /* The context data pointer is passed through as this is used as the key    */
6029 /* for locating a matching token for continued access for walking lists,    */
6030 /* etc.                                                                     */
6031 /* ------------------------------------------------------------------------ */
6032 int
ipf_ioctlswitch(ipf_main_softc_t * softc,int unit,void * data,ioctlcmd_t cmd,int mode,int uid,void * ctx)6033 ipf_ioctlswitch(ipf_main_softc_t *softc, int unit, void *data, ioctlcmd_t cmd,
6034 	int mode, int uid, void *ctx)
6035 {
6036 	int error = 0;
6037 
6038 	switch (cmd)
6039 	{
6040 	case SIOCIPFINTERROR :
6041 		error = BCOPYOUT(&softc->ipf_interror, data,
6042 				 sizeof(softc->ipf_interror));
6043 		if (error != 0) {
6044 			IPFERROR(40);
6045 			error = EFAULT;
6046 		}
6047 		return (error);
6048 	default :
6049 		break;
6050 	}
6051 
6052 	switch (unit)
6053 	{
6054 	case IPL_LOGIPF :
6055 		error = ipf_ipf_ioctl(softc, data, cmd, mode, uid, ctx);
6056 		break;
6057 	case IPL_LOGNAT :
6058 		if (softc->ipf_running > 0) {
6059 			error = ipf_nat_ioctl(softc, data, cmd, mode,
6060 					      uid, ctx);
6061 		} else {
6062 			IPFERROR(42);
6063 			error = EIO;
6064 		}
6065 		break;
6066 	case IPL_LOGSTATE :
6067 		if (softc->ipf_running > 0) {
6068 			error = ipf_state_ioctl(softc, data, cmd, mode,
6069 						uid, ctx);
6070 		} else {
6071 			IPFERROR(43);
6072 			error = EIO;
6073 		}
6074 		break;
6075 	case IPL_LOGAUTH :
6076 		if (softc->ipf_running > 0) {
6077 			error = ipf_auth_ioctl(softc, data, cmd, mode,
6078 					       uid, ctx);
6079 		} else {
6080 			IPFERROR(44);
6081 			error = EIO;
6082 		}
6083 		break;
6084 	case IPL_LOGSYNC :
6085 		if (softc->ipf_running > 0) {
6086 			error = ipf_sync_ioctl(softc, data, cmd, mode,
6087 					       uid, ctx);
6088 		} else {
6089 			error = EIO;
6090 			IPFERROR(45);
6091 		}
6092 		break;
6093 	case IPL_LOGSCAN :
6094 #ifdef IPFILTER_SCAN
6095 		if (softc->ipf_running > 0)
6096 			error = ipf_scan_ioctl(softc, data, cmd, mode,
6097 					       uid, ctx);
6098 		else
6099 #endif
6100 		{
6101 			error = EIO;
6102 			IPFERROR(46);
6103 		}
6104 		break;
6105 	case IPL_LOGLOOKUP :
6106 		if (softc->ipf_running > 0) {
6107 			error = ipf_lookup_ioctl(softc, data, cmd, mode,
6108 						 uid, ctx);
6109 		} else {
6110 			error = EIO;
6111 			IPFERROR(47);
6112 		}
6113 		break;
6114 	default :
6115 		IPFERROR(48);
6116 		error = EIO;
6117 		break;
6118 	}
6119 
6120 	return (error);
6121 }
6122 
6123 
6124 /*
6125  * This array defines the expected size of objects coming into the kernel
6126  * for the various recognised object types. The first column is flags (see
6127  * below), 2nd column is current size, 3rd column is the version number of
6128  * when the current size became current.
6129  * Flags:
6130  * 1 = minimum size, not absolute size
6131  */
6132 static const int	ipf_objbytes[IPFOBJ_COUNT][3] = {
6133 	{ 1,	sizeof(struct frentry),		5010000 },	/* 0 */
6134 	{ 1,	sizeof(struct friostat),	5010000 },
6135 	{ 0,	sizeof(struct fr_info),		5010000 },
6136 	{ 0,	sizeof(struct ipf_authstat),	4010100 },
6137 	{ 0,	sizeof(struct ipfrstat),	5010000 },
6138 	{ 1,	sizeof(struct ipnat),		5010000 },	/* 5 */
6139 	{ 0,	sizeof(struct natstat),		5010000 },
6140 	{ 0,	sizeof(struct ipstate_save),	5010000 },
6141 	{ 1,	sizeof(struct nat_save),	5010000 },
6142 	{ 0,	sizeof(struct natlookup),	5010000 },
6143 	{ 1,	sizeof(struct ipstate),		5010000 },	/* 10 */
6144 	{ 0,	sizeof(struct ips_stat),	5010000 },
6145 	{ 0,	sizeof(struct frauth),		5010000 },
6146 	{ 0,	sizeof(struct ipftune),		4010100 },
6147 	{ 0,	sizeof(struct nat),		5010000 },
6148 	{ 0,	sizeof(struct ipfruleiter),	4011400 },	/* 15 */
6149 	{ 0,	sizeof(struct ipfgeniter),	4011400 },
6150 	{ 0,	sizeof(struct ipftable),	4011400 },
6151 	{ 0,	sizeof(struct ipflookupiter),	4011400 },
6152 	{ 0,	sizeof(struct ipftq) * IPF_TCP_NSTATES },
6153 	{ 1,	0,				0	}, /* IPFEXPR */
6154 	{ 0,	0,				0	}, /* PROXYCTL */
6155 	{ 0,	sizeof (struct fripf),		5010000	}
6156 };
6157 
6158 
6159 /* ------------------------------------------------------------------------ */
6160 /* Function:    ipf_inobj                                                   */
6161 /* Returns:     int     - 0 = success, else failure                         */
6162 /* Parameters:  softc(I) - soft context pointerto work with                 */
6163 /*              data(I)  - pointer to ioctl data                            */
6164 /*              objp(O)  - where to store ipfobj structure                  */
6165 /*              ptr(I)   - pointer to data to copy out                      */
6166 /*              type(I)  - type of structure being moved                    */
6167 /*                                                                          */
6168 /* Copy in the contents of what the ipfobj_t points to.  In future, we      */
6169 /* add things to check for version numbers, sizes, etc, to make it backward */
6170 /* compatible at the ABI for user land.                                     */
6171 /* If objp is not NULL then we assume that the caller wants to see what is  */
6172 /* in the ipfobj_t structure being copied in. As an example, this can tell  */
6173 /* the caller what version of ipfilter the ioctl program was written to.    */
6174 /* ------------------------------------------------------------------------ */
6175 int
ipf_inobj(ipf_main_softc_t * softc,void * data,ipfobj_t * objp,void * ptr,int type)6176 ipf_inobj(ipf_main_softc_t *softc, void *data, ipfobj_t *objp, void *ptr,
6177 	int type)
6178 {
6179 	ipfobj_t obj;
6180 	int error;
6181 	int size;
6182 
6183 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6184 		IPFERROR(49);
6185 		return (EINVAL);
6186 	}
6187 
6188 	if (objp == NULL)
6189 		objp = &obj;
6190 	error = BCOPYIN(data, objp, sizeof(*objp));
6191 	if (error != 0) {
6192 		IPFERROR(124);
6193 		return (EFAULT);
6194 	}
6195 
6196 	if (objp->ipfo_type != type) {
6197 		IPFERROR(50);
6198 		return (EINVAL);
6199 	}
6200 
6201 	if (objp->ipfo_rev >= ipf_objbytes[type][2]) {
6202 		if ((ipf_objbytes[type][0] & 1) != 0) {
6203 			if (objp->ipfo_size < ipf_objbytes[type][1]) {
6204 				IPFERROR(51);
6205 				return (EINVAL);
6206 			}
6207 			size =  ipf_objbytes[type][1];
6208 		} else if (objp->ipfo_size == ipf_objbytes[type][1]) {
6209 			size =  objp->ipfo_size;
6210 		} else {
6211 			IPFERROR(52);
6212 			return (EINVAL);
6213 		}
6214 		error = COPYIN(objp->ipfo_ptr, ptr, size);
6215 		if (error != 0) {
6216 			IPFERROR(55);
6217 			error = EFAULT;
6218 		}
6219 	} else {
6220 #ifdef  IPFILTER_COMPAT
6221 		error = ipf_in_compat(softc, objp, ptr, 0);
6222 #else
6223 		IPFERROR(54);
6224 		error = EINVAL;
6225 #endif
6226 	}
6227 	return (error);
6228 }
6229 
6230 
6231 /* ------------------------------------------------------------------------ */
6232 /* Function:    ipf_inobjsz                                                 */
6233 /* Returns:     int     - 0 = success, else failure                         */
6234 /* Parameters:  softc(I) - soft context pointerto work with                 */
6235 /*              data(I)  - pointer to ioctl data                            */
6236 /*              ptr(I)   - pointer to store real data in                    */
6237 /*              type(I)  - type of structure being moved                    */
6238 /*              sz(I)    - size of data to copy                             */
6239 /*                                                                          */
6240 /* As per ipf_inobj, except the size of the object to copy in is passed in  */
6241 /* but it must not be smaller than the size defined for the type and the    */
6242 /* type must allow for varied sized objects.  The extra requirement here is */
6243 /* that sz must match the size of the object being passed in - this is not  */
6244 /* not possible nor required in ipf_inobj().                                */
6245 /* ------------------------------------------------------------------------ */
6246 int
ipf_inobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6247 ipf_inobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6248 {
6249 	ipfobj_t obj;
6250 	int error;
6251 
6252 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6253 		IPFERROR(56);
6254 		return (EINVAL);
6255 	}
6256 
6257 	error = BCOPYIN(data, &obj, sizeof(obj));
6258 	if (error != 0) {
6259 		IPFERROR(125);
6260 		return (EFAULT);
6261 	}
6262 
6263 	if (obj.ipfo_type != type) {
6264 		IPFERROR(58);
6265 		return (EINVAL);
6266 	}
6267 
6268 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6269 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6270 		    (sz < ipf_objbytes[type][1])) {
6271 			IPFERROR(57);
6272 			return (EINVAL);
6273 		}
6274 		error = COPYIN(obj.ipfo_ptr, ptr, sz);
6275 		if (error != 0) {
6276 			IPFERROR(61);
6277 			error = EFAULT;
6278 		}
6279 	} else {
6280 #ifdef	IPFILTER_COMPAT
6281 		error = ipf_in_compat(softc, &obj, ptr, sz);
6282 #else
6283 		IPFERROR(60);
6284 		error = EINVAL;
6285 #endif
6286 	}
6287 	return (error);
6288 }
6289 
6290 
6291 /* ------------------------------------------------------------------------ */
6292 /* Function:    ipf_outobjsz                                                */
6293 /* Returns:     int     - 0 = success, else failure                         */
6294 /* Parameters:  data(I) - pointer to ioctl data                             */
6295 /*              ptr(I)  - pointer to store real data in                     */
6296 /*              type(I) - type of structure being moved                     */
6297 /*              sz(I)   - size of data to copy                              */
6298 /*                                                                          */
6299 /* As per ipf_outobj, except the size of the object to copy out is passed in*/
6300 /* but it must not be smaller than the size defined for the type and the    */
6301 /* type must allow for varied sized objects.  The extra requirement here is */
6302 /* that sz must match the size of the object being passed in - this is not  */
6303 /* not possible nor required in ipf_outobj().                               */
6304 /* ------------------------------------------------------------------------ */
6305 int
ipf_outobjsz(ipf_main_softc_t * softc,void * data,void * ptr,int type,int sz)6306 ipf_outobjsz(ipf_main_softc_t *softc, void *data, void *ptr, int type, int sz)
6307 {
6308 	ipfobj_t obj;
6309 	int error;
6310 
6311 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6312 		IPFERROR(62);
6313 		return (EINVAL);
6314 	}
6315 
6316 	error = BCOPYIN(data, &obj, sizeof(obj));
6317 	if (error != 0) {
6318 		IPFERROR(127);
6319 		return (EFAULT);
6320 	}
6321 
6322 	if (obj.ipfo_type != type) {
6323 		IPFERROR(63);
6324 		return (EINVAL);
6325 	}
6326 
6327 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6328 		if (((ipf_objbytes[type][0] & 1) == 0) ||
6329 		    (sz < ipf_objbytes[type][1])) {
6330 			IPFERROR(146);
6331 			return (EINVAL);
6332 		}
6333 		error = COPYOUT(ptr, obj.ipfo_ptr, sz);
6334 		if (error != 0) {
6335 			IPFERROR(66);
6336 			error = EFAULT;
6337 		}
6338 	} else {
6339 #ifdef	IPFILTER_COMPAT
6340 		error = ipf_out_compat(softc, &obj, ptr);
6341 #else
6342 		IPFERROR(65);
6343 		error = EINVAL;
6344 #endif
6345 	}
6346 	return (error);
6347 }
6348 
6349 
6350 /* ------------------------------------------------------------------------ */
6351 /* Function:    ipf_outobj                                                  */
6352 /* Returns:     int     - 0 = success, else failure                         */
6353 /* Parameters:  data(I) - pointer to ioctl data                             */
6354 /*              ptr(I)  - pointer to store real data in                     */
6355 /*              type(I) - type of structure being moved                     */
6356 /*                                                                          */
6357 /* Copy out the contents of what ptr is to where ipfobj points to.  In      */
6358 /* future, we add things to check for version numbers, sizes, etc, to make  */
6359 /* it backward  compatible at the ABI for user land.                        */
6360 /* ------------------------------------------------------------------------ */
6361 int
ipf_outobj(ipf_main_softc_t * softc,void * data,void * ptr,int type)6362 ipf_outobj(ipf_main_softc_t *softc, void *data, void *ptr, int type)
6363 {
6364 	ipfobj_t obj;
6365 	int error;
6366 
6367 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6368 		IPFERROR(67);
6369 		return (EINVAL);
6370 	}
6371 
6372 	error = BCOPYIN(data, &obj, sizeof(obj));
6373 	if (error != 0) {
6374 		IPFERROR(126);
6375 		return (EFAULT);
6376 	}
6377 
6378 	if (obj.ipfo_type != type) {
6379 		IPFERROR(68);
6380 		return (EINVAL);
6381 	}
6382 
6383 	if (obj.ipfo_rev >= ipf_objbytes[type][2]) {
6384 		if ((ipf_objbytes[type][0] & 1) != 0) {
6385 			if (obj.ipfo_size < ipf_objbytes[type][1]) {
6386 				IPFERROR(69);
6387 				return (EINVAL);
6388 			}
6389 		} else if (obj.ipfo_size != ipf_objbytes[type][1]) {
6390 			IPFERROR(70);
6391 			return (EINVAL);
6392 		}
6393 
6394 		error = COPYOUT(ptr, obj.ipfo_ptr, obj.ipfo_size);
6395 		if (error != 0) {
6396 			IPFERROR(73);
6397 			error = EFAULT;
6398 		}
6399 	} else {
6400 #ifdef	IPFILTER_COMPAT
6401 		error = ipf_out_compat(softc, &obj, ptr);
6402 #else
6403 		IPFERROR(72);
6404 		error = EINVAL;
6405 #endif
6406 	}
6407 	return (error);
6408 }
6409 
6410 
6411 /* ------------------------------------------------------------------------ */
6412 /* Function:    ipf_outobjk                                                 */
6413 /* Returns:     int     - 0 = success, else failure                         */
6414 /* Parameters:  obj(I)  - pointer to data description structure             */
6415 /*              ptr(I)  - pointer to kernel data to copy out                */
6416 /*                                                                          */
6417 /* In the above functions, the ipfobj_t structure is copied into the kernel,*/
6418 /* telling ipfilter how to copy out data. In this instance, the ipfobj_t is */
6419 /* already populated with information and now we just need to use it.       */
6420 /* There is no need for this function to have a "type" parameter as there   */
6421 /* is no point in validating information that comes from the kernel with    */
6422 /* itself.                                                                  */
6423 /* ------------------------------------------------------------------------ */
6424 int
ipf_outobjk(ipf_main_softc_t * softc,ipfobj_t * obj,void * ptr)6425 ipf_outobjk(ipf_main_softc_t *softc, ipfobj_t *obj, void *ptr)
6426 {
6427 	int type = obj->ipfo_type;
6428 	int error;
6429 
6430 	if ((type < 0) || (type >= IPFOBJ_COUNT)) {
6431 		IPFERROR(147);
6432 		return (EINVAL);
6433 	}
6434 
6435 	if (obj->ipfo_rev >= ipf_objbytes[type][2]) {
6436 		if ((ipf_objbytes[type][0] & 1) != 0) {
6437 			if (obj->ipfo_size < ipf_objbytes[type][1]) {
6438 				IPFERROR(148);
6439 				return (EINVAL);
6440 			}
6441 
6442 		} else if (obj->ipfo_size != ipf_objbytes[type][1]) {
6443 			IPFERROR(149);
6444 			return (EINVAL);
6445 		}
6446 
6447 		error = COPYOUT(ptr, obj->ipfo_ptr, obj->ipfo_size);
6448 		if (error != 0) {
6449 			IPFERROR(150);
6450 			error = EFAULT;
6451 		}
6452 	} else {
6453 #ifdef  IPFILTER_COMPAT
6454 		error = ipf_out_compat(softc, obj, ptr);
6455 #else
6456 		IPFERROR(151);
6457 		error = EINVAL;
6458 #endif
6459 	}
6460 	return (error);
6461 }
6462 
6463 
6464 /* ------------------------------------------------------------------------ */
6465 /* Function:    ipf_checkl4sum                                              */
6466 /* Returns:     int     - 0 = good, -1 = bad, 1 = cannot check              */
6467 /* Parameters:  fin(I) - pointer to packet information                      */
6468 /*                                                                          */
6469 /* If possible, calculate the layer 4 checksum for the packet.  If this is  */
6470 /* not possible, return without indicating a failure or success but in a    */
6471 /* way that is ditinguishable. This function should only be called by the   */
6472 /* ipf_checkv6sum() for each platform.                                      */
6473 /* ------------------------------------------------------------------------ */
6474 inline int
ipf_checkl4sum(fr_info_t * fin)6475 ipf_checkl4sum(fr_info_t *fin)
6476 {
6477 	u_short sum, hdrsum, *csump;
6478 	udphdr_t *udp;
6479 	int dosum;
6480 
6481 	/*
6482 	 * If the TCP packet isn't a fragment, isn't too short and otherwise
6483 	 * isn't already considered "bad", then validate the checksum.  If
6484 	 * this check fails then considered the packet to be "bad".
6485 	 */
6486 	if ((fin->fin_flx & (FI_FRAG|FI_SHORT|FI_BAD)) != 0)
6487 		return (1);
6488 
6489 	DT2(l4sumo, int, fin->fin_out, int, (int)fin->fin_p);
6490 	if (fin->fin_out == 1) {
6491 		fin->fin_cksum = FI_CK_SUMOK;
6492 		return (0);
6493 	}
6494 
6495 	csump = NULL;
6496 	hdrsum = 0;
6497 	dosum = 0;
6498 	sum = 0;
6499 
6500 	switch (fin->fin_p)
6501 	{
6502 	case IPPROTO_TCP :
6503 		csump = &((tcphdr_t *)fin->fin_dp)->th_sum;
6504 		dosum = 1;
6505 		break;
6506 
6507 	case IPPROTO_UDP :
6508 		udp = fin->fin_dp;
6509 		if (udp->uh_sum != 0) {
6510 			csump = &udp->uh_sum;
6511 			dosum = 1;
6512 		}
6513 		break;
6514 
6515 #ifdef USE_INET6
6516 	case IPPROTO_ICMPV6 :
6517 		csump = &((struct icmp6_hdr *)fin->fin_dp)->icmp6_cksum;
6518 		dosum = 1;
6519 		break;
6520 #endif
6521 
6522 	case IPPROTO_ICMP :
6523 		csump = &((struct icmp *)fin->fin_dp)->icmp_cksum;
6524 		dosum = 1;
6525 		break;
6526 
6527 	default :
6528 		return (1);
6529 		/*NOTREACHED*/
6530 	}
6531 
6532 	if (csump != NULL) {
6533 		hdrsum = *csump;
6534 		if (fin->fin_p == IPPROTO_UDP && hdrsum == 0xffff)
6535 			hdrsum = 0x0000;
6536 	}
6537 
6538 	if (dosum) {
6539 		sum = fr_cksum(fin, fin->fin_ip, fin->fin_p, fin->fin_dp);
6540 	}
6541 #if !defined(_KERNEL)
6542 	if (sum == hdrsum) {
6543 		FR_DEBUG(("checkl4sum: %hx == %hx\n", sum, hdrsum));
6544 	} else {
6545 		FR_DEBUG(("checkl4sum: %hx != %hx\n", sum, hdrsum));
6546 	}
6547 #endif
6548 	DT3(l4sums, u_short, hdrsum, u_short, sum, fr_info_t *, fin);
6549 #ifdef USE_INET6
6550 	if (hdrsum == sum || (sum == 0 && IP_V(fin->fin_ip) == 6)) {
6551 #else
6552 	if (hdrsum == sum) {
6553 #endif
6554 		fin->fin_cksum = FI_CK_SUMOK;
6555 		return (0);
6556 	}
6557 	fin->fin_cksum = FI_CK_BAD;
6558 	return (-1);
6559 }
6560 
6561 
6562 /* ------------------------------------------------------------------------ */
6563 /* Function:    ipf_ifpfillv4addr                                           */
6564 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6565 /* Parameters:  atype(I)   - type of network address update to perform      */
6566 /*              sin(I)     - pointer to source of address information       */
6567 /*              mask(I)    - pointer to source of netmask information       */
6568 /*              inp(I)     - pointer to destination address store           */
6569 /*              inpmask(I) - pointer to destination netmask store           */
6570 /*                                                                          */
6571 /* Given a type of network address update (atype) to perform, copy          */
6572 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6573 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6574 /* which case the operation fails.  For all values of atype other than      */
6575 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6576 /* value.                                                                   */
6577 /* ------------------------------------------------------------------------ */
6578 int
6579 ipf_ifpfillv4addr(int atype, struct sockaddr_in *sin, struct sockaddr_in *mask,
6580 	struct in_addr *inp, struct in_addr *inpmask)
6581 {
6582 	if (inpmask != NULL && atype != FRI_NETMASKED)
6583 		inpmask->s_addr = 0xffffffff;
6584 
6585 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6586 		if (atype == FRI_NETMASKED) {
6587 			if (inpmask == NULL)
6588 				return (-1);
6589 			inpmask->s_addr = mask->sin_addr.s_addr;
6590 		}
6591 		inp->s_addr = sin->sin_addr.s_addr & mask->sin_addr.s_addr;
6592 	} else {
6593 		inp->s_addr = sin->sin_addr.s_addr;
6594 	}
6595 	return (0);
6596 }
6597 
6598 
6599 #ifdef	USE_INET6
6600 /* ------------------------------------------------------------------------ */
6601 /* Function:    ipf_ifpfillv6addr                                           */
6602 /* Returns:     int     - 0 = address update, -1 = address not updated      */
6603 /* Parameters:  atype(I)   - type of network address update to perform      */
6604 /*              sin(I)     - pointer to source of address information       */
6605 /*              mask(I)    - pointer to source of netmask information       */
6606 /*              inp(I)     - pointer to destination address store           */
6607 /*              inpmask(I) - pointer to destination netmask store           */
6608 /*                                                                          */
6609 /* Given a type of network address update (atype) to perform, copy          */
6610 /* information from sin/mask into inp/inpmask.  If ipnmask is NULL then no  */
6611 /* netmask update is performed unless FRI_NETMASKED is passed as atype, in  */
6612 /* which case the operation fails.  For all values of atype other than      */
6613 /* FRI_NETMASKED, if inpmask is non-NULL then the mask is set to an all 1s  */
6614 /* value.                                                                   */
6615 /* ------------------------------------------------------------------------ */
6616 int
6617 ipf_ifpfillv6addr(int atype, struct sockaddr_in6 *sin,
6618 	struct sockaddr_in6 *mask, i6addr_t *inp, i6addr_t *inpmask)
6619 {
6620 	i6addr_t *src, *and;
6621 
6622 	src = (i6addr_t *)&sin->sin6_addr;
6623 	and = (i6addr_t *)&mask->sin6_addr;
6624 
6625 	if (inpmask != NULL && atype != FRI_NETMASKED) {
6626 		inpmask->i6[0] = 0xffffffff;
6627 		inpmask->i6[1] = 0xffffffff;
6628 		inpmask->i6[2] = 0xffffffff;
6629 		inpmask->i6[3] = 0xffffffff;
6630 	}
6631 
6632 	if (atype == FRI_NETWORK || atype == FRI_NETMASKED) {
6633 		if (atype == FRI_NETMASKED) {
6634 			if (inpmask == NULL)
6635 				return (-1);
6636 			inpmask->i6[0] = and->i6[0];
6637 			inpmask->i6[1] = and->i6[1];
6638 			inpmask->i6[2] = and->i6[2];
6639 			inpmask->i6[3] = and->i6[3];
6640 		}
6641 
6642 		inp->i6[0] = src->i6[0] & and->i6[0];
6643 		inp->i6[1] = src->i6[1] & and->i6[1];
6644 		inp->i6[2] = src->i6[2] & and->i6[2];
6645 		inp->i6[3] = src->i6[3] & and->i6[3];
6646 	} else {
6647 		inp->i6[0] = src->i6[0];
6648 		inp->i6[1] = src->i6[1];
6649 		inp->i6[2] = src->i6[2];
6650 		inp->i6[3] = src->i6[3];
6651 	}
6652 	return (0);
6653 }
6654 #endif
6655 
6656 
6657 /* ------------------------------------------------------------------------ */
6658 /* Function:    ipf_matchtag                                                */
6659 /* Returns:     0 == mismatch, 1 == match.                                  */
6660 /* Parameters:  tag1(I) - pointer to first tag to compare                   */
6661 /*              tag2(I) - pointer to second tag to compare                  */
6662 /*                                                                          */
6663 /* Returns true (non-zero) or false(0) if the two tag structures can be     */
6664 /* considered to be a match or not match, respectively.  The tag is 16      */
6665 /* bytes long (16 characters) but that is overlayed with 4 32bit ints so    */
6666 /* compare the ints instead, for speed. tag1 is the master of the           */
6667 /* comparison.  This function should only be called with both tag1 and tag2 */
6668 /* as non-NULL pointers.                                                    */
6669 /* ------------------------------------------------------------------------ */
6670 int
6671 ipf_matchtag(ipftag_t *tag1, ipftag_t *tag2)
6672 {
6673 	if (tag1 == tag2)
6674 		return (1);
6675 
6676 	if ((tag1->ipt_num[0] == 0) && (tag2->ipt_num[0] == 0))
6677 		return (1);
6678 
6679 	if ((tag1->ipt_num[0] == tag2->ipt_num[0]) &&
6680 	    (tag1->ipt_num[1] == tag2->ipt_num[1]) &&
6681 	    (tag1->ipt_num[2] == tag2->ipt_num[2]) &&
6682 	    (tag1->ipt_num[3] == tag2->ipt_num[3]))
6683 		return (1);
6684 	return (0);
6685 }
6686 
6687 
6688 /* ------------------------------------------------------------------------ */
6689 /* Function:    ipf_coalesce                                                */
6690 /* Returns:     1 == success, -1 == failure, 0 == no change                 */
6691 /* Parameters:  fin(I) - pointer to packet information                      */
6692 /*                                                                          */
6693 /* Attempt to get all of the packet data into a single, contiguous buffer.  */
6694 /* If this call returns a failure then the buffers have also been freed.    */
6695 /* ------------------------------------------------------------------------ */
6696 int
6697 ipf_coalesce(fr_info_t *fin)
6698 {
6699 
6700 	if ((fin->fin_flx & FI_COALESCE) != 0)
6701 		return (1);
6702 
6703 	/*
6704 	 * If the mbuf pointers indicate that there is no mbuf to work with,
6705 	* return but do not indicate success or failure.
6706 	 */
6707 	if (fin->fin_m == NULL || fin->fin_mp == NULL)
6708 		return (0);
6709 
6710 #if defined(_KERNEL)
6711 	if (ipf_pullup(fin->fin_m, fin, fin->fin_plen) == NULL) {
6712 		ipf_main_softc_t *softc = fin->fin_main_soft;
6713 
6714 		DT1(frb_coalesce, fr_info_t *, fin);
6715 		LBUMP(ipf_stats[fin->fin_out].fr_badcoalesces);
6716 # if SOLARIS
6717 		FREE_MB_T(*fin->fin_mp);
6718 # endif
6719 		fin->fin_reason = FRB_COALESCE;
6720 		*fin->fin_mp = NULL;
6721 		fin->fin_m = NULL;
6722 		return (-1);
6723 	}
6724 #else
6725 	fin = fin;	/* LINT */
6726 #endif
6727 	return (1);
6728 }
6729 
6730 
6731 /*
6732  * The following table lists all of the tunable variables that can be
6733  * accessed via SIOCIPFGET/SIOCIPFSET/SIOCIPFGETNEXt.  The format of each row
6734  * in the table below is as follows:
6735  *
6736  * pointer to value, name of value, minimum, maximum, size of the value's
6737  *     container, value attribute flags
6738  *
6739  * For convienience, IPFT_RDONLY means the value is read-only, IPFT_WRDISABLED
6740  * means the value can only be written to when IPFilter is loaded but disabled.
6741  * The obvious implication is if neither of these are set then the value can be
6742  * changed at any time without harm.
6743  */
6744 
6745 
6746 /* ------------------------------------------------------------------------ */
6747 /* Function:    ipf_tune_findbycookie                                       */
6748 /* Returns:     NULL = search failed, else pointer to tune struct           */
6749 /* Parameters:  cookie(I) - cookie value to search for amongst tuneables    */
6750 /*              next(O)   - pointer to place to store the cookie for the    */
6751 /*                          "next" tuneable, if it is desired.              */
6752 /*                                                                          */
6753 /* This function is used to walk through all of the existing tunables with  */
6754 /* successive calls.  It searches the known tunables for the one which has  */
6755 /* a matching value for "cookie" - ie its address.  When returning a match, */
6756 /* the next one to be found may be returned inside next.                    */
6757 /* ------------------------------------------------------------------------ */
6758 static ipftuneable_t *
6759 ipf_tune_findbycookie(ipftuneable_t **ptop, void *cookie, void **next)
6760 {
6761 	ipftuneable_t *ta, **tap;
6762 
6763 	for (ta = *ptop; ta->ipft_name != NULL; ta++)
6764 		if (ta == cookie) {
6765 			if (next != NULL) {
6766 				/*
6767 				 * If the next entry in the array has a name
6768 				* present, then return a pointer to it for
6769 				* where to go next, else return a pointer to
6770 				 * the dynaminc list as a key to search there
6771 				 * next.  This facilitates a weak linking of
6772 				 * the two "lists" together.
6773 				 */
6774 				if ((ta + 1)->ipft_name != NULL)
6775 					*next = ta + 1;
6776 				else
6777 					*next = ptop;
6778 			}
6779 			return (ta);
6780 		}
6781 
6782 	for (tap = ptop; (ta = *tap) != NULL; tap = &ta->ipft_next)
6783 		if (tap == cookie) {
6784 			if (next != NULL)
6785 				*next = &ta->ipft_next;
6786 			return (ta);
6787 		}
6788 
6789 	if (next != NULL)
6790 		*next = NULL;
6791 	return (NULL);
6792 }
6793 
6794 
6795 /* ------------------------------------------------------------------------ */
6796 /* Function:    ipf_tune_findbyname                                         */
6797 /* Returns:     NULL = search failed, else pointer to tune struct           */
6798 /* Parameters:  name(I) - name of the tuneable entry to find.               */
6799 /*                                                                          */
6800 /* Search the static array of tuneables and the list of dynamic tuneables   */
6801 /* for an entry with a matching name.  If we can find one, return a pointer */
6802 /* to the matching structure.                                               */
6803 /* ------------------------------------------------------------------------ */
6804 static ipftuneable_t *
6805 ipf_tune_findbyname(ipftuneable_t *top, const char *name)
6806 {
6807 	ipftuneable_t *ta;
6808 
6809 	for (ta = top; ta != NULL; ta = ta->ipft_next)
6810 		if (!strcmp(ta->ipft_name, name)) {
6811 			return (ta);
6812 		}
6813 
6814 	return (NULL);
6815 }
6816 
6817 
6818 /* ------------------------------------------------------------------------ */
6819 /* Function:    ipf_tune_add_array                                          */
6820 /* Returns:     int - 0 == success, else failure                            */
6821 /* Parameters:  newtune - pointer to new tune array to add to tuneables     */
6822 /*                                                                          */
6823 /* Appends tune structures from the array passed in (newtune) to the end of */
6824 /* the current list of "dynamic" tuneable parameters.                       */
6825 /* If any entry to be added is already present (by name) then the operation */
6826 /* is aborted - entries that have been added are removed before returning.  */
6827 /* An entry with no name (NULL) is used as the indication that the end of   */
6828 /* the array has been reached.                                              */
6829 /* ------------------------------------------------------------------------ */
6830 int
6831 ipf_tune_add_array(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6832 {
6833 	ipftuneable_t *nt, *dt;
6834 	int error = 0;
6835 
6836 	for (nt = newtune; nt->ipft_name != NULL; nt++) {
6837 		error = ipf_tune_add(softc, nt);
6838 		if (error != 0) {
6839 			for (dt = newtune; dt != nt; dt++) {
6840 				(void) ipf_tune_del(softc, dt);
6841 			}
6842 		}
6843 	}
6844 
6845 	return (error);
6846 }
6847 
6848 
6849 /* ------------------------------------------------------------------------ */
6850 /* Function:    ipf_tune_array_link                                         */
6851 /* Returns:     0 == success, -1 == failure                                 */
6852 /* Parameters:  softc(I) - soft context pointerto work with                 */
6853 /*              array(I) - pointer to an array of tuneables                 */
6854 /*                                                                          */
6855 /* Given an array of tunables (array), append them to the current list of   */
6856 /* tuneables for this context (softc->ipf_tuners.) To properly prepare the  */
6857 /* the array for being appended to the list, initialise all of the next     */
6858 /* pointers so we don't need to walk parts of it with ++ and others with    */
6859 /* next. The array is expected to have an entry with a NULL name as the     */
6860 /* terminator. Trying to add an array with no non-NULL names will return as */
6861 /* a failure.                                                               */
6862 /* ------------------------------------------------------------------------ */
6863 int
6864 ipf_tune_array_link(ipf_main_softc_t *softc, ipftuneable_t *array)
6865 {
6866 	ipftuneable_t *t, **p;
6867 
6868 	t = array;
6869 	if (t->ipft_name == NULL)
6870 		return (-1);
6871 
6872 	for (; t[1].ipft_name != NULL; t++)
6873 		t[0].ipft_next = &t[1];
6874 	t->ipft_next = NULL;
6875 
6876 	/*
6877 	 * Since a pointer to the last entry isn't kept, we need to find it
6878 	 * each time we want to add new variables to the list.
6879 	 */
6880 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6881 		if (t->ipft_name == NULL)
6882 			break;
6883 	*p = array;
6884 
6885 	return (0);
6886 }
6887 
6888 
6889 /* ------------------------------------------------------------------------ */
6890 /* Function:    ipf_tune_array_unlink                                       */
6891 /* Returns:     0 == success, -1 == failure                                 */
6892 /* Parameters:  softc(I) - soft context pointerto work with                 */
6893 /*              array(I) - pointer to an array of tuneables                 */
6894 /*                                                                          */
6895 /* ------------------------------------------------------------------------ */
6896 int
6897 ipf_tune_array_unlink(ipf_main_softc_t *softc, ipftuneable_t *array)
6898 {
6899 	ipftuneable_t *t, **p;
6900 
6901 	for (p = &softc->ipf_tuners; (t = *p) != NULL; p = &t->ipft_next)
6902 		if (t == array)
6903 			break;
6904 	if (t == NULL)
6905 		return (-1);
6906 
6907 	for (; t[1].ipft_name != NULL; t++)
6908 		;
6909 
6910 	*p = t->ipft_next;
6911 
6912 	return (0);
6913 }
6914 
6915 
6916 /* ------------------------------------------------------------------------ */
6917 /* Function:   ipf_tune_array_copy                                          */
6918 /* Returns:    NULL = failure, else pointer to new array                    */
6919 /* Parameters: base(I)     - pointer to structure base                      */
6920 /*             size(I)     - size of the array at template                  */
6921 /*             template(I) - original array to copy                         */
6922 /*                                                                          */
6923 /* Allocate memory for a new set of tuneable values and copy everything     */
6924 /* from template into the new region of memory.  The new region is full of  */
6925 /* uninitialised pointers (ipft_next) so set them up.  Now, ipftp_offset... */
6926 /*                                                                          */
6927 /* NOTE: the following assumes that sizeof(long) == sizeof(void *)          */
6928 /* In the array template, ipftp_offset is the offset (in bytes) of the      */
6929 /* location of the tuneable value inside the structure pointed to by base.  */
6930 /* As ipftp_offset is a union over the pointers to the tuneable values, if  */
6931 /* we add base to the copy's ipftp_offset, copy ends up with a pointer in   */
6932 /* ipftp_void that points to the stored value.                              */
6933 /* ------------------------------------------------------------------------ */
6934 ipftuneable_t *
6935 ipf_tune_array_copy(void *base, size_t size, ipftuneable_t *template)
6936 {
6937 	ipftuneable_t *copy;
6938 	int i;
6939 
6940 
6941 	KMALLOCS(copy, ipftuneable_t *, size);
6942 	if (copy == NULL) {
6943 		return (NULL);
6944 	}
6945 	bcopy(template, copy, size);
6946 
6947 	for (i = 0; copy[i].ipft_name; i++) {
6948 		copy[i].ipft_una.ipftp_offset += (u_long)base;
6949 		copy[i].ipft_next = copy + i + 1;
6950 	}
6951 
6952 	return (copy);
6953 }
6954 
6955 
6956 /* ------------------------------------------------------------------------ */
6957 /* Function:    ipf_tune_add                                                */
6958 /* Returns:     int - 0 == success, else failure                            */
6959 /* Parameters:  newtune - pointer to new tune entry to add to tuneables     */
6960 /*                                                                          */
6961 /* Appends tune structures from the array passed in (newtune) to the end of */
6962 /* the current list of "dynamic" tuneable parameters.  Once added, the      */
6963 /* owner of the object is not expected to ever change "ipft_next".          */
6964 /* ------------------------------------------------------------------------ */
6965 int
6966 ipf_tune_add(ipf_main_softc_t *softc, ipftuneable_t *newtune)
6967 {
6968 	ipftuneable_t *ta, **tap;
6969 
6970 	ta = ipf_tune_findbyname(softc->ipf_tuners, newtune->ipft_name);
6971 	if (ta != NULL) {
6972 		IPFERROR(74);
6973 		return (EEXIST);
6974 	}
6975 
6976 	for (tap = &softc->ipf_tuners; *tap != NULL; tap = &(*tap)->ipft_next)
6977 		;
6978 
6979 	newtune->ipft_next = NULL;
6980 	*tap = newtune;
6981 	return (0);
6982 }
6983 
6984 
6985 /* ------------------------------------------------------------------------ */
6986 /* Function:    ipf_tune_del                                                */
6987 /* Returns:     int - 0 == success, else failure                            */
6988 /* Parameters:  oldtune - pointer to tune entry to remove from the list of  */
6989 /*                        current dynamic tuneables                         */
6990 /*                                                                          */
6991 /* Search for the tune structure, by pointer, in the list of those that are */
6992 /* dynamically added at run time.  If found, adjust the list so that this   */
6993 /* structure is no longer part of it.                                       */
6994 /* ------------------------------------------------------------------------ */
6995 int
6996 ipf_tune_del(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
6997 {
6998 	ipftuneable_t *ta, **tap;
6999 	int error = 0;
7000 
7001 	for (tap = &softc->ipf_tuners; (ta = *tap) != NULL;
7002 	     tap = &ta->ipft_next) {
7003 		if (ta == oldtune) {
7004 			*tap = oldtune->ipft_next;
7005 			oldtune->ipft_next = NULL;
7006 			break;
7007 		}
7008 	}
7009 
7010 	if (ta == NULL) {
7011 		error = ESRCH;
7012 		IPFERROR(75);
7013 	}
7014 	return (error);
7015 }
7016 
7017 
7018 /* ------------------------------------------------------------------------ */
7019 /* Function:    ipf_tune_del_array                                          */
7020 /* Returns:     int - 0 == success, else failure                            */
7021 /* Parameters:  oldtune - pointer to tuneables array                        */
7022 /*                                                                          */
7023 /* Remove each tuneable entry in the array from the list of "dynamic"       */
7024 /* tunables.  If one entry should fail to be found, an error will be        */
7025 /* returned and no further ones removed.                                    */
7026 /* An entry with a NULL name is used as the indicator of the last entry in  */
7027 /* the array.                                                               */
7028 /* ------------------------------------------------------------------------ */
7029 int
7030 ipf_tune_del_array(ipf_main_softc_t *softc, ipftuneable_t *oldtune)
7031 {
7032 	ipftuneable_t *ot;
7033 	int error = 0;
7034 
7035 	for (ot = oldtune; ot->ipft_name != NULL; ot++) {
7036 		error = ipf_tune_del(softc, ot);
7037 		if (error != 0)
7038 			break;
7039 	}
7040 
7041 	return (error);
7042 
7043 }
7044 
7045 
7046 /* ------------------------------------------------------------------------ */
7047 /* Function:    ipf_tune                                                    */
7048 /* Returns:     int - 0 == success, else failure                            */
7049 /* Parameters:  cmd(I)  - ioctl command number                              */
7050 /*              data(I) - pointer to ioctl data structure                   */
7051 /*                                                                          */
7052 /* Implement handling of SIOCIPFGETNEXT, SIOCIPFGET and SIOCIPFSET.  These  */
7053 /* three ioctls provide the means to access and control global variables    */
7054 /* within IPFilter, allowing (for example) timeouts and table sizes to be   */
7055 /* changed without rebooting, reloading or recompiling.  The initialisation */
7056 /* and 'destruction' routines of the various components of ipfilter are all */
7057 /* each responsible for handling their own values being too big.            */
7058 /* ------------------------------------------------------------------------ */
7059 int
7060 ipf_ipftune(ipf_main_softc_t *softc, ioctlcmd_t cmd, void *data)
7061 {
7062 	ipftuneable_t *ta;
7063 	ipftune_t tu;
7064 	void *cookie;
7065 	int error;
7066 
7067 	error = ipf_inobj(softc, data, NULL, &tu, IPFOBJ_TUNEABLE);
7068 	if (error != 0)
7069 		return (error);
7070 
7071 	tu.ipft_name[sizeof(tu.ipft_name) - 1] = '\0';
7072 	cookie = tu.ipft_cookie;
7073 	ta = NULL;
7074 
7075 	switch (cmd)
7076 	{
7077 	case SIOCIPFGETNEXT :
7078 		/*
7079 		 * If cookie is non-NULL, assume it to be a pointer to the last
7080 		* entry we looked at, so find it (if possible) and return a
7081 		 * pointer to the next one after it.  The last entry in the
7082 		 * the table is a NULL entry, so when we get to it, set cookie
7083 		* to NULL and return that, indicating end of list, erstwhile
7084 		 * if we come in with cookie set to NULL, we are starting anew
7085 		 * at the front of the list.
7086 		 */
7087 		if (cookie != NULL) {
7088 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7089 						   cookie, &tu.ipft_cookie);
7090 		} else {
7091 			ta = softc->ipf_tuners;
7092 			tu.ipft_cookie = ta + 1;
7093 		}
7094 		if (ta != NULL) {
7095 			/*
7096 			 * Entry found, but does the data pointed to by that
7097 			 * row fit in what we can return?
7098 			 */
7099 			if (ta->ipft_sz > sizeof(tu.ipft_un)) {
7100 				IPFERROR(76);
7101 				return (EINVAL);
7102 			}
7103 
7104 			tu.ipft_vlong = 0;
7105 			if (ta->ipft_sz == sizeof(u_long))
7106 				tu.ipft_vlong = *ta->ipft_plong;
7107 			else if (ta->ipft_sz == sizeof(u_int))
7108 				tu.ipft_vint = *ta->ipft_pint;
7109 			else if (ta->ipft_sz == sizeof(u_short))
7110 				tu.ipft_vshort = *ta->ipft_pshort;
7111 			else if (ta->ipft_sz == sizeof(u_char))
7112 				tu.ipft_vchar = *ta->ipft_pchar;
7113 
7114 			tu.ipft_sz = ta->ipft_sz;
7115 			tu.ipft_min = ta->ipft_min;
7116 			tu.ipft_max = ta->ipft_max;
7117 			tu.ipft_flags = ta->ipft_flags;
7118 			bcopy(ta->ipft_name, tu.ipft_name,
7119 			      MIN(sizeof(tu.ipft_name),
7120 				  strlen(ta->ipft_name) + 1));
7121 		}
7122 		error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7123 		break;
7124 
7125 	case SIOCIPFGET :
7126 	case SIOCIPFSET :
7127 		/*
7128 		 * Search by name or by cookie value for a particular entry
7129 		 * in the tuning parameter table.
7130 		 */
7131 		IPFERROR(77);
7132 		error = ESRCH;
7133 		if (cookie != NULL) {
7134 			ta = ipf_tune_findbycookie(&softc->ipf_tuners,
7135 						   cookie, NULL);
7136 			if (ta != NULL)
7137 				error = 0;
7138 		} else if (tu.ipft_name[0] != '\0') {
7139 			ta = ipf_tune_findbyname(softc->ipf_tuners,
7140 						 tu.ipft_name);
7141 			if (ta != NULL)
7142 				error = 0;
7143 		}
7144 		if (error != 0)
7145 			break;
7146 
7147 		if (cmd == (ioctlcmd_t)SIOCIPFGET) {
7148 			/*
7149 			 * Fetch the tuning parameters for a particular value
7150 			 */
7151 			tu.ipft_vlong = 0;
7152 			if (ta->ipft_sz == sizeof(u_long))
7153 				tu.ipft_vlong = *ta->ipft_plong;
7154 			else if (ta->ipft_sz == sizeof(u_int))
7155 				tu.ipft_vint = *ta->ipft_pint;
7156 			else if (ta->ipft_sz == sizeof(u_short))
7157 				tu.ipft_vshort = *ta->ipft_pshort;
7158 			else if (ta->ipft_sz == sizeof(u_char))
7159 				tu.ipft_vchar = *ta->ipft_pchar;
7160 			tu.ipft_cookie = ta;
7161 			tu.ipft_sz = ta->ipft_sz;
7162 			tu.ipft_min = ta->ipft_min;
7163 			tu.ipft_max = ta->ipft_max;
7164 			tu.ipft_flags = ta->ipft_flags;
7165 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7166 
7167 		} else if (cmd == (ioctlcmd_t)SIOCIPFSET) {
7168 			/*
7169 			 * Set an internal parameter.  The hard part here is
7170 			 * getting the new value safely and correctly out of
7171 			 * the kernel (given we only know its size, not type.)
7172 			 */
7173 			u_long in;
7174 
7175 			if (((ta->ipft_flags & IPFT_WRDISABLED) != 0) &&
7176 			    (softc->ipf_running > 0)) {
7177 				IPFERROR(78);
7178 				error = EBUSY;
7179 				break;
7180 			}
7181 
7182 			in = tu.ipft_vlong;
7183 			if (in < ta->ipft_min || in > ta->ipft_max) {
7184 				IPFERROR(79);
7185 				error = EINVAL;
7186 				break;
7187 			}
7188 
7189 			if (ta->ipft_func != NULL) {
7190 				SPL_INT(s);
7191 
7192 				SPL_NET(s);
7193 				error = (*ta->ipft_func)(softc, ta,
7194 							 &tu.ipft_un);
7195 				SPL_X(s);
7196 
7197 			} else if (ta->ipft_sz == sizeof(u_long)) {
7198 				tu.ipft_vlong = *ta->ipft_plong;
7199 				*ta->ipft_plong = in;
7200 
7201 			} else if (ta->ipft_sz == sizeof(u_int)) {
7202 				tu.ipft_vint = *ta->ipft_pint;
7203 				*ta->ipft_pint = (u_int)(in & 0xffffffff);
7204 
7205 			} else if (ta->ipft_sz == sizeof(u_short)) {
7206 				tu.ipft_vshort = *ta->ipft_pshort;
7207 				*ta->ipft_pshort = (u_short)(in & 0xffff);
7208 
7209 			} else if (ta->ipft_sz == sizeof(u_char)) {
7210 				tu.ipft_vchar = *ta->ipft_pchar;
7211 				*ta->ipft_pchar = (u_char)(in & 0xff);
7212 			}
7213 			error = ipf_outobj(softc, data, &tu, IPFOBJ_TUNEABLE);
7214 		}
7215 		break;
7216 
7217 	default :
7218 		IPFERROR(80);
7219 		error = EINVAL;
7220 		break;
7221 	}
7222 
7223 	return (error);
7224 }
7225 
7226 
7227 /* ------------------------------------------------------------------------ */
7228 /* Function:    ipf_zerostats                                               */
7229 /* Returns:     int - 0 = success, else failure                             */
7230 /* Parameters:  data(O) - pointer to pointer for copying data back to       */
7231 /*                                                                          */
7232 /* Copies the current statistics out to userspace and then zero's the       */
7233 /* current ones in the kernel. The lock is only held across the bzero() as  */
7234 /* the copyout may result in paging (ie network activity.)                  */
7235 /* ------------------------------------------------------------------------ */
7236 int
7237 ipf_zerostats(ipf_main_softc_t *softc, caddr_t data)
7238 {
7239 	friostat_t fio;
7240 	ipfobj_t obj;
7241 	int error;
7242 
7243 	error = ipf_inobj(softc, data, &obj, &fio, IPFOBJ_IPFSTAT);
7244 	if (error != 0)
7245 		return (error);
7246 	ipf_getstat(softc, &fio, obj.ipfo_rev);
7247 	error = ipf_outobj(softc, data, &fio, IPFOBJ_IPFSTAT);
7248 	if (error != 0)
7249 		return (error);
7250 
7251 	WRITE_ENTER(&softc->ipf_mutex);
7252 	bzero(&softc->ipf_stats, sizeof(softc->ipf_stats));
7253 	RWLOCK_EXIT(&softc->ipf_mutex);
7254 
7255 	return (0);
7256 }
7257 
7258 
7259 /* ------------------------------------------------------------------------ */
7260 /* Function:    ipf_resolvedest                                             */
7261 /* Returns:     Nil                                                         */
7262 /* Parameters:  softc(I) - pointer to soft context main structure           */
7263 /*              base(I)  - where strings are stored                         */
7264 /*              fdp(IO)  - pointer to destination information to resolve    */
7265 /*              v(I)     - IP protocol version to match                     */
7266 /*                                                                          */
7267 /* Looks up an interface name in the frdest structure pointed to by fdp and */
7268 /* if a matching name can be found for the particular IP protocol version   */
7269 /* then store the interface pointer in the frdest struct.  If no match is   */
7270 /* found, then set the interface pointer to be -1 as NULL is considered to  */
7271 /* indicate there is no information at all in the structure.                */
7272 /* ------------------------------------------------------------------------ */
7273 int
7274 ipf_resolvedest(ipf_main_softc_t *softc, char *base, frdest_t *fdp, int v)
7275 {
7276 	int errval = 0;
7277 	void *ifp;
7278 
7279 	ifp = NULL;
7280 
7281 	if (fdp->fd_name != -1) {
7282 		if (fdp->fd_type == FRD_DSTLIST) {
7283 			ifp = ipf_lookup_res_name(softc, IPL_LOGIPF,
7284 						  IPLT_DSTLIST,
7285 						  base + fdp->fd_name,
7286 						  NULL);
7287 			if (ifp == NULL) {
7288 				IPFERROR(144);
7289 				errval = ESRCH;
7290 			}
7291 		} else {
7292 			ifp = GETIFP(base + fdp->fd_name, v);
7293 			if (ifp == NULL)
7294 				ifp = (void *)-1;
7295 		}
7296 	}
7297 	fdp->fd_ptr = ifp;
7298 
7299 	return (errval);
7300 }
7301 
7302 
7303 /* ------------------------------------------------------------------------ */
7304 /* Function:    ipf_resolvenic                                              */
7305 /* Returns:     void* - NULL = wildcard name, -1 = failed to find NIC, else */
7306 /*                      pointer to interface structure for NIC              */
7307 /* Parameters:  softc(I)- pointer to soft context main structure            */
7308 /*              name(I) - complete interface name                           */
7309 /*              v(I)    - IP protocol version                               */
7310 /*                                                                          */
7311 /* Look for a network interface structure that firstly has a matching name  */
7312 /* to that passed in and that is also being used for that IP protocol       */
7313 /* version (necessary on some platforms where there are separate listings   */
7314 /* for both IPv4 and IPv6 on the same physical NIC.                         */
7315 /* ------------------------------------------------------------------------ */
7316 void *
7317 ipf_resolvenic(ipf_main_softc_t *softc, char *name, int v)
7318 {
7319 	void *nic;
7320 
7321 	softc = softc;	/* gcc -Wextra */
7322 	if (name[0] == '\0')
7323 		return (NULL);
7324 
7325 	if ((name[1] == '\0') && ((name[0] == '-') || (name[0] == '*'))) {
7326 		return (NULL);
7327 	}
7328 
7329 	nic = GETIFP(name, v);
7330 	if (nic == NULL)
7331 		nic = (void *)-1;
7332 	return (nic);
7333 }
7334 
7335 
7336 /* ------------------------------------------------------------------------ */
7337 /* Function:    ipf_token_expire                                            */
7338 /* Returns:     None.                                                       */
7339 /* Parameters:  softc(I) - pointer to soft context main structure           */
7340 /*                                                                          */
7341 /* This function is run every ipf tick to see if there are any tokens that  */
7342 /* have been held for too long and need to be freed up.                     */
7343 /* ------------------------------------------------------------------------ */
7344 void
7345 ipf_token_expire(ipf_main_softc_t *softc)
7346 {
7347 	ipftoken_t *it;
7348 
7349 	WRITE_ENTER(&softc->ipf_tokens);
7350 	while ((it = softc->ipf_token_head) != NULL) {
7351 		if (it->ipt_die > softc->ipf_ticks)
7352 			break;
7353 
7354 		ipf_token_deref(softc, it);
7355 	}
7356 	RWLOCK_EXIT(&softc->ipf_tokens);
7357 }
7358 
7359 
7360 /* ------------------------------------------------------------------------ */
7361 /* Function:    ipf_token_flush                                             */
7362 /* Returns:     None.                                                       */
7363 /* Parameters:  softc(I) - pointer to soft context main structure           */
7364 /*                                                                          */
7365 /* Loop through all of the existing tokens and call deref to see if they    */
7366 /* can be freed. Normally a function like this might just loop on           */
7367 /* ipf_token_head but there is a chance that a token might have a ref count */
7368 /* of greater than one and in that case the reference would drop twice      */
7369 /* by code that is only entitled to drop it once.                           */
7370 /* ------------------------------------------------------------------------ */
7371 static void
7372 ipf_token_flush(ipf_main_softc_t *softc)
7373 {
7374 	ipftoken_t *it, *next;
7375 
7376 	WRITE_ENTER(&softc->ipf_tokens);
7377 	for (it = softc->ipf_token_head; it != NULL; it = next) {
7378 		next = it->ipt_next;
7379 		(void) ipf_token_deref(softc, it);
7380 	}
7381 	RWLOCK_EXIT(&softc->ipf_tokens);
7382 }
7383 
7384 
7385 /* ------------------------------------------------------------------------ */
7386 /* Function:    ipf_token_del                                               */
7387 /* Returns:     int     - 0 = success, else error                           */
7388 /* Parameters:  softc(I)- pointer to soft context main structure            */
7389 /*              type(I) - the token type to match                           */
7390 /*              uid(I)  - uid owning the token                              */
7391 /*              ptr(I)  - context pointer for the token                     */
7392 /*                                                                          */
7393 /* This function looks for a token in the current list that matches up      */
7394 /* the fields (type, uid, ptr).  If none is found, ESRCH is returned, else  */
7395 /* call ipf_token_dewref() to remove it from the list. In the event that    */
7396 /* the token has a reference held elsewhere, setting ipt_complete to 2      */
7397 /* enables debugging to distinguish between the two paths that ultimately   */
7398 /* lead to a token to be deleted.                                           */
7399 /* ------------------------------------------------------------------------ */
7400 int
7401 ipf_token_del(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7402 {
7403 	ipftoken_t *it;
7404 	int error;
7405 
7406 	IPFERROR(82);
7407 	error = ESRCH;
7408 
7409 	WRITE_ENTER(&softc->ipf_tokens);
7410 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7411 		if (ptr == it->ipt_ctx && type == it->ipt_type &&
7412 		    uid == it->ipt_uid) {
7413 			it->ipt_complete = 2;
7414 			ipf_token_deref(softc, it);
7415 			error = 0;
7416 			break;
7417 		}
7418 	}
7419 	RWLOCK_EXIT(&softc->ipf_tokens);
7420 
7421 	return (error);
7422 }
7423 
7424 
7425 /* ------------------------------------------------------------------------ */
7426 /* Function:    ipf_token_mark_complete                                     */
7427 /* Returns:     None.                                                       */
7428 /* Parameters:  token(I) - pointer to token structure                       */
7429 /*                                                                          */
7430 /* Mark a token as being ineligable for being found with ipf_token_find.    */
7431 /* ------------------------------------------------------------------------ */
7432 void
7433 ipf_token_mark_complete(ipftoken_t *token)
7434 {
7435 	if (token->ipt_complete == 0)
7436 		token->ipt_complete = 1;
7437 }
7438 
7439 
7440 /* ------------------------------------------------------------------------ */
7441 /* Function:    ipf_token_find                                               */
7442 /* Returns:     ipftoken_t * - NULL if no memory, else pointer to token     */
7443 /* Parameters:  softc(I)- pointer to soft context main structure            */
7444 /*              type(I) - the token type to match                           */
7445 /*              uid(I)  - uid owning the token                              */
7446 /*              ptr(I)  - context pointer for the token                     */
7447 /*                                                                          */
7448 /* This function looks for a live token in the list of current tokens that  */
7449 /* matches the tuple (type, uid, ptr).  If one cannot be found then one is  */
7450 /* allocated.  If one is found then it is moved to the top of the list of   */
7451 /* currently active tokens.                                                 */
7452 /* ------------------------------------------------------------------------ */
7453 ipftoken_t *
7454 ipf_token_find(ipf_main_softc_t *softc, int type, int uid, void *ptr)
7455 {
7456 	ipftoken_t *it, *new;
7457 
7458 	WRITE_ENTER(&softc->ipf_tokens);
7459 	for (it = softc->ipf_token_head; it != NULL; it = it->ipt_next) {
7460 		if ((ptr == it->ipt_ctx) && (type == it->ipt_type) &&
7461 		    (uid == it->ipt_uid) && (it->ipt_complete < 2))
7462 			break;
7463 	}
7464 
7465 	if (it == NULL) {
7466 		KMALLOC(new, ipftoken_t *);
7467 		if (new != NULL)
7468 			bzero((char *)new, sizeof(*new));
7469 
7470 		it = new;
7471 		new = NULL;
7472 		if (it == NULL) {
7473 			RWLOCK_EXIT(&softc->ipf_tokens);
7474 			return (NULL);
7475 		}
7476 		it->ipt_ctx = ptr;
7477 		it->ipt_uid = uid;
7478 		it->ipt_type = type;
7479 		it->ipt_ref = 1;
7480 	} else {
7481 		if (it->ipt_complete > 0)
7482 			it = NULL;
7483 		else
7484 			ipf_token_unlink(softc, it);
7485 	}
7486 
7487 	if (it != NULL) {
7488 		it->ipt_pnext = softc->ipf_token_tail;
7489 		*softc->ipf_token_tail = it;
7490 		softc->ipf_token_tail = &it->ipt_next;
7491 		it->ipt_next = NULL;
7492 		it->ipt_ref++;
7493 
7494 		it->ipt_die = softc->ipf_ticks + 20;
7495 	}
7496 
7497 	RWLOCK_EXIT(&softc->ipf_tokens);
7498 
7499 	return (it);
7500 }
7501 
7502 
7503 /* ------------------------------------------------------------------------ */
7504 /* Function:    ipf_token_unlink                                            */
7505 /* Returns:     None.                                                       */
7506 /* Parameters:  softc(I) - pointer to soft context main structure           */
7507 /*              token(I) - pointer to token structure                       */
7508 /* Write Locks: ipf_tokens                                                  */
7509 /*                                                                          */
7510 /* This function unlinks a token structure from the linked list of tokens   */
7511 /* that "own" it.  The head pointer never needs to be explicitly adjusted   */
7512 /* but the tail does due to the linked list implementation.                 */
7513 /* ------------------------------------------------------------------------ */
7514 static void
7515 ipf_token_unlink(ipf_main_softc_t *softc, ipftoken_t *token)
7516 {
7517 
7518 	if (softc->ipf_token_tail == &token->ipt_next)
7519 		softc->ipf_token_tail = token->ipt_pnext;
7520 
7521 	*token->ipt_pnext = token->ipt_next;
7522 	if (token->ipt_next != NULL)
7523 		token->ipt_next->ipt_pnext = token->ipt_pnext;
7524 	token->ipt_next = NULL;
7525 	token->ipt_pnext = NULL;
7526 }
7527 
7528 
7529 /* ------------------------------------------------------------------------ */
7530 /* Function:    ipf_token_deref                                             */
7531 /* Returns:     int      - 0 == token freed, else reference count           */
7532 /* Parameters:  softc(I) - pointer to soft context main structure           */
7533 /*              token(I) - pointer to token structure                       */
7534 /* Write Locks: ipf_tokens                                                  */
7535 /*                                                                          */
7536 /* Drop the reference count on the token structure and if it drops to zero, */
7537 /* call the dereference function for the token type because it is then      */
7538 /* possible to free the token data structure.                               */
7539 /* ------------------------------------------------------------------------ */
7540 int
7541 ipf_token_deref(ipf_main_softc_t *softc, ipftoken_t *token)
7542 {
7543 	void *data, **datap;
7544 
7545 	ASSERT(token->ipt_ref > 0);
7546 	token->ipt_ref--;
7547 	if (token->ipt_ref > 0)
7548 		return (token->ipt_ref);
7549 
7550 	data = token->ipt_data;
7551 	datap = &data;
7552 
7553 	if ((data != NULL) && (data != (void *)-1)) {
7554 		switch (token->ipt_type)
7555 		{
7556 		case IPFGENITER_IPF :
7557 			(void) ipf_derefrule(softc, (frentry_t **)datap);
7558 			break;
7559 		case IPFGENITER_IPNAT :
7560 			WRITE_ENTER(&softc->ipf_nat);
7561 			ipf_nat_rule_deref(softc, (ipnat_t **)datap);
7562 			RWLOCK_EXIT(&softc->ipf_nat);
7563 			break;
7564 		case IPFGENITER_NAT :
7565 			ipf_nat_deref(softc, (nat_t **)datap);
7566 			break;
7567 		case IPFGENITER_STATE :
7568 			ipf_state_deref(softc, (ipstate_t **)datap);
7569 			break;
7570 		case IPFGENITER_FRAG :
7571 			ipf_frag_pkt_deref(softc, (ipfr_t **)datap);
7572 			break;
7573 		case IPFGENITER_NATFRAG :
7574 			ipf_frag_nat_deref(softc, (ipfr_t **)datap);
7575 			break;
7576 		case IPFGENITER_HOSTMAP :
7577 			WRITE_ENTER(&softc->ipf_nat);
7578 			ipf_nat_hostmapdel(softc, (hostmap_t **)datap);
7579 			RWLOCK_EXIT(&softc->ipf_nat);
7580 			break;
7581 		default :
7582 			ipf_lookup_iterderef(softc, token->ipt_type, data);
7583 			break;
7584 		}
7585 	}
7586 
7587 	ipf_token_unlink(softc, token);
7588 	KFREE(token);
7589 	return (0);
7590 }
7591 
7592 
7593 /* ------------------------------------------------------------------------ */
7594 /* Function:    ipf_nextrule                                                */
7595 /* Returns:     frentry_t * - NULL == no more rules, else pointer to next   */
7596 /* Parameters:  softc(I)    - pointer to soft context main structure        */
7597 /*              fr(I)       - pointer to filter rule                        */
7598 /*              out(I)      - 1 == out rules, 0 == input rules              */
7599 /*                                                                          */
7600 /* Starting with "fr", find the next rule to visit. This includes visiting  */
7601 /* the list of rule groups if either fr is NULL (empty list) or it is the   */
7602 /* last rule in the list. When walking rule lists, it is either input or    */
7603 /* output rules that are returned, never both.                              */
7604 /* ------------------------------------------------------------------------ */
7605 static frentry_t *
7606 ipf_nextrule(ipf_main_softc_t *softc, int active, int unit, frentry_t *fr,
7607 	int out)
7608 {
7609 	frentry_t *next;
7610 	frgroup_t *fg;
7611 
7612 	if (fr != NULL && fr->fr_group != -1) {
7613 		fg = ipf_findgroup(softc, fr->fr_names + fr->fr_group,
7614 				   unit, active, NULL);
7615 		if (fg != NULL)
7616 			fg = fg->fg_next;
7617 	} else {
7618 		fg = softc->ipf_groups[unit][active];
7619 	}
7620 
7621 	while (fg != NULL) {
7622 		next = fg->fg_start;
7623 		while (next != NULL) {
7624 			if (out) {
7625 				if (next->fr_flags & FR_OUTQUE)
7626 					return (next);
7627 			} else if (next->fr_flags & FR_INQUE) {
7628 				return (next);
7629 			}
7630 			next = next->fr_next;
7631 		}
7632 		if (next == NULL)
7633 			fg = fg->fg_next;
7634 	}
7635 
7636 	return (NULL);
7637 }
7638 
7639 /* ------------------------------------------------------------------------ */
7640 /* Function:    ipf_getnextrule                                             */
7641 /* Returns:     int - 0 = success, else error                               */
7642 /* Parameters:  softc(I)- pointer to soft context main structure            */
7643 /*              t(I)   - pointer to destination information to resolve      */
7644 /*              ptr(I) - pointer to ipfobj_t to copyin from user space      */
7645 /*                                                                          */
7646 /* This function's first job is to bring in the ipfruleiter_t structure via */
7647 /* the ipfobj_t structure to determine what should be the next rule to      */
7648 /* return. Once the ipfruleiter_t has been brought in, it then tries to     */
7649 /* find the 'next rule'.  This may include searching rule group lists or    */
7650 /* just be as simple as looking at the 'next' field in the rule structure.  */
7651 /* When we have found the rule to return, increase its reference count and  */
7652 /* if we used an existing rule to get here, decrease its reference count.   */
7653 /* ------------------------------------------------------------------------ */
7654 int
7655 ipf_getnextrule(ipf_main_softc_t *softc, ipftoken_t *t, void *ptr)
7656 {
7657 	frentry_t *fr, *next, zero;
7658 	ipfruleiter_t it;
7659 	int error, out;
7660 	frgroup_t *fg;
7661 	ipfobj_t obj;
7662 	int predict;
7663 	char *dst;
7664 	int unit;
7665 
7666 	if (t == NULL || ptr == NULL) {
7667 		IPFERROR(84);
7668 		return (EFAULT);
7669 	}
7670 
7671 	error = ipf_inobj(softc, ptr, &obj, &it, IPFOBJ_IPFITER);
7672 	if (error != 0)
7673 		return (error);
7674 
7675 	if ((it.iri_inout < 0) || (it.iri_inout > 3)) {
7676 		IPFERROR(85);
7677 		return (EINVAL);
7678 	}
7679 	if ((it.iri_active != 0) && (it.iri_active != 1)) {
7680 		IPFERROR(86);
7681 		return (EINVAL);
7682 	}
7683 	if (it.iri_nrules == 0) {
7684 		IPFERROR(87);
7685 		return (ENOSPC);
7686 	}
7687 	if (it.iri_rule == NULL) {
7688 		IPFERROR(88);
7689 		return (EFAULT);
7690 	}
7691 
7692 	fg = NULL;
7693 	fr = t->ipt_data;
7694 	if ((it.iri_inout & F_OUT) != 0)
7695 		out = 1;
7696 	else
7697 		out = 0;
7698 	if ((it.iri_inout & F_ACIN) != 0)
7699 		unit = IPL_LOGCOUNT;
7700 	else
7701 		unit = IPL_LOGIPF;
7702 
7703 	READ_ENTER(&softc->ipf_mutex);
7704 	if (fr == NULL) {
7705 		if (*it.iri_group == '\0') {
7706 			if (unit == IPL_LOGCOUNT) {
7707 				next = softc->ipf_acct[out][it.iri_active];
7708 			} else {
7709 				next = softc->ipf_rules[out][it.iri_active];
7710 			}
7711 			if (next == NULL)
7712 				next = ipf_nextrule(softc, it.iri_active,
7713 						    unit, NULL, out);
7714 		} else {
7715 			fg = ipf_findgroup(softc, it.iri_group, unit,
7716 					   it.iri_active, NULL);
7717 			if (fg != NULL)
7718 				next = fg->fg_start;
7719 			else
7720 				next = NULL;
7721 		}
7722 	} else {
7723 		next = fr->fr_next;
7724 		if (next == NULL)
7725 			next = ipf_nextrule(softc, it.iri_active, unit,
7726 					    fr, out);
7727 	}
7728 
7729 	if (next != NULL && next->fr_next != NULL)
7730 		predict = 1;
7731 	else if (ipf_nextrule(softc, it.iri_active, unit, next, out) != NULL)
7732 		predict = 1;
7733 	else
7734 		predict = 0;
7735 
7736 	if (fr != NULL)
7737 		(void) ipf_derefrule(softc, &fr);
7738 
7739 	obj.ipfo_type = IPFOBJ_FRENTRY;
7740 	dst = (char *)it.iri_rule;
7741 
7742 	if (next != NULL) {
7743 		obj.ipfo_size = next->fr_size;
7744 		MUTEX_ENTER(&next->fr_lock);
7745 		next->fr_ref++;
7746 		MUTEX_EXIT(&next->fr_lock);
7747 		t->ipt_data = next;
7748 	} else {
7749 		obj.ipfo_size = sizeof(frentry_t);
7750 		bzero(&zero, sizeof(zero));
7751 		next = &zero;
7752 		t->ipt_data = NULL;
7753 	}
7754 	it.iri_rule = predict ? next : NULL;
7755 	if (predict == 0)
7756 		ipf_token_mark_complete(t);
7757 
7758 	RWLOCK_EXIT(&softc->ipf_mutex);
7759 
7760 	obj.ipfo_ptr = dst;
7761 	error = ipf_outobjk(softc, &obj, next);
7762 	if (error == 0 && t->ipt_data != NULL) {
7763 		dst += obj.ipfo_size;
7764 		if (next->fr_data != NULL) {
7765 			ipfobj_t dobj;
7766 
7767 			if (next->fr_type == FR_T_IPFEXPR)
7768 				dobj.ipfo_type = IPFOBJ_IPFEXPR;
7769 			else
7770 				dobj.ipfo_type = IPFOBJ_FRIPF;
7771 			dobj.ipfo_size = next->fr_dsize;
7772 			dobj.ipfo_rev = obj.ipfo_rev;
7773 			dobj.ipfo_ptr = dst;
7774 			error = ipf_outobjk(softc, &dobj, next->fr_data);
7775 		}
7776 	}
7777 
7778 	if ((fr != NULL) && (next == &zero))
7779 		(void) ipf_derefrule(softc, &fr);
7780 
7781 	return (error);
7782 }
7783 
7784 
7785 /* ------------------------------------------------------------------------ */
7786 /* Function:    ipf_frruleiter                                              */
7787 /* Returns:     int - 0 = success, else error                               */
7788 /* Parameters:  softc(I)- pointer to soft context main structure            */
7789 /*              data(I) - the token type to match                           */
7790 /*              uid(I)  - uid owning the token                              */
7791 /*              ptr(I)  - context pointer for the token                     */
7792 /*                                                                          */
7793 /* This function serves as a stepping stone between ipf_ipf_ioctl and       */
7794 /* ipf_getnextrule.  It's role is to find the right token in the kernel for */
7795 /* the process doing the ioctl and use that to ask for the next rule.       */
7796 /* ------------------------------------------------------------------------ */
7797 static int
7798 ipf_frruleiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7799 {
7800 	ipftoken_t *token;
7801 	ipfruleiter_t it;
7802 	ipfobj_t obj;
7803 	int error;
7804 
7805 	token = ipf_token_find(softc, IPFGENITER_IPF, uid, ctx);
7806 	if (token != NULL) {
7807 		error = ipf_getnextrule(softc, token, data);
7808 		WRITE_ENTER(&softc->ipf_tokens);
7809 		ipf_token_deref(softc, token);
7810 		RWLOCK_EXIT(&softc->ipf_tokens);
7811 	} else {
7812 		error = ipf_inobj(softc, data, &obj, &it, IPFOBJ_IPFITER);
7813 		if (error != 0)
7814 			return (error);
7815 		it.iri_rule = NULL;
7816 		error = ipf_outobj(softc, data, &it, IPFOBJ_IPFITER);
7817 	}
7818 
7819 	return (error);
7820 }
7821 
7822 
7823 /* ------------------------------------------------------------------------ */
7824 /* Function:    ipf_geniter                                                 */
7825 /* Returns:     int - 0 = success, else error                               */
7826 /* Parameters:  softc(I) - pointer to soft context main structure           */
7827 /*              token(I) - pointer to ipftoken_t structure                  */
7828 /*              itp(I)   - pointer to iterator data                         */
7829 /*                                                                          */
7830 /* Decide which iterator function to call using information passed through  */
7831 /* the ipfgeniter_t structure at itp.                                       */
7832 /* ------------------------------------------------------------------------ */
7833 static int
7834 ipf_geniter(ipf_main_softc_t *softc, ipftoken_t *token, ipfgeniter_t *itp)
7835 {
7836 	int error;
7837 
7838 	switch (itp->igi_type)
7839 	{
7840 	case IPFGENITER_FRAG :
7841 		error = ipf_frag_pkt_next(softc, token, itp);
7842 		break;
7843 	default :
7844 		IPFERROR(92);
7845 		error = EINVAL;
7846 		break;
7847 	}
7848 
7849 	return (error);
7850 }
7851 
7852 
7853 /* ------------------------------------------------------------------------ */
7854 /* Function:    ipf_genericiter                                             */
7855 /* Returns:     int - 0 = success, else error                               */
7856 /* Parameters:  softc(I)- pointer to soft context main structure            */
7857 /*              data(I) - the token type to match                           */
7858 /*              uid(I)  - uid owning the token                              */
7859 /*              ptr(I)  - context pointer for the token                     */
7860 /*                                                                          */
7861 /* Handle the SIOCGENITER ioctl for the ipfilter device. The primary role   */
7862 /* ------------------------------------------------------------------------ */
7863 int
7864 ipf_genericiter(ipf_main_softc_t *softc, void *data, int uid, void *ctx)
7865 {
7866 	ipftoken_t *token;
7867 	ipfgeniter_t iter;
7868 	int error;
7869 
7870 	error = ipf_inobj(softc, data, NULL, &iter, IPFOBJ_GENITER);
7871 	if (error != 0)
7872 		return (error);
7873 
7874 	token = ipf_token_find(softc, iter.igi_type, uid, ctx);
7875 	if (token != NULL) {
7876 		token->ipt_subtype = iter.igi_type;
7877 		error = ipf_geniter(softc, token, &iter);
7878 		WRITE_ENTER(&softc->ipf_tokens);
7879 		ipf_token_deref(softc, token);
7880 		RWLOCK_EXIT(&softc->ipf_tokens);
7881 	} else {
7882 		IPFERROR(93);
7883 		error = 0;
7884 	}
7885 
7886 	return (error);
7887 }
7888 
7889 
7890 /* ------------------------------------------------------------------------ */
7891 /* Function:    ipf_ipf_ioctl                                               */
7892 /* Returns:     int - 0 = success, else error                               */
7893 /* Parameters:  softc(I)- pointer to soft context main structure            */
7894 /*              data(I) - the token type to match                           */
7895 /*              cmd(I)  - the ioctl command number                          */
7896 /*              mode(I) - mode flags for the ioctl                          */
7897 /*              uid(I)  - uid owning the token                              */
7898 /*              ptr(I)  - context pointer for the token                     */
7899 /*                                                                          */
7900 /* This function handles all of the ioctl command that are actually issued  */
7901 /* to the /dev/ipl device.                                                  */
7902 /* ------------------------------------------------------------------------ */
7903 int
7904 ipf_ipf_ioctl(ipf_main_softc_t *softc, caddr_t data, ioctlcmd_t cmd, int mode,
7905 	int uid, void *ctx)
7906 {
7907 	friostat_t fio;
7908 	int error, tmp;
7909 	ipfobj_t obj;
7910 	SPL_INT(s);
7911 
7912 	switch (cmd)
7913 	{
7914 	case SIOCFRENB :
7915 		if (!(mode & FWRITE)) {
7916 			IPFERROR(94);
7917 			error = EPERM;
7918 		} else {
7919 			error = BCOPYIN(data, &tmp, sizeof(tmp));
7920 			if (error != 0) {
7921 				IPFERROR(95);
7922 				error = EFAULT;
7923 				break;
7924 			}
7925 
7926 			WRITE_ENTER(&softc->ipf_global);
7927 			if (tmp) {
7928 				if (softc->ipf_running > 0)
7929 					error = 0;
7930 				else
7931 					error = ipfattach(softc);
7932 				if (error == 0)
7933 					softc->ipf_running = 1;
7934 				else
7935 					(void) ipfdetach(softc);
7936 			} else {
7937 				if (softc->ipf_running == 1)
7938 					error = ipfdetach(softc);
7939 				else
7940 					error = 0;
7941 				if (error == 0)
7942 					softc->ipf_running = -1;
7943 			}
7944 			RWLOCK_EXIT(&softc->ipf_global);
7945 		}
7946 		break;
7947 
7948 	case SIOCIPFSET :
7949 		if (!(mode & FWRITE)) {
7950 			IPFERROR(96);
7951 			error = EPERM;
7952 			break;
7953 		}
7954 		/* FALLTHRU */
7955 	case SIOCIPFGETNEXT :
7956 	case SIOCIPFGET :
7957 		error = ipf_ipftune(softc, cmd, (void *)data);
7958 		break;
7959 
7960 	case SIOCSETFF :
7961 		if (!(mode & FWRITE)) {
7962 			IPFERROR(97);
7963 			error = EPERM;
7964 		} else {
7965 			error = BCOPYIN(data, &softc->ipf_flags,
7966 					sizeof(softc->ipf_flags));
7967 			if (error != 0) {
7968 				IPFERROR(98);
7969 				error = EFAULT;
7970 			}
7971 		}
7972 		break;
7973 
7974 	case SIOCGETFF :
7975 		error = BCOPYOUT(&softc->ipf_flags, data,
7976 				 sizeof(softc->ipf_flags));
7977 		if (error != 0) {
7978 			IPFERROR(99);
7979 			error = EFAULT;
7980 		}
7981 		break;
7982 
7983 	case SIOCFUNCL :
7984 		error = ipf_resolvefunc(softc, (void *)data);
7985 		break;
7986 
7987 	case SIOCINAFR :
7988 	case SIOCRMAFR :
7989 	case SIOCADAFR :
7990 	case SIOCZRLST :
7991 		if (!(mode & FWRITE)) {
7992 			IPFERROR(100);
7993 			error = EPERM;
7994 		} else {
7995 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
7996 					  softc->ipf_active, 1);
7997 		}
7998 		break;
7999 
8000 	case SIOCINIFR :
8001 	case SIOCRMIFR :
8002 	case SIOCADIFR :
8003 		if (!(mode & FWRITE)) {
8004 			IPFERROR(101);
8005 			error = EPERM;
8006 		} else {
8007 			error = frrequest(softc, IPL_LOGIPF, cmd, (caddr_t)data,
8008 					  1 - softc->ipf_active, 1);
8009 		}
8010 		break;
8011 
8012 	case SIOCSWAPA :
8013 		if (!(mode & FWRITE)) {
8014 			IPFERROR(102);
8015 			error = EPERM;
8016 		} else {
8017 			WRITE_ENTER(&softc->ipf_mutex);
8018 			error = BCOPYOUT(&softc->ipf_active, data,
8019 					 sizeof(softc->ipf_active));
8020 			if (error != 0) {
8021 				IPFERROR(103);
8022 				error = EFAULT;
8023 			} else {
8024 				softc->ipf_active = 1 - softc->ipf_active;
8025 			}
8026 			RWLOCK_EXIT(&softc->ipf_mutex);
8027 		}
8028 		break;
8029 
8030 	case SIOCGETFS :
8031 		error = ipf_inobj(softc, (void *)data, &obj, &fio,
8032 				  IPFOBJ_IPFSTAT);
8033 		if (error != 0)
8034 			break;
8035 		ipf_getstat(softc, &fio, obj.ipfo_rev);
8036 		error = ipf_outobj(softc, (void *)data, &fio, IPFOBJ_IPFSTAT);
8037 		break;
8038 
8039 	case SIOCFRZST :
8040 		if (!(mode & FWRITE)) {
8041 			IPFERROR(104);
8042 			error = EPERM;
8043 		} else
8044 			error = ipf_zerostats(softc, (caddr_t)data);
8045 		break;
8046 
8047 	case SIOCIPFFL :
8048 		if (!(mode & FWRITE)) {
8049 			IPFERROR(105);
8050 			error = EPERM;
8051 		} else {
8052 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8053 			if (!error) {
8054 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8055 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8056 				if (error != 0) {
8057 					IPFERROR(106);
8058 					error = EFAULT;
8059 				}
8060 			} else {
8061 				IPFERROR(107);
8062 				error = EFAULT;
8063 			}
8064 		}
8065 		break;
8066 
8067 #ifdef USE_INET6
8068 	case SIOCIPFL6 :
8069 		if (!(mode & FWRITE)) {
8070 			IPFERROR(108);
8071 			error = EPERM;
8072 		} else {
8073 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8074 			if (!error) {
8075 				tmp = ipf_flush(softc, IPL_LOGIPF, tmp);
8076 				error = BCOPYOUT(&tmp, data, sizeof(tmp));
8077 				if (error != 0) {
8078 					IPFERROR(109);
8079 					error = EFAULT;
8080 				}
8081 			} else {
8082 				IPFERROR(110);
8083 				error = EFAULT;
8084 			}
8085 		}
8086 		break;
8087 #endif
8088 
8089 	case SIOCSTLCK :
8090 		if (!(mode & FWRITE)) {
8091 			IPFERROR(122);
8092 			error = EPERM;
8093 		} else {
8094 			error = BCOPYIN(data, &tmp, sizeof(tmp));
8095 			if (error == 0) {
8096 				ipf_state_setlock(softc->ipf_state_soft, tmp);
8097 				ipf_nat_setlock(softc->ipf_nat_soft, tmp);
8098 				ipf_frag_setlock(softc->ipf_frag_soft, tmp);
8099 				ipf_auth_setlock(softc->ipf_auth_soft, tmp);
8100 			} else {
8101 				IPFERROR(111);
8102 				error = EFAULT;
8103 			}
8104 		}
8105 		break;
8106 
8107 #ifdef	IPFILTER_LOG
8108 	case SIOCIPFFB :
8109 		if (!(mode & FWRITE)) {
8110 			IPFERROR(112);
8111 			error = EPERM;
8112 		} else {
8113 			tmp = ipf_log_clear(softc, IPL_LOGIPF);
8114 			error = BCOPYOUT(&tmp, data, sizeof(tmp));
8115 			if (error) {
8116 				IPFERROR(113);
8117 				error = EFAULT;
8118 			}
8119 		}
8120 		break;
8121 #endif /* IPFILTER_LOG */
8122 
8123 	case SIOCFRSYN :
8124 		if (!(mode & FWRITE)) {
8125 			IPFERROR(114);
8126 			error = EPERM;
8127 		} else {
8128 			WRITE_ENTER(&softc->ipf_global);
8129 #if (SOLARIS && defined(_KERNEL)) && !defined(INSTANCES)
8130 			error = ipfsync();
8131 #else
8132 			ipf_sync(softc, NULL);
8133 			error = 0;
8134 #endif
8135 			RWLOCK_EXIT(&softc->ipf_global);
8136 
8137 		}
8138 		break;
8139 
8140 	case SIOCGFRST :
8141 		error = ipf_outobj(softc, (void *)data,
8142 				   ipf_frag_stats(softc->ipf_frag_soft),
8143 				   IPFOBJ_FRAGSTAT);
8144 		break;
8145 
8146 #ifdef	IPFILTER_LOG
8147 	case FIONREAD :
8148 		tmp = ipf_log_bytesused(softc, IPL_LOGIPF);
8149 		error = BCOPYOUT(&tmp, data, sizeof(tmp));
8150 		break;
8151 #endif
8152 
8153 	case SIOCIPFITER :
8154 		SPL_SCHED(s);
8155 		error = ipf_frruleiter(softc, data, uid, ctx);
8156 		SPL_X(s);
8157 		break;
8158 
8159 	case SIOCGENITER :
8160 		SPL_SCHED(s);
8161 		error = ipf_genericiter(softc, data, uid, ctx);
8162 		SPL_X(s);
8163 		break;
8164 
8165 	case SIOCIPFDELTOK :
8166 		error = BCOPYIN(data, &tmp, sizeof(tmp));
8167 		if (error == 0) {
8168 			SPL_SCHED(s);
8169 			error = ipf_token_del(softc, tmp, uid, ctx);
8170 			SPL_X(s);
8171 		}
8172 		break;
8173 
8174 	default :
8175 		IPFERROR(115);
8176 		error = EINVAL;
8177 		break;
8178 	}
8179 
8180 	return (error);
8181 }
8182 
8183 
8184 /* ------------------------------------------------------------------------ */
8185 /* Function:    ipf_decaps                                                  */
8186 /* Returns:     int        - -1 == decapsulation failed, else bit mask of   */
8187 /*                           flags indicating packet filtering decision.    */
8188 /* Parameters:  fin(I)     - pointer to packet information                  */
8189 /*              pass(I)    - IP protocol version to match                   */
8190 /*              l5proto(I) - layer 5 protocol to decode UDP data as.        */
8191 /*                                                                          */
8192 /* This function is called for packets that are wrapt up in other packets,  */
8193 /* for example, an IP packet that is the entire data segment for another IP */
8194 /* packet.  If the basic constraints for this are satisfied, change the     */
8195 /* buffer to point to the start of the inner packet and start processing    */
8196 /* rules belonging to the head group this rule specifies.                   */
8197 /* ------------------------------------------------------------------------ */
8198 u_32_t
8199 ipf_decaps(fr_info_t *fin, u_32_t pass, int l5proto)
8200 {
8201 	fr_info_t fin2, *fino = NULL;
8202 	int elen, hlen, nh;
8203 	grehdr_t gre;
8204 	ip_t *ip;
8205 	mb_t *m;
8206 
8207 	if ((fin->fin_flx & FI_COALESCE) == 0)
8208 		if (ipf_coalesce(fin) == -1)
8209 			goto cantdecaps;
8210 
8211 	m = fin->fin_m;
8212 	hlen = fin->fin_hlen;
8213 
8214 	switch (fin->fin_p)
8215 	{
8216 	case IPPROTO_UDP :
8217 		/*
8218 		 * In this case, the specific protocol being decapsulated
8219 		 * inside UDP frames comes from the rule.
8220 		 */
8221 		nh = fin->fin_fr->fr_icode;
8222 		break;
8223 
8224 	case IPPROTO_GRE :	/* 47 */
8225 		bcopy(fin->fin_dp, (char *)&gre, sizeof(gre));
8226 		hlen += sizeof(grehdr_t);
8227 		if (gre.gr_R|gre.gr_s)
8228 			goto cantdecaps;
8229 		if (gre.gr_C)
8230 			hlen += 4;
8231 		if (gre.gr_K)
8232 			hlen += 4;
8233 		if (gre.gr_S)
8234 			hlen += 4;
8235 
8236 		nh = IPPROTO_IP;
8237 
8238 		/*
8239 		 * If the routing options flag is set, validate that it is
8240 		 * there and bounce over it.
8241 		 */
8242 #if 0
8243 		/* This is really heavy weight and lots of room for error, */
8244 		/* so for now, put it off and get the simple stuff right.  */
8245 		if (gre.gr_R) {
8246 			u_char off, len, *s;
8247 			u_short af;
8248 			int end;
8249 
8250 			end = 0;
8251 			s = fin->fin_dp;
8252 			s += hlen;
8253 			aplen = fin->fin_plen - hlen;
8254 			while (aplen > 3) {
8255 				af = (s[0] << 8) | s[1];
8256 				off = s[2];
8257 				len = s[3];
8258 				aplen -= 4;
8259 				s += 4;
8260 				if (af == 0 && len == 0) {
8261 					end = 1;
8262 					break;
8263 				}
8264 				if (aplen < len)
8265 					break;
8266 				s += len;
8267 				aplen -= len;
8268 			}
8269 			if (end != 1)
8270 				goto cantdecaps;
8271 			hlen = s - (u_char *)fin->fin_dp;
8272 		}
8273 #endif
8274 		break;
8275 
8276 #ifdef IPPROTO_IPIP
8277 	case IPPROTO_IPIP :	/* 4 */
8278 #endif
8279 		nh = IPPROTO_IP;
8280 		break;
8281 
8282 	default :	/* Includes ESP, AH is special for IPv4 */
8283 		goto cantdecaps;
8284 	}
8285 
8286 	switch (nh)
8287 	{
8288 	case IPPROTO_IP :
8289 	case IPPROTO_IPV6 :
8290 		break;
8291 	default :
8292 		goto cantdecaps;
8293 	}
8294 
8295 	bcopy((char *)fin, (char *)&fin2, sizeof(fin2));
8296 	fino = fin;
8297 	fin = &fin2;
8298 	elen = hlen;
8299 #if SOLARIS && defined(_KERNEL)
8300 	m->b_rptr += elen;
8301 #else
8302 	m->m_data += elen;
8303 	m->m_len -= elen;
8304 #endif
8305 	fin->fin_plen -= elen;
8306 
8307 	ip = (ip_t *)((char *)fin->fin_ip + elen);
8308 
8309 	/*
8310 	 * Make sure we have at least enough data for the network layer
8311 	 * header.
8312 	 */
8313 	if (IP_V(ip) == 4)
8314 		hlen = IP_HL(ip) << 2;
8315 #ifdef USE_INET6
8316 	else if (IP_V(ip) == 6)
8317 		hlen = sizeof(ip6_t);
8318 #endif
8319 	else
8320 		goto cantdecaps2;
8321 
8322 	if (fin->fin_plen < hlen)
8323 		goto cantdecaps2;
8324 
8325 	fin->fin_dp = (char *)ip + hlen;
8326 
8327 	if (IP_V(ip) == 4) {
8328 		/*
8329 		 * Perform IPv4 header checksum validation.
8330 		 */
8331 		if (ipf_cksum((u_short *)ip, hlen))
8332 			goto cantdecaps2;
8333 	}
8334 
8335 	if (ipf_makefrip(hlen, ip, fin) == -1) {
8336 cantdecaps2:
8337 		if (m != NULL) {
8338 #if SOLARIS && defined(_KERNEL)
8339 			m->b_rptr -= elen;
8340 #else
8341 			m->m_data -= elen;
8342 			m->m_len += elen;
8343 #endif
8344 		}
8345 cantdecaps:
8346 		DT1(frb_decapfrip, fr_info_t *, fin);
8347 		pass &= ~FR_CMDMASK;
8348 		pass |= FR_BLOCK|FR_QUICK;
8349 		fin->fin_reason = FRB_DECAPFRIP;
8350 		return (-1);
8351 	}
8352 
8353 	pass = ipf_scanlist(fin, pass);
8354 
8355 	/*
8356 	 * Copy the packet filter "result" fields out of the fr_info_t struct
8357 	 * that is local to the decapsulation processing and back into the
8358 	 * one we were called with.
8359 	 */
8360 	fino->fin_flx = fin->fin_flx;
8361 	fino->fin_rev = fin->fin_rev;
8362 	fino->fin_icode = fin->fin_icode;
8363 	fino->fin_rule = fin->fin_rule;
8364 	(void) strncpy(fino->fin_group, fin->fin_group, FR_GROUPLEN);
8365 	fino->fin_fr = fin->fin_fr;
8366 	fino->fin_error = fin->fin_error;
8367 	fino->fin_mp = fin->fin_mp;
8368 	fino->fin_m = fin->fin_m;
8369 	m = fin->fin_m;
8370 	if (m != NULL) {
8371 #if SOLARIS && defined(_KERNEL)
8372 		m->b_rptr -= elen;
8373 #else
8374 		m->m_data -= elen;
8375 		m->m_len += elen;
8376 #endif
8377 	}
8378 	return (pass);
8379 }
8380 
8381 
8382 /* ------------------------------------------------------------------------ */
8383 /* Function:    ipf_matcharray_load                                         */
8384 /* Returns:     int         - 0 = success, else error                       */
8385 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8386 /*              data(I)     - pointer to ioctl data                         */
8387 /*              objp(I)     - ipfobj_t structure to load data into          */
8388 /*              arrayptr(I) - pointer to location to store array pointer    */
8389 /*                                                                          */
8390 /* This function loads in a mathing array through the ipfobj_t struct that  */
8391 /* describes it.  Sanity checking and array size limitations are enforced   */
8392 /* in this function to prevent userspace from trying to load in something   */
8393 /* that is insanely big.  Once the size of the array is known, the memory   */
8394 /* required is malloc'd and returned through changing *arrayptr.  The       */
8395 /* contents of the array are verified before returning.  Only in the event  */
8396 /* of a successful call is the caller required to free up the malloc area.  */
8397 /* ------------------------------------------------------------------------ */
8398 int
8399 ipf_matcharray_load(ipf_main_softc_t *softc, caddr_t data, ipfobj_t *objp,
8400 	int **arrayptr)
8401 {
8402 	int arraysize, *array, error;
8403 
8404 	*arrayptr = NULL;
8405 
8406 	error = BCOPYIN(data, objp, sizeof(*objp));
8407 	if (error != 0) {
8408 		IPFERROR(116);
8409 		return (EFAULT);
8410 	}
8411 
8412 	if (objp->ipfo_type != IPFOBJ_IPFEXPR) {
8413 		IPFERROR(117);
8414 		return (EINVAL);
8415 	}
8416 
8417 	if (((objp->ipfo_size & 3) != 0) || (objp->ipfo_size == 0) ||
8418 	    (objp->ipfo_size > 1024)) {
8419 		IPFERROR(118);
8420 		return (EINVAL);
8421 	}
8422 
8423 	arraysize = objp->ipfo_size * sizeof(*array);
8424 	KMALLOCS(array, int *, arraysize);
8425 	if (array == NULL) {
8426 		IPFERROR(119);
8427 		return (ENOMEM);
8428 	}
8429 
8430 	error = COPYIN(objp->ipfo_ptr, array, arraysize);
8431 	if (error != 0) {
8432 		KFREES(array, arraysize);
8433 		IPFERROR(120);
8434 		return (EFAULT);
8435 	}
8436 
8437 	if (ipf_matcharray_verify(array, arraysize) != 0) {
8438 		KFREES(array, arraysize);
8439 		IPFERROR(121);
8440 		return (EINVAL);
8441 	}
8442 
8443 	*arrayptr = array;
8444 	return (0);
8445 }
8446 
8447 
8448 /* ------------------------------------------------------------------------ */
8449 /* Function:    ipf_matcharray_verify                                       */
8450 /* Returns:     Nil                                                         */
8451 /* Parameters:  array(I)     - pointer to matching array                    */
8452 /*              arraysize(I) - number of elements in the array              */
8453 /*                                                                          */
8454 /* Verify the contents of a matching array by stepping through each element */
8455 /* in it.  The actual commands in the array are not verified for            */
8456 /* correctness, only that all of the sizes are correctly within limits.     */
8457 /* ------------------------------------------------------------------------ */
8458 int
8459 ipf_matcharray_verify(int *array, int arraysize)
8460 {
8461 	int i, nelem, maxidx;
8462 	ipfexp_t *e;
8463 
8464 	nelem = arraysize / sizeof(*array);
8465 
8466 	/*
8467 	 * Currently, it makes no sense to have an array less than 6
8468 	 * elements long - the initial size at the from, a single operation
8469 	 * (minimum 4 in length) and a trailer, for a total of 6.
8470 	 */
8471 	if ((array[0] < 6) || (arraysize < 24) || (arraysize > 4096)) {
8472 		return (-1);
8473 	}
8474 
8475 	/*
8476 	 * Verify the size of data pointed to by array with how long
8477 	 * the array claims to be itself.
8478 	 */
8479 	if (array[0] * sizeof(*array) != arraysize) {
8480 		return (-1);
8481 	}
8482 
8483 	maxidx = nelem - 1;
8484 	/*
8485 	 * The last opcode in this array should be an IPF_EXP_END.
8486 	 */
8487 	if (array[maxidx] != IPF_EXP_END) {
8488 		return (-1);
8489 	}
8490 
8491 	for (i = 1; i < maxidx; ) {
8492 		e = (ipfexp_t *)(array + i);
8493 
8494 		/*
8495 		 * The length of the bits to check must be at least 1
8496 		 * (or else there is nothing to comapre with!) and it
8497 		 * cannot exceed the length of the data present.
8498 		 */
8499 		if ((e->ipfe_size < 1 ) ||
8500 		    (e->ipfe_size + i > maxidx)) {
8501 			return (-1);
8502 		}
8503 		i += e->ipfe_size;
8504 	}
8505 	return (0);
8506 }
8507 
8508 
8509 /* ------------------------------------------------------------------------ */
8510 /* Function:    ipf_fr_matcharray                                           */
8511 /* Returns:     int      - 0 = match failed, else positive match            */
8512 /* Parameters:  fin(I)   - pointer to packet information                    */
8513 /*              array(I) - pointer to matching array                        */
8514 /*                                                                          */
8515 /* This function is used to apply a matching array against a packet and     */
8516 /* return an indication of whether or not the packet successfully matches   */
8517 /* all of the commands in it.                                               */
8518 /* ------------------------------------------------------------------------ */
8519 static int
8520 ipf_fr_matcharray(fr_info_t *fin, int *array)
8521 {
8522 	int i, n, *x, rv, p;
8523 	ipfexp_t *e;
8524 
8525 	rv = 0;
8526 	n = array[0];
8527 	x = array + 1;
8528 
8529 	for (; n > 0; x += 3 + x[3], rv = 0) {
8530 		e = (ipfexp_t *)x;
8531 		if (e->ipfe_cmd == IPF_EXP_END)
8532 			break;
8533 		n -= e->ipfe_size;
8534 
8535 		/*
8536 		 * The upper 16 bits currently store the protocol value.
8537 		 * This is currently used with TCP and UDP port compares and
8538 		 * allows "tcp.port = 80" without requiring an explicit
8539 		 " "ip.pr = tcp" first.
8540 		 */
8541 		p = e->ipfe_cmd >> 16;
8542 		if ((p != 0) && (p != fin->fin_p))
8543 			break;
8544 
8545 		switch (e->ipfe_cmd)
8546 		{
8547 		case IPF_EXP_IP_PR :
8548 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8549 				rv |= (fin->fin_p == e->ipfe_arg0[i]);
8550 			}
8551 			break;
8552 
8553 		case IPF_EXP_IP_SRCADDR :
8554 			if (fin->fin_v != 4)
8555 				break;
8556 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8557 				rv |= ((fin->fin_saddr &
8558 					e->ipfe_arg0[i * 2 + 1]) ==
8559 				       e->ipfe_arg0[i * 2]);
8560 			}
8561 			break;
8562 
8563 		case IPF_EXP_IP_DSTADDR :
8564 			if (fin->fin_v != 4)
8565 				break;
8566 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8567 				rv |= ((fin->fin_daddr &
8568 					e->ipfe_arg0[i * 2 + 1]) ==
8569 				       e->ipfe_arg0[i * 2]);
8570 			}
8571 			break;
8572 
8573 		case IPF_EXP_IP_ADDR :
8574 			if (fin->fin_v != 4)
8575 				break;
8576 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8577 				rv |= ((fin->fin_saddr &
8578 					e->ipfe_arg0[i * 2 + 1]) ==
8579 				       e->ipfe_arg0[i * 2]) ||
8580 				      ((fin->fin_daddr &
8581 					e->ipfe_arg0[i * 2 + 1]) ==
8582 				       e->ipfe_arg0[i * 2]);
8583 			}
8584 			break;
8585 
8586 #ifdef USE_INET6
8587 		case IPF_EXP_IP6_SRCADDR :
8588 			if (fin->fin_v != 6)
8589 				break;
8590 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8591 				rv |= IP6_MASKEQ(&fin->fin_src6,
8592 						 &e->ipfe_arg0[i * 8 + 4],
8593 						 &e->ipfe_arg0[i * 8]);
8594 			}
8595 			break;
8596 
8597 		case IPF_EXP_IP6_DSTADDR :
8598 			if (fin->fin_v != 6)
8599 				break;
8600 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8601 				rv |= IP6_MASKEQ(&fin->fin_dst6,
8602 						 &e->ipfe_arg0[i * 8 + 4],
8603 						 &e->ipfe_arg0[i * 8]);
8604 			}
8605 			break;
8606 
8607 		case IPF_EXP_IP6_ADDR :
8608 			if (fin->fin_v != 6)
8609 				break;
8610 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8611 				rv |= IP6_MASKEQ(&fin->fin_src6,
8612 						 &e->ipfe_arg0[i * 8 + 4],
8613 						 &e->ipfe_arg0[i * 8]) ||
8614 				      IP6_MASKEQ(&fin->fin_dst6,
8615 						 &e->ipfe_arg0[i * 8 + 4],
8616 						 &e->ipfe_arg0[i * 8]);
8617 			}
8618 			break;
8619 #endif
8620 
8621 		case IPF_EXP_UDP_PORT :
8622 		case IPF_EXP_TCP_PORT :
8623 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8624 				rv |= (fin->fin_sport == e->ipfe_arg0[i]) ||
8625 				      (fin->fin_dport == e->ipfe_arg0[i]);
8626 			}
8627 			break;
8628 
8629 		case IPF_EXP_UDP_SPORT :
8630 		case IPF_EXP_TCP_SPORT :
8631 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8632 				rv |= (fin->fin_sport == e->ipfe_arg0[i]);
8633 			}
8634 			break;
8635 
8636 		case IPF_EXP_UDP_DPORT :
8637 		case IPF_EXP_TCP_DPORT :
8638 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8639 				rv |= (fin->fin_dport == e->ipfe_arg0[i]);
8640 			}
8641 			break;
8642 
8643 		case IPF_EXP_TCP_FLAGS :
8644 			for (i = 0; !rv && i < e->ipfe_narg; i++) {
8645 				rv |= ((fin->fin_tcpf &
8646 					e->ipfe_arg0[i * 2 + 1]) ==
8647 				       e->ipfe_arg0[i * 2]);
8648 			}
8649 			break;
8650 		}
8651 		rv ^= e->ipfe_not;
8652 
8653 		if (rv == 0)
8654 			break;
8655 	}
8656 
8657 	return (rv);
8658 }
8659 
8660 
8661 /* ------------------------------------------------------------------------ */
8662 /* Function:    ipf_queueflush                                              */
8663 /* Returns:     int - number of entries flushed (0 = none)                  */
8664 /* Parameters:  softc(I)    - pointer to soft context main structure        */
8665 /*              deletefn(I) - function to call to delete entry              */
8666 /*              ipfqs(I)    - top of the list of ipf internal queues        */
8667 /*              userqs(I)   - top of the list of user defined timeouts      */
8668 /*                                                                          */
8669 /* This fucntion gets called when the state/NAT hash tables fill up and we  */
8670 /* need to try a bit harder to free up some space.  The algorithm used here */
8671 /* split into two parts but both halves have the same goal: to reduce the   */
8672 /* number of connections considered to be "active" to the low watermark.    */
8673 /* There are two steps in doing this:                                       */
8674 /* 1) Remove any TCP connections that are already considered to be "closed" */
8675 /*    but have not yet been removed from the state table.  The two states   */
8676 /*    TCPS_TIME_WAIT and TCPS_CLOSED are considered to be the perfect       */
8677 /*    candidates for this style of removal.  If freeing up entries in       */
8678 /*    CLOSED or both CLOSED and TIME_WAIT brings us to the low watermark,   */
8679 /*    we do not go on to step 2.                                            */
8680 /*                                                                          */
8681 /* 2) Look for the oldest entries on each timeout queue and free them if    */
8682 /*    they are within the given window we are considering.  Where the       */
8683 /*    window starts and the steps taken to increase its size depend upon    */
8684 /*    how long ipf has been running (ipf_ticks.)  Anything modified in the  */
8685 /*    last 30 seconds is not touched.                                       */
8686 /*                                              touched                     */
8687 /*         die     ipf_ticks  30*1.5    1800*1.5   |  43200*1.5             */
8688 /*           |          |        |           |     |     |                  */
8689 /* future <--+----------+--------+-----------+-----+-----+-----------> past */
8690 /*                     now        \_int=30s_/ \_int=1hr_/ \_int=12hr        */
8691 /*                                                                          */
8692 /* Points to note:                                                          */
8693 /* - tqe_die is the time, in the future, when entries die.                  */
8694 /* - tqe_die - ipf_ticks is how long left the connection has to live in ipf */
8695 /*   ticks.                                                                 */
8696 /* - tqe_touched is when the entry was last used by NAT/state               */
8697 /* - the closer tqe_touched is to ipf_ticks, the further tqe_die will be    */
8698 /*   ipf_ticks any given timeout queue and vice versa.                      */
8699 /* - both tqe_die and tqe_touched increase over time                        */
8700 /* - timeout queues are sorted with the highest value of tqe_die at the     */
8701 /*   bottom and therefore the smallest values of each are at the top        */
8702 /* - the pointer passed in as ipfqs should point to an array of timeout     */
8703 /*   queues representing each of the TCP states                             */
8704 /*                                                                          */
8705 /* We start by setting up a maximum range to scan for things to move of     */
8706 /* iend (newest) to istart (oldest) in chunks of "interval".  If nothing is */
8707 /* found in that range, "interval" is adjusted (so long as it isn't 30) and */
8708 /* we start again with a new value for "iend" and "istart".  This is        */
8709 /* continued until we either finish the scan of 30 second intervals or the  */
8710 /* low water mark is reached.                                               */
8711 /* ------------------------------------------------------------------------ */
8712 int
8713 ipf_queueflush(ipf_main_softc_t *softc, ipftq_delete_fn_t deletefn,
8714 	ipftq_t *ipfqs, ipftq_t *userqs, u_int *activep, int size, int low)
8715 {
8716 	u_long interval, istart, iend;
8717 	ipftq_t *ifq, *ifqnext;
8718 	ipftqent_t *tqe, *tqn;
8719 	int removed = 0;
8720 
8721 	for (tqn = ipfqs[IPF_TCPS_CLOSED].ifq_head; ((tqe = tqn) != NULL); ) {
8722 		tqn = tqe->tqe_next;
8723 		if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8724 			removed++;
8725 	}
8726 	if ((*activep * 100 / size) > low) {
8727 		for (tqn = ipfqs[IPF_TCPS_TIME_WAIT].ifq_head;
8728 		     ((tqe = tqn) != NULL); ) {
8729 			tqn = tqe->tqe_next;
8730 			if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8731 				removed++;
8732 		}
8733 	}
8734 
8735 	if ((*activep * 100 / size) <= low) {
8736 		return (removed);
8737 	}
8738 
8739 	/*
8740 	 * NOTE: Use of "* 15 / 10" is required here because if "* 1.5" is
8741 	 *       used then the operations are upgraded to floating point
8742 	 *       and kernels don't like floating point...
8743 	 */
8744 	if (softc->ipf_ticks > IPF_TTLVAL(43200 * 15 / 10)) {
8745 		istart = IPF_TTLVAL(86400 * 4);
8746 		interval = IPF_TTLVAL(43200);
8747 	} else if (softc->ipf_ticks > IPF_TTLVAL(1800 * 15 / 10)) {
8748 		istart = IPF_TTLVAL(43200);
8749 		interval = IPF_TTLVAL(1800);
8750 	} else if (softc->ipf_ticks > IPF_TTLVAL(30 * 15 / 10)) {
8751 		istart = IPF_TTLVAL(1800);
8752 		interval = IPF_TTLVAL(30);
8753 	} else {
8754 		return (0);
8755 	}
8756 	if (istart > softc->ipf_ticks) {
8757 		if (softc->ipf_ticks - interval < interval)
8758 			istart = interval;
8759 		else
8760 			istart = (softc->ipf_ticks / interval) * interval;
8761 	}
8762 
8763 	iend = softc->ipf_ticks - interval;
8764 
8765 	while ((*activep * 100 / size) > low) {
8766 		u_long try;
8767 
8768 		try = softc->ipf_ticks - istart;
8769 
8770 		for (ifq = ipfqs; ifq != NULL; ifq = ifq->ifq_next) {
8771 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8772 				if (try < tqe->tqe_touched)
8773 					break;
8774 				tqn = tqe->tqe_next;
8775 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8776 					removed++;
8777 			}
8778 		}
8779 
8780 		for (ifq = userqs; ifq != NULL; ifq = ifqnext) {
8781 			ifqnext = ifq->ifq_next;
8782 
8783 			for (tqn = ifq->ifq_head; ((tqe = tqn) != NULL); ) {
8784 				if (try < tqe->tqe_touched)
8785 					break;
8786 				tqn = tqe->tqe_next;
8787 				if ((*deletefn)(softc, tqe->tqe_parent) == 0)
8788 					removed++;
8789 			}
8790 		}
8791 
8792 		if (try >= iend) {
8793 			if (interval == IPF_TTLVAL(43200)) {
8794 				interval = IPF_TTLVAL(1800);
8795 			} else if (interval == IPF_TTLVAL(1800)) {
8796 				interval = IPF_TTLVAL(30);
8797 			} else {
8798 				break;
8799 			}
8800 			if (interval >= softc->ipf_ticks)
8801 				break;
8802 
8803 			iend = softc->ipf_ticks - interval;
8804 		}
8805 		istart -= interval;
8806 	}
8807 
8808 	return (removed);
8809 }
8810 
8811 
8812 /* ------------------------------------------------------------------------ */
8813 /* Function:    ipf_deliverlocal                                            */
8814 /* Returns:     int - 1 = local address, 0 = non-local address              */
8815 /* Parameters:  softc(I)     - pointer to soft context main structure       */
8816 /*              ipversion(I) - IP protocol version (4 or 6)                 */
8817 /*              ifp(I)       - network interface pointer                    */
8818 /*              ipaddr(I)    - IPv4/6 destination address                   */
8819 /*                                                                          */
8820 /* This fucntion is used to determine in the address "ipaddr" belongs to    */
8821 /* the network interface represented by ifp.                                */
8822 /* ------------------------------------------------------------------------ */
8823 int
8824 ipf_deliverlocal(ipf_main_softc_t *softc, int ipversion, void *ifp,
8825 	i6addr_t *ipaddr)
8826 {
8827 	i6addr_t addr;
8828 	int islocal = 0;
8829 
8830 	if (ipversion == 4) {
8831 		if (ipf_ifpaddr(softc, 4, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8832 			if (addr.in4.s_addr == ipaddr->in4.s_addr)
8833 				islocal = 1;
8834 		}
8835 
8836 #ifdef USE_INET6
8837 	} else if (ipversion == 6) {
8838 		if (ipf_ifpaddr(softc, 6, FRI_NORMAL, ifp, &addr, NULL) == 0) {
8839 			if (IP6_EQ(&addr, ipaddr))
8840 				islocal = 1;
8841 		}
8842 #endif
8843 	}
8844 
8845 	return (islocal);
8846 }
8847 
8848 
8849 /* ------------------------------------------------------------------------ */
8850 /* Function:    ipf_settimeout                                              */
8851 /* Returns:     int - 0 = success, -1 = failure                             */
8852 /* Parameters:  softc(I) - pointer to soft context main structure           */
8853 /*              t(I)     - pointer to tuneable array entry                  */
8854 /*              p(I)     - pointer to values passed in to apply             */
8855 /*                                                                          */
8856 /* This function is called to set the timeout values for each distinct      */
8857 /* queue timeout that is available.  When called, it calls into both the    */
8858 /* state and NAT code, telling them to update their timeout queues.         */
8859 /* ------------------------------------------------------------------------ */
8860 static int
8861 ipf_settimeout(struct ipf_main_softc_s *softc, ipftuneable_t *t,
8862 	ipftuneval_t *p)
8863 {
8864 
8865 	/*
8866 	 * ipf_interror should be set by the functions called here, not
8867 	 * by this function - it's just a middle man.
8868 	 */
8869 	if (ipf_state_settimeout(softc, t, p) == -1)
8870 		return (-1);
8871 	if (ipf_nat_settimeout(softc, t, p) == -1)
8872 		return (-1);
8873 	return (0);
8874 }
8875 
8876 
8877 /* ------------------------------------------------------------------------ */
8878 /* Function:    ipf_apply_timeout                                           */
8879 /* Returns:     int - 0 = success, -1 = failure                             */
8880 /* Parameters:  head(I)    - pointer to tuneable array entry                */
8881 /*              seconds(I) - pointer to values passed in to apply           */
8882 /*                                                                          */
8883 /* This function applies a timeout of "seconds" to the timeout queue that   */
8884 /* is pointed to by "head".  All entries on this list have an expiration    */
8885 /* set to be the current tick value of ipf plus the ttl.  Given that this   */
8886 /* function should only be called when the delta is non-zero, the task is   */
8887 /* to walk the entire list and apply the change.  The sort order will not   */
8888 /* change.  The only catch is that this is O(n) across the list, so if the  */
8889 /* queue has lots of entries (10s of thousands or 100s of thousands), it    */
8890 /* could take a relatively long time to work through them all.              */
8891 /* ------------------------------------------------------------------------ */
8892 void
8893 ipf_apply_timeout(ipftq_t *head, u_int seconds)
8894 {
8895 	u_int oldtimeout, newtimeout;
8896 	ipftqent_t *tqe;
8897 	int delta;
8898 
8899 	MUTEX_ENTER(&head->ifq_lock);
8900 	oldtimeout = head->ifq_ttl;
8901 	newtimeout = IPF_TTLVAL(seconds);
8902 	delta = oldtimeout - newtimeout;
8903 
8904 	head->ifq_ttl = newtimeout;
8905 
8906 	for (tqe = head->ifq_head; tqe != NULL; tqe = tqe->tqe_next) {
8907 		tqe->tqe_die += delta;
8908 	}
8909 	MUTEX_EXIT(&head->ifq_lock);
8910 }
8911 
8912 
8913 /* ------------------------------------------------------------------------ */
8914 /* Function:   ipf_settimeout_tcp                                           */
8915 /* Returns:    int - 0 = successfully applied, -1 = failed                  */
8916 /* Parameters: t(I)   - pointer to tuneable to change                       */
8917 /*             p(I)   - pointer to new timeout information                  */
8918 /*             tab(I) - pointer to table of TCP queues                      */
8919 /*                                                                          */
8920 /* This function applies the new timeout (p) to the TCP tunable (t) and     */
8921 /* updates all of the entries on the relevant timeout queue by calling      */
8922 /* ipf_apply_timeout().                                                     */
8923 /* ------------------------------------------------------------------------ */
8924 int
8925 ipf_settimeout_tcp(ipftuneable_t *t, ipftuneval_t *p, ipftq_t *tab)
8926 {
8927 	if (!strcmp(t->ipft_name, "tcp_idle_timeout") ||
8928 	    !strcmp(t->ipft_name, "tcp_established")) {
8929 		ipf_apply_timeout(&tab[IPF_TCPS_ESTABLISHED], p->ipftu_int);
8930 	} else if (!strcmp(t->ipft_name, "tcp_close_wait")) {
8931 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSE_WAIT], p->ipftu_int);
8932 	} else if (!strcmp(t->ipft_name, "tcp_last_ack")) {
8933 		ipf_apply_timeout(&tab[IPF_TCPS_LAST_ACK], p->ipftu_int);
8934 	} else if (!strcmp(t->ipft_name, "tcp_timeout")) {
8935 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8936 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8937 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8938 	} else if (!strcmp(t->ipft_name, "tcp_listen")) {
8939 		ipf_apply_timeout(&tab[IPF_TCPS_LISTEN], p->ipftu_int);
8940 	} else if (!strcmp(t->ipft_name, "tcp_half_established")) {
8941 		ipf_apply_timeout(&tab[IPF_TCPS_HALF_ESTAB], p->ipftu_int);
8942 	} else if (!strcmp(t->ipft_name, "tcp_closing")) {
8943 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSING], p->ipftu_int);
8944 	} else if (!strcmp(t->ipft_name, "tcp_syn_received")) {
8945 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_RECEIVED], p->ipftu_int);
8946 	} else if (!strcmp(t->ipft_name, "tcp_syn_sent")) {
8947 		ipf_apply_timeout(&tab[IPF_TCPS_SYN_SENT], p->ipftu_int);
8948 	} else if (!strcmp(t->ipft_name, "tcp_closed")) {
8949 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8950 	} else if (!strcmp(t->ipft_name, "tcp_half_closed")) {
8951 		ipf_apply_timeout(&tab[IPF_TCPS_CLOSED], p->ipftu_int);
8952 	} else if (!strcmp(t->ipft_name, "tcp_time_wait")) {
8953 		ipf_apply_timeout(&tab[IPF_TCPS_TIME_WAIT], p->ipftu_int);
8954 	} else {
8955 		/*
8956 		 * ipf_interror isn't set here because it should be set
8957 		 * by whatever called this function.
8958 		 */
8959 		return (-1);
8960 	}
8961 	return (0);
8962 }
8963 
8964 
8965 /* ------------------------------------------------------------------------ */
8966 /* Function:   ipf_main_soft_create                                         */
8967 /* Returns:    NULL = failure, else success                                 */
8968 /* Parameters: arg(I) - pointer to soft context structure if already allocd */
8969 /*                                                                          */
8970 /* Create the foundation soft context structure. In circumstances where it  */
8971 /* is not required to dynamically allocate the context, a pointer can be    */
8972 /* passed in (rather than NULL) to a structure to be initialised.           */
8973 /* The main thing of interest is that a number of locks are initialised     */
8974 /* here instead of in the where might be expected - in the relevant create  */
8975 /* function elsewhere.  This is done because the current locking design has */
8976 /* some areas where these locks are used outside of their module.           */
8977 /* Possibly the most important exercise that is done here is setting of all */
8978 /* the timeout values, allowing them to be changed before init().           */
8979 /* ------------------------------------------------------------------------ */
8980 void *
8981 ipf_main_soft_create(void *arg)
8982 {
8983 	ipf_main_softc_t *softc;
8984 
8985 	if (arg == NULL) {
8986 		KMALLOC(softc, ipf_main_softc_t *);
8987 		if (softc == NULL)
8988 			return (NULL);
8989 	} else {
8990 		softc = arg;
8991 	}
8992 
8993 	bzero((char *)softc, sizeof(*softc));
8994 
8995 	/*
8996 	 * This serves as a flag as to whether or not the softc should be
8997 	 * free'd when _destroy is called.
8998 	 */
8999 	softc->ipf_dynamic_softc = (arg == NULL) ? 1 : 0;
9000 
9001 	softc->ipf_tuners = ipf_tune_array_copy(softc,
9002 						sizeof(ipf_main_tuneables),
9003 						ipf_main_tuneables);
9004 	if (softc->ipf_tuners == NULL) {
9005 		ipf_main_soft_destroy(softc);
9006 		return (NULL);
9007 	}
9008 
9009 	MUTEX_INIT(&softc->ipf_rw, "ipf rw mutex");
9010 	MUTEX_INIT(&softc->ipf_timeoutlock, "ipf timeout lock");
9011 	RWLOCK_INIT(&softc->ipf_global, "ipf filter load/unload mutex");
9012 	RWLOCK_INIT(&softc->ipf_mutex, "ipf filter rwlock");
9013 	RWLOCK_INIT(&softc->ipf_tokens, "ipf token rwlock");
9014 	RWLOCK_INIT(&softc->ipf_state, "ipf state rwlock");
9015 	RWLOCK_INIT(&softc->ipf_nat, "ipf IP NAT rwlock");
9016 	RWLOCK_INIT(&softc->ipf_poolrw, "ipf pool rwlock");
9017 	RWLOCK_INIT(&softc->ipf_frag, "ipf frag rwlock");
9018 
9019 	softc->ipf_token_head = NULL;
9020 	softc->ipf_token_tail = &softc->ipf_token_head;
9021 
9022 	softc->ipf_tcpidletimeout = FIVE_DAYS;
9023 	softc->ipf_tcpclosewait = IPF_TTLVAL(2 * TCP_MSL);
9024 	softc->ipf_tcplastack = IPF_TTLVAL(30);
9025 	softc->ipf_tcptimewait = IPF_TTLVAL(2 * TCP_MSL);
9026 	softc->ipf_tcptimeout = IPF_TTLVAL(2 * TCP_MSL);
9027 	softc->ipf_tcpsynsent = IPF_TTLVAL(2 * TCP_MSL);
9028 	softc->ipf_tcpsynrecv = IPF_TTLVAL(2 * TCP_MSL);
9029 	softc->ipf_tcpclosed = IPF_TTLVAL(30);
9030 	softc->ipf_tcphalfclosed = IPF_TTLVAL(2 * 3600);
9031 	softc->ipf_udptimeout = IPF_TTLVAL(120);
9032 	softc->ipf_udpacktimeout = IPF_TTLVAL(12);
9033 	softc->ipf_icmptimeout = IPF_TTLVAL(60);
9034 	softc->ipf_icmpacktimeout = IPF_TTLVAL(6);
9035 	softc->ipf_iptimeout = IPF_TTLVAL(60);
9036 
9037 #if defined(IPFILTER_DEFAULT_BLOCK)
9038 	softc->ipf_pass = FR_BLOCK|FR_NOMATCH;
9039 #else
9040 	softc->ipf_pass = (IPF_DEFAULT_PASS)|FR_NOMATCH;
9041 #endif
9042 	softc->ipf_minttl = 4;
9043 	softc->ipf_icmpminfragmtu = 68;
9044 	softc->ipf_flags = IPF_LOGGING;
9045 
9046 #ifdef LARGE_NAT
9047 	softc->ipf_large_nat = 1;
9048 #endif
9049 	ipf_fbsd_kenv_get(softc);
9050 
9051 	return (softc);
9052 }
9053 
9054 /* ------------------------------------------------------------------------ */
9055 /* Function:   ipf_main_soft_init                                           */
9056 /* Returns:    0 = success, -1 = failure                                    */
9057 /* Parameters: softc(I) - pointer to soft context main structure            */
9058 /*                                                                          */
9059 /* A null-op function that exists as a placeholder so that the flow in      */
9060 /* other functions is obvious.                                              */
9061 /* ------------------------------------------------------------------------ */
9062 /*ARGSUSED*/
9063 int
9064 ipf_main_soft_init(ipf_main_softc_t *softc)
9065 {
9066 	return (0);
9067 }
9068 
9069 
9070 /* ------------------------------------------------------------------------ */
9071 /* Function:   ipf_main_soft_destroy                                        */
9072 /* Returns:    void                                                         */
9073 /* Parameters: softc(I) - pointer to soft context main structure            */
9074 /*                                                                          */
9075 /* Undo everything that we did in ipf_main_soft_create.                     */
9076 /*                                                                          */
9077 /* The most important check that needs to be made here is whether or not    */
9078 /* the structure was allocated by ipf_main_soft_create() by checking what   */
9079 /* value is stored in ipf_dynamic_main.                                     */
9080 /* ------------------------------------------------------------------------ */
9081 /*ARGSUSED*/
9082 void
9083 ipf_main_soft_destroy(ipf_main_softc_t *softc)
9084 {
9085 
9086 	RW_DESTROY(&softc->ipf_frag);
9087 	RW_DESTROY(&softc->ipf_poolrw);
9088 	RW_DESTROY(&softc->ipf_nat);
9089 	RW_DESTROY(&softc->ipf_state);
9090 	RW_DESTROY(&softc->ipf_tokens);
9091 	RW_DESTROY(&softc->ipf_mutex);
9092 	RW_DESTROY(&softc->ipf_global);
9093 	MUTEX_DESTROY(&softc->ipf_timeoutlock);
9094 	MUTEX_DESTROY(&softc->ipf_rw);
9095 
9096 	if (softc->ipf_tuners != NULL) {
9097 		KFREES(softc->ipf_tuners, sizeof(ipf_main_tuneables));
9098 	}
9099 	if (softc->ipf_dynamic_softc == 1) {
9100 		KFREE(softc);
9101 	}
9102 }
9103 
9104 
9105 /* ------------------------------------------------------------------------ */
9106 /* Function:   ipf_main_soft_fini                                           */
9107 /* Returns:    0 = success, -1 = failure                                    */
9108 /* Parameters: softc(I) - pointer to soft context main structure            */
9109 /*                                                                          */
9110 /* Clean out the rules which have been added since _init was last called,   */
9111 /* the only dynamic part of the mainline.                                   */
9112 /* ------------------------------------------------------------------------ */
9113 int
9114 ipf_main_soft_fini(ipf_main_softc_t *softc)
9115 {
9116 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9117 	(void) ipf_flush(softc, IPL_LOGIPF, FR_INQUE|FR_OUTQUE);
9118 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE|FR_INACTIVE);
9119 	(void) ipf_flush(softc, IPL_LOGCOUNT, FR_INQUE|FR_OUTQUE);
9120 
9121 	return (0);
9122 }
9123 
9124 
9125 /* ------------------------------------------------------------------------ */
9126 /* Function:   ipf_main_load                                                */
9127 /* Returns:    0 = success, -1 = failure                                    */
9128 /* Parameters: none                                                         */
9129 /*                                                                          */
9130 /* Handle global initialisation that needs to be done for the base part of  */
9131 /* IPFilter. At present this just amounts to initialising some ICMP lookup  */
9132 /* arrays that get used by the state/NAT code.                              */
9133 /* ------------------------------------------------------------------------ */
9134 int
9135 ipf_main_load(void)
9136 {
9137 	int i;
9138 
9139 	/* fill icmp reply type table */
9140 	for (i = 0; i <= ICMP_MAXTYPE; i++)
9141 		icmpreplytype4[i] = -1;
9142 	icmpreplytype4[ICMP_ECHO] = ICMP_ECHOREPLY;
9143 	icmpreplytype4[ICMP_TSTAMP] = ICMP_TSTAMPREPLY;
9144 	icmpreplytype4[ICMP_IREQ] = ICMP_IREQREPLY;
9145 	icmpreplytype4[ICMP_MASKREQ] = ICMP_MASKREPLY;
9146 
9147 #ifdef  USE_INET6
9148 	/* fill icmp reply type table */
9149 	for (i = 0; i <= ICMP6_MAXTYPE; i++)
9150 		icmpreplytype6[i] = -1;
9151 	icmpreplytype6[ICMP6_ECHO_REQUEST] = ICMP6_ECHO_REPLY;
9152 	icmpreplytype6[ICMP6_MEMBERSHIP_QUERY] = ICMP6_MEMBERSHIP_REPORT;
9153 	icmpreplytype6[ICMP6_NI_QUERY] = ICMP6_NI_REPLY;
9154 	icmpreplytype6[ND_ROUTER_SOLICIT] = ND_ROUTER_ADVERT;
9155 	icmpreplytype6[ND_NEIGHBOR_SOLICIT] = ND_NEIGHBOR_ADVERT;
9156 #endif
9157 
9158 	return (0);
9159 }
9160 
9161 
9162 /* ------------------------------------------------------------------------ */
9163 /* Function:   ipf_main_unload                                              */
9164 /* Returns:    0 = success, -1 = failure                                    */
9165 /* Parameters: none                                                         */
9166 /*                                                                          */
9167 /* A null-op function that exists as a placeholder so that the flow in      */
9168 /* other functions is obvious.                                              */
9169 /* ------------------------------------------------------------------------ */
9170 int
9171 ipf_main_unload(void)
9172 {
9173 	return (0);
9174 }
9175 
9176 
9177 /* ------------------------------------------------------------------------ */
9178 /* Function:   ipf_load_all                                                 */
9179 /* Returns:    0 = success, -1 = failure                                    */
9180 /* Parameters: none                                                         */
9181 /*                                                                          */
9182 /* Work through all of the subsystems inside IPFilter and call the load     */
9183 /* function for each in an order that won't lead to a crash :)              */
9184 /* ------------------------------------------------------------------------ */
9185 int
9186 ipf_load_all(void)
9187 {
9188 	if (ipf_main_load() == -1)
9189 		return (-1);
9190 
9191 	if (ipf_state_main_load() == -1)
9192 		return (-1);
9193 
9194 	if (ipf_nat_main_load() == -1)
9195 		return (-1);
9196 
9197 	if (ipf_frag_main_load() == -1)
9198 		return (-1);
9199 
9200 	if (ipf_auth_main_load() == -1)
9201 		return (-1);
9202 
9203 	if (ipf_proxy_main_load() == -1)
9204 		return (-1);
9205 
9206 	return (0);
9207 }
9208 
9209 
9210 /* ------------------------------------------------------------------------ */
9211 /* Function:   ipf_unload_all                                               */
9212 /* Returns:    0 = success, -1 = failure                                    */
9213 /* Parameters: none                                                         */
9214 /*                                                                          */
9215 /* Work through all of the subsystems inside IPFilter and call the unload   */
9216 /* function for each in an order that won't lead to a crash :)              */
9217 /* ------------------------------------------------------------------------ */
9218 int
9219 ipf_unload_all(void)
9220 {
9221 	if (ipf_proxy_main_unload() == -1)
9222 		return (-1);
9223 
9224 	if (ipf_auth_main_unload() == -1)
9225 		return (-1);
9226 
9227 	if (ipf_frag_main_unload() == -1)
9228 		return (-1);
9229 
9230 	if (ipf_nat_main_unload() == -1)
9231 		return (-1);
9232 
9233 	if (ipf_state_main_unload() == -1)
9234 		return (-1);
9235 
9236 	if (ipf_main_unload() == -1)
9237 		return (-1);
9238 
9239 	return (0);
9240 }
9241 
9242 
9243 /* ------------------------------------------------------------------------ */
9244 /* Function:   ipf_create_all                                               */
9245 /* Returns:    NULL = failure, else success                                 */
9246 /* Parameters: arg(I) - pointer to soft context main structure              */
9247 /*                                                                          */
9248 /* Work through all of the subsystems inside IPFilter and call the create   */
9249 /* function for each in an order that won't lead to a crash :)              */
9250 /* ------------------------------------------------------------------------ */
9251 ipf_main_softc_t *
9252 ipf_create_all(void *arg)
9253 {
9254 	ipf_main_softc_t *softc;
9255 
9256 	softc = ipf_main_soft_create(arg);
9257 	if (softc == NULL)
9258 		return (NULL);
9259 
9260 #ifdef IPFILTER_LOG
9261 	softc->ipf_log_soft = ipf_log_soft_create(softc);
9262 	if (softc->ipf_log_soft == NULL) {
9263 		ipf_destroy_all(softc);
9264 		return (NULL);
9265 	}
9266 #endif
9267 
9268 	softc->ipf_lookup_soft = ipf_lookup_soft_create(softc);
9269 	if (softc->ipf_lookup_soft == NULL) {
9270 		ipf_destroy_all(softc);
9271 		return (NULL);
9272 	}
9273 
9274 	softc->ipf_sync_soft = ipf_sync_soft_create(softc);
9275 	if (softc->ipf_sync_soft == NULL) {
9276 		ipf_destroy_all(softc);
9277 		return (NULL);
9278 	}
9279 
9280 	softc->ipf_state_soft = ipf_state_soft_create(softc);
9281 	if (softc->ipf_state_soft == NULL) {
9282 		ipf_destroy_all(softc);
9283 		return (NULL);
9284 	}
9285 
9286 	softc->ipf_nat_soft = ipf_nat_soft_create(softc);
9287 	if (softc->ipf_nat_soft == NULL) {
9288 		ipf_destroy_all(softc);
9289 		return (NULL);
9290 	}
9291 
9292 	softc->ipf_frag_soft = ipf_frag_soft_create(softc);
9293 	if (softc->ipf_frag_soft == NULL) {
9294 		ipf_destroy_all(softc);
9295 		return (NULL);
9296 	}
9297 
9298 	softc->ipf_auth_soft = ipf_auth_soft_create(softc);
9299 	if (softc->ipf_auth_soft == NULL) {
9300 		ipf_destroy_all(softc);
9301 		return (NULL);
9302 	}
9303 
9304 	softc->ipf_proxy_soft = ipf_proxy_soft_create(softc);
9305 	if (softc->ipf_proxy_soft == NULL) {
9306 		ipf_destroy_all(softc);
9307 		return (NULL);
9308 	}
9309 
9310 	return (softc);
9311 }
9312 
9313 
9314 /* ------------------------------------------------------------------------ */
9315 /* Function:   ipf_destroy_all                                              */
9316 /* Returns:    void                                                         */
9317 /* Parameters: softc(I) - pointer to soft context main structure            */
9318 /*                                                                          */
9319 /* Work through all of the subsystems inside IPFilter and call the destroy  */
9320 /* function for each in an order that won't lead to a crash :)              */
9321 /*                                                                          */
9322 /* Every one of these functions is expected to succeed, so there is no      */
9323 /* checking of return values.                                               */
9324 /* ------------------------------------------------------------------------ */
9325 void
9326 ipf_destroy_all(ipf_main_softc_t *softc)
9327 {
9328 
9329 	if (softc->ipf_state_soft != NULL) {
9330 		ipf_state_soft_destroy(softc, softc->ipf_state_soft);
9331 		softc->ipf_state_soft = NULL;
9332 	}
9333 
9334 	if (softc->ipf_nat_soft != NULL) {
9335 		ipf_nat_soft_destroy(softc, softc->ipf_nat_soft);
9336 		softc->ipf_nat_soft = NULL;
9337 	}
9338 
9339 	if (softc->ipf_frag_soft != NULL) {
9340 		ipf_frag_soft_destroy(softc, softc->ipf_frag_soft);
9341 		softc->ipf_frag_soft = NULL;
9342 	}
9343 
9344 	if (softc->ipf_auth_soft != NULL) {
9345 		ipf_auth_soft_destroy(softc, softc->ipf_auth_soft);
9346 		softc->ipf_auth_soft = NULL;
9347 	}
9348 
9349 	if (softc->ipf_proxy_soft != NULL) {
9350 		ipf_proxy_soft_destroy(softc, softc->ipf_proxy_soft);
9351 		softc->ipf_proxy_soft = NULL;
9352 	}
9353 
9354 	if (softc->ipf_sync_soft != NULL) {
9355 		ipf_sync_soft_destroy(softc, softc->ipf_sync_soft);
9356 		softc->ipf_sync_soft = NULL;
9357 	}
9358 
9359 	if (softc->ipf_lookup_soft != NULL) {
9360 		ipf_lookup_soft_destroy(softc, softc->ipf_lookup_soft);
9361 		softc->ipf_lookup_soft = NULL;
9362 	}
9363 
9364 #ifdef IPFILTER_LOG
9365 	if (softc->ipf_log_soft != NULL) {
9366 		ipf_log_soft_destroy(softc, softc->ipf_log_soft);
9367 		softc->ipf_log_soft = NULL;
9368 	}
9369 #endif
9370 
9371 	ipf_main_soft_destroy(softc);
9372 }
9373 
9374 
9375 /* ------------------------------------------------------------------------ */
9376 /* Function:   ipf_init_all                                                 */
9377 /* Returns:    0 = success, -1 = failure                                    */
9378 /* Parameters: softc(I) - pointer to soft context main structure            */
9379 /*                                                                          */
9380 /* Work through all of the subsystems inside IPFilter and call the init     */
9381 /* function for each in an order that won't lead to a crash :)              */
9382 /* ------------------------------------------------------------------------ */
9383 int
9384 ipf_init_all(ipf_main_softc_t *softc)
9385 {
9386 
9387 	if (ipf_main_soft_init(softc) == -1)
9388 		return (-1);
9389 
9390 #ifdef IPFILTER_LOG
9391 	if (ipf_log_soft_init(softc, softc->ipf_log_soft) == -1)
9392 		return (-1);
9393 #endif
9394 
9395 	if (ipf_lookup_soft_init(softc, softc->ipf_lookup_soft) == -1)
9396 		return (-1);
9397 
9398 	if (ipf_sync_soft_init(softc, softc->ipf_sync_soft) == -1)
9399 		return (-1);
9400 
9401 	if (ipf_state_soft_init(softc, softc->ipf_state_soft) == -1)
9402 		return (-1);
9403 
9404 	if (ipf_nat_soft_init(softc, softc->ipf_nat_soft) == -1)
9405 		return (-1);
9406 
9407 	if (ipf_frag_soft_init(softc, softc->ipf_frag_soft) == -1)
9408 		return (-1);
9409 
9410 	if (ipf_auth_soft_init(softc, softc->ipf_auth_soft) == -1)
9411 		return (-1);
9412 
9413 	if (ipf_proxy_soft_init(softc, softc->ipf_proxy_soft) == -1)
9414 		return (-1);
9415 
9416 	return (0);
9417 }
9418 
9419 
9420 /* ------------------------------------------------------------------------ */
9421 /* Function:   ipf_fini_all                                                 */
9422 /* Returns:    0 = success, -1 = failure                                    */
9423 /* Parameters: softc(I) - pointer to soft context main structure            */
9424 /*                                                                          */
9425 /* Work through all of the subsystems inside IPFilter and call the fini     */
9426 /* function for each in an order that won't lead to a crash :)              */
9427 /* ------------------------------------------------------------------------ */
9428 int
9429 ipf_fini_all(ipf_main_softc_t *softc)
9430 {
9431 
9432 	ipf_token_flush(softc);
9433 
9434 	if (ipf_proxy_soft_fini(softc, softc->ipf_proxy_soft) == -1)
9435 		return (-1);
9436 
9437 	if (ipf_auth_soft_fini(softc, softc->ipf_auth_soft) == -1)
9438 		return (-1);
9439 
9440 	if (ipf_frag_soft_fini(softc, softc->ipf_frag_soft) == -1)
9441 		return (-1);
9442 
9443 	if (ipf_nat_soft_fini(softc, softc->ipf_nat_soft) == -1)
9444 		return (-1);
9445 
9446 	if (ipf_state_soft_fini(softc, softc->ipf_state_soft) == -1)
9447 		return (-1);
9448 
9449 	if (ipf_sync_soft_fini(softc, softc->ipf_sync_soft) == -1)
9450 		return (-1);
9451 
9452 	if (ipf_lookup_soft_fini(softc, softc->ipf_lookup_soft) == -1)
9453 		return (-1);
9454 
9455 #ifdef IPFILTER_LOG
9456 	if (ipf_log_soft_fini(softc, softc->ipf_log_soft) == -1)
9457 		return (-1);
9458 #endif
9459 
9460 	if (ipf_main_soft_fini(softc) == -1)
9461 		return (-1);
9462 
9463 	return (0);
9464 }
9465 
9466 
9467 /* ------------------------------------------------------------------------ */
9468 /* Function:    ipf_rule_expire                                             */
9469 /* Returns:     Nil                                                         */
9470 /* Parameters:  softc(I) - pointer to soft context main structure           */
9471 /*                                                                          */
9472 /* At present this function exists just to support temporary addition of    */
9473 /* firewall rules. Both inactive and active lists are scanned for items to  */
9474 /* purge, as by rights, the expiration is computed as soon as the rule is   */
9475 /* loaded in.                                                               */
9476 /* ------------------------------------------------------------------------ */
9477 void
9478 ipf_rule_expire(ipf_main_softc_t *softc)
9479 {
9480 	frentry_t *fr;
9481 
9482 	if ((softc->ipf_rule_explist[0] == NULL) &&
9483 	    (softc->ipf_rule_explist[1] == NULL))
9484 		return;
9485 
9486 	WRITE_ENTER(&softc->ipf_mutex);
9487 
9488 	while ((fr = softc->ipf_rule_explist[0]) != NULL) {
9489 		/*
9490 		 * Because the list is kept sorted on insertion, the fist
9491 		 * one that dies in the future means no more work to do.
9492 		 */
9493 		if (fr->fr_die > softc->ipf_ticks)
9494 			break;
9495 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 0);
9496 	}
9497 
9498 	while ((fr = softc->ipf_rule_explist[1]) != NULL) {
9499 		/*
9500 		 * Because the list is kept sorted on insertion, the fist
9501 		 * one that dies in the future means no more work to do.
9502 		 */
9503 		if (fr->fr_die > softc->ipf_ticks)
9504 			break;
9505 		ipf_rule_delete(softc, fr, IPL_LOGIPF, 1);
9506 	}
9507 
9508 	RWLOCK_EXIT(&softc->ipf_mutex);
9509 }
9510 
9511 
9512 static int ipf_ht_node_cmp(struct host_node_s *, struct host_node_s *);
9513 static void ipf_ht_node_make_key(host_track_t *, host_node_t *, int,
9514 				      i6addr_t *);
9515 
9516 host_node_t RBI_ZERO(ipf_rb);
9517 RBI_CODE(ipf_rb, host_node_t, hn_entry, ipf_ht_node_cmp)
9518 
9519 
9520 /* ------------------------------------------------------------------------ */
9521 /* Function:    ipf_ht_node_cmp                                             */
9522 /* Returns:     int   - 0 == nodes are the same, ..                         */
9523 /* Parameters:  k1(I) - pointer to first key to compare                     */
9524 /*              k2(I) - pointer to second key to compare                    */
9525 /*                                                                          */
9526 /* The "key" for the node is a combination of two fields: the address       */
9527 /* family and the address itself.                                           */
9528 /*                                                                          */
9529 /* Because we're not actually interpreting the address data, it isn't       */
9530 /* necessary to convert them to/from network/host byte order. The mask is   */
9531 /* just used to remove bits that aren't significant - it doesn't matter     */
9532 /* where they are, as long as they're always in the same place.             */
9533 /*                                                                          */
9534 /* As with IP6_EQ, comparing IPv6 addresses starts at the bottom because    */
9535 /* this is where individual ones will differ the most - but not true for    */
9536 /* for /48's, etc.                                                          */
9537 /* ------------------------------------------------------------------------ */
9538 static int
9539 ipf_ht_node_cmp(struct host_node_s *k1, struct host_node_s *k2)
9540 {
9541 	int i;
9542 
9543 	i = (k2->hn_addr.adf_family - k1->hn_addr.adf_family);
9544 	if (i != 0)
9545 		return (i);
9546 
9547 	if (k1->hn_addr.adf_family == AF_INET)
9548 		return (k2->hn_addr.adf_addr.in4.s_addr -
9549 			k1->hn_addr.adf_addr.in4.s_addr);
9550 
9551 	i = k2->hn_addr.adf_addr.i6[3] - k1->hn_addr.adf_addr.i6[3];
9552 	if (i != 0)
9553 		return (i);
9554 	i = k2->hn_addr.adf_addr.i6[2] - k1->hn_addr.adf_addr.i6[2];
9555 	if (i != 0)
9556 		return (i);
9557 	i = k2->hn_addr.adf_addr.i6[1] - k1->hn_addr.adf_addr.i6[1];
9558 	if (i != 0)
9559 		return (i);
9560 	i = k2->hn_addr.adf_addr.i6[0] - k1->hn_addr.adf_addr.i6[0];
9561 	return (i);
9562 }
9563 
9564 
9565 /* ------------------------------------------------------------------------ */
9566 /* Function:    ipf_ht_node_make_key                                        */
9567 /* Returns:     Nil                                                         */
9568 /* parameters:  htp(I)    - pointer to address tracking structure           */
9569 /*              key(I)    - where to store masked address for lookup        */
9570 /*              family(I) - protocol family of address                      */
9571 /*              addr(I)   - pointer to network address                      */
9572 /*                                                                          */
9573 /* Using the "netmask" (number of bits) stored parent host tracking struct, */
9574 /* copy the address passed in into the key structure whilst masking out the */
9575 /* bits that we don't want.                                                 */
9576 /*                                                                          */
9577 /* Because the parser will set ht_netmask to 128 if there is no protocol    */
9578 /* specified (the parser doesn't know if it should be a v4 or v6 rule), we  */
9579 /* have to be wary of that and not allow 32-128 to happen.                  */
9580 /* ------------------------------------------------------------------------ */
9581 static void
9582 ipf_ht_node_make_key(host_track_t *htp, host_node_t *key, int family,
9583 	i6addr_t *addr)
9584 {
9585 	key->hn_addr.adf_family = family;
9586 	if (family == AF_INET) {
9587 		u_32_t mask;
9588 		int bits;
9589 
9590 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in4);
9591 		bits = htp->ht_netmask;
9592 		if (bits >= 32) {
9593 			mask = 0xffffffff;
9594 		} else {
9595 			mask = htonl(0xffffffff << (32 - bits));
9596 		}
9597 		key->hn_addr.adf_addr.in4.s_addr = addr->in4.s_addr & mask;
9598 #ifdef USE_INET6
9599 	} else {
9600 		int bits = htp->ht_netmask;
9601 
9602 		key->hn_addr.adf_len = sizeof(key->hn_addr.adf_addr.in6);
9603 		if (bits > 96) {
9604 			key->hn_addr.adf_addr.i6[3] = addr->i6[3] &
9605 					     htonl(0xffffffff << (128 - bits));
9606 			key->hn_addr.adf_addr.i6[2] = addr->i6[2];
9607 			key->hn_addr.adf_addr.i6[1] = addr->i6[2];
9608 			key->hn_addr.adf_addr.i6[0] = addr->i6[2];
9609 		} else if (bits > 64) {
9610 			key->hn_addr.adf_addr.i6[3] = 0;
9611 			key->hn_addr.adf_addr.i6[2] = addr->i6[2] &
9612 					     htonl(0xffffffff << (96 - bits));
9613 			key->hn_addr.adf_addr.i6[1] = addr->i6[1];
9614 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9615 		} else if (bits > 32) {
9616 			key->hn_addr.adf_addr.i6[3] = 0;
9617 			key->hn_addr.adf_addr.i6[2] = 0;
9618 			key->hn_addr.adf_addr.i6[1] = addr->i6[1] &
9619 					     htonl(0xffffffff << (64 - bits));
9620 			key->hn_addr.adf_addr.i6[0] = addr->i6[0];
9621 		} else {
9622 			key->hn_addr.adf_addr.i6[3] = 0;
9623 			key->hn_addr.adf_addr.i6[2] = 0;
9624 			key->hn_addr.adf_addr.i6[1] = 0;
9625 			key->hn_addr.adf_addr.i6[0] = addr->i6[0] &
9626 					     htonl(0xffffffff << (32 - bits));
9627 		}
9628 #endif
9629 	}
9630 }
9631 
9632 
9633 /* ------------------------------------------------------------------------ */
9634 /* Function:    ipf_ht_node_add                                             */
9635 /* Returns:     int       - 0 == success,  -1 == failure                    */
9636 /* Parameters:  softc(I)  - pointer to soft context main structure          */
9637 /*              htp(I)    - pointer to address tracking structure           */
9638 /*              family(I) - protocol family of address                      */
9639 /*              addr(I)   - pointer to network address                      */
9640 /*                                                                          */
9641 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9642 /*       ipf_ht_node_del FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9643 /*                                                                          */
9644 /* After preparing the key with the address information to find, look in    */
9645 /* the red-black tree to see if the address is known. A successful call to  */
9646 /* this function can mean one of two things: a new node was added to the    */
9647 /* tree or a matching node exists and we're able to bump up its activity.   */
9648 /* ------------------------------------------------------------------------ */
9649 int
9650 ipf_ht_node_add(ipf_main_softc_t *softc, host_track_t *htp, int family,
9651 	i6addr_t *addr)
9652 {
9653 	host_node_t *h;
9654 	host_node_t k;
9655 
9656 	ipf_ht_node_make_key(htp, &k, family, addr);
9657 
9658 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9659 	if (h == NULL) {
9660 		if (htp->ht_cur_nodes >= htp->ht_max_nodes)
9661 			return (-1);
9662 		KMALLOC(h, host_node_t *);
9663 		if (h == NULL) {
9664 			DT(ipf_rb_no_mem);
9665 			LBUMP(ipf_rb_no_mem);
9666 			return (-1);
9667 		}
9668 
9669 		/*
9670 		 * If there was a macro to initialise the RB node then that
9671 		 * would get used here, but there isn't...
9672 		 */
9673 		bzero((char *)h, sizeof(*h));
9674 		h->hn_addr = k.hn_addr;
9675 		h->hn_addr.adf_family = k.hn_addr.adf_family;
9676 		RBI_INSERT(ipf_rb, &htp->ht_root, h);
9677 		htp->ht_cur_nodes++;
9678 	} else {
9679 		if ((htp->ht_max_per_node != 0) &&
9680 		    (h->hn_active >= htp->ht_max_per_node)) {
9681 			DT(ipf_rb_node_max);
9682 			LBUMP(ipf_rb_node_max);
9683 			return (-1);
9684 		}
9685 	}
9686 
9687 	h->hn_active++;
9688 
9689 	return (0);
9690 }
9691 
9692 
9693 /* ------------------------------------------------------------------------ */
9694 /* Function:    ipf_ht_node_del                                             */
9695 /* Returns:     int       - 0 == success,  -1 == failure                    */
9696 /* parameters:  htp(I)    - pointer to address tracking structure           */
9697 /*              family(I) - protocol family of address                      */
9698 /*              addr(I)   - pointer to network address                      */
9699 /*                                                                          */
9700 /* NOTE: THIS FUNCTION MUST BE CALLED WITH AN EXCLUSIVE LOCK THAT PREVENTS  */
9701 /*       ipf_ht_node_add FROM RUNNING CONCURRENTLY ON THE SAME htp.         */
9702 /*                                                                          */
9703 /* Try and find the address passed in amongst the leavese on this tree to   */
9704 /* be friend. If found then drop the active account for that node drops by  */
9705 /* one. If that count reaches 0, it is time to free it all up.              */
9706 /* ------------------------------------------------------------------------ */
9707 int
9708 ipf_ht_node_del(host_track_t *htp, int family, i6addr_t *addr)
9709 {
9710 	host_node_t *h;
9711 	host_node_t k;
9712 
9713 	ipf_ht_node_make_key(htp, &k, family, addr);
9714 
9715 	h = RBI_SEARCH(ipf_rb, &htp->ht_root, &k);
9716 	if (h == NULL) {
9717 		return (-1);
9718 	} else {
9719 		h->hn_active--;
9720 		if (h->hn_active == 0) {
9721 			(void) RBI_DELETE(ipf_rb, &htp->ht_root, h);
9722 			htp->ht_cur_nodes--;
9723 			KFREE(h);
9724 		}
9725 	}
9726 
9727 	return (0);
9728 }
9729 
9730 
9731 /* ------------------------------------------------------------------------ */
9732 /* Function:    ipf_rb_ht_init                                              */
9733 /* Returns:     Nil                                                         */
9734 /* Parameters:  head(I) - pointer to host tracking structure                */
9735 /*                                                                          */
9736 /* Initialise the host tracking structure to be ready for use above.        */
9737 /* ------------------------------------------------------------------------ */
9738 void
9739 ipf_rb_ht_init(host_track_t *head)
9740 {
9741 	RBI_INIT(ipf_rb, &head->ht_root);
9742 }
9743 
9744 
9745 /* ------------------------------------------------------------------------ */
9746 /* Function:    ipf_rb_ht_freenode                                          */
9747 /* Returns:     Nil                                                         */
9748 /* Parameters:  head(I) - pointer to host tracking structure                */
9749 /*              arg(I)  - additional argument from walk caller              */
9750 /*                                                                          */
9751 /* Free an actual host_node_t structure.                                    */
9752 /* ------------------------------------------------------------------------ */
9753 void
9754 ipf_rb_ht_freenode(host_node_t *node, void *arg)
9755 {
9756 	KFREE(node);
9757 }
9758 
9759 
9760 /* ------------------------------------------------------------------------ */
9761 /* Function:    ipf_rb_ht_flush                                             */
9762 /* Returns:     Nil                                                         */
9763 /* Parameters:  head(I) - pointer to host tracking structure                */
9764 /*                                                                          */
9765 /* Remove all of the nodes in the tree tracking hosts by calling a walker   */
9766 /* and free'ing each one.                                                   */
9767 /* ------------------------------------------------------------------------ */
9768 void
9769 ipf_rb_ht_flush(host_track_t *head)
9770 {
9771 	RBI_WALK(ipf_rb, &head->ht_root, ipf_rb_ht_freenode, NULL);
9772 }
9773 
9774 
9775 /* ------------------------------------------------------------------------ */
9776 /* Function:    ipf_slowtimer                                               */
9777 /* Returns:     Nil                                                         */
9778 /* Parameters:  ptr(I) - pointer to main ipf soft context structure         */
9779 /*                                                                          */
9780 /* Slowly expire held state for fragments.  Timeouts are set * in           */
9781 /* expectation of this being called twice per second.                       */
9782 /* ------------------------------------------------------------------------ */
9783 void
9784 ipf_slowtimer(ipf_main_softc_t *softc)
9785 {
9786 
9787 	ipf_token_expire(softc);
9788 	ipf_frag_expire(softc);
9789 	ipf_state_expire(softc);
9790 	ipf_nat_expire(softc);
9791 	ipf_auth_expire(softc);
9792 	ipf_lookup_expire(softc);
9793 	ipf_rule_expire(softc);
9794 	ipf_sync_expire(softc);
9795 	softc->ipf_ticks++;
9796 }
9797 
9798 
9799 /* ------------------------------------------------------------------------ */
9800 /* Function:    ipf_inet_mask_add                                           */
9801 /* Returns:     Nil                                                         */
9802 /* Parameters:  bits(I) - pointer to nat context information                */
9803 /*              mtab(I) - pointer to mask hash table structure              */
9804 /*                                                                          */
9805 /* When called, bits represents the mask of a new NAT rule that has just    */
9806 /* been added. This function inserts a bitmask into the array of masks to   */
9807 /* search when searching for a matching NAT rule for a packet.              */
9808 /* Prevention of duplicate masks is achieved by checking the use count for  */
9809 /* a given netmask.                                                         */
9810 /* ------------------------------------------------------------------------ */
9811 void
9812 ipf_inet_mask_add(int bits, ipf_v4_masktab_t *mtab)
9813 {
9814 	u_32_t mask;
9815 	int i, j;
9816 
9817 	mtab->imt4_masks[bits]++;
9818 	if (mtab->imt4_masks[bits] > 1)
9819 		return;
9820 
9821 	if (bits == 0)
9822 		mask = 0;
9823 	else
9824 		mask = 0xffffffff << (32 - bits);
9825 
9826 	for (i = 0; i < 33; i++) {
9827 		if (ntohl(mtab->imt4_active[i]) < mask) {
9828 			for (j = 32; j > i; j--)
9829 				mtab->imt4_active[j] = mtab->imt4_active[j - 1];
9830 			mtab->imt4_active[i] = htonl(mask);
9831 			break;
9832 		}
9833 	}
9834 	mtab->imt4_max++;
9835 }
9836 
9837 
9838 /* ------------------------------------------------------------------------ */
9839 /* Function:    ipf_inet_mask_del                                           */
9840 /* Returns:     Nil                                                         */
9841 /* Parameters:  bits(I) - number of bits set in the netmask                 */
9842 /*              mtab(I) - pointer to mask hash table structure              */
9843 /*                                                                          */
9844 /* Remove the 32bit bitmask represented by "bits" from the collection of    */
9845 /* netmasks stored inside of mtab.                                          */
9846 /* ------------------------------------------------------------------------ */
9847 void
9848 ipf_inet_mask_del(int bits, ipf_v4_masktab_t *mtab)
9849 {
9850 	u_32_t mask;
9851 	int i, j;
9852 
9853 	mtab->imt4_masks[bits]--;
9854 	if (mtab->imt4_masks[bits] > 0)
9855 		return;
9856 
9857 	mask = htonl(0xffffffff << (32 - bits));
9858 	for (i = 0; i < 33; i++) {
9859 		if (mtab->imt4_active[i] == mask) {
9860 			for (j = i + 1; j < 33; j++)
9861 				mtab->imt4_active[j - 1] = mtab->imt4_active[j];
9862 			break;
9863 		}
9864 	}
9865 	mtab->imt4_max--;
9866 	ASSERT(mtab->imt4_max >= 0);
9867 }
9868 
9869 
9870 #ifdef USE_INET6
9871 /* ------------------------------------------------------------------------ */
9872 /* Function:    ipf_inet6_mask_add                                          */
9873 /* Returns:     Nil                                                         */
9874 /* Parameters:  bits(I) - number of bits set in mask                        */
9875 /*              mask(I) - pointer to mask to add                            */
9876 /*              mtab(I) - pointer to mask hash table structure              */
9877 /*                                                                          */
9878 /* When called, bitcount represents the mask of a IPv6 NAT map rule that    */
9879 /* has just been added. This function inserts a bitmask into the array of   */
9880 /* masks to search when searching for a matching NAT rule for a packet.     */
9881 /* Prevention of duplicate masks is achieved by checking the use count for  */
9882 /* a given netmask.                                                         */
9883 /* ------------------------------------------------------------------------ */
9884 void
9885 ipf_inet6_mask_add(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9886 {
9887 	i6addr_t zero;
9888 	int i, j;
9889 
9890 	mtab->imt6_masks[bits]++;
9891 	if (mtab->imt6_masks[bits] > 1)
9892 		return;
9893 
9894 	if (bits == 0) {
9895 		mask = &zero;
9896 		zero.i6[0] = 0;
9897 		zero.i6[1] = 0;
9898 		zero.i6[2] = 0;
9899 		zero.i6[3] = 0;
9900 	}
9901 
9902 	for (i = 0; i < 129; i++) {
9903 		if (IP6_LT(&mtab->imt6_active[i], mask)) {
9904 			for (j = 128; j > i; j--)
9905 				mtab->imt6_active[j] = mtab->imt6_active[j - 1];
9906 			mtab->imt6_active[i] = *mask;
9907 			break;
9908 		}
9909 	}
9910 	mtab->imt6_max++;
9911 }
9912 
9913 
9914 /* ------------------------------------------------------------------------ */
9915 /* Function:    ipf_inet6_mask_del                                          */
9916 /* Returns:     Nil                                                         */
9917 /* Parameters:  bits(I) - number of bits set in mask                        */
9918 /*              mask(I) - pointer to mask to remove                         */
9919 /*              mtab(I) - pointer to mask hash table structure              */
9920 /*                                                                          */
9921 /* Remove the 128bit bitmask represented by "bits" from the collection of   */
9922 /* netmasks stored inside of mtab.                                          */
9923 /* ------------------------------------------------------------------------ */
9924 void
9925 ipf_inet6_mask_del(int bits, i6addr_t *mask, ipf_v6_masktab_t *mtab)
9926 {
9927 	i6addr_t zero;
9928 	int i, j;
9929 
9930 	mtab->imt6_masks[bits]--;
9931 	if (mtab->imt6_masks[bits] > 0)
9932 		return;
9933 
9934 	if (bits == 0)
9935 		mask = &zero;
9936 	zero.i6[0] = 0;
9937 	zero.i6[1] = 0;
9938 	zero.i6[2] = 0;
9939 	zero.i6[3] = 0;
9940 
9941 	for (i = 0; i < 129; i++) {
9942 		if (IP6_EQ(&mtab->imt6_active[i], mask)) {
9943 			for (j = i + 1; j < 129; j++) {
9944 				mtab->imt6_active[j - 1] = mtab->imt6_active[j];
9945 				if (IP6_EQ(&mtab->imt6_active[j - 1], &zero))
9946 					break;
9947 			}
9948 			break;
9949 		}
9950 	}
9951 	mtab->imt6_max--;
9952 	ASSERT(mtab->imt6_max >= 0);
9953 }
9954 #endif
9955