1 //===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file This file defines CallEvent and its subclasses, which represent path-
10 /// sensitive instances of different kinds of function and method calls
11 /// (C, C++, and Objective-C).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/ExprObjC.h"
25 #include "clang/AST/ParentMap.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/Type.h"
28 #include "clang/Analysis/AnalysisDeclContext.h"
29 #include "clang/Analysis/CFG.h"
30 #include "clang/Analysis/CFGStmtMap.h"
31 #include "clang/Analysis/PathDiagnostic.h"
32 #include "clang/Analysis/ProgramPoint.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/SourceLocation.h"
36 #include "clang/Basic/SourceManager.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/CrossTU/CrossTranslationUnit.h"
39 #include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
40 #include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
41 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
42 #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
43 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
44 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
45 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
46 #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
47 #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
48 #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/ImmutableList.h"
52 #include "llvm/ADT/PointerIntPair.h"
53 #include "llvm/ADT/SmallSet.h"
54 #include "llvm/ADT/SmallVector.h"
55 #include "llvm/ADT/StringExtras.h"
56 #include "llvm/ADT/StringRef.h"
57 #include "llvm/Support/Casting.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <cassert>
63 #include <optional>
64 #include <utility>
65 
66 #define DEBUG_TYPE "static-analyzer-call-event"
67 
68 using namespace clang;
69 using namespace ento;
70 
getResultType() const71 QualType CallEvent::getResultType() const {
72   ASTContext &Ctx = getState()->getStateManager().getContext();
73   const Expr *E = getOriginExpr();
74   if (!E)
75     return Ctx.VoidTy;
76   return Ctx.getReferenceQualifiedType(E);
77 }
78 
isCallback(QualType T)79 static bool isCallback(QualType T) {
80   // If a parameter is a block or a callback, assume it can modify pointer.
81   if (T->isBlockPointerType() ||
82       T->isFunctionPointerType() ||
83       T->isObjCSelType())
84     return true;
85 
86   // Check if a callback is passed inside a struct (for both, struct passed by
87   // reference and by value). Dig just one level into the struct for now.
88 
89   if (T->isAnyPointerType() || T->isReferenceType())
90     T = T->getPointeeType();
91 
92   if (const RecordType *RT = T->getAsStructureType()) {
93     const RecordDecl *RD = RT->getDecl();
94     for (const auto *I : RD->fields()) {
95       QualType FieldT = I->getType();
96       if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
97         return true;
98     }
99   }
100   return false;
101 }
102 
isVoidPointerToNonConst(QualType T)103 static bool isVoidPointerToNonConst(QualType T) {
104   if (const auto *PT = T->getAs<PointerType>()) {
105     QualType PointeeTy = PT->getPointeeType();
106     if (PointeeTy.isConstQualified())
107       return false;
108     return PointeeTy->isVoidType();
109   } else
110     return false;
111 }
112 
hasNonNullArgumentsWithType(bool (* Condition)(QualType)) const113 bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
114   unsigned NumOfArgs = getNumArgs();
115 
116   // If calling using a function pointer, assume the function does not
117   // satisfy the callback.
118   // TODO: We could check the types of the arguments here.
119   if (!getDecl())
120     return false;
121 
122   unsigned Idx = 0;
123   for (CallEvent::param_type_iterator I = param_type_begin(),
124                                       E = param_type_end();
125        I != E && Idx < NumOfArgs; ++I, ++Idx) {
126     // If the parameter is 0, it's harmless.
127     if (getArgSVal(Idx).isZeroConstant())
128       continue;
129 
130     if (Condition(*I))
131       return true;
132   }
133   return false;
134 }
135 
hasNonZeroCallbackArg() const136 bool CallEvent::hasNonZeroCallbackArg() const {
137   return hasNonNullArgumentsWithType(isCallback);
138 }
139 
hasVoidPointerToNonConstArg() const140 bool CallEvent::hasVoidPointerToNonConstArg() const {
141   return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
142 }
143 
isGlobalCFunction(StringRef FunctionName) const144 bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
145   const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
146   if (!FD)
147     return false;
148 
149   return CheckerContext::isCLibraryFunction(FD, FunctionName);
150 }
151 
getCalleeAnalysisDeclContext() const152 AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
153   const Decl *D = getDecl();
154   if (!D)
155     return nullptr;
156 
157   AnalysisDeclContext *ADC =
158       LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
159 
160   return ADC;
161 }
162 
163 const StackFrameContext *
getCalleeStackFrame(unsigned BlockCount) const164 CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
165   AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
166   if (!ADC)
167     return nullptr;
168 
169   const Expr *E = getOriginExpr();
170   if (!E)
171     return nullptr;
172 
173   // Recover CFG block via reverse lookup.
174   // TODO: If we were to keep CFG element information as part of the CallEvent
175   // instead of doing this reverse lookup, we would be able to build the stack
176   // frame for non-expression-based calls, and also we wouldn't need the reverse
177   // lookup.
178   CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
179   const CFGBlock *B = Map->getBlock(E);
180   assert(B);
181 
182   // Also recover CFG index by scanning the CFG block.
183   unsigned Idx = 0, Sz = B->size();
184   for (; Idx < Sz; ++Idx)
185     if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
186       if (StmtElem->getStmt() == E)
187         break;
188   assert(Idx < Sz);
189 
190   return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
191 }
192 
193 const ParamVarRegion
getParameterLocation(unsigned Index,unsigned BlockCount) const194 *CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
195   const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
196   // We cannot construct a VarRegion without a stack frame.
197   if (!SFC)
198     return nullptr;
199 
200   const ParamVarRegion *PVR =
201     State->getStateManager().getRegionManager().getParamVarRegion(
202         getOriginExpr(), Index, SFC);
203   return PVR;
204 }
205 
206 /// Returns true if a type is a pointer-to-const or reference-to-const
207 /// with no further indirection.
isPointerToConst(QualType Ty)208 static bool isPointerToConst(QualType Ty) {
209   QualType PointeeTy = Ty->getPointeeType();
210   if (PointeeTy == QualType())
211     return false;
212   if (!PointeeTy.isConstQualified())
213     return false;
214   if (PointeeTy->isAnyPointerType())
215     return false;
216   return true;
217 }
218 
219 // Try to retrieve the function declaration and find the function parameter
220 // types which are pointers/references to a non-pointer const.
221 // We will not invalidate the corresponding argument regions.
findPtrToConstParams(llvm::SmallSet<unsigned,4> & PreserveArgs,const CallEvent & Call)222 static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
223                                  const CallEvent &Call) {
224   unsigned Idx = 0;
225   for (CallEvent::param_type_iterator I = Call.param_type_begin(),
226                                       E = Call.param_type_end();
227        I != E; ++I, ++Idx) {
228     if (isPointerToConst(*I))
229       PreserveArgs.insert(Idx);
230   }
231 }
232 
invalidateRegions(unsigned BlockCount,ProgramStateRef Orig) const233 ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
234                                              ProgramStateRef Orig) const {
235   ProgramStateRef Result = (Orig ? Orig : getState());
236 
237   // Don't invalidate anything if the callee is marked pure/const.
238   if (const Decl *callee = getDecl())
239     if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
240       return Result;
241 
242   SmallVector<SVal, 8> ValuesToInvalidate;
243   RegionAndSymbolInvalidationTraits ETraits;
244 
245   getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
246 
247   // Indexes of arguments whose values will be preserved by the call.
248   llvm::SmallSet<unsigned, 4> PreserveArgs;
249   if (!argumentsMayEscape())
250     findPtrToConstParams(PreserveArgs, *this);
251 
252   for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
253     // Mark this region for invalidation.  We batch invalidate regions
254     // below for efficiency.
255     if (PreserveArgs.count(Idx))
256       if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
257         ETraits.setTrait(MR->getBaseRegion(),
258                         RegionAndSymbolInvalidationTraits::TK_PreserveContents);
259         // TODO: Factor this out + handle the lower level const pointers.
260 
261     ValuesToInvalidate.push_back(getArgSVal(Idx));
262 
263     // If a function accepts an object by argument (which would of course be a
264     // temporary that isn't lifetime-extended), invalidate the object itself,
265     // not only other objects reachable from it. This is necessary because the
266     // destructor has access to the temporary object after the call.
267     // TODO: Support placement arguments once we start
268     // constructing them directly.
269     // TODO: This is unnecessary when there's no destructor, but that's
270     // currently hard to figure out.
271     if (getKind() != CE_CXXAllocator)
272       if (isArgumentConstructedDirectly(Idx))
273         if (auto AdjIdx = getAdjustedParameterIndex(Idx))
274           if (const TypedValueRegion *TVR =
275                   getParameterLocation(*AdjIdx, BlockCount))
276             ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
277   }
278 
279   // Invalidate designated regions using the batch invalidation API.
280   // NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
281   //  global variables.
282   return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
283                                    BlockCount, getLocationContext(),
284                                    /*CausedByPointerEscape*/ true,
285                                    /*Symbols=*/nullptr, this, &ETraits);
286 }
287 
getProgramPoint(bool IsPreVisit,const ProgramPointTag * Tag) const288 ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
289                                         const ProgramPointTag *Tag) const {
290   if (const Expr *E = getOriginExpr()) {
291     if (IsPreVisit)
292       return PreStmt(E, getLocationContext(), Tag);
293     return PostStmt(E, getLocationContext(), Tag);
294   }
295 
296   const Decl *D = getDecl();
297   assert(D && "Cannot get a program point without a statement or decl");
298 
299   SourceLocation Loc = getSourceRange().getBegin();
300   if (IsPreVisit)
301     return PreImplicitCall(D, Loc, getLocationContext(), Tag);
302   return PostImplicitCall(D, Loc, getLocationContext(), Tag);
303 }
304 
getArgSVal(unsigned Index) const305 SVal CallEvent::getArgSVal(unsigned Index) const {
306   const Expr *ArgE = getArgExpr(Index);
307   if (!ArgE)
308     return UnknownVal();
309   return getSVal(ArgE);
310 }
311 
getArgSourceRange(unsigned Index) const312 SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
313   const Expr *ArgE = getArgExpr(Index);
314   if (!ArgE)
315     return {};
316   return ArgE->getSourceRange();
317 }
318 
getReturnValue() const319 SVal CallEvent::getReturnValue() const {
320   const Expr *E = getOriginExpr();
321   if (!E)
322     return UndefinedVal();
323   return getSVal(E);
324 }
325 
dump() const326 LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
327 
dump(raw_ostream & Out) const328 void CallEvent::dump(raw_ostream &Out) const {
329   ASTContext &Ctx = getState()->getStateManager().getContext();
330   if (const Expr *E = getOriginExpr()) {
331     E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
332     return;
333   }
334 
335   if (const Decl *D = getDecl()) {
336     Out << "Call to ";
337     D->print(Out, Ctx.getPrintingPolicy());
338     return;
339   }
340 
341   Out << "Unknown call (type " << getKindAsString() << ")";
342 }
343 
isCallStmt(const Stmt * S)344 bool CallEvent::isCallStmt(const Stmt *S) {
345   return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
346 }
347 
getDeclaredResultType(const Decl * D)348 QualType CallEvent::getDeclaredResultType(const Decl *D) {
349   assert(D);
350   if (const auto *FD = dyn_cast<FunctionDecl>(D))
351     return FD->getReturnType();
352   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
353     return MD->getReturnType();
354   if (const auto *BD = dyn_cast<BlockDecl>(D)) {
355     // Blocks are difficult because the return type may not be stored in the
356     // BlockDecl itself. The AST should probably be enhanced, but for now we
357     // just do what we can.
358     // If the block is declared without an explicit argument list, the
359     // signature-as-written just includes the return type, not the entire
360     // function type.
361     // FIXME: All blocks should have signatures-as-written, even if the return
362     // type is inferred. (That's signified with a dependent result type.)
363     if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
364       QualType Ty = TSI->getType();
365       if (const FunctionType *FT = Ty->getAs<FunctionType>())
366         Ty = FT->getReturnType();
367       if (!Ty->isDependentType())
368         return Ty;
369     }
370 
371     return {};
372   }
373 
374   llvm_unreachable("unknown callable kind");
375 }
376 
isVariadic(const Decl * D)377 bool CallEvent::isVariadic(const Decl *D) {
378   assert(D);
379 
380   if (const auto *FD = dyn_cast<FunctionDecl>(D))
381     return FD->isVariadic();
382   if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
383     return MD->isVariadic();
384   if (const auto *BD = dyn_cast<BlockDecl>(D))
385     return BD->isVariadic();
386 
387   llvm_unreachable("unknown callable kind");
388 }
389 
isTransparentUnion(QualType T)390 static bool isTransparentUnion(QualType T) {
391   const RecordType *UT = T->getAsUnionType();
392   return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
393 }
394 
395 // In some cases, symbolic cases should be transformed before we associate
396 // them with parameters.  This function incapsulates such cases.
processArgument(SVal Value,const Expr * ArgumentExpr,const ParmVarDecl * Parameter,SValBuilder & SVB)397 static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
398                             const ParmVarDecl *Parameter, SValBuilder &SVB) {
399   QualType ParamType = Parameter->getType();
400   QualType ArgumentType = ArgumentExpr->getType();
401 
402   // Transparent unions allow users to easily convert values of union field
403   // types into union-typed objects.
404   //
405   // Also, more importantly, they allow users to define functions with different
406   // different parameter types, substituting types matching transparent union
407   // field types with the union type itself.
408   //
409   // Here, we check specifically for latter cases and prevent binding
410   // field-typed values to union-typed regions.
411   if (isTransparentUnion(ParamType) &&
412       // Let's check that we indeed trying to bind different types.
413       !isTransparentUnion(ArgumentType)) {
414     BasicValueFactory &BVF = SVB.getBasicValueFactory();
415 
416     llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
417     CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
418 
419     // Wrap it with compound value.
420     return SVB.makeCompoundVal(ParamType, CompoundSVals);
421   }
422 
423   return Value;
424 }
425 
426 /// Cast the argument value to the type of the parameter at the function
427 /// declaration.
428 /// Returns the argument value if it didn't need a cast.
429 /// Or returns the cast argument if it needed a cast.
430 /// Or returns 'Unknown' if it would need a cast but the callsite and the
431 /// runtime definition don't match in terms of argument and parameter count.
castArgToParamTypeIfNeeded(const CallEvent & Call,unsigned ArgIdx,SVal ArgVal,SValBuilder & SVB)432 static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
433                                        SVal ArgVal, SValBuilder &SVB) {
434   const FunctionDecl *RTDecl =
435       Call.getRuntimeDefinition().getDecl()->getAsFunction();
436   const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
437 
438   if (!RTDecl || !CallExprDecl)
439     return ArgVal;
440 
441   // The function decl of the Call (in the AST) will not have any parameter
442   // declarations, if it was 'only' declared without a prototype. However, the
443   // engine will find the appropriate runtime definition - basically a
444   // redeclaration, which has a function body (and a function prototype).
445   if (CallExprDecl->hasPrototype() || !RTDecl->hasPrototype())
446     return ArgVal;
447 
448   // Only do this cast if the number arguments at the callsite matches with
449   // the parameters at the runtime definition.
450   if (Call.getNumArgs() != RTDecl->getNumParams())
451     return UnknownVal();
452 
453   const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
454   const ParmVarDecl *Param = RTDecl->getParamDecl(ArgIdx);
455   return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
456 }
457 
addParameterValuesToBindings(const StackFrameContext * CalleeCtx,CallEvent::BindingsTy & Bindings,SValBuilder & SVB,const CallEvent & Call,ArrayRef<ParmVarDecl * > parameters)458 static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
459                                          CallEvent::BindingsTy &Bindings,
460                                          SValBuilder &SVB,
461                                          const CallEvent &Call,
462                                          ArrayRef<ParmVarDecl*> parameters) {
463   MemRegionManager &MRMgr = SVB.getRegionManager();
464 
465   // If the function has fewer parameters than the call has arguments, we simply
466   // do not bind any values to them.
467   unsigned NumArgs = Call.getNumArgs();
468   unsigned Idx = 0;
469   ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
470   for (; I != E && Idx < NumArgs; ++I, ++Idx) {
471     assert(*I && "Formal parameter has no decl?");
472 
473     // TODO: Support allocator calls.
474     if (Call.getKind() != CE_CXXAllocator)
475       if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
476         continue;
477 
478     // TODO: Allocators should receive the correct size and possibly alignment,
479     // determined in compile-time but not represented as arg-expressions,
480     // which makes getArgSVal() fail and return UnknownVal.
481     SVal ArgVal = Call.getArgSVal(Idx);
482     const Expr *ArgExpr = Call.getArgExpr(Idx);
483 
484     if (ArgVal.isUnknown())
485       continue;
486 
487     // Cast the argument value to match the type of the parameter in some
488     // edge-cases.
489     ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
490 
491     Loc ParamLoc = SVB.makeLoc(
492         MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
493     Bindings.push_back(
494         std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
495   }
496 
497   // FIXME: Variadic arguments are not handled at all right now.
498 }
499 
getConstructionContext() const500 const ConstructionContext *CallEvent::getConstructionContext() const {
501   const StackFrameContext *StackFrame = getCalleeStackFrame(0);
502   if (!StackFrame)
503     return nullptr;
504 
505   const CFGElement Element = StackFrame->getCallSiteCFGElement();
506   if (const auto Ctor = Element.getAs<CFGConstructor>()) {
507     return Ctor->getConstructionContext();
508   }
509 
510   if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
511     return RecCall->getConstructionContext();
512   }
513 
514   return nullptr;
515 }
516 
getReturnValueUnderConstruction() const517 std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
518   const auto *CC = getConstructionContext();
519   if (!CC)
520     return std::nullopt;
521 
522   EvalCallOptions CallOpts;
523   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
524   SVal RetVal = Engine.computeObjectUnderConstruction(
525       getOriginExpr(), getState(), &Engine.getBuilderContext(),
526       getLocationContext(), CC, CallOpts);
527   return RetVal;
528 }
529 
parameters() const530 ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
531   const FunctionDecl *D = getDecl();
532   if (!D)
533     return std::nullopt;
534   return D->parameters();
535 }
536 
getRuntimeDefinition() const537 RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
538   const FunctionDecl *FD = getDecl();
539   if (!FD)
540     return {};
541 
542   // Note that the AnalysisDeclContext will have the FunctionDecl with
543   // the definition (if one exists).
544   AnalysisDeclContext *AD =
545     getLocationContext()->getAnalysisDeclContext()->
546     getManager()->getContext(FD);
547   bool IsAutosynthesized;
548   Stmt* Body = AD->getBody(IsAutosynthesized);
549   LLVM_DEBUG({
550     if (IsAutosynthesized)
551       llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
552                    << "\n";
553   });
554 
555   ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
556   cross_tu::CrossTranslationUnitContext &CTUCtx =
557       *Engine.getCrossTranslationUnitContext();
558 
559   AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
560 
561   if (Body) {
562     const Decl* Decl = AD->getDecl();
563     if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(Decl)) {
564       // A newly created definition, but we had error(s) during the import.
565       if (CTUCtx.hasError(Decl))
566         return {};
567       return RuntimeDefinition(Decl, /*Foreign=*/true);
568     }
569     return RuntimeDefinition(Decl, /*Foreign=*/false);
570   }
571 
572   // Try to get CTU definition only if CTUDir is provided.
573   if (!Opts.IsNaiveCTUEnabled)
574     return {};
575 
576   llvm::Expected<const FunctionDecl *> CTUDeclOrError =
577       CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
578                                   Opts.DisplayCTUProgress);
579 
580   if (!CTUDeclOrError) {
581     handleAllErrors(CTUDeclOrError.takeError(),
582                     [&](const cross_tu::IndexError &IE) {
583                       CTUCtx.emitCrossTUDiagnostics(IE);
584                     });
585     return {};
586   }
587 
588   return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
589 }
590 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const591 void AnyFunctionCall::getInitialStackFrameContents(
592                                         const StackFrameContext *CalleeCtx,
593                                         BindingsTy &Bindings) const {
594   const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
595   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
596   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
597                                D->parameters());
598 }
599 
argumentsMayEscape() const600 bool AnyFunctionCall::argumentsMayEscape() const {
601   if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
602     return true;
603 
604   const FunctionDecl *D = getDecl();
605   if (!D)
606     return true;
607 
608   const IdentifierInfo *II = D->getIdentifier();
609   if (!II)
610     return false;
611 
612   // This set of "escaping" APIs is
613 
614   // - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
615   //   value into thread local storage. The value can later be retrieved with
616   //   'void *ptheread_getspecific(pthread_key)'. So even thought the
617   //   parameter is 'const void *', the region escapes through the call.
618   if (II->isStr("pthread_setspecific"))
619     return true;
620 
621   // - xpc_connection_set_context stores a value which can be retrieved later
622   //   with xpc_connection_get_context.
623   if (II->isStr("xpc_connection_set_context"))
624     return true;
625 
626   // - funopen - sets a buffer for future IO calls.
627   if (II->isStr("funopen"))
628     return true;
629 
630   // - __cxa_demangle - can reallocate memory and can return the pointer to
631   // the input buffer.
632   if (II->isStr("__cxa_demangle"))
633     return true;
634 
635   StringRef FName = II->getName();
636 
637   // - CoreFoundation functions that end with "NoCopy" can free a passed-in
638   //   buffer even if it is const.
639   if (FName.endswith("NoCopy"))
640     return true;
641 
642   // - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
643   //   be deallocated by NSMapRemove.
644   if (FName.startswith("NS") && FName.contains("Insert"))
645     return true;
646 
647   // - Many CF containers allow objects to escape through custom
648   //   allocators/deallocators upon container construction. (PR12101)
649   if (FName.startswith("CF") || FName.startswith("CG")) {
650     return StrInStrNoCase(FName, "InsertValue")  != StringRef::npos ||
651            StrInStrNoCase(FName, "AddValue")     != StringRef::npos ||
652            StrInStrNoCase(FName, "SetValue")     != StringRef::npos ||
653            StrInStrNoCase(FName, "WithData")     != StringRef::npos ||
654            StrInStrNoCase(FName, "AppendValue")  != StringRef::npos ||
655            StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
656   }
657 
658   return false;
659 }
660 
getDecl() const661 const FunctionDecl *SimpleFunctionCall::getDecl() const {
662   const FunctionDecl *D = getOriginExpr()->getDirectCallee();
663   if (D)
664     return D;
665 
666   return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
667 }
668 
getDecl() const669 const FunctionDecl *CXXInstanceCall::getDecl() const {
670   const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
671   if (!CE)
672     return AnyFunctionCall::getDecl();
673 
674   const FunctionDecl *D = CE->getDirectCallee();
675   if (D)
676     return D;
677 
678   return getSVal(CE->getCallee()).getAsFunctionDecl();
679 }
680 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const681 void CXXInstanceCall::getExtraInvalidatedValues(
682     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
683   SVal ThisVal = getCXXThisVal();
684   Values.push_back(ThisVal);
685 
686   // Don't invalidate if the method is const and there are no mutable fields.
687   if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
688     if (!D->isConst())
689       return;
690     // Get the record decl for the class of 'This'. D->getParent() may return a
691     // base class decl, rather than the class of the instance which needs to be
692     // checked for mutable fields.
693     // TODO: We might as well look at the dynamic type of the object.
694     const Expr *Ex = getCXXThisExpr()->IgnoreParenBaseCasts();
695     QualType T = Ex->getType();
696     if (T->isPointerType()) // Arrow or implicit-this syntax?
697       T = T->getPointeeType();
698     const CXXRecordDecl *ParentRecord = T->getAsCXXRecordDecl();
699     assert(ParentRecord);
700     if (ParentRecord->hasMutableFields())
701       return;
702     // Preserve CXXThis.
703     const MemRegion *ThisRegion = ThisVal.getAsRegion();
704     if (!ThisRegion)
705       return;
706 
707     ETraits->setTrait(ThisRegion->getBaseRegion(),
708                       RegionAndSymbolInvalidationTraits::TK_PreserveContents);
709   }
710 }
711 
getCXXThisVal() const712 SVal CXXInstanceCall::getCXXThisVal() const {
713   const Expr *Base = getCXXThisExpr();
714   // FIXME: This doesn't handle an overloaded ->* operator.
715   if (!Base)
716     return UnknownVal();
717 
718   SVal ThisVal = getSVal(Base);
719   assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
720   return ThisVal;
721 }
722 
getRuntimeDefinition() const723 RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
724   // Do we have a decl at all?
725   const Decl *D = getDecl();
726   if (!D)
727     return {};
728 
729   // If the method is non-virtual, we know we can inline it.
730   const auto *MD = cast<CXXMethodDecl>(D);
731   if (!MD->isVirtual())
732     return AnyFunctionCall::getRuntimeDefinition();
733 
734   // Do we know the implicit 'this' object being called?
735   const MemRegion *R = getCXXThisVal().getAsRegion();
736   if (!R)
737     return {};
738 
739   // Do we know anything about the type of 'this'?
740   DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
741   if (!DynType.isValid())
742     return {};
743 
744   // Is the type a C++ class? (This is mostly a defensive check.)
745   QualType RegionType = DynType.getType()->getPointeeType();
746   assert(!RegionType.isNull() && "DynamicTypeInfo should always be a pointer.");
747 
748   const CXXRecordDecl *RD = RegionType->getAsCXXRecordDecl();
749   if (!RD || !RD->hasDefinition())
750     return {};
751 
752   // Find the decl for this method in that class.
753   const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
754   if (!Result) {
755     // We might not even get the original statically-resolved method due to
756     // some particularly nasty casting (e.g. casts to sister classes).
757     // However, we should at least be able to search up and down our own class
758     // hierarchy, and some real bugs have been caught by checking this.
759     assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
760 
761     // FIXME: This is checking that our DynamicTypeInfo is at least as good as
762     // the static type. However, because we currently don't update
763     // DynamicTypeInfo when an object is cast, we can't actually be sure the
764     // DynamicTypeInfo is up to date. This assert should be re-enabled once
765     // this is fixed. <rdar://problem/12287087>
766     //assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
767 
768     return {};
769   }
770 
771   // Does the decl that we found have an implementation?
772   const FunctionDecl *Definition;
773   if (!Result->hasBody(Definition)) {
774     if (!DynType.canBeASubClass())
775       return AnyFunctionCall::getRuntimeDefinition();
776     return {};
777   }
778 
779   // We found a definition. If we're not sure that this devirtualization is
780   // actually what will happen at runtime, make sure to provide the region so
781   // that ExprEngine can decide what to do with it.
782   if (DynType.canBeASubClass())
783     return RuntimeDefinition(Definition, R->StripCasts());
784   return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
785 }
786 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const787 void CXXInstanceCall::getInitialStackFrameContents(
788                                             const StackFrameContext *CalleeCtx,
789                                             BindingsTy &Bindings) const {
790   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
791 
792   // Handle the binding of 'this' in the new stack frame.
793   SVal ThisVal = getCXXThisVal();
794   if (!ThisVal.isUnknown()) {
795     ProgramStateManager &StateMgr = getState()->getStateManager();
796     SValBuilder &SVB = StateMgr.getSValBuilder();
797 
798     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
799     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
800 
801     // If we devirtualized to a different member function, we need to make sure
802     // we have the proper layering of CXXBaseObjectRegions.
803     if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
804       ASTContext &Ctx = SVB.getContext();
805       const CXXRecordDecl *Class = MD->getParent();
806       QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
807 
808       // FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
809       std::optional<SVal> V =
810           StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
811       if (!V) {
812         // We might have suffered some sort of placement new earlier, so
813         // we're constructing in a completely unexpected storage.
814         // Fall back to a generic pointer cast for this-value.
815         const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
816         const CXXRecordDecl *StaticClass = StaticMD->getParent();
817         QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
818         ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
819       } else
820         ThisVal = *V;
821     }
822 
823     if (!ThisVal.isUnknown())
824       Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
825   }
826 }
827 
getCXXThisExpr() const828 const Expr *CXXMemberCall::getCXXThisExpr() const {
829   return getOriginExpr()->getImplicitObjectArgument();
830 }
831 
getRuntimeDefinition() const832 RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
833   // C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
834   // id-expression in the class member access expression is a qualified-id,
835   // that function is called. Otherwise, its final overrider in the dynamic type
836   // of the object expression is called.
837   if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
838     if (ME->hasQualifier())
839       return AnyFunctionCall::getRuntimeDefinition();
840 
841   return CXXInstanceCall::getRuntimeDefinition();
842 }
843 
getCXXThisExpr() const844 const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
845   return getOriginExpr()->getArg(0);
846 }
847 
getBlockRegion() const848 const BlockDataRegion *BlockCall::getBlockRegion() const {
849   const Expr *Callee = getOriginExpr()->getCallee();
850   const MemRegion *DataReg = getSVal(Callee).getAsRegion();
851 
852   return dyn_cast_or_null<BlockDataRegion>(DataReg);
853 }
854 
parameters() const855 ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
856   const BlockDecl *D = getDecl();
857   if (!D)
858     return std::nullopt;
859   return D->parameters();
860 }
861 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const862 void BlockCall::getExtraInvalidatedValues(ValueList &Values,
863                   RegionAndSymbolInvalidationTraits *ETraits) const {
864   // FIXME: This also needs to invalidate captured globals.
865   if (const MemRegion *R = getBlockRegion())
866     Values.push_back(loc::MemRegionVal(R));
867 }
868 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const869 void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
870                                              BindingsTy &Bindings) const {
871   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
872   ArrayRef<ParmVarDecl*> Params;
873   if (isConversionFromLambda()) {
874     auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
875     Params = LambdaOperatorDecl->parameters();
876 
877     // For blocks converted from a C++ lambda, the callee declaration is the
878     // operator() method on the lambda so we bind "this" to
879     // the lambda captured by the block.
880     const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
881     SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
882     Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
883     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
884   } else {
885     Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
886   }
887 
888   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
889                                Params);
890 }
891 
getCXXThisVal() const892 SVal AnyCXXConstructorCall::getCXXThisVal() const {
893   if (Data)
894     return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
895   return UnknownVal();
896 }
897 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const898 void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
899                            RegionAndSymbolInvalidationTraits *ETraits) const {
900   SVal V = getCXXThisVal();
901   if (SymbolRef Sym = V.getAsSymbol(true))
902     ETraits->setTrait(Sym,
903                       RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
904   Values.push_back(V);
905 }
906 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const907 void AnyCXXConstructorCall::getInitialStackFrameContents(
908                                              const StackFrameContext *CalleeCtx,
909                                              BindingsTy &Bindings) const {
910   AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
911 
912   SVal ThisVal = getCXXThisVal();
913   if (!ThisVal.isUnknown()) {
914     SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
915     const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
916     Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
917     Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
918   }
919 }
920 
921 const StackFrameContext *
getInheritingStackFrame() const922 CXXInheritedConstructorCall::getInheritingStackFrame() const {
923   const StackFrameContext *SFC = getLocationContext()->getStackFrame();
924   while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
925     SFC = SFC->getParent()->getStackFrame();
926   return SFC;
927 }
928 
getCXXThisVal() const929 SVal CXXDestructorCall::getCXXThisVal() const {
930   if (Data)
931     return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
932   return UnknownVal();
933 }
934 
getRuntimeDefinition() const935 RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
936   // Base destructors are always called non-virtually.
937   // Skip CXXInstanceCall's devirtualization logic in this case.
938   if (isBaseDestructor())
939     return AnyFunctionCall::getRuntimeDefinition();
940 
941   return CXXInstanceCall::getRuntimeDefinition();
942 }
943 
parameters() const944 ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
945   const ObjCMethodDecl *D = getDecl();
946   if (!D)
947     return std::nullopt;
948   return D->parameters();
949 }
950 
getExtraInvalidatedValues(ValueList & Values,RegionAndSymbolInvalidationTraits * ETraits) const951 void ObjCMethodCall::getExtraInvalidatedValues(
952     ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
953 
954   // If the method call is a setter for property known to be backed by
955   // an instance variable, don't invalidate the entire receiver, just
956   // the storage for that instance variable.
957   if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
958     if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
959       SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
960       if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
961         ETraits->setTrait(
962           IvarRegion,
963           RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
964         ETraits->setTrait(
965           IvarRegion,
966           RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
967         Values.push_back(IvarLVal);
968       }
969       return;
970     }
971   }
972 
973   Values.push_back(getReceiverSVal());
974 }
975 
getReceiverSVal() const976 SVal ObjCMethodCall::getReceiverSVal() const {
977   // FIXME: Is this the best way to handle class receivers?
978   if (!isInstanceMessage())
979     return UnknownVal();
980 
981   if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
982     return getSVal(RecE);
983 
984   // An instance message with no expression means we are sending to super.
985   // In this case the object reference is the same as 'self'.
986   assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
987   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
988   assert(SelfVal.isValid() && "Calling super but not in ObjC method");
989   return SelfVal;
990 }
991 
isReceiverSelfOrSuper() const992 bool ObjCMethodCall::isReceiverSelfOrSuper() const {
993   if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
994       getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
995       return true;
996 
997   if (!isInstanceMessage())
998     return false;
999 
1000   SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
1001   SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1002 
1003   return (RecVal == SelfVal);
1004 }
1005 
getSourceRange() const1006 SourceRange ObjCMethodCall::getSourceRange() const {
1007   switch (getMessageKind()) {
1008   case OCM_Message:
1009     return getOriginExpr()->getSourceRange();
1010   case OCM_PropertyAccess:
1011   case OCM_Subscript:
1012     return getContainingPseudoObjectExpr()->getSourceRange();
1013   }
1014   llvm_unreachable("unknown message kind");
1015 }
1016 
1017 using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
1018 
getContainingPseudoObjectExpr() const1019 const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
1020   assert(Data && "Lazy lookup not yet performed.");
1021   assert(getMessageKind() != OCM_Message && "Explicit message send.");
1022   return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
1023 }
1024 
1025 static const Expr *
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr * POE)1026 getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
1027   const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
1028 
1029   // This handles the funny case of assigning to the result of a getter.
1030   // This can happen if the getter returns a non-const reference.
1031   if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
1032     Syntactic = BO->getLHS()->IgnoreParens();
1033 
1034   return Syntactic;
1035 }
1036 
getMessageKind() const1037 ObjCMessageKind ObjCMethodCall::getMessageKind() const {
1038   if (!Data) {
1039     // Find the parent, ignoring implicit casts.
1040     const ParentMap &PM = getLocationContext()->getParentMap();
1041     const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
1042 
1043     // Check if parent is a PseudoObjectExpr.
1044     if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
1045       const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1046 
1047       ObjCMessageKind K;
1048       switch (Syntactic->getStmtClass()) {
1049       case Stmt::ObjCPropertyRefExprClass:
1050         K = OCM_PropertyAccess;
1051         break;
1052       case Stmt::ObjCSubscriptRefExprClass:
1053         K = OCM_Subscript;
1054         break;
1055       default:
1056         // FIXME: Can this ever happen?
1057         K = OCM_Message;
1058         break;
1059       }
1060 
1061       if (K != OCM_Message) {
1062         const_cast<ObjCMethodCall *>(this)->Data
1063           = ObjCMessageDataTy(POE, K).getOpaqueValue();
1064         assert(getMessageKind() == K);
1065         return K;
1066       }
1067     }
1068 
1069     const_cast<ObjCMethodCall *>(this)->Data
1070       = ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
1071     assert(getMessageKind() == OCM_Message);
1072     return OCM_Message;
1073   }
1074 
1075   ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
1076   if (!Info.getPointer())
1077     return OCM_Message;
1078   return static_cast<ObjCMessageKind>(Info.getInt());
1079 }
1080 
getAccessedProperty() const1081 const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
1082   // Look for properties accessed with property syntax (foo.bar = ...)
1083   if (getMessageKind() == OCM_PropertyAccess) {
1084     const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
1085     assert(POE && "Property access without PseudoObjectExpr?");
1086 
1087     const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
1088     auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
1089 
1090     if (RefExpr->isExplicitProperty())
1091       return RefExpr->getExplicitProperty();
1092   }
1093 
1094   // Look for properties accessed with method syntax ([foo setBar:...]).
1095   const ObjCMethodDecl *MD = getDecl();
1096   if (!MD || !MD->isPropertyAccessor())
1097     return nullptr;
1098 
1099   // Note: This is potentially quite slow.
1100   return MD->findPropertyDecl();
1101 }
1102 
canBeOverridenInSubclass(ObjCInterfaceDecl * IDecl,Selector Sel) const1103 bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
1104                                              Selector Sel) const {
1105   assert(IDecl);
1106   AnalysisManager &AMgr =
1107       getState()->getStateManager().getOwningEngine().getAnalysisManager();
1108   // If the class interface is declared inside the main file, assume it is not
1109   // subcassed.
1110   // TODO: It could actually be subclassed if the subclass is private as well.
1111   // This is probably very rare.
1112   SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
1113   if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
1114     return false;
1115 
1116   // Assume that property accessors are not overridden.
1117   if (getMessageKind() == OCM_PropertyAccess)
1118     return false;
1119 
1120   // We assume that if the method is public (declared outside of main file) or
1121   // has a parent which publicly declares the method, the method could be
1122   // overridden in a subclass.
1123 
1124   // Find the first declaration in the class hierarchy that declares
1125   // the selector.
1126   ObjCMethodDecl *D = nullptr;
1127   while (true) {
1128     D = IDecl->lookupMethod(Sel, true);
1129 
1130     // Cannot find a public definition.
1131     if (!D)
1132       return false;
1133 
1134     // If outside the main file,
1135     if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
1136       return true;
1137 
1138     if (D->isOverriding()) {
1139       // Search in the superclass on the next iteration.
1140       IDecl = D->getClassInterface();
1141       if (!IDecl)
1142         return false;
1143 
1144       IDecl = IDecl->getSuperClass();
1145       if (!IDecl)
1146         return false;
1147 
1148       continue;
1149     }
1150 
1151     return false;
1152   };
1153 
1154   llvm_unreachable("The while loop should always terminate.");
1155 }
1156 
findDefiningRedecl(const ObjCMethodDecl * MD)1157 static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
1158   if (!MD)
1159     return MD;
1160 
1161   // Find the redeclaration that defines the method.
1162   if (!MD->hasBody()) {
1163     for (auto *I : MD->redecls())
1164       if (I->hasBody())
1165         MD = cast<ObjCMethodDecl>(I);
1166   }
1167   return MD;
1168 }
1169 
1170 struct PrivateMethodKey {
1171   const ObjCInterfaceDecl *Interface;
1172   Selector LookupSelector;
1173   bool IsClassMethod;
1174 };
1175 
1176 namespace llvm {
1177 template <> struct DenseMapInfo<PrivateMethodKey> {
1178   using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
1179   using SelectorInfo = DenseMapInfo<Selector>;
1180 
getEmptyKeyllvm::DenseMapInfo1181   static inline PrivateMethodKey getEmptyKey() {
1182     return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
1183   }
1184 
getTombstoneKeyllvm::DenseMapInfo1185   static inline PrivateMethodKey getTombstoneKey() {
1186     return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
1187             true};
1188   }
1189 
getHashValuellvm::DenseMapInfo1190   static unsigned getHashValue(const PrivateMethodKey &Key) {
1191     return llvm::hash_combine(
1192         llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
1193         llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
1194         Key.IsClassMethod);
1195   }
1196 
isEqualllvm::DenseMapInfo1197   static bool isEqual(const PrivateMethodKey &LHS,
1198                       const PrivateMethodKey &RHS) {
1199     return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
1200            SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
1201            LHS.IsClassMethod == RHS.IsClassMethod;
1202   }
1203 };
1204 } // end namespace llvm
1205 
1206 static const ObjCMethodDecl *
lookupRuntimeDefinition(const ObjCInterfaceDecl * Interface,Selector LookupSelector,bool InstanceMethod)1207 lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
1208                         Selector LookupSelector, bool InstanceMethod) {
1209   // Repeatedly calling lookupPrivateMethod() is expensive, especially
1210   // when in many cases it returns null.  We cache the results so
1211   // that repeated queries on the same ObjCIntefaceDecl and Selector
1212   // don't incur the same cost.  On some test cases, we can see the
1213   // same query being issued thousands of times.
1214   //
1215   // NOTE: This cache is essentially a "global" variable, but it
1216   // only gets lazily created when we get here.  The value of the
1217   // cache probably comes from it being global across ExprEngines,
1218   // where the same queries may get issued.  If we are worried about
1219   // concurrency, or possibly loading/unloading ASTs, etc., we may
1220   // need to revisit this someday.  In terms of memory, this table
1221   // stays around until clang quits, which also may be bad if we
1222   // need to release memory.
1223   using PrivateMethodCache =
1224       llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
1225 
1226   static PrivateMethodCache PMC;
1227   std::optional<const ObjCMethodDecl *> &Val =
1228       PMC[{Interface, LookupSelector, InstanceMethod}];
1229 
1230   // Query lookupPrivateMethod() if the cache does not hit.
1231   if (!Val) {
1232     Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
1233 
1234     if (!*Val) {
1235       // Query 'lookupMethod' as a backup.
1236       Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
1237     }
1238   }
1239 
1240   return *Val;
1241 }
1242 
getRuntimeDefinition() const1243 RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
1244   const ObjCMessageExpr *E = getOriginExpr();
1245   assert(E);
1246   Selector Sel = E->getSelector();
1247 
1248   if (E->isInstanceMessage()) {
1249     // Find the receiver type.
1250     const ObjCObjectType *ReceiverT = nullptr;
1251     bool CanBeSubClassed = false;
1252     bool LookingForInstanceMethod = true;
1253     QualType SupersType = E->getSuperType();
1254     const MemRegion *Receiver = nullptr;
1255 
1256     if (!SupersType.isNull()) {
1257       // The receiver is guaranteed to be 'super' in this case.
1258       // Super always means the type of immediate predecessor to the method
1259       // where the call occurs.
1260       ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
1261     } else {
1262       Receiver = getReceiverSVal().getAsRegion();
1263       if (!Receiver)
1264         return {};
1265 
1266       DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
1267       if (!DTI.isValid()) {
1268         assert(isa<AllocaRegion>(Receiver) &&
1269                "Unhandled untyped region class!");
1270         return {};
1271       }
1272 
1273       QualType DynType = DTI.getType();
1274       CanBeSubClassed = DTI.canBeASubClass();
1275 
1276       const auto *ReceiverDynT =
1277           dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
1278 
1279       if (ReceiverDynT) {
1280         ReceiverT = ReceiverDynT->getObjectType();
1281 
1282         // It can be actually class methods called with Class object as a
1283         // receiver. This type of messages is treated by the compiler as
1284         // instance (not class).
1285         if (ReceiverT->isObjCClass()) {
1286 
1287           SVal SelfVal = getState()->getSelfSVal(getLocationContext());
1288           // For [self classMethod], return compiler visible declaration.
1289           if (Receiver == SelfVal.getAsRegion()) {
1290             return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
1291           }
1292 
1293           // Otherwise, let's check if we know something about the type
1294           // inside of this class object.
1295           if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
1296             DynamicTypeInfo DTI =
1297                 getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
1298             if (DTI.isValid()) {
1299               // Let's use this type for lookup.
1300               ReceiverT =
1301                   cast<ObjCObjectType>(DTI.getType().getCanonicalType());
1302 
1303               CanBeSubClassed = DTI.canBeASubClass();
1304               // And it should be a class method instead.
1305               LookingForInstanceMethod = false;
1306             }
1307           }
1308         }
1309 
1310         if (CanBeSubClassed)
1311           if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
1312             // Even if `DynamicTypeInfo` told us that it can be
1313             // not necessarily this type, but its descendants, we still want
1314             // to check again if this selector can be actually overridden.
1315             CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
1316       }
1317     }
1318 
1319     // Lookup the instance method implementation.
1320     if (ReceiverT)
1321       if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
1322         const ObjCMethodDecl *MD =
1323             lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
1324 
1325         if (MD && !MD->hasBody())
1326           MD = MD->getCanonicalDecl();
1327 
1328         if (CanBeSubClassed)
1329           return RuntimeDefinition(MD, Receiver);
1330         else
1331           return RuntimeDefinition(MD, nullptr);
1332       }
1333   } else {
1334     // This is a class method.
1335     // If we have type info for the receiver class, we are calling via
1336     // class name.
1337     if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
1338       // Find/Return the method implementation.
1339       return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
1340     }
1341   }
1342 
1343   return {};
1344 }
1345 
argumentsMayEscape() const1346 bool ObjCMethodCall::argumentsMayEscape() const {
1347   if (isInSystemHeader() && !isInstanceMessage()) {
1348     Selector Sel = getSelector();
1349     if (Sel.getNumArgs() == 1 &&
1350         Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
1351       return true;
1352   }
1353 
1354   return CallEvent::argumentsMayEscape();
1355 }
1356 
getInitialStackFrameContents(const StackFrameContext * CalleeCtx,BindingsTy & Bindings) const1357 void ObjCMethodCall::getInitialStackFrameContents(
1358                                              const StackFrameContext *CalleeCtx,
1359                                              BindingsTy &Bindings) const {
1360   const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
1361   SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
1362   addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
1363                                D->parameters());
1364 
1365   SVal SelfVal = getReceiverSVal();
1366   if (!SelfVal.isUnknown()) {
1367     const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
1368     MemRegionManager &MRMgr = SVB.getRegionManager();
1369     Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
1370     Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
1371   }
1372 }
1373 
1374 CallEventRef<>
getSimpleCall(const CallExpr * CE,ProgramStateRef State,const LocationContext * LCtx)1375 CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
1376                                 const LocationContext *LCtx) {
1377   if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
1378     return create<CXXMemberCall>(MCE, State, LCtx);
1379 
1380   if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
1381     const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
1382     if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
1383       if (MD->isInstance())
1384         return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
1385 
1386   } else if (CE->getCallee()->getType()->isBlockPointerType()) {
1387     return create<BlockCall>(CE, State, LCtx);
1388   }
1389 
1390   // Otherwise, it's a normal function call, static member function call, or
1391   // something we can't reason about.
1392   return create<SimpleFunctionCall>(CE, State, LCtx);
1393 }
1394 
1395 CallEventRef<>
getCaller(const StackFrameContext * CalleeCtx,ProgramStateRef State)1396 CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
1397                             ProgramStateRef State) {
1398   const LocationContext *ParentCtx = CalleeCtx->getParent();
1399   const LocationContext *CallerCtx = ParentCtx->getStackFrame();
1400   assert(CallerCtx && "This should not be used for top-level stack frames");
1401 
1402   const Stmt *CallSite = CalleeCtx->getCallSite();
1403 
1404   if (CallSite) {
1405     if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx))
1406       return Out;
1407 
1408     SValBuilder &SVB = State->getStateManager().getSValBuilder();
1409     const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
1410     Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
1411     SVal ThisVal = State->getSVal(ThisPtr);
1412 
1413     if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
1414       return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx);
1415     else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
1416       return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
1417                                             CallerCtx);
1418     else {
1419       // All other cases are handled by getCall.
1420       llvm_unreachable("This is not an inlineable statement");
1421     }
1422   }
1423 
1424   // Fall back to the CFG. The only thing we haven't handled yet is
1425   // destructors, though this could change in the future.
1426   const CFGBlock *B = CalleeCtx->getCallSiteBlock();
1427   CFGElement E = (*B)[CalleeCtx->getIndex()];
1428   assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
1429          "All other CFG elements should have exprs");
1430 
1431   SValBuilder &SVB = State->getStateManager().getSValBuilder();
1432   const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
1433   Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
1434   SVal ThisVal = State->getSVal(ThisPtr);
1435 
1436   const Stmt *Trigger;
1437   if (std::optional<CFGAutomaticObjDtor> AutoDtor =
1438           E.getAs<CFGAutomaticObjDtor>())
1439     Trigger = AutoDtor->getTriggerStmt();
1440   else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
1441     Trigger = DeleteDtor->getDeleteExpr();
1442   else
1443     Trigger = Dtor->getBody();
1444 
1445   return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
1446                               E.getAs<CFGBaseDtor>().has_value(), State,
1447                               CallerCtx);
1448 }
1449 
getCall(const Stmt * S,ProgramStateRef State,const LocationContext * LC)1450 CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
1451                                          const LocationContext *LC) {
1452   if (const auto *CE = dyn_cast<CallExpr>(S)) {
1453     return getSimpleCall(CE, State, LC);
1454   } else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
1455     return getCXXAllocatorCall(NE, State, LC);
1456   } else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
1457     return getCXXDeallocatorCall(DE, State, LC);
1458   } else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
1459     return getObjCMethodCall(ME, State, LC);
1460   } else {
1461     return nullptr;
1462   }
1463 }
1464