1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Transforms/Utils/SizeOpts.h"
26 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define LV_NAME "loop-vectorize"
32 #define DEBUG_TYPE LV_NAME
33 
34 extern cl::opt<bool> EnableVPlanPredication;
35 
36 static cl::opt<bool>
37     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38                        cl::desc("Enable if-conversion during vectorization."));
39 
40 // TODO: Move size-based thresholds out of legality checking, make cost based
41 // decisions instead of hard thresholds.
42 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
43     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
44     cl::desc("The maximum number of SCEV checks allowed."));
45 
46 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
47     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
48     cl::desc("The maximum number of SCEV checks allowed with a "
49              "vectorize(enable) pragma"));
50 
51 // FIXME: When scalable vectorization is stable enough, change the default
52 // to SK_PreferFixedWidth.
53 static cl::opt<LoopVectorizeHints::ScalableForceKind> ScalableVectorization(
54     "scalable-vectorization", cl::init(LoopVectorizeHints::SK_FixedWidthOnly),
55     cl::Hidden,
56     cl::desc("Control whether the compiler can use scalable vectors to "
57              "vectorize a loop"),
58     cl::values(
59         clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
60                    "Scalable vectorization is disabled."),
61         clEnumValN(LoopVectorizeHints::SK_PreferFixedWidth, "on",
62                    "Scalable vectorization is available, but favor fixed-width "
63                    "vectorization when the cost is inconclusive."),
64         clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred",
65                    "Scalable vectorization is available and favored when the "
66                    "cost is inconclusive.")));
67 
68 /// Maximum vectorization interleave count.
69 static const unsigned MaxInterleaveFactor = 16;
70 
71 namespace llvm {
72 
validate(unsigned Val)73 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
74   switch (Kind) {
75   case HK_WIDTH:
76     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
77   case HK_INTERLEAVE:
78     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
79   case HK_FORCE:
80     return (Val <= 1);
81   case HK_ISVECTORIZED:
82   case HK_PREDICATE:
83   case HK_SCALABLE:
84     return (Val == 0 || Val == 1);
85   }
86   return false;
87 }
88 
LoopVectorizeHints(const Loop * L,bool InterleaveOnlyWhenForced,OptimizationRemarkEmitter & ORE)89 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
90                                        bool InterleaveOnlyWhenForced,
91                                        OptimizationRemarkEmitter &ORE)
92     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
93       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
94       Force("vectorize.enable", FK_Undefined, HK_FORCE),
95       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
96       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
97       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
98       TheLoop(L), ORE(ORE) {
99   // Populate values with existing loop metadata.
100   getHintsFromMetadata();
101 
102   // force-vector-interleave overrides DisableInterleaving.
103   if (VectorizerParams::isInterleaveForced())
104     Interleave.Value = VectorizerParams::VectorizationInterleave;
105 
106   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
107     // If the width is set, but the metadata says nothing about the scalable
108     // property, then assume it concerns only a fixed-width UserVF.
109     // If width is not set, the flag takes precedence.
110     Scalable.Value = Width.Value ? SK_FixedWidthOnly : ScalableVectorization;
111   else if (ScalableVectorization == SK_FixedWidthOnly)
112     // If the flag is set to disable any use of scalable vectors, override the
113     // loop hint.
114     Scalable.Value = SK_FixedWidthOnly;
115 
116   if (IsVectorized.Value != 1)
117     // If the vectorization width and interleaving count are both 1 then
118     // consider the loop to have been already vectorized because there's
119     // nothing more that we can do.
120     IsVectorized.Value =
121         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
122   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
123              << "LV: Interleaving disabled by the pass manager\n");
124 }
125 
setAlreadyVectorized()126 void LoopVectorizeHints::setAlreadyVectorized() {
127   LLVMContext &Context = TheLoop->getHeader()->getContext();
128 
129   MDNode *IsVectorizedMD = MDNode::get(
130       Context,
131       {MDString::get(Context, "llvm.loop.isvectorized"),
132        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
133   MDNode *LoopID = TheLoop->getLoopID();
134   MDNode *NewLoopID =
135       makePostTransformationMetadata(Context, LoopID,
136                                      {Twine(Prefix(), "vectorize.").str(),
137                                       Twine(Prefix(), "interleave.").str()},
138                                      {IsVectorizedMD});
139   TheLoop->setLoopID(NewLoopID);
140 
141   // Update internal cache.
142   IsVectorized.Value = 1;
143 }
144 
allowVectorization(Function * F,Loop * L,bool VectorizeOnlyWhenForced) const145 bool LoopVectorizeHints::allowVectorization(
146     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
147   if (getForce() == LoopVectorizeHints::FK_Disabled) {
148     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
149     emitRemarkWithHints();
150     return false;
151   }
152 
153   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
154     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
155     emitRemarkWithHints();
156     return false;
157   }
158 
159   if (getIsVectorized() == 1) {
160     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
161     // FIXME: Add interleave.disable metadata. This will allow
162     // vectorize.disable to be used without disabling the pass and errors
163     // to differentiate between disabled vectorization and a width of 1.
164     ORE.emit([&]() {
165       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
166                                         "AllDisabled", L->getStartLoc(),
167                                         L->getHeader())
168              << "loop not vectorized: vectorization and interleaving are "
169                 "explicitly disabled, or the loop has already been "
170                 "vectorized";
171     });
172     return false;
173   }
174 
175   return true;
176 }
177 
emitRemarkWithHints() const178 void LoopVectorizeHints::emitRemarkWithHints() const {
179   using namespace ore;
180 
181   ORE.emit([&]() {
182     if (Force.Value == LoopVectorizeHints::FK_Disabled)
183       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
184                                       TheLoop->getStartLoc(),
185                                       TheLoop->getHeader())
186              << "loop not vectorized: vectorization is explicitly disabled";
187     else {
188       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
189                                  TheLoop->getStartLoc(), TheLoop->getHeader());
190       R << "loop not vectorized";
191       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
192         R << " (Force=" << NV("Force", true);
193         if (Width.Value != 0)
194           R << ", Vector Width=" << NV("VectorWidth", getWidth());
195         if (getInterleave() != 0)
196           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
197         R << ")";
198       }
199       return R;
200     }
201   });
202 }
203 
vectorizeAnalysisPassName() const204 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
205   if (getWidth() == ElementCount::getFixed(1))
206     return LV_NAME;
207   if (getForce() == LoopVectorizeHints::FK_Disabled)
208     return LV_NAME;
209   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
210     return LV_NAME;
211   return OptimizationRemarkAnalysis::AlwaysPrint;
212 }
213 
getHintsFromMetadata()214 void LoopVectorizeHints::getHintsFromMetadata() {
215   MDNode *LoopID = TheLoop->getLoopID();
216   if (!LoopID)
217     return;
218 
219   // First operand should refer to the loop id itself.
220   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
221   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
222 
223   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
224     const MDString *S = nullptr;
225     SmallVector<Metadata *, 4> Args;
226 
227     // The expected hint is either a MDString or a MDNode with the first
228     // operand a MDString.
229     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
230       if (!MD || MD->getNumOperands() == 0)
231         continue;
232       S = dyn_cast<MDString>(MD->getOperand(0));
233       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
234         Args.push_back(MD->getOperand(i));
235     } else {
236       S = dyn_cast<MDString>(LoopID->getOperand(i));
237       assert(Args.size() == 0 && "too many arguments for MDString");
238     }
239 
240     if (!S)
241       continue;
242 
243     // Check if the hint starts with the loop metadata prefix.
244     StringRef Name = S->getString();
245     if (Args.size() == 1)
246       setHint(Name, Args[0]);
247   }
248 }
249 
setHint(StringRef Name,Metadata * Arg)250 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
251   if (!Name.startswith(Prefix()))
252     return;
253   Name = Name.substr(Prefix().size(), StringRef::npos);
254 
255   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
256   if (!C)
257     return;
258   unsigned Val = C->getZExtValue();
259 
260   Hint *Hints[] = {&Width,        &Interleave, &Force,
261                    &IsVectorized, &Predicate,  &Scalable};
262   for (auto H : Hints) {
263     if (Name == H->Name) {
264       if (H->validate(Val))
265         H->Value = Val;
266       else
267         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
268       break;
269     }
270   }
271 }
272 
273 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
274 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
275 // executing the inner loop will execute the same iterations). This check is
276 // very constrained for now but it will be relaxed in the future. \p Lp is
277 // considered uniform if it meets all the following conditions:
278 //   1) it has a canonical IV (starting from 0 and with stride 1),
279 //   2) its latch terminator is a conditional branch and,
280 //   3) its latch condition is a compare instruction whose operands are the
281 //      canonical IV and an OuterLp invariant.
282 // This check doesn't take into account the uniformity of other conditions not
283 // related to the loop latch because they don't affect the loop uniformity.
284 //
285 // NOTE: We decided to keep all these checks and its associated documentation
286 // together so that we can easily have a picture of the current supported loop
287 // nests. However, some of the current checks don't depend on \p OuterLp and
288 // would be redundantly executed for each \p Lp if we invoked this function for
289 // different candidate outer loops. This is not the case for now because we
290 // don't currently have the infrastructure to evaluate multiple candidate outer
291 // loops and \p OuterLp will be a fixed parameter while we only support explicit
292 // outer loop vectorization. It's also very likely that these checks go away
293 // before introducing the aforementioned infrastructure. However, if this is not
294 // the case, we should move the \p OuterLp independent checks to a separate
295 // function that is only executed once for each \p Lp.
isUniformLoop(Loop * Lp,Loop * OuterLp)296 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
297   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
298 
299   // If Lp is the outer loop, it's uniform by definition.
300   if (Lp == OuterLp)
301     return true;
302   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
303 
304   // 1.
305   PHINode *IV = Lp->getCanonicalInductionVariable();
306   if (!IV) {
307     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
308     return false;
309   }
310 
311   // 2.
312   BasicBlock *Latch = Lp->getLoopLatch();
313   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
314   if (!LatchBr || LatchBr->isUnconditional()) {
315     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
316     return false;
317   }
318 
319   // 3.
320   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
321   if (!LatchCmp) {
322     LLVM_DEBUG(
323         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
324     return false;
325   }
326 
327   Value *CondOp0 = LatchCmp->getOperand(0);
328   Value *CondOp1 = LatchCmp->getOperand(1);
329   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
330   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
331       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
332     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
333     return false;
334   }
335 
336   return true;
337 }
338 
339 // Return true if \p Lp and all its nested loops are uniform with regard to \p
340 // OuterLp.
isUniformLoopNest(Loop * Lp,Loop * OuterLp)341 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
342   if (!isUniformLoop(Lp, OuterLp))
343     return false;
344 
345   // Check if nested loops are uniform.
346   for (Loop *SubLp : *Lp)
347     if (!isUniformLoopNest(SubLp, OuterLp))
348       return false;
349 
350   return true;
351 }
352 
353 /// Check whether it is safe to if-convert this phi node.
354 ///
355 /// Phi nodes with constant expressions that can trap are not safe to if
356 /// convert.
canIfConvertPHINodes(BasicBlock * BB)357 static bool canIfConvertPHINodes(BasicBlock *BB) {
358   for (PHINode &Phi : BB->phis()) {
359     for (Value *V : Phi.incoming_values())
360       if (auto *C = dyn_cast<Constant>(V))
361         if (C->canTrap())
362           return false;
363   }
364   return true;
365 }
366 
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)367 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
368   if (Ty->isPointerTy())
369     return DL.getIntPtrType(Ty);
370 
371   // It is possible that char's or short's overflow when we ask for the loop's
372   // trip count, work around this by changing the type size.
373   if (Ty->getScalarSizeInBits() < 32)
374     return Type::getInt32Ty(Ty->getContext());
375 
376   return Ty;
377 }
378 
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)379 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
380   Ty0 = convertPointerToIntegerType(DL, Ty0);
381   Ty1 = convertPointerToIntegerType(DL, Ty1);
382   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
383     return Ty0;
384   return Ty1;
385 }
386 
387 /// Check that the instruction has outside loop users and is not an
388 /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)389 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
390                                SmallPtrSetImpl<Value *> &AllowedExit) {
391   // Reductions, Inductions and non-header phis are allowed to have exit users. All
392   // other instructions must not have external users.
393   if (!AllowedExit.count(Inst))
394     // Check that all of the users of the loop are inside the BB.
395     for (User *U : Inst->users()) {
396       Instruction *UI = cast<Instruction>(U);
397       // This user may be a reduction exit value.
398       if (!TheLoop->contains(UI)) {
399         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
400         return true;
401       }
402     }
403   return false;
404 }
405 
isConsecutivePtr(Value * Ptr) const406 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) const {
407   const ValueToValueMap &Strides =
408       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
409 
410   Function *F = TheLoop->getHeader()->getParent();
411   bool OptForSize = F->hasOptSize() ||
412                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
413                                                 PGSOQueryType::IRPass);
414   bool CanAddPredicate = !OptForSize;
415   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
416   if (Stride == 1 || Stride == -1)
417     return Stride;
418   return 0;
419 }
420 
isUniform(Value * V)421 bool LoopVectorizationLegality::isUniform(Value *V) {
422   return LAI->isUniform(V);
423 }
424 
canVectorizeOuterLoop()425 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
426   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
427   // Store the result and return it at the end instead of exiting early, in case
428   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
429   bool Result = true;
430   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
431 
432   for (BasicBlock *BB : TheLoop->blocks()) {
433     // Check whether the BB terminator is a BranchInst. Any other terminator is
434     // not supported yet.
435     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
436     if (!Br) {
437       reportVectorizationFailure("Unsupported basic block terminator",
438           "loop control flow is not understood by vectorizer",
439           "CFGNotUnderstood", ORE, TheLoop);
440       if (DoExtraAnalysis)
441         Result = false;
442       else
443         return false;
444     }
445 
446     // Check whether the BranchInst is a supported one. Only unconditional
447     // branches, conditional branches with an outer loop invariant condition or
448     // backedges are supported.
449     // FIXME: We skip these checks when VPlan predication is enabled as we
450     // want to allow divergent branches. This whole check will be removed
451     // once VPlan predication is on by default.
452     if (!EnableVPlanPredication && Br && Br->isConditional() &&
453         !TheLoop->isLoopInvariant(Br->getCondition()) &&
454         !LI->isLoopHeader(Br->getSuccessor(0)) &&
455         !LI->isLoopHeader(Br->getSuccessor(1))) {
456       reportVectorizationFailure("Unsupported conditional branch",
457           "loop control flow is not understood by vectorizer",
458           "CFGNotUnderstood", ORE, TheLoop);
459       if (DoExtraAnalysis)
460         Result = false;
461       else
462         return false;
463     }
464   }
465 
466   // Check whether inner loops are uniform. At this point, we only support
467   // simple outer loops scenarios with uniform nested loops.
468   if (!isUniformLoopNest(TheLoop /*loop nest*/,
469                          TheLoop /*context outer loop*/)) {
470     reportVectorizationFailure("Outer loop contains divergent loops",
471         "loop control flow is not understood by vectorizer",
472         "CFGNotUnderstood", ORE, TheLoop);
473     if (DoExtraAnalysis)
474       Result = false;
475     else
476       return false;
477   }
478 
479   // Check whether we are able to set up outer loop induction.
480   if (!setupOuterLoopInductions()) {
481     reportVectorizationFailure("Unsupported outer loop Phi(s)",
482                                "Unsupported outer loop Phi(s)",
483                                "UnsupportedPhi", ORE, TheLoop);
484     if (DoExtraAnalysis)
485       Result = false;
486     else
487       return false;
488   }
489 
490   return Result;
491 }
492 
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)493 void LoopVectorizationLegality::addInductionPhi(
494     PHINode *Phi, const InductionDescriptor &ID,
495     SmallPtrSetImpl<Value *> &AllowedExit) {
496   Inductions[Phi] = ID;
497 
498   // In case this induction also comes with casts that we know we can ignore
499   // in the vectorized loop body, record them here. All casts could be recorded
500   // here for ignoring, but suffices to record only the first (as it is the
501   // only one that may bw used outside the cast sequence).
502   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
503   if (!Casts.empty())
504     InductionCastsToIgnore.insert(*Casts.begin());
505 
506   Type *PhiTy = Phi->getType();
507   const DataLayout &DL = Phi->getModule()->getDataLayout();
508 
509   // Get the widest type.
510   if (!PhiTy->isFloatingPointTy()) {
511     if (!WidestIndTy)
512       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
513     else
514       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
515   }
516 
517   // Int inductions are special because we only allow one IV.
518   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
519       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
520       isa<Constant>(ID.getStartValue()) &&
521       cast<Constant>(ID.getStartValue())->isNullValue()) {
522 
523     // Use the phi node with the widest type as induction. Use the last
524     // one if there are multiple (no good reason for doing this other
525     // than it is expedient). We've checked that it begins at zero and
526     // steps by one, so this is a canonical induction variable.
527     if (!PrimaryInduction || PhiTy == WidestIndTy)
528       PrimaryInduction = Phi;
529   }
530 
531   // Both the PHI node itself, and the "post-increment" value feeding
532   // back into the PHI node may have external users.
533   // We can allow those uses, except if the SCEVs we have for them rely
534   // on predicates that only hold within the loop, since allowing the exit
535   // currently means re-using this SCEV outside the loop (see PR33706 for more
536   // details).
537   if (PSE.getUnionPredicate().isAlwaysTrue()) {
538     AllowedExit.insert(Phi);
539     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
540   }
541 
542   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
543 }
544 
setupOuterLoopInductions()545 bool LoopVectorizationLegality::setupOuterLoopInductions() {
546   BasicBlock *Header = TheLoop->getHeader();
547 
548   // Returns true if a given Phi is a supported induction.
549   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
550     InductionDescriptor ID;
551     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
552         ID.getKind() == InductionDescriptor::IK_IntInduction) {
553       addInductionPhi(&Phi, ID, AllowedExit);
554       return true;
555     } else {
556       // Bail out for any Phi in the outer loop header that is not a supported
557       // induction.
558       LLVM_DEBUG(
559           dbgs()
560           << "LV: Found unsupported PHI for outer loop vectorization.\n");
561       return false;
562     }
563   };
564 
565   if (llvm::all_of(Header->phis(), isSupportedPhi))
566     return true;
567   else
568     return false;
569 }
570 
571 /// Checks if a function is scalarizable according to the TLI, in
572 /// the sense that it should be vectorized and then expanded in
573 /// multiple scalarcalls. This is represented in the
574 /// TLI via mappings that do not specify a vector name, as in the
575 /// following example:
576 ///
577 ///    const VecDesc VecIntrinsics[] = {
578 ///      {"llvm.phx.abs.i32", "", 4}
579 ///    };
isTLIScalarize(const TargetLibraryInfo & TLI,const CallInst & CI)580 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
581   const StringRef ScalarName = CI.getCalledFunction()->getName();
582   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
583   // Check that all known VFs are not associated to a vector
584   // function, i.e. the vector name is emty.
585   if (Scalarize) {
586     ElementCount WidestFixedVF, WidestScalableVF;
587     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
588     for (ElementCount VF = ElementCount::getFixed(2);
589          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
590       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
591     for (ElementCount VF = ElementCount::getScalable(1);
592          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
593       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
594     assert((WidestScalableVF.isZero() || !Scalarize) &&
595            "Caller may decide to scalarize a variant using a scalable VF");
596   }
597   return Scalarize;
598 }
599 
canVectorizeInstrs()600 bool LoopVectorizationLegality::canVectorizeInstrs() {
601   BasicBlock *Header = TheLoop->getHeader();
602 
603   // For each block in the loop.
604   for (BasicBlock *BB : TheLoop->blocks()) {
605     // Scan the instructions in the block and look for hazards.
606     for (Instruction &I : *BB) {
607       if (auto *Phi = dyn_cast<PHINode>(&I)) {
608         Type *PhiTy = Phi->getType();
609         // Check that this PHI type is allowed.
610         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
611             !PhiTy->isPointerTy()) {
612           reportVectorizationFailure("Found a non-int non-pointer PHI",
613                                      "loop control flow is not understood by vectorizer",
614                                      "CFGNotUnderstood", ORE, TheLoop);
615           return false;
616         }
617 
618         // If this PHINode is not in the header block, then we know that we
619         // can convert it to select during if-conversion. No need to check if
620         // the PHIs in this block are induction or reduction variables.
621         if (BB != Header) {
622           // Non-header phi nodes that have outside uses can be vectorized. Add
623           // them to the list of allowed exits.
624           // Unsafe cyclic dependencies with header phis are identified during
625           // legalization for reduction, induction and first order
626           // recurrences.
627           AllowedExit.insert(&I);
628           continue;
629         }
630 
631         // We only allow if-converted PHIs with exactly two incoming values.
632         if (Phi->getNumIncomingValues() != 2) {
633           reportVectorizationFailure("Found an invalid PHI",
634               "loop control flow is not understood by vectorizer",
635               "CFGNotUnderstood", ORE, TheLoop, Phi);
636           return false;
637         }
638 
639         RecurrenceDescriptor RedDes;
640         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
641                                                  DT)) {
642           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
643           AllowedExit.insert(RedDes.getLoopExitInstr());
644           Reductions[Phi] = RedDes;
645           continue;
646         }
647 
648         // TODO: Instead of recording the AllowedExit, it would be good to record the
649         // complementary set: NotAllowedExit. These include (but may not be
650         // limited to):
651         // 1. Reduction phis as they represent the one-before-last value, which
652         // is not available when vectorized
653         // 2. Induction phis and increment when SCEV predicates cannot be used
654         // outside the loop - see addInductionPhi
655         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
656         // outside the loop - see call to hasOutsideLoopUser in the non-phi
657         // handling below
658         // 4. FirstOrderRecurrence phis that can possibly be handled by
659         // extraction.
660         // By recording these, we can then reason about ways to vectorize each
661         // of these NotAllowedExit.
662         InductionDescriptor ID;
663         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
664           addInductionPhi(Phi, ID, AllowedExit);
665           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
666           continue;
667         }
668 
669         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
670                                                          SinkAfter, DT)) {
671           AllowedExit.insert(Phi);
672           FirstOrderRecurrences.insert(Phi);
673           continue;
674         }
675 
676         // As a last resort, coerce the PHI to a AddRec expression
677         // and re-try classifying it a an induction PHI.
678         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
679           addInductionPhi(Phi, ID, AllowedExit);
680           continue;
681         }
682 
683         reportVectorizationFailure("Found an unidentified PHI",
684             "value that could not be identified as "
685             "reduction is used outside the loop",
686             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
687         return false;
688       } // end of PHI handling
689 
690       // We handle calls that:
691       //   * Are debug info intrinsics.
692       //   * Have a mapping to an IR intrinsic.
693       //   * Have a vector version available.
694       auto *CI = dyn_cast<CallInst>(&I);
695 
696       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
697           !isa<DbgInfoIntrinsic>(CI) &&
698           !(CI->getCalledFunction() && TLI &&
699             (!VFDatabase::getMappings(*CI).empty() ||
700              isTLIScalarize(*TLI, *CI)))) {
701         // If the call is a recognized math libary call, it is likely that
702         // we can vectorize it given loosened floating-point constraints.
703         LibFunc Func;
704         bool IsMathLibCall =
705             TLI && CI->getCalledFunction() &&
706             CI->getType()->isFloatingPointTy() &&
707             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
708             TLI->hasOptimizedCodeGen(Func);
709 
710         if (IsMathLibCall) {
711           // TODO: Ideally, we should not use clang-specific language here,
712           // but it's hard to provide meaningful yet generic advice.
713           // Also, should this be guarded by allowExtraAnalysis() and/or be part
714           // of the returned info from isFunctionVectorizable()?
715           reportVectorizationFailure(
716               "Found a non-intrinsic callsite",
717               "library call cannot be vectorized. "
718               "Try compiling with -fno-math-errno, -ffast-math, "
719               "or similar flags",
720               "CantVectorizeLibcall", ORE, TheLoop, CI);
721         } else {
722           reportVectorizationFailure("Found a non-intrinsic callsite",
723                                      "call instruction cannot be vectorized",
724                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
725         }
726         return false;
727       }
728 
729       // Some intrinsics have scalar arguments and should be same in order for
730       // them to be vectorized (i.e. loop invariant).
731       if (CI) {
732         auto *SE = PSE.getSE();
733         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
734         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
735           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
736             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
737               reportVectorizationFailure("Found unvectorizable intrinsic",
738                   "intrinsic instruction cannot be vectorized",
739                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
740               return false;
741             }
742           }
743       }
744 
745       // Check that the instruction return type is vectorizable.
746       // Also, we can't vectorize extractelement instructions.
747       if ((!VectorType::isValidElementType(I.getType()) &&
748            !I.getType()->isVoidTy()) ||
749           isa<ExtractElementInst>(I)) {
750         reportVectorizationFailure("Found unvectorizable type",
751             "instruction return type cannot be vectorized",
752             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
753         return false;
754       }
755 
756       // Check that the stored type is vectorizable.
757       if (auto *ST = dyn_cast<StoreInst>(&I)) {
758         Type *T = ST->getValueOperand()->getType();
759         if (!VectorType::isValidElementType(T)) {
760           reportVectorizationFailure("Store instruction cannot be vectorized",
761                                      "store instruction cannot be vectorized",
762                                      "CantVectorizeStore", ORE, TheLoop, ST);
763           return false;
764         }
765 
766         // For nontemporal stores, check that a nontemporal vector version is
767         // supported on the target.
768         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
769           // Arbitrarily try a vector of 2 elements.
770           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
771           assert(VecTy && "did not find vectorized version of stored type");
772           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
773             reportVectorizationFailure(
774                 "nontemporal store instruction cannot be vectorized",
775                 "nontemporal store instruction cannot be vectorized",
776                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
777             return false;
778           }
779         }
780 
781       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
782         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
783           // For nontemporal loads, check that a nontemporal vector version is
784           // supported on the target (arbitrarily try a vector of 2 elements).
785           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
786           assert(VecTy && "did not find vectorized version of load type");
787           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
788             reportVectorizationFailure(
789                 "nontemporal load instruction cannot be vectorized",
790                 "nontemporal load instruction cannot be vectorized",
791                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
792             return false;
793           }
794         }
795 
796         // FP instructions can allow unsafe algebra, thus vectorizable by
797         // non-IEEE-754 compliant SIMD units.
798         // This applies to floating-point math operations and calls, not memory
799         // operations, shuffles, or casts, as they don't change precision or
800         // semantics.
801       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
802                  !I.isFast()) {
803         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
804         Hints->setPotentiallyUnsafe();
805       }
806 
807       // Reduction instructions are allowed to have exit users.
808       // All other instructions must not have external users.
809       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
810         // We can safely vectorize loops where instructions within the loop are
811         // used outside the loop only if the SCEV predicates within the loop is
812         // same as outside the loop. Allowing the exit means reusing the SCEV
813         // outside the loop.
814         if (PSE.getUnionPredicate().isAlwaysTrue()) {
815           AllowedExit.insert(&I);
816           continue;
817         }
818         reportVectorizationFailure("Value cannot be used outside the loop",
819                                    "value cannot be used outside the loop",
820                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
821         return false;
822       }
823     } // next instr.
824   }
825 
826   if (!PrimaryInduction) {
827     if (Inductions.empty()) {
828       reportVectorizationFailure("Did not find one integer induction var",
829           "loop induction variable could not be identified",
830           "NoInductionVariable", ORE, TheLoop);
831       return false;
832     } else if (!WidestIndTy) {
833       reportVectorizationFailure("Did not find one integer induction var",
834           "integer loop induction variable could not be identified",
835           "NoIntegerInductionVariable", ORE, TheLoop);
836       return false;
837     } else {
838       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
839     }
840   }
841 
842   // For first order recurrences, we use the previous value (incoming value from
843   // the latch) to check if it dominates all users of the recurrence. Bail out
844   // if we have to sink such an instruction for another recurrence, as the
845   // dominance requirement may not hold after sinking.
846   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
847   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
848         Instruction *V =
849             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
850         return SinkAfter.find(V) != SinkAfter.end();
851       }))
852     return false;
853 
854   // Now we know the widest induction type, check if our found induction
855   // is the same size. If it's not, unset it here and InnerLoopVectorizer
856   // will create another.
857   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
858     PrimaryInduction = nullptr;
859 
860   return true;
861 }
862 
canVectorizeMemory()863 bool LoopVectorizationLegality::canVectorizeMemory() {
864   LAI = &(*GetLAA)(*TheLoop);
865   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
866   if (LAR) {
867     ORE->emit([&]() {
868       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
869                                         "loop not vectorized: ", *LAR);
870     });
871   }
872   if (!LAI->canVectorizeMemory())
873     return false;
874 
875   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
876     reportVectorizationFailure("Stores to a uniform address",
877         "write to a loop invariant address could not be vectorized",
878         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
879     return false;
880   }
881   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
882   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
883 
884   return true;
885 }
886 
isInductionPhi(const Value * V)887 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
888   Value *In0 = const_cast<Value *>(V);
889   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
890   if (!PN)
891     return false;
892 
893   return Inductions.count(PN);
894 }
895 
isCastedInductionVariable(const Value * V)896 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
897   auto *Inst = dyn_cast<Instruction>(V);
898   return (Inst && InductionCastsToIgnore.count(Inst));
899 }
900 
isInductionVariable(const Value * V)901 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
902   return isInductionPhi(V) || isCastedInductionVariable(V);
903 }
904 
isFirstOrderRecurrence(const PHINode * Phi)905 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
906   return FirstOrderRecurrences.count(Phi);
907 }
908 
blockNeedsPredication(BasicBlock * BB) const909 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
910   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
911 }
912 
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs,SmallPtrSetImpl<const Instruction * > & MaskedOp,SmallPtrSetImpl<Instruction * > & ConditionalAssumes,bool PreserveGuards) const913 bool LoopVectorizationLegality::blockCanBePredicated(
914     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
915     SmallPtrSetImpl<const Instruction *> &MaskedOp,
916     SmallPtrSetImpl<Instruction *> &ConditionalAssumes,
917     bool PreserveGuards) const {
918   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
919 
920   for (Instruction &I : *BB) {
921     // Check that we don't have a constant expression that can trap as operand.
922     for (Value *Operand : I.operands()) {
923       if (auto *C = dyn_cast<Constant>(Operand))
924         if (C->canTrap())
925           return false;
926     }
927 
928     // We can predicate blocks with calls to assume, as long as we drop them in
929     // case we flatten the CFG via predication.
930     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
931       ConditionalAssumes.insert(&I);
932       continue;
933     }
934 
935     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
936     // TODO: there might be cases that it should block the vectorization. Let's
937     // ignore those for now.
938     if (isa<NoAliasScopeDeclInst>(&I))
939       continue;
940 
941     // We might be able to hoist the load.
942     if (I.mayReadFromMemory()) {
943       auto *LI = dyn_cast<LoadInst>(&I);
944       if (!LI)
945         return false;
946       if (!SafePtrs.count(LI->getPointerOperand())) {
947         // !llvm.mem.parallel_loop_access implies if-conversion safety.
948         // Otherwise, record that the load needs (real or emulated) masking
949         // and let the cost model decide.
950         if (!IsAnnotatedParallel || PreserveGuards)
951           MaskedOp.insert(LI);
952         continue;
953       }
954     }
955 
956     if (I.mayWriteToMemory()) {
957       auto *SI = dyn_cast<StoreInst>(&I);
958       if (!SI)
959         return false;
960       // Predicated store requires some form of masking:
961       // 1) masked store HW instruction,
962       // 2) emulation via load-blend-store (only if safe and legal to do so,
963       //    be aware on the race conditions), or
964       // 3) element-by-element predicate check and scalar store.
965       MaskedOp.insert(SI);
966       continue;
967     }
968     if (I.mayThrow())
969       return false;
970   }
971 
972   return true;
973 }
974 
canVectorizeWithIfConvert()975 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
976   if (!EnableIfConversion) {
977     reportVectorizationFailure("If-conversion is disabled",
978                                "if-conversion is disabled",
979                                "IfConversionDisabled",
980                                ORE, TheLoop);
981     return false;
982   }
983 
984   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
985 
986   // A list of pointers which are known to be dereferenceable within scope of
987   // the loop body for each iteration of the loop which executes.  That is,
988   // the memory pointed to can be dereferenced (with the access size implied by
989   // the value's type) unconditionally within the loop header without
990   // introducing a new fault.
991   SmallPtrSet<Value *, 8> SafePointers;
992 
993   // Collect safe addresses.
994   for (BasicBlock *BB : TheLoop->blocks()) {
995     if (!blockNeedsPredication(BB)) {
996       for (Instruction &I : *BB)
997         if (auto *Ptr = getLoadStorePointerOperand(&I))
998           SafePointers.insert(Ptr);
999       continue;
1000     }
1001 
1002     // For a block which requires predication, a address may be safe to access
1003     // in the loop w/o predication if we can prove dereferenceability facts
1004     // sufficient to ensure it'll never fault within the loop. For the moment,
1005     // we restrict this to loads; stores are more complicated due to
1006     // concurrency restrictions.
1007     ScalarEvolution &SE = *PSE.getSE();
1008     for (Instruction &I : *BB) {
1009       LoadInst *LI = dyn_cast<LoadInst>(&I);
1010       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1011           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1012         SafePointers.insert(LI->getPointerOperand());
1013     }
1014   }
1015 
1016   // Collect the blocks that need predication.
1017   BasicBlock *Header = TheLoop->getHeader();
1018   for (BasicBlock *BB : TheLoop->blocks()) {
1019     // We don't support switch statements inside loops.
1020     if (!isa<BranchInst>(BB->getTerminator())) {
1021       reportVectorizationFailure("Loop contains a switch statement",
1022                                  "loop contains a switch statement",
1023                                  "LoopContainsSwitch", ORE, TheLoop,
1024                                  BB->getTerminator());
1025       return false;
1026     }
1027 
1028     // We must be able to predicate all blocks that need to be predicated.
1029     if (blockNeedsPredication(BB)) {
1030       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1031                                 ConditionalAssumes)) {
1032         reportVectorizationFailure(
1033             "Control flow cannot be substituted for a select",
1034             "control flow cannot be substituted for a select",
1035             "NoCFGForSelect", ORE, TheLoop,
1036             BB->getTerminator());
1037         return false;
1038       }
1039     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1040       reportVectorizationFailure(
1041           "Control flow cannot be substituted for a select",
1042           "control flow cannot be substituted for a select",
1043           "NoCFGForSelect", ORE, TheLoop,
1044           BB->getTerminator());
1045       return false;
1046     }
1047   }
1048 
1049   // We can if-convert this loop.
1050   return true;
1051 }
1052 
1053 // Helper function to canVectorizeLoopNestCFG.
canVectorizeLoopCFG(Loop * Lp,bool UseVPlanNativePath)1054 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1055                                                     bool UseVPlanNativePath) {
1056   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1057          "VPlan-native path is not enabled.");
1058 
1059   // TODO: ORE should be improved to show more accurate information when an
1060   // outer loop can't be vectorized because a nested loop is not understood or
1061   // legal. Something like: "outer_loop_location: loop not vectorized:
1062   // (inner_loop_location) loop control flow is not understood by vectorizer".
1063 
1064   // Store the result and return it at the end instead of exiting early, in case
1065   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1066   bool Result = true;
1067   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1068 
1069   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1070   // be canonicalized.
1071   if (!Lp->getLoopPreheader()) {
1072     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1073         "loop control flow is not understood by vectorizer",
1074         "CFGNotUnderstood", ORE, TheLoop);
1075     if (DoExtraAnalysis)
1076       Result = false;
1077     else
1078       return false;
1079   }
1080 
1081   // We must have a single backedge.
1082   if (Lp->getNumBackEdges() != 1) {
1083     reportVectorizationFailure("The loop must have a single backedge",
1084         "loop control flow is not understood by vectorizer",
1085         "CFGNotUnderstood", ORE, TheLoop);
1086     if (DoExtraAnalysis)
1087       Result = false;
1088     else
1089       return false;
1090   }
1091 
1092   // We currently must have a single "exit block" after the loop. Note that
1093   // multiple "exiting blocks" inside the loop are allowed, provided they all
1094   // reach the single exit block.
1095   // TODO: This restriction can be relaxed in the near future, it's here solely
1096   // to allow separation of changes for review. We need to generalize the phi
1097   // update logic in a number of places.
1098   if (!Lp->getUniqueExitBlock()) {
1099     reportVectorizationFailure("The loop must have a unique exit block",
1100         "loop control flow is not understood by vectorizer",
1101         "CFGNotUnderstood", ORE, TheLoop);
1102     if (DoExtraAnalysis)
1103       Result = false;
1104     else
1105       return false;
1106   }
1107   return Result;
1108 }
1109 
canVectorizeLoopNestCFG(Loop * Lp,bool UseVPlanNativePath)1110 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1111     Loop *Lp, bool UseVPlanNativePath) {
1112   // Store the result and return it at the end instead of exiting early, in case
1113   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1114   bool Result = true;
1115   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1116   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1117     if (DoExtraAnalysis)
1118       Result = false;
1119     else
1120       return false;
1121   }
1122 
1123   // Recursively check whether the loop control flow of nested loops is
1124   // understood.
1125   for (Loop *SubLp : *Lp)
1126     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1127       if (DoExtraAnalysis)
1128         Result = false;
1129       else
1130         return false;
1131     }
1132 
1133   return Result;
1134 }
1135 
canVectorize(bool UseVPlanNativePath)1136 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1137   // Store the result and return it at the end instead of exiting early, in case
1138   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1139   bool Result = true;
1140 
1141   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1142   // Check whether the loop-related control flow in the loop nest is expected by
1143   // vectorizer.
1144   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1145     if (DoExtraAnalysis)
1146       Result = false;
1147     else
1148       return false;
1149   }
1150 
1151   // We need to have a loop header.
1152   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1153                     << '\n');
1154 
1155   // Specific checks for outer loops. We skip the remaining legal checks at this
1156   // point because they don't support outer loops.
1157   if (!TheLoop->isInnermost()) {
1158     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1159 
1160     if (!canVectorizeOuterLoop()) {
1161       reportVectorizationFailure("Unsupported outer loop",
1162                                  "unsupported outer loop",
1163                                  "UnsupportedOuterLoop",
1164                                  ORE, TheLoop);
1165       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1166       // outer loops.
1167       return false;
1168     }
1169 
1170     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1171     return Result;
1172   }
1173 
1174   assert(TheLoop->isInnermost() && "Inner loop expected.");
1175   // Check if we can if-convert non-single-bb loops.
1176   unsigned NumBlocks = TheLoop->getNumBlocks();
1177   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1178     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1179     if (DoExtraAnalysis)
1180       Result = false;
1181     else
1182       return false;
1183   }
1184 
1185   // Check if we can vectorize the instructions and CFG in this loop.
1186   if (!canVectorizeInstrs()) {
1187     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1188     if (DoExtraAnalysis)
1189       Result = false;
1190     else
1191       return false;
1192   }
1193 
1194   // Go over each instruction and look at memory deps.
1195   if (!canVectorizeMemory()) {
1196     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1197     if (DoExtraAnalysis)
1198       Result = false;
1199     else
1200       return false;
1201   }
1202 
1203   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1204                     << (LAI->getRuntimePointerChecking()->Need
1205                             ? " (with a runtime bound check)"
1206                             : "")
1207                     << "!\n");
1208 
1209   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1210   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1211     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1212 
1213   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1214     reportVectorizationFailure("Too many SCEV checks needed",
1215         "Too many SCEV assumptions need to be made and checked at runtime",
1216         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1217     if (DoExtraAnalysis)
1218       Result = false;
1219     else
1220       return false;
1221   }
1222 
1223   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1224   // we can vectorize, and at this point we don't have any other mem analysis
1225   // which may limit our maximum vectorization factor, so just return true with
1226   // no restrictions.
1227   return Result;
1228 }
1229 
prepareToFoldTailByMasking()1230 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1231 
1232   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1233 
1234   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1235 
1236   for (auto &Reduction : getReductionVars())
1237     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1238 
1239   // TODO: handle non-reduction outside users when tail is folded by masking.
1240   for (auto *AE : AllowedExit) {
1241     // Check that all users of allowed exit values are inside the loop or
1242     // are the live-out of a reduction.
1243     if (ReductionLiveOuts.count(AE))
1244       continue;
1245     for (User *U : AE->users()) {
1246       Instruction *UI = cast<Instruction>(U);
1247       if (TheLoop->contains(UI))
1248         continue;
1249       LLVM_DEBUG(
1250           dbgs()
1251           << "LV: Cannot fold tail by masking, loop has an outside user for "
1252           << *UI << "\n");
1253       return false;
1254     }
1255   }
1256 
1257   // The list of pointers that we can safely read and write to remains empty.
1258   SmallPtrSet<Value *, 8> SafePointers;
1259 
1260   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1261   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1262 
1263   // Check and mark all blocks for predication, including those that ordinarily
1264   // do not need predication such as the header block.
1265   for (BasicBlock *BB : TheLoop->blocks()) {
1266     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1267                               TmpConditionalAssumes,
1268                               /* MaskAllLoads= */ true)) {
1269       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1270       return false;
1271     }
1272   }
1273 
1274   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1275 
1276   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1277   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1278                             TmpConditionalAssumes.end());
1279 
1280   return true;
1281 }
1282 
1283 } // namespace llvm
1284