1 //===-- ReachableCode.cpp - Code Reachability Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a flow-sensitive, path-insensitive analysis of
10 // determining reachable blocks within a CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/Analyses/ReachableCode.h"
15 #include "clang/AST/Expr.h"
16 #include "clang/AST/ExprCXX.h"
17 #include "clang/AST/ExprObjC.h"
18 #include "clang/AST/ParentMap.h"
19 #include "clang/AST/StmtCXX.h"
20 #include "clang/Analysis/AnalysisDeclContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Basic/Builtins.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Lex/Preprocessor.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include <optional>
28
29 using namespace clang;
30
31 //===----------------------------------------------------------------------===//
32 // Core Reachability Analysis routines.
33 //===----------------------------------------------------------------------===//
34
isEnumConstant(const Expr * Ex)35 static bool isEnumConstant(const Expr *Ex) {
36 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
37 if (!DR)
38 return false;
39 return isa<EnumConstantDecl>(DR->getDecl());
40 }
41
isTrivialExpression(const Expr * Ex)42 static bool isTrivialExpression(const Expr *Ex) {
43 Ex = Ex->IgnoreParenCasts();
44 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
45 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
46 isa<CharacterLiteral>(Ex) ||
47 isEnumConstant(Ex);
48 }
49
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)50 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
51 // Check if the block ends with a do...while() and see if 'S' is the
52 // condition.
53 if (const Stmt *Term = B->getTerminatorStmt()) {
54 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
55 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
56 return Cond == S && isTrivialExpression(Cond);
57 }
58 }
59 return false;
60 }
61
isBuiltinUnreachable(const Stmt * S)62 static bool isBuiltinUnreachable(const Stmt *S) {
63 if (const auto *DRE = dyn_cast<DeclRefExpr>(S))
64 if (const auto *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl()))
65 return FDecl->getIdentifier() &&
66 FDecl->getBuiltinID() == Builtin::BI__builtin_unreachable;
67 return false;
68 }
69
isBuiltinAssumeFalse(const CFGBlock * B,const Stmt * S,ASTContext & C)70 static bool isBuiltinAssumeFalse(const CFGBlock *B, const Stmt *S,
71 ASTContext &C) {
72 if (B->empty()) {
73 // Happens if S is B's terminator and B contains nothing else
74 // (e.g. a CFGBlock containing only a goto).
75 return false;
76 }
77 if (std::optional<CFGStmt> CS = B->back().getAs<CFGStmt>()) {
78 if (const auto *CE = dyn_cast<CallExpr>(CS->getStmt())) {
79 return CE->getCallee()->IgnoreCasts() == S && CE->isBuiltinAssumeFalse(C);
80 }
81 }
82 return false;
83 }
84
isDeadReturn(const CFGBlock * B,const Stmt * S)85 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
86 // Look to see if the current control flow ends with a 'return', and see if
87 // 'S' is a substatement. The 'return' may not be the last element in the
88 // block, or may be in a subsequent block because of destructors.
89 const CFGBlock *Current = B;
90 while (true) {
91 for (const CFGElement &CE : llvm::reverse(*Current)) {
92 if (std::optional<CFGStmt> CS = CE.getAs<CFGStmt>()) {
93 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
94 if (RS == S)
95 return true;
96 if (const Expr *RE = RS->getRetValue()) {
97 RE = RE->IgnoreParenCasts();
98 if (RE == S)
99 return true;
100 ParentMap PM(const_cast<Expr *>(RE));
101 // If 'S' is in the ParentMap, it is a subexpression of
102 // the return statement.
103 return PM.getParent(S);
104 }
105 }
106 break;
107 }
108 }
109 // Note also that we are restricting the search for the return statement
110 // to stop at control-flow; only part of a return statement may be dead,
111 // without the whole return statement being dead.
112 if (Current->getTerminator().isTemporaryDtorsBranch()) {
113 // Temporary destructors have a predictable control flow, thus we want to
114 // look into the next block for the return statement.
115 // We look into the false branch, as we know the true branch only contains
116 // the call to the destructor.
117 assert(Current->succ_size() == 2);
118 Current = *(Current->succ_begin() + 1);
119 } else if (!Current->getTerminatorStmt() && Current->succ_size() == 1) {
120 // If there is only one successor, we're not dealing with outgoing control
121 // flow. Thus, look into the next block.
122 Current = *Current->succ_begin();
123 if (Current->pred_size() > 1) {
124 // If there is more than one predecessor, we're dealing with incoming
125 // control flow - if the return statement is in that block, it might
126 // well be reachable via a different control flow, thus it's not dead.
127 return false;
128 }
129 } else {
130 // We hit control flow or a dead end. Stop searching.
131 return false;
132 }
133 }
134 llvm_unreachable("Broke out of infinite loop.");
135 }
136
getTopMostMacro(SourceLocation Loc,SourceManager & SM)137 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
138 assert(Loc.isMacroID());
139 SourceLocation Last;
140 do {
141 Last = Loc;
142 Loc = SM.getImmediateMacroCallerLoc(Loc);
143 } while (Loc.isMacroID());
144 return Last;
145 }
146
147 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)148 static bool isExpandedFromConfigurationMacro(const Stmt *S,
149 Preprocessor &PP,
150 bool IgnoreYES_NO = false) {
151 // FIXME: This is not very precise. Here we just check to see if the
152 // value comes from a macro, but we can do much better. This is likely
153 // to be over conservative. This logic is factored into a separate function
154 // so that we can refine it later.
155 SourceLocation L = S->getBeginLoc();
156 if (L.isMacroID()) {
157 SourceManager &SM = PP.getSourceManager();
158 if (IgnoreYES_NO) {
159 // The Objective-C constant 'YES' and 'NO'
160 // are defined as macros. Do not treat them
161 // as configuration values.
162 SourceLocation TopL = getTopMostMacro(L, SM);
163 StringRef MacroName = PP.getImmediateMacroName(TopL);
164 if (MacroName == "YES" || MacroName == "NO")
165 return false;
166 } else if (!PP.getLangOpts().CPlusPlus) {
167 // Do not treat C 'false' and 'true' macros as configuration values.
168 SourceLocation TopL = getTopMostMacro(L, SM);
169 StringRef MacroName = PP.getImmediateMacroName(TopL);
170 if (MacroName == "false" || MacroName == "true")
171 return false;
172 }
173 return true;
174 }
175 return false;
176 }
177
178 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
179
180 /// Returns true if the statement represents a configuration value.
181 ///
182 /// A configuration value is something usually determined at compile-time
183 /// to conditionally always execute some branch. Such guards are for
184 /// "sometimes unreachable" code. Such code is usually not interesting
185 /// to report as unreachable, and may mask truly unreachable code within
186 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)187 static bool isConfigurationValue(const Stmt *S,
188 Preprocessor &PP,
189 SourceRange *SilenceableCondVal = nullptr,
190 bool IncludeIntegers = true,
191 bool WrappedInParens = false) {
192 if (!S)
193 return false;
194
195 if (const auto *Ex = dyn_cast<Expr>(S))
196 S = Ex->IgnoreImplicit();
197
198 if (const auto *Ex = dyn_cast<Expr>(S))
199 S = Ex->IgnoreCasts();
200
201 // Special case looking for the sigil '()' around an integer literal.
202 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
203 if (!PE->getBeginLoc().isMacroID())
204 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
205 IncludeIntegers, true);
206
207 if (const Expr *Ex = dyn_cast<Expr>(S))
208 S = Ex->IgnoreCasts();
209
210 bool IgnoreYES_NO = false;
211
212 switch (S->getStmtClass()) {
213 case Stmt::CallExprClass: {
214 const FunctionDecl *Callee =
215 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
216 return Callee ? Callee->isConstexpr() : false;
217 }
218 case Stmt::DeclRefExprClass:
219 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
220 case Stmt::ObjCBoolLiteralExprClass:
221 IgnoreYES_NO = true;
222 [[fallthrough]];
223 case Stmt::CXXBoolLiteralExprClass:
224 case Stmt::IntegerLiteralClass: {
225 const Expr *E = cast<Expr>(S);
226 if (IncludeIntegers) {
227 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
228 *SilenceableCondVal = E->getSourceRange();
229 return WrappedInParens ||
230 isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
231 }
232 return false;
233 }
234 case Stmt::MemberExprClass:
235 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
236 case Stmt::UnaryExprOrTypeTraitExprClass:
237 return true;
238 case Stmt::BinaryOperatorClass: {
239 const BinaryOperator *B = cast<BinaryOperator>(S);
240 // Only include raw integers (not enums) as configuration
241 // values if they are used in a logical or comparison operator
242 // (not arithmetic).
243 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
244 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
245 IncludeIntegers) ||
246 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
247 IncludeIntegers);
248 }
249 case Stmt::UnaryOperatorClass: {
250 const UnaryOperator *UO = cast<UnaryOperator>(S);
251 if (UO->getOpcode() != UO_LNot && UO->getOpcode() != UO_Minus)
252 return false;
253 bool SilenceableCondValNotSet =
254 SilenceableCondVal && SilenceableCondVal->getBegin().isInvalid();
255 bool IsSubExprConfigValue =
256 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
257 IncludeIntegers, WrappedInParens);
258 // Update the silenceable condition value source range only if the range
259 // was set directly by the child expression.
260 if (SilenceableCondValNotSet &&
261 SilenceableCondVal->getBegin().isValid() &&
262 *SilenceableCondVal ==
263 UO->getSubExpr()->IgnoreCasts()->getSourceRange())
264 *SilenceableCondVal = UO->getSourceRange();
265 return IsSubExprConfigValue;
266 }
267 default:
268 return false;
269 }
270 }
271
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)272 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
273 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
274 return isConfigurationValue(ED->getInitExpr(), PP);
275 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
276 // As a heuristic, treat globals as configuration values. Note
277 // that we only will get here if Sema evaluated this
278 // condition to a constant expression, which means the global
279 // had to be declared in a way to be a truly constant value.
280 // We could generalize this to local variables, but it isn't
281 // clear if those truly represent configuration values that
282 // gate unreachable code.
283 if (!VD->hasLocalStorage())
284 return true;
285
286 // As a heuristic, locals that have been marked 'const' explicitly
287 // can be treated as configuration values as well.
288 return VD->getType().isLocalConstQualified();
289 }
290 return false;
291 }
292
293 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)294 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
295 Preprocessor &PP) {
296 if (const Stmt *Term = B->getTerminatorStmt()) {
297 if (isa<SwitchStmt>(Term))
298 return true;
299 // Specially handle '||' and '&&'.
300 if (isa<BinaryOperator>(Term)) {
301 return isConfigurationValue(Term, PP);
302 }
303 // Do not treat constexpr if statement successors as unreachable in warnings
304 // since the point of these statements is to determine branches at compile
305 // time.
306 if (const auto *IS = dyn_cast<IfStmt>(Term);
307 IS != nullptr && IS->isConstexpr())
308 return true;
309 }
310
311 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
312 return isConfigurationValue(Cond, PP);
313 }
314
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)315 static unsigned scanFromBlock(const CFGBlock *Start,
316 llvm::BitVector &Reachable,
317 Preprocessor *PP,
318 bool IncludeSometimesUnreachableEdges) {
319 unsigned count = 0;
320
321 // Prep work queue
322 SmallVector<const CFGBlock*, 32> WL;
323
324 // The entry block may have already been marked reachable
325 // by the caller.
326 if (!Reachable[Start->getBlockID()]) {
327 ++count;
328 Reachable[Start->getBlockID()] = true;
329 }
330
331 WL.push_back(Start);
332
333 // Find the reachable blocks from 'Start'.
334 while (!WL.empty()) {
335 const CFGBlock *item = WL.pop_back_val();
336
337 // There are cases where we want to treat all successors as reachable.
338 // The idea is that some "sometimes unreachable" code is not interesting,
339 // and that we should forge ahead and explore those branches anyway.
340 // This allows us to potentially uncover some "always unreachable" code
341 // within the "sometimes unreachable" code.
342 // Look at the successors and mark then reachable.
343 std::optional<bool> TreatAllSuccessorsAsReachable;
344 if (!IncludeSometimesUnreachableEdges)
345 TreatAllSuccessorsAsReachable = false;
346
347 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
348 E = item->succ_end(); I != E; ++I) {
349 const CFGBlock *B = *I;
350 if (!B) do {
351 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
352 if (!UB)
353 break;
354
355 if (!TreatAllSuccessorsAsReachable) {
356 assert(PP);
357 TreatAllSuccessorsAsReachable =
358 shouldTreatSuccessorsAsReachable(item, *PP);
359 }
360
361 if (*TreatAllSuccessorsAsReachable) {
362 B = UB;
363 break;
364 }
365 }
366 while (false);
367
368 if (B) {
369 unsigned blockID = B->getBlockID();
370 if (!Reachable[blockID]) {
371 Reachable.set(blockID);
372 WL.push_back(B);
373 ++count;
374 }
375 }
376 }
377 }
378 return count;
379 }
380
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)381 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
382 Preprocessor &PP,
383 llvm::BitVector &Reachable) {
384 return scanFromBlock(Start, Reachable, &PP, true);
385 }
386
387 //===----------------------------------------------------------------------===//
388 // Dead Code Scanner.
389 //===----------------------------------------------------------------------===//
390
391 namespace {
392 class DeadCodeScan {
393 llvm::BitVector Visited;
394 llvm::BitVector &Reachable;
395 SmallVector<const CFGBlock *, 10> WorkList;
396 Preprocessor &PP;
397 ASTContext &C;
398
399 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
400 DeferredLocsTy;
401
402 DeferredLocsTy DeferredLocs;
403
404 public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP,ASTContext & C)405 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP, ASTContext &C)
406 : Visited(reachable.size()),
407 Reachable(reachable),
408 PP(PP), C(C) {}
409
410 void enqueue(const CFGBlock *block);
411 unsigned scanBackwards(const CFGBlock *Start,
412 clang::reachable_code::Callback &CB);
413
414 bool isDeadCodeRoot(const CFGBlock *Block);
415
416 const Stmt *findDeadCode(const CFGBlock *Block);
417
418 void reportDeadCode(const CFGBlock *B,
419 const Stmt *S,
420 clang::reachable_code::Callback &CB);
421 };
422 }
423
enqueue(const CFGBlock * block)424 void DeadCodeScan::enqueue(const CFGBlock *block) {
425 unsigned blockID = block->getBlockID();
426 if (Reachable[blockID] || Visited[blockID])
427 return;
428 Visited[blockID] = true;
429 WorkList.push_back(block);
430 }
431
isDeadCodeRoot(const clang::CFGBlock * Block)432 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
433 bool isDeadRoot = true;
434
435 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
436 E = Block->pred_end(); I != E; ++I) {
437 if (const CFGBlock *PredBlock = *I) {
438 unsigned blockID = PredBlock->getBlockID();
439 if (Visited[blockID]) {
440 isDeadRoot = false;
441 continue;
442 }
443 if (!Reachable[blockID]) {
444 isDeadRoot = false;
445 Visited[blockID] = true;
446 WorkList.push_back(PredBlock);
447 continue;
448 }
449 }
450 }
451
452 return isDeadRoot;
453 }
454
isValidDeadStmt(const Stmt * S)455 static bool isValidDeadStmt(const Stmt *S) {
456 if (S->getBeginLoc().isInvalid())
457 return false;
458 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
459 return BO->getOpcode() != BO_Comma;
460 return true;
461 }
462
findDeadCode(const clang::CFGBlock * Block)463 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
464 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
465 if (std::optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
466 const Stmt *S = CS->getStmt();
467 if (isValidDeadStmt(S))
468 return S;
469 }
470
471 CFGTerminator T = Block->getTerminator();
472 if (T.isStmtBranch()) {
473 const Stmt *S = T.getStmt();
474 if (S && isValidDeadStmt(S))
475 return S;
476 }
477
478 return nullptr;
479 }
480
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)481 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
482 const std::pair<const CFGBlock *, const Stmt *> *p2) {
483 if (p1->second->getBeginLoc() < p2->second->getBeginLoc())
484 return -1;
485 if (p2->second->getBeginLoc() < p1->second->getBeginLoc())
486 return 1;
487 return 0;
488 }
489
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)490 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
491 clang::reachable_code::Callback &CB) {
492
493 unsigned count = 0;
494 enqueue(Start);
495
496 while (!WorkList.empty()) {
497 const CFGBlock *Block = WorkList.pop_back_val();
498
499 // It is possible that this block has been marked reachable after
500 // it was enqueued.
501 if (Reachable[Block->getBlockID()])
502 continue;
503
504 // Look for any dead code within the block.
505 const Stmt *S = findDeadCode(Block);
506
507 if (!S) {
508 // No dead code. Possibly an empty block. Look at dead predecessors.
509 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
510 E = Block->pred_end(); I != E; ++I) {
511 if (const CFGBlock *predBlock = *I)
512 enqueue(predBlock);
513 }
514 continue;
515 }
516
517 // Specially handle macro-expanded code.
518 if (S->getBeginLoc().isMacroID()) {
519 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
520 continue;
521 }
522
523 if (isDeadCodeRoot(Block)) {
524 reportDeadCode(Block, S, CB);
525 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
526 }
527 else {
528 // Record this statement as the possibly best location in a
529 // strongly-connected component of dead code for emitting a
530 // warning.
531 DeferredLocs.push_back(std::make_pair(Block, S));
532 }
533 }
534
535 // If we didn't find a dead root, then report the dead code with the
536 // earliest location.
537 if (!DeferredLocs.empty()) {
538 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
539 for (const auto &I : DeferredLocs) {
540 const CFGBlock *Block = I.first;
541 if (Reachable[Block->getBlockID()])
542 continue;
543 reportDeadCode(Block, I.second, CB);
544 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
545 }
546 }
547
548 return count;
549 }
550
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)551 static SourceLocation GetUnreachableLoc(const Stmt *S,
552 SourceRange &R1,
553 SourceRange &R2) {
554 R1 = R2 = SourceRange();
555
556 if (const Expr *Ex = dyn_cast<Expr>(S))
557 S = Ex->IgnoreParenImpCasts();
558
559 switch (S->getStmtClass()) {
560 case Expr::BinaryOperatorClass: {
561 const BinaryOperator *BO = cast<BinaryOperator>(S);
562 return BO->getOperatorLoc();
563 }
564 case Expr::UnaryOperatorClass: {
565 const UnaryOperator *UO = cast<UnaryOperator>(S);
566 R1 = UO->getSubExpr()->getSourceRange();
567 return UO->getOperatorLoc();
568 }
569 case Expr::CompoundAssignOperatorClass: {
570 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
571 R1 = CAO->getLHS()->getSourceRange();
572 R2 = CAO->getRHS()->getSourceRange();
573 return CAO->getOperatorLoc();
574 }
575 case Expr::BinaryConditionalOperatorClass:
576 case Expr::ConditionalOperatorClass: {
577 const AbstractConditionalOperator *CO =
578 cast<AbstractConditionalOperator>(S);
579 return CO->getQuestionLoc();
580 }
581 case Expr::MemberExprClass: {
582 const MemberExpr *ME = cast<MemberExpr>(S);
583 R1 = ME->getSourceRange();
584 return ME->getMemberLoc();
585 }
586 case Expr::ArraySubscriptExprClass: {
587 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
588 R1 = ASE->getLHS()->getSourceRange();
589 R2 = ASE->getRHS()->getSourceRange();
590 return ASE->getRBracketLoc();
591 }
592 case Expr::CStyleCastExprClass: {
593 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
594 R1 = CSC->getSubExpr()->getSourceRange();
595 return CSC->getLParenLoc();
596 }
597 case Expr::CXXFunctionalCastExprClass: {
598 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
599 R1 = CE->getSubExpr()->getSourceRange();
600 return CE->getBeginLoc();
601 }
602 case Stmt::CXXTryStmtClass: {
603 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
604 }
605 case Expr::ObjCBridgedCastExprClass: {
606 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
607 R1 = CSC->getSubExpr()->getSourceRange();
608 return CSC->getLParenLoc();
609 }
610 default: ;
611 }
612 R1 = S->getSourceRange();
613 return S->getBeginLoc();
614 }
615
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)616 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
617 const Stmt *S,
618 clang::reachable_code::Callback &CB) {
619 // Classify the unreachable code found, or suppress it in some cases.
620 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
621
622 if (isa<BreakStmt>(S)) {
623 UK = reachable_code::UK_Break;
624 } else if (isTrivialDoWhile(B, S) || isBuiltinUnreachable(S) ||
625 isBuiltinAssumeFalse(B, S, C)) {
626 return;
627 }
628 else if (isDeadReturn(B, S)) {
629 UK = reachable_code::UK_Return;
630 }
631
632 SourceRange SilenceableCondVal;
633
634 if (UK == reachable_code::UK_Other) {
635 // Check if the dead code is part of the "loop target" of
636 // a for/for-range loop. This is the block that contains
637 // the increment code.
638 if (const Stmt *LoopTarget = B->getLoopTarget()) {
639 SourceLocation Loc = LoopTarget->getBeginLoc();
640 SourceRange R1(Loc, Loc), R2;
641
642 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
643 const Expr *Inc = FS->getInc();
644 Loc = Inc->getBeginLoc();
645 R2 = Inc->getSourceRange();
646 }
647
648 CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
649 Loc, SourceRange(), SourceRange(Loc, Loc), R2);
650 return;
651 }
652
653 // Check if the dead block has a predecessor whose branch has
654 // a configuration value that *could* be modified to
655 // silence the warning.
656 CFGBlock::const_pred_iterator PI = B->pred_begin();
657 if (PI != B->pred_end()) {
658 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
659 const Stmt *TermCond =
660 PredBlock->getTerminatorCondition(/* strip parens */ false);
661 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
662 }
663 }
664 }
665
666 SourceRange R1, R2;
667 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
668 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
669 }
670
671 //===----------------------------------------------------------------------===//
672 // Reachability APIs.
673 //===----------------------------------------------------------------------===//
674
675 namespace clang { namespace reachable_code {
676
anchor()677 void Callback::anchor() { }
678
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)679 unsigned ScanReachableFromBlock(const CFGBlock *Start,
680 llvm::BitVector &Reachable) {
681 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
682 }
683
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)684 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
685 Callback &CB) {
686
687 CFG *cfg = AC.getCFG();
688 if (!cfg)
689 return;
690
691 // Scan for reachable blocks from the entrance of the CFG.
692 // If there are no unreachable blocks, we're done.
693 llvm::BitVector reachable(cfg->getNumBlockIDs());
694 unsigned numReachable =
695 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
696 if (numReachable == cfg->getNumBlockIDs())
697 return;
698
699 // If there aren't explicit EH edges, we should include the 'try' dispatch
700 // blocks as roots.
701 if (!AC.getCFGBuildOptions().AddEHEdges) {
702 for (const CFGBlock *B : cfg->try_blocks())
703 numReachable += scanMaybeReachableFromBlock(B, PP, reachable);
704 if (numReachable == cfg->getNumBlockIDs())
705 return;
706 }
707
708 // There are some unreachable blocks. We need to find the root blocks that
709 // contain code that should be considered unreachable.
710 for (const CFGBlock *block : *cfg) {
711 // A block may have been marked reachable during this loop.
712 if (reachable[block->getBlockID()])
713 continue;
714
715 DeadCodeScan DS(reachable, PP, AC.getASTContext());
716 numReachable += DS.scanBackwards(block, CB);
717
718 if (numReachable == cfg->getNumBlockIDs())
719 return;
720 }
721 }
722
723 }} // end namespace clang::reachable_code
724