1 //===-- IPO/OpenMPOpt.cpp - Collection of OpenMP specific optimizations ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // OpenMP specific optimizations:
10 //
11 // - Deduplication of runtime calls, e.g., omp_get_thread_num.
12 // - Replacing globalized device memory with stack memory.
13 // - Replacing globalized device memory with shared memory.
14 // - Parallel region merging.
15 // - Transforming generic-mode device kernels to SPMD mode.
16 // - Specializing the state machine for generic-mode device kernels.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/IPO/OpenMPOpt.h"
21
22 #include "llvm/ADT/EnumeratedArray.h"
23 #include "llvm/ADT/PostOrderIterator.h"
24 #include "llvm/ADT/SetVector.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/ADT/StringRef.h"
28 #include "llvm/Analysis/CallGraph.h"
29 #include "llvm/Analysis/CallGraphSCCPass.h"
30 #include "llvm/Analysis/MemoryLocation.h"
31 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/Frontend/OpenMP/OMPConstants.h"
34 #include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
35 #include "llvm/IR/Assumptions.h"
36 #include "llvm/IR/BasicBlock.h"
37 #include "llvm/IR/Constants.h"
38 #include "llvm/IR/DiagnosticInfo.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/IntrinsicsAMDGPU.h"
45 #include "llvm/IR/IntrinsicsNVPTX.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/InitializePasses.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Transforms/IPO/Attributor.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/CallGraphUpdater.h"
53
54 #include <algorithm>
55 #include <optional>
56 #include <string>
57
58 using namespace llvm;
59 using namespace omp;
60
61 #define DEBUG_TYPE "openmp-opt"
62
63 static cl::opt<bool> DisableOpenMPOptimizations(
64 "openmp-opt-disable", cl::desc("Disable OpenMP specific optimizations."),
65 cl::Hidden, cl::init(false));
66
67 static cl::opt<bool> EnableParallelRegionMerging(
68 "openmp-opt-enable-merging",
69 cl::desc("Enable the OpenMP region merging optimization."), cl::Hidden,
70 cl::init(false));
71
72 static cl::opt<bool>
73 DisableInternalization("openmp-opt-disable-internalization",
74 cl::desc("Disable function internalization."),
75 cl::Hidden, cl::init(false));
76
77 static cl::opt<bool> DeduceICVValues("openmp-deduce-icv-values",
78 cl::init(false), cl::Hidden);
79 static cl::opt<bool> PrintICVValues("openmp-print-icv-values", cl::init(false),
80 cl::Hidden);
81 static cl::opt<bool> PrintOpenMPKernels("openmp-print-gpu-kernels",
82 cl::init(false), cl::Hidden);
83
84 static cl::opt<bool> HideMemoryTransferLatency(
85 "openmp-hide-memory-transfer-latency",
86 cl::desc("[WIP] Tries to hide the latency of host to device memory"
87 " transfers"),
88 cl::Hidden, cl::init(false));
89
90 static cl::opt<bool> DisableOpenMPOptDeglobalization(
91 "openmp-opt-disable-deglobalization",
92 cl::desc("Disable OpenMP optimizations involving deglobalization."),
93 cl::Hidden, cl::init(false));
94
95 static cl::opt<bool> DisableOpenMPOptSPMDization(
96 "openmp-opt-disable-spmdization",
97 cl::desc("Disable OpenMP optimizations involving SPMD-ization."),
98 cl::Hidden, cl::init(false));
99
100 static cl::opt<bool> DisableOpenMPOptFolding(
101 "openmp-opt-disable-folding",
102 cl::desc("Disable OpenMP optimizations involving folding."), cl::Hidden,
103 cl::init(false));
104
105 static cl::opt<bool> DisableOpenMPOptStateMachineRewrite(
106 "openmp-opt-disable-state-machine-rewrite",
107 cl::desc("Disable OpenMP optimizations that replace the state machine."),
108 cl::Hidden, cl::init(false));
109
110 static cl::opt<bool> DisableOpenMPOptBarrierElimination(
111 "openmp-opt-disable-barrier-elimination",
112 cl::desc("Disable OpenMP optimizations that eliminate barriers."),
113 cl::Hidden, cl::init(false));
114
115 static cl::opt<bool> PrintModuleAfterOptimizations(
116 "openmp-opt-print-module-after",
117 cl::desc("Print the current module after OpenMP optimizations."),
118 cl::Hidden, cl::init(false));
119
120 static cl::opt<bool> PrintModuleBeforeOptimizations(
121 "openmp-opt-print-module-before",
122 cl::desc("Print the current module before OpenMP optimizations."),
123 cl::Hidden, cl::init(false));
124
125 static cl::opt<bool> AlwaysInlineDeviceFunctions(
126 "openmp-opt-inline-device",
127 cl::desc("Inline all applicible functions on the device."), cl::Hidden,
128 cl::init(false));
129
130 static cl::opt<bool>
131 EnableVerboseRemarks("openmp-opt-verbose-remarks",
132 cl::desc("Enables more verbose remarks."), cl::Hidden,
133 cl::init(false));
134
135 static cl::opt<unsigned>
136 SetFixpointIterations("openmp-opt-max-iterations", cl::Hidden,
137 cl::desc("Maximal number of attributor iterations."),
138 cl::init(256));
139
140 static cl::opt<unsigned>
141 SharedMemoryLimit("openmp-opt-shared-limit", cl::Hidden,
142 cl::desc("Maximum amount of shared memory to use."),
143 cl::init(std::numeric_limits<unsigned>::max()));
144
145 STATISTIC(NumOpenMPRuntimeCallsDeduplicated,
146 "Number of OpenMP runtime calls deduplicated");
147 STATISTIC(NumOpenMPParallelRegionsDeleted,
148 "Number of OpenMP parallel regions deleted");
149 STATISTIC(NumOpenMPRuntimeFunctionsIdentified,
150 "Number of OpenMP runtime functions identified");
151 STATISTIC(NumOpenMPRuntimeFunctionUsesIdentified,
152 "Number of OpenMP runtime function uses identified");
153 STATISTIC(NumOpenMPTargetRegionKernels,
154 "Number of OpenMP target region entry points (=kernels) identified");
155 STATISTIC(NumOpenMPTargetRegionKernelsSPMD,
156 "Number of OpenMP target region entry points (=kernels) executed in "
157 "SPMD-mode instead of generic-mode");
158 STATISTIC(NumOpenMPTargetRegionKernelsWithoutStateMachine,
159 "Number of OpenMP target region entry points (=kernels) executed in "
160 "generic-mode without a state machines");
161 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback,
162 "Number of OpenMP target region entry points (=kernels) executed in "
163 "generic-mode with customized state machines with fallback");
164 STATISTIC(NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback,
165 "Number of OpenMP target region entry points (=kernels) executed in "
166 "generic-mode with customized state machines without fallback");
167 STATISTIC(
168 NumOpenMPParallelRegionsReplacedInGPUStateMachine,
169 "Number of OpenMP parallel regions replaced with ID in GPU state machines");
170 STATISTIC(NumOpenMPParallelRegionsMerged,
171 "Number of OpenMP parallel regions merged");
172 STATISTIC(NumBytesMovedToSharedMemory,
173 "Amount of memory pushed to shared memory");
174 STATISTIC(NumBarriersEliminated, "Number of redundant barriers eliminated");
175
176 #if !defined(NDEBUG)
177 static constexpr auto TAG = "[" DEBUG_TYPE "]";
178 #endif
179
180 namespace {
181
182 struct AAHeapToShared;
183
184 struct AAICVTracker;
185
186 /// OpenMP specific information. For now, stores RFIs and ICVs also needed for
187 /// Attributor runs.
188 struct OMPInformationCache : public InformationCache {
OMPInformationCache__anonc7318b540111::OMPInformationCache189 OMPInformationCache(Module &M, AnalysisGetter &AG,
190 BumpPtrAllocator &Allocator, SetVector<Function *> *CGSCC,
191 KernelSet &Kernels, bool OpenMPPostLink)
192 : InformationCache(M, AG, Allocator, CGSCC), OMPBuilder(M),
193 Kernels(Kernels), OpenMPPostLink(OpenMPPostLink) {
194
195 OMPBuilder.initialize();
196 initializeRuntimeFunctions(M);
197 initializeInternalControlVars();
198 }
199
200 /// Generic information that describes an internal control variable.
201 struct InternalControlVarInfo {
202 /// The kind, as described by InternalControlVar enum.
203 InternalControlVar Kind;
204
205 /// The name of the ICV.
206 StringRef Name;
207
208 /// Environment variable associated with this ICV.
209 StringRef EnvVarName;
210
211 /// Initial value kind.
212 ICVInitValue InitKind;
213
214 /// Initial value.
215 ConstantInt *InitValue;
216
217 /// Setter RTL function associated with this ICV.
218 RuntimeFunction Setter;
219
220 /// Getter RTL function associated with this ICV.
221 RuntimeFunction Getter;
222
223 /// RTL Function corresponding to the override clause of this ICV
224 RuntimeFunction Clause;
225 };
226
227 /// Generic information that describes a runtime function
228 struct RuntimeFunctionInfo {
229
230 /// The kind, as described by the RuntimeFunction enum.
231 RuntimeFunction Kind;
232
233 /// The name of the function.
234 StringRef Name;
235
236 /// Flag to indicate a variadic function.
237 bool IsVarArg;
238
239 /// The return type of the function.
240 Type *ReturnType;
241
242 /// The argument types of the function.
243 SmallVector<Type *, 8> ArgumentTypes;
244
245 /// The declaration if available.
246 Function *Declaration = nullptr;
247
248 /// Uses of this runtime function per function containing the use.
249 using UseVector = SmallVector<Use *, 16>;
250
251 /// Clear UsesMap for runtime function.
clearUsesMap__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo252 void clearUsesMap() { UsesMap.clear(); }
253
254 /// Boolean conversion that is true if the runtime function was found.
operator bool__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo255 operator bool() const { return Declaration; }
256
257 /// Return the vector of uses in function \p F.
getOrCreateUseVector__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo258 UseVector &getOrCreateUseVector(Function *F) {
259 std::shared_ptr<UseVector> &UV = UsesMap[F];
260 if (!UV)
261 UV = std::make_shared<UseVector>();
262 return *UV;
263 }
264
265 /// Return the vector of uses in function \p F or `nullptr` if there are
266 /// none.
getUseVector__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo267 const UseVector *getUseVector(Function &F) const {
268 auto I = UsesMap.find(&F);
269 if (I != UsesMap.end())
270 return I->second.get();
271 return nullptr;
272 }
273
274 /// Return how many functions contain uses of this runtime function.
getNumFunctionsWithUses__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo275 size_t getNumFunctionsWithUses() const { return UsesMap.size(); }
276
277 /// Return the number of arguments (or the minimal number for variadic
278 /// functions).
getNumArgs__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo279 size_t getNumArgs() const { return ArgumentTypes.size(); }
280
281 /// Run the callback \p CB on each use and forget the use if the result is
282 /// true. The callback will be fed the function in which the use was
283 /// encountered as second argument.
foreachUse__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo284 void foreachUse(SmallVectorImpl<Function *> &SCC,
285 function_ref<bool(Use &, Function &)> CB) {
286 for (Function *F : SCC)
287 foreachUse(CB, F);
288 }
289
290 /// Run the callback \p CB on each use within the function \p F and forget
291 /// the use if the result is true.
foreachUse__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo292 void foreachUse(function_ref<bool(Use &, Function &)> CB, Function *F) {
293 SmallVector<unsigned, 8> ToBeDeleted;
294 ToBeDeleted.clear();
295
296 unsigned Idx = 0;
297 UseVector &UV = getOrCreateUseVector(F);
298
299 for (Use *U : UV) {
300 if (CB(*U, *F))
301 ToBeDeleted.push_back(Idx);
302 ++Idx;
303 }
304
305 // Remove the to-be-deleted indices in reverse order as prior
306 // modifications will not modify the smaller indices.
307 while (!ToBeDeleted.empty()) {
308 unsigned Idx = ToBeDeleted.pop_back_val();
309 UV[Idx] = UV.back();
310 UV.pop_back();
311 }
312 }
313
314 private:
315 /// Map from functions to all uses of this runtime function contained in
316 /// them.
317 DenseMap<Function *, std::shared_ptr<UseVector>> UsesMap;
318
319 public:
320 /// Iterators for the uses of this runtime function.
begin__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo321 decltype(UsesMap)::iterator begin() { return UsesMap.begin(); }
end__anonc7318b540111::OMPInformationCache::RuntimeFunctionInfo322 decltype(UsesMap)::iterator end() { return UsesMap.end(); }
323 };
324
325 /// An OpenMP-IR-Builder instance
326 OpenMPIRBuilder OMPBuilder;
327
328 /// Map from runtime function kind to the runtime function description.
329 EnumeratedArray<RuntimeFunctionInfo, RuntimeFunction,
330 RuntimeFunction::OMPRTL___last>
331 RFIs;
332
333 /// Map from function declarations/definitions to their runtime enum type.
334 DenseMap<Function *, RuntimeFunction> RuntimeFunctionIDMap;
335
336 /// Map from ICV kind to the ICV description.
337 EnumeratedArray<InternalControlVarInfo, InternalControlVar,
338 InternalControlVar::ICV___last>
339 ICVs;
340
341 /// Helper to initialize all internal control variable information for those
342 /// defined in OMPKinds.def.
initializeInternalControlVars__anonc7318b540111::OMPInformationCache343 void initializeInternalControlVars() {
344 #define ICV_RT_SET(_Name, RTL) \
345 { \
346 auto &ICV = ICVs[_Name]; \
347 ICV.Setter = RTL; \
348 }
349 #define ICV_RT_GET(Name, RTL) \
350 { \
351 auto &ICV = ICVs[Name]; \
352 ICV.Getter = RTL; \
353 }
354 #define ICV_DATA_ENV(Enum, _Name, _EnvVarName, Init) \
355 { \
356 auto &ICV = ICVs[Enum]; \
357 ICV.Name = _Name; \
358 ICV.Kind = Enum; \
359 ICV.InitKind = Init; \
360 ICV.EnvVarName = _EnvVarName; \
361 switch (ICV.InitKind) { \
362 case ICV_IMPLEMENTATION_DEFINED: \
363 ICV.InitValue = nullptr; \
364 break; \
365 case ICV_ZERO: \
366 ICV.InitValue = ConstantInt::get( \
367 Type::getInt32Ty(OMPBuilder.Int32->getContext()), 0); \
368 break; \
369 case ICV_FALSE: \
370 ICV.InitValue = ConstantInt::getFalse(OMPBuilder.Int1->getContext()); \
371 break; \
372 case ICV_LAST: \
373 break; \
374 } \
375 }
376 #include "llvm/Frontend/OpenMP/OMPKinds.def"
377 }
378
379 /// Returns true if the function declaration \p F matches the runtime
380 /// function types, that is, return type \p RTFRetType, and argument types
381 /// \p RTFArgTypes.
declMatchesRTFTypes__anonc7318b540111::OMPInformationCache382 static bool declMatchesRTFTypes(Function *F, Type *RTFRetType,
383 SmallVector<Type *, 8> &RTFArgTypes) {
384 // TODO: We should output information to the user (under debug output
385 // and via remarks).
386
387 if (!F)
388 return false;
389 if (F->getReturnType() != RTFRetType)
390 return false;
391 if (F->arg_size() != RTFArgTypes.size())
392 return false;
393
394 auto *RTFTyIt = RTFArgTypes.begin();
395 for (Argument &Arg : F->args()) {
396 if (Arg.getType() != *RTFTyIt)
397 return false;
398
399 ++RTFTyIt;
400 }
401
402 return true;
403 }
404
405 // Helper to collect all uses of the declaration in the UsesMap.
collectUses__anonc7318b540111::OMPInformationCache406 unsigned collectUses(RuntimeFunctionInfo &RFI, bool CollectStats = true) {
407 unsigned NumUses = 0;
408 if (!RFI.Declaration)
409 return NumUses;
410 OMPBuilder.addAttributes(RFI.Kind, *RFI.Declaration);
411
412 if (CollectStats) {
413 NumOpenMPRuntimeFunctionsIdentified += 1;
414 NumOpenMPRuntimeFunctionUsesIdentified += RFI.Declaration->getNumUses();
415 }
416
417 // TODO: We directly convert uses into proper calls and unknown uses.
418 for (Use &U : RFI.Declaration->uses()) {
419 if (Instruction *UserI = dyn_cast<Instruction>(U.getUser())) {
420 if (ModuleSlice.empty() || ModuleSlice.count(UserI->getFunction())) {
421 RFI.getOrCreateUseVector(UserI->getFunction()).push_back(&U);
422 ++NumUses;
423 }
424 } else {
425 RFI.getOrCreateUseVector(nullptr).push_back(&U);
426 ++NumUses;
427 }
428 }
429 return NumUses;
430 }
431
432 // Helper function to recollect uses of a runtime function.
recollectUsesForFunction__anonc7318b540111::OMPInformationCache433 void recollectUsesForFunction(RuntimeFunction RTF) {
434 auto &RFI = RFIs[RTF];
435 RFI.clearUsesMap();
436 collectUses(RFI, /*CollectStats*/ false);
437 }
438
439 // Helper function to recollect uses of all runtime functions.
recollectUses__anonc7318b540111::OMPInformationCache440 void recollectUses() {
441 for (int Idx = 0; Idx < RFIs.size(); ++Idx)
442 recollectUsesForFunction(static_cast<RuntimeFunction>(Idx));
443 }
444
445 // Helper function to inherit the calling convention of the function callee.
setCallingConvention__anonc7318b540111::OMPInformationCache446 void setCallingConvention(FunctionCallee Callee, CallInst *CI) {
447 if (Function *Fn = dyn_cast<Function>(Callee.getCallee()))
448 CI->setCallingConv(Fn->getCallingConv());
449 }
450
451 // Helper function to determine if it's legal to create a call to the runtime
452 // functions.
runtimeFnsAvailable__anonc7318b540111::OMPInformationCache453 bool runtimeFnsAvailable(ArrayRef<RuntimeFunction> Fns) {
454 // We can always emit calls if we haven't yet linked in the runtime.
455 if (!OpenMPPostLink)
456 return true;
457
458 // Once the runtime has been already been linked in we cannot emit calls to
459 // any undefined functions.
460 for (RuntimeFunction Fn : Fns) {
461 RuntimeFunctionInfo &RFI = RFIs[Fn];
462
463 if (RFI.Declaration && RFI.Declaration->isDeclaration())
464 return false;
465 }
466 return true;
467 }
468
469 /// Helper to initialize all runtime function information for those defined
470 /// in OpenMPKinds.def.
initializeRuntimeFunctions__anonc7318b540111::OMPInformationCache471 void initializeRuntimeFunctions(Module &M) {
472
473 // Helper macros for handling __VA_ARGS__ in OMP_RTL
474 #define OMP_TYPE(VarName, ...) \
475 Type *VarName = OMPBuilder.VarName; \
476 (void)VarName;
477
478 #define OMP_ARRAY_TYPE(VarName, ...) \
479 ArrayType *VarName##Ty = OMPBuilder.VarName##Ty; \
480 (void)VarName##Ty; \
481 PointerType *VarName##PtrTy = OMPBuilder.VarName##PtrTy; \
482 (void)VarName##PtrTy;
483
484 #define OMP_FUNCTION_TYPE(VarName, ...) \
485 FunctionType *VarName = OMPBuilder.VarName; \
486 (void)VarName; \
487 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
488 (void)VarName##Ptr;
489
490 #define OMP_STRUCT_TYPE(VarName, ...) \
491 StructType *VarName = OMPBuilder.VarName; \
492 (void)VarName; \
493 PointerType *VarName##Ptr = OMPBuilder.VarName##Ptr; \
494 (void)VarName##Ptr;
495
496 #define OMP_RTL(_Enum, _Name, _IsVarArg, _ReturnType, ...) \
497 { \
498 SmallVector<Type *, 8> ArgsTypes({__VA_ARGS__}); \
499 Function *F = M.getFunction(_Name); \
500 RTLFunctions.insert(F); \
501 if (declMatchesRTFTypes(F, OMPBuilder._ReturnType, ArgsTypes)) { \
502 RuntimeFunctionIDMap[F] = _Enum; \
503 auto &RFI = RFIs[_Enum]; \
504 RFI.Kind = _Enum; \
505 RFI.Name = _Name; \
506 RFI.IsVarArg = _IsVarArg; \
507 RFI.ReturnType = OMPBuilder._ReturnType; \
508 RFI.ArgumentTypes = std::move(ArgsTypes); \
509 RFI.Declaration = F; \
510 unsigned NumUses = collectUses(RFI); \
511 (void)NumUses; \
512 LLVM_DEBUG({ \
513 dbgs() << TAG << RFI.Name << (RFI.Declaration ? "" : " not") \
514 << " found\n"; \
515 if (RFI.Declaration) \
516 dbgs() << TAG << "-> got " << NumUses << " uses in " \
517 << RFI.getNumFunctionsWithUses() \
518 << " different functions.\n"; \
519 }); \
520 } \
521 }
522 #include "llvm/Frontend/OpenMP/OMPKinds.def"
523
524 // Remove the `noinline` attribute from `__kmpc`, `ompx::` and `omp_`
525 // functions, except if `optnone` is present.
526 if (isOpenMPDevice(M)) {
527 for (Function &F : M) {
528 for (StringRef Prefix : {"__kmpc", "_ZN4ompx", "omp_"})
529 if (F.hasFnAttribute(Attribute::NoInline) &&
530 F.getName().startswith(Prefix) &&
531 !F.hasFnAttribute(Attribute::OptimizeNone))
532 F.removeFnAttr(Attribute::NoInline);
533 }
534 }
535
536 // TODO: We should attach the attributes defined in OMPKinds.def.
537 }
538
539 /// Collection of known kernels (\see Kernel) in the module.
540 KernelSet &Kernels;
541
542 /// Collection of known OpenMP runtime functions..
543 DenseSet<const Function *> RTLFunctions;
544
545 /// Indicates if we have already linked in the OpenMP device library.
546 bool OpenMPPostLink = false;
547 };
548
549 template <typename Ty, bool InsertInvalidates = true>
550 struct BooleanStateWithSetVector : public BooleanState {
contains__anonc7318b540111::BooleanStateWithSetVector551 bool contains(const Ty &Elem) const { return Set.contains(Elem); }
insert__anonc7318b540111::BooleanStateWithSetVector552 bool insert(const Ty &Elem) {
553 if (InsertInvalidates)
554 BooleanState::indicatePessimisticFixpoint();
555 return Set.insert(Elem);
556 }
557
operator []__anonc7318b540111::BooleanStateWithSetVector558 const Ty &operator[](int Idx) const { return Set[Idx]; }
operator ==__anonc7318b540111::BooleanStateWithSetVector559 bool operator==(const BooleanStateWithSetVector &RHS) const {
560 return BooleanState::operator==(RHS) && Set == RHS.Set;
561 }
operator !=__anonc7318b540111::BooleanStateWithSetVector562 bool operator!=(const BooleanStateWithSetVector &RHS) const {
563 return !(*this == RHS);
564 }
565
empty__anonc7318b540111::BooleanStateWithSetVector566 bool empty() const { return Set.empty(); }
size__anonc7318b540111::BooleanStateWithSetVector567 size_t size() const { return Set.size(); }
568
569 /// "Clamp" this state with \p RHS.
operator ^=__anonc7318b540111::BooleanStateWithSetVector570 BooleanStateWithSetVector &operator^=(const BooleanStateWithSetVector &RHS) {
571 BooleanState::operator^=(RHS);
572 Set.insert(RHS.Set.begin(), RHS.Set.end());
573 return *this;
574 }
575
576 private:
577 /// A set to keep track of elements.
578 SetVector<Ty> Set;
579
580 public:
begin__anonc7318b540111::BooleanStateWithSetVector581 typename decltype(Set)::iterator begin() { return Set.begin(); }
end__anonc7318b540111::BooleanStateWithSetVector582 typename decltype(Set)::iterator end() { return Set.end(); }
begin__anonc7318b540111::BooleanStateWithSetVector583 typename decltype(Set)::const_iterator begin() const { return Set.begin(); }
end__anonc7318b540111::BooleanStateWithSetVector584 typename decltype(Set)::const_iterator end() const { return Set.end(); }
585 };
586
587 template <typename Ty, bool InsertInvalidates = true>
588 using BooleanStateWithPtrSetVector =
589 BooleanStateWithSetVector<Ty *, InsertInvalidates>;
590
591 struct KernelInfoState : AbstractState {
592 /// Flag to track if we reached a fixpoint.
593 bool IsAtFixpoint = false;
594
595 /// The parallel regions (identified by the outlined parallel functions) that
596 /// can be reached from the associated function.
597 BooleanStateWithPtrSetVector<Function, /* InsertInvalidates */ false>
598 ReachedKnownParallelRegions;
599
600 /// State to track what parallel region we might reach.
601 BooleanStateWithPtrSetVector<CallBase> ReachedUnknownParallelRegions;
602
603 /// State to track if we are in SPMD-mode, assumed or know, and why we decided
604 /// we cannot be. If it is assumed, then RequiresFullRuntime should also be
605 /// false.
606 BooleanStateWithPtrSetVector<Instruction, false> SPMDCompatibilityTracker;
607
608 /// The __kmpc_target_init call in this kernel, if any. If we find more than
609 /// one we abort as the kernel is malformed.
610 CallBase *KernelInitCB = nullptr;
611
612 /// The __kmpc_target_deinit call in this kernel, if any. If we find more than
613 /// one we abort as the kernel is malformed.
614 CallBase *KernelDeinitCB = nullptr;
615
616 /// Flag to indicate if the associated function is a kernel entry.
617 bool IsKernelEntry = false;
618
619 /// State to track what kernel entries can reach the associated function.
620 BooleanStateWithPtrSetVector<Function, false> ReachingKernelEntries;
621
622 /// State to indicate if we can track parallel level of the associated
623 /// function. We will give up tracking if we encounter unknown caller or the
624 /// caller is __kmpc_parallel_51.
625 BooleanStateWithSetVector<uint8_t> ParallelLevels;
626
627 /// Flag that indicates if the kernel has nested Parallelism
628 bool NestedParallelism = false;
629
630 /// Abstract State interface
631 ///{
632
633 KernelInfoState() = default;
KernelInfoState__anonc7318b540111::KernelInfoState634 KernelInfoState(bool BestState) {
635 if (!BestState)
636 indicatePessimisticFixpoint();
637 }
638
639 /// See AbstractState::isValidState(...)
isValidState__anonc7318b540111::KernelInfoState640 bool isValidState() const override { return true; }
641
642 /// See AbstractState::isAtFixpoint(...)
isAtFixpoint__anonc7318b540111::KernelInfoState643 bool isAtFixpoint() const override { return IsAtFixpoint; }
644
645 /// See AbstractState::indicatePessimisticFixpoint(...)
indicatePessimisticFixpoint__anonc7318b540111::KernelInfoState646 ChangeStatus indicatePessimisticFixpoint() override {
647 IsAtFixpoint = true;
648 ParallelLevels.indicatePessimisticFixpoint();
649 ReachingKernelEntries.indicatePessimisticFixpoint();
650 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
651 ReachedKnownParallelRegions.indicatePessimisticFixpoint();
652 ReachedUnknownParallelRegions.indicatePessimisticFixpoint();
653 return ChangeStatus::CHANGED;
654 }
655
656 /// See AbstractState::indicateOptimisticFixpoint(...)
indicateOptimisticFixpoint__anonc7318b540111::KernelInfoState657 ChangeStatus indicateOptimisticFixpoint() override {
658 IsAtFixpoint = true;
659 ParallelLevels.indicateOptimisticFixpoint();
660 ReachingKernelEntries.indicateOptimisticFixpoint();
661 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
662 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
663 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
664 return ChangeStatus::UNCHANGED;
665 }
666
667 /// Return the assumed state
getAssumed__anonc7318b540111::KernelInfoState668 KernelInfoState &getAssumed() { return *this; }
getAssumed__anonc7318b540111::KernelInfoState669 const KernelInfoState &getAssumed() const { return *this; }
670
operator ==__anonc7318b540111::KernelInfoState671 bool operator==(const KernelInfoState &RHS) const {
672 if (SPMDCompatibilityTracker != RHS.SPMDCompatibilityTracker)
673 return false;
674 if (ReachedKnownParallelRegions != RHS.ReachedKnownParallelRegions)
675 return false;
676 if (ReachedUnknownParallelRegions != RHS.ReachedUnknownParallelRegions)
677 return false;
678 if (ReachingKernelEntries != RHS.ReachingKernelEntries)
679 return false;
680 if (ParallelLevels != RHS.ParallelLevels)
681 return false;
682 return true;
683 }
684
685 /// Returns true if this kernel contains any OpenMP parallel regions.
mayContainParallelRegion__anonc7318b540111::KernelInfoState686 bool mayContainParallelRegion() {
687 return !ReachedKnownParallelRegions.empty() ||
688 !ReachedUnknownParallelRegions.empty();
689 }
690
691 /// Return empty set as the best state of potential values.
getBestState__anonc7318b540111::KernelInfoState692 static KernelInfoState getBestState() { return KernelInfoState(true); }
693
getBestState__anonc7318b540111::KernelInfoState694 static KernelInfoState getBestState(KernelInfoState &KIS) {
695 return getBestState();
696 }
697
698 /// Return full set as the worst state of potential values.
getWorstState__anonc7318b540111::KernelInfoState699 static KernelInfoState getWorstState() { return KernelInfoState(false); }
700
701 /// "Clamp" this state with \p KIS.
operator ^=__anonc7318b540111::KernelInfoState702 KernelInfoState operator^=(const KernelInfoState &KIS) {
703 // Do not merge two different _init and _deinit call sites.
704 if (KIS.KernelInitCB) {
705 if (KernelInitCB && KernelInitCB != KIS.KernelInitCB)
706 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
707 "assumptions.");
708 KernelInitCB = KIS.KernelInitCB;
709 }
710 if (KIS.KernelDeinitCB) {
711 if (KernelDeinitCB && KernelDeinitCB != KIS.KernelDeinitCB)
712 llvm_unreachable("Kernel that calls another kernel violates OpenMP-Opt "
713 "assumptions.");
714 KernelDeinitCB = KIS.KernelDeinitCB;
715 }
716 SPMDCompatibilityTracker ^= KIS.SPMDCompatibilityTracker;
717 ReachedKnownParallelRegions ^= KIS.ReachedKnownParallelRegions;
718 ReachedUnknownParallelRegions ^= KIS.ReachedUnknownParallelRegions;
719 NestedParallelism |= KIS.NestedParallelism;
720 return *this;
721 }
722
operator &=__anonc7318b540111::KernelInfoState723 KernelInfoState operator&=(const KernelInfoState &KIS) {
724 return (*this ^= KIS);
725 }
726
727 ///}
728 };
729
730 /// Used to map the values physically (in the IR) stored in an offload
731 /// array, to a vector in memory.
732 struct OffloadArray {
733 /// Physical array (in the IR).
734 AllocaInst *Array = nullptr;
735 /// Mapped values.
736 SmallVector<Value *, 8> StoredValues;
737 /// Last stores made in the offload array.
738 SmallVector<StoreInst *, 8> LastAccesses;
739
740 OffloadArray() = default;
741
742 /// Initializes the OffloadArray with the values stored in \p Array before
743 /// instruction \p Before is reached. Returns false if the initialization
744 /// fails.
745 /// This MUST be used immediately after the construction of the object.
initialize__anonc7318b540111::OffloadArray746 bool initialize(AllocaInst &Array, Instruction &Before) {
747 if (!Array.getAllocatedType()->isArrayTy())
748 return false;
749
750 if (!getValues(Array, Before))
751 return false;
752
753 this->Array = &Array;
754 return true;
755 }
756
757 static const unsigned DeviceIDArgNum = 1;
758 static const unsigned BasePtrsArgNum = 3;
759 static const unsigned PtrsArgNum = 4;
760 static const unsigned SizesArgNum = 5;
761
762 private:
763 /// Traverses the BasicBlock where \p Array is, collecting the stores made to
764 /// \p Array, leaving StoredValues with the values stored before the
765 /// instruction \p Before is reached.
getValues__anonc7318b540111::OffloadArray766 bool getValues(AllocaInst &Array, Instruction &Before) {
767 // Initialize container.
768 const uint64_t NumValues = Array.getAllocatedType()->getArrayNumElements();
769 StoredValues.assign(NumValues, nullptr);
770 LastAccesses.assign(NumValues, nullptr);
771
772 // TODO: This assumes the instruction \p Before is in the same
773 // BasicBlock as Array. Make it general, for any control flow graph.
774 BasicBlock *BB = Array.getParent();
775 if (BB != Before.getParent())
776 return false;
777
778 const DataLayout &DL = Array.getModule()->getDataLayout();
779 const unsigned int PointerSize = DL.getPointerSize();
780
781 for (Instruction &I : *BB) {
782 if (&I == &Before)
783 break;
784
785 if (!isa<StoreInst>(&I))
786 continue;
787
788 auto *S = cast<StoreInst>(&I);
789 int64_t Offset = -1;
790 auto *Dst =
791 GetPointerBaseWithConstantOffset(S->getPointerOperand(), Offset, DL);
792 if (Dst == &Array) {
793 int64_t Idx = Offset / PointerSize;
794 StoredValues[Idx] = getUnderlyingObject(S->getValueOperand());
795 LastAccesses[Idx] = S;
796 }
797 }
798
799 return isFilled();
800 }
801
802 /// Returns true if all values in StoredValues and
803 /// LastAccesses are not nullptrs.
isFilled__anonc7318b540111::OffloadArray804 bool isFilled() {
805 const unsigned NumValues = StoredValues.size();
806 for (unsigned I = 0; I < NumValues; ++I) {
807 if (!StoredValues[I] || !LastAccesses[I])
808 return false;
809 }
810
811 return true;
812 }
813 };
814
815 struct OpenMPOpt {
816
817 using OptimizationRemarkGetter =
818 function_ref<OptimizationRemarkEmitter &(Function *)>;
819
OpenMPOpt__anonc7318b540111::OpenMPOpt820 OpenMPOpt(SmallVectorImpl<Function *> &SCC, CallGraphUpdater &CGUpdater,
821 OptimizationRemarkGetter OREGetter,
822 OMPInformationCache &OMPInfoCache, Attributor &A)
823 : M(*(*SCC.begin())->getParent()), SCC(SCC), CGUpdater(CGUpdater),
824 OREGetter(OREGetter), OMPInfoCache(OMPInfoCache), A(A) {}
825
826 /// Check if any remarks are enabled for openmp-opt
remarksEnabled__anonc7318b540111::OpenMPOpt827 bool remarksEnabled() {
828 auto &Ctx = M.getContext();
829 return Ctx.getDiagHandlerPtr()->isAnyRemarkEnabled(DEBUG_TYPE);
830 }
831
832 /// Run all OpenMP optimizations on the underlying SCC/ModuleSlice.
run__anonc7318b540111::OpenMPOpt833 bool run(bool IsModulePass) {
834 if (SCC.empty())
835 return false;
836
837 bool Changed = false;
838
839 LLVM_DEBUG(dbgs() << TAG << "Run on SCC with " << SCC.size()
840 << " functions in a slice with "
841 << OMPInfoCache.ModuleSlice.size() << " functions\n");
842
843 if (IsModulePass) {
844 Changed |= runAttributor(IsModulePass);
845
846 // Recollect uses, in case Attributor deleted any.
847 OMPInfoCache.recollectUses();
848
849 // TODO: This should be folded into buildCustomStateMachine.
850 Changed |= rewriteDeviceCodeStateMachine();
851
852 if (remarksEnabled())
853 analysisGlobalization();
854 } else {
855 if (PrintICVValues)
856 printICVs();
857 if (PrintOpenMPKernels)
858 printKernels();
859
860 Changed |= runAttributor(IsModulePass);
861
862 // Recollect uses, in case Attributor deleted any.
863 OMPInfoCache.recollectUses();
864
865 Changed |= deleteParallelRegions();
866
867 if (HideMemoryTransferLatency)
868 Changed |= hideMemTransfersLatency();
869 Changed |= deduplicateRuntimeCalls();
870 if (EnableParallelRegionMerging) {
871 if (mergeParallelRegions()) {
872 deduplicateRuntimeCalls();
873 Changed = true;
874 }
875 }
876 }
877
878 return Changed;
879 }
880
881 /// Print initial ICV values for testing.
882 /// FIXME: This should be done from the Attributor once it is added.
printICVs__anonc7318b540111::OpenMPOpt883 void printICVs() const {
884 InternalControlVar ICVs[] = {ICV_nthreads, ICV_active_levels, ICV_cancel,
885 ICV_proc_bind};
886
887 for (Function *F : SCC) {
888 for (auto ICV : ICVs) {
889 auto ICVInfo = OMPInfoCache.ICVs[ICV];
890 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
891 return ORA << "OpenMP ICV " << ore::NV("OpenMPICV", ICVInfo.Name)
892 << " Value: "
893 << (ICVInfo.InitValue
894 ? toString(ICVInfo.InitValue->getValue(), 10, true)
895 : "IMPLEMENTATION_DEFINED");
896 };
897
898 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPICVTracker", Remark);
899 }
900 }
901 }
902
903 /// Print OpenMP GPU kernels for testing.
printKernels__anonc7318b540111::OpenMPOpt904 void printKernels() const {
905 for (Function *F : SCC) {
906 if (!OMPInfoCache.Kernels.count(F))
907 continue;
908
909 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
910 return ORA << "OpenMP GPU kernel "
911 << ore::NV("OpenMPGPUKernel", F->getName()) << "\n";
912 };
913
914 emitRemark<OptimizationRemarkAnalysis>(F, "OpenMPGPU", Remark);
915 }
916 }
917
918 /// Return the call if \p U is a callee use in a regular call. If \p RFI is
919 /// given it has to be the callee or a nullptr is returned.
getCallIfRegularCall__anonc7318b540111::OpenMPOpt920 static CallInst *getCallIfRegularCall(
921 Use &U, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
922 CallInst *CI = dyn_cast<CallInst>(U.getUser());
923 if (CI && CI->isCallee(&U) && !CI->hasOperandBundles() &&
924 (!RFI ||
925 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
926 return CI;
927 return nullptr;
928 }
929
930 /// Return the call if \p V is a regular call. If \p RFI is given it has to be
931 /// the callee or a nullptr is returned.
getCallIfRegularCall__anonc7318b540111::OpenMPOpt932 static CallInst *getCallIfRegularCall(
933 Value &V, OMPInformationCache::RuntimeFunctionInfo *RFI = nullptr) {
934 CallInst *CI = dyn_cast<CallInst>(&V);
935 if (CI && !CI->hasOperandBundles() &&
936 (!RFI ||
937 (RFI->Declaration && CI->getCalledFunction() == RFI->Declaration)))
938 return CI;
939 return nullptr;
940 }
941
942 private:
943 /// Merge parallel regions when it is safe.
mergeParallelRegions__anonc7318b540111::OpenMPOpt944 bool mergeParallelRegions() {
945 const unsigned CallbackCalleeOperand = 2;
946 const unsigned CallbackFirstArgOperand = 3;
947 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
948
949 // Check if there are any __kmpc_fork_call calls to merge.
950 OMPInformationCache::RuntimeFunctionInfo &RFI =
951 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
952
953 if (!RFI.Declaration)
954 return false;
955
956 // Unmergable calls that prevent merging a parallel region.
957 OMPInformationCache::RuntimeFunctionInfo UnmergableCallsInfo[] = {
958 OMPInfoCache.RFIs[OMPRTL___kmpc_push_proc_bind],
959 OMPInfoCache.RFIs[OMPRTL___kmpc_push_num_threads],
960 };
961
962 bool Changed = false;
963 LoopInfo *LI = nullptr;
964 DominatorTree *DT = nullptr;
965
966 SmallDenseMap<BasicBlock *, SmallPtrSet<Instruction *, 4>> BB2PRMap;
967
968 BasicBlock *StartBB = nullptr, *EndBB = nullptr;
969 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
970 BasicBlock *CGStartBB = CodeGenIP.getBlock();
971 BasicBlock *CGEndBB =
972 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
973 assert(StartBB != nullptr && "StartBB should not be null");
974 CGStartBB->getTerminator()->setSuccessor(0, StartBB);
975 assert(EndBB != nullptr && "EndBB should not be null");
976 EndBB->getTerminator()->setSuccessor(0, CGEndBB);
977 };
978
979 auto PrivCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP, Value &,
980 Value &Inner, Value *&ReplacementValue) -> InsertPointTy {
981 ReplacementValue = &Inner;
982 return CodeGenIP;
983 };
984
985 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
986
987 /// Create a sequential execution region within a merged parallel region,
988 /// encapsulated in a master construct with a barrier for synchronization.
989 auto CreateSequentialRegion = [&](Function *OuterFn,
990 BasicBlock *OuterPredBB,
991 Instruction *SeqStartI,
992 Instruction *SeqEndI) {
993 // Isolate the instructions of the sequential region to a separate
994 // block.
995 BasicBlock *ParentBB = SeqStartI->getParent();
996 BasicBlock *SeqEndBB =
997 SplitBlock(ParentBB, SeqEndI->getNextNode(), DT, LI);
998 BasicBlock *SeqAfterBB =
999 SplitBlock(SeqEndBB, &*SeqEndBB->getFirstInsertionPt(), DT, LI);
1000 BasicBlock *SeqStartBB =
1001 SplitBlock(ParentBB, SeqStartI, DT, LI, nullptr, "seq.par.merged");
1002
1003 assert(ParentBB->getUniqueSuccessor() == SeqStartBB &&
1004 "Expected a different CFG");
1005 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
1006 ParentBB->getTerminator()->eraseFromParent();
1007
1008 auto BodyGenCB = [&](InsertPointTy AllocaIP, InsertPointTy CodeGenIP) {
1009 BasicBlock *CGStartBB = CodeGenIP.getBlock();
1010 BasicBlock *CGEndBB =
1011 SplitBlock(CGStartBB, &*CodeGenIP.getPoint(), DT, LI);
1012 assert(SeqStartBB != nullptr && "SeqStartBB should not be null");
1013 CGStartBB->getTerminator()->setSuccessor(0, SeqStartBB);
1014 assert(SeqEndBB != nullptr && "SeqEndBB should not be null");
1015 SeqEndBB->getTerminator()->setSuccessor(0, CGEndBB);
1016 };
1017 auto FiniCB = [&](InsertPointTy CodeGenIP) {};
1018
1019 // Find outputs from the sequential region to outside users and
1020 // broadcast their values to them.
1021 for (Instruction &I : *SeqStartBB) {
1022 SmallPtrSet<Instruction *, 4> OutsideUsers;
1023 for (User *Usr : I.users()) {
1024 Instruction &UsrI = *cast<Instruction>(Usr);
1025 // Ignore outputs to LT intrinsics, code extraction for the merged
1026 // parallel region will fix them.
1027 if (UsrI.isLifetimeStartOrEnd())
1028 continue;
1029
1030 if (UsrI.getParent() != SeqStartBB)
1031 OutsideUsers.insert(&UsrI);
1032 }
1033
1034 if (OutsideUsers.empty())
1035 continue;
1036
1037 // Emit an alloca in the outer region to store the broadcasted
1038 // value.
1039 const DataLayout &DL = M.getDataLayout();
1040 AllocaInst *AllocaI = new AllocaInst(
1041 I.getType(), DL.getAllocaAddrSpace(), nullptr,
1042 I.getName() + ".seq.output.alloc", &OuterFn->front().front());
1043
1044 // Emit a store instruction in the sequential BB to update the
1045 // value.
1046 new StoreInst(&I, AllocaI, SeqStartBB->getTerminator());
1047
1048 // Emit a load instruction and replace the use of the output value
1049 // with it.
1050 for (Instruction *UsrI : OutsideUsers) {
1051 LoadInst *LoadI = new LoadInst(
1052 I.getType(), AllocaI, I.getName() + ".seq.output.load", UsrI);
1053 UsrI->replaceUsesOfWith(&I, LoadI);
1054 }
1055 }
1056
1057 OpenMPIRBuilder::LocationDescription Loc(
1058 InsertPointTy(ParentBB, ParentBB->end()), DL);
1059 InsertPointTy SeqAfterIP =
1060 OMPInfoCache.OMPBuilder.createMaster(Loc, BodyGenCB, FiniCB);
1061
1062 OMPInfoCache.OMPBuilder.createBarrier(SeqAfterIP, OMPD_parallel);
1063
1064 BranchInst::Create(SeqAfterBB, SeqAfterIP.getBlock());
1065
1066 LLVM_DEBUG(dbgs() << TAG << "After sequential inlining " << *OuterFn
1067 << "\n");
1068 };
1069
1070 // Helper to merge the __kmpc_fork_call calls in MergableCIs. They are all
1071 // contained in BB and only separated by instructions that can be
1072 // redundantly executed in parallel. The block BB is split before the first
1073 // call (in MergableCIs) and after the last so the entire region we merge
1074 // into a single parallel region is contained in a single basic block
1075 // without any other instructions. We use the OpenMPIRBuilder to outline
1076 // that block and call the resulting function via __kmpc_fork_call.
1077 auto Merge = [&](const SmallVectorImpl<CallInst *> &MergableCIs,
1078 BasicBlock *BB) {
1079 // TODO: Change the interface to allow single CIs expanded, e.g, to
1080 // include an outer loop.
1081 assert(MergableCIs.size() > 1 && "Assumed multiple mergable CIs");
1082
1083 auto Remark = [&](OptimizationRemark OR) {
1084 OR << "Parallel region merged with parallel region"
1085 << (MergableCIs.size() > 2 ? "s" : "") << " at ";
1086 for (auto *CI : llvm::drop_begin(MergableCIs)) {
1087 OR << ore::NV("OpenMPParallelMerge", CI->getDebugLoc());
1088 if (CI != MergableCIs.back())
1089 OR << ", ";
1090 }
1091 return OR << ".";
1092 };
1093
1094 emitRemark<OptimizationRemark>(MergableCIs.front(), "OMP150", Remark);
1095
1096 Function *OriginalFn = BB->getParent();
1097 LLVM_DEBUG(dbgs() << TAG << "Merge " << MergableCIs.size()
1098 << " parallel regions in " << OriginalFn->getName()
1099 << "\n");
1100
1101 // Isolate the calls to merge in a separate block.
1102 EndBB = SplitBlock(BB, MergableCIs.back()->getNextNode(), DT, LI);
1103 BasicBlock *AfterBB =
1104 SplitBlock(EndBB, &*EndBB->getFirstInsertionPt(), DT, LI);
1105 StartBB = SplitBlock(BB, MergableCIs.front(), DT, LI, nullptr,
1106 "omp.par.merged");
1107
1108 assert(BB->getUniqueSuccessor() == StartBB && "Expected a different CFG");
1109 const DebugLoc DL = BB->getTerminator()->getDebugLoc();
1110 BB->getTerminator()->eraseFromParent();
1111
1112 // Create sequential regions for sequential instructions that are
1113 // in-between mergable parallel regions.
1114 for (auto *It = MergableCIs.begin(), *End = MergableCIs.end() - 1;
1115 It != End; ++It) {
1116 Instruction *ForkCI = *It;
1117 Instruction *NextForkCI = *(It + 1);
1118
1119 // Continue if there are not in-between instructions.
1120 if (ForkCI->getNextNode() == NextForkCI)
1121 continue;
1122
1123 CreateSequentialRegion(OriginalFn, BB, ForkCI->getNextNode(),
1124 NextForkCI->getPrevNode());
1125 }
1126
1127 OpenMPIRBuilder::LocationDescription Loc(InsertPointTy(BB, BB->end()),
1128 DL);
1129 IRBuilder<>::InsertPoint AllocaIP(
1130 &OriginalFn->getEntryBlock(),
1131 OriginalFn->getEntryBlock().getFirstInsertionPt());
1132 // Create the merged parallel region with default proc binding, to
1133 // avoid overriding binding settings, and without explicit cancellation.
1134 InsertPointTy AfterIP = OMPInfoCache.OMPBuilder.createParallel(
1135 Loc, AllocaIP, BodyGenCB, PrivCB, FiniCB, nullptr, nullptr,
1136 OMP_PROC_BIND_default, /* IsCancellable */ false);
1137 BranchInst::Create(AfterBB, AfterIP.getBlock());
1138
1139 // Perform the actual outlining.
1140 OMPInfoCache.OMPBuilder.finalize(OriginalFn);
1141
1142 Function *OutlinedFn = MergableCIs.front()->getCaller();
1143
1144 // Replace the __kmpc_fork_call calls with direct calls to the outlined
1145 // callbacks.
1146 SmallVector<Value *, 8> Args;
1147 for (auto *CI : MergableCIs) {
1148 Value *Callee = CI->getArgOperand(CallbackCalleeOperand);
1149 FunctionType *FT = OMPInfoCache.OMPBuilder.ParallelTask;
1150 Args.clear();
1151 Args.push_back(OutlinedFn->getArg(0));
1152 Args.push_back(OutlinedFn->getArg(1));
1153 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1154 ++U)
1155 Args.push_back(CI->getArgOperand(U));
1156
1157 CallInst *NewCI = CallInst::Create(FT, Callee, Args, "", CI);
1158 if (CI->getDebugLoc())
1159 NewCI->setDebugLoc(CI->getDebugLoc());
1160
1161 // Forward parameter attributes from the callback to the callee.
1162 for (unsigned U = CallbackFirstArgOperand, E = CI->arg_size(); U < E;
1163 ++U)
1164 for (const Attribute &A : CI->getAttributes().getParamAttrs(U))
1165 NewCI->addParamAttr(
1166 U - (CallbackFirstArgOperand - CallbackCalleeOperand), A);
1167
1168 // Emit an explicit barrier to replace the implicit fork-join barrier.
1169 if (CI != MergableCIs.back()) {
1170 // TODO: Remove barrier if the merged parallel region includes the
1171 // 'nowait' clause.
1172 OMPInfoCache.OMPBuilder.createBarrier(
1173 InsertPointTy(NewCI->getParent(),
1174 NewCI->getNextNode()->getIterator()),
1175 OMPD_parallel);
1176 }
1177
1178 CI->eraseFromParent();
1179 }
1180
1181 assert(OutlinedFn != OriginalFn && "Outlining failed");
1182 CGUpdater.registerOutlinedFunction(*OriginalFn, *OutlinedFn);
1183 CGUpdater.reanalyzeFunction(*OriginalFn);
1184
1185 NumOpenMPParallelRegionsMerged += MergableCIs.size();
1186
1187 return true;
1188 };
1189
1190 // Helper function that identifes sequences of
1191 // __kmpc_fork_call uses in a basic block.
1192 auto DetectPRsCB = [&](Use &U, Function &F) {
1193 CallInst *CI = getCallIfRegularCall(U, &RFI);
1194 BB2PRMap[CI->getParent()].insert(CI);
1195
1196 return false;
1197 };
1198
1199 BB2PRMap.clear();
1200 RFI.foreachUse(SCC, DetectPRsCB);
1201 SmallVector<SmallVector<CallInst *, 4>, 4> MergableCIsVector;
1202 // Find mergable parallel regions within a basic block that are
1203 // safe to merge, that is any in-between instructions can safely
1204 // execute in parallel after merging.
1205 // TODO: support merging across basic-blocks.
1206 for (auto &It : BB2PRMap) {
1207 auto &CIs = It.getSecond();
1208 if (CIs.size() < 2)
1209 continue;
1210
1211 BasicBlock *BB = It.getFirst();
1212 SmallVector<CallInst *, 4> MergableCIs;
1213
1214 /// Returns true if the instruction is mergable, false otherwise.
1215 /// A terminator instruction is unmergable by definition since merging
1216 /// works within a BB. Instructions before the mergable region are
1217 /// mergable if they are not calls to OpenMP runtime functions that may
1218 /// set different execution parameters for subsequent parallel regions.
1219 /// Instructions in-between parallel regions are mergable if they are not
1220 /// calls to any non-intrinsic function since that may call a non-mergable
1221 /// OpenMP runtime function.
1222 auto IsMergable = [&](Instruction &I, bool IsBeforeMergableRegion) {
1223 // We do not merge across BBs, hence return false (unmergable) if the
1224 // instruction is a terminator.
1225 if (I.isTerminator())
1226 return false;
1227
1228 if (!isa<CallInst>(&I))
1229 return true;
1230
1231 CallInst *CI = cast<CallInst>(&I);
1232 if (IsBeforeMergableRegion) {
1233 Function *CalledFunction = CI->getCalledFunction();
1234 if (!CalledFunction)
1235 return false;
1236 // Return false (unmergable) if the call before the parallel
1237 // region calls an explicit affinity (proc_bind) or number of
1238 // threads (num_threads) compiler-generated function. Those settings
1239 // may be incompatible with following parallel regions.
1240 // TODO: ICV tracking to detect compatibility.
1241 for (const auto &RFI : UnmergableCallsInfo) {
1242 if (CalledFunction == RFI.Declaration)
1243 return false;
1244 }
1245 } else {
1246 // Return false (unmergable) if there is a call instruction
1247 // in-between parallel regions when it is not an intrinsic. It
1248 // may call an unmergable OpenMP runtime function in its callpath.
1249 // TODO: Keep track of possible OpenMP calls in the callpath.
1250 if (!isa<IntrinsicInst>(CI))
1251 return false;
1252 }
1253
1254 return true;
1255 };
1256 // Find maximal number of parallel region CIs that are safe to merge.
1257 for (auto It = BB->begin(), End = BB->end(); It != End;) {
1258 Instruction &I = *It;
1259 ++It;
1260
1261 if (CIs.count(&I)) {
1262 MergableCIs.push_back(cast<CallInst>(&I));
1263 continue;
1264 }
1265
1266 // Continue expanding if the instruction is mergable.
1267 if (IsMergable(I, MergableCIs.empty()))
1268 continue;
1269
1270 // Forward the instruction iterator to skip the next parallel region
1271 // since there is an unmergable instruction which can affect it.
1272 for (; It != End; ++It) {
1273 Instruction &SkipI = *It;
1274 if (CIs.count(&SkipI)) {
1275 LLVM_DEBUG(dbgs() << TAG << "Skip parallel region " << SkipI
1276 << " due to " << I << "\n");
1277 ++It;
1278 break;
1279 }
1280 }
1281
1282 // Store mergable regions found.
1283 if (MergableCIs.size() > 1) {
1284 MergableCIsVector.push_back(MergableCIs);
1285 LLVM_DEBUG(dbgs() << TAG << "Found " << MergableCIs.size()
1286 << " parallel regions in block " << BB->getName()
1287 << " of function " << BB->getParent()->getName()
1288 << "\n";);
1289 }
1290
1291 MergableCIs.clear();
1292 }
1293
1294 if (!MergableCIsVector.empty()) {
1295 Changed = true;
1296
1297 for (auto &MergableCIs : MergableCIsVector)
1298 Merge(MergableCIs, BB);
1299 MergableCIsVector.clear();
1300 }
1301 }
1302
1303 if (Changed) {
1304 /// Re-collect use for fork calls, emitted barrier calls, and
1305 /// any emitted master/end_master calls.
1306 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_fork_call);
1307 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_barrier);
1308 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_master);
1309 OMPInfoCache.recollectUsesForFunction(OMPRTL___kmpc_end_master);
1310 }
1311
1312 return Changed;
1313 }
1314
1315 /// Try to delete parallel regions if possible.
deleteParallelRegions__anonc7318b540111::OpenMPOpt1316 bool deleteParallelRegions() {
1317 const unsigned CallbackCalleeOperand = 2;
1318
1319 OMPInformationCache::RuntimeFunctionInfo &RFI =
1320 OMPInfoCache.RFIs[OMPRTL___kmpc_fork_call];
1321
1322 if (!RFI.Declaration)
1323 return false;
1324
1325 bool Changed = false;
1326 auto DeleteCallCB = [&](Use &U, Function &) {
1327 CallInst *CI = getCallIfRegularCall(U);
1328 if (!CI)
1329 return false;
1330 auto *Fn = dyn_cast<Function>(
1331 CI->getArgOperand(CallbackCalleeOperand)->stripPointerCasts());
1332 if (!Fn)
1333 return false;
1334 if (!Fn->onlyReadsMemory())
1335 return false;
1336 if (!Fn->hasFnAttribute(Attribute::WillReturn))
1337 return false;
1338
1339 LLVM_DEBUG(dbgs() << TAG << "Delete read-only parallel region in "
1340 << CI->getCaller()->getName() << "\n");
1341
1342 auto Remark = [&](OptimizationRemark OR) {
1343 return OR << "Removing parallel region with no side-effects.";
1344 };
1345 emitRemark<OptimizationRemark>(CI, "OMP160", Remark);
1346
1347 CGUpdater.removeCallSite(*CI);
1348 CI->eraseFromParent();
1349 Changed = true;
1350 ++NumOpenMPParallelRegionsDeleted;
1351 return true;
1352 };
1353
1354 RFI.foreachUse(SCC, DeleteCallCB);
1355
1356 return Changed;
1357 }
1358
1359 /// Try to eliminate runtime calls by reusing existing ones.
deduplicateRuntimeCalls__anonc7318b540111::OpenMPOpt1360 bool deduplicateRuntimeCalls() {
1361 bool Changed = false;
1362
1363 RuntimeFunction DeduplicableRuntimeCallIDs[] = {
1364 OMPRTL_omp_get_num_threads,
1365 OMPRTL_omp_in_parallel,
1366 OMPRTL_omp_get_cancellation,
1367 OMPRTL_omp_get_thread_limit,
1368 OMPRTL_omp_get_supported_active_levels,
1369 OMPRTL_omp_get_level,
1370 OMPRTL_omp_get_ancestor_thread_num,
1371 OMPRTL_omp_get_team_size,
1372 OMPRTL_omp_get_active_level,
1373 OMPRTL_omp_in_final,
1374 OMPRTL_omp_get_proc_bind,
1375 OMPRTL_omp_get_num_places,
1376 OMPRTL_omp_get_num_procs,
1377 OMPRTL_omp_get_place_num,
1378 OMPRTL_omp_get_partition_num_places,
1379 OMPRTL_omp_get_partition_place_nums};
1380
1381 // Global-tid is handled separately.
1382 SmallSetVector<Value *, 16> GTIdArgs;
1383 collectGlobalThreadIdArguments(GTIdArgs);
1384 LLVM_DEBUG(dbgs() << TAG << "Found " << GTIdArgs.size()
1385 << " global thread ID arguments\n");
1386
1387 for (Function *F : SCC) {
1388 for (auto DeduplicableRuntimeCallID : DeduplicableRuntimeCallIDs)
1389 Changed |= deduplicateRuntimeCalls(
1390 *F, OMPInfoCache.RFIs[DeduplicableRuntimeCallID]);
1391
1392 // __kmpc_global_thread_num is special as we can replace it with an
1393 // argument in enough cases to make it worth trying.
1394 Value *GTIdArg = nullptr;
1395 for (Argument &Arg : F->args())
1396 if (GTIdArgs.count(&Arg)) {
1397 GTIdArg = &Arg;
1398 break;
1399 }
1400 Changed |= deduplicateRuntimeCalls(
1401 *F, OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num], GTIdArg);
1402 }
1403
1404 return Changed;
1405 }
1406
1407 /// Tries to hide the latency of runtime calls that involve host to
1408 /// device memory transfers by splitting them into their "issue" and "wait"
1409 /// versions. The "issue" is moved upwards as much as possible. The "wait" is
1410 /// moved downards as much as possible. The "issue" issues the memory transfer
1411 /// asynchronously, returning a handle. The "wait" waits in the returned
1412 /// handle for the memory transfer to finish.
hideMemTransfersLatency__anonc7318b540111::OpenMPOpt1413 bool hideMemTransfersLatency() {
1414 auto &RFI = OMPInfoCache.RFIs[OMPRTL___tgt_target_data_begin_mapper];
1415 bool Changed = false;
1416 auto SplitMemTransfers = [&](Use &U, Function &Decl) {
1417 auto *RTCall = getCallIfRegularCall(U, &RFI);
1418 if (!RTCall)
1419 return false;
1420
1421 OffloadArray OffloadArrays[3];
1422 if (!getValuesInOffloadArrays(*RTCall, OffloadArrays))
1423 return false;
1424
1425 LLVM_DEBUG(dumpValuesInOffloadArrays(OffloadArrays));
1426
1427 // TODO: Check if can be moved upwards.
1428 bool WasSplit = false;
1429 Instruction *WaitMovementPoint = canBeMovedDownwards(*RTCall);
1430 if (WaitMovementPoint)
1431 WasSplit = splitTargetDataBeginRTC(*RTCall, *WaitMovementPoint);
1432
1433 Changed |= WasSplit;
1434 return WasSplit;
1435 };
1436 if (OMPInfoCache.runtimeFnsAvailable(
1437 {OMPRTL___tgt_target_data_begin_mapper_issue,
1438 OMPRTL___tgt_target_data_begin_mapper_wait}))
1439 RFI.foreachUse(SCC, SplitMemTransfers);
1440
1441 return Changed;
1442 }
1443
analysisGlobalization__anonc7318b540111::OpenMPOpt1444 void analysisGlobalization() {
1445 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
1446
1447 auto CheckGlobalization = [&](Use &U, Function &Decl) {
1448 if (CallInst *CI = getCallIfRegularCall(U, &RFI)) {
1449 auto Remark = [&](OptimizationRemarkMissed ORM) {
1450 return ORM
1451 << "Found thread data sharing on the GPU. "
1452 << "Expect degraded performance due to data globalization.";
1453 };
1454 emitRemark<OptimizationRemarkMissed>(CI, "OMP112", Remark);
1455 }
1456
1457 return false;
1458 };
1459
1460 RFI.foreachUse(SCC, CheckGlobalization);
1461 }
1462
1463 /// Maps the values stored in the offload arrays passed as arguments to
1464 /// \p RuntimeCall into the offload arrays in \p OAs.
getValuesInOffloadArrays__anonc7318b540111::OpenMPOpt1465 bool getValuesInOffloadArrays(CallInst &RuntimeCall,
1466 MutableArrayRef<OffloadArray> OAs) {
1467 assert(OAs.size() == 3 && "Need space for three offload arrays!");
1468
1469 // A runtime call that involves memory offloading looks something like:
1470 // call void @__tgt_target_data_begin_mapper(arg0, arg1,
1471 // i8** %offload_baseptrs, i8** %offload_ptrs, i64* %offload_sizes,
1472 // ...)
1473 // So, the idea is to access the allocas that allocate space for these
1474 // offload arrays, offload_baseptrs, offload_ptrs, offload_sizes.
1475 // Therefore:
1476 // i8** %offload_baseptrs.
1477 Value *BasePtrsArg =
1478 RuntimeCall.getArgOperand(OffloadArray::BasePtrsArgNum);
1479 // i8** %offload_ptrs.
1480 Value *PtrsArg = RuntimeCall.getArgOperand(OffloadArray::PtrsArgNum);
1481 // i8** %offload_sizes.
1482 Value *SizesArg = RuntimeCall.getArgOperand(OffloadArray::SizesArgNum);
1483
1484 // Get values stored in **offload_baseptrs.
1485 auto *V = getUnderlyingObject(BasePtrsArg);
1486 if (!isa<AllocaInst>(V))
1487 return false;
1488 auto *BasePtrsArray = cast<AllocaInst>(V);
1489 if (!OAs[0].initialize(*BasePtrsArray, RuntimeCall))
1490 return false;
1491
1492 // Get values stored in **offload_baseptrs.
1493 V = getUnderlyingObject(PtrsArg);
1494 if (!isa<AllocaInst>(V))
1495 return false;
1496 auto *PtrsArray = cast<AllocaInst>(V);
1497 if (!OAs[1].initialize(*PtrsArray, RuntimeCall))
1498 return false;
1499
1500 // Get values stored in **offload_sizes.
1501 V = getUnderlyingObject(SizesArg);
1502 // If it's a [constant] global array don't analyze it.
1503 if (isa<GlobalValue>(V))
1504 return isa<Constant>(V);
1505 if (!isa<AllocaInst>(V))
1506 return false;
1507
1508 auto *SizesArray = cast<AllocaInst>(V);
1509 if (!OAs[2].initialize(*SizesArray, RuntimeCall))
1510 return false;
1511
1512 return true;
1513 }
1514
1515 /// Prints the values in the OffloadArrays \p OAs using LLVM_DEBUG.
1516 /// For now this is a way to test that the function getValuesInOffloadArrays
1517 /// is working properly.
1518 /// TODO: Move this to a unittest when unittests are available for OpenMPOpt.
dumpValuesInOffloadArrays__anonc7318b540111::OpenMPOpt1519 void dumpValuesInOffloadArrays(ArrayRef<OffloadArray> OAs) {
1520 assert(OAs.size() == 3 && "There are three offload arrays to debug!");
1521
1522 LLVM_DEBUG(dbgs() << TAG << " Successfully got offload values:\n");
1523 std::string ValuesStr;
1524 raw_string_ostream Printer(ValuesStr);
1525 std::string Separator = " --- ";
1526
1527 for (auto *BP : OAs[0].StoredValues) {
1528 BP->print(Printer);
1529 Printer << Separator;
1530 }
1531 LLVM_DEBUG(dbgs() << "\t\toffload_baseptrs: " << Printer.str() << "\n");
1532 ValuesStr.clear();
1533
1534 for (auto *P : OAs[1].StoredValues) {
1535 P->print(Printer);
1536 Printer << Separator;
1537 }
1538 LLVM_DEBUG(dbgs() << "\t\toffload_ptrs: " << Printer.str() << "\n");
1539 ValuesStr.clear();
1540
1541 for (auto *S : OAs[2].StoredValues) {
1542 S->print(Printer);
1543 Printer << Separator;
1544 }
1545 LLVM_DEBUG(dbgs() << "\t\toffload_sizes: " << Printer.str() << "\n");
1546 }
1547
1548 /// Returns the instruction where the "wait" counterpart \p RuntimeCall can be
1549 /// moved. Returns nullptr if the movement is not possible, or not worth it.
canBeMovedDownwards__anonc7318b540111::OpenMPOpt1550 Instruction *canBeMovedDownwards(CallInst &RuntimeCall) {
1551 // FIXME: This traverses only the BasicBlock where RuntimeCall is.
1552 // Make it traverse the CFG.
1553
1554 Instruction *CurrentI = &RuntimeCall;
1555 bool IsWorthIt = false;
1556 while ((CurrentI = CurrentI->getNextNode())) {
1557
1558 // TODO: Once we detect the regions to be offloaded we should use the
1559 // alias analysis manager to check if CurrentI may modify one of
1560 // the offloaded regions.
1561 if (CurrentI->mayHaveSideEffects() || CurrentI->mayReadFromMemory()) {
1562 if (IsWorthIt)
1563 return CurrentI;
1564
1565 return nullptr;
1566 }
1567
1568 // FIXME: For now if we move it over anything without side effect
1569 // is worth it.
1570 IsWorthIt = true;
1571 }
1572
1573 // Return end of BasicBlock.
1574 return RuntimeCall.getParent()->getTerminator();
1575 }
1576
1577 /// Splits \p RuntimeCall into its "issue" and "wait" counterparts.
splitTargetDataBeginRTC__anonc7318b540111::OpenMPOpt1578 bool splitTargetDataBeginRTC(CallInst &RuntimeCall,
1579 Instruction &WaitMovementPoint) {
1580 // Create stack allocated handle (__tgt_async_info) at the beginning of the
1581 // function. Used for storing information of the async transfer, allowing to
1582 // wait on it later.
1583 auto &IRBuilder = OMPInfoCache.OMPBuilder;
1584 Function *F = RuntimeCall.getCaller();
1585 BasicBlock &Entry = F->getEntryBlock();
1586 IRBuilder.Builder.SetInsertPoint(&Entry,
1587 Entry.getFirstNonPHIOrDbgOrAlloca());
1588 Value *Handle = IRBuilder.Builder.CreateAlloca(
1589 IRBuilder.AsyncInfo, /*ArraySize=*/nullptr, "handle");
1590 Handle =
1591 IRBuilder.Builder.CreateAddrSpaceCast(Handle, IRBuilder.AsyncInfoPtr);
1592
1593 // Add "issue" runtime call declaration:
1594 // declare %struct.tgt_async_info @__tgt_target_data_begin_issue(i64, i32,
1595 // i8**, i8**, i64*, i64*)
1596 FunctionCallee IssueDecl = IRBuilder.getOrCreateRuntimeFunction(
1597 M, OMPRTL___tgt_target_data_begin_mapper_issue);
1598
1599 // Change RuntimeCall call site for its asynchronous version.
1600 SmallVector<Value *, 16> Args;
1601 for (auto &Arg : RuntimeCall.args())
1602 Args.push_back(Arg.get());
1603 Args.push_back(Handle);
1604
1605 CallInst *IssueCallsite =
1606 CallInst::Create(IssueDecl, Args, /*NameStr=*/"", &RuntimeCall);
1607 OMPInfoCache.setCallingConvention(IssueDecl, IssueCallsite);
1608 RuntimeCall.eraseFromParent();
1609
1610 // Add "wait" runtime call declaration:
1611 // declare void @__tgt_target_data_begin_wait(i64, %struct.__tgt_async_info)
1612 FunctionCallee WaitDecl = IRBuilder.getOrCreateRuntimeFunction(
1613 M, OMPRTL___tgt_target_data_begin_mapper_wait);
1614
1615 Value *WaitParams[2] = {
1616 IssueCallsite->getArgOperand(
1617 OffloadArray::DeviceIDArgNum), // device_id.
1618 Handle // handle to wait on.
1619 };
1620 CallInst *WaitCallsite = CallInst::Create(
1621 WaitDecl, WaitParams, /*NameStr=*/"", &WaitMovementPoint);
1622 OMPInfoCache.setCallingConvention(WaitDecl, WaitCallsite);
1623
1624 return true;
1625 }
1626
combinedIdentStruct__anonc7318b540111::OpenMPOpt1627 static Value *combinedIdentStruct(Value *CurrentIdent, Value *NextIdent,
1628 bool GlobalOnly, bool &SingleChoice) {
1629 if (CurrentIdent == NextIdent)
1630 return CurrentIdent;
1631
1632 // TODO: Figure out how to actually combine multiple debug locations. For
1633 // now we just keep an existing one if there is a single choice.
1634 if (!GlobalOnly || isa<GlobalValue>(NextIdent)) {
1635 SingleChoice = !CurrentIdent;
1636 return NextIdent;
1637 }
1638 return nullptr;
1639 }
1640
1641 /// Return an `struct ident_t*` value that represents the ones used in the
1642 /// calls of \p RFI inside of \p F. If \p GlobalOnly is true, we will not
1643 /// return a local `struct ident_t*`. For now, if we cannot find a suitable
1644 /// return value we create one from scratch. We also do not yet combine
1645 /// information, e.g., the source locations, see combinedIdentStruct.
1646 Value *
getCombinedIdentFromCallUsesIn__anonc7318b540111::OpenMPOpt1647 getCombinedIdentFromCallUsesIn(OMPInformationCache::RuntimeFunctionInfo &RFI,
1648 Function &F, bool GlobalOnly) {
1649 bool SingleChoice = true;
1650 Value *Ident = nullptr;
1651 auto CombineIdentStruct = [&](Use &U, Function &Caller) {
1652 CallInst *CI = getCallIfRegularCall(U, &RFI);
1653 if (!CI || &F != &Caller)
1654 return false;
1655 Ident = combinedIdentStruct(Ident, CI->getArgOperand(0),
1656 /* GlobalOnly */ true, SingleChoice);
1657 return false;
1658 };
1659 RFI.foreachUse(SCC, CombineIdentStruct);
1660
1661 if (!Ident || !SingleChoice) {
1662 // The IRBuilder uses the insertion block to get to the module, this is
1663 // unfortunate but we work around it for now.
1664 if (!OMPInfoCache.OMPBuilder.getInsertionPoint().getBlock())
1665 OMPInfoCache.OMPBuilder.updateToLocation(OpenMPIRBuilder::InsertPointTy(
1666 &F.getEntryBlock(), F.getEntryBlock().begin()));
1667 // Create a fallback location if non was found.
1668 // TODO: Use the debug locations of the calls instead.
1669 uint32_t SrcLocStrSize;
1670 Constant *Loc =
1671 OMPInfoCache.OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
1672 Ident = OMPInfoCache.OMPBuilder.getOrCreateIdent(Loc, SrcLocStrSize);
1673 }
1674 return Ident;
1675 }
1676
1677 /// Try to eliminate calls of \p RFI in \p F by reusing an existing one or
1678 /// \p ReplVal if given.
deduplicateRuntimeCalls__anonc7318b540111::OpenMPOpt1679 bool deduplicateRuntimeCalls(Function &F,
1680 OMPInformationCache::RuntimeFunctionInfo &RFI,
1681 Value *ReplVal = nullptr) {
1682 auto *UV = RFI.getUseVector(F);
1683 if (!UV || UV->size() + (ReplVal != nullptr) < 2)
1684 return false;
1685
1686 LLVM_DEBUG(
1687 dbgs() << TAG << "Deduplicate " << UV->size() << " uses of " << RFI.Name
1688 << (ReplVal ? " with an existing value\n" : "\n") << "\n");
1689
1690 assert((!ReplVal || (isa<Argument>(ReplVal) &&
1691 cast<Argument>(ReplVal)->getParent() == &F)) &&
1692 "Unexpected replacement value!");
1693
1694 // TODO: Use dominance to find a good position instead.
1695 auto CanBeMoved = [this](CallBase &CB) {
1696 unsigned NumArgs = CB.arg_size();
1697 if (NumArgs == 0)
1698 return true;
1699 if (CB.getArgOperand(0)->getType() != OMPInfoCache.OMPBuilder.IdentPtr)
1700 return false;
1701 for (unsigned U = 1; U < NumArgs; ++U)
1702 if (isa<Instruction>(CB.getArgOperand(U)))
1703 return false;
1704 return true;
1705 };
1706
1707 if (!ReplVal) {
1708 for (Use *U : *UV)
1709 if (CallInst *CI = getCallIfRegularCall(*U, &RFI)) {
1710 if (!CanBeMoved(*CI))
1711 continue;
1712
1713 // If the function is a kernel, dedup will move
1714 // the runtime call right after the kernel init callsite. Otherwise,
1715 // it will move it to the beginning of the caller function.
1716 if (isKernel(F)) {
1717 auto &KernelInitRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
1718 auto *KernelInitUV = KernelInitRFI.getUseVector(F);
1719
1720 if (KernelInitUV->empty())
1721 continue;
1722
1723 assert(KernelInitUV->size() == 1 &&
1724 "Expected a single __kmpc_target_init in kernel\n");
1725
1726 CallInst *KernelInitCI =
1727 getCallIfRegularCall(*KernelInitUV->front(), &KernelInitRFI);
1728 assert(KernelInitCI &&
1729 "Expected a call to __kmpc_target_init in kernel\n");
1730
1731 CI->moveAfter(KernelInitCI);
1732 } else
1733 CI->moveBefore(&*F.getEntryBlock().getFirstInsertionPt());
1734 ReplVal = CI;
1735 break;
1736 }
1737 if (!ReplVal)
1738 return false;
1739 }
1740
1741 // If we use a call as a replacement value we need to make sure the ident is
1742 // valid at the new location. For now we just pick a global one, either
1743 // existing and used by one of the calls, or created from scratch.
1744 if (CallBase *CI = dyn_cast<CallBase>(ReplVal)) {
1745 if (!CI->arg_empty() &&
1746 CI->getArgOperand(0)->getType() == OMPInfoCache.OMPBuilder.IdentPtr) {
1747 Value *Ident = getCombinedIdentFromCallUsesIn(RFI, F,
1748 /* GlobalOnly */ true);
1749 CI->setArgOperand(0, Ident);
1750 }
1751 }
1752
1753 bool Changed = false;
1754 auto ReplaceAndDeleteCB = [&](Use &U, Function &Caller) {
1755 CallInst *CI = getCallIfRegularCall(U, &RFI);
1756 if (!CI || CI == ReplVal || &F != &Caller)
1757 return false;
1758 assert(CI->getCaller() == &F && "Unexpected call!");
1759
1760 auto Remark = [&](OptimizationRemark OR) {
1761 return OR << "OpenMP runtime call "
1762 << ore::NV("OpenMPOptRuntime", RFI.Name) << " deduplicated.";
1763 };
1764 if (CI->getDebugLoc())
1765 emitRemark<OptimizationRemark>(CI, "OMP170", Remark);
1766 else
1767 emitRemark<OptimizationRemark>(&F, "OMP170", Remark);
1768
1769 CGUpdater.removeCallSite(*CI);
1770 CI->replaceAllUsesWith(ReplVal);
1771 CI->eraseFromParent();
1772 ++NumOpenMPRuntimeCallsDeduplicated;
1773 Changed = true;
1774 return true;
1775 };
1776 RFI.foreachUse(SCC, ReplaceAndDeleteCB);
1777
1778 return Changed;
1779 }
1780
1781 /// Collect arguments that represent the global thread id in \p GTIdArgs.
collectGlobalThreadIdArguments__anonc7318b540111::OpenMPOpt1782 void collectGlobalThreadIdArguments(SmallSetVector<Value *, 16> >IdArgs) {
1783 // TODO: Below we basically perform a fixpoint iteration with a pessimistic
1784 // initialization. We could define an AbstractAttribute instead and
1785 // run the Attributor here once it can be run as an SCC pass.
1786
1787 // Helper to check the argument \p ArgNo at all call sites of \p F for
1788 // a GTId.
1789 auto CallArgOpIsGTId = [&](Function &F, unsigned ArgNo, CallInst &RefCI) {
1790 if (!F.hasLocalLinkage())
1791 return false;
1792 for (Use &U : F.uses()) {
1793 if (CallInst *CI = getCallIfRegularCall(U)) {
1794 Value *ArgOp = CI->getArgOperand(ArgNo);
1795 if (CI == &RefCI || GTIdArgs.count(ArgOp) ||
1796 getCallIfRegularCall(
1797 *ArgOp, &OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num]))
1798 continue;
1799 }
1800 return false;
1801 }
1802 return true;
1803 };
1804
1805 // Helper to identify uses of a GTId as GTId arguments.
1806 auto AddUserArgs = [&](Value >Id) {
1807 for (Use &U : GTId.uses())
1808 if (CallInst *CI = dyn_cast<CallInst>(U.getUser()))
1809 if (CI->isArgOperand(&U))
1810 if (Function *Callee = CI->getCalledFunction())
1811 if (CallArgOpIsGTId(*Callee, U.getOperandNo(), *CI))
1812 GTIdArgs.insert(Callee->getArg(U.getOperandNo()));
1813 };
1814
1815 // The argument users of __kmpc_global_thread_num calls are GTIds.
1816 OMPInformationCache::RuntimeFunctionInfo &GlobThreadNumRFI =
1817 OMPInfoCache.RFIs[OMPRTL___kmpc_global_thread_num];
1818
1819 GlobThreadNumRFI.foreachUse(SCC, [&](Use &U, Function &F) {
1820 if (CallInst *CI = getCallIfRegularCall(U, &GlobThreadNumRFI))
1821 AddUserArgs(*CI);
1822 return false;
1823 });
1824
1825 // Transitively search for more arguments by looking at the users of the
1826 // ones we know already. During the search the GTIdArgs vector is extended
1827 // so we cannot cache the size nor can we use a range based for.
1828 for (unsigned U = 0; U < GTIdArgs.size(); ++U)
1829 AddUserArgs(*GTIdArgs[U]);
1830 }
1831
1832 /// Kernel (=GPU) optimizations and utility functions
1833 ///
1834 ///{{
1835
1836 /// Check if \p F is a kernel, hence entry point for target offloading.
isKernel__anonc7318b540111::OpenMPOpt1837 bool isKernel(Function &F) { return OMPInfoCache.Kernels.count(&F); }
1838
1839 /// Cache to remember the unique kernel for a function.
1840 DenseMap<Function *, std::optional<Kernel>> UniqueKernelMap;
1841
1842 /// Find the unique kernel that will execute \p F, if any.
1843 Kernel getUniqueKernelFor(Function &F);
1844
1845 /// Find the unique kernel that will execute \p I, if any.
getUniqueKernelFor__anonc7318b540111::OpenMPOpt1846 Kernel getUniqueKernelFor(Instruction &I) {
1847 return getUniqueKernelFor(*I.getFunction());
1848 }
1849
1850 /// Rewrite the device (=GPU) code state machine create in non-SPMD mode in
1851 /// the cases we can avoid taking the address of a function.
1852 bool rewriteDeviceCodeStateMachine();
1853
1854 ///
1855 ///}}
1856
1857 /// Emit a remark generically
1858 ///
1859 /// This template function can be used to generically emit a remark. The
1860 /// RemarkKind should be one of the following:
1861 /// - OptimizationRemark to indicate a successful optimization attempt
1862 /// - OptimizationRemarkMissed to report a failed optimization attempt
1863 /// - OptimizationRemarkAnalysis to provide additional information about an
1864 /// optimization attempt
1865 ///
1866 /// The remark is built using a callback function provided by the caller that
1867 /// takes a RemarkKind as input and returns a RemarkKind.
1868 template <typename RemarkKind, typename RemarkCallBack>
emitRemark__anonc7318b540111::OpenMPOpt1869 void emitRemark(Instruction *I, StringRef RemarkName,
1870 RemarkCallBack &&RemarkCB) const {
1871 Function *F = I->getParent()->getParent();
1872 auto &ORE = OREGetter(F);
1873
1874 if (RemarkName.startswith("OMP"))
1875 ORE.emit([&]() {
1876 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I))
1877 << " [" << RemarkName << "]";
1878 });
1879 else
1880 ORE.emit(
1881 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, I)); });
1882 }
1883
1884 /// Emit a remark on a function.
1885 template <typename RemarkKind, typename RemarkCallBack>
emitRemark__anonc7318b540111::OpenMPOpt1886 void emitRemark(Function *F, StringRef RemarkName,
1887 RemarkCallBack &&RemarkCB) const {
1888 auto &ORE = OREGetter(F);
1889
1890 if (RemarkName.startswith("OMP"))
1891 ORE.emit([&]() {
1892 return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F))
1893 << " [" << RemarkName << "]";
1894 });
1895 else
1896 ORE.emit(
1897 [&]() { return RemarkCB(RemarkKind(DEBUG_TYPE, RemarkName, F)); });
1898 }
1899
1900 /// The underlying module.
1901 Module &M;
1902
1903 /// The SCC we are operating on.
1904 SmallVectorImpl<Function *> &SCC;
1905
1906 /// Callback to update the call graph, the first argument is a removed call,
1907 /// the second an optional replacement call.
1908 CallGraphUpdater &CGUpdater;
1909
1910 /// Callback to get an OptimizationRemarkEmitter from a Function *
1911 OptimizationRemarkGetter OREGetter;
1912
1913 /// OpenMP-specific information cache. Also Used for Attributor runs.
1914 OMPInformationCache &OMPInfoCache;
1915
1916 /// Attributor instance.
1917 Attributor &A;
1918
1919 /// Helper function to run Attributor on SCC.
runAttributor__anonc7318b540111::OpenMPOpt1920 bool runAttributor(bool IsModulePass) {
1921 if (SCC.empty())
1922 return false;
1923
1924 registerAAs(IsModulePass);
1925
1926 ChangeStatus Changed = A.run();
1927
1928 LLVM_DEBUG(dbgs() << "[Attributor] Done with " << SCC.size()
1929 << " functions, result: " << Changed << ".\n");
1930
1931 return Changed == ChangeStatus::CHANGED;
1932 }
1933
1934 void registerFoldRuntimeCall(RuntimeFunction RF);
1935
1936 /// Populate the Attributor with abstract attribute opportunities in the
1937 /// functions.
1938 void registerAAs(bool IsModulePass);
1939
1940 public:
1941 /// Callback to register AAs for live functions, including internal functions
1942 /// marked live during the traversal.
1943 static void registerAAsForFunction(Attributor &A, const Function &F);
1944 };
1945
getUniqueKernelFor(Function & F)1946 Kernel OpenMPOpt::getUniqueKernelFor(Function &F) {
1947 if (!OMPInfoCache.ModuleSlice.empty() && !OMPInfoCache.ModuleSlice.count(&F))
1948 return nullptr;
1949
1950 // Use a scope to keep the lifetime of the CachedKernel short.
1951 {
1952 std::optional<Kernel> &CachedKernel = UniqueKernelMap[&F];
1953 if (CachedKernel)
1954 return *CachedKernel;
1955
1956 // TODO: We should use an AA to create an (optimistic and callback
1957 // call-aware) call graph. For now we stick to simple patterns that
1958 // are less powerful, basically the worst fixpoint.
1959 if (isKernel(F)) {
1960 CachedKernel = Kernel(&F);
1961 return *CachedKernel;
1962 }
1963
1964 CachedKernel = nullptr;
1965 if (!F.hasLocalLinkage()) {
1966
1967 // See https://openmp.llvm.org/remarks/OptimizationRemarks.html
1968 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
1969 return ORA << "Potentially unknown OpenMP target region caller.";
1970 };
1971 emitRemark<OptimizationRemarkAnalysis>(&F, "OMP100", Remark);
1972
1973 return nullptr;
1974 }
1975 }
1976
1977 auto GetUniqueKernelForUse = [&](const Use &U) -> Kernel {
1978 if (auto *Cmp = dyn_cast<ICmpInst>(U.getUser())) {
1979 // Allow use in equality comparisons.
1980 if (Cmp->isEquality())
1981 return getUniqueKernelFor(*Cmp);
1982 return nullptr;
1983 }
1984 if (auto *CB = dyn_cast<CallBase>(U.getUser())) {
1985 // Allow direct calls.
1986 if (CB->isCallee(&U))
1987 return getUniqueKernelFor(*CB);
1988
1989 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
1990 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
1991 // Allow the use in __kmpc_parallel_51 calls.
1992 if (OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI))
1993 return getUniqueKernelFor(*CB);
1994 return nullptr;
1995 }
1996 // Disallow every other use.
1997 return nullptr;
1998 };
1999
2000 // TODO: In the future we want to track more than just a unique kernel.
2001 SmallPtrSet<Kernel, 2> PotentialKernels;
2002 OMPInformationCache::foreachUse(F, [&](const Use &U) {
2003 PotentialKernels.insert(GetUniqueKernelForUse(U));
2004 });
2005
2006 Kernel K = nullptr;
2007 if (PotentialKernels.size() == 1)
2008 K = *PotentialKernels.begin();
2009
2010 // Cache the result.
2011 UniqueKernelMap[&F] = K;
2012
2013 return K;
2014 }
2015
rewriteDeviceCodeStateMachine()2016 bool OpenMPOpt::rewriteDeviceCodeStateMachine() {
2017 OMPInformationCache::RuntimeFunctionInfo &KernelParallelRFI =
2018 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
2019
2020 bool Changed = false;
2021 if (!KernelParallelRFI)
2022 return Changed;
2023
2024 // If we have disabled state machine changes, exit
2025 if (DisableOpenMPOptStateMachineRewrite)
2026 return Changed;
2027
2028 for (Function *F : SCC) {
2029
2030 // Check if the function is a use in a __kmpc_parallel_51 call at
2031 // all.
2032 bool UnknownUse = false;
2033 bool KernelParallelUse = false;
2034 unsigned NumDirectCalls = 0;
2035
2036 SmallVector<Use *, 2> ToBeReplacedStateMachineUses;
2037 OMPInformationCache::foreachUse(*F, [&](Use &U) {
2038 if (auto *CB = dyn_cast<CallBase>(U.getUser()))
2039 if (CB->isCallee(&U)) {
2040 ++NumDirectCalls;
2041 return;
2042 }
2043
2044 if (isa<ICmpInst>(U.getUser())) {
2045 ToBeReplacedStateMachineUses.push_back(&U);
2046 return;
2047 }
2048
2049 // Find wrapper functions that represent parallel kernels.
2050 CallInst *CI =
2051 OpenMPOpt::getCallIfRegularCall(*U.getUser(), &KernelParallelRFI);
2052 const unsigned int WrapperFunctionArgNo = 6;
2053 if (!KernelParallelUse && CI &&
2054 CI->getArgOperandNo(&U) == WrapperFunctionArgNo) {
2055 KernelParallelUse = true;
2056 ToBeReplacedStateMachineUses.push_back(&U);
2057 return;
2058 }
2059 UnknownUse = true;
2060 });
2061
2062 // Do not emit a remark if we haven't seen a __kmpc_parallel_51
2063 // use.
2064 if (!KernelParallelUse)
2065 continue;
2066
2067 // If this ever hits, we should investigate.
2068 // TODO: Checking the number of uses is not a necessary restriction and
2069 // should be lifted.
2070 if (UnknownUse || NumDirectCalls != 1 ||
2071 ToBeReplacedStateMachineUses.size() > 2) {
2072 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2073 return ORA << "Parallel region is used in "
2074 << (UnknownUse ? "unknown" : "unexpected")
2075 << " ways. Will not attempt to rewrite the state machine.";
2076 };
2077 emitRemark<OptimizationRemarkAnalysis>(F, "OMP101", Remark);
2078 continue;
2079 }
2080
2081 // Even if we have __kmpc_parallel_51 calls, we (for now) give
2082 // up if the function is not called from a unique kernel.
2083 Kernel K = getUniqueKernelFor(*F);
2084 if (!K) {
2085 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
2086 return ORA << "Parallel region is not called from a unique kernel. "
2087 "Will not attempt to rewrite the state machine.";
2088 };
2089 emitRemark<OptimizationRemarkAnalysis>(F, "OMP102", Remark);
2090 continue;
2091 }
2092
2093 // We now know F is a parallel body function called only from the kernel K.
2094 // We also identified the state machine uses in which we replace the
2095 // function pointer by a new global symbol for identification purposes. This
2096 // ensures only direct calls to the function are left.
2097
2098 Module &M = *F->getParent();
2099 Type *Int8Ty = Type::getInt8Ty(M.getContext());
2100
2101 auto *ID = new GlobalVariable(
2102 M, Int8Ty, /* isConstant */ true, GlobalValue::PrivateLinkage,
2103 UndefValue::get(Int8Ty), F->getName() + ".ID");
2104
2105 for (Use *U : ToBeReplacedStateMachineUses)
2106 U->set(ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2107 ID, U->get()->getType()));
2108
2109 ++NumOpenMPParallelRegionsReplacedInGPUStateMachine;
2110
2111 Changed = true;
2112 }
2113
2114 return Changed;
2115 }
2116
2117 /// Abstract Attribute for tracking ICV values.
2118 struct AAICVTracker : public StateWrapper<BooleanState, AbstractAttribute> {
2119 using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAICVTracker__anonc7318b540111::AAICVTracker2120 AAICVTracker(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
2121
initialize__anonc7318b540111::AAICVTracker2122 void initialize(Attributor &A) override {
2123 Function *F = getAnchorScope();
2124 if (!F || !A.isFunctionIPOAmendable(*F))
2125 indicatePessimisticFixpoint();
2126 }
2127
2128 /// Returns true if value is assumed to be tracked.
isAssumedTracked__anonc7318b540111::AAICVTracker2129 bool isAssumedTracked() const { return getAssumed(); }
2130
2131 /// Returns true if value is known to be tracked.
isKnownTracked__anonc7318b540111::AAICVTracker2132 bool isKnownTracked() const { return getAssumed(); }
2133
2134 /// Create an abstract attribute biew for the position \p IRP.
2135 static AAICVTracker &createForPosition(const IRPosition &IRP, Attributor &A);
2136
2137 /// Return the value with which \p I can be replaced for specific \p ICV.
getReplacementValue__anonc7318b540111::AAICVTracker2138 virtual std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2139 const Instruction *I,
2140 Attributor &A) const {
2141 return std::nullopt;
2142 }
2143
2144 /// Return an assumed unique ICV value if a single candidate is found. If
2145 /// there cannot be one, return a nullptr. If it is not clear yet, return
2146 /// std::nullopt.
2147 virtual std::optional<Value *>
2148 getUniqueReplacementValue(InternalControlVar ICV) const = 0;
2149
2150 // Currently only nthreads is being tracked.
2151 // this array will only grow with time.
2152 InternalControlVar TrackableICVs[1] = {ICV_nthreads};
2153
2154 /// See AbstractAttribute::getName()
getName__anonc7318b540111::AAICVTracker2155 const std::string getName() const override { return "AAICVTracker"; }
2156
2157 /// See AbstractAttribute::getIdAddr()
getIdAddr__anonc7318b540111::AAICVTracker2158 const char *getIdAddr() const override { return &ID; }
2159
2160 /// This function should return true if the type of the \p AA is AAICVTracker
classof__anonc7318b540111::AAICVTracker2161 static bool classof(const AbstractAttribute *AA) {
2162 return (AA->getIdAddr() == &ID);
2163 }
2164
2165 static const char ID;
2166 };
2167
2168 struct AAICVTrackerFunction : public AAICVTracker {
AAICVTrackerFunction__anonc7318b540111::AAICVTrackerFunction2169 AAICVTrackerFunction(const IRPosition &IRP, Attributor &A)
2170 : AAICVTracker(IRP, A) {}
2171
2172 // FIXME: come up with better string.
getAsStr__anonc7318b540111::AAICVTrackerFunction2173 const std::string getAsStr() const override { return "ICVTrackerFunction"; }
2174
2175 // FIXME: come up with some stats.
trackStatistics__anonc7318b540111::AAICVTrackerFunction2176 void trackStatistics() const override {}
2177
2178 /// We don't manifest anything for this AA.
manifest__anonc7318b540111::AAICVTrackerFunction2179 ChangeStatus manifest(Attributor &A) override {
2180 return ChangeStatus::UNCHANGED;
2181 }
2182
2183 // Map of ICV to their values at specific program point.
2184 EnumeratedArray<DenseMap<Instruction *, Value *>, InternalControlVar,
2185 InternalControlVar::ICV___last>
2186 ICVReplacementValuesMap;
2187
updateImpl__anonc7318b540111::AAICVTrackerFunction2188 ChangeStatus updateImpl(Attributor &A) override {
2189 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
2190
2191 Function *F = getAnchorScope();
2192
2193 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2194
2195 for (InternalControlVar ICV : TrackableICVs) {
2196 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2197
2198 auto &ValuesMap = ICVReplacementValuesMap[ICV];
2199 auto TrackValues = [&](Use &U, Function &) {
2200 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U);
2201 if (!CI)
2202 return false;
2203
2204 // FIXME: handle setters with more that 1 arguments.
2205 /// Track new value.
2206 if (ValuesMap.insert(std::make_pair(CI, CI->getArgOperand(0))).second)
2207 HasChanged = ChangeStatus::CHANGED;
2208
2209 return false;
2210 };
2211
2212 auto CallCheck = [&](Instruction &I) {
2213 std::optional<Value *> ReplVal = getValueForCall(A, I, ICV);
2214 if (ReplVal && ValuesMap.insert(std::make_pair(&I, *ReplVal)).second)
2215 HasChanged = ChangeStatus::CHANGED;
2216
2217 return true;
2218 };
2219
2220 // Track all changes of an ICV.
2221 SetterRFI.foreachUse(TrackValues, F);
2222
2223 bool UsedAssumedInformation = false;
2224 A.checkForAllInstructions(CallCheck, *this, {Instruction::Call},
2225 UsedAssumedInformation,
2226 /* CheckBBLivenessOnly */ true);
2227
2228 /// TODO: Figure out a way to avoid adding entry in
2229 /// ICVReplacementValuesMap
2230 Instruction *Entry = &F->getEntryBlock().front();
2231 if (HasChanged == ChangeStatus::CHANGED && !ValuesMap.count(Entry))
2232 ValuesMap.insert(std::make_pair(Entry, nullptr));
2233 }
2234
2235 return HasChanged;
2236 }
2237
2238 /// Helper to check if \p I is a call and get the value for it if it is
2239 /// unique.
getValueForCall__anonc7318b540111::AAICVTrackerFunction2240 std::optional<Value *> getValueForCall(Attributor &A, const Instruction &I,
2241 InternalControlVar &ICV) const {
2242
2243 const auto *CB = dyn_cast<CallBase>(&I);
2244 if (!CB || CB->hasFnAttr("no_openmp") ||
2245 CB->hasFnAttr("no_openmp_routines"))
2246 return std::nullopt;
2247
2248 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2249 auto &GetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Getter];
2250 auto &SetterRFI = OMPInfoCache.RFIs[OMPInfoCache.ICVs[ICV].Setter];
2251 Function *CalledFunction = CB->getCalledFunction();
2252
2253 // Indirect call, assume ICV changes.
2254 if (CalledFunction == nullptr)
2255 return nullptr;
2256 if (CalledFunction == GetterRFI.Declaration)
2257 return std::nullopt;
2258 if (CalledFunction == SetterRFI.Declaration) {
2259 if (ICVReplacementValuesMap[ICV].count(&I))
2260 return ICVReplacementValuesMap[ICV].lookup(&I);
2261
2262 return nullptr;
2263 }
2264
2265 // Since we don't know, assume it changes the ICV.
2266 if (CalledFunction->isDeclaration())
2267 return nullptr;
2268
2269 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2270 *this, IRPosition::callsite_returned(*CB), DepClassTy::REQUIRED);
2271
2272 if (ICVTrackingAA.isAssumedTracked()) {
2273 std::optional<Value *> URV = ICVTrackingAA.getUniqueReplacementValue(ICV);
2274 if (!URV || (*URV && AA::isValidAtPosition(AA::ValueAndContext(**URV, I),
2275 OMPInfoCache)))
2276 return URV;
2277 }
2278
2279 // If we don't know, assume it changes.
2280 return nullptr;
2281 }
2282
2283 // We don't check unique value for a function, so return std::nullopt.
2284 std::optional<Value *>
getUniqueReplacementValue__anonc7318b540111::AAICVTrackerFunction2285 getUniqueReplacementValue(InternalControlVar ICV) const override {
2286 return std::nullopt;
2287 }
2288
2289 /// Return the value with which \p I can be replaced for specific \p ICV.
getReplacementValue__anonc7318b540111::AAICVTrackerFunction2290 std::optional<Value *> getReplacementValue(InternalControlVar ICV,
2291 const Instruction *I,
2292 Attributor &A) const override {
2293 const auto &ValuesMap = ICVReplacementValuesMap[ICV];
2294 if (ValuesMap.count(I))
2295 return ValuesMap.lookup(I);
2296
2297 SmallVector<const Instruction *, 16> Worklist;
2298 SmallPtrSet<const Instruction *, 16> Visited;
2299 Worklist.push_back(I);
2300
2301 std::optional<Value *> ReplVal;
2302
2303 while (!Worklist.empty()) {
2304 const Instruction *CurrInst = Worklist.pop_back_val();
2305 if (!Visited.insert(CurrInst).second)
2306 continue;
2307
2308 const BasicBlock *CurrBB = CurrInst->getParent();
2309
2310 // Go up and look for all potential setters/calls that might change the
2311 // ICV.
2312 while ((CurrInst = CurrInst->getPrevNode())) {
2313 if (ValuesMap.count(CurrInst)) {
2314 std::optional<Value *> NewReplVal = ValuesMap.lookup(CurrInst);
2315 // Unknown value, track new.
2316 if (!ReplVal) {
2317 ReplVal = NewReplVal;
2318 break;
2319 }
2320
2321 // If we found a new value, we can't know the icv value anymore.
2322 if (NewReplVal)
2323 if (ReplVal != NewReplVal)
2324 return nullptr;
2325
2326 break;
2327 }
2328
2329 std::optional<Value *> NewReplVal = getValueForCall(A, *CurrInst, ICV);
2330 if (!NewReplVal)
2331 continue;
2332
2333 // Unknown value, track new.
2334 if (!ReplVal) {
2335 ReplVal = NewReplVal;
2336 break;
2337 }
2338
2339 // if (NewReplVal.hasValue())
2340 // We found a new value, we can't know the icv value anymore.
2341 if (ReplVal != NewReplVal)
2342 return nullptr;
2343 }
2344
2345 // If we are in the same BB and we have a value, we are done.
2346 if (CurrBB == I->getParent() && ReplVal)
2347 return ReplVal;
2348
2349 // Go through all predecessors and add terminators for analysis.
2350 for (const BasicBlock *Pred : predecessors(CurrBB))
2351 if (const Instruction *Terminator = Pred->getTerminator())
2352 Worklist.push_back(Terminator);
2353 }
2354
2355 return ReplVal;
2356 }
2357 };
2358
2359 struct AAICVTrackerFunctionReturned : AAICVTracker {
AAICVTrackerFunctionReturned__anonc7318b540111::AAICVTrackerFunctionReturned2360 AAICVTrackerFunctionReturned(const IRPosition &IRP, Attributor &A)
2361 : AAICVTracker(IRP, A) {}
2362
2363 // FIXME: come up with better string.
getAsStr__anonc7318b540111::AAICVTrackerFunctionReturned2364 const std::string getAsStr() const override {
2365 return "ICVTrackerFunctionReturned";
2366 }
2367
2368 // FIXME: come up with some stats.
trackStatistics__anonc7318b540111::AAICVTrackerFunctionReturned2369 void trackStatistics() const override {}
2370
2371 /// We don't manifest anything for this AA.
manifest__anonc7318b540111::AAICVTrackerFunctionReturned2372 ChangeStatus manifest(Attributor &A) override {
2373 return ChangeStatus::UNCHANGED;
2374 }
2375
2376 // Map of ICV to their values at specific program point.
2377 EnumeratedArray<std::optional<Value *>, InternalControlVar,
2378 InternalControlVar::ICV___last>
2379 ICVReplacementValuesMap;
2380
2381 /// Return the value with which \p I can be replaced for specific \p ICV.
2382 std::optional<Value *>
getUniqueReplacementValue__anonc7318b540111::AAICVTrackerFunctionReturned2383 getUniqueReplacementValue(InternalControlVar ICV) const override {
2384 return ICVReplacementValuesMap[ICV];
2385 }
2386
updateImpl__anonc7318b540111::AAICVTrackerFunctionReturned2387 ChangeStatus updateImpl(Attributor &A) override {
2388 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2389 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2390 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2391
2392 if (!ICVTrackingAA.isAssumedTracked())
2393 return indicatePessimisticFixpoint();
2394
2395 for (InternalControlVar ICV : TrackableICVs) {
2396 std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2397 std::optional<Value *> UniqueICVValue;
2398
2399 auto CheckReturnInst = [&](Instruction &I) {
2400 std::optional<Value *> NewReplVal =
2401 ICVTrackingAA.getReplacementValue(ICV, &I, A);
2402
2403 // If we found a second ICV value there is no unique returned value.
2404 if (UniqueICVValue && UniqueICVValue != NewReplVal)
2405 return false;
2406
2407 UniqueICVValue = NewReplVal;
2408
2409 return true;
2410 };
2411
2412 bool UsedAssumedInformation = false;
2413 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret},
2414 UsedAssumedInformation,
2415 /* CheckBBLivenessOnly */ true))
2416 UniqueICVValue = nullptr;
2417
2418 if (UniqueICVValue == ReplVal)
2419 continue;
2420
2421 ReplVal = UniqueICVValue;
2422 Changed = ChangeStatus::CHANGED;
2423 }
2424
2425 return Changed;
2426 }
2427 };
2428
2429 struct AAICVTrackerCallSite : AAICVTracker {
AAICVTrackerCallSite__anonc7318b540111::AAICVTrackerCallSite2430 AAICVTrackerCallSite(const IRPosition &IRP, Attributor &A)
2431 : AAICVTracker(IRP, A) {}
2432
initialize__anonc7318b540111::AAICVTrackerCallSite2433 void initialize(Attributor &A) override {
2434 Function *F = getAnchorScope();
2435 if (!F || !A.isFunctionIPOAmendable(*F))
2436 indicatePessimisticFixpoint();
2437
2438 // We only initialize this AA for getters, so we need to know which ICV it
2439 // gets.
2440 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2441 for (InternalControlVar ICV : TrackableICVs) {
2442 auto ICVInfo = OMPInfoCache.ICVs[ICV];
2443 auto &Getter = OMPInfoCache.RFIs[ICVInfo.Getter];
2444 if (Getter.Declaration == getAssociatedFunction()) {
2445 AssociatedICV = ICVInfo.Kind;
2446 return;
2447 }
2448 }
2449
2450 /// Unknown ICV.
2451 indicatePessimisticFixpoint();
2452 }
2453
manifest__anonc7318b540111::AAICVTrackerCallSite2454 ChangeStatus manifest(Attributor &A) override {
2455 if (!ReplVal || !*ReplVal)
2456 return ChangeStatus::UNCHANGED;
2457
2458 A.changeAfterManifest(IRPosition::inst(*getCtxI()), **ReplVal);
2459 A.deleteAfterManifest(*getCtxI());
2460
2461 return ChangeStatus::CHANGED;
2462 }
2463
2464 // FIXME: come up with better string.
getAsStr__anonc7318b540111::AAICVTrackerCallSite2465 const std::string getAsStr() const override { return "ICVTrackerCallSite"; }
2466
2467 // FIXME: come up with some stats.
trackStatistics__anonc7318b540111::AAICVTrackerCallSite2468 void trackStatistics() const override {}
2469
2470 InternalControlVar AssociatedICV;
2471 std::optional<Value *> ReplVal;
2472
updateImpl__anonc7318b540111::AAICVTrackerCallSite2473 ChangeStatus updateImpl(Attributor &A) override {
2474 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2475 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
2476
2477 // We don't have any information, so we assume it changes the ICV.
2478 if (!ICVTrackingAA.isAssumedTracked())
2479 return indicatePessimisticFixpoint();
2480
2481 std::optional<Value *> NewReplVal =
2482 ICVTrackingAA.getReplacementValue(AssociatedICV, getCtxI(), A);
2483
2484 if (ReplVal == NewReplVal)
2485 return ChangeStatus::UNCHANGED;
2486
2487 ReplVal = NewReplVal;
2488 return ChangeStatus::CHANGED;
2489 }
2490
2491 // Return the value with which associated value can be replaced for specific
2492 // \p ICV.
2493 std::optional<Value *>
getUniqueReplacementValue__anonc7318b540111::AAICVTrackerCallSite2494 getUniqueReplacementValue(InternalControlVar ICV) const override {
2495 return ReplVal;
2496 }
2497 };
2498
2499 struct AAICVTrackerCallSiteReturned : AAICVTracker {
AAICVTrackerCallSiteReturned__anonc7318b540111::AAICVTrackerCallSiteReturned2500 AAICVTrackerCallSiteReturned(const IRPosition &IRP, Attributor &A)
2501 : AAICVTracker(IRP, A) {}
2502
2503 // FIXME: come up with better string.
getAsStr__anonc7318b540111::AAICVTrackerCallSiteReturned2504 const std::string getAsStr() const override {
2505 return "ICVTrackerCallSiteReturned";
2506 }
2507
2508 // FIXME: come up with some stats.
trackStatistics__anonc7318b540111::AAICVTrackerCallSiteReturned2509 void trackStatistics() const override {}
2510
2511 /// We don't manifest anything for this AA.
manifest__anonc7318b540111::AAICVTrackerCallSiteReturned2512 ChangeStatus manifest(Attributor &A) override {
2513 return ChangeStatus::UNCHANGED;
2514 }
2515
2516 // Map of ICV to their values at specific program point.
2517 EnumeratedArray<std::optional<Value *>, InternalControlVar,
2518 InternalControlVar::ICV___last>
2519 ICVReplacementValuesMap;
2520
2521 /// Return the value with which associated value can be replaced for specific
2522 /// \p ICV.
2523 std::optional<Value *>
getUniqueReplacementValue__anonc7318b540111::AAICVTrackerCallSiteReturned2524 getUniqueReplacementValue(InternalControlVar ICV) const override {
2525 return ICVReplacementValuesMap[ICV];
2526 }
2527
updateImpl__anonc7318b540111::AAICVTrackerCallSiteReturned2528 ChangeStatus updateImpl(Attributor &A) override {
2529 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2530 const auto &ICVTrackingAA = A.getAAFor<AAICVTracker>(
2531 *this, IRPosition::returned(*getAssociatedFunction()),
2532 DepClassTy::REQUIRED);
2533
2534 // We don't have any information, so we assume it changes the ICV.
2535 if (!ICVTrackingAA.isAssumedTracked())
2536 return indicatePessimisticFixpoint();
2537
2538 for (InternalControlVar ICV : TrackableICVs) {
2539 std::optional<Value *> &ReplVal = ICVReplacementValuesMap[ICV];
2540 std::optional<Value *> NewReplVal =
2541 ICVTrackingAA.getUniqueReplacementValue(ICV);
2542
2543 if (ReplVal == NewReplVal)
2544 continue;
2545
2546 ReplVal = NewReplVal;
2547 Changed = ChangeStatus::CHANGED;
2548 }
2549 return Changed;
2550 }
2551 };
2552
2553 struct AAExecutionDomainFunction : public AAExecutionDomain {
AAExecutionDomainFunction__anonc7318b540111::AAExecutionDomainFunction2554 AAExecutionDomainFunction(const IRPosition &IRP, Attributor &A)
2555 : AAExecutionDomain(IRP, A) {}
2556
~AAExecutionDomainFunction__anonc7318b540111::AAExecutionDomainFunction2557 ~AAExecutionDomainFunction() {
2558 delete RPOT;
2559 }
2560
initialize__anonc7318b540111::AAExecutionDomainFunction2561 void initialize(Attributor &A) override {
2562 if (getAnchorScope()->isDeclaration()) {
2563 indicatePessimisticFixpoint();
2564 return;
2565 }
2566 RPOT = new ReversePostOrderTraversal<Function *>(getAnchorScope());
2567 }
2568
getAsStr__anonc7318b540111::AAExecutionDomainFunction2569 const std::string getAsStr() const override {
2570 unsigned TotalBlocks = 0, InitialThreadBlocks = 0;
2571 for (auto &It : BEDMap) {
2572 TotalBlocks++;
2573 InitialThreadBlocks += It.getSecond().IsExecutedByInitialThreadOnly;
2574 }
2575 return "[AAExecutionDomain] " + std::to_string(InitialThreadBlocks) + "/" +
2576 std::to_string(TotalBlocks) + " executed by initial thread only";
2577 }
2578
2579 /// See AbstractAttribute::trackStatistics().
trackStatistics__anonc7318b540111::AAExecutionDomainFunction2580 void trackStatistics() const override {}
2581
manifest__anonc7318b540111::AAExecutionDomainFunction2582 ChangeStatus manifest(Attributor &A) override {
2583 LLVM_DEBUG({
2584 for (const BasicBlock &BB : *getAnchorScope()) {
2585 if (!isExecutedByInitialThreadOnly(BB))
2586 continue;
2587 dbgs() << TAG << " Basic block @" << getAnchorScope()->getName() << " "
2588 << BB.getName() << " is executed by a single thread.\n";
2589 }
2590 });
2591
2592 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2593
2594 if (DisableOpenMPOptBarrierElimination)
2595 return Changed;
2596
2597 SmallPtrSet<CallBase *, 16> DeletedBarriers;
2598 auto HandleAlignedBarrier = [&](CallBase *CB) {
2599 const ExecutionDomainTy &ED = CEDMap[CB];
2600 if (!ED.IsReachedFromAlignedBarrierOnly ||
2601 ED.EncounteredNonLocalSideEffect)
2602 return;
2603
2604 // We can remove this barrier, if it is one, or all aligned barriers
2605 // reaching the kernel end. In the latter case we can transitively work
2606 // our way back until we find a barrier that guards a side-effect if we
2607 // are dealing with the kernel end here.
2608 if (CB) {
2609 DeletedBarriers.insert(CB);
2610 A.deleteAfterManifest(*CB);
2611 ++NumBarriersEliminated;
2612 Changed = ChangeStatus::CHANGED;
2613 } else if (!ED.AlignedBarriers.empty()) {
2614 NumBarriersEliminated += ED.AlignedBarriers.size();
2615 Changed = ChangeStatus::CHANGED;
2616 SmallVector<CallBase *> Worklist(ED.AlignedBarriers.begin(),
2617 ED.AlignedBarriers.end());
2618 SmallSetVector<CallBase *, 16> Visited;
2619 while (!Worklist.empty()) {
2620 CallBase *LastCB = Worklist.pop_back_val();
2621 if (!Visited.insert(LastCB))
2622 continue;
2623 if (!DeletedBarriers.count(LastCB)) {
2624 A.deleteAfterManifest(*LastCB);
2625 continue;
2626 }
2627 // The final aligned barrier (LastCB) reaching the kernel end was
2628 // removed already. This means we can go one step further and remove
2629 // the barriers encoutered last before (LastCB).
2630 const ExecutionDomainTy &LastED = CEDMap[LastCB];
2631 Worklist.append(LastED.AlignedBarriers.begin(),
2632 LastED.AlignedBarriers.end());
2633 }
2634 }
2635
2636 // If we actually eliminated a barrier we need to eliminate the associated
2637 // llvm.assumes as well to avoid creating UB.
2638 if (!ED.EncounteredAssumes.empty() && (CB || !ED.AlignedBarriers.empty()))
2639 for (auto *AssumeCB : ED.EncounteredAssumes)
2640 A.deleteAfterManifest(*AssumeCB);
2641 };
2642
2643 for (auto *CB : AlignedBarriers)
2644 HandleAlignedBarrier(CB);
2645
2646 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2647 // Handle the "kernel end barrier" for kernels too.
2648 if (OMPInfoCache.Kernels.count(getAnchorScope()))
2649 HandleAlignedBarrier(nullptr);
2650
2651 return Changed;
2652 }
2653
2654 /// Merge barrier and assumption information from \p PredED into the successor
2655 /// \p ED.
2656 void
2657 mergeInPredecessorBarriersAndAssumptions(Attributor &A, ExecutionDomainTy &ED,
2658 const ExecutionDomainTy &PredED);
2659
2660 /// Merge all information from \p PredED into the successor \p ED. If
2661 /// \p InitialEdgeOnly is set, only the initial edge will enter the block
2662 /// represented by \p ED from this predecessor.
2663 void mergeInPredecessor(Attributor &A, ExecutionDomainTy &ED,
2664 const ExecutionDomainTy &PredED,
2665 bool InitialEdgeOnly = false);
2666
2667 /// Accumulate information for the entry block in \p EntryBBED.
2668 void handleEntryBB(Attributor &A, ExecutionDomainTy &EntryBBED);
2669
2670 /// See AbstractAttribute::updateImpl.
2671 ChangeStatus updateImpl(Attributor &A) override;
2672
2673 /// Query interface, see AAExecutionDomain
2674 ///{
isExecutedByInitialThreadOnly__anonc7318b540111::AAExecutionDomainFunction2675 bool isExecutedByInitialThreadOnly(const BasicBlock &BB) const override {
2676 if (!isValidState())
2677 return false;
2678 return BEDMap.lookup(&BB).IsExecutedByInitialThreadOnly;
2679 }
2680
isExecutedInAlignedRegion__anonc7318b540111::AAExecutionDomainFunction2681 bool isExecutedInAlignedRegion(Attributor &A,
2682 const Instruction &I) const override {
2683 assert(I.getFunction() == getAnchorScope() &&
2684 "Instruction is out of scope!");
2685 if (!isValidState())
2686 return false;
2687
2688 const Instruction *CurI;
2689
2690 // Check forward until a call or the block end is reached.
2691 CurI = &I;
2692 do {
2693 auto *CB = dyn_cast<CallBase>(CurI);
2694 if (!CB)
2695 continue;
2696 if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB))) {
2697 break;
2698 }
2699 const auto &It = CEDMap.find(CB);
2700 if (It == CEDMap.end())
2701 continue;
2702 if (!It->getSecond().IsReachingAlignedBarrierOnly)
2703 return false;
2704 break;
2705 } while ((CurI = CurI->getNextNonDebugInstruction()));
2706
2707 if (!CurI && !BEDMap.lookup(I.getParent()).IsReachingAlignedBarrierOnly)
2708 return false;
2709
2710 // Check backward until a call or the block beginning is reached.
2711 CurI = &I;
2712 do {
2713 auto *CB = dyn_cast<CallBase>(CurI);
2714 if (!CB)
2715 continue;
2716 if (CB != &I && AlignedBarriers.contains(const_cast<CallBase *>(CB))) {
2717 break;
2718 }
2719 const auto &It = CEDMap.find(CB);
2720 if (It == CEDMap.end())
2721 continue;
2722 if (!AA::isNoSyncInst(A, *CB, *this)) {
2723 if (It->getSecond().IsReachedFromAlignedBarrierOnly) {
2724 break;
2725 }
2726 return false;
2727 }
2728
2729 Function *Callee = CB->getCalledFunction();
2730 if (!Callee || Callee->isDeclaration())
2731 return false;
2732 const auto &EDAA = A.getAAFor<AAExecutionDomain>(
2733 *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
2734 if (!EDAA.getState().isValidState())
2735 return false;
2736 if (!EDAA.getFunctionExecutionDomain().IsReachedFromAlignedBarrierOnly)
2737 return false;
2738 break;
2739 } while ((CurI = CurI->getPrevNonDebugInstruction()));
2740
2741 if (!CurI &&
2742 !llvm::all_of(
2743 predecessors(I.getParent()), [&](const BasicBlock *PredBB) {
2744 return BEDMap.lookup(PredBB).IsReachedFromAlignedBarrierOnly;
2745 })) {
2746 return false;
2747 }
2748
2749 // On neither traversal we found a anything but aligned barriers.
2750 return true;
2751 }
2752
getExecutionDomain__anonc7318b540111::AAExecutionDomainFunction2753 ExecutionDomainTy getExecutionDomain(const BasicBlock &BB) const override {
2754 assert(isValidState() &&
2755 "No request should be made against an invalid state!");
2756 return BEDMap.lookup(&BB);
2757 }
getExecutionDomain__anonc7318b540111::AAExecutionDomainFunction2758 ExecutionDomainTy getExecutionDomain(const CallBase &CB) const override {
2759 assert(isValidState() &&
2760 "No request should be made against an invalid state!");
2761 return CEDMap.lookup(&CB);
2762 }
getFunctionExecutionDomain__anonc7318b540111::AAExecutionDomainFunction2763 ExecutionDomainTy getFunctionExecutionDomain() const override {
2764 assert(isValidState() &&
2765 "No request should be made against an invalid state!");
2766 return BEDMap.lookup(nullptr);
2767 }
2768 ///}
2769
2770 // Check if the edge into the successor block contains a condition that only
2771 // lets the main thread execute it.
isInitialThreadOnlyEdge__anonc7318b540111::AAExecutionDomainFunction2772 static bool isInitialThreadOnlyEdge(Attributor &A, BranchInst *Edge,
2773 BasicBlock &SuccessorBB) {
2774 if (!Edge || !Edge->isConditional())
2775 return false;
2776 if (Edge->getSuccessor(0) != &SuccessorBB)
2777 return false;
2778
2779 auto *Cmp = dyn_cast<CmpInst>(Edge->getCondition());
2780 if (!Cmp || !Cmp->isTrueWhenEqual() || !Cmp->isEquality())
2781 return false;
2782
2783 ConstantInt *C = dyn_cast<ConstantInt>(Cmp->getOperand(1));
2784 if (!C)
2785 return false;
2786
2787 // Match: -1 == __kmpc_target_init (for non-SPMD kernels only!)
2788 if (C->isAllOnesValue()) {
2789 auto *CB = dyn_cast<CallBase>(Cmp->getOperand(0));
2790 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2791 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
2792 CB = CB ? OpenMPOpt::getCallIfRegularCall(*CB, &RFI) : nullptr;
2793 if (!CB)
2794 return false;
2795 const int InitModeArgNo = 1;
2796 auto *ModeCI = dyn_cast<ConstantInt>(CB->getOperand(InitModeArgNo));
2797 return ModeCI && (ModeCI->getSExtValue() & OMP_TGT_EXEC_MODE_GENERIC);
2798 }
2799
2800 if (C->isZero()) {
2801 // Match: 0 == llvm.nvvm.read.ptx.sreg.tid.x()
2802 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2803 if (II->getIntrinsicID() == Intrinsic::nvvm_read_ptx_sreg_tid_x)
2804 return true;
2805
2806 // Match: 0 == llvm.amdgcn.workitem.id.x()
2807 if (auto *II = dyn_cast<IntrinsicInst>(Cmp->getOperand(0)))
2808 if (II->getIntrinsicID() == Intrinsic::amdgcn_workitem_id_x)
2809 return true;
2810 }
2811
2812 return false;
2813 };
2814
2815 /// Mapping containing information per block.
2816 DenseMap<const BasicBlock *, ExecutionDomainTy> BEDMap;
2817 DenseMap<const CallBase *, ExecutionDomainTy> CEDMap;
2818 SmallSetVector<CallBase *, 16> AlignedBarriers;
2819
2820 ReversePostOrderTraversal<Function *> *RPOT = nullptr;
2821 };
2822
mergeInPredecessorBarriersAndAssumptions(Attributor & A,ExecutionDomainTy & ED,const ExecutionDomainTy & PredED)2823 void AAExecutionDomainFunction::mergeInPredecessorBarriersAndAssumptions(
2824 Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED) {
2825 for (auto *EA : PredED.EncounteredAssumes)
2826 ED.addAssumeInst(A, *EA);
2827
2828 for (auto *AB : PredED.AlignedBarriers)
2829 ED.addAlignedBarrier(A, *AB);
2830 }
2831
mergeInPredecessor(Attributor & A,ExecutionDomainTy & ED,const ExecutionDomainTy & PredED,bool InitialEdgeOnly)2832 void AAExecutionDomainFunction::mergeInPredecessor(
2833 Attributor &A, ExecutionDomainTy &ED, const ExecutionDomainTy &PredED,
2834 bool InitialEdgeOnly) {
2835 ED.IsExecutedByInitialThreadOnly =
2836 InitialEdgeOnly || (PredED.IsExecutedByInitialThreadOnly &&
2837 ED.IsExecutedByInitialThreadOnly);
2838
2839 ED.IsReachedFromAlignedBarrierOnly = ED.IsReachedFromAlignedBarrierOnly &&
2840 PredED.IsReachedFromAlignedBarrierOnly;
2841 ED.EncounteredNonLocalSideEffect =
2842 ED.EncounteredNonLocalSideEffect | PredED.EncounteredNonLocalSideEffect;
2843 if (ED.IsReachedFromAlignedBarrierOnly)
2844 mergeInPredecessorBarriersAndAssumptions(A, ED, PredED);
2845 else
2846 ED.clearAssumeInstAndAlignedBarriers();
2847 }
2848
handleEntryBB(Attributor & A,ExecutionDomainTy & EntryBBED)2849 void AAExecutionDomainFunction::handleEntryBB(Attributor &A,
2850 ExecutionDomainTy &EntryBBED) {
2851 SmallVector<ExecutionDomainTy> PredExecDomains;
2852 auto PredForCallSite = [&](AbstractCallSite ACS) {
2853 const auto &EDAA = A.getAAFor<AAExecutionDomain>(
2854 *this, IRPosition::function(*ACS.getInstruction()->getFunction()),
2855 DepClassTy::OPTIONAL);
2856 if (!EDAA.getState().isValidState())
2857 return false;
2858 PredExecDomains.emplace_back(
2859 EDAA.getExecutionDomain(*cast<CallBase>(ACS.getInstruction())));
2860 return true;
2861 };
2862
2863 bool AllCallSitesKnown;
2864 if (A.checkForAllCallSites(PredForCallSite, *this,
2865 /* RequiresAllCallSites */ true,
2866 AllCallSitesKnown)) {
2867 for (const auto &PredED : PredExecDomains)
2868 mergeInPredecessor(A, EntryBBED, PredED);
2869
2870 } else {
2871 // We could not find all predecessors, so this is either a kernel or a
2872 // function with external linkage (or with some other weird uses).
2873 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2874 if (OMPInfoCache.Kernels.count(getAnchorScope())) {
2875 EntryBBED.IsExecutedByInitialThreadOnly = false;
2876 EntryBBED.IsReachedFromAlignedBarrierOnly = true;
2877 EntryBBED.EncounteredNonLocalSideEffect = false;
2878 } else {
2879 EntryBBED.IsExecutedByInitialThreadOnly = false;
2880 EntryBBED.IsReachedFromAlignedBarrierOnly = false;
2881 EntryBBED.EncounteredNonLocalSideEffect = true;
2882 }
2883 }
2884
2885 auto &FnED = BEDMap[nullptr];
2886 FnED.IsReachingAlignedBarrierOnly &=
2887 EntryBBED.IsReachedFromAlignedBarrierOnly;
2888 }
2889
updateImpl(Attributor & A)2890 ChangeStatus AAExecutionDomainFunction::updateImpl(Attributor &A) {
2891
2892 bool Changed = false;
2893
2894 // Helper to deal with an aligned barrier encountered during the forward
2895 // traversal. \p CB is the aligned barrier, \p ED is the execution domain when
2896 // it was encountered.
2897 auto HandleAlignedBarrier = [&](CallBase *CB, ExecutionDomainTy &ED) {
2898 if (CB)
2899 Changed |= AlignedBarriers.insert(CB);
2900 // First, update the barrier ED kept in the separate CEDMap.
2901 auto &CallED = CEDMap[CB];
2902 mergeInPredecessor(A, CallED, ED);
2903 // Next adjust the ED we use for the traversal.
2904 ED.EncounteredNonLocalSideEffect = false;
2905 ED.IsReachedFromAlignedBarrierOnly = true;
2906 // Aligned barrier collection has to come last.
2907 ED.clearAssumeInstAndAlignedBarriers();
2908 if (CB)
2909 ED.addAlignedBarrier(A, *CB);
2910 };
2911
2912 auto &LivenessAA =
2913 A.getAAFor<AAIsDead>(*this, getIRPosition(), DepClassTy::OPTIONAL);
2914
2915 // Set \p R to \V and report true if that changed \p R.
2916 auto SetAndRecord = [&](bool &R, bool V) {
2917 bool Eq = (R == V);
2918 R = V;
2919 return !Eq;
2920 };
2921
2922 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
2923
2924 Function *F = getAnchorScope();
2925 BasicBlock &EntryBB = F->getEntryBlock();
2926 bool IsKernel = OMPInfoCache.Kernels.count(F);
2927
2928 SmallVector<Instruction *> SyncInstWorklist;
2929 for (auto &RIt : *RPOT) {
2930 BasicBlock &BB = *RIt;
2931
2932 bool IsEntryBB = &BB == &EntryBB;
2933 // TODO: We use local reasoning since we don't have a divergence analysis
2934 // running as well. We could basically allow uniform branches here.
2935 bool AlignedBarrierLastInBlock = IsEntryBB && IsKernel;
2936 ExecutionDomainTy ED;
2937 // Propagate "incoming edges" into information about this block.
2938 if (IsEntryBB) {
2939 handleEntryBB(A, ED);
2940 } else {
2941 // For live non-entry blocks we only propagate
2942 // information via live edges.
2943 if (LivenessAA.isAssumedDead(&BB))
2944 continue;
2945
2946 for (auto *PredBB : predecessors(&BB)) {
2947 if (LivenessAA.isEdgeDead(PredBB, &BB))
2948 continue;
2949 bool InitialEdgeOnly = isInitialThreadOnlyEdge(
2950 A, dyn_cast<BranchInst>(PredBB->getTerminator()), BB);
2951 mergeInPredecessor(A, ED, BEDMap[PredBB], InitialEdgeOnly);
2952 }
2953 }
2954
2955 // Now we traverse the block, accumulate effects in ED and attach
2956 // information to calls.
2957 for (Instruction &I : BB) {
2958 bool UsedAssumedInformation;
2959 if (A.isAssumedDead(I, *this, &LivenessAA, UsedAssumedInformation,
2960 /* CheckBBLivenessOnly */ false, DepClassTy::OPTIONAL,
2961 /* CheckForDeadStore */ true))
2962 continue;
2963
2964 // Asummes and "assume-like" (dbg, lifetime, ...) are handled first, the
2965 // former is collected the latter is ignored.
2966 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
2967 if (auto *AI = dyn_cast_or_null<AssumeInst>(II)) {
2968 ED.addAssumeInst(A, *AI);
2969 continue;
2970 }
2971 // TODO: Should we also collect and delete lifetime markers?
2972 if (II->isAssumeLikeIntrinsic())
2973 continue;
2974 }
2975
2976 auto *CB = dyn_cast<CallBase>(&I);
2977 bool IsNoSync = AA::isNoSyncInst(A, I, *this);
2978 bool IsAlignedBarrier =
2979 !IsNoSync && CB &&
2980 AANoSync::isAlignedBarrier(*CB, AlignedBarrierLastInBlock);
2981
2982 AlignedBarrierLastInBlock &= IsNoSync;
2983
2984 // Next we check for calls. Aligned barriers are handled
2985 // explicitly, everything else is kept for the backward traversal and will
2986 // also affect our state.
2987 if (CB) {
2988 if (IsAlignedBarrier) {
2989 HandleAlignedBarrier(CB, ED);
2990 AlignedBarrierLastInBlock = true;
2991 continue;
2992 }
2993
2994 // Check the pointer(s) of a memory intrinsic explicitly.
2995 if (isa<MemIntrinsic>(&I)) {
2996 if (!ED.EncounteredNonLocalSideEffect &&
2997 AA::isPotentiallyAffectedByBarrier(A, I, *this))
2998 ED.EncounteredNonLocalSideEffect = true;
2999 if (!IsNoSync) {
3000 ED.IsReachedFromAlignedBarrierOnly = false;
3001 SyncInstWorklist.push_back(&I);
3002 }
3003 continue;
3004 }
3005
3006 // Record how we entered the call, then accumulate the effect of the
3007 // call in ED for potential use by the callee.
3008 auto &CallED = CEDMap[CB];
3009 mergeInPredecessor(A, CallED, ED);
3010
3011 // If we have a sync-definition we can check if it starts/ends in an
3012 // aligned barrier. If we are unsure we assume any sync breaks
3013 // alignment.
3014 Function *Callee = CB->getCalledFunction();
3015 if (!IsNoSync && Callee && !Callee->isDeclaration()) {
3016 const auto &EDAA = A.getAAFor<AAExecutionDomain>(
3017 *this, IRPosition::function(*Callee), DepClassTy::OPTIONAL);
3018 if (EDAA.getState().isValidState()) {
3019 const auto &CalleeED = EDAA.getFunctionExecutionDomain();
3020 ED.IsReachedFromAlignedBarrierOnly =
3021 CallED.IsReachedFromAlignedBarrierOnly =
3022 CalleeED.IsReachedFromAlignedBarrierOnly;
3023 AlignedBarrierLastInBlock = ED.IsReachedFromAlignedBarrierOnly;
3024 if (IsNoSync || !CalleeED.IsReachedFromAlignedBarrierOnly)
3025 ED.EncounteredNonLocalSideEffect |=
3026 CalleeED.EncounteredNonLocalSideEffect;
3027 else
3028 ED.EncounteredNonLocalSideEffect =
3029 CalleeED.EncounteredNonLocalSideEffect;
3030 if (!CalleeED.IsReachingAlignedBarrierOnly)
3031 SyncInstWorklist.push_back(&I);
3032 if (CalleeED.IsReachedFromAlignedBarrierOnly)
3033 mergeInPredecessorBarriersAndAssumptions(A, ED, CalleeED);
3034 continue;
3035 }
3036 }
3037 if (!IsNoSync)
3038 ED.IsReachedFromAlignedBarrierOnly =
3039 CallED.IsReachedFromAlignedBarrierOnly = false;
3040 AlignedBarrierLastInBlock &= ED.IsReachedFromAlignedBarrierOnly;
3041 ED.EncounteredNonLocalSideEffect |= !CB->doesNotAccessMemory();
3042 if (!IsNoSync)
3043 SyncInstWorklist.push_back(&I);
3044 }
3045
3046 if (!I.mayHaveSideEffects() && !I.mayReadFromMemory())
3047 continue;
3048
3049 // If we have a callee we try to use fine-grained information to
3050 // determine local side-effects.
3051 if (CB) {
3052 const auto &MemAA = A.getAAFor<AAMemoryLocation>(
3053 *this, IRPosition::callsite_function(*CB), DepClassTy::OPTIONAL);
3054
3055 auto AccessPred = [&](const Instruction *I, const Value *Ptr,
3056 AAMemoryLocation::AccessKind,
3057 AAMemoryLocation::MemoryLocationsKind) {
3058 return !AA::isPotentiallyAffectedByBarrier(A, {Ptr}, *this, I);
3059 };
3060 if (MemAA.getState().isValidState() &&
3061 MemAA.checkForAllAccessesToMemoryKind(
3062 AccessPred, AAMemoryLocation::ALL_LOCATIONS))
3063 continue;
3064 }
3065
3066 if (!I.mayHaveSideEffects() && OMPInfoCache.isOnlyUsedByAssume(I))
3067 continue;
3068
3069 if (auto *LI = dyn_cast<LoadInst>(&I))
3070 if (LI->hasMetadata(LLVMContext::MD_invariant_load))
3071 continue;
3072
3073 if (!ED.EncounteredNonLocalSideEffect &&
3074 AA::isPotentiallyAffectedByBarrier(A, I, *this))
3075 ED.EncounteredNonLocalSideEffect = true;
3076 }
3077
3078 if (!isa<UnreachableInst>(BB.getTerminator()) &&
3079 !BB.getTerminator()->getNumSuccessors()) {
3080
3081 auto &FnED = BEDMap[nullptr];
3082 mergeInPredecessor(A, FnED, ED);
3083
3084 if (IsKernel)
3085 HandleAlignedBarrier(nullptr, ED);
3086 }
3087
3088 ExecutionDomainTy &StoredED = BEDMap[&BB];
3089 ED.IsReachingAlignedBarrierOnly = StoredED.IsReachingAlignedBarrierOnly;
3090
3091 // Check if we computed anything different as part of the forward
3092 // traversal. We do not take assumptions and aligned barriers into account
3093 // as they do not influence the state we iterate. Backward traversal values
3094 // are handled later on.
3095 if (ED.IsExecutedByInitialThreadOnly !=
3096 StoredED.IsExecutedByInitialThreadOnly ||
3097 ED.IsReachedFromAlignedBarrierOnly !=
3098 StoredED.IsReachedFromAlignedBarrierOnly ||
3099 ED.EncounteredNonLocalSideEffect !=
3100 StoredED.EncounteredNonLocalSideEffect)
3101 Changed = true;
3102
3103 // Update the state with the new value.
3104 StoredED = std::move(ED);
3105 }
3106
3107 // Propagate (non-aligned) sync instruction effects backwards until the
3108 // entry is hit or an aligned barrier.
3109 SmallSetVector<BasicBlock *, 16> Visited;
3110 while (!SyncInstWorklist.empty()) {
3111 Instruction *SyncInst = SyncInstWorklist.pop_back_val();
3112 Instruction *CurInst = SyncInst;
3113 bool HitAlignedBarrier = false;
3114 while ((CurInst = CurInst->getPrevNode())) {
3115 auto *CB = dyn_cast<CallBase>(CurInst);
3116 if (!CB)
3117 continue;
3118 auto &CallED = CEDMap[CB];
3119 if (SetAndRecord(CallED.IsReachingAlignedBarrierOnly, false))
3120 Changed = true;
3121 HitAlignedBarrier = AlignedBarriers.count(CB);
3122 if (HitAlignedBarrier)
3123 break;
3124 }
3125 if (HitAlignedBarrier)
3126 continue;
3127 BasicBlock *SyncBB = SyncInst->getParent();
3128 for (auto *PredBB : predecessors(SyncBB)) {
3129 if (LivenessAA.isEdgeDead(PredBB, SyncBB))
3130 continue;
3131 if (!Visited.insert(PredBB))
3132 continue;
3133 SyncInstWorklist.push_back(PredBB->getTerminator());
3134 auto &PredED = BEDMap[PredBB];
3135 if (SetAndRecord(PredED.IsReachingAlignedBarrierOnly, false))
3136 Changed = true;
3137 }
3138 if (SyncBB != &EntryBB)
3139 continue;
3140 auto &FnED = BEDMap[nullptr];
3141 if (SetAndRecord(FnED.IsReachingAlignedBarrierOnly, false))
3142 Changed = true;
3143 }
3144
3145 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
3146 }
3147
3148 /// Try to replace memory allocation calls called by a single thread with a
3149 /// static buffer of shared memory.
3150 struct AAHeapToShared : public StateWrapper<BooleanState, AbstractAttribute> {
3151 using Base = StateWrapper<BooleanState, AbstractAttribute>;
AAHeapToShared__anonc7318b540111::AAHeapToShared3152 AAHeapToShared(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3153
3154 /// Create an abstract attribute view for the position \p IRP.
3155 static AAHeapToShared &createForPosition(const IRPosition &IRP,
3156 Attributor &A);
3157
3158 /// Returns true if HeapToShared conversion is assumed to be possible.
3159 virtual bool isAssumedHeapToShared(CallBase &CB) const = 0;
3160
3161 /// Returns true if HeapToShared conversion is assumed and the CB is a
3162 /// callsite to a free operation to be removed.
3163 virtual bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const = 0;
3164
3165 /// See AbstractAttribute::getName().
getName__anonc7318b540111::AAHeapToShared3166 const std::string getName() const override { return "AAHeapToShared"; }
3167
3168 /// See AbstractAttribute::getIdAddr().
getIdAddr__anonc7318b540111::AAHeapToShared3169 const char *getIdAddr() const override { return &ID; }
3170
3171 /// This function should return true if the type of the \p AA is
3172 /// AAHeapToShared.
classof__anonc7318b540111::AAHeapToShared3173 static bool classof(const AbstractAttribute *AA) {
3174 return (AA->getIdAddr() == &ID);
3175 }
3176
3177 /// Unique ID (due to the unique address)
3178 static const char ID;
3179 };
3180
3181 struct AAHeapToSharedFunction : public AAHeapToShared {
AAHeapToSharedFunction__anonc7318b540111::AAHeapToSharedFunction3182 AAHeapToSharedFunction(const IRPosition &IRP, Attributor &A)
3183 : AAHeapToShared(IRP, A) {}
3184
getAsStr__anonc7318b540111::AAHeapToSharedFunction3185 const std::string getAsStr() const override {
3186 return "[AAHeapToShared] " + std::to_string(MallocCalls.size()) +
3187 " malloc calls eligible.";
3188 }
3189
3190 /// See AbstractAttribute::trackStatistics().
trackStatistics__anonc7318b540111::AAHeapToSharedFunction3191 void trackStatistics() const override {}
3192
3193 /// This functions finds free calls that will be removed by the
3194 /// HeapToShared transformation.
findPotentialRemovedFreeCalls__anonc7318b540111::AAHeapToSharedFunction3195 void findPotentialRemovedFreeCalls(Attributor &A) {
3196 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3197 auto &FreeRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3198
3199 PotentialRemovedFreeCalls.clear();
3200 // Update free call users of found malloc calls.
3201 for (CallBase *CB : MallocCalls) {
3202 SmallVector<CallBase *, 4> FreeCalls;
3203 for (auto *U : CB->users()) {
3204 CallBase *C = dyn_cast<CallBase>(U);
3205 if (C && C->getCalledFunction() == FreeRFI.Declaration)
3206 FreeCalls.push_back(C);
3207 }
3208
3209 if (FreeCalls.size() != 1)
3210 continue;
3211
3212 PotentialRemovedFreeCalls.insert(FreeCalls.front());
3213 }
3214 }
3215
initialize__anonc7318b540111::AAHeapToSharedFunction3216 void initialize(Attributor &A) override {
3217 if (DisableOpenMPOptDeglobalization) {
3218 indicatePessimisticFixpoint();
3219 return;
3220 }
3221
3222 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3223 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3224 if (!RFI.Declaration)
3225 return;
3226
3227 Attributor::SimplifictionCallbackTy SCB =
3228 [](const IRPosition &, const AbstractAttribute *,
3229 bool &) -> std::optional<Value *> { return nullptr; };
3230
3231 Function *F = getAnchorScope();
3232 for (User *U : RFI.Declaration->users())
3233 if (CallBase *CB = dyn_cast<CallBase>(U)) {
3234 if (CB->getFunction() != F)
3235 continue;
3236 MallocCalls.insert(CB);
3237 A.registerSimplificationCallback(IRPosition::callsite_returned(*CB),
3238 SCB);
3239 }
3240
3241 findPotentialRemovedFreeCalls(A);
3242 }
3243
isAssumedHeapToShared__anonc7318b540111::AAHeapToSharedFunction3244 bool isAssumedHeapToShared(CallBase &CB) const override {
3245 return isValidState() && MallocCalls.count(&CB);
3246 }
3247
isAssumedHeapToSharedRemovedFree__anonc7318b540111::AAHeapToSharedFunction3248 bool isAssumedHeapToSharedRemovedFree(CallBase &CB) const override {
3249 return isValidState() && PotentialRemovedFreeCalls.count(&CB);
3250 }
3251
manifest__anonc7318b540111::AAHeapToSharedFunction3252 ChangeStatus manifest(Attributor &A) override {
3253 if (MallocCalls.empty())
3254 return ChangeStatus::UNCHANGED;
3255
3256 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3257 auto &FreeCall = OMPInfoCache.RFIs[OMPRTL___kmpc_free_shared];
3258
3259 Function *F = getAnchorScope();
3260 auto *HS = A.lookupAAFor<AAHeapToStack>(IRPosition::function(*F), this,
3261 DepClassTy::OPTIONAL);
3262
3263 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3264 for (CallBase *CB : MallocCalls) {
3265 // Skip replacing this if HeapToStack has already claimed it.
3266 if (HS && HS->isAssumedHeapToStack(*CB))
3267 continue;
3268
3269 // Find the unique free call to remove it.
3270 SmallVector<CallBase *, 4> FreeCalls;
3271 for (auto *U : CB->users()) {
3272 CallBase *C = dyn_cast<CallBase>(U);
3273 if (C && C->getCalledFunction() == FreeCall.Declaration)
3274 FreeCalls.push_back(C);
3275 }
3276 if (FreeCalls.size() != 1)
3277 continue;
3278
3279 auto *AllocSize = cast<ConstantInt>(CB->getArgOperand(0));
3280
3281 if (AllocSize->getZExtValue() + SharedMemoryUsed > SharedMemoryLimit) {
3282 LLVM_DEBUG(dbgs() << TAG << "Cannot replace call " << *CB
3283 << " with shared memory."
3284 << " Shared memory usage is limited to "
3285 << SharedMemoryLimit << " bytes\n");
3286 continue;
3287 }
3288
3289 LLVM_DEBUG(dbgs() << TAG << "Replace globalization call " << *CB
3290 << " with " << AllocSize->getZExtValue()
3291 << " bytes of shared memory\n");
3292
3293 // Create a new shared memory buffer of the same size as the allocation
3294 // and replace all the uses of the original allocation with it.
3295 Module *M = CB->getModule();
3296 Type *Int8Ty = Type::getInt8Ty(M->getContext());
3297 Type *Int8ArrTy = ArrayType::get(Int8Ty, AllocSize->getZExtValue());
3298 auto *SharedMem = new GlobalVariable(
3299 *M, Int8ArrTy, /* IsConstant */ false, GlobalValue::InternalLinkage,
3300 UndefValue::get(Int8ArrTy), CB->getName() + "_shared", nullptr,
3301 GlobalValue::NotThreadLocal,
3302 static_cast<unsigned>(AddressSpace::Shared));
3303 auto *NewBuffer =
3304 ConstantExpr::getPointerCast(SharedMem, Int8Ty->getPointerTo());
3305
3306 auto Remark = [&](OptimizationRemark OR) {
3307 return OR << "Replaced globalized variable with "
3308 << ore::NV("SharedMemory", AllocSize->getZExtValue())
3309 << ((AllocSize->getZExtValue() != 1) ? " bytes " : " byte ")
3310 << "of shared memory.";
3311 };
3312 A.emitRemark<OptimizationRemark>(CB, "OMP111", Remark);
3313
3314 MaybeAlign Alignment = CB->getRetAlign();
3315 assert(Alignment &&
3316 "HeapToShared on allocation without alignment attribute");
3317 SharedMem->setAlignment(MaybeAlign(Alignment));
3318
3319 A.changeAfterManifest(IRPosition::callsite_returned(*CB), *NewBuffer);
3320 A.deleteAfterManifest(*CB);
3321 A.deleteAfterManifest(*FreeCalls.front());
3322
3323 SharedMemoryUsed += AllocSize->getZExtValue();
3324 NumBytesMovedToSharedMemory = SharedMemoryUsed;
3325 Changed = ChangeStatus::CHANGED;
3326 }
3327
3328 return Changed;
3329 }
3330
updateImpl__anonc7318b540111::AAHeapToSharedFunction3331 ChangeStatus updateImpl(Attributor &A) override {
3332 if (MallocCalls.empty())
3333 return indicatePessimisticFixpoint();
3334 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3335 auto &RFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3336 if (!RFI.Declaration)
3337 return ChangeStatus::UNCHANGED;
3338
3339 Function *F = getAnchorScope();
3340
3341 auto NumMallocCalls = MallocCalls.size();
3342
3343 // Only consider malloc calls executed by a single thread with a constant.
3344 for (User *U : RFI.Declaration->users()) {
3345 if (CallBase *CB = dyn_cast<CallBase>(U)) {
3346 if (CB->getCaller() != F)
3347 continue;
3348 if (!MallocCalls.count(CB))
3349 continue;
3350 if (!isa<ConstantInt>(CB->getArgOperand(0))) {
3351 MallocCalls.remove(CB);
3352 continue;
3353 }
3354 const auto &ED = A.getAAFor<AAExecutionDomain>(
3355 *this, IRPosition::function(*F), DepClassTy::REQUIRED);
3356 if (!ED.isExecutedByInitialThreadOnly(*CB))
3357 MallocCalls.remove(CB);
3358 }
3359 }
3360
3361 findPotentialRemovedFreeCalls(A);
3362
3363 if (NumMallocCalls != MallocCalls.size())
3364 return ChangeStatus::CHANGED;
3365
3366 return ChangeStatus::UNCHANGED;
3367 }
3368
3369 /// Collection of all malloc calls in a function.
3370 SmallSetVector<CallBase *, 4> MallocCalls;
3371 /// Collection of potentially removed free calls in a function.
3372 SmallPtrSet<CallBase *, 4> PotentialRemovedFreeCalls;
3373 /// The total amount of shared memory that has been used for HeapToShared.
3374 unsigned SharedMemoryUsed = 0;
3375 };
3376
3377 struct AAKernelInfo : public StateWrapper<KernelInfoState, AbstractAttribute> {
3378 using Base = StateWrapper<KernelInfoState, AbstractAttribute>;
AAKernelInfo__anonc7318b540111::AAKernelInfo3379 AAKernelInfo(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
3380
3381 /// Statistics are tracked as part of manifest for now.
trackStatistics__anonc7318b540111::AAKernelInfo3382 void trackStatistics() const override {}
3383
3384 /// See AbstractAttribute::getAsStr()
getAsStr__anonc7318b540111::AAKernelInfo3385 const std::string getAsStr() const override {
3386 if (!isValidState())
3387 return "<invalid>";
3388 return std::string(SPMDCompatibilityTracker.isAssumed() ? "SPMD"
3389 : "generic") +
3390 std::string(SPMDCompatibilityTracker.isAtFixpoint() ? " [FIX]"
3391 : "") +
3392 std::string(" #PRs: ") +
3393 (ReachedKnownParallelRegions.isValidState()
3394 ? std::to_string(ReachedKnownParallelRegions.size())
3395 : "<invalid>") +
3396 ", #Unknown PRs: " +
3397 (ReachedUnknownParallelRegions.isValidState()
3398 ? std::to_string(ReachedUnknownParallelRegions.size())
3399 : "<invalid>") +
3400 ", #Reaching Kernels: " +
3401 (ReachingKernelEntries.isValidState()
3402 ? std::to_string(ReachingKernelEntries.size())
3403 : "<invalid>") +
3404 ", #ParLevels: " +
3405 (ParallelLevels.isValidState()
3406 ? std::to_string(ParallelLevels.size())
3407 : "<invalid>");
3408 }
3409
3410 /// Create an abstract attribute biew for the position \p IRP.
3411 static AAKernelInfo &createForPosition(const IRPosition &IRP, Attributor &A);
3412
3413 /// See AbstractAttribute::getName()
getName__anonc7318b540111::AAKernelInfo3414 const std::string getName() const override { return "AAKernelInfo"; }
3415
3416 /// See AbstractAttribute::getIdAddr()
getIdAddr__anonc7318b540111::AAKernelInfo3417 const char *getIdAddr() const override { return &ID; }
3418
3419 /// This function should return true if the type of the \p AA is AAKernelInfo
classof__anonc7318b540111::AAKernelInfo3420 static bool classof(const AbstractAttribute *AA) {
3421 return (AA->getIdAddr() == &ID);
3422 }
3423
3424 static const char ID;
3425 };
3426
3427 /// The function kernel info abstract attribute, basically, what can we say
3428 /// about a function with regards to the KernelInfoState.
3429 struct AAKernelInfoFunction : AAKernelInfo {
AAKernelInfoFunction__anonc7318b540111::AAKernelInfoFunction3430 AAKernelInfoFunction(const IRPosition &IRP, Attributor &A)
3431 : AAKernelInfo(IRP, A) {}
3432
3433 SmallPtrSet<Instruction *, 4> GuardedInstructions;
3434
getGuardedInstructions__anonc7318b540111::AAKernelInfoFunction3435 SmallPtrSetImpl<Instruction *> &getGuardedInstructions() {
3436 return GuardedInstructions;
3437 }
3438
3439 /// See AbstractAttribute::initialize(...).
initialize__anonc7318b540111::AAKernelInfoFunction3440 void initialize(Attributor &A) override {
3441 // This is a high-level transform that might change the constant arguments
3442 // of the init and dinit calls. We need to tell the Attributor about this
3443 // to avoid other parts using the current constant value for simpliication.
3444 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3445
3446 Function *Fn = getAnchorScope();
3447
3448 OMPInformationCache::RuntimeFunctionInfo &InitRFI =
3449 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
3450 OMPInformationCache::RuntimeFunctionInfo &DeinitRFI =
3451 OMPInfoCache.RFIs[OMPRTL___kmpc_target_deinit];
3452
3453 // For kernels we perform more initialization work, first we find the init
3454 // and deinit calls.
3455 auto StoreCallBase = [](Use &U,
3456 OMPInformationCache::RuntimeFunctionInfo &RFI,
3457 CallBase *&Storage) {
3458 CallBase *CB = OpenMPOpt::getCallIfRegularCall(U, &RFI);
3459 assert(CB &&
3460 "Unexpected use of __kmpc_target_init or __kmpc_target_deinit!");
3461 assert(!Storage &&
3462 "Multiple uses of __kmpc_target_init or __kmpc_target_deinit!");
3463 Storage = CB;
3464 return false;
3465 };
3466 InitRFI.foreachUse(
3467 [&](Use &U, Function &) {
3468 StoreCallBase(U, InitRFI, KernelInitCB);
3469 return false;
3470 },
3471 Fn);
3472 DeinitRFI.foreachUse(
3473 [&](Use &U, Function &) {
3474 StoreCallBase(U, DeinitRFI, KernelDeinitCB);
3475 return false;
3476 },
3477 Fn);
3478
3479 // Ignore kernels without initializers such as global constructors.
3480 if (!KernelInitCB || !KernelDeinitCB)
3481 return;
3482
3483 // Add itself to the reaching kernel and set IsKernelEntry.
3484 ReachingKernelEntries.insert(Fn);
3485 IsKernelEntry = true;
3486
3487 // For kernels we might need to initialize/finalize the IsSPMD state and
3488 // we need to register a simplification callback so that the Attributor
3489 // knows the constant arguments to __kmpc_target_init and
3490 // __kmpc_target_deinit might actually change.
3491
3492 Attributor::SimplifictionCallbackTy StateMachineSimplifyCB =
3493 [&](const IRPosition &IRP, const AbstractAttribute *AA,
3494 bool &UsedAssumedInformation) -> std::optional<Value *> {
3495 // IRP represents the "use generic state machine" argument of an
3496 // __kmpc_target_init call. We will answer this one with the internal
3497 // state. As long as we are not in an invalid state, we will create a
3498 // custom state machine so the value should be a `i1 false`. If we are
3499 // in an invalid state, we won't change the value that is in the IR.
3500 if (!ReachedKnownParallelRegions.isValidState())
3501 return nullptr;
3502 // If we have disabled state machine rewrites, don't make a custom one.
3503 if (DisableOpenMPOptStateMachineRewrite)
3504 return nullptr;
3505 if (AA)
3506 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3507 UsedAssumedInformation = !isAtFixpoint();
3508 auto *FalseVal =
3509 ConstantInt::getBool(IRP.getAnchorValue().getContext(), false);
3510 return FalseVal;
3511 };
3512
3513 Attributor::SimplifictionCallbackTy ModeSimplifyCB =
3514 [&](const IRPosition &IRP, const AbstractAttribute *AA,
3515 bool &UsedAssumedInformation) -> std::optional<Value *> {
3516 // IRP represents the "SPMDCompatibilityTracker" argument of an
3517 // __kmpc_target_init or
3518 // __kmpc_target_deinit call. We will answer this one with the internal
3519 // state.
3520 if (!SPMDCompatibilityTracker.isValidState())
3521 return nullptr;
3522 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
3523 if (AA)
3524 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
3525 UsedAssumedInformation = true;
3526 } else {
3527 UsedAssumedInformation = false;
3528 }
3529 auto *Val = ConstantInt::getSigned(
3530 IntegerType::getInt8Ty(IRP.getAnchorValue().getContext()),
3531 SPMDCompatibilityTracker.isAssumed() ? OMP_TGT_EXEC_MODE_SPMD
3532 : OMP_TGT_EXEC_MODE_GENERIC);
3533 return Val;
3534 };
3535
3536 constexpr const int InitModeArgNo = 1;
3537 constexpr const int DeinitModeArgNo = 1;
3538 constexpr const int InitUseStateMachineArgNo = 2;
3539 A.registerSimplificationCallback(
3540 IRPosition::callsite_argument(*KernelInitCB, InitUseStateMachineArgNo),
3541 StateMachineSimplifyCB);
3542 A.registerSimplificationCallback(
3543 IRPosition::callsite_argument(*KernelInitCB, InitModeArgNo),
3544 ModeSimplifyCB);
3545 A.registerSimplificationCallback(
3546 IRPosition::callsite_argument(*KernelDeinitCB, DeinitModeArgNo),
3547 ModeSimplifyCB);
3548
3549 // Check if we know we are in SPMD-mode already.
3550 ConstantInt *ModeArg =
3551 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
3552 if (ModeArg && (ModeArg->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
3553 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
3554 // This is a generic region but SPMDization is disabled so stop tracking.
3555 else if (DisableOpenMPOptSPMDization)
3556 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
3557
3558 // Register virtual uses of functions we might need to preserve.
3559 auto RegisterVirtualUse = [&](RuntimeFunction RFKind,
3560 Attributor::VirtualUseCallbackTy &CB) {
3561 if (!OMPInfoCache.RFIs[RFKind].Declaration)
3562 return;
3563 A.registerVirtualUseCallback(*OMPInfoCache.RFIs[RFKind].Declaration, CB);
3564 };
3565
3566 // Add a dependence to ensure updates if the state changes.
3567 auto AddDependence = [](Attributor &A, const AAKernelInfo *KI,
3568 const AbstractAttribute *QueryingAA) {
3569 if (QueryingAA) {
3570 A.recordDependence(*KI, *QueryingAA, DepClassTy::OPTIONAL);
3571 }
3572 return true;
3573 };
3574
3575 Attributor::VirtualUseCallbackTy CustomStateMachineUseCB =
3576 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3577 // Whenever we create a custom state machine we will insert calls to
3578 // __kmpc_get_hardware_num_threads_in_block,
3579 // __kmpc_get_warp_size,
3580 // __kmpc_barrier_simple_generic,
3581 // __kmpc_kernel_parallel, and
3582 // __kmpc_kernel_end_parallel.
3583 // Not needed if we are on track for SPMDzation.
3584 if (SPMDCompatibilityTracker.isValidState())
3585 return AddDependence(A, this, QueryingAA);
3586 // Not needed if we can't rewrite due to an invalid state.
3587 if (!ReachedKnownParallelRegions.isValidState())
3588 return AddDependence(A, this, QueryingAA);
3589 return false;
3590 };
3591
3592 // Not needed if we are pre-runtime merge.
3593 if (!KernelInitCB->getCalledFunction()->isDeclaration()) {
3594 RegisterVirtualUse(OMPRTL___kmpc_get_hardware_num_threads_in_block,
3595 CustomStateMachineUseCB);
3596 RegisterVirtualUse(OMPRTL___kmpc_get_warp_size, CustomStateMachineUseCB);
3597 RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_generic,
3598 CustomStateMachineUseCB);
3599 RegisterVirtualUse(OMPRTL___kmpc_kernel_parallel,
3600 CustomStateMachineUseCB);
3601 RegisterVirtualUse(OMPRTL___kmpc_kernel_end_parallel,
3602 CustomStateMachineUseCB);
3603 }
3604
3605 // If we do not perform SPMDzation we do not need the virtual uses below.
3606 if (SPMDCompatibilityTracker.isAtFixpoint())
3607 return;
3608
3609 Attributor::VirtualUseCallbackTy HWThreadIdUseCB =
3610 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3611 // Whenever we perform SPMDzation we will insert
3612 // __kmpc_get_hardware_thread_id_in_block calls.
3613 if (!SPMDCompatibilityTracker.isValidState())
3614 return AddDependence(A, this, QueryingAA);
3615 return false;
3616 };
3617 RegisterVirtualUse(OMPRTL___kmpc_get_hardware_thread_id_in_block,
3618 HWThreadIdUseCB);
3619
3620 Attributor::VirtualUseCallbackTy SPMDBarrierUseCB =
3621 [&](Attributor &A, const AbstractAttribute *QueryingAA) {
3622 // Whenever we perform SPMDzation with guarding we will insert
3623 // __kmpc_simple_barrier_spmd calls. If SPMDzation failed, there is
3624 // nothing to guard, or there are no parallel regions, we don't need
3625 // the calls.
3626 if (!SPMDCompatibilityTracker.isValidState())
3627 return AddDependence(A, this, QueryingAA);
3628 if (SPMDCompatibilityTracker.empty())
3629 return AddDependence(A, this, QueryingAA);
3630 if (!mayContainParallelRegion())
3631 return AddDependence(A, this, QueryingAA);
3632 return false;
3633 };
3634 RegisterVirtualUse(OMPRTL___kmpc_barrier_simple_spmd, SPMDBarrierUseCB);
3635 }
3636
3637 /// Sanitize the string \p S such that it is a suitable global symbol name.
sanitizeForGlobalName__anonc7318b540111::AAKernelInfoFunction3638 static std::string sanitizeForGlobalName(std::string S) {
3639 std::replace_if(
3640 S.begin(), S.end(),
3641 [](const char C) {
3642 return !((C >= 'a' && C <= 'z') || (C >= 'A' && C <= 'Z') ||
3643 (C >= '0' && C <= '9') || C == '_');
3644 },
3645 '.');
3646 return S;
3647 }
3648
3649 /// Modify the IR based on the KernelInfoState as the fixpoint iteration is
3650 /// finished now.
manifest__anonc7318b540111::AAKernelInfoFunction3651 ChangeStatus manifest(Attributor &A) override {
3652 // If we are not looking at a kernel with __kmpc_target_init and
3653 // __kmpc_target_deinit call we cannot actually manifest the information.
3654 if (!KernelInitCB || !KernelDeinitCB)
3655 return ChangeStatus::UNCHANGED;
3656
3657 /// Insert nested Parallelism global variable
3658 Function *Kernel = getAnchorScope();
3659 Module &M = *Kernel->getParent();
3660 Type *Int8Ty = Type::getInt8Ty(M.getContext());
3661 new GlobalVariable(M, Int8Ty, /* isConstant */ true,
3662 GlobalValue::WeakAnyLinkage,
3663 ConstantInt::get(Int8Ty, NestedParallelism ? 1 : 0),
3664 Kernel->getName() + "_nested_parallelism");
3665
3666 // If we can we change the execution mode to SPMD-mode otherwise we build a
3667 // custom state machine.
3668 ChangeStatus Changed = ChangeStatus::UNCHANGED;
3669 if (!changeToSPMDMode(A, Changed)) {
3670 if (!KernelInitCB->getCalledFunction()->isDeclaration())
3671 return buildCustomStateMachine(A);
3672 }
3673
3674 return Changed;
3675 }
3676
insertInstructionGuardsHelper__anonc7318b540111::AAKernelInfoFunction3677 void insertInstructionGuardsHelper(Attributor &A) {
3678 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3679
3680 auto CreateGuardedRegion = [&](Instruction *RegionStartI,
3681 Instruction *RegionEndI) {
3682 LoopInfo *LI = nullptr;
3683 DominatorTree *DT = nullptr;
3684 MemorySSAUpdater *MSU = nullptr;
3685 using InsertPointTy = OpenMPIRBuilder::InsertPointTy;
3686
3687 BasicBlock *ParentBB = RegionStartI->getParent();
3688 Function *Fn = ParentBB->getParent();
3689 Module &M = *Fn->getParent();
3690
3691 // Create all the blocks and logic.
3692 // ParentBB:
3693 // goto RegionCheckTidBB
3694 // RegionCheckTidBB:
3695 // Tid = __kmpc_hardware_thread_id()
3696 // if (Tid != 0)
3697 // goto RegionBarrierBB
3698 // RegionStartBB:
3699 // <execute instructions guarded>
3700 // goto RegionEndBB
3701 // RegionEndBB:
3702 // <store escaping values to shared mem>
3703 // goto RegionBarrierBB
3704 // RegionBarrierBB:
3705 // __kmpc_simple_barrier_spmd()
3706 // // second barrier is omitted if lacking escaping values.
3707 // <load escaping values from shared mem>
3708 // __kmpc_simple_barrier_spmd()
3709 // goto RegionExitBB
3710 // RegionExitBB:
3711 // <execute rest of instructions>
3712
3713 BasicBlock *RegionEndBB = SplitBlock(ParentBB, RegionEndI->getNextNode(),
3714 DT, LI, MSU, "region.guarded.end");
3715 BasicBlock *RegionBarrierBB =
3716 SplitBlock(RegionEndBB, &*RegionEndBB->getFirstInsertionPt(), DT, LI,
3717 MSU, "region.barrier");
3718 BasicBlock *RegionExitBB =
3719 SplitBlock(RegionBarrierBB, &*RegionBarrierBB->getFirstInsertionPt(),
3720 DT, LI, MSU, "region.exit");
3721 BasicBlock *RegionStartBB =
3722 SplitBlock(ParentBB, RegionStartI, DT, LI, MSU, "region.guarded");
3723
3724 assert(ParentBB->getUniqueSuccessor() == RegionStartBB &&
3725 "Expected a different CFG");
3726
3727 BasicBlock *RegionCheckTidBB = SplitBlock(
3728 ParentBB, ParentBB->getTerminator(), DT, LI, MSU, "region.check.tid");
3729
3730 // Register basic blocks with the Attributor.
3731 A.registerManifestAddedBasicBlock(*RegionEndBB);
3732 A.registerManifestAddedBasicBlock(*RegionBarrierBB);
3733 A.registerManifestAddedBasicBlock(*RegionExitBB);
3734 A.registerManifestAddedBasicBlock(*RegionStartBB);
3735 A.registerManifestAddedBasicBlock(*RegionCheckTidBB);
3736
3737 bool HasBroadcastValues = false;
3738 // Find escaping outputs from the guarded region to outside users and
3739 // broadcast their values to them.
3740 for (Instruction &I : *RegionStartBB) {
3741 SmallPtrSet<Instruction *, 4> OutsideUsers;
3742 for (User *Usr : I.users()) {
3743 Instruction &UsrI = *cast<Instruction>(Usr);
3744 if (UsrI.getParent() != RegionStartBB)
3745 OutsideUsers.insert(&UsrI);
3746 }
3747
3748 if (OutsideUsers.empty())
3749 continue;
3750
3751 HasBroadcastValues = true;
3752
3753 // Emit a global variable in shared memory to store the broadcasted
3754 // value.
3755 auto *SharedMem = new GlobalVariable(
3756 M, I.getType(), /* IsConstant */ false,
3757 GlobalValue::InternalLinkage, UndefValue::get(I.getType()),
3758 sanitizeForGlobalName(
3759 (I.getName() + ".guarded.output.alloc").str()),
3760 nullptr, GlobalValue::NotThreadLocal,
3761 static_cast<unsigned>(AddressSpace::Shared));
3762
3763 // Emit a store instruction to update the value.
3764 new StoreInst(&I, SharedMem, RegionEndBB->getTerminator());
3765
3766 LoadInst *LoadI = new LoadInst(I.getType(), SharedMem,
3767 I.getName() + ".guarded.output.load",
3768 RegionBarrierBB->getTerminator());
3769
3770 // Emit a load instruction and replace uses of the output value.
3771 for (Instruction *UsrI : OutsideUsers)
3772 UsrI->replaceUsesOfWith(&I, LoadI);
3773 }
3774
3775 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3776
3777 // Go to tid check BB in ParentBB.
3778 const DebugLoc DL = ParentBB->getTerminator()->getDebugLoc();
3779 ParentBB->getTerminator()->eraseFromParent();
3780 OpenMPIRBuilder::LocationDescription Loc(
3781 InsertPointTy(ParentBB, ParentBB->end()), DL);
3782 OMPInfoCache.OMPBuilder.updateToLocation(Loc);
3783 uint32_t SrcLocStrSize;
3784 auto *SrcLocStr =
3785 OMPInfoCache.OMPBuilder.getOrCreateSrcLocStr(Loc, SrcLocStrSize);
3786 Value *Ident =
3787 OMPInfoCache.OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize);
3788 BranchInst::Create(RegionCheckTidBB, ParentBB)->setDebugLoc(DL);
3789
3790 // Add check for Tid in RegionCheckTidBB
3791 RegionCheckTidBB->getTerminator()->eraseFromParent();
3792 OpenMPIRBuilder::LocationDescription LocRegionCheckTid(
3793 InsertPointTy(RegionCheckTidBB, RegionCheckTidBB->end()), DL);
3794 OMPInfoCache.OMPBuilder.updateToLocation(LocRegionCheckTid);
3795 FunctionCallee HardwareTidFn =
3796 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3797 M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3798 CallInst *Tid =
3799 OMPInfoCache.OMPBuilder.Builder.CreateCall(HardwareTidFn, {});
3800 Tid->setDebugLoc(DL);
3801 OMPInfoCache.setCallingConvention(HardwareTidFn, Tid);
3802 Value *TidCheck = OMPInfoCache.OMPBuilder.Builder.CreateIsNull(Tid);
3803 OMPInfoCache.OMPBuilder.Builder
3804 .CreateCondBr(TidCheck, RegionStartBB, RegionBarrierBB)
3805 ->setDebugLoc(DL);
3806
3807 // First barrier for synchronization, ensures main thread has updated
3808 // values.
3809 FunctionCallee BarrierFn =
3810 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3811 M, OMPRTL___kmpc_barrier_simple_spmd);
3812 OMPInfoCache.OMPBuilder.updateToLocation(InsertPointTy(
3813 RegionBarrierBB, RegionBarrierBB->getFirstInsertionPt()));
3814 CallInst *Barrier =
3815 OMPInfoCache.OMPBuilder.Builder.CreateCall(BarrierFn, {Ident, Tid});
3816 Barrier->setDebugLoc(DL);
3817 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3818
3819 // Second barrier ensures workers have read broadcast values.
3820 if (HasBroadcastValues) {
3821 CallInst *Barrier = CallInst::Create(BarrierFn, {Ident, Tid}, "",
3822 RegionBarrierBB->getTerminator());
3823 Barrier->setDebugLoc(DL);
3824 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
3825 }
3826 };
3827
3828 auto &AllocSharedRFI = OMPInfoCache.RFIs[OMPRTL___kmpc_alloc_shared];
3829 SmallPtrSet<BasicBlock *, 8> Visited;
3830 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3831 BasicBlock *BB = GuardedI->getParent();
3832 if (!Visited.insert(BB).second)
3833 continue;
3834
3835 SmallVector<std::pair<Instruction *, Instruction *>> Reorders;
3836 Instruction *LastEffect = nullptr;
3837 BasicBlock::reverse_iterator IP = BB->rbegin(), IPEnd = BB->rend();
3838 while (++IP != IPEnd) {
3839 if (!IP->mayHaveSideEffects() && !IP->mayReadFromMemory())
3840 continue;
3841 Instruction *I = &*IP;
3842 if (OpenMPOpt::getCallIfRegularCall(*I, &AllocSharedRFI))
3843 continue;
3844 if (!I->user_empty() || !SPMDCompatibilityTracker.contains(I)) {
3845 LastEffect = nullptr;
3846 continue;
3847 }
3848 if (LastEffect)
3849 Reorders.push_back({I, LastEffect});
3850 LastEffect = &*IP;
3851 }
3852 for (auto &Reorder : Reorders)
3853 Reorder.first->moveBefore(Reorder.second);
3854 }
3855
3856 SmallVector<std::pair<Instruction *, Instruction *>, 4> GuardedRegions;
3857
3858 for (Instruction *GuardedI : SPMDCompatibilityTracker) {
3859 BasicBlock *BB = GuardedI->getParent();
3860 auto *CalleeAA = A.lookupAAFor<AAKernelInfo>(
3861 IRPosition::function(*GuardedI->getFunction()), nullptr,
3862 DepClassTy::NONE);
3863 assert(CalleeAA != nullptr && "Expected Callee AAKernelInfo");
3864 auto &CalleeAAFunction = *cast<AAKernelInfoFunction>(CalleeAA);
3865 // Continue if instruction is already guarded.
3866 if (CalleeAAFunction.getGuardedInstructions().contains(GuardedI))
3867 continue;
3868
3869 Instruction *GuardedRegionStart = nullptr, *GuardedRegionEnd = nullptr;
3870 for (Instruction &I : *BB) {
3871 // If instruction I needs to be guarded update the guarded region
3872 // bounds.
3873 if (SPMDCompatibilityTracker.contains(&I)) {
3874 CalleeAAFunction.getGuardedInstructions().insert(&I);
3875 if (GuardedRegionStart)
3876 GuardedRegionEnd = &I;
3877 else
3878 GuardedRegionStart = GuardedRegionEnd = &I;
3879
3880 continue;
3881 }
3882
3883 // Instruction I does not need guarding, store
3884 // any region found and reset bounds.
3885 if (GuardedRegionStart) {
3886 GuardedRegions.push_back(
3887 std::make_pair(GuardedRegionStart, GuardedRegionEnd));
3888 GuardedRegionStart = nullptr;
3889 GuardedRegionEnd = nullptr;
3890 }
3891 }
3892 }
3893
3894 for (auto &GR : GuardedRegions)
3895 CreateGuardedRegion(GR.first, GR.second);
3896 }
3897
forceSingleThreadPerWorkgroupHelper__anonc7318b540111::AAKernelInfoFunction3898 void forceSingleThreadPerWorkgroupHelper(Attributor &A) {
3899 // Only allow 1 thread per workgroup to continue executing the user code.
3900 //
3901 // InitCB = __kmpc_target_init(...)
3902 // ThreadIdInBlock = __kmpc_get_hardware_thread_id_in_block();
3903 // if (ThreadIdInBlock != 0) return;
3904 // UserCode:
3905 // // user code
3906 //
3907 auto &Ctx = getAnchorValue().getContext();
3908 Function *Kernel = getAssociatedFunction();
3909 assert(Kernel && "Expected an associated function!");
3910
3911 // Create block for user code to branch to from initial block.
3912 BasicBlock *InitBB = KernelInitCB->getParent();
3913 BasicBlock *UserCodeBB = InitBB->splitBasicBlock(
3914 KernelInitCB->getNextNode(), "main.thread.user_code");
3915 BasicBlock *ReturnBB =
3916 BasicBlock::Create(Ctx, "exit.threads", Kernel, UserCodeBB);
3917
3918 // Register blocks with attributor:
3919 A.registerManifestAddedBasicBlock(*InitBB);
3920 A.registerManifestAddedBasicBlock(*UserCodeBB);
3921 A.registerManifestAddedBasicBlock(*ReturnBB);
3922
3923 // Debug location:
3924 const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
3925 ReturnInst::Create(Ctx, ReturnBB)->setDebugLoc(DLoc);
3926 InitBB->getTerminator()->eraseFromParent();
3927
3928 // Prepare call to OMPRTL___kmpc_get_hardware_thread_id_in_block.
3929 Module &M = *Kernel->getParent();
3930 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3931 FunctionCallee ThreadIdInBlockFn =
3932 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
3933 M, OMPRTL___kmpc_get_hardware_thread_id_in_block);
3934
3935 // Get thread ID in block.
3936 CallInst *ThreadIdInBlock =
3937 CallInst::Create(ThreadIdInBlockFn, "thread_id.in.block", InitBB);
3938 OMPInfoCache.setCallingConvention(ThreadIdInBlockFn, ThreadIdInBlock);
3939 ThreadIdInBlock->setDebugLoc(DLoc);
3940
3941 // Eliminate all threads in the block with ID not equal to 0:
3942 Instruction *IsMainThread =
3943 ICmpInst::Create(ICmpInst::ICmp, CmpInst::ICMP_NE, ThreadIdInBlock,
3944 ConstantInt::get(ThreadIdInBlock->getType(), 0),
3945 "thread.is_main", InitBB);
3946 IsMainThread->setDebugLoc(DLoc);
3947 BranchInst::Create(ReturnBB, UserCodeBB, IsMainThread, InitBB);
3948 }
3949
changeToSPMDMode__anonc7318b540111::AAKernelInfoFunction3950 bool changeToSPMDMode(Attributor &A, ChangeStatus &Changed) {
3951 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
3952
3953 // We cannot change to SPMD mode if the runtime functions aren't availible.
3954 if (!OMPInfoCache.runtimeFnsAvailable(
3955 {OMPRTL___kmpc_get_hardware_thread_id_in_block,
3956 OMPRTL___kmpc_barrier_simple_spmd}))
3957 return false;
3958
3959 if (!SPMDCompatibilityTracker.isAssumed()) {
3960 for (Instruction *NonCompatibleI : SPMDCompatibilityTracker) {
3961 if (!NonCompatibleI)
3962 continue;
3963
3964 // Skip diagnostics on calls to known OpenMP runtime functions for now.
3965 if (auto *CB = dyn_cast<CallBase>(NonCompatibleI))
3966 if (OMPInfoCache.RTLFunctions.contains(CB->getCalledFunction()))
3967 continue;
3968
3969 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
3970 ORA << "Value has potential side effects preventing SPMD-mode "
3971 "execution";
3972 if (isa<CallBase>(NonCompatibleI)) {
3973 ORA << ". Add `__attribute__((assume(\"ompx_spmd_amenable\")))` to "
3974 "the called function to override";
3975 }
3976 return ORA << ".";
3977 };
3978 A.emitRemark<OptimizationRemarkAnalysis>(NonCompatibleI, "OMP121",
3979 Remark);
3980
3981 LLVM_DEBUG(dbgs() << TAG << "SPMD-incompatible side-effect: "
3982 << *NonCompatibleI << "\n");
3983 }
3984
3985 return false;
3986 }
3987
3988 // Get the actual kernel, could be the caller of the anchor scope if we have
3989 // a debug wrapper.
3990 Function *Kernel = getAnchorScope();
3991 if (Kernel->hasLocalLinkage()) {
3992 assert(Kernel->hasOneUse() && "Unexpected use of debug kernel wrapper.");
3993 auto *CB = cast<CallBase>(Kernel->user_back());
3994 Kernel = CB->getCaller();
3995 }
3996 assert(OMPInfoCache.Kernels.count(Kernel) && "Expected kernel function!");
3997
3998 // Check if the kernel is already in SPMD mode, if so, return success.
3999 GlobalVariable *ExecMode = Kernel->getParent()->getGlobalVariable(
4000 (Kernel->getName() + "_exec_mode").str());
4001 assert(ExecMode && "Kernel without exec mode?");
4002 assert(ExecMode->getInitializer() && "ExecMode doesn't have initializer!");
4003
4004 // Set the global exec mode flag to indicate SPMD-Generic mode.
4005 assert(isa<ConstantInt>(ExecMode->getInitializer()) &&
4006 "ExecMode is not an integer!");
4007 const int8_t ExecModeVal =
4008 cast<ConstantInt>(ExecMode->getInitializer())->getSExtValue();
4009 if (ExecModeVal != OMP_TGT_EXEC_MODE_GENERIC)
4010 return true;
4011
4012 // We will now unconditionally modify the IR, indicate a change.
4013 Changed = ChangeStatus::CHANGED;
4014
4015 // Do not use instruction guards when no parallel is present inside
4016 // the target region.
4017 if (mayContainParallelRegion())
4018 insertInstructionGuardsHelper(A);
4019 else
4020 forceSingleThreadPerWorkgroupHelper(A);
4021
4022 // Adjust the global exec mode flag that tells the runtime what mode this
4023 // kernel is executed in.
4024 assert(ExecModeVal == OMP_TGT_EXEC_MODE_GENERIC &&
4025 "Initially non-SPMD kernel has SPMD exec mode!");
4026 ExecMode->setInitializer(
4027 ConstantInt::get(ExecMode->getInitializer()->getType(),
4028 ExecModeVal | OMP_TGT_EXEC_MODE_GENERIC_SPMD));
4029
4030 // Next rewrite the init and deinit calls to indicate we use SPMD-mode now.
4031 const int InitModeArgNo = 1;
4032 const int DeinitModeArgNo = 1;
4033 const int InitUseStateMachineArgNo = 2;
4034
4035 auto &Ctx = getAnchorValue().getContext();
4036 A.changeUseAfterManifest(
4037 KernelInitCB->getArgOperandUse(InitModeArgNo),
4038 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4039 OMP_TGT_EXEC_MODE_SPMD));
4040 A.changeUseAfterManifest(
4041 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo),
4042 *ConstantInt::getBool(Ctx, false));
4043 A.changeUseAfterManifest(
4044 KernelDeinitCB->getArgOperandUse(DeinitModeArgNo),
4045 *ConstantInt::getSigned(IntegerType::getInt8Ty(Ctx),
4046 OMP_TGT_EXEC_MODE_SPMD));
4047
4048 ++NumOpenMPTargetRegionKernelsSPMD;
4049
4050 auto Remark = [&](OptimizationRemark OR) {
4051 return OR << "Transformed generic-mode kernel to SPMD-mode.";
4052 };
4053 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP120", Remark);
4054 return true;
4055 };
4056
buildCustomStateMachine__anonc7318b540111::AAKernelInfoFunction4057 ChangeStatus buildCustomStateMachine(Attributor &A) {
4058 // If we have disabled state machine rewrites, don't make a custom one
4059 if (DisableOpenMPOptStateMachineRewrite)
4060 return ChangeStatus::UNCHANGED;
4061
4062 // Don't rewrite the state machine if we are not in a valid state.
4063 if (!ReachedKnownParallelRegions.isValidState())
4064 return ChangeStatus::UNCHANGED;
4065
4066 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4067 if (!OMPInfoCache.runtimeFnsAvailable(
4068 {OMPRTL___kmpc_get_hardware_num_threads_in_block,
4069 OMPRTL___kmpc_get_warp_size, OMPRTL___kmpc_barrier_simple_generic,
4070 OMPRTL___kmpc_kernel_parallel, OMPRTL___kmpc_kernel_end_parallel}))
4071 return ChangeStatus::UNCHANGED;
4072
4073 const int InitModeArgNo = 1;
4074 const int InitUseStateMachineArgNo = 2;
4075
4076 // Check if the current configuration is non-SPMD and generic state machine.
4077 // If we already have SPMD mode or a custom state machine we do not need to
4078 // go any further. If it is anything but a constant something is weird and
4079 // we give up.
4080 ConstantInt *UseStateMachine = dyn_cast<ConstantInt>(
4081 KernelInitCB->getArgOperand(InitUseStateMachineArgNo));
4082 ConstantInt *Mode =
4083 dyn_cast<ConstantInt>(KernelInitCB->getArgOperand(InitModeArgNo));
4084
4085 // If we are stuck with generic mode, try to create a custom device (=GPU)
4086 // state machine which is specialized for the parallel regions that are
4087 // reachable by the kernel.
4088 if (!UseStateMachine || UseStateMachine->isZero() || !Mode ||
4089 (Mode->getSExtValue() & OMP_TGT_EXEC_MODE_SPMD))
4090 return ChangeStatus::UNCHANGED;
4091
4092 // If not SPMD mode, indicate we use a custom state machine now.
4093 auto &Ctx = getAnchorValue().getContext();
4094 auto *FalseVal = ConstantInt::getBool(Ctx, false);
4095 A.changeUseAfterManifest(
4096 KernelInitCB->getArgOperandUse(InitUseStateMachineArgNo), *FalseVal);
4097
4098 // If we don't actually need a state machine we are done here. This can
4099 // happen if there simply are no parallel regions. In the resulting kernel
4100 // all worker threads will simply exit right away, leaving the main thread
4101 // to do the work alone.
4102 if (!mayContainParallelRegion()) {
4103 ++NumOpenMPTargetRegionKernelsWithoutStateMachine;
4104
4105 auto Remark = [&](OptimizationRemark OR) {
4106 return OR << "Removing unused state machine from generic-mode kernel.";
4107 };
4108 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP130", Remark);
4109
4110 return ChangeStatus::CHANGED;
4111 }
4112
4113 // Keep track in the statistics of our new shiny custom state machine.
4114 if (ReachedUnknownParallelRegions.empty()) {
4115 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithoutFallback;
4116
4117 auto Remark = [&](OptimizationRemark OR) {
4118 return OR << "Rewriting generic-mode kernel with a customized state "
4119 "machine.";
4120 };
4121 A.emitRemark<OptimizationRemark>(KernelInitCB, "OMP131", Remark);
4122 } else {
4123 ++NumOpenMPTargetRegionKernelsCustomStateMachineWithFallback;
4124
4125 auto Remark = [&](OptimizationRemarkAnalysis OR) {
4126 return OR << "Generic-mode kernel is executed with a customized state "
4127 "machine that requires a fallback.";
4128 };
4129 A.emitRemark<OptimizationRemarkAnalysis>(KernelInitCB, "OMP132", Remark);
4130
4131 // Tell the user why we ended up with a fallback.
4132 for (CallBase *UnknownParallelRegionCB : ReachedUnknownParallelRegions) {
4133 if (!UnknownParallelRegionCB)
4134 continue;
4135 auto Remark = [&](OptimizationRemarkAnalysis ORA) {
4136 return ORA << "Call may contain unknown parallel regions. Use "
4137 << "`__attribute__((assume(\"omp_no_parallelism\")))` to "
4138 "override.";
4139 };
4140 A.emitRemark<OptimizationRemarkAnalysis>(UnknownParallelRegionCB,
4141 "OMP133", Remark);
4142 }
4143 }
4144
4145 // Create all the blocks:
4146 //
4147 // InitCB = __kmpc_target_init(...)
4148 // BlockHwSize =
4149 // __kmpc_get_hardware_num_threads_in_block();
4150 // WarpSize = __kmpc_get_warp_size();
4151 // BlockSize = BlockHwSize - WarpSize;
4152 // IsWorkerCheckBB: bool IsWorker = InitCB != -1;
4153 // if (IsWorker) {
4154 // if (InitCB >= BlockSize) return;
4155 // SMBeginBB: __kmpc_barrier_simple_generic(...);
4156 // void *WorkFn;
4157 // bool Active = __kmpc_kernel_parallel(&WorkFn);
4158 // if (!WorkFn) return;
4159 // SMIsActiveCheckBB: if (Active) {
4160 // SMIfCascadeCurrentBB: if (WorkFn == <ParFn0>)
4161 // ParFn0(...);
4162 // SMIfCascadeCurrentBB: else if (WorkFn == <ParFn1>)
4163 // ParFn1(...);
4164 // ...
4165 // SMIfCascadeCurrentBB: else
4166 // ((WorkFnTy*)WorkFn)(...);
4167 // SMEndParallelBB: __kmpc_kernel_end_parallel(...);
4168 // }
4169 // SMDoneBB: __kmpc_barrier_simple_generic(...);
4170 // goto SMBeginBB;
4171 // }
4172 // UserCodeEntryBB: // user code
4173 // __kmpc_target_deinit(...)
4174 //
4175 Function *Kernel = getAssociatedFunction();
4176 assert(Kernel && "Expected an associated function!");
4177
4178 BasicBlock *InitBB = KernelInitCB->getParent();
4179 BasicBlock *UserCodeEntryBB = InitBB->splitBasicBlock(
4180 KernelInitCB->getNextNode(), "thread.user_code.check");
4181 BasicBlock *IsWorkerCheckBB =
4182 BasicBlock::Create(Ctx, "is_worker_check", Kernel, UserCodeEntryBB);
4183 BasicBlock *StateMachineBeginBB = BasicBlock::Create(
4184 Ctx, "worker_state_machine.begin", Kernel, UserCodeEntryBB);
4185 BasicBlock *StateMachineFinishedBB = BasicBlock::Create(
4186 Ctx, "worker_state_machine.finished", Kernel, UserCodeEntryBB);
4187 BasicBlock *StateMachineIsActiveCheckBB = BasicBlock::Create(
4188 Ctx, "worker_state_machine.is_active.check", Kernel, UserCodeEntryBB);
4189 BasicBlock *StateMachineIfCascadeCurrentBB =
4190 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4191 Kernel, UserCodeEntryBB);
4192 BasicBlock *StateMachineEndParallelBB =
4193 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.end",
4194 Kernel, UserCodeEntryBB);
4195 BasicBlock *StateMachineDoneBarrierBB = BasicBlock::Create(
4196 Ctx, "worker_state_machine.done.barrier", Kernel, UserCodeEntryBB);
4197 A.registerManifestAddedBasicBlock(*InitBB);
4198 A.registerManifestAddedBasicBlock(*UserCodeEntryBB);
4199 A.registerManifestAddedBasicBlock(*IsWorkerCheckBB);
4200 A.registerManifestAddedBasicBlock(*StateMachineBeginBB);
4201 A.registerManifestAddedBasicBlock(*StateMachineFinishedBB);
4202 A.registerManifestAddedBasicBlock(*StateMachineIsActiveCheckBB);
4203 A.registerManifestAddedBasicBlock(*StateMachineIfCascadeCurrentBB);
4204 A.registerManifestAddedBasicBlock(*StateMachineEndParallelBB);
4205 A.registerManifestAddedBasicBlock(*StateMachineDoneBarrierBB);
4206
4207 const DebugLoc &DLoc = KernelInitCB->getDebugLoc();
4208 ReturnInst::Create(Ctx, StateMachineFinishedBB)->setDebugLoc(DLoc);
4209 InitBB->getTerminator()->eraseFromParent();
4210
4211 Instruction *IsWorker =
4212 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_NE, KernelInitCB,
4213 ConstantInt::get(KernelInitCB->getType(), -1),
4214 "thread.is_worker", InitBB);
4215 IsWorker->setDebugLoc(DLoc);
4216 BranchInst::Create(IsWorkerCheckBB, UserCodeEntryBB, IsWorker, InitBB);
4217
4218 Module &M = *Kernel->getParent();
4219 FunctionCallee BlockHwSizeFn =
4220 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4221 M, OMPRTL___kmpc_get_hardware_num_threads_in_block);
4222 FunctionCallee WarpSizeFn =
4223 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4224 M, OMPRTL___kmpc_get_warp_size);
4225 CallInst *BlockHwSize =
4226 CallInst::Create(BlockHwSizeFn, "block.hw_size", IsWorkerCheckBB);
4227 OMPInfoCache.setCallingConvention(BlockHwSizeFn, BlockHwSize);
4228 BlockHwSize->setDebugLoc(DLoc);
4229 CallInst *WarpSize =
4230 CallInst::Create(WarpSizeFn, "warp.size", IsWorkerCheckBB);
4231 OMPInfoCache.setCallingConvention(WarpSizeFn, WarpSize);
4232 WarpSize->setDebugLoc(DLoc);
4233 Instruction *BlockSize = BinaryOperator::CreateSub(
4234 BlockHwSize, WarpSize, "block.size", IsWorkerCheckBB);
4235 BlockSize->setDebugLoc(DLoc);
4236 Instruction *IsMainOrWorker = ICmpInst::Create(
4237 ICmpInst::ICmp, llvm::CmpInst::ICMP_SLT, KernelInitCB, BlockSize,
4238 "thread.is_main_or_worker", IsWorkerCheckBB);
4239 IsMainOrWorker->setDebugLoc(DLoc);
4240 BranchInst::Create(StateMachineBeginBB, StateMachineFinishedBB,
4241 IsMainOrWorker, IsWorkerCheckBB);
4242
4243 // Create local storage for the work function pointer.
4244 const DataLayout &DL = M.getDataLayout();
4245 Type *VoidPtrTy = Type::getInt8PtrTy(Ctx);
4246 Instruction *WorkFnAI =
4247 new AllocaInst(VoidPtrTy, DL.getAllocaAddrSpace(), nullptr,
4248 "worker.work_fn.addr", &Kernel->getEntryBlock().front());
4249 WorkFnAI->setDebugLoc(DLoc);
4250
4251 OMPInfoCache.OMPBuilder.updateToLocation(
4252 OpenMPIRBuilder::LocationDescription(
4253 IRBuilder<>::InsertPoint(StateMachineBeginBB,
4254 StateMachineBeginBB->end()),
4255 DLoc));
4256
4257 Value *Ident = KernelInitCB->getArgOperand(0);
4258 Value *GTid = KernelInitCB;
4259
4260 FunctionCallee BarrierFn =
4261 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4262 M, OMPRTL___kmpc_barrier_simple_generic);
4263 CallInst *Barrier =
4264 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineBeginBB);
4265 OMPInfoCache.setCallingConvention(BarrierFn, Barrier);
4266 Barrier->setDebugLoc(DLoc);
4267
4268 if (WorkFnAI->getType()->getPointerAddressSpace() !=
4269 (unsigned int)AddressSpace::Generic) {
4270 WorkFnAI = new AddrSpaceCastInst(
4271 WorkFnAI,
4272 PointerType::getWithSamePointeeType(
4273 cast<PointerType>(WorkFnAI->getType()),
4274 (unsigned int)AddressSpace::Generic),
4275 WorkFnAI->getName() + ".generic", StateMachineBeginBB);
4276 WorkFnAI->setDebugLoc(DLoc);
4277 }
4278
4279 FunctionCallee KernelParallelFn =
4280 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4281 M, OMPRTL___kmpc_kernel_parallel);
4282 CallInst *IsActiveWorker = CallInst::Create(
4283 KernelParallelFn, {WorkFnAI}, "worker.is_active", StateMachineBeginBB);
4284 OMPInfoCache.setCallingConvention(KernelParallelFn, IsActiveWorker);
4285 IsActiveWorker->setDebugLoc(DLoc);
4286 Instruction *WorkFn = new LoadInst(VoidPtrTy, WorkFnAI, "worker.work_fn",
4287 StateMachineBeginBB);
4288 WorkFn->setDebugLoc(DLoc);
4289
4290 FunctionType *ParallelRegionFnTy = FunctionType::get(
4291 Type::getVoidTy(Ctx), {Type::getInt16Ty(Ctx), Type::getInt32Ty(Ctx)},
4292 false);
4293 Value *WorkFnCast = BitCastInst::CreatePointerBitCastOrAddrSpaceCast(
4294 WorkFn, ParallelRegionFnTy->getPointerTo(), "worker.work_fn.addr_cast",
4295 StateMachineBeginBB);
4296
4297 Instruction *IsDone =
4298 ICmpInst::Create(ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFn,
4299 Constant::getNullValue(VoidPtrTy), "worker.is_done",
4300 StateMachineBeginBB);
4301 IsDone->setDebugLoc(DLoc);
4302 BranchInst::Create(StateMachineFinishedBB, StateMachineIsActiveCheckBB,
4303 IsDone, StateMachineBeginBB)
4304 ->setDebugLoc(DLoc);
4305
4306 BranchInst::Create(StateMachineIfCascadeCurrentBB,
4307 StateMachineDoneBarrierBB, IsActiveWorker,
4308 StateMachineIsActiveCheckBB)
4309 ->setDebugLoc(DLoc);
4310
4311 Value *ZeroArg =
4312 Constant::getNullValue(ParallelRegionFnTy->getParamType(0));
4313
4314 // Now that we have most of the CFG skeleton it is time for the if-cascade
4315 // that checks the function pointer we got from the runtime against the
4316 // parallel regions we expect, if there are any.
4317 for (int I = 0, E = ReachedKnownParallelRegions.size(); I < E; ++I) {
4318 auto *ParallelRegion = ReachedKnownParallelRegions[I];
4319 BasicBlock *PRExecuteBB = BasicBlock::Create(
4320 Ctx, "worker_state_machine.parallel_region.execute", Kernel,
4321 StateMachineEndParallelBB);
4322 CallInst::Create(ParallelRegion, {ZeroArg, GTid}, "", PRExecuteBB)
4323 ->setDebugLoc(DLoc);
4324 BranchInst::Create(StateMachineEndParallelBB, PRExecuteBB)
4325 ->setDebugLoc(DLoc);
4326
4327 BasicBlock *PRNextBB =
4328 BasicBlock::Create(Ctx, "worker_state_machine.parallel_region.check",
4329 Kernel, StateMachineEndParallelBB);
4330
4331 // Check if we need to compare the pointer at all or if we can just
4332 // call the parallel region function.
4333 Value *IsPR;
4334 if (I + 1 < E || !ReachedUnknownParallelRegions.empty()) {
4335 Instruction *CmpI = ICmpInst::Create(
4336 ICmpInst::ICmp, llvm::CmpInst::ICMP_EQ, WorkFnCast, ParallelRegion,
4337 "worker.check_parallel_region", StateMachineIfCascadeCurrentBB);
4338 CmpI->setDebugLoc(DLoc);
4339 IsPR = CmpI;
4340 } else {
4341 IsPR = ConstantInt::getTrue(Ctx);
4342 }
4343
4344 BranchInst::Create(PRExecuteBB, PRNextBB, IsPR,
4345 StateMachineIfCascadeCurrentBB)
4346 ->setDebugLoc(DLoc);
4347 StateMachineIfCascadeCurrentBB = PRNextBB;
4348 }
4349
4350 // At the end of the if-cascade we place the indirect function pointer call
4351 // in case we might need it, that is if there can be parallel regions we
4352 // have not handled in the if-cascade above.
4353 if (!ReachedUnknownParallelRegions.empty()) {
4354 StateMachineIfCascadeCurrentBB->setName(
4355 "worker_state_machine.parallel_region.fallback.execute");
4356 CallInst::Create(ParallelRegionFnTy, WorkFnCast, {ZeroArg, GTid}, "",
4357 StateMachineIfCascadeCurrentBB)
4358 ->setDebugLoc(DLoc);
4359 }
4360 BranchInst::Create(StateMachineEndParallelBB,
4361 StateMachineIfCascadeCurrentBB)
4362 ->setDebugLoc(DLoc);
4363
4364 FunctionCallee EndParallelFn =
4365 OMPInfoCache.OMPBuilder.getOrCreateRuntimeFunction(
4366 M, OMPRTL___kmpc_kernel_end_parallel);
4367 CallInst *EndParallel =
4368 CallInst::Create(EndParallelFn, {}, "", StateMachineEndParallelBB);
4369 OMPInfoCache.setCallingConvention(EndParallelFn, EndParallel);
4370 EndParallel->setDebugLoc(DLoc);
4371 BranchInst::Create(StateMachineDoneBarrierBB, StateMachineEndParallelBB)
4372 ->setDebugLoc(DLoc);
4373
4374 CallInst::Create(BarrierFn, {Ident, GTid}, "", StateMachineDoneBarrierBB)
4375 ->setDebugLoc(DLoc);
4376 BranchInst::Create(StateMachineBeginBB, StateMachineDoneBarrierBB)
4377 ->setDebugLoc(DLoc);
4378
4379 return ChangeStatus::CHANGED;
4380 }
4381
4382 /// Fixpoint iteration update function. Will be called every time a dependence
4383 /// changed its state (and in the beginning).
updateImpl__anonc7318b540111::AAKernelInfoFunction4384 ChangeStatus updateImpl(Attributor &A) override {
4385 KernelInfoState StateBefore = getState();
4386
4387 // Callback to check a read/write instruction.
4388 auto CheckRWInst = [&](Instruction &I) {
4389 // We handle calls later.
4390 if (isa<CallBase>(I))
4391 return true;
4392 // We only care about write effects.
4393 if (!I.mayWriteToMemory())
4394 return true;
4395 if (auto *SI = dyn_cast<StoreInst>(&I)) {
4396 const auto &UnderlyingObjsAA = A.getAAFor<AAUnderlyingObjects>(
4397 *this, IRPosition::value(*SI->getPointerOperand()),
4398 DepClassTy::OPTIONAL);
4399 auto &HS = A.getAAFor<AAHeapToStack>(
4400 *this, IRPosition::function(*I.getFunction()),
4401 DepClassTy::OPTIONAL);
4402 if (UnderlyingObjsAA.forallUnderlyingObjects([&](Value &Obj) {
4403 if (AA::isAssumedThreadLocalObject(A, Obj, *this))
4404 return true;
4405 // Check for AAHeapToStack moved objects which must not be
4406 // guarded.
4407 auto *CB = dyn_cast<CallBase>(&Obj);
4408 return CB && HS.isAssumedHeapToStack(*CB);
4409 }))
4410 return true;
4411 }
4412
4413 // Insert instruction that needs guarding.
4414 SPMDCompatibilityTracker.insert(&I);
4415 return true;
4416 };
4417
4418 bool UsedAssumedInformationInCheckRWInst = false;
4419 if (!SPMDCompatibilityTracker.isAtFixpoint())
4420 if (!A.checkForAllReadWriteInstructions(
4421 CheckRWInst, *this, UsedAssumedInformationInCheckRWInst))
4422 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4423
4424 bool UsedAssumedInformationFromReachingKernels = false;
4425 if (!IsKernelEntry) {
4426 updateParallelLevels(A);
4427
4428 bool AllReachingKernelsKnown = true;
4429 updateReachingKernelEntries(A, AllReachingKernelsKnown);
4430 UsedAssumedInformationFromReachingKernels = !AllReachingKernelsKnown;
4431
4432 if (!SPMDCompatibilityTracker.empty()) {
4433 if (!ParallelLevels.isValidState())
4434 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4435 else if (!ReachingKernelEntries.isValidState())
4436 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4437 else {
4438 // Check if all reaching kernels agree on the mode as we can otherwise
4439 // not guard instructions. We might not be sure about the mode so we
4440 // we cannot fix the internal spmd-zation state either.
4441 int SPMD = 0, Generic = 0;
4442 for (auto *Kernel : ReachingKernelEntries) {
4443 auto &CBAA = A.getAAFor<AAKernelInfo>(
4444 *this, IRPosition::function(*Kernel), DepClassTy::OPTIONAL);
4445 if (CBAA.SPMDCompatibilityTracker.isValidState() &&
4446 CBAA.SPMDCompatibilityTracker.isAssumed())
4447 ++SPMD;
4448 else
4449 ++Generic;
4450 if (!CBAA.SPMDCompatibilityTracker.isAtFixpoint())
4451 UsedAssumedInformationFromReachingKernels = true;
4452 }
4453 if (SPMD != 0 && Generic != 0)
4454 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4455 }
4456 }
4457 }
4458
4459 // Callback to check a call instruction.
4460 bool AllParallelRegionStatesWereFixed = true;
4461 bool AllSPMDStatesWereFixed = true;
4462 auto CheckCallInst = [&](Instruction &I) {
4463 auto &CB = cast<CallBase>(I);
4464 auto &CBAA = A.getAAFor<AAKernelInfo>(
4465 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4466 getState() ^= CBAA.getState();
4467 AllSPMDStatesWereFixed &= CBAA.SPMDCompatibilityTracker.isAtFixpoint();
4468 AllParallelRegionStatesWereFixed &=
4469 CBAA.ReachedKnownParallelRegions.isAtFixpoint();
4470 AllParallelRegionStatesWereFixed &=
4471 CBAA.ReachedUnknownParallelRegions.isAtFixpoint();
4472 return true;
4473 };
4474
4475 bool UsedAssumedInformationInCheckCallInst = false;
4476 if (!A.checkForAllCallLikeInstructions(
4477 CheckCallInst, *this, UsedAssumedInformationInCheckCallInst)) {
4478 LLVM_DEBUG(dbgs() << TAG
4479 << "Failed to visit all call-like instructions!\n";);
4480 return indicatePessimisticFixpoint();
4481 }
4482
4483 // If we haven't used any assumed information for the reached parallel
4484 // region states we can fix it.
4485 if (!UsedAssumedInformationInCheckCallInst &&
4486 AllParallelRegionStatesWereFixed) {
4487 ReachedKnownParallelRegions.indicateOptimisticFixpoint();
4488 ReachedUnknownParallelRegions.indicateOptimisticFixpoint();
4489 }
4490
4491 // If we haven't used any assumed information for the SPMD state we can fix
4492 // it.
4493 if (!UsedAssumedInformationInCheckRWInst &&
4494 !UsedAssumedInformationInCheckCallInst &&
4495 !UsedAssumedInformationFromReachingKernels && AllSPMDStatesWereFixed)
4496 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4497
4498 return StateBefore == getState() ? ChangeStatus::UNCHANGED
4499 : ChangeStatus::CHANGED;
4500 }
4501
4502 private:
4503 /// Update info regarding reaching kernels.
updateReachingKernelEntries__anonc7318b540111::AAKernelInfoFunction4504 void updateReachingKernelEntries(Attributor &A,
4505 bool &AllReachingKernelsKnown) {
4506 auto PredCallSite = [&](AbstractCallSite ACS) {
4507 Function *Caller = ACS.getInstruction()->getFunction();
4508
4509 assert(Caller && "Caller is nullptr");
4510
4511 auto &CAA = A.getOrCreateAAFor<AAKernelInfo>(
4512 IRPosition::function(*Caller), this, DepClassTy::REQUIRED);
4513 if (CAA.ReachingKernelEntries.isValidState()) {
4514 ReachingKernelEntries ^= CAA.ReachingKernelEntries;
4515 return true;
4516 }
4517
4518 // We lost track of the caller of the associated function, any kernel
4519 // could reach now.
4520 ReachingKernelEntries.indicatePessimisticFixpoint();
4521
4522 return true;
4523 };
4524
4525 if (!A.checkForAllCallSites(PredCallSite, *this,
4526 true /* RequireAllCallSites */,
4527 AllReachingKernelsKnown))
4528 ReachingKernelEntries.indicatePessimisticFixpoint();
4529 }
4530
4531 /// Update info regarding parallel levels.
updateParallelLevels__anonc7318b540111::AAKernelInfoFunction4532 void updateParallelLevels(Attributor &A) {
4533 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4534 OMPInformationCache::RuntimeFunctionInfo &Parallel51RFI =
4535 OMPInfoCache.RFIs[OMPRTL___kmpc_parallel_51];
4536
4537 auto PredCallSite = [&](AbstractCallSite ACS) {
4538 Function *Caller = ACS.getInstruction()->getFunction();
4539
4540 assert(Caller && "Caller is nullptr");
4541
4542 auto &CAA =
4543 A.getOrCreateAAFor<AAKernelInfo>(IRPosition::function(*Caller));
4544 if (CAA.ParallelLevels.isValidState()) {
4545 // Any function that is called by `__kmpc_parallel_51` will not be
4546 // folded as the parallel level in the function is updated. In order to
4547 // get it right, all the analysis would depend on the implentation. That
4548 // said, if in the future any change to the implementation, the analysis
4549 // could be wrong. As a consequence, we are just conservative here.
4550 if (Caller == Parallel51RFI.Declaration) {
4551 ParallelLevels.indicatePessimisticFixpoint();
4552 return true;
4553 }
4554
4555 ParallelLevels ^= CAA.ParallelLevels;
4556
4557 return true;
4558 }
4559
4560 // We lost track of the caller of the associated function, any kernel
4561 // could reach now.
4562 ParallelLevels.indicatePessimisticFixpoint();
4563
4564 return true;
4565 };
4566
4567 bool AllCallSitesKnown = true;
4568 if (!A.checkForAllCallSites(PredCallSite, *this,
4569 true /* RequireAllCallSites */,
4570 AllCallSitesKnown))
4571 ParallelLevels.indicatePessimisticFixpoint();
4572 }
4573 };
4574
4575 /// The call site kernel info abstract attribute, basically, what can we say
4576 /// about a call site with regards to the KernelInfoState. For now this simply
4577 /// forwards the information from the callee.
4578 struct AAKernelInfoCallSite : AAKernelInfo {
AAKernelInfoCallSite__anonc7318b540111::AAKernelInfoCallSite4579 AAKernelInfoCallSite(const IRPosition &IRP, Attributor &A)
4580 : AAKernelInfo(IRP, A) {}
4581
4582 /// See AbstractAttribute::initialize(...).
initialize__anonc7318b540111::AAKernelInfoCallSite4583 void initialize(Attributor &A) override {
4584 AAKernelInfo::initialize(A);
4585
4586 CallBase &CB = cast<CallBase>(getAssociatedValue());
4587 Function *Callee = getAssociatedFunction();
4588
4589 auto &AssumptionAA = A.getAAFor<AAAssumptionInfo>(
4590 *this, IRPosition::callsite_function(CB), DepClassTy::OPTIONAL);
4591
4592 // Check for SPMD-mode assumptions.
4593 if (AssumptionAA.hasAssumption("ompx_spmd_amenable")) {
4594 SPMDCompatibilityTracker.indicateOptimisticFixpoint();
4595 indicateOptimisticFixpoint();
4596 }
4597
4598 // First weed out calls we do not care about, that is readonly/readnone
4599 // calls, intrinsics, and "no_openmp" calls. Neither of these can reach a
4600 // parallel region or anything else we are looking for.
4601 if (!CB.mayWriteToMemory() || isa<IntrinsicInst>(CB)) {
4602 indicateOptimisticFixpoint();
4603 return;
4604 }
4605
4606 // Next we check if we know the callee. If it is a known OpenMP function
4607 // we will handle them explicitly in the switch below. If it is not, we
4608 // will use an AAKernelInfo object on the callee to gather information and
4609 // merge that into the current state. The latter happens in the updateImpl.
4610 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4611 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4612 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4613 // Unknown caller or declarations are not analyzable, we give up.
4614 if (!Callee || !A.isFunctionIPOAmendable(*Callee)) {
4615
4616 // Unknown callees might contain parallel regions, except if they have
4617 // an appropriate assumption attached.
4618 if (!(AssumptionAA.hasAssumption("omp_no_openmp") ||
4619 AssumptionAA.hasAssumption("omp_no_parallelism")))
4620 ReachedUnknownParallelRegions.insert(&CB);
4621
4622 // If SPMDCompatibilityTracker is not fixed, we need to give up on the
4623 // idea we can run something unknown in SPMD-mode.
4624 if (!SPMDCompatibilityTracker.isAtFixpoint()) {
4625 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4626 SPMDCompatibilityTracker.insert(&CB);
4627 }
4628
4629 // We have updated the state for this unknown call properly, there won't
4630 // be any change so we indicate a fixpoint.
4631 indicateOptimisticFixpoint();
4632 }
4633 // If the callee is known and can be used in IPO, we will update the state
4634 // based on the callee state in updateImpl.
4635 return;
4636 }
4637
4638 const unsigned int WrapperFunctionArgNo = 6;
4639 RuntimeFunction RF = It->getSecond();
4640 switch (RF) {
4641 // All the functions we know are compatible with SPMD mode.
4642 case OMPRTL___kmpc_is_spmd_exec_mode:
4643 case OMPRTL___kmpc_distribute_static_fini:
4644 case OMPRTL___kmpc_for_static_fini:
4645 case OMPRTL___kmpc_global_thread_num:
4646 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4647 case OMPRTL___kmpc_get_hardware_num_blocks:
4648 case OMPRTL___kmpc_single:
4649 case OMPRTL___kmpc_end_single:
4650 case OMPRTL___kmpc_master:
4651 case OMPRTL___kmpc_end_master:
4652 case OMPRTL___kmpc_barrier:
4653 case OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2:
4654 case OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2:
4655 case OMPRTL___kmpc_nvptx_end_reduce_nowait:
4656 break;
4657 case OMPRTL___kmpc_distribute_static_init_4:
4658 case OMPRTL___kmpc_distribute_static_init_4u:
4659 case OMPRTL___kmpc_distribute_static_init_8:
4660 case OMPRTL___kmpc_distribute_static_init_8u:
4661 case OMPRTL___kmpc_for_static_init_4:
4662 case OMPRTL___kmpc_for_static_init_4u:
4663 case OMPRTL___kmpc_for_static_init_8:
4664 case OMPRTL___kmpc_for_static_init_8u: {
4665 // Check the schedule and allow static schedule in SPMD mode.
4666 unsigned ScheduleArgOpNo = 2;
4667 auto *ScheduleTypeCI =
4668 dyn_cast<ConstantInt>(CB.getArgOperand(ScheduleArgOpNo));
4669 unsigned ScheduleTypeVal =
4670 ScheduleTypeCI ? ScheduleTypeCI->getZExtValue() : 0;
4671 switch (OMPScheduleType(ScheduleTypeVal)) {
4672 case OMPScheduleType::UnorderedStatic:
4673 case OMPScheduleType::UnorderedStaticChunked:
4674 case OMPScheduleType::OrderedDistribute:
4675 case OMPScheduleType::OrderedDistributeChunked:
4676 break;
4677 default:
4678 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4679 SPMDCompatibilityTracker.insert(&CB);
4680 break;
4681 };
4682 } break;
4683 case OMPRTL___kmpc_target_init:
4684 KernelInitCB = &CB;
4685 break;
4686 case OMPRTL___kmpc_target_deinit:
4687 KernelDeinitCB = &CB;
4688 break;
4689 case OMPRTL___kmpc_parallel_51:
4690 if (auto *ParallelRegion = dyn_cast<Function>(
4691 CB.getArgOperand(WrapperFunctionArgNo)->stripPointerCasts())) {
4692 ReachedKnownParallelRegions.insert(ParallelRegion);
4693 /// Check nested parallelism
4694 auto &FnAA = A.getAAFor<AAKernelInfo>(
4695 *this, IRPosition::function(*ParallelRegion), DepClassTy::OPTIONAL);
4696 NestedParallelism |= !FnAA.getState().isValidState() ||
4697 !FnAA.ReachedKnownParallelRegions.empty() ||
4698 !FnAA.ReachedUnknownParallelRegions.empty();
4699 break;
4700 }
4701 // The condition above should usually get the parallel region function
4702 // pointer and record it. In the off chance it doesn't we assume the
4703 // worst.
4704 ReachedUnknownParallelRegions.insert(&CB);
4705 break;
4706 case OMPRTL___kmpc_omp_task:
4707 // We do not look into tasks right now, just give up.
4708 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4709 SPMDCompatibilityTracker.insert(&CB);
4710 ReachedUnknownParallelRegions.insert(&CB);
4711 break;
4712 case OMPRTL___kmpc_alloc_shared:
4713 case OMPRTL___kmpc_free_shared:
4714 // Return without setting a fixpoint, to be resolved in updateImpl.
4715 return;
4716 default:
4717 // Unknown OpenMP runtime calls cannot be executed in SPMD-mode,
4718 // generally. However, they do not hide parallel regions.
4719 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4720 SPMDCompatibilityTracker.insert(&CB);
4721 break;
4722 }
4723 // All other OpenMP runtime calls will not reach parallel regions so they
4724 // can be safely ignored for now. Since it is a known OpenMP runtime call we
4725 // have now modeled all effects and there is no need for any update.
4726 indicateOptimisticFixpoint();
4727 }
4728
updateImpl__anonc7318b540111::AAKernelInfoCallSite4729 ChangeStatus updateImpl(Attributor &A) override {
4730 // TODO: Once we have call site specific value information we can provide
4731 // call site specific liveness information and then it makes
4732 // sense to specialize attributes for call sites arguments instead of
4733 // redirecting requests to the callee argument.
4734 Function *F = getAssociatedFunction();
4735
4736 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4737 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(F);
4738
4739 // If F is not a runtime function, propagate the AAKernelInfo of the callee.
4740 if (It == OMPInfoCache.RuntimeFunctionIDMap.end()) {
4741 const IRPosition &FnPos = IRPosition::function(*F);
4742 auto &FnAA = A.getAAFor<AAKernelInfo>(*this, FnPos, DepClassTy::REQUIRED);
4743 if (getState() == FnAA.getState())
4744 return ChangeStatus::UNCHANGED;
4745 getState() = FnAA.getState();
4746 return ChangeStatus::CHANGED;
4747 }
4748
4749 // F is a runtime function that allocates or frees memory, check
4750 // AAHeapToStack and AAHeapToShared.
4751 KernelInfoState StateBefore = getState();
4752 assert((It->getSecond() == OMPRTL___kmpc_alloc_shared ||
4753 It->getSecond() == OMPRTL___kmpc_free_shared) &&
4754 "Expected a __kmpc_alloc_shared or __kmpc_free_shared runtime call");
4755
4756 CallBase &CB = cast<CallBase>(getAssociatedValue());
4757
4758 auto &HeapToStackAA = A.getAAFor<AAHeapToStack>(
4759 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4760 auto &HeapToSharedAA = A.getAAFor<AAHeapToShared>(
4761 *this, IRPosition::function(*CB.getCaller()), DepClassTy::OPTIONAL);
4762
4763 RuntimeFunction RF = It->getSecond();
4764
4765 switch (RF) {
4766 // If neither HeapToStack nor HeapToShared assume the call is removed,
4767 // assume SPMD incompatibility.
4768 case OMPRTL___kmpc_alloc_shared:
4769 if (!HeapToStackAA.isAssumedHeapToStack(CB) &&
4770 !HeapToSharedAA.isAssumedHeapToShared(CB))
4771 SPMDCompatibilityTracker.insert(&CB);
4772 break;
4773 case OMPRTL___kmpc_free_shared:
4774 if (!HeapToStackAA.isAssumedHeapToStackRemovedFree(CB) &&
4775 !HeapToSharedAA.isAssumedHeapToSharedRemovedFree(CB))
4776 SPMDCompatibilityTracker.insert(&CB);
4777 break;
4778 default:
4779 SPMDCompatibilityTracker.indicatePessimisticFixpoint();
4780 SPMDCompatibilityTracker.insert(&CB);
4781 }
4782
4783 return StateBefore == getState() ? ChangeStatus::UNCHANGED
4784 : ChangeStatus::CHANGED;
4785 }
4786 };
4787
4788 struct AAFoldRuntimeCall
4789 : public StateWrapper<BooleanState, AbstractAttribute> {
4790 using Base = StateWrapper<BooleanState, AbstractAttribute>;
4791
AAFoldRuntimeCall__anonc7318b540111::AAFoldRuntimeCall4792 AAFoldRuntimeCall(const IRPosition &IRP, Attributor &A) : Base(IRP) {}
4793
4794 /// Statistics are tracked as part of manifest for now.
trackStatistics__anonc7318b540111::AAFoldRuntimeCall4795 void trackStatistics() const override {}
4796
4797 /// Create an abstract attribute biew for the position \p IRP.
4798 static AAFoldRuntimeCall &createForPosition(const IRPosition &IRP,
4799 Attributor &A);
4800
4801 /// See AbstractAttribute::getName()
getName__anonc7318b540111::AAFoldRuntimeCall4802 const std::string getName() const override { return "AAFoldRuntimeCall"; }
4803
4804 /// See AbstractAttribute::getIdAddr()
getIdAddr__anonc7318b540111::AAFoldRuntimeCall4805 const char *getIdAddr() const override { return &ID; }
4806
4807 /// This function should return true if the type of the \p AA is
4808 /// AAFoldRuntimeCall
classof__anonc7318b540111::AAFoldRuntimeCall4809 static bool classof(const AbstractAttribute *AA) {
4810 return (AA->getIdAddr() == &ID);
4811 }
4812
4813 static const char ID;
4814 };
4815
4816 struct AAFoldRuntimeCallCallSiteReturned : AAFoldRuntimeCall {
AAFoldRuntimeCallCallSiteReturned__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4817 AAFoldRuntimeCallCallSiteReturned(const IRPosition &IRP, Attributor &A)
4818 : AAFoldRuntimeCall(IRP, A) {}
4819
4820 /// See AbstractAttribute::getAsStr()
getAsStr__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4821 const std::string getAsStr() const override {
4822 if (!isValidState())
4823 return "<invalid>";
4824
4825 std::string Str("simplified value: ");
4826
4827 if (!SimplifiedValue)
4828 return Str + std::string("none");
4829
4830 if (!*SimplifiedValue)
4831 return Str + std::string("nullptr");
4832
4833 if (ConstantInt *CI = dyn_cast<ConstantInt>(*SimplifiedValue))
4834 return Str + std::to_string(CI->getSExtValue());
4835
4836 return Str + std::string("unknown");
4837 }
4838
initialize__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4839 void initialize(Attributor &A) override {
4840 if (DisableOpenMPOptFolding)
4841 indicatePessimisticFixpoint();
4842
4843 Function *Callee = getAssociatedFunction();
4844
4845 auto &OMPInfoCache = static_cast<OMPInformationCache &>(A.getInfoCache());
4846 const auto &It = OMPInfoCache.RuntimeFunctionIDMap.find(Callee);
4847 assert(It != OMPInfoCache.RuntimeFunctionIDMap.end() &&
4848 "Expected a known OpenMP runtime function");
4849
4850 RFKind = It->getSecond();
4851
4852 CallBase &CB = cast<CallBase>(getAssociatedValue());
4853 A.registerSimplificationCallback(
4854 IRPosition::callsite_returned(CB),
4855 [&](const IRPosition &IRP, const AbstractAttribute *AA,
4856 bool &UsedAssumedInformation) -> std::optional<Value *> {
4857 assert((isValidState() ||
4858 (SimplifiedValue && *SimplifiedValue == nullptr)) &&
4859 "Unexpected invalid state!");
4860
4861 if (!isAtFixpoint()) {
4862 UsedAssumedInformation = true;
4863 if (AA)
4864 A.recordDependence(*this, *AA, DepClassTy::OPTIONAL);
4865 }
4866 return SimplifiedValue;
4867 });
4868 }
4869
updateImpl__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4870 ChangeStatus updateImpl(Attributor &A) override {
4871 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4872 switch (RFKind) {
4873 case OMPRTL___kmpc_is_spmd_exec_mode:
4874 Changed |= foldIsSPMDExecMode(A);
4875 break;
4876 case OMPRTL___kmpc_parallel_level:
4877 Changed |= foldParallelLevel(A);
4878 break;
4879 case OMPRTL___kmpc_get_hardware_num_threads_in_block:
4880 Changed = Changed | foldKernelFnAttribute(A, "omp_target_thread_limit");
4881 break;
4882 case OMPRTL___kmpc_get_hardware_num_blocks:
4883 Changed = Changed | foldKernelFnAttribute(A, "omp_target_num_teams");
4884 break;
4885 default:
4886 llvm_unreachable("Unhandled OpenMP runtime function!");
4887 }
4888
4889 return Changed;
4890 }
4891
manifest__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4892 ChangeStatus manifest(Attributor &A) override {
4893 ChangeStatus Changed = ChangeStatus::UNCHANGED;
4894
4895 if (SimplifiedValue && *SimplifiedValue) {
4896 Instruction &I = *getCtxI();
4897 A.changeAfterManifest(IRPosition::inst(I), **SimplifiedValue);
4898 A.deleteAfterManifest(I);
4899
4900 CallBase *CB = dyn_cast<CallBase>(&I);
4901 auto Remark = [&](OptimizationRemark OR) {
4902 if (auto *C = dyn_cast<ConstantInt>(*SimplifiedValue))
4903 return OR << "Replacing OpenMP runtime call "
4904 << CB->getCalledFunction()->getName() << " with "
4905 << ore::NV("FoldedValue", C->getZExtValue()) << ".";
4906 return OR << "Replacing OpenMP runtime call "
4907 << CB->getCalledFunction()->getName() << ".";
4908 };
4909
4910 if (CB && EnableVerboseRemarks)
4911 A.emitRemark<OptimizationRemark>(CB, "OMP180", Remark);
4912
4913 LLVM_DEBUG(dbgs() << TAG << "Replacing runtime call: " << I << " with "
4914 << **SimplifiedValue << "\n");
4915
4916 Changed = ChangeStatus::CHANGED;
4917 }
4918
4919 return Changed;
4920 }
4921
indicatePessimisticFixpoint__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4922 ChangeStatus indicatePessimisticFixpoint() override {
4923 SimplifiedValue = nullptr;
4924 return AAFoldRuntimeCall::indicatePessimisticFixpoint();
4925 }
4926
4927 private:
4928 /// Fold __kmpc_is_spmd_exec_mode into a constant if possible.
foldIsSPMDExecMode__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4929 ChangeStatus foldIsSPMDExecMode(Attributor &A) {
4930 std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4931
4932 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
4933 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
4934 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4935 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4936
4937 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
4938 return indicatePessimisticFixpoint();
4939
4940 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
4941 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
4942 DepClassTy::REQUIRED);
4943
4944 if (!AA.isValidState()) {
4945 SimplifiedValue = nullptr;
4946 return indicatePessimisticFixpoint();
4947 }
4948
4949 if (AA.SPMDCompatibilityTracker.isAssumed()) {
4950 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4951 ++KnownSPMDCount;
4952 else
4953 ++AssumedSPMDCount;
4954 } else {
4955 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
4956 ++KnownNonSPMDCount;
4957 else
4958 ++AssumedNonSPMDCount;
4959 }
4960 }
4961
4962 if ((AssumedSPMDCount + KnownSPMDCount) &&
4963 (AssumedNonSPMDCount + KnownNonSPMDCount))
4964 return indicatePessimisticFixpoint();
4965
4966 auto &Ctx = getAnchorValue().getContext();
4967 if (KnownSPMDCount || AssumedSPMDCount) {
4968 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
4969 "Expected only SPMD kernels!");
4970 // All reaching kernels are in SPMD mode. Update all function calls to
4971 // __kmpc_is_spmd_exec_mode to 1.
4972 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), true);
4973 } else if (KnownNonSPMDCount || AssumedNonSPMDCount) {
4974 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
4975 "Expected only non-SPMD kernels!");
4976 // All reaching kernels are in non-SPMD mode. Update all function
4977 // calls to __kmpc_is_spmd_exec_mode to 0.
4978 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), false);
4979 } else {
4980 // We have empty reaching kernels, therefore we cannot tell if the
4981 // associated call site can be folded. At this moment, SimplifiedValue
4982 // must be none.
4983 assert(!SimplifiedValue && "SimplifiedValue should be none");
4984 }
4985
4986 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
4987 : ChangeStatus::CHANGED;
4988 }
4989
4990 /// Fold __kmpc_parallel_level into a constant if possible.
foldParallelLevel__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned4991 ChangeStatus foldParallelLevel(Attributor &A) {
4992 std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
4993
4994 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
4995 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
4996
4997 if (!CallerKernelInfoAA.ParallelLevels.isValidState())
4998 return indicatePessimisticFixpoint();
4999
5000 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
5001 return indicatePessimisticFixpoint();
5002
5003 if (CallerKernelInfoAA.ReachingKernelEntries.empty()) {
5004 assert(!SimplifiedValue &&
5005 "SimplifiedValue should keep none at this point");
5006 return ChangeStatus::UNCHANGED;
5007 }
5008
5009 unsigned AssumedSPMDCount = 0, KnownSPMDCount = 0;
5010 unsigned AssumedNonSPMDCount = 0, KnownNonSPMDCount = 0;
5011 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
5012 auto &AA = A.getAAFor<AAKernelInfo>(*this, IRPosition::function(*K),
5013 DepClassTy::REQUIRED);
5014 if (!AA.SPMDCompatibilityTracker.isValidState())
5015 return indicatePessimisticFixpoint();
5016
5017 if (AA.SPMDCompatibilityTracker.isAssumed()) {
5018 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
5019 ++KnownSPMDCount;
5020 else
5021 ++AssumedSPMDCount;
5022 } else {
5023 if (AA.SPMDCompatibilityTracker.isAtFixpoint())
5024 ++KnownNonSPMDCount;
5025 else
5026 ++AssumedNonSPMDCount;
5027 }
5028 }
5029
5030 if ((AssumedSPMDCount + KnownSPMDCount) &&
5031 (AssumedNonSPMDCount + KnownNonSPMDCount))
5032 return indicatePessimisticFixpoint();
5033
5034 auto &Ctx = getAnchorValue().getContext();
5035 // If the caller can only be reached by SPMD kernel entries, the parallel
5036 // level is 1. Similarly, if the caller can only be reached by non-SPMD
5037 // kernel entries, it is 0.
5038 if (AssumedSPMDCount || KnownSPMDCount) {
5039 assert(KnownNonSPMDCount == 0 && AssumedNonSPMDCount == 0 &&
5040 "Expected only SPMD kernels!");
5041 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 1);
5042 } else {
5043 assert(KnownSPMDCount == 0 && AssumedSPMDCount == 0 &&
5044 "Expected only non-SPMD kernels!");
5045 SimplifiedValue = ConstantInt::get(Type::getInt8Ty(Ctx), 0);
5046 }
5047 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5048 : ChangeStatus::CHANGED;
5049 }
5050
foldKernelFnAttribute__anonc7318b540111::AAFoldRuntimeCallCallSiteReturned5051 ChangeStatus foldKernelFnAttribute(Attributor &A, llvm::StringRef Attr) {
5052 // Specialize only if all the calls agree with the attribute constant value
5053 int32_t CurrentAttrValue = -1;
5054 std::optional<Value *> SimplifiedValueBefore = SimplifiedValue;
5055
5056 auto &CallerKernelInfoAA = A.getAAFor<AAKernelInfo>(
5057 *this, IRPosition::function(*getAnchorScope()), DepClassTy::REQUIRED);
5058
5059 if (!CallerKernelInfoAA.ReachingKernelEntries.isValidState())
5060 return indicatePessimisticFixpoint();
5061
5062 // Iterate over the kernels that reach this function
5063 for (Kernel K : CallerKernelInfoAA.ReachingKernelEntries) {
5064 int32_t NextAttrVal = K->getFnAttributeAsParsedInteger(Attr, -1);
5065
5066 if (NextAttrVal == -1 ||
5067 (CurrentAttrValue != -1 && CurrentAttrValue != NextAttrVal))
5068 return indicatePessimisticFixpoint();
5069 CurrentAttrValue = NextAttrVal;
5070 }
5071
5072 if (CurrentAttrValue != -1) {
5073 auto &Ctx = getAnchorValue().getContext();
5074 SimplifiedValue =
5075 ConstantInt::get(Type::getInt32Ty(Ctx), CurrentAttrValue);
5076 }
5077 return SimplifiedValue == SimplifiedValueBefore ? ChangeStatus::UNCHANGED
5078 : ChangeStatus::CHANGED;
5079 }
5080
5081 /// An optional value the associated value is assumed to fold to. That is, we
5082 /// assume the associated value (which is a call) can be replaced by this
5083 /// simplified value.
5084 std::optional<Value *> SimplifiedValue;
5085
5086 /// The runtime function kind of the callee of the associated call site.
5087 RuntimeFunction RFKind;
5088 };
5089
5090 } // namespace
5091
5092 /// Register folding callsite
registerFoldRuntimeCall(RuntimeFunction RF)5093 void OpenMPOpt::registerFoldRuntimeCall(RuntimeFunction RF) {
5094 auto &RFI = OMPInfoCache.RFIs[RF];
5095 RFI.foreachUse(SCC, [&](Use &U, Function &F) {
5096 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &RFI);
5097 if (!CI)
5098 return false;
5099 A.getOrCreateAAFor<AAFoldRuntimeCall>(
5100 IRPosition::callsite_returned(*CI), /* QueryingAA */ nullptr,
5101 DepClassTy::NONE, /* ForceUpdate */ false,
5102 /* UpdateAfterInit */ false);
5103 return false;
5104 });
5105 }
5106
registerAAs(bool IsModulePass)5107 void OpenMPOpt::registerAAs(bool IsModulePass) {
5108 if (SCC.empty())
5109 return;
5110
5111 if (IsModulePass) {
5112 // Ensure we create the AAKernelInfo AAs first and without triggering an
5113 // update. This will make sure we register all value simplification
5114 // callbacks before any other AA has the chance to create an AAValueSimplify
5115 // or similar.
5116 auto CreateKernelInfoCB = [&](Use &, Function &Kernel) {
5117 A.getOrCreateAAFor<AAKernelInfo>(
5118 IRPosition::function(Kernel), /* QueryingAA */ nullptr,
5119 DepClassTy::NONE, /* ForceUpdate */ false,
5120 /* UpdateAfterInit */ false);
5121 return false;
5122 };
5123 OMPInformationCache::RuntimeFunctionInfo &InitRFI =
5124 OMPInfoCache.RFIs[OMPRTL___kmpc_target_init];
5125 InitRFI.foreachUse(SCC, CreateKernelInfoCB);
5126
5127 registerFoldRuntimeCall(OMPRTL___kmpc_is_spmd_exec_mode);
5128 registerFoldRuntimeCall(OMPRTL___kmpc_parallel_level);
5129 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_threads_in_block);
5130 registerFoldRuntimeCall(OMPRTL___kmpc_get_hardware_num_blocks);
5131 }
5132
5133 // Create CallSite AA for all Getters.
5134 if (DeduceICVValues) {
5135 for (int Idx = 0; Idx < OMPInfoCache.ICVs.size() - 1; ++Idx) {
5136 auto ICVInfo = OMPInfoCache.ICVs[static_cast<InternalControlVar>(Idx)];
5137
5138 auto &GetterRFI = OMPInfoCache.RFIs[ICVInfo.Getter];
5139
5140 auto CreateAA = [&](Use &U, Function &Caller) {
5141 CallInst *CI = OpenMPOpt::getCallIfRegularCall(U, &GetterRFI);
5142 if (!CI)
5143 return false;
5144
5145 auto &CB = cast<CallBase>(*CI);
5146
5147 IRPosition CBPos = IRPosition::callsite_function(CB);
5148 A.getOrCreateAAFor<AAICVTracker>(CBPos);
5149 return false;
5150 };
5151
5152 GetterRFI.foreachUse(SCC, CreateAA);
5153 }
5154 }
5155
5156 // Create an ExecutionDomain AA for every function and a HeapToStack AA for
5157 // every function if there is a device kernel.
5158 if (!isOpenMPDevice(M))
5159 return;
5160
5161 for (auto *F : SCC) {
5162 if (F->isDeclaration())
5163 continue;
5164
5165 // We look at internal functions only on-demand but if any use is not a
5166 // direct call or outside the current set of analyzed functions, we have
5167 // to do it eagerly.
5168 if (F->hasLocalLinkage()) {
5169 if (llvm::all_of(F->uses(), [this](const Use &U) {
5170 const auto *CB = dyn_cast<CallBase>(U.getUser());
5171 return CB && CB->isCallee(&U) &&
5172 A.isRunOn(const_cast<Function *>(CB->getCaller()));
5173 }))
5174 continue;
5175 }
5176 registerAAsForFunction(A, *F);
5177 }
5178 }
5179
registerAAsForFunction(Attributor & A,const Function & F)5180 void OpenMPOpt::registerAAsForFunction(Attributor &A, const Function &F) {
5181 if (!DisableOpenMPOptDeglobalization)
5182 A.getOrCreateAAFor<AAHeapToShared>(IRPosition::function(F));
5183 A.getOrCreateAAFor<AAExecutionDomain>(IRPosition::function(F));
5184 if (!DisableOpenMPOptDeglobalization)
5185 A.getOrCreateAAFor<AAHeapToStack>(IRPosition::function(F));
5186
5187 for (auto &I : instructions(F)) {
5188 if (auto *LI = dyn_cast<LoadInst>(&I)) {
5189 bool UsedAssumedInformation = false;
5190 A.getAssumedSimplified(IRPosition::value(*LI), /* AA */ nullptr,
5191 UsedAssumedInformation, AA::Interprocedural);
5192 continue;
5193 }
5194 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5195 A.getOrCreateAAFor<AAIsDead>(IRPosition::value(*SI));
5196 continue;
5197 }
5198 if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
5199 if (II->getIntrinsicID() == Intrinsic::assume) {
5200 A.getOrCreateAAFor<AAPotentialValues>(
5201 IRPosition::value(*II->getArgOperand(0)));
5202 continue;
5203 }
5204 }
5205 }
5206 }
5207
5208 const char AAICVTracker::ID = 0;
5209 const char AAKernelInfo::ID = 0;
5210 const char AAExecutionDomain::ID = 0;
5211 const char AAHeapToShared::ID = 0;
5212 const char AAFoldRuntimeCall::ID = 0;
5213
createForPosition(const IRPosition & IRP,Attributor & A)5214 AAICVTracker &AAICVTracker::createForPosition(const IRPosition &IRP,
5215 Attributor &A) {
5216 AAICVTracker *AA = nullptr;
5217 switch (IRP.getPositionKind()) {
5218 case IRPosition::IRP_INVALID:
5219 case IRPosition::IRP_FLOAT:
5220 case IRPosition::IRP_ARGUMENT:
5221 case IRPosition::IRP_CALL_SITE_ARGUMENT:
5222 llvm_unreachable("ICVTracker can only be created for function position!");
5223 case IRPosition::IRP_RETURNED:
5224 AA = new (A.Allocator) AAICVTrackerFunctionReturned(IRP, A);
5225 break;
5226 case IRPosition::IRP_CALL_SITE_RETURNED:
5227 AA = new (A.Allocator) AAICVTrackerCallSiteReturned(IRP, A);
5228 break;
5229 case IRPosition::IRP_CALL_SITE:
5230 AA = new (A.Allocator) AAICVTrackerCallSite(IRP, A);
5231 break;
5232 case IRPosition::IRP_FUNCTION:
5233 AA = new (A.Allocator) AAICVTrackerFunction(IRP, A);
5234 break;
5235 }
5236
5237 return *AA;
5238 }
5239
createForPosition(const IRPosition & IRP,Attributor & A)5240 AAExecutionDomain &AAExecutionDomain::createForPosition(const IRPosition &IRP,
5241 Attributor &A) {
5242 AAExecutionDomainFunction *AA = nullptr;
5243 switch (IRP.getPositionKind()) {
5244 case IRPosition::IRP_INVALID:
5245 case IRPosition::IRP_FLOAT:
5246 case IRPosition::IRP_ARGUMENT:
5247 case IRPosition::IRP_CALL_SITE_ARGUMENT:
5248 case IRPosition::IRP_RETURNED:
5249 case IRPosition::IRP_CALL_SITE_RETURNED:
5250 case IRPosition::IRP_CALL_SITE:
5251 llvm_unreachable(
5252 "AAExecutionDomain can only be created for function position!");
5253 case IRPosition::IRP_FUNCTION:
5254 AA = new (A.Allocator) AAExecutionDomainFunction(IRP, A);
5255 break;
5256 }
5257
5258 return *AA;
5259 }
5260
createForPosition(const IRPosition & IRP,Attributor & A)5261 AAHeapToShared &AAHeapToShared::createForPosition(const IRPosition &IRP,
5262 Attributor &A) {
5263 AAHeapToSharedFunction *AA = nullptr;
5264 switch (IRP.getPositionKind()) {
5265 case IRPosition::IRP_INVALID:
5266 case IRPosition::IRP_FLOAT:
5267 case IRPosition::IRP_ARGUMENT:
5268 case IRPosition::IRP_CALL_SITE_ARGUMENT:
5269 case IRPosition::IRP_RETURNED:
5270 case IRPosition::IRP_CALL_SITE_RETURNED:
5271 case IRPosition::IRP_CALL_SITE:
5272 llvm_unreachable(
5273 "AAHeapToShared can only be created for function position!");
5274 case IRPosition::IRP_FUNCTION:
5275 AA = new (A.Allocator) AAHeapToSharedFunction(IRP, A);
5276 break;
5277 }
5278
5279 return *AA;
5280 }
5281
createForPosition(const IRPosition & IRP,Attributor & A)5282 AAKernelInfo &AAKernelInfo::createForPosition(const IRPosition &IRP,
5283 Attributor &A) {
5284 AAKernelInfo *AA = nullptr;
5285 switch (IRP.getPositionKind()) {
5286 case IRPosition::IRP_INVALID:
5287 case IRPosition::IRP_FLOAT:
5288 case IRPosition::IRP_ARGUMENT:
5289 case IRPosition::IRP_RETURNED:
5290 case IRPosition::IRP_CALL_SITE_RETURNED:
5291 case IRPosition::IRP_CALL_SITE_ARGUMENT:
5292 llvm_unreachable("KernelInfo can only be created for function position!");
5293 case IRPosition::IRP_CALL_SITE:
5294 AA = new (A.Allocator) AAKernelInfoCallSite(IRP, A);
5295 break;
5296 case IRPosition::IRP_FUNCTION:
5297 AA = new (A.Allocator) AAKernelInfoFunction(IRP, A);
5298 break;
5299 }
5300
5301 return *AA;
5302 }
5303
createForPosition(const IRPosition & IRP,Attributor & A)5304 AAFoldRuntimeCall &AAFoldRuntimeCall::createForPosition(const IRPosition &IRP,
5305 Attributor &A) {
5306 AAFoldRuntimeCall *AA = nullptr;
5307 switch (IRP.getPositionKind()) {
5308 case IRPosition::IRP_INVALID:
5309 case IRPosition::IRP_FLOAT:
5310 case IRPosition::IRP_ARGUMENT:
5311 case IRPosition::IRP_RETURNED:
5312 case IRPosition::IRP_FUNCTION:
5313 case IRPosition::IRP_CALL_SITE:
5314 case IRPosition::IRP_CALL_SITE_ARGUMENT:
5315 llvm_unreachable("KernelInfo can only be created for call site position!");
5316 case IRPosition::IRP_CALL_SITE_RETURNED:
5317 AA = new (A.Allocator) AAFoldRuntimeCallCallSiteReturned(IRP, A);
5318 break;
5319 }
5320
5321 return *AA;
5322 }
5323
run(Module & M,ModuleAnalysisManager & AM)5324 PreservedAnalyses OpenMPOptPass::run(Module &M, ModuleAnalysisManager &AM) {
5325 if (!containsOpenMP(M))
5326 return PreservedAnalyses::all();
5327 if (DisableOpenMPOptimizations)
5328 return PreservedAnalyses::all();
5329
5330 FunctionAnalysisManager &FAM =
5331 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
5332 KernelSet Kernels = getDeviceKernels(M);
5333
5334 if (PrintModuleBeforeOptimizations)
5335 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt Module Pass:\n" << M);
5336
5337 auto IsCalled = [&](Function &F) {
5338 if (Kernels.contains(&F))
5339 return true;
5340 for (const User *U : F.users())
5341 if (!isa<BlockAddress>(U))
5342 return true;
5343 return false;
5344 };
5345
5346 auto EmitRemark = [&](Function &F) {
5347 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5348 ORE.emit([&]() {
5349 OptimizationRemarkAnalysis ORA(DEBUG_TYPE, "OMP140", &F);
5350 return ORA << "Could not internalize function. "
5351 << "Some optimizations may not be possible. [OMP140]";
5352 });
5353 };
5354
5355 // Create internal copies of each function if this is a kernel Module. This
5356 // allows iterprocedural passes to see every call edge.
5357 DenseMap<Function *, Function *> InternalizedMap;
5358 if (isOpenMPDevice(M)) {
5359 SmallPtrSet<Function *, 16> InternalizeFns;
5360 for (Function &F : M)
5361 if (!F.isDeclaration() && !Kernels.contains(&F) && IsCalled(F) &&
5362 !DisableInternalization) {
5363 if (Attributor::isInternalizable(F)) {
5364 InternalizeFns.insert(&F);
5365 } else if (!F.hasLocalLinkage() && !F.hasFnAttribute(Attribute::Cold)) {
5366 EmitRemark(F);
5367 }
5368 }
5369
5370 Attributor::internalizeFunctions(InternalizeFns, InternalizedMap);
5371 }
5372
5373 // Look at every function in the Module unless it was internalized.
5374 SetVector<Function *> Functions;
5375 SmallVector<Function *, 16> SCC;
5376 for (Function &F : M)
5377 if (!F.isDeclaration() && !InternalizedMap.lookup(&F)) {
5378 SCC.push_back(&F);
5379 Functions.insert(&F);
5380 }
5381
5382 if (SCC.empty())
5383 return PreservedAnalyses::all();
5384
5385 AnalysisGetter AG(FAM);
5386
5387 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5388 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5389 };
5390
5391 BumpPtrAllocator Allocator;
5392 CallGraphUpdater CGUpdater;
5393
5394 bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5395 LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5396 OMPInformationCache InfoCache(M, AG, Allocator, /*CGSCC*/ nullptr, Kernels,
5397 PostLink);
5398
5399 unsigned MaxFixpointIterations =
5400 (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5401
5402 AttributorConfig AC(CGUpdater);
5403 AC.DefaultInitializeLiveInternals = false;
5404 AC.IsModulePass = true;
5405 AC.RewriteSignatures = false;
5406 AC.MaxFixpointIterations = MaxFixpointIterations;
5407 AC.OREGetter = OREGetter;
5408 AC.PassName = DEBUG_TYPE;
5409 AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5410
5411 Attributor A(Functions, InfoCache, AC);
5412
5413 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5414 bool Changed = OMPOpt.run(true);
5415
5416 // Optionally inline device functions for potentially better performance.
5417 if (AlwaysInlineDeviceFunctions && isOpenMPDevice(M))
5418 for (Function &F : M)
5419 if (!F.isDeclaration() && !Kernels.contains(&F) &&
5420 !F.hasFnAttribute(Attribute::NoInline))
5421 F.addFnAttr(Attribute::AlwaysInline);
5422
5423 if (PrintModuleAfterOptimizations)
5424 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt Module Pass:\n" << M);
5425
5426 if (Changed)
5427 return PreservedAnalyses::none();
5428
5429 return PreservedAnalyses::all();
5430 }
5431
run(LazyCallGraph::SCC & C,CGSCCAnalysisManager & AM,LazyCallGraph & CG,CGSCCUpdateResult & UR)5432 PreservedAnalyses OpenMPOptCGSCCPass::run(LazyCallGraph::SCC &C,
5433 CGSCCAnalysisManager &AM,
5434 LazyCallGraph &CG,
5435 CGSCCUpdateResult &UR) {
5436 if (!containsOpenMP(*C.begin()->getFunction().getParent()))
5437 return PreservedAnalyses::all();
5438 if (DisableOpenMPOptimizations)
5439 return PreservedAnalyses::all();
5440
5441 SmallVector<Function *, 16> SCC;
5442 // If there are kernels in the module, we have to run on all SCC's.
5443 for (LazyCallGraph::Node &N : C) {
5444 Function *Fn = &N.getFunction();
5445 SCC.push_back(Fn);
5446 }
5447
5448 if (SCC.empty())
5449 return PreservedAnalyses::all();
5450
5451 Module &M = *C.begin()->getFunction().getParent();
5452
5453 if (PrintModuleBeforeOptimizations)
5454 LLVM_DEBUG(dbgs() << TAG << "Module before OpenMPOpt CGSCC Pass:\n" << M);
5455
5456 KernelSet Kernels = getDeviceKernels(M);
5457
5458 FunctionAnalysisManager &FAM =
5459 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
5460
5461 AnalysisGetter AG(FAM);
5462
5463 auto OREGetter = [&FAM](Function *F) -> OptimizationRemarkEmitter & {
5464 return FAM.getResult<OptimizationRemarkEmitterAnalysis>(*F);
5465 };
5466
5467 BumpPtrAllocator Allocator;
5468 CallGraphUpdater CGUpdater;
5469 CGUpdater.initialize(CG, C, AM, UR);
5470
5471 bool PostLink = LTOPhase == ThinOrFullLTOPhase::FullLTOPostLink ||
5472 LTOPhase == ThinOrFullLTOPhase::ThinLTOPreLink;
5473 SetVector<Function *> Functions(SCC.begin(), SCC.end());
5474 OMPInformationCache InfoCache(*(Functions.back()->getParent()), AG, Allocator,
5475 /*CGSCC*/ &Functions, Kernels, PostLink);
5476
5477 unsigned MaxFixpointIterations =
5478 (isOpenMPDevice(M)) ? SetFixpointIterations : 32;
5479
5480 AttributorConfig AC(CGUpdater);
5481 AC.DefaultInitializeLiveInternals = false;
5482 AC.IsModulePass = false;
5483 AC.RewriteSignatures = false;
5484 AC.MaxFixpointIterations = MaxFixpointIterations;
5485 AC.OREGetter = OREGetter;
5486 AC.PassName = DEBUG_TYPE;
5487 AC.InitializationCallback = OpenMPOpt::registerAAsForFunction;
5488
5489 Attributor A(Functions, InfoCache, AC);
5490
5491 OpenMPOpt OMPOpt(SCC, CGUpdater, OREGetter, InfoCache, A);
5492 bool Changed = OMPOpt.run(false);
5493
5494 if (PrintModuleAfterOptimizations)
5495 LLVM_DEBUG(dbgs() << TAG << "Module after OpenMPOpt CGSCC Pass:\n" << M);
5496
5497 if (Changed)
5498 return PreservedAnalyses::none();
5499
5500 return PreservedAnalyses::all();
5501 }
5502
getDeviceKernels(Module & M)5503 KernelSet llvm::omp::getDeviceKernels(Module &M) {
5504 // TODO: Create a more cross-platform way of determining device kernels.
5505 NamedMDNode *MD = M.getNamedMetadata("nvvm.annotations");
5506 KernelSet Kernels;
5507
5508 if (!MD)
5509 return Kernels;
5510
5511 for (auto *Op : MD->operands()) {
5512 if (Op->getNumOperands() < 2)
5513 continue;
5514 MDString *KindID = dyn_cast<MDString>(Op->getOperand(1));
5515 if (!KindID || KindID->getString() != "kernel")
5516 continue;
5517
5518 Function *KernelFn =
5519 mdconst::dyn_extract_or_null<Function>(Op->getOperand(0));
5520 if (!KernelFn)
5521 continue;
5522
5523 ++NumOpenMPTargetRegionKernels;
5524
5525 Kernels.insert(KernelFn);
5526 }
5527
5528 return Kernels;
5529 }
5530
containsOpenMP(Module & M)5531 bool llvm::omp::containsOpenMP(Module &M) {
5532 Metadata *MD = M.getModuleFlag("openmp");
5533 if (!MD)
5534 return false;
5535
5536 return true;
5537 }
5538
isOpenMPDevice(Module & M)5539 bool llvm::omp::isOpenMPDevice(Module &M) {
5540 Metadata *MD = M.getModuleFlag("openmp-device");
5541 if (!MD)
5542 return false;
5543
5544 return true;
5545 }
5546