1 //===- Type.cpp - Type representation and manipulation --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements type-related functionality.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/Type.h"
14 #include "Linkage.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/Decl.h"
19 #include "clang/AST/DeclBase.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/DependenceFlags.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/NestedNameSpecifier.h"
26 #include "clang/AST/NonTrivialTypeVisitor.h"
27 #include "clang/AST/PrettyPrinter.h"
28 #include "clang/AST/TemplateBase.h"
29 #include "clang/AST/TemplateName.h"
30 #include "clang/AST/TypeVisitor.h"
31 #include "clang/Basic/AddressSpaces.h"
32 #include "clang/Basic/ExceptionSpecificationType.h"
33 #include "clang/Basic/IdentifierTable.h"
34 #include "clang/Basic/LLVM.h"
35 #include "clang/Basic/LangOptions.h"
36 #include "clang/Basic/Linkage.h"
37 #include "clang/Basic/Specifiers.h"
38 #include "clang/Basic/TargetCXXABI.h"
39 #include "clang/Basic/TargetInfo.h"
40 #include "clang/Basic/Visibility.h"
41 #include "llvm/ADT/APInt.h"
42 #include "llvm/ADT/APSInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/FoldingSet.h"
45 #include "llvm/ADT/None.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/MathExtras.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <cstring>
54 #include <type_traits>
55 
56 using namespace clang;
57 
isStrictSupersetOf(Qualifiers Other) const58 bool Qualifiers::isStrictSupersetOf(Qualifiers Other) const {
59   return (*this != Other) &&
60     // CVR qualifiers superset
61     (((Mask & CVRMask) | (Other.Mask & CVRMask)) == (Mask & CVRMask)) &&
62     // ObjC GC qualifiers superset
63     ((getObjCGCAttr() == Other.getObjCGCAttr()) ||
64      (hasObjCGCAttr() && !Other.hasObjCGCAttr())) &&
65     // Address space superset.
66     ((getAddressSpace() == Other.getAddressSpace()) ||
67      (hasAddressSpace()&& !Other.hasAddressSpace())) &&
68     // Lifetime qualifier superset.
69     ((getObjCLifetime() == Other.getObjCLifetime()) ||
70      (hasObjCLifetime() && !Other.hasObjCLifetime()));
71 }
72 
getBaseTypeIdentifier() const73 const IdentifierInfo* QualType::getBaseTypeIdentifier() const {
74   const Type* ty = getTypePtr();
75   NamedDecl *ND = nullptr;
76   if (ty->isPointerType() || ty->isReferenceType())
77     return ty->getPointeeType().getBaseTypeIdentifier();
78   else if (ty->isRecordType())
79     ND = ty->castAs<RecordType>()->getDecl();
80   else if (ty->isEnumeralType())
81     ND = ty->castAs<EnumType>()->getDecl();
82   else if (ty->getTypeClass() == Type::Typedef)
83     ND = ty->castAs<TypedefType>()->getDecl();
84   else if (ty->isArrayType())
85     return ty->castAsArrayTypeUnsafe()->
86         getElementType().getBaseTypeIdentifier();
87 
88   if (ND)
89     return ND->getIdentifier();
90   return nullptr;
91 }
92 
mayBeDynamicClass() const93 bool QualType::mayBeDynamicClass() const {
94   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
95   return ClassDecl && ClassDecl->mayBeDynamicClass();
96 }
97 
mayBeNotDynamicClass() const98 bool QualType::mayBeNotDynamicClass() const {
99   const auto *ClassDecl = getTypePtr()->getPointeeCXXRecordDecl();
100   return !ClassDecl || ClassDecl->mayBeNonDynamicClass();
101 }
102 
isConstant(QualType T,const ASTContext & Ctx)103 bool QualType::isConstant(QualType T, const ASTContext &Ctx) {
104   if (T.isConstQualified())
105     return true;
106 
107   if (const ArrayType *AT = Ctx.getAsArrayType(T))
108     return AT->getElementType().isConstant(Ctx);
109 
110   return T.getAddressSpace() == LangAS::opencl_constant;
111 }
112 
113 // C++ [temp.dep.type]p1:
114 //   A type is dependent if it is...
115 //     - an array type constructed from any dependent type or whose
116 //       size is specified by a constant expression that is
117 //       value-dependent,
ArrayType(TypeClass tc,QualType et,QualType can,ArraySizeModifier sm,unsigned tq,const Expr * sz)118 ArrayType::ArrayType(TypeClass tc, QualType et, QualType can,
119                      ArraySizeModifier sm, unsigned tq, const Expr *sz)
120     // Note, we need to check for DependentSizedArrayType explicitly here
121     // because we use a DependentSizedArrayType with no size expression as the
122     // type of a dependent array of unknown bound with a dependent braced
123     // initializer:
124     //
125     //   template<int ...N> int arr[] = {N...};
126     : Type(tc, can,
127            et->getDependence() |
128                (sz ? toTypeDependence(
129                          turnValueToTypeDependence(sz->getDependence()))
130                    : TypeDependence::None) |
131                (tc == VariableArray ? TypeDependence::VariablyModified
132                                     : TypeDependence::None) |
133                (tc == DependentSizedArray
134                     ? TypeDependence::DependentInstantiation
135                     : TypeDependence::None)),
136       ElementType(et) {
137   ArrayTypeBits.IndexTypeQuals = tq;
138   ArrayTypeBits.SizeModifier = sm;
139 }
140 
getNumAddressingBits(const ASTContext & Context,QualType ElementType,const llvm::APInt & NumElements)141 unsigned ConstantArrayType::getNumAddressingBits(const ASTContext &Context,
142                                                  QualType ElementType,
143                                                const llvm::APInt &NumElements) {
144   uint64_t ElementSize = Context.getTypeSizeInChars(ElementType).getQuantity();
145 
146   // Fast path the common cases so we can avoid the conservative computation
147   // below, which in common cases allocates "large" APSInt values, which are
148   // slow.
149 
150   // If the element size is a power of 2, we can directly compute the additional
151   // number of addressing bits beyond those required for the element count.
152   if (llvm::isPowerOf2_64(ElementSize)) {
153     return NumElements.getActiveBits() + llvm::Log2_64(ElementSize);
154   }
155 
156   // If both the element count and element size fit in 32-bits, we can do the
157   // computation directly in 64-bits.
158   if ((ElementSize >> 32) == 0 && NumElements.getBitWidth() <= 64 &&
159       (NumElements.getZExtValue() >> 32) == 0) {
160     uint64_t TotalSize = NumElements.getZExtValue() * ElementSize;
161     return 64 - llvm::countLeadingZeros(TotalSize);
162   }
163 
164   // Otherwise, use APSInt to handle arbitrary sized values.
165   llvm::APSInt SizeExtended(NumElements, true);
166   unsigned SizeTypeBits = Context.getTypeSize(Context.getSizeType());
167   SizeExtended = SizeExtended.extend(std::max(SizeTypeBits,
168                                               SizeExtended.getBitWidth()) * 2);
169 
170   llvm::APSInt TotalSize(llvm::APInt(SizeExtended.getBitWidth(), ElementSize));
171   TotalSize *= SizeExtended;
172 
173   return TotalSize.getActiveBits();
174 }
175 
getMaxSizeBits(const ASTContext & Context)176 unsigned ConstantArrayType::getMaxSizeBits(const ASTContext &Context) {
177   unsigned Bits = Context.getTypeSize(Context.getSizeType());
178 
179   // Limit the number of bits in size_t so that maximal bit size fits 64 bit
180   // integer (see PR8256).  We can do this as currently there is no hardware
181   // that supports full 64-bit virtual space.
182   if (Bits > 61)
183     Bits = 61;
184 
185   return Bits;
186 }
187 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,const llvm::APInt & ArraySize,const Expr * SizeExpr,ArraySizeModifier SizeMod,unsigned TypeQuals)188 void ConstantArrayType::Profile(llvm::FoldingSetNodeID &ID,
189                                 const ASTContext &Context, QualType ET,
190                                 const llvm::APInt &ArraySize,
191                                 const Expr *SizeExpr, ArraySizeModifier SizeMod,
192                                 unsigned TypeQuals) {
193   ID.AddPointer(ET.getAsOpaquePtr());
194   ID.AddInteger(ArraySize.getZExtValue());
195   ID.AddInteger(SizeMod);
196   ID.AddInteger(TypeQuals);
197   ID.AddBoolean(SizeExpr != 0);
198   if (SizeExpr)
199     SizeExpr->Profile(ID, Context, true);
200 }
201 
DependentSizedArrayType(const ASTContext & Context,QualType et,QualType can,Expr * e,ArraySizeModifier sm,unsigned tq,SourceRange brackets)202 DependentSizedArrayType::DependentSizedArrayType(const ASTContext &Context,
203                                                  QualType et, QualType can,
204                                                  Expr *e, ArraySizeModifier sm,
205                                                  unsigned tq,
206                                                  SourceRange brackets)
207     : ArrayType(DependentSizedArray, et, can, sm, tq, e),
208       Context(Context), SizeExpr((Stmt*) e), Brackets(brackets) {}
209 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ET,ArraySizeModifier SizeMod,unsigned TypeQuals,Expr * E)210 void DependentSizedArrayType::Profile(llvm::FoldingSetNodeID &ID,
211                                       const ASTContext &Context,
212                                       QualType ET,
213                                       ArraySizeModifier SizeMod,
214                                       unsigned TypeQuals,
215                                       Expr *E) {
216   ID.AddPointer(ET.getAsOpaquePtr());
217   ID.AddInteger(SizeMod);
218   ID.AddInteger(TypeQuals);
219   E->Profile(ID, Context, true);
220 }
221 
DependentVectorType(const ASTContext & Context,QualType ElementType,QualType CanonType,Expr * SizeExpr,SourceLocation Loc,VectorType::VectorKind VecKind)222 DependentVectorType::DependentVectorType(const ASTContext &Context,
223                                          QualType ElementType,
224                                          QualType CanonType, Expr *SizeExpr,
225                                          SourceLocation Loc,
226                                          VectorType::VectorKind VecKind)
227     : Type(DependentVector, CanonType,
228            TypeDependence::DependentInstantiation |
229                ElementType->getDependence() |
230                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
231                          : TypeDependence::None)),
232       Context(Context), ElementType(ElementType), SizeExpr(SizeExpr), Loc(Loc) {
233   VectorTypeBits.VecKind = VecKind;
234 }
235 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,const Expr * SizeExpr,VectorType::VectorKind VecKind)236 void DependentVectorType::Profile(llvm::FoldingSetNodeID &ID,
237                                   const ASTContext &Context,
238                                   QualType ElementType, const Expr *SizeExpr,
239                                   VectorType::VectorKind VecKind) {
240   ID.AddPointer(ElementType.getAsOpaquePtr());
241   ID.AddInteger(VecKind);
242   SizeExpr->Profile(ID, Context, true);
243 }
244 
DependentSizedExtVectorType(const ASTContext & Context,QualType ElementType,QualType can,Expr * SizeExpr,SourceLocation loc)245 DependentSizedExtVectorType::DependentSizedExtVectorType(
246     const ASTContext &Context, QualType ElementType, QualType can,
247     Expr *SizeExpr, SourceLocation loc)
248     : Type(DependentSizedExtVector, can,
249            TypeDependence::DependentInstantiation |
250                ElementType->getDependence() |
251                (SizeExpr ? toTypeDependence(SizeExpr->getDependence())
252                          : TypeDependence::None)),
253       Context(Context), SizeExpr(SizeExpr), ElementType(ElementType), loc(loc) {
254 }
255 
256 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType ElementType,Expr * SizeExpr)257 DependentSizedExtVectorType::Profile(llvm::FoldingSetNodeID &ID,
258                                      const ASTContext &Context,
259                                      QualType ElementType, Expr *SizeExpr) {
260   ID.AddPointer(ElementType.getAsOpaquePtr());
261   SizeExpr->Profile(ID, Context, true);
262 }
263 
DependentAddressSpaceType(const ASTContext & Context,QualType PointeeType,QualType can,Expr * AddrSpaceExpr,SourceLocation loc)264 DependentAddressSpaceType::DependentAddressSpaceType(const ASTContext &Context,
265                                                      QualType PointeeType,
266                                                      QualType can,
267                                                      Expr *AddrSpaceExpr,
268                                                      SourceLocation loc)
269     : Type(DependentAddressSpace, can,
270            TypeDependence::DependentInstantiation |
271                PointeeType->getDependence() |
272                (AddrSpaceExpr ? toTypeDependence(AddrSpaceExpr->getDependence())
273                               : TypeDependence::None)),
274       Context(Context), AddrSpaceExpr(AddrSpaceExpr), PointeeType(PointeeType),
275       loc(loc) {}
276 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType PointeeType,Expr * AddrSpaceExpr)277 void DependentAddressSpaceType::Profile(llvm::FoldingSetNodeID &ID,
278                                         const ASTContext &Context,
279                                         QualType PointeeType,
280                                         Expr *AddrSpaceExpr) {
281   ID.AddPointer(PointeeType.getAsOpaquePtr());
282   AddrSpaceExpr->Profile(ID, Context, true);
283 }
284 
MatrixType(TypeClass tc,QualType matrixType,QualType canonType,const Expr * RowExpr,const Expr * ColumnExpr)285 MatrixType::MatrixType(TypeClass tc, QualType matrixType, QualType canonType,
286                        const Expr *RowExpr, const Expr *ColumnExpr)
287     : Type(tc, canonType,
288            (RowExpr ? (matrixType->getDependence() | TypeDependence::Dependent |
289                        TypeDependence::Instantiation |
290                        (matrixType->isVariablyModifiedType()
291                             ? TypeDependence::VariablyModified
292                             : TypeDependence::None) |
293                        (matrixType->containsUnexpandedParameterPack() ||
294                                 (RowExpr &&
295                                  RowExpr->containsUnexpandedParameterPack()) ||
296                                 (ColumnExpr &&
297                                  ColumnExpr->containsUnexpandedParameterPack())
298                             ? TypeDependence::UnexpandedPack
299                             : TypeDependence::None))
300                     : matrixType->getDependence())),
301       ElementType(matrixType) {}
302 
ConstantMatrixType(QualType matrixType,unsigned nRows,unsigned nColumns,QualType canonType)303 ConstantMatrixType::ConstantMatrixType(QualType matrixType, unsigned nRows,
304                                        unsigned nColumns, QualType canonType)
305     : ConstantMatrixType(ConstantMatrix, matrixType, nRows, nColumns,
306                          canonType) {}
307 
ConstantMatrixType(TypeClass tc,QualType matrixType,unsigned nRows,unsigned nColumns,QualType canonType)308 ConstantMatrixType::ConstantMatrixType(TypeClass tc, QualType matrixType,
309                                        unsigned nRows, unsigned nColumns,
310                                        QualType canonType)
311     : MatrixType(tc, matrixType, canonType), NumRows(nRows),
312       NumColumns(nColumns) {}
313 
DependentSizedMatrixType(const ASTContext & CTX,QualType ElementType,QualType CanonicalType,Expr * RowExpr,Expr * ColumnExpr,SourceLocation loc)314 DependentSizedMatrixType::DependentSizedMatrixType(
315     const ASTContext &CTX, QualType ElementType, QualType CanonicalType,
316     Expr *RowExpr, Expr *ColumnExpr, SourceLocation loc)
317     : MatrixType(DependentSizedMatrix, ElementType, CanonicalType, RowExpr,
318                  ColumnExpr),
319       Context(CTX), RowExpr(RowExpr), ColumnExpr(ColumnExpr), loc(loc) {}
320 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & CTX,QualType ElementType,Expr * RowExpr,Expr * ColumnExpr)321 void DependentSizedMatrixType::Profile(llvm::FoldingSetNodeID &ID,
322                                        const ASTContext &CTX,
323                                        QualType ElementType, Expr *RowExpr,
324                                        Expr *ColumnExpr) {
325   ID.AddPointer(ElementType.getAsOpaquePtr());
326   RowExpr->Profile(ID, CTX, true);
327   ColumnExpr->Profile(ID, CTX, true);
328 }
329 
VectorType(QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)330 VectorType::VectorType(QualType vecType, unsigned nElements, QualType canonType,
331                        VectorKind vecKind)
332     : VectorType(Vector, vecType, nElements, canonType, vecKind) {}
333 
VectorType(TypeClass tc,QualType vecType,unsigned nElements,QualType canonType,VectorKind vecKind)334 VectorType::VectorType(TypeClass tc, QualType vecType, unsigned nElements,
335                        QualType canonType, VectorKind vecKind)
336     : Type(tc, canonType, vecType->getDependence()), ElementType(vecType) {
337   VectorTypeBits.VecKind = vecKind;
338   VectorTypeBits.NumElements = nElements;
339 }
340 
ExtIntType(bool IsUnsigned,unsigned NumBits)341 ExtIntType::ExtIntType(bool IsUnsigned, unsigned NumBits)
342     : Type(ExtInt, QualType{}, TypeDependence::None), IsUnsigned(IsUnsigned),
343       NumBits(NumBits) {}
344 
DependentExtIntType(const ASTContext & Context,bool IsUnsigned,Expr * NumBitsExpr)345 DependentExtIntType::DependentExtIntType(const ASTContext &Context,
346                                          bool IsUnsigned, Expr *NumBitsExpr)
347     : Type(DependentExtInt, QualType{},
348            toTypeDependence(NumBitsExpr->getDependence())),
349       Context(Context), ExprAndUnsigned(NumBitsExpr, IsUnsigned) {}
350 
isUnsigned() const351 bool DependentExtIntType::isUnsigned() const {
352   return ExprAndUnsigned.getInt();
353 }
354 
getNumBitsExpr() const355 clang::Expr *DependentExtIntType::getNumBitsExpr() const {
356   return ExprAndUnsigned.getPointer();
357 }
358 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,bool IsUnsigned,Expr * NumBitsExpr)359 void DependentExtIntType::Profile(llvm::FoldingSetNodeID &ID,
360                                   const ASTContext &Context, bool IsUnsigned,
361                                   Expr *NumBitsExpr) {
362   ID.AddBoolean(IsUnsigned);
363   NumBitsExpr->Profile(ID, Context, true);
364 }
365 
366 /// getArrayElementTypeNoTypeQual - If this is an array type, return the
367 /// element type of the array, potentially with type qualifiers missing.
368 /// This method should never be used when type qualifiers are meaningful.
getArrayElementTypeNoTypeQual() const369 const Type *Type::getArrayElementTypeNoTypeQual() const {
370   // If this is directly an array type, return it.
371   if (const auto *ATy = dyn_cast<ArrayType>(this))
372     return ATy->getElementType().getTypePtr();
373 
374   // If the canonical form of this type isn't the right kind, reject it.
375   if (!isa<ArrayType>(CanonicalType))
376     return nullptr;
377 
378   // If this is a typedef for an array type, strip the typedef off without
379   // losing all typedef information.
380   return cast<ArrayType>(getUnqualifiedDesugaredType())
381     ->getElementType().getTypePtr();
382 }
383 
384 /// getDesugaredType - Return the specified type with any "sugar" removed from
385 /// the type.  This takes off typedefs, typeof's etc.  If the outer level of
386 /// the type is already concrete, it returns it unmodified.  This is similar
387 /// to getting the canonical type, but it doesn't remove *all* typedefs.  For
388 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
389 /// concrete.
getDesugaredType(QualType T,const ASTContext & Context)390 QualType QualType::getDesugaredType(QualType T, const ASTContext &Context) {
391   SplitQualType split = getSplitDesugaredType(T);
392   return Context.getQualifiedType(split.Ty, split.Quals);
393 }
394 
getSingleStepDesugaredTypeImpl(QualType type,const ASTContext & Context)395 QualType QualType::getSingleStepDesugaredTypeImpl(QualType type,
396                                                   const ASTContext &Context) {
397   SplitQualType split = type.split();
398   QualType desugar = split.Ty->getLocallyUnqualifiedSingleStepDesugaredType();
399   return Context.getQualifiedType(desugar, split.Quals);
400 }
401 
402 // Check that no type class is polymorphic. LLVM style RTTI should be used
403 // instead. If absolutely needed an exception can still be added here by
404 // defining the appropriate macro (but please don't do this).
405 #define TYPE(CLASS, BASE) \
406   static_assert(!std::is_polymorphic<CLASS##Type>::value, \
407                 #CLASS "Type should not be polymorphic!");
408 #include "clang/AST/TypeNodes.inc"
409 
410 // Check that no type class has a non-trival destructor. Types are
411 // allocated with the BumpPtrAllocator from ASTContext and therefore
412 // their destructor is not executed.
413 //
414 // FIXME: ConstantArrayType is not trivially destructible because of its
415 // APInt member. It should be replaced in favor of ASTContext allocation.
416 #define TYPE(CLASS, BASE)                                                      \
417   static_assert(std::is_trivially_destructible<CLASS##Type>::value ||          \
418                     std::is_same<CLASS##Type, ConstantArrayType>::value,       \
419                 #CLASS "Type should be trivially destructible!");
420 #include "clang/AST/TypeNodes.inc"
421 
getLocallyUnqualifiedSingleStepDesugaredType() const422 QualType Type::getLocallyUnqualifiedSingleStepDesugaredType() const {
423   switch (getTypeClass()) {
424 #define ABSTRACT_TYPE(Class, Parent)
425 #define TYPE(Class, Parent) \
426   case Type::Class: { \
427     const auto *ty = cast<Class##Type>(this); \
428     if (!ty->isSugared()) return QualType(ty, 0); \
429     return ty->desugar(); \
430   }
431 #include "clang/AST/TypeNodes.inc"
432   }
433   llvm_unreachable("bad type kind!");
434 }
435 
getSplitDesugaredType(QualType T)436 SplitQualType QualType::getSplitDesugaredType(QualType T) {
437   QualifierCollector Qs;
438 
439   QualType Cur = T;
440   while (true) {
441     const Type *CurTy = Qs.strip(Cur);
442     switch (CurTy->getTypeClass()) {
443 #define ABSTRACT_TYPE(Class, Parent)
444 #define TYPE(Class, Parent) \
445     case Type::Class: { \
446       const auto *Ty = cast<Class##Type>(CurTy); \
447       if (!Ty->isSugared()) \
448         return SplitQualType(Ty, Qs); \
449       Cur = Ty->desugar(); \
450       break; \
451     }
452 #include "clang/AST/TypeNodes.inc"
453     }
454   }
455 }
456 
getSplitUnqualifiedTypeImpl(QualType type)457 SplitQualType QualType::getSplitUnqualifiedTypeImpl(QualType type) {
458   SplitQualType split = type.split();
459 
460   // All the qualifiers we've seen so far.
461   Qualifiers quals = split.Quals;
462 
463   // The last type node we saw with any nodes inside it.
464   const Type *lastTypeWithQuals = split.Ty;
465 
466   while (true) {
467     QualType next;
468 
469     // Do a single-step desugar, aborting the loop if the type isn't
470     // sugared.
471     switch (split.Ty->getTypeClass()) {
472 #define ABSTRACT_TYPE(Class, Parent)
473 #define TYPE(Class, Parent) \
474     case Type::Class: { \
475       const auto *ty = cast<Class##Type>(split.Ty); \
476       if (!ty->isSugared()) goto done; \
477       next = ty->desugar(); \
478       break; \
479     }
480 #include "clang/AST/TypeNodes.inc"
481     }
482 
483     // Otherwise, split the underlying type.  If that yields qualifiers,
484     // update the information.
485     split = next.split();
486     if (!split.Quals.empty()) {
487       lastTypeWithQuals = split.Ty;
488       quals.addConsistentQualifiers(split.Quals);
489     }
490   }
491 
492  done:
493   return SplitQualType(lastTypeWithQuals, quals);
494 }
495 
IgnoreParens(QualType T)496 QualType QualType::IgnoreParens(QualType T) {
497   // FIXME: this seems inherently un-qualifiers-safe.
498   while (const auto *PT = T->getAs<ParenType>())
499     T = PT->getInnerType();
500   return T;
501 }
502 
503 /// This will check for a T (which should be a Type which can act as
504 /// sugar, such as a TypedefType) by removing any existing sugar until it
505 /// reaches a T or a non-sugared type.
getAsSugar(const Type * Cur)506 template<typename T> static const T *getAsSugar(const Type *Cur) {
507   while (true) {
508     if (const auto *Sugar = dyn_cast<T>(Cur))
509       return Sugar;
510     switch (Cur->getTypeClass()) {
511 #define ABSTRACT_TYPE(Class, Parent)
512 #define TYPE(Class, Parent) \
513     case Type::Class: { \
514       const auto *Ty = cast<Class##Type>(Cur); \
515       if (!Ty->isSugared()) return 0; \
516       Cur = Ty->desugar().getTypePtr(); \
517       break; \
518     }
519 #include "clang/AST/TypeNodes.inc"
520     }
521   }
522 }
523 
getAs() const524 template <> const TypedefType *Type::getAs() const {
525   return getAsSugar<TypedefType>(this);
526 }
527 
getAs() const528 template <> const TemplateSpecializationType *Type::getAs() const {
529   return getAsSugar<TemplateSpecializationType>(this);
530 }
531 
getAs() const532 template <> const AttributedType *Type::getAs() const {
533   return getAsSugar<AttributedType>(this);
534 }
535 
536 /// getUnqualifiedDesugaredType - Pull any qualifiers and syntactic
537 /// sugar off the given type.  This should produce an object of the
538 /// same dynamic type as the canonical type.
getUnqualifiedDesugaredType() const539 const Type *Type::getUnqualifiedDesugaredType() const {
540   const Type *Cur = this;
541 
542   while (true) {
543     switch (Cur->getTypeClass()) {
544 #define ABSTRACT_TYPE(Class, Parent)
545 #define TYPE(Class, Parent) \
546     case Class: { \
547       const auto *Ty = cast<Class##Type>(Cur); \
548       if (!Ty->isSugared()) return Cur; \
549       Cur = Ty->desugar().getTypePtr(); \
550       break; \
551     }
552 #include "clang/AST/TypeNodes.inc"
553     }
554   }
555 }
556 
isClassType() const557 bool Type::isClassType() const {
558   if (const auto *RT = getAs<RecordType>())
559     return RT->getDecl()->isClass();
560   return false;
561 }
562 
isStructureType() const563 bool Type::isStructureType() const {
564   if (const auto *RT = getAs<RecordType>())
565     return RT->getDecl()->isStruct();
566   return false;
567 }
568 
isObjCBoxableRecordType() const569 bool Type::isObjCBoxableRecordType() const {
570   if (const auto *RT = getAs<RecordType>())
571     return RT->getDecl()->hasAttr<ObjCBoxableAttr>();
572   return false;
573 }
574 
isInterfaceType() const575 bool Type::isInterfaceType() const {
576   if (const auto *RT = getAs<RecordType>())
577     return RT->getDecl()->isInterface();
578   return false;
579 }
580 
isStructureOrClassType() const581 bool Type::isStructureOrClassType() const {
582   if (const auto *RT = getAs<RecordType>()) {
583     RecordDecl *RD = RT->getDecl();
584     return RD->isStruct() || RD->isClass() || RD->isInterface();
585   }
586   return false;
587 }
588 
isVoidPointerType() const589 bool Type::isVoidPointerType() const {
590   if (const auto *PT = getAs<PointerType>())
591     return PT->getPointeeType()->isVoidType();
592   return false;
593 }
594 
isUnionType() const595 bool Type::isUnionType() const {
596   if (const auto *RT = getAs<RecordType>())
597     return RT->getDecl()->isUnion();
598   return false;
599 }
600 
isComplexType() const601 bool Type::isComplexType() const {
602   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
603     return CT->getElementType()->isFloatingType();
604   return false;
605 }
606 
isComplexIntegerType() const607 bool Type::isComplexIntegerType() const {
608   // Check for GCC complex integer extension.
609   return getAsComplexIntegerType();
610 }
611 
isScopedEnumeralType() const612 bool Type::isScopedEnumeralType() const {
613   if (const auto *ET = getAs<EnumType>())
614     return ET->getDecl()->isScoped();
615   return false;
616 }
617 
getAsComplexIntegerType() const618 const ComplexType *Type::getAsComplexIntegerType() const {
619   if (const auto *Complex = getAs<ComplexType>())
620     if (Complex->getElementType()->isIntegerType())
621       return Complex;
622   return nullptr;
623 }
624 
getPointeeType() const625 QualType Type::getPointeeType() const {
626   if (const auto *PT = getAs<PointerType>())
627     return PT->getPointeeType();
628   if (const auto *OPT = getAs<ObjCObjectPointerType>())
629     return OPT->getPointeeType();
630   if (const auto *BPT = getAs<BlockPointerType>())
631     return BPT->getPointeeType();
632   if (const auto *RT = getAs<ReferenceType>())
633     return RT->getPointeeType();
634   if (const auto *MPT = getAs<MemberPointerType>())
635     return MPT->getPointeeType();
636   if (const auto *DT = getAs<DecayedType>())
637     return DT->getPointeeType();
638   return {};
639 }
640 
getAsStructureType() const641 const RecordType *Type::getAsStructureType() const {
642   // If this is directly a structure type, return it.
643   if (const auto *RT = dyn_cast<RecordType>(this)) {
644     if (RT->getDecl()->isStruct())
645       return RT;
646   }
647 
648   // If the canonical form of this type isn't the right kind, reject it.
649   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
650     if (!RT->getDecl()->isStruct())
651       return nullptr;
652 
653     // If this is a typedef for a structure type, strip the typedef off without
654     // losing all typedef information.
655     return cast<RecordType>(getUnqualifiedDesugaredType());
656   }
657   return nullptr;
658 }
659 
getAsUnionType() const660 const RecordType *Type::getAsUnionType() const {
661   // If this is directly a union type, return it.
662   if (const auto *RT = dyn_cast<RecordType>(this)) {
663     if (RT->getDecl()->isUnion())
664       return RT;
665   }
666 
667   // If the canonical form of this type isn't the right kind, reject it.
668   if (const auto *RT = dyn_cast<RecordType>(CanonicalType)) {
669     if (!RT->getDecl()->isUnion())
670       return nullptr;
671 
672     // If this is a typedef for a union type, strip the typedef off without
673     // losing all typedef information.
674     return cast<RecordType>(getUnqualifiedDesugaredType());
675   }
676 
677   return nullptr;
678 }
679 
isObjCIdOrObjectKindOfType(const ASTContext & ctx,const ObjCObjectType * & bound) const680 bool Type::isObjCIdOrObjectKindOfType(const ASTContext &ctx,
681                                       const ObjCObjectType *&bound) const {
682   bound = nullptr;
683 
684   const auto *OPT = getAs<ObjCObjectPointerType>();
685   if (!OPT)
686     return false;
687 
688   // Easy case: id.
689   if (OPT->isObjCIdType())
690     return true;
691 
692   // If it's not a __kindof type, reject it now.
693   if (!OPT->isKindOfType())
694     return false;
695 
696   // If it's Class or qualified Class, it's not an object type.
697   if (OPT->isObjCClassType() || OPT->isObjCQualifiedClassType())
698     return false;
699 
700   // Figure out the type bound for the __kindof type.
701   bound = OPT->getObjectType()->stripObjCKindOfTypeAndQuals(ctx)
702             ->getAs<ObjCObjectType>();
703   return true;
704 }
705 
isObjCClassOrClassKindOfType() const706 bool Type::isObjCClassOrClassKindOfType() const {
707   const auto *OPT = getAs<ObjCObjectPointerType>();
708   if (!OPT)
709     return false;
710 
711   // Easy case: Class.
712   if (OPT->isObjCClassType())
713     return true;
714 
715   // If it's not a __kindof type, reject it now.
716   if (!OPT->isKindOfType())
717     return false;
718 
719   // If it's Class or qualified Class, it's a class __kindof type.
720   return OPT->isObjCClassType() || OPT->isObjCQualifiedClassType();
721 }
722 
ObjCTypeParamType(const ObjCTypeParamDecl * D,QualType can,ArrayRef<ObjCProtocolDecl * > protocols)723 ObjCTypeParamType::ObjCTypeParamType(const ObjCTypeParamDecl *D, QualType can,
724                                      ArrayRef<ObjCProtocolDecl *> protocols)
725     : Type(ObjCTypeParam, can,
726            can->getDependence() & ~TypeDependence::UnexpandedPack),
727       OTPDecl(const_cast<ObjCTypeParamDecl *>(D)) {
728   initialize(protocols);
729 }
730 
ObjCObjectType(QualType Canonical,QualType Base,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)731 ObjCObjectType::ObjCObjectType(QualType Canonical, QualType Base,
732                                ArrayRef<QualType> typeArgs,
733                                ArrayRef<ObjCProtocolDecl *> protocols,
734                                bool isKindOf)
735     : Type(ObjCObject, Canonical, Base->getDependence()), BaseType(Base) {
736   ObjCObjectTypeBits.IsKindOf = isKindOf;
737 
738   ObjCObjectTypeBits.NumTypeArgs = typeArgs.size();
739   assert(getTypeArgsAsWritten().size() == typeArgs.size() &&
740          "bitfield overflow in type argument count");
741   if (!typeArgs.empty())
742     memcpy(getTypeArgStorage(), typeArgs.data(),
743            typeArgs.size() * sizeof(QualType));
744 
745   for (auto typeArg : typeArgs) {
746     addDependence(typeArg->getDependence() & ~TypeDependence::VariablyModified);
747   }
748   // Initialize the protocol qualifiers. The protocol storage is known
749   // after we set number of type arguments.
750   initialize(protocols);
751 }
752 
isSpecialized() const753 bool ObjCObjectType::isSpecialized() const {
754   // If we have type arguments written here, the type is specialized.
755   if (ObjCObjectTypeBits.NumTypeArgs > 0)
756     return true;
757 
758   // Otherwise, check whether the base type is specialized.
759   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
760     // Terminate when we reach an interface type.
761     if (isa<ObjCInterfaceType>(objcObject))
762       return false;
763 
764     return objcObject->isSpecialized();
765   }
766 
767   // Not specialized.
768   return false;
769 }
770 
getTypeArgs() const771 ArrayRef<QualType> ObjCObjectType::getTypeArgs() const {
772   // We have type arguments written on this type.
773   if (isSpecializedAsWritten())
774     return getTypeArgsAsWritten();
775 
776   // Look at the base type, which might have type arguments.
777   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
778     // Terminate when we reach an interface type.
779     if (isa<ObjCInterfaceType>(objcObject))
780       return {};
781 
782     return objcObject->getTypeArgs();
783   }
784 
785   // No type arguments.
786   return {};
787 }
788 
isKindOfType() const789 bool ObjCObjectType::isKindOfType() const {
790   if (isKindOfTypeAsWritten())
791     return true;
792 
793   // Look at the base type, which might have type arguments.
794   if (const auto objcObject = getBaseType()->getAs<ObjCObjectType>()) {
795     // Terminate when we reach an interface type.
796     if (isa<ObjCInterfaceType>(objcObject))
797       return false;
798 
799     return objcObject->isKindOfType();
800   }
801 
802   // Not a "__kindof" type.
803   return false;
804 }
805 
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const806 QualType ObjCObjectType::stripObjCKindOfTypeAndQuals(
807            const ASTContext &ctx) const {
808   if (!isKindOfType() && qual_empty())
809     return QualType(this, 0);
810 
811   // Recursively strip __kindof.
812   SplitQualType splitBaseType = getBaseType().split();
813   QualType baseType(splitBaseType.Ty, 0);
814   if (const auto *baseObj = splitBaseType.Ty->getAs<ObjCObjectType>())
815     baseType = baseObj->stripObjCKindOfTypeAndQuals(ctx);
816 
817   return ctx.getObjCObjectType(ctx.getQualifiedType(baseType,
818                                                     splitBaseType.Quals),
819                                getTypeArgsAsWritten(),
820                                /*protocols=*/{},
821                                /*isKindOf=*/false);
822 }
823 
stripObjCKindOfTypeAndQuals(const ASTContext & ctx) const824 const ObjCObjectPointerType *ObjCObjectPointerType::stripObjCKindOfTypeAndQuals(
825                                const ASTContext &ctx) const {
826   if (!isKindOfType() && qual_empty())
827     return this;
828 
829   QualType obj = getObjectType()->stripObjCKindOfTypeAndQuals(ctx);
830   return ctx.getObjCObjectPointerType(obj)->castAs<ObjCObjectPointerType>();
831 }
832 
833 namespace {
834 
835 /// Visitor used to perform a simple type transformation that does not change
836 /// the semantics of the type.
837 template <typename Derived>
838 struct SimpleTransformVisitor : public TypeVisitor<Derived, QualType> {
839   ASTContext &Ctx;
840 
recurse__anon8e5681340111::SimpleTransformVisitor841   QualType recurse(QualType type) {
842     // Split out the qualifiers from the type.
843     SplitQualType splitType = type.split();
844 
845     // Visit the type itself.
846     QualType result = static_cast<Derived *>(this)->Visit(splitType.Ty);
847     if (result.isNull())
848       return result;
849 
850     // Reconstruct the transformed type by applying the local qualifiers
851     // from the split type.
852     return Ctx.getQualifiedType(result, splitType.Quals);
853   }
854 
855 public:
SimpleTransformVisitor__anon8e5681340111::SimpleTransformVisitor856   explicit SimpleTransformVisitor(ASTContext &ctx) : Ctx(ctx) {}
857 
858   // None of the clients of this transformation can occur where
859   // there are dependent types, so skip dependent types.
860 #define TYPE(Class, Base)
861 #define DEPENDENT_TYPE(Class, Base) \
862   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
863 #include "clang/AST/TypeNodes.inc"
864 
865 #define TRIVIAL_TYPE_CLASS(Class) \
866   QualType Visit##Class##Type(const Class##Type *T) { return QualType(T, 0); }
867 #define SUGARED_TYPE_CLASS(Class) \
868   QualType Visit##Class##Type(const Class##Type *T) { \
869     if (!T->isSugared()) \
870       return QualType(T, 0); \
871     QualType desugaredType = recurse(T->desugar()); \
872     if (desugaredType.isNull()) \
873       return {}; \
874     if (desugaredType.getAsOpaquePtr() == T->desugar().getAsOpaquePtr()) \
875       return QualType(T, 0); \
876     return desugaredType; \
877   }
878 
TRIVIAL_TYPE_CLASS__anon8e5681340111::SimpleTransformVisitor879   TRIVIAL_TYPE_CLASS(Builtin)
880 
881   QualType VisitComplexType(const ComplexType *T) {
882     QualType elementType = recurse(T->getElementType());
883     if (elementType.isNull())
884       return {};
885 
886     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
887       return QualType(T, 0);
888 
889     return Ctx.getComplexType(elementType);
890   }
891 
VisitPointerType__anon8e5681340111::SimpleTransformVisitor892   QualType VisitPointerType(const PointerType *T) {
893     QualType pointeeType = recurse(T->getPointeeType());
894     if (pointeeType.isNull())
895       return {};
896 
897     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
898       return QualType(T, 0);
899 
900     return Ctx.getPointerType(pointeeType);
901   }
902 
VisitBlockPointerType__anon8e5681340111::SimpleTransformVisitor903   QualType VisitBlockPointerType(const BlockPointerType *T) {
904     QualType pointeeType = recurse(T->getPointeeType());
905     if (pointeeType.isNull())
906       return {};
907 
908     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
909       return QualType(T, 0);
910 
911     return Ctx.getBlockPointerType(pointeeType);
912   }
913 
VisitLValueReferenceType__anon8e5681340111::SimpleTransformVisitor914   QualType VisitLValueReferenceType(const LValueReferenceType *T) {
915     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
916     if (pointeeType.isNull())
917       return {};
918 
919     if (pointeeType.getAsOpaquePtr()
920           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
921       return QualType(T, 0);
922 
923     return Ctx.getLValueReferenceType(pointeeType, T->isSpelledAsLValue());
924   }
925 
VisitRValueReferenceType__anon8e5681340111::SimpleTransformVisitor926   QualType VisitRValueReferenceType(const RValueReferenceType *T) {
927     QualType pointeeType = recurse(T->getPointeeTypeAsWritten());
928     if (pointeeType.isNull())
929       return {};
930 
931     if (pointeeType.getAsOpaquePtr()
932           == T->getPointeeTypeAsWritten().getAsOpaquePtr())
933       return QualType(T, 0);
934 
935     return Ctx.getRValueReferenceType(pointeeType);
936   }
937 
VisitMemberPointerType__anon8e5681340111::SimpleTransformVisitor938   QualType VisitMemberPointerType(const MemberPointerType *T) {
939     QualType pointeeType = recurse(T->getPointeeType());
940     if (pointeeType.isNull())
941       return {};
942 
943     if (pointeeType.getAsOpaquePtr() == T->getPointeeType().getAsOpaquePtr())
944       return QualType(T, 0);
945 
946     return Ctx.getMemberPointerType(pointeeType, T->getClass());
947   }
948 
VisitConstantArrayType__anon8e5681340111::SimpleTransformVisitor949   QualType VisitConstantArrayType(const ConstantArrayType *T) {
950     QualType elementType = recurse(T->getElementType());
951     if (elementType.isNull())
952       return {};
953 
954     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
955       return QualType(T, 0);
956 
957     return Ctx.getConstantArrayType(elementType, T->getSize(), T->getSizeExpr(),
958                                     T->getSizeModifier(),
959                                     T->getIndexTypeCVRQualifiers());
960   }
961 
VisitVariableArrayType__anon8e5681340111::SimpleTransformVisitor962   QualType VisitVariableArrayType(const VariableArrayType *T) {
963     QualType elementType = recurse(T->getElementType());
964     if (elementType.isNull())
965       return {};
966 
967     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
968       return QualType(T, 0);
969 
970     return Ctx.getVariableArrayType(elementType, T->getSizeExpr(),
971                                     T->getSizeModifier(),
972                                     T->getIndexTypeCVRQualifiers(),
973                                     T->getBracketsRange());
974   }
975 
VisitIncompleteArrayType__anon8e5681340111::SimpleTransformVisitor976   QualType VisitIncompleteArrayType(const IncompleteArrayType *T) {
977     QualType elementType = recurse(T->getElementType());
978     if (elementType.isNull())
979       return {};
980 
981     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
982       return QualType(T, 0);
983 
984     return Ctx.getIncompleteArrayType(elementType, T->getSizeModifier(),
985                                       T->getIndexTypeCVRQualifiers());
986   }
987 
VisitVectorType__anon8e5681340111::SimpleTransformVisitor988   QualType VisitVectorType(const VectorType *T) {
989     QualType elementType = recurse(T->getElementType());
990     if (elementType.isNull())
991       return {};
992 
993     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
994       return QualType(T, 0);
995 
996     return Ctx.getVectorType(elementType, T->getNumElements(),
997                              T->getVectorKind());
998   }
999 
VisitExtVectorType__anon8e5681340111::SimpleTransformVisitor1000   QualType VisitExtVectorType(const ExtVectorType *T) {
1001     QualType elementType = recurse(T->getElementType());
1002     if (elementType.isNull())
1003       return {};
1004 
1005     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1006       return QualType(T, 0);
1007 
1008     return Ctx.getExtVectorType(elementType, T->getNumElements());
1009   }
1010 
VisitConstantMatrixType__anon8e5681340111::SimpleTransformVisitor1011   QualType VisitConstantMatrixType(const ConstantMatrixType *T) {
1012     QualType elementType = recurse(T->getElementType());
1013     if (elementType.isNull())
1014       return {};
1015     if (elementType.getAsOpaquePtr() == T->getElementType().getAsOpaquePtr())
1016       return QualType(T, 0);
1017 
1018     return Ctx.getConstantMatrixType(elementType, T->getNumRows(),
1019                                      T->getNumColumns());
1020   }
1021 
VisitFunctionNoProtoType__anon8e5681340111::SimpleTransformVisitor1022   QualType VisitFunctionNoProtoType(const FunctionNoProtoType *T) {
1023     QualType returnType = recurse(T->getReturnType());
1024     if (returnType.isNull())
1025       return {};
1026 
1027     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr())
1028       return QualType(T, 0);
1029 
1030     return Ctx.getFunctionNoProtoType(returnType, T->getExtInfo());
1031   }
1032 
VisitFunctionProtoType__anon8e5681340111::SimpleTransformVisitor1033   QualType VisitFunctionProtoType(const FunctionProtoType *T) {
1034     QualType returnType = recurse(T->getReturnType());
1035     if (returnType.isNull())
1036       return {};
1037 
1038     // Transform parameter types.
1039     SmallVector<QualType, 4> paramTypes;
1040     bool paramChanged = false;
1041     for (auto paramType : T->getParamTypes()) {
1042       QualType newParamType = recurse(paramType);
1043       if (newParamType.isNull())
1044         return {};
1045 
1046       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1047         paramChanged = true;
1048 
1049       paramTypes.push_back(newParamType);
1050     }
1051 
1052     // Transform extended info.
1053     FunctionProtoType::ExtProtoInfo info = T->getExtProtoInfo();
1054     bool exceptionChanged = false;
1055     if (info.ExceptionSpec.Type == EST_Dynamic) {
1056       SmallVector<QualType, 4> exceptionTypes;
1057       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1058         QualType newExceptionType = recurse(exceptionType);
1059         if (newExceptionType.isNull())
1060           return {};
1061 
1062         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1063           exceptionChanged = true;
1064 
1065         exceptionTypes.push_back(newExceptionType);
1066       }
1067 
1068       if (exceptionChanged) {
1069         info.ExceptionSpec.Exceptions =
1070             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1071       }
1072     }
1073 
1074     if (returnType.getAsOpaquePtr() == T->getReturnType().getAsOpaquePtr() &&
1075         !paramChanged && !exceptionChanged)
1076       return QualType(T, 0);
1077 
1078     return Ctx.getFunctionType(returnType, paramTypes, info);
1079   }
1080 
VisitParenType__anon8e5681340111::SimpleTransformVisitor1081   QualType VisitParenType(const ParenType *T) {
1082     QualType innerType = recurse(T->getInnerType());
1083     if (innerType.isNull())
1084       return {};
1085 
1086     if (innerType.getAsOpaquePtr() == T->getInnerType().getAsOpaquePtr())
1087       return QualType(T, 0);
1088 
1089     return Ctx.getParenType(innerType);
1090   }
1091 
1092   SUGARED_TYPE_CLASS(Typedef)
SUGARED_TYPE_CLASS__anon8e5681340111::SimpleTransformVisitor1093   SUGARED_TYPE_CLASS(ObjCTypeParam)
1094   SUGARED_TYPE_CLASS(MacroQualified)
1095 
1096   QualType VisitAdjustedType(const AdjustedType *T) {
1097     QualType originalType = recurse(T->getOriginalType());
1098     if (originalType.isNull())
1099       return {};
1100 
1101     QualType adjustedType = recurse(T->getAdjustedType());
1102     if (adjustedType.isNull())
1103       return {};
1104 
1105     if (originalType.getAsOpaquePtr()
1106           == T->getOriginalType().getAsOpaquePtr() &&
1107         adjustedType.getAsOpaquePtr() == T->getAdjustedType().getAsOpaquePtr())
1108       return QualType(T, 0);
1109 
1110     return Ctx.getAdjustedType(originalType, adjustedType);
1111   }
1112 
VisitDecayedType__anon8e5681340111::SimpleTransformVisitor1113   QualType VisitDecayedType(const DecayedType *T) {
1114     QualType originalType = recurse(T->getOriginalType());
1115     if (originalType.isNull())
1116       return {};
1117 
1118     if (originalType.getAsOpaquePtr()
1119           == T->getOriginalType().getAsOpaquePtr())
1120       return QualType(T, 0);
1121 
1122     return Ctx.getDecayedType(originalType);
1123   }
1124 
1125   SUGARED_TYPE_CLASS(TypeOfExpr)
SUGARED_TYPE_CLASS__anon8e5681340111::SimpleTransformVisitor1126   SUGARED_TYPE_CLASS(TypeOf)
1127   SUGARED_TYPE_CLASS(Decltype)
1128   SUGARED_TYPE_CLASS(UnaryTransform)
1129   TRIVIAL_TYPE_CLASS(Record)
1130   TRIVIAL_TYPE_CLASS(Enum)
1131 
1132   // FIXME: Non-trivial to implement, but important for C++
1133   SUGARED_TYPE_CLASS(Elaborated)
1134 
1135   QualType VisitAttributedType(const AttributedType *T) {
1136     QualType modifiedType = recurse(T->getModifiedType());
1137     if (modifiedType.isNull())
1138       return {};
1139 
1140     QualType equivalentType = recurse(T->getEquivalentType());
1141     if (equivalentType.isNull())
1142       return {};
1143 
1144     if (modifiedType.getAsOpaquePtr()
1145           == T->getModifiedType().getAsOpaquePtr() &&
1146         equivalentType.getAsOpaquePtr()
1147           == T->getEquivalentType().getAsOpaquePtr())
1148       return QualType(T, 0);
1149 
1150     return Ctx.getAttributedType(T->getAttrKind(), modifiedType,
1151                                  equivalentType);
1152   }
1153 
VisitSubstTemplateTypeParmType__anon8e5681340111::SimpleTransformVisitor1154   QualType VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1155     QualType replacementType = recurse(T->getReplacementType());
1156     if (replacementType.isNull())
1157       return {};
1158 
1159     if (replacementType.getAsOpaquePtr()
1160           == T->getReplacementType().getAsOpaquePtr())
1161       return QualType(T, 0);
1162 
1163     return Ctx.getSubstTemplateTypeParmType(T->getReplacedParameter(),
1164                                             replacementType);
1165   }
1166 
1167   // FIXME: Non-trivial to implement, but important for C++
SUGARED_TYPE_CLASS__anon8e5681340111::SimpleTransformVisitor1168   SUGARED_TYPE_CLASS(TemplateSpecialization)
1169 
1170   QualType VisitAutoType(const AutoType *T) {
1171     if (!T->isDeduced())
1172       return QualType(T, 0);
1173 
1174     QualType deducedType = recurse(T->getDeducedType());
1175     if (deducedType.isNull())
1176       return {};
1177 
1178     if (deducedType.getAsOpaquePtr()
1179           == T->getDeducedType().getAsOpaquePtr())
1180       return QualType(T, 0);
1181 
1182     return Ctx.getAutoType(deducedType, T->getKeyword(),
1183                            T->isDependentType(), /*IsPack=*/false,
1184                            T->getTypeConstraintConcept(),
1185                            T->getTypeConstraintArguments());
1186   }
1187 
VisitObjCObjectType__anon8e5681340111::SimpleTransformVisitor1188   QualType VisitObjCObjectType(const ObjCObjectType *T) {
1189     QualType baseType = recurse(T->getBaseType());
1190     if (baseType.isNull())
1191       return {};
1192 
1193     // Transform type arguments.
1194     bool typeArgChanged = false;
1195     SmallVector<QualType, 4> typeArgs;
1196     for (auto typeArg : T->getTypeArgsAsWritten()) {
1197       QualType newTypeArg = recurse(typeArg);
1198       if (newTypeArg.isNull())
1199         return {};
1200 
1201       if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr())
1202         typeArgChanged = true;
1203 
1204       typeArgs.push_back(newTypeArg);
1205     }
1206 
1207     if (baseType.getAsOpaquePtr() == T->getBaseType().getAsOpaquePtr() &&
1208         !typeArgChanged)
1209       return QualType(T, 0);
1210 
1211     return Ctx.getObjCObjectType(baseType, typeArgs,
1212                                  llvm::makeArrayRef(T->qual_begin(),
1213                                                     T->getNumProtocols()),
1214                                  T->isKindOfTypeAsWritten());
1215   }
1216 
TRIVIAL_TYPE_CLASS__anon8e5681340111::SimpleTransformVisitor1217   TRIVIAL_TYPE_CLASS(ObjCInterface)
1218 
1219   QualType VisitObjCObjectPointerType(const ObjCObjectPointerType *T) {
1220     QualType pointeeType = recurse(T->getPointeeType());
1221     if (pointeeType.isNull())
1222       return {};
1223 
1224     if (pointeeType.getAsOpaquePtr()
1225           == T->getPointeeType().getAsOpaquePtr())
1226       return QualType(T, 0);
1227 
1228     return Ctx.getObjCObjectPointerType(pointeeType);
1229   }
1230 
VisitAtomicType__anon8e5681340111::SimpleTransformVisitor1231   QualType VisitAtomicType(const AtomicType *T) {
1232     QualType valueType = recurse(T->getValueType());
1233     if (valueType.isNull())
1234       return {};
1235 
1236     if (valueType.getAsOpaquePtr()
1237           == T->getValueType().getAsOpaquePtr())
1238       return QualType(T, 0);
1239 
1240     return Ctx.getAtomicType(valueType);
1241   }
1242 
1243 #undef TRIVIAL_TYPE_CLASS
1244 #undef SUGARED_TYPE_CLASS
1245 };
1246 
1247 struct SubstObjCTypeArgsVisitor
1248     : public SimpleTransformVisitor<SubstObjCTypeArgsVisitor> {
1249   using BaseType = SimpleTransformVisitor<SubstObjCTypeArgsVisitor>;
1250 
1251   ArrayRef<QualType> TypeArgs;
1252   ObjCSubstitutionContext SubstContext;
1253 
SubstObjCTypeArgsVisitor__anon8e5681340111::SubstObjCTypeArgsVisitor1254   SubstObjCTypeArgsVisitor(ASTContext &ctx, ArrayRef<QualType> typeArgs,
1255                            ObjCSubstitutionContext context)
1256       : BaseType(ctx), TypeArgs(typeArgs), SubstContext(context) {}
1257 
VisitObjCTypeParamType__anon8e5681340111::SubstObjCTypeArgsVisitor1258   QualType VisitObjCTypeParamType(const ObjCTypeParamType *OTPTy) {
1259     // Replace an Objective-C type parameter reference with the corresponding
1260     // type argument.
1261     ObjCTypeParamDecl *typeParam = OTPTy->getDecl();
1262     // If we have type arguments, use them.
1263     if (!TypeArgs.empty()) {
1264       QualType argType = TypeArgs[typeParam->getIndex()];
1265       if (OTPTy->qual_empty())
1266         return argType;
1267 
1268       // Apply protocol lists if exists.
1269       bool hasError;
1270       SmallVector<ObjCProtocolDecl *, 8> protocolsVec;
1271       protocolsVec.append(OTPTy->qual_begin(), OTPTy->qual_end());
1272       ArrayRef<ObjCProtocolDecl *> protocolsToApply = protocolsVec;
1273       return Ctx.applyObjCProtocolQualifiers(
1274           argType, protocolsToApply, hasError, true/*allowOnPointerType*/);
1275     }
1276 
1277     switch (SubstContext) {
1278     case ObjCSubstitutionContext::Ordinary:
1279     case ObjCSubstitutionContext::Parameter:
1280     case ObjCSubstitutionContext::Superclass:
1281       // Substitute the bound.
1282       return typeParam->getUnderlyingType();
1283 
1284     case ObjCSubstitutionContext::Result:
1285     case ObjCSubstitutionContext::Property: {
1286       // Substitute the __kindof form of the underlying type.
1287       const auto *objPtr =
1288           typeParam->getUnderlyingType()->castAs<ObjCObjectPointerType>();
1289 
1290       // __kindof types, id, and Class don't need an additional
1291       // __kindof.
1292       if (objPtr->isKindOfType() || objPtr->isObjCIdOrClassType())
1293         return typeParam->getUnderlyingType();
1294 
1295       // Add __kindof.
1296       const auto *obj = objPtr->getObjectType();
1297       QualType resultTy = Ctx.getObjCObjectType(
1298           obj->getBaseType(), obj->getTypeArgsAsWritten(), obj->getProtocols(),
1299           /*isKindOf=*/true);
1300 
1301       // Rebuild object pointer type.
1302       return Ctx.getObjCObjectPointerType(resultTy);
1303     }
1304     }
1305     llvm_unreachable("Unexpected ObjCSubstitutionContext!");
1306   }
1307 
VisitFunctionType__anon8e5681340111::SubstObjCTypeArgsVisitor1308   QualType VisitFunctionType(const FunctionType *funcType) {
1309     // If we have a function type, update the substitution context
1310     // appropriately.
1311 
1312     //Substitute result type.
1313     QualType returnType = funcType->getReturnType().substObjCTypeArgs(
1314         Ctx, TypeArgs, ObjCSubstitutionContext::Result);
1315     if (returnType.isNull())
1316       return {};
1317 
1318     // Handle non-prototyped functions, which only substitute into the result
1319     // type.
1320     if (isa<FunctionNoProtoType>(funcType)) {
1321       // If the return type was unchanged, do nothing.
1322       if (returnType.getAsOpaquePtr() ==
1323           funcType->getReturnType().getAsOpaquePtr())
1324         return BaseType::VisitFunctionType(funcType);
1325 
1326       // Otherwise, build a new type.
1327       return Ctx.getFunctionNoProtoType(returnType, funcType->getExtInfo());
1328     }
1329 
1330     const auto *funcProtoType = cast<FunctionProtoType>(funcType);
1331 
1332     // Transform parameter types.
1333     SmallVector<QualType, 4> paramTypes;
1334     bool paramChanged = false;
1335     for (auto paramType : funcProtoType->getParamTypes()) {
1336       QualType newParamType = paramType.substObjCTypeArgs(
1337           Ctx, TypeArgs, ObjCSubstitutionContext::Parameter);
1338       if (newParamType.isNull())
1339         return {};
1340 
1341       if (newParamType.getAsOpaquePtr() != paramType.getAsOpaquePtr())
1342         paramChanged = true;
1343 
1344       paramTypes.push_back(newParamType);
1345     }
1346 
1347     // Transform extended info.
1348     FunctionProtoType::ExtProtoInfo info = funcProtoType->getExtProtoInfo();
1349     bool exceptionChanged = false;
1350     if (info.ExceptionSpec.Type == EST_Dynamic) {
1351       SmallVector<QualType, 4> exceptionTypes;
1352       for (auto exceptionType : info.ExceptionSpec.Exceptions) {
1353         QualType newExceptionType = exceptionType.substObjCTypeArgs(
1354             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1355         if (newExceptionType.isNull())
1356           return {};
1357 
1358         if (newExceptionType.getAsOpaquePtr() != exceptionType.getAsOpaquePtr())
1359           exceptionChanged = true;
1360 
1361         exceptionTypes.push_back(newExceptionType);
1362       }
1363 
1364       if (exceptionChanged) {
1365         info.ExceptionSpec.Exceptions =
1366             llvm::makeArrayRef(exceptionTypes).copy(Ctx);
1367       }
1368     }
1369 
1370     if (returnType.getAsOpaquePtr() ==
1371             funcProtoType->getReturnType().getAsOpaquePtr() &&
1372         !paramChanged && !exceptionChanged)
1373       return BaseType::VisitFunctionType(funcType);
1374 
1375     return Ctx.getFunctionType(returnType, paramTypes, info);
1376   }
1377 
VisitObjCObjectType__anon8e5681340111::SubstObjCTypeArgsVisitor1378   QualType VisitObjCObjectType(const ObjCObjectType *objcObjectType) {
1379     // Substitute into the type arguments of a specialized Objective-C object
1380     // type.
1381     if (objcObjectType->isSpecializedAsWritten()) {
1382       SmallVector<QualType, 4> newTypeArgs;
1383       bool anyChanged = false;
1384       for (auto typeArg : objcObjectType->getTypeArgsAsWritten()) {
1385         QualType newTypeArg = typeArg.substObjCTypeArgs(
1386             Ctx, TypeArgs, ObjCSubstitutionContext::Ordinary);
1387         if (newTypeArg.isNull())
1388           return {};
1389 
1390         if (newTypeArg.getAsOpaquePtr() != typeArg.getAsOpaquePtr()) {
1391           // If we're substituting based on an unspecialized context type,
1392           // produce an unspecialized type.
1393           ArrayRef<ObjCProtocolDecl *> protocols(
1394               objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1395           if (TypeArgs.empty() &&
1396               SubstContext != ObjCSubstitutionContext::Superclass) {
1397             return Ctx.getObjCObjectType(
1398                 objcObjectType->getBaseType(), {}, protocols,
1399                 objcObjectType->isKindOfTypeAsWritten());
1400           }
1401 
1402           anyChanged = true;
1403         }
1404 
1405         newTypeArgs.push_back(newTypeArg);
1406       }
1407 
1408       if (anyChanged) {
1409         ArrayRef<ObjCProtocolDecl *> protocols(
1410             objcObjectType->qual_begin(), objcObjectType->getNumProtocols());
1411         return Ctx.getObjCObjectType(objcObjectType->getBaseType(), newTypeArgs,
1412                                      protocols,
1413                                      objcObjectType->isKindOfTypeAsWritten());
1414       }
1415     }
1416 
1417     return BaseType::VisitObjCObjectType(objcObjectType);
1418   }
1419 
VisitAttributedType__anon8e5681340111::SubstObjCTypeArgsVisitor1420   QualType VisitAttributedType(const AttributedType *attrType) {
1421     QualType newType = BaseType::VisitAttributedType(attrType);
1422     if (newType.isNull())
1423       return {};
1424 
1425     const auto *newAttrType = dyn_cast<AttributedType>(newType.getTypePtr());
1426     if (!newAttrType || newAttrType->getAttrKind() != attr::ObjCKindOf)
1427       return newType;
1428 
1429     // Find out if it's an Objective-C object or object pointer type;
1430     QualType newEquivType = newAttrType->getEquivalentType();
1431     const ObjCObjectPointerType *ptrType =
1432         newEquivType->getAs<ObjCObjectPointerType>();
1433     const ObjCObjectType *objType = ptrType
1434                                         ? ptrType->getObjectType()
1435                                         : newEquivType->getAs<ObjCObjectType>();
1436     if (!objType)
1437       return newType;
1438 
1439     // Rebuild the "equivalent" type, which pushes __kindof down into
1440     // the object type.
1441     newEquivType = Ctx.getObjCObjectType(
1442         objType->getBaseType(), objType->getTypeArgsAsWritten(),
1443         objType->getProtocols(),
1444         // There is no need to apply kindof on an unqualified id type.
1445         /*isKindOf=*/objType->isObjCUnqualifiedId() ? false : true);
1446 
1447     // If we started with an object pointer type, rebuild it.
1448     if (ptrType)
1449       newEquivType = Ctx.getObjCObjectPointerType(newEquivType);
1450 
1451     // Rebuild the attributed type.
1452     return Ctx.getAttributedType(newAttrType->getAttrKind(),
1453                                  newAttrType->getModifiedType(), newEquivType);
1454   }
1455 };
1456 
1457 struct StripObjCKindOfTypeVisitor
1458     : public SimpleTransformVisitor<StripObjCKindOfTypeVisitor> {
1459   using BaseType = SimpleTransformVisitor<StripObjCKindOfTypeVisitor>;
1460 
StripObjCKindOfTypeVisitor__anon8e5681340111::StripObjCKindOfTypeVisitor1461   explicit StripObjCKindOfTypeVisitor(ASTContext &ctx) : BaseType(ctx) {}
1462 
VisitObjCObjectType__anon8e5681340111::StripObjCKindOfTypeVisitor1463   QualType VisitObjCObjectType(const ObjCObjectType *objType) {
1464     if (!objType->isKindOfType())
1465       return BaseType::VisitObjCObjectType(objType);
1466 
1467     QualType baseType = objType->getBaseType().stripObjCKindOfType(Ctx);
1468     return Ctx.getObjCObjectType(baseType, objType->getTypeArgsAsWritten(),
1469                                  objType->getProtocols(),
1470                                  /*isKindOf=*/false);
1471   }
1472 };
1473 
1474 } // namespace
1475 
1476 /// Substitute the given type arguments for Objective-C type
1477 /// parameters within the given type, recursively.
substObjCTypeArgs(ASTContext & ctx,ArrayRef<QualType> typeArgs,ObjCSubstitutionContext context) const1478 QualType QualType::substObjCTypeArgs(ASTContext &ctx,
1479                                      ArrayRef<QualType> typeArgs,
1480                                      ObjCSubstitutionContext context) const {
1481   SubstObjCTypeArgsVisitor visitor(ctx, typeArgs, context);
1482   return visitor.recurse(*this);
1483 }
1484 
substObjCMemberType(QualType objectType,const DeclContext * dc,ObjCSubstitutionContext context) const1485 QualType QualType::substObjCMemberType(QualType objectType,
1486                                        const DeclContext *dc,
1487                                        ObjCSubstitutionContext context) const {
1488   if (auto subs = objectType->getObjCSubstitutions(dc))
1489     return substObjCTypeArgs(dc->getParentASTContext(), *subs, context);
1490 
1491   return *this;
1492 }
1493 
stripObjCKindOfType(const ASTContext & constCtx) const1494 QualType QualType::stripObjCKindOfType(const ASTContext &constCtx) const {
1495   // FIXME: Because ASTContext::getAttributedType() is non-const.
1496   auto &ctx = const_cast<ASTContext &>(constCtx);
1497   StripObjCKindOfTypeVisitor visitor(ctx);
1498   return visitor.recurse(*this);
1499 }
1500 
getAtomicUnqualifiedType() const1501 QualType QualType::getAtomicUnqualifiedType() const {
1502   if (const auto AT = getTypePtr()->getAs<AtomicType>())
1503     return AT->getValueType().getUnqualifiedType();
1504   return getUnqualifiedType();
1505 }
1506 
getObjCSubstitutions(const DeclContext * dc) const1507 Optional<ArrayRef<QualType>> Type::getObjCSubstitutions(
1508                                const DeclContext *dc) const {
1509   // Look through method scopes.
1510   if (const auto method = dyn_cast<ObjCMethodDecl>(dc))
1511     dc = method->getDeclContext();
1512 
1513   // Find the class or category in which the type we're substituting
1514   // was declared.
1515   const auto *dcClassDecl = dyn_cast<ObjCInterfaceDecl>(dc);
1516   const ObjCCategoryDecl *dcCategoryDecl = nullptr;
1517   ObjCTypeParamList *dcTypeParams = nullptr;
1518   if (dcClassDecl) {
1519     // If the class does not have any type parameters, there's no
1520     // substitution to do.
1521     dcTypeParams = dcClassDecl->getTypeParamList();
1522     if (!dcTypeParams)
1523       return None;
1524   } else {
1525     // If we are in neither a class nor a category, there's no
1526     // substitution to perform.
1527     dcCategoryDecl = dyn_cast<ObjCCategoryDecl>(dc);
1528     if (!dcCategoryDecl)
1529       return None;
1530 
1531     // If the category does not have any type parameters, there's no
1532     // substitution to do.
1533     dcTypeParams = dcCategoryDecl->getTypeParamList();
1534     if (!dcTypeParams)
1535       return None;
1536 
1537     dcClassDecl = dcCategoryDecl->getClassInterface();
1538     if (!dcClassDecl)
1539       return None;
1540   }
1541   assert(dcTypeParams && "No substitutions to perform");
1542   assert(dcClassDecl && "No class context");
1543 
1544   // Find the underlying object type.
1545   const ObjCObjectType *objectType;
1546   if (const auto *objectPointerType = getAs<ObjCObjectPointerType>()) {
1547     objectType = objectPointerType->getObjectType();
1548   } else if (getAs<BlockPointerType>()) {
1549     ASTContext &ctx = dc->getParentASTContext();
1550     objectType = ctx.getObjCObjectType(ctx.ObjCBuiltinIdTy, {}, {})
1551                    ->castAs<ObjCObjectType>();
1552   } else {
1553     objectType = getAs<ObjCObjectType>();
1554   }
1555 
1556   /// Extract the class from the receiver object type.
1557   ObjCInterfaceDecl *curClassDecl = objectType ? objectType->getInterface()
1558                                                : nullptr;
1559   if (!curClassDecl) {
1560     // If we don't have a context type (e.g., this is "id" or some
1561     // variant thereof), substitute the bounds.
1562     return llvm::ArrayRef<QualType>();
1563   }
1564 
1565   // Follow the superclass chain until we've mapped the receiver type
1566   // to the same class as the context.
1567   while (curClassDecl != dcClassDecl) {
1568     // Map to the superclass type.
1569     QualType superType = objectType->getSuperClassType();
1570     if (superType.isNull()) {
1571       objectType = nullptr;
1572       break;
1573     }
1574 
1575     objectType = superType->castAs<ObjCObjectType>();
1576     curClassDecl = objectType->getInterface();
1577   }
1578 
1579   // If we don't have a receiver type, or the receiver type does not
1580   // have type arguments, substitute in the defaults.
1581   if (!objectType || objectType->isUnspecialized()) {
1582     return llvm::ArrayRef<QualType>();
1583   }
1584 
1585   // The receiver type has the type arguments we want.
1586   return objectType->getTypeArgs();
1587 }
1588 
acceptsObjCTypeParams() const1589 bool Type::acceptsObjCTypeParams() const {
1590   if (auto *IfaceT = getAsObjCInterfaceType()) {
1591     if (auto *ID = IfaceT->getInterface()) {
1592       if (ID->getTypeParamList())
1593         return true;
1594     }
1595   }
1596 
1597   return false;
1598 }
1599 
computeSuperClassTypeSlow() const1600 void ObjCObjectType::computeSuperClassTypeSlow() const {
1601   // Retrieve the class declaration for this type. If there isn't one
1602   // (e.g., this is some variant of "id" or "Class"), then there is no
1603   // superclass type.
1604   ObjCInterfaceDecl *classDecl = getInterface();
1605   if (!classDecl) {
1606     CachedSuperClassType.setInt(true);
1607     return;
1608   }
1609 
1610   // Extract the superclass type.
1611   const ObjCObjectType *superClassObjTy = classDecl->getSuperClassType();
1612   if (!superClassObjTy) {
1613     CachedSuperClassType.setInt(true);
1614     return;
1615   }
1616 
1617   ObjCInterfaceDecl *superClassDecl = superClassObjTy->getInterface();
1618   if (!superClassDecl) {
1619     CachedSuperClassType.setInt(true);
1620     return;
1621   }
1622 
1623   // If the superclass doesn't have type parameters, then there is no
1624   // substitution to perform.
1625   QualType superClassType(superClassObjTy, 0);
1626   ObjCTypeParamList *superClassTypeParams = superClassDecl->getTypeParamList();
1627   if (!superClassTypeParams) {
1628     CachedSuperClassType.setPointerAndInt(
1629       superClassType->castAs<ObjCObjectType>(), true);
1630     return;
1631   }
1632 
1633   // If the superclass reference is unspecialized, return it.
1634   if (superClassObjTy->isUnspecialized()) {
1635     CachedSuperClassType.setPointerAndInt(superClassObjTy, true);
1636     return;
1637   }
1638 
1639   // If the subclass is not parameterized, there aren't any type
1640   // parameters in the superclass reference to substitute.
1641   ObjCTypeParamList *typeParams = classDecl->getTypeParamList();
1642   if (!typeParams) {
1643     CachedSuperClassType.setPointerAndInt(
1644       superClassType->castAs<ObjCObjectType>(), true);
1645     return;
1646   }
1647 
1648   // If the subclass type isn't specialized, return the unspecialized
1649   // superclass.
1650   if (isUnspecialized()) {
1651     QualType unspecializedSuper
1652       = classDecl->getASTContext().getObjCInterfaceType(
1653           superClassObjTy->getInterface());
1654     CachedSuperClassType.setPointerAndInt(
1655       unspecializedSuper->castAs<ObjCObjectType>(),
1656       true);
1657     return;
1658   }
1659 
1660   // Substitute the provided type arguments into the superclass type.
1661   ArrayRef<QualType> typeArgs = getTypeArgs();
1662   assert(typeArgs.size() == typeParams->size());
1663   CachedSuperClassType.setPointerAndInt(
1664     superClassType.substObjCTypeArgs(classDecl->getASTContext(), typeArgs,
1665                                      ObjCSubstitutionContext::Superclass)
1666       ->castAs<ObjCObjectType>(),
1667     true);
1668 }
1669 
getInterfaceType() const1670 const ObjCInterfaceType *ObjCObjectPointerType::getInterfaceType() const {
1671   if (auto interfaceDecl = getObjectType()->getInterface()) {
1672     return interfaceDecl->getASTContext().getObjCInterfaceType(interfaceDecl)
1673              ->castAs<ObjCInterfaceType>();
1674   }
1675 
1676   return nullptr;
1677 }
1678 
getSuperClassType() const1679 QualType ObjCObjectPointerType::getSuperClassType() const {
1680   QualType superObjectType = getObjectType()->getSuperClassType();
1681   if (superObjectType.isNull())
1682     return superObjectType;
1683 
1684   ASTContext &ctx = getInterfaceDecl()->getASTContext();
1685   return ctx.getObjCObjectPointerType(superObjectType);
1686 }
1687 
getAsObjCQualifiedInterfaceType() const1688 const ObjCObjectType *Type::getAsObjCQualifiedInterfaceType() const {
1689   // There is no sugar for ObjCObjectType's, just return the canonical
1690   // type pointer if it is the right class.  There is no typedef information to
1691   // return and these cannot be Address-space qualified.
1692   if (const auto *T = getAs<ObjCObjectType>())
1693     if (T->getNumProtocols() && T->getInterface())
1694       return T;
1695   return nullptr;
1696 }
1697 
isObjCQualifiedInterfaceType() const1698 bool Type::isObjCQualifiedInterfaceType() const {
1699   return getAsObjCQualifiedInterfaceType() != nullptr;
1700 }
1701 
getAsObjCQualifiedIdType() const1702 const ObjCObjectPointerType *Type::getAsObjCQualifiedIdType() const {
1703   // There is no sugar for ObjCQualifiedIdType's, just return the canonical
1704   // type pointer if it is the right class.
1705   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1706     if (OPT->isObjCQualifiedIdType())
1707       return OPT;
1708   }
1709   return nullptr;
1710 }
1711 
getAsObjCQualifiedClassType() const1712 const ObjCObjectPointerType *Type::getAsObjCQualifiedClassType() const {
1713   // There is no sugar for ObjCQualifiedClassType's, just return the canonical
1714   // type pointer if it is the right class.
1715   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1716     if (OPT->isObjCQualifiedClassType())
1717       return OPT;
1718   }
1719   return nullptr;
1720 }
1721 
getAsObjCInterfaceType() const1722 const ObjCObjectType *Type::getAsObjCInterfaceType() const {
1723   if (const auto *OT = getAs<ObjCObjectType>()) {
1724     if (OT->getInterface())
1725       return OT;
1726   }
1727   return nullptr;
1728 }
1729 
getAsObjCInterfacePointerType() const1730 const ObjCObjectPointerType *Type::getAsObjCInterfacePointerType() const {
1731   if (const auto *OPT = getAs<ObjCObjectPointerType>()) {
1732     if (OPT->getInterfaceType())
1733       return OPT;
1734   }
1735   return nullptr;
1736 }
1737 
getPointeeCXXRecordDecl() const1738 const CXXRecordDecl *Type::getPointeeCXXRecordDecl() const {
1739   QualType PointeeType;
1740   if (const auto *PT = getAs<PointerType>())
1741     PointeeType = PT->getPointeeType();
1742   else if (const auto *RT = getAs<ReferenceType>())
1743     PointeeType = RT->getPointeeType();
1744   else
1745     return nullptr;
1746 
1747   if (const auto *RT = PointeeType->getAs<RecordType>())
1748     return dyn_cast<CXXRecordDecl>(RT->getDecl());
1749 
1750   return nullptr;
1751 }
1752 
getAsCXXRecordDecl() const1753 CXXRecordDecl *Type::getAsCXXRecordDecl() const {
1754   return dyn_cast_or_null<CXXRecordDecl>(getAsTagDecl());
1755 }
1756 
getAsRecordDecl() const1757 RecordDecl *Type::getAsRecordDecl() const {
1758   return dyn_cast_or_null<RecordDecl>(getAsTagDecl());
1759 }
1760 
getAsTagDecl() const1761 TagDecl *Type::getAsTagDecl() const {
1762   if (const auto *TT = getAs<TagType>())
1763     return TT->getDecl();
1764   if (const auto *Injected = getAs<InjectedClassNameType>())
1765     return Injected->getDecl();
1766 
1767   return nullptr;
1768 }
1769 
hasAttr(attr::Kind AK) const1770 bool Type::hasAttr(attr::Kind AK) const {
1771   const Type *Cur = this;
1772   while (const auto *AT = Cur->getAs<AttributedType>()) {
1773     if (AT->getAttrKind() == AK)
1774       return true;
1775     Cur = AT->getEquivalentType().getTypePtr();
1776   }
1777   return false;
1778 }
1779 
1780 namespace {
1781 
1782   class GetContainedDeducedTypeVisitor :
1783     public TypeVisitor<GetContainedDeducedTypeVisitor, Type*> {
1784     bool Syntactic;
1785 
1786   public:
GetContainedDeducedTypeVisitor(bool Syntactic=false)1787     GetContainedDeducedTypeVisitor(bool Syntactic = false)
1788         : Syntactic(Syntactic) {}
1789 
1790     using TypeVisitor<GetContainedDeducedTypeVisitor, Type*>::Visit;
1791 
Visit(QualType T)1792     Type *Visit(QualType T) {
1793       if (T.isNull())
1794         return nullptr;
1795       return Visit(T.getTypePtr());
1796     }
1797 
1798     // The deduced type itself.
VisitDeducedType(const DeducedType * AT)1799     Type *VisitDeducedType(const DeducedType *AT) {
1800       return const_cast<DeducedType*>(AT);
1801     }
1802 
1803     // Only these types can contain the desired 'auto' type.
1804 
VisitElaboratedType(const ElaboratedType * T)1805     Type *VisitElaboratedType(const ElaboratedType *T) {
1806       return Visit(T->getNamedType());
1807     }
1808 
VisitPointerType(const PointerType * T)1809     Type *VisitPointerType(const PointerType *T) {
1810       return Visit(T->getPointeeType());
1811     }
1812 
VisitBlockPointerType(const BlockPointerType * T)1813     Type *VisitBlockPointerType(const BlockPointerType *T) {
1814       return Visit(T->getPointeeType());
1815     }
1816 
VisitReferenceType(const ReferenceType * T)1817     Type *VisitReferenceType(const ReferenceType *T) {
1818       return Visit(T->getPointeeTypeAsWritten());
1819     }
1820 
VisitMemberPointerType(const MemberPointerType * T)1821     Type *VisitMemberPointerType(const MemberPointerType *T) {
1822       return Visit(T->getPointeeType());
1823     }
1824 
VisitArrayType(const ArrayType * T)1825     Type *VisitArrayType(const ArrayType *T) {
1826       return Visit(T->getElementType());
1827     }
1828 
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)1829     Type *VisitDependentSizedExtVectorType(
1830       const DependentSizedExtVectorType *T) {
1831       return Visit(T->getElementType());
1832     }
1833 
VisitVectorType(const VectorType * T)1834     Type *VisitVectorType(const VectorType *T) {
1835       return Visit(T->getElementType());
1836     }
1837 
VisitDependentSizedMatrixType(const DependentSizedMatrixType * T)1838     Type *VisitDependentSizedMatrixType(const DependentSizedMatrixType *T) {
1839       return Visit(T->getElementType());
1840     }
1841 
VisitConstantMatrixType(const ConstantMatrixType * T)1842     Type *VisitConstantMatrixType(const ConstantMatrixType *T) {
1843       return Visit(T->getElementType());
1844     }
1845 
VisitFunctionProtoType(const FunctionProtoType * T)1846     Type *VisitFunctionProtoType(const FunctionProtoType *T) {
1847       if (Syntactic && T->hasTrailingReturn())
1848         return const_cast<FunctionProtoType*>(T);
1849       return VisitFunctionType(T);
1850     }
1851 
VisitFunctionType(const FunctionType * T)1852     Type *VisitFunctionType(const FunctionType *T) {
1853       return Visit(T->getReturnType());
1854     }
1855 
VisitParenType(const ParenType * T)1856     Type *VisitParenType(const ParenType *T) {
1857       return Visit(T->getInnerType());
1858     }
1859 
VisitAttributedType(const AttributedType * T)1860     Type *VisitAttributedType(const AttributedType *T) {
1861       return Visit(T->getModifiedType());
1862     }
1863 
VisitMacroQualifiedType(const MacroQualifiedType * T)1864     Type *VisitMacroQualifiedType(const MacroQualifiedType *T) {
1865       return Visit(T->getUnderlyingType());
1866     }
1867 
VisitAdjustedType(const AdjustedType * T)1868     Type *VisitAdjustedType(const AdjustedType *T) {
1869       return Visit(T->getOriginalType());
1870     }
1871 
VisitPackExpansionType(const PackExpansionType * T)1872     Type *VisitPackExpansionType(const PackExpansionType *T) {
1873       return Visit(T->getPattern());
1874     }
1875   };
1876 
1877 } // namespace
1878 
getContainedDeducedType() const1879 DeducedType *Type::getContainedDeducedType() const {
1880   return cast_or_null<DeducedType>(
1881       GetContainedDeducedTypeVisitor().Visit(this));
1882 }
1883 
hasAutoForTrailingReturnType() const1884 bool Type::hasAutoForTrailingReturnType() const {
1885   return dyn_cast_or_null<FunctionType>(
1886       GetContainedDeducedTypeVisitor(true).Visit(this));
1887 }
1888 
hasIntegerRepresentation() const1889 bool Type::hasIntegerRepresentation() const {
1890   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
1891     return VT->getElementType()->isIntegerType();
1892   else
1893     return isIntegerType();
1894 }
1895 
1896 /// Determine whether this type is an integral type.
1897 ///
1898 /// This routine determines whether the given type is an integral type per
1899 /// C++ [basic.fundamental]p7. Although the C standard does not define the
1900 /// term "integral type", it has a similar term "integer type", and in C++
1901 /// the two terms are equivalent. However, C's "integer type" includes
1902 /// enumeration types, while C++'s "integer type" does not. The \c ASTContext
1903 /// parameter is used to determine whether we should be following the C or
1904 /// C++ rules when determining whether this type is an integral/integer type.
1905 ///
1906 /// For cases where C permits "an integer type" and C++ permits "an integral
1907 /// type", use this routine.
1908 ///
1909 /// For cases where C permits "an integer type" and C++ permits "an integral
1910 /// or enumeration type", use \c isIntegralOrEnumerationType() instead.
1911 ///
1912 /// \param Ctx The context in which this type occurs.
1913 ///
1914 /// \returns true if the type is considered an integral type, false otherwise.
isIntegralType(const ASTContext & Ctx) const1915 bool Type::isIntegralType(const ASTContext &Ctx) const {
1916   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1917     return BT->getKind() >= BuiltinType::Bool &&
1918            BT->getKind() <= BuiltinType::Int128;
1919 
1920   // Complete enum types are integral in C.
1921   if (!Ctx.getLangOpts().CPlusPlus)
1922     if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1923       return ET->getDecl()->isComplete();
1924 
1925   return isExtIntType();
1926 }
1927 
isIntegralOrUnscopedEnumerationType() const1928 bool Type::isIntegralOrUnscopedEnumerationType() const {
1929   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1930     return BT->getKind() >= BuiltinType::Bool &&
1931            BT->getKind() <= BuiltinType::Int128;
1932 
1933   if (isExtIntType())
1934     return true;
1935 
1936   return isUnscopedEnumerationType();
1937 }
1938 
isUnscopedEnumerationType() const1939 bool Type::isUnscopedEnumerationType() const {
1940   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
1941     return !ET->getDecl()->isScoped();
1942 
1943   return false;
1944 }
1945 
isCharType() const1946 bool Type::isCharType() const {
1947   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1948     return BT->getKind() == BuiltinType::Char_U ||
1949            BT->getKind() == BuiltinType::UChar ||
1950            BT->getKind() == BuiltinType::Char_S ||
1951            BT->getKind() == BuiltinType::SChar;
1952   return false;
1953 }
1954 
isWideCharType() const1955 bool Type::isWideCharType() const {
1956   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1957     return BT->getKind() == BuiltinType::WChar_S ||
1958            BT->getKind() == BuiltinType::WChar_U;
1959   return false;
1960 }
1961 
isChar8Type() const1962 bool Type::isChar8Type() const {
1963   if (const BuiltinType *BT = dyn_cast<BuiltinType>(CanonicalType))
1964     return BT->getKind() == BuiltinType::Char8;
1965   return false;
1966 }
1967 
isChar16Type() const1968 bool Type::isChar16Type() const {
1969   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1970     return BT->getKind() == BuiltinType::Char16;
1971   return false;
1972 }
1973 
isChar32Type() const1974 bool Type::isChar32Type() const {
1975   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
1976     return BT->getKind() == BuiltinType::Char32;
1977   return false;
1978 }
1979 
1980 /// Determine whether this type is any of the built-in character
1981 /// types.
isAnyCharacterType() const1982 bool Type::isAnyCharacterType() const {
1983   const auto *BT = dyn_cast<BuiltinType>(CanonicalType);
1984   if (!BT) return false;
1985   switch (BT->getKind()) {
1986   default: return false;
1987   case BuiltinType::Char_U:
1988   case BuiltinType::UChar:
1989   case BuiltinType::WChar_U:
1990   case BuiltinType::Char8:
1991   case BuiltinType::Char16:
1992   case BuiltinType::Char32:
1993   case BuiltinType::Char_S:
1994   case BuiltinType::SChar:
1995   case BuiltinType::WChar_S:
1996     return true;
1997   }
1998 }
1999 
2000 /// isSignedIntegerType - Return true if this is an integer type that is
2001 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2002 /// an enum decl which has a signed representation
isSignedIntegerType() const2003 bool Type::isSignedIntegerType() const {
2004   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2005     return BT->getKind() >= BuiltinType::Char_S &&
2006            BT->getKind() <= BuiltinType::Int128;
2007   }
2008 
2009   if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
2010     // Incomplete enum types are not treated as integer types.
2011     // FIXME: In C++, enum types are never integer types.
2012     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2013       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2014   }
2015 
2016   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2017     return IT->isSigned();
2018 
2019   return false;
2020 }
2021 
isSignedIntegerOrEnumerationType() const2022 bool Type::isSignedIntegerOrEnumerationType() const {
2023   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2024     return BT->getKind() >= BuiltinType::Char_S &&
2025            BT->getKind() <= BuiltinType::Int128;
2026   }
2027 
2028   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2029     if (ET->getDecl()->isComplete())
2030       return ET->getDecl()->getIntegerType()->isSignedIntegerType();
2031   }
2032 
2033   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2034     return IT->isSigned();
2035 
2036 
2037   return false;
2038 }
2039 
hasSignedIntegerRepresentation() const2040 bool Type::hasSignedIntegerRepresentation() const {
2041   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2042     return VT->getElementType()->isSignedIntegerOrEnumerationType();
2043   else
2044     return isSignedIntegerOrEnumerationType();
2045 }
2046 
2047 /// isUnsignedIntegerType - Return true if this is an integer type that is
2048 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool], an enum
2049 /// decl which has an unsigned representation
isUnsignedIntegerType() const2050 bool Type::isUnsignedIntegerType() const {
2051   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2052     return BT->getKind() >= BuiltinType::Bool &&
2053            BT->getKind() <= BuiltinType::UInt128;
2054   }
2055 
2056   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2057     // Incomplete enum types are not treated as integer types.
2058     // FIXME: In C++, enum types are never integer types.
2059     if (ET->getDecl()->isComplete() && !ET->getDecl()->isScoped())
2060       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2061   }
2062 
2063   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2064     return IT->isUnsigned();
2065 
2066   return false;
2067 }
2068 
isUnsignedIntegerOrEnumerationType() const2069 bool Type::isUnsignedIntegerOrEnumerationType() const {
2070   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
2071     return BT->getKind() >= BuiltinType::Bool &&
2072     BT->getKind() <= BuiltinType::UInt128;
2073   }
2074 
2075   if (const auto *ET = dyn_cast<EnumType>(CanonicalType)) {
2076     if (ET->getDecl()->isComplete())
2077       return ET->getDecl()->getIntegerType()->isUnsignedIntegerType();
2078   }
2079 
2080   if (const ExtIntType *IT = dyn_cast<ExtIntType>(CanonicalType))
2081     return IT->isUnsigned();
2082 
2083   return false;
2084 }
2085 
hasUnsignedIntegerRepresentation() const2086 bool Type::hasUnsignedIntegerRepresentation() const {
2087   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2088     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2089   if (const auto *VT = dyn_cast<MatrixType>(CanonicalType))
2090     return VT->getElementType()->isUnsignedIntegerOrEnumerationType();
2091   return isUnsignedIntegerOrEnumerationType();
2092 }
2093 
isFloatingType() const2094 bool Type::isFloatingType() const {
2095   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2096     return BT->getKind() >= BuiltinType::Half &&
2097            BT->getKind() <= BuiltinType::Float128;
2098   if (const auto *CT = dyn_cast<ComplexType>(CanonicalType))
2099     return CT->getElementType()->isFloatingType();
2100   return false;
2101 }
2102 
hasFloatingRepresentation() const2103 bool Type::hasFloatingRepresentation() const {
2104   if (const auto *VT = dyn_cast<VectorType>(CanonicalType))
2105     return VT->getElementType()->isFloatingType();
2106   else
2107     return isFloatingType();
2108 }
2109 
isRealFloatingType() const2110 bool Type::isRealFloatingType() const {
2111   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2112     return BT->isFloatingPoint();
2113   return false;
2114 }
2115 
isRealType() const2116 bool Type::isRealType() const {
2117   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2118     return BT->getKind() >= BuiltinType::Bool &&
2119            BT->getKind() <= BuiltinType::Float128;
2120   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2121       return ET->getDecl()->isComplete() && !ET->getDecl()->isScoped();
2122   return isExtIntType();
2123 }
2124 
isArithmeticType() const2125 bool Type::isArithmeticType() const {
2126   if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
2127     return BT->getKind() >= BuiltinType::Bool &&
2128            BT->getKind() <= BuiltinType::Float128 &&
2129            BT->getKind() != BuiltinType::BFloat16;
2130   if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
2131     // GCC allows forward declaration of enum types (forbid by C99 6.7.2.3p2).
2132     // If a body isn't seen by the time we get here, return false.
2133     //
2134     // C++0x: Enumerations are not arithmetic types. For now, just return
2135     // false for scoped enumerations since that will disable any
2136     // unwanted implicit conversions.
2137     return !ET->getDecl()->isScoped() && ET->getDecl()->isComplete();
2138   return isa<ComplexType>(CanonicalType) || isExtIntType();
2139 }
2140 
getScalarTypeKind() const2141 Type::ScalarTypeKind Type::getScalarTypeKind() const {
2142   assert(isScalarType());
2143 
2144   const Type *T = CanonicalType.getTypePtr();
2145   if (const auto *BT = dyn_cast<BuiltinType>(T)) {
2146     if (BT->getKind() == BuiltinType::Bool) return STK_Bool;
2147     if (BT->getKind() == BuiltinType::NullPtr) return STK_CPointer;
2148     if (BT->isInteger()) return STK_Integral;
2149     if (BT->isFloatingPoint()) return STK_Floating;
2150     if (BT->isFixedPointType()) return STK_FixedPoint;
2151     llvm_unreachable("unknown scalar builtin type");
2152   } else if (isa<PointerType>(T)) {
2153     return STK_CPointer;
2154   } else if (isa<BlockPointerType>(T)) {
2155     return STK_BlockPointer;
2156   } else if (isa<ObjCObjectPointerType>(T)) {
2157     return STK_ObjCObjectPointer;
2158   } else if (isa<MemberPointerType>(T)) {
2159     return STK_MemberPointer;
2160   } else if (isa<EnumType>(T)) {
2161     assert(cast<EnumType>(T)->getDecl()->isComplete());
2162     return STK_Integral;
2163   } else if (const auto *CT = dyn_cast<ComplexType>(T)) {
2164     if (CT->getElementType()->isRealFloatingType())
2165       return STK_FloatingComplex;
2166     return STK_IntegralComplex;
2167   } else if (isExtIntType()) {
2168     return STK_Integral;
2169   }
2170 
2171   llvm_unreachable("unknown scalar type");
2172 }
2173 
2174 /// Determines whether the type is a C++ aggregate type or C
2175 /// aggregate or union type.
2176 ///
2177 /// An aggregate type is an array or a class type (struct, union, or
2178 /// class) that has no user-declared constructors, no private or
2179 /// protected non-static data members, no base classes, and no virtual
2180 /// functions (C++ [dcl.init.aggr]p1). The notion of an aggregate type
2181 /// subsumes the notion of C aggregates (C99 6.2.5p21) because it also
2182 /// includes union types.
isAggregateType() const2183 bool Type::isAggregateType() const {
2184   if (const auto *Record = dyn_cast<RecordType>(CanonicalType)) {
2185     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(Record->getDecl()))
2186       return ClassDecl->isAggregate();
2187 
2188     return true;
2189   }
2190 
2191   return isa<ArrayType>(CanonicalType);
2192 }
2193 
2194 /// isConstantSizeType - Return true if this is not a variable sized type,
2195 /// according to the rules of C99 6.7.5p3.  It is not legal to call this on
2196 /// incomplete types or dependent types.
isConstantSizeType() const2197 bool Type::isConstantSizeType() const {
2198   assert(!isIncompleteType() && "This doesn't make sense for incomplete types");
2199   assert(!isDependentType() && "This doesn't make sense for dependent types");
2200   // The VAT must have a size, as it is known to be complete.
2201   return !isa<VariableArrayType>(CanonicalType);
2202 }
2203 
2204 /// isIncompleteType - Return true if this is an incomplete type (C99 6.2.5p1)
2205 /// - a type that can describe objects, but which lacks information needed to
2206 /// determine its size.
isIncompleteType(NamedDecl ** Def) const2207 bool Type::isIncompleteType(NamedDecl **Def) const {
2208   if (Def)
2209     *Def = nullptr;
2210 
2211   switch (CanonicalType->getTypeClass()) {
2212   default: return false;
2213   case Builtin:
2214     // Void is the only incomplete builtin type.  Per C99 6.2.5p19, it can never
2215     // be completed.
2216     return isVoidType();
2217   case Enum: {
2218     EnumDecl *EnumD = cast<EnumType>(CanonicalType)->getDecl();
2219     if (Def)
2220       *Def = EnumD;
2221     return !EnumD->isComplete();
2222   }
2223   case Record: {
2224     // A tagged type (struct/union/enum/class) is incomplete if the decl is a
2225     // forward declaration, but not a full definition (C99 6.2.5p22).
2226     RecordDecl *Rec = cast<RecordType>(CanonicalType)->getDecl();
2227     if (Def)
2228       *Def = Rec;
2229     return !Rec->isCompleteDefinition();
2230   }
2231   case ConstantArray:
2232   case VariableArray:
2233     // An array is incomplete if its element type is incomplete
2234     // (C++ [dcl.array]p1).
2235     // We don't handle dependent-sized arrays (dependent types are never treated
2236     // as incomplete).
2237     return cast<ArrayType>(CanonicalType)->getElementType()
2238              ->isIncompleteType(Def);
2239   case IncompleteArray:
2240     // An array of unknown size is an incomplete type (C99 6.2.5p22).
2241     return true;
2242   case MemberPointer: {
2243     // Member pointers in the MS ABI have special behavior in
2244     // RequireCompleteType: they attach a MSInheritanceAttr to the CXXRecordDecl
2245     // to indicate which inheritance model to use.
2246     auto *MPTy = cast<MemberPointerType>(CanonicalType);
2247     const Type *ClassTy = MPTy->getClass();
2248     // Member pointers with dependent class types don't get special treatment.
2249     if (ClassTy->isDependentType())
2250       return false;
2251     const CXXRecordDecl *RD = ClassTy->getAsCXXRecordDecl();
2252     ASTContext &Context = RD->getASTContext();
2253     // Member pointers not in the MS ABI don't get special treatment.
2254     if (!Context.getTargetInfo().getCXXABI().isMicrosoft())
2255       return false;
2256     // The inheritance attribute might only be present on the most recent
2257     // CXXRecordDecl, use that one.
2258     RD = RD->getMostRecentNonInjectedDecl();
2259     // Nothing interesting to do if the inheritance attribute is already set.
2260     if (RD->hasAttr<MSInheritanceAttr>())
2261       return false;
2262     return true;
2263   }
2264   case ObjCObject:
2265     return cast<ObjCObjectType>(CanonicalType)->getBaseType()
2266              ->isIncompleteType(Def);
2267   case ObjCInterface: {
2268     // ObjC interfaces are incomplete if they are @class, not @interface.
2269     ObjCInterfaceDecl *Interface
2270       = cast<ObjCInterfaceType>(CanonicalType)->getDecl();
2271     if (Def)
2272       *Def = Interface;
2273     return !Interface->hasDefinition();
2274   }
2275   }
2276 }
2277 
isSizelessBuiltinType() const2278 bool Type::isSizelessBuiltinType() const {
2279   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2280     switch (BT->getKind()) {
2281       // SVE Types
2282 #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2283 #include "clang/Basic/AArch64SVEACLETypes.def"
2284 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
2285 #include "clang/Basic/RISCVVTypes.def"
2286       return true;
2287     default:
2288       return false;
2289     }
2290   }
2291   return false;
2292 }
2293 
isSizelessType() const2294 bool Type::isSizelessType() const { return isSizelessBuiltinType(); }
2295 
isVLSTBuiltinType() const2296 bool Type::isVLSTBuiltinType() const {
2297   if (const BuiltinType *BT = getAs<BuiltinType>()) {
2298     switch (BT->getKind()) {
2299     case BuiltinType::SveInt8:
2300     case BuiltinType::SveInt16:
2301     case BuiltinType::SveInt32:
2302     case BuiltinType::SveInt64:
2303     case BuiltinType::SveUint8:
2304     case BuiltinType::SveUint16:
2305     case BuiltinType::SveUint32:
2306     case BuiltinType::SveUint64:
2307     case BuiltinType::SveFloat16:
2308     case BuiltinType::SveFloat32:
2309     case BuiltinType::SveFloat64:
2310     case BuiltinType::SveBFloat16:
2311     case BuiltinType::SveBool:
2312       return true;
2313     default:
2314       return false;
2315     }
2316   }
2317   return false;
2318 }
2319 
getSveEltType(const ASTContext & Ctx) const2320 QualType Type::getSveEltType(const ASTContext &Ctx) const {
2321   assert(isVLSTBuiltinType() && "unsupported type!");
2322 
2323   const BuiltinType *BTy = getAs<BuiltinType>();
2324   if (BTy->getKind() == BuiltinType::SveBool)
2325     // Represent predicates as i8 rather than i1 to avoid any layout issues.
2326     // The type is bitcasted to a scalable predicate type when casting between
2327     // scalable and fixed-length vectors.
2328     return Ctx.UnsignedCharTy;
2329   else
2330     return Ctx.getBuiltinVectorTypeInfo(BTy).ElementType;
2331 }
2332 
isPODType(const ASTContext & Context) const2333 bool QualType::isPODType(const ASTContext &Context) const {
2334   // C++11 has a more relaxed definition of POD.
2335   if (Context.getLangOpts().CPlusPlus11)
2336     return isCXX11PODType(Context);
2337 
2338   return isCXX98PODType(Context);
2339 }
2340 
isCXX98PODType(const ASTContext & Context) const2341 bool QualType::isCXX98PODType(const ASTContext &Context) const {
2342   // The compiler shouldn't query this for incomplete types, but the user might.
2343   // We return false for that case. Except for incomplete arrays of PODs, which
2344   // are PODs according to the standard.
2345   if (isNull())
2346     return false;
2347 
2348   if ((*this)->isIncompleteArrayType())
2349     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2350 
2351   if ((*this)->isIncompleteType())
2352     return false;
2353 
2354   if (hasNonTrivialObjCLifetime())
2355     return false;
2356 
2357   QualType CanonicalType = getTypePtr()->CanonicalType;
2358   switch (CanonicalType->getTypeClass()) {
2359     // Everything not explicitly mentioned is not POD.
2360   default: return false;
2361   case Type::VariableArray:
2362   case Type::ConstantArray:
2363     // IncompleteArray is handled above.
2364     return Context.getBaseElementType(*this).isCXX98PODType(Context);
2365 
2366   case Type::ObjCObjectPointer:
2367   case Type::BlockPointer:
2368   case Type::Builtin:
2369   case Type::Complex:
2370   case Type::Pointer:
2371   case Type::MemberPointer:
2372   case Type::Vector:
2373   case Type::ExtVector:
2374   case Type::ExtInt:
2375     return true;
2376 
2377   case Type::Enum:
2378     return true;
2379 
2380   case Type::Record:
2381     if (const auto *ClassDecl =
2382             dyn_cast<CXXRecordDecl>(cast<RecordType>(CanonicalType)->getDecl()))
2383       return ClassDecl->isPOD();
2384 
2385     // C struct/union is POD.
2386     return true;
2387   }
2388 }
2389 
isTrivialType(const ASTContext & Context) const2390 bool QualType::isTrivialType(const ASTContext &Context) const {
2391   // The compiler shouldn't query this for incomplete types, but the user might.
2392   // We return false for that case. Except for incomplete arrays of PODs, which
2393   // are PODs according to the standard.
2394   if (isNull())
2395     return false;
2396 
2397   if ((*this)->isArrayType())
2398     return Context.getBaseElementType(*this).isTrivialType(Context);
2399 
2400   if ((*this)->isSizelessBuiltinType())
2401     return true;
2402 
2403   // Return false for incomplete types after skipping any incomplete array
2404   // types which are expressly allowed by the standard and thus our API.
2405   if ((*this)->isIncompleteType())
2406     return false;
2407 
2408   if (hasNonTrivialObjCLifetime())
2409     return false;
2410 
2411   QualType CanonicalType = getTypePtr()->CanonicalType;
2412   if (CanonicalType->isDependentType())
2413     return false;
2414 
2415   // C++0x [basic.types]p9:
2416   //   Scalar types, trivial class types, arrays of such types, and
2417   //   cv-qualified versions of these types are collectively called trivial
2418   //   types.
2419 
2420   // As an extension, Clang treats vector types as Scalar types.
2421   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2422     return true;
2423   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2424     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2425       // C++11 [class]p6:
2426       //   A trivial class is a class that has a default constructor,
2427       //   has no non-trivial default constructors, and is trivially
2428       //   copyable.
2429       return ClassDecl->hasDefaultConstructor() &&
2430              !ClassDecl->hasNonTrivialDefaultConstructor() &&
2431              ClassDecl->isTriviallyCopyable();
2432     }
2433 
2434     return true;
2435   }
2436 
2437   // No other types can match.
2438   return false;
2439 }
2440 
isTriviallyCopyableType(const ASTContext & Context) const2441 bool QualType::isTriviallyCopyableType(const ASTContext &Context) const {
2442   if ((*this)->isArrayType())
2443     return Context.getBaseElementType(*this).isTriviallyCopyableType(Context);
2444 
2445   if (hasNonTrivialObjCLifetime())
2446     return false;
2447 
2448   // C++11 [basic.types]p9 - See Core 2094
2449   //   Scalar types, trivially copyable class types, arrays of such types, and
2450   //   cv-qualified versions of these types are collectively
2451   //   called trivially copyable types.
2452 
2453   QualType CanonicalType = getCanonicalType();
2454   if (CanonicalType->isDependentType())
2455     return false;
2456 
2457   if (CanonicalType->isSizelessBuiltinType())
2458     return true;
2459 
2460   // Return false for incomplete types after skipping any incomplete array types
2461   // which are expressly allowed by the standard and thus our API.
2462   if (CanonicalType->isIncompleteType())
2463     return false;
2464 
2465   // As an extension, Clang treats vector types as Scalar types.
2466   if (CanonicalType->isScalarType() || CanonicalType->isVectorType())
2467     return true;
2468 
2469   if (const auto *RT = CanonicalType->getAs<RecordType>()) {
2470     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2471       if (!ClassDecl->isTriviallyCopyable()) return false;
2472     }
2473 
2474     return true;
2475   }
2476 
2477   // No other types can match.
2478   return false;
2479 }
2480 
isNonWeakInMRRWithObjCWeak(const ASTContext & Context) const2481 bool QualType::isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const {
2482   return !Context.getLangOpts().ObjCAutoRefCount &&
2483          Context.getLangOpts().ObjCWeak &&
2484          getObjCLifetime() != Qualifiers::OCL_Weak;
2485 }
2486 
hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl * RD)2487 bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD) {
2488   return RD->hasNonTrivialToPrimitiveDefaultInitializeCUnion();
2489 }
2490 
hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl * RD)2491 bool QualType::hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD) {
2492   return RD->hasNonTrivialToPrimitiveDestructCUnion();
2493 }
2494 
hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl * RD)2495 bool QualType::hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD) {
2496   return RD->hasNonTrivialToPrimitiveCopyCUnion();
2497 }
2498 
2499 QualType::PrimitiveDefaultInitializeKind
isNonTrivialToPrimitiveDefaultInitialize() const2500 QualType::isNonTrivialToPrimitiveDefaultInitialize() const {
2501   if (const auto *RT =
2502           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2503     if (RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize())
2504       return PDIK_Struct;
2505 
2506   switch (getQualifiers().getObjCLifetime()) {
2507   case Qualifiers::OCL_Strong:
2508     return PDIK_ARCStrong;
2509   case Qualifiers::OCL_Weak:
2510     return PDIK_ARCWeak;
2511   default:
2512     return PDIK_Trivial;
2513   }
2514 }
2515 
isNonTrivialToPrimitiveCopy() const2516 QualType::PrimitiveCopyKind QualType::isNonTrivialToPrimitiveCopy() const {
2517   if (const auto *RT =
2518           getTypePtr()->getBaseElementTypeUnsafe()->getAs<RecordType>())
2519     if (RT->getDecl()->isNonTrivialToPrimitiveCopy())
2520       return PCK_Struct;
2521 
2522   Qualifiers Qs = getQualifiers();
2523   switch (Qs.getObjCLifetime()) {
2524   case Qualifiers::OCL_Strong:
2525     return PCK_ARCStrong;
2526   case Qualifiers::OCL_Weak:
2527     return PCK_ARCWeak;
2528   default:
2529     return Qs.hasVolatile() ? PCK_VolatileTrivial : PCK_Trivial;
2530   }
2531 }
2532 
2533 QualType::PrimitiveCopyKind
isNonTrivialToPrimitiveDestructiveMove() const2534 QualType::isNonTrivialToPrimitiveDestructiveMove() const {
2535   return isNonTrivialToPrimitiveCopy();
2536 }
2537 
isLiteralType(const ASTContext & Ctx) const2538 bool Type::isLiteralType(const ASTContext &Ctx) const {
2539   if (isDependentType())
2540     return false;
2541 
2542   // C++1y [basic.types]p10:
2543   //   A type is a literal type if it is:
2544   //   -- cv void; or
2545   if (Ctx.getLangOpts().CPlusPlus14 && isVoidType())
2546     return true;
2547 
2548   // C++11 [basic.types]p10:
2549   //   A type is a literal type if it is:
2550   //   [...]
2551   //   -- an array of literal type other than an array of runtime bound; or
2552   if (isVariableArrayType())
2553     return false;
2554   const Type *BaseTy = getBaseElementTypeUnsafe();
2555   assert(BaseTy && "NULL element type");
2556 
2557   // Return false for incomplete types after skipping any incomplete array
2558   // types; those are expressly allowed by the standard and thus our API.
2559   if (BaseTy->isIncompleteType())
2560     return false;
2561 
2562   // C++11 [basic.types]p10:
2563   //   A type is a literal type if it is:
2564   //    -- a scalar type; or
2565   // As an extension, Clang treats vector types and complex types as
2566   // literal types.
2567   if (BaseTy->isScalarType() || BaseTy->isVectorType() ||
2568       BaseTy->isAnyComplexType())
2569     return true;
2570   //    -- a reference type; or
2571   if (BaseTy->isReferenceType())
2572     return true;
2573   //    -- a class type that has all of the following properties:
2574   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2575     //    -- a trivial destructor,
2576     //    -- every constructor call and full-expression in the
2577     //       brace-or-equal-initializers for non-static data members (if any)
2578     //       is a constant expression,
2579     //    -- it is an aggregate type or has at least one constexpr
2580     //       constructor or constructor template that is not a copy or move
2581     //       constructor, and
2582     //    -- all non-static data members and base classes of literal types
2583     //
2584     // We resolve DR1361 by ignoring the second bullet.
2585     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2586       return ClassDecl->isLiteral();
2587 
2588     return true;
2589   }
2590 
2591   // We treat _Atomic T as a literal type if T is a literal type.
2592   if (const auto *AT = BaseTy->getAs<AtomicType>())
2593     return AT->getValueType()->isLiteralType(Ctx);
2594 
2595   // If this type hasn't been deduced yet, then conservatively assume that
2596   // it'll work out to be a literal type.
2597   if (isa<AutoType>(BaseTy->getCanonicalTypeInternal()))
2598     return true;
2599 
2600   return false;
2601 }
2602 
isStructuralType() const2603 bool Type::isStructuralType() const {
2604   // C++20 [temp.param]p6:
2605   //   A structural type is one of the following:
2606   //   -- a scalar type; or
2607   //   -- a vector type [Clang extension]; or
2608   if (isScalarType() || isVectorType())
2609     return true;
2610   //   -- an lvalue reference type; or
2611   if (isLValueReferenceType())
2612     return true;
2613   //  -- a literal class type [...under some conditions]
2614   if (const CXXRecordDecl *RD = getAsCXXRecordDecl())
2615     return RD->isStructural();
2616   return false;
2617 }
2618 
isStandardLayoutType() const2619 bool Type::isStandardLayoutType() const {
2620   if (isDependentType())
2621     return false;
2622 
2623   // C++0x [basic.types]p9:
2624   //   Scalar types, standard-layout class types, arrays of such types, and
2625   //   cv-qualified versions of these types are collectively called
2626   //   standard-layout types.
2627   const Type *BaseTy = getBaseElementTypeUnsafe();
2628   assert(BaseTy && "NULL element type");
2629 
2630   // Return false for incomplete types after skipping any incomplete array
2631   // types which are expressly allowed by the standard and thus our API.
2632   if (BaseTy->isIncompleteType())
2633     return false;
2634 
2635   // As an extension, Clang treats vector types as Scalar types.
2636   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2637   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2638     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl()))
2639       if (!ClassDecl->isStandardLayout())
2640         return false;
2641 
2642     // Default to 'true' for non-C++ class types.
2643     // FIXME: This is a bit dubious, but plain C structs should trivially meet
2644     // all the requirements of standard layout classes.
2645     return true;
2646   }
2647 
2648   // No other types can match.
2649   return false;
2650 }
2651 
2652 // This is effectively the intersection of isTrivialType and
2653 // isStandardLayoutType. We implement it directly to avoid redundant
2654 // conversions from a type to a CXXRecordDecl.
isCXX11PODType(const ASTContext & Context) const2655 bool QualType::isCXX11PODType(const ASTContext &Context) const {
2656   const Type *ty = getTypePtr();
2657   if (ty->isDependentType())
2658     return false;
2659 
2660   if (hasNonTrivialObjCLifetime())
2661     return false;
2662 
2663   // C++11 [basic.types]p9:
2664   //   Scalar types, POD classes, arrays of such types, and cv-qualified
2665   //   versions of these types are collectively called trivial types.
2666   const Type *BaseTy = ty->getBaseElementTypeUnsafe();
2667   assert(BaseTy && "NULL element type");
2668 
2669   if (BaseTy->isSizelessBuiltinType())
2670     return true;
2671 
2672   // Return false for incomplete types after skipping any incomplete array
2673   // types which are expressly allowed by the standard and thus our API.
2674   if (BaseTy->isIncompleteType())
2675     return false;
2676 
2677   // As an extension, Clang treats vector types as Scalar types.
2678   if (BaseTy->isScalarType() || BaseTy->isVectorType()) return true;
2679   if (const auto *RT = BaseTy->getAs<RecordType>()) {
2680     if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2681       // C++11 [class]p10:
2682       //   A POD struct is a non-union class that is both a trivial class [...]
2683       if (!ClassDecl->isTrivial()) return false;
2684 
2685       // C++11 [class]p10:
2686       //   A POD struct is a non-union class that is both a trivial class and
2687       //   a standard-layout class [...]
2688       if (!ClassDecl->isStandardLayout()) return false;
2689 
2690       // C++11 [class]p10:
2691       //   A POD struct is a non-union class that is both a trivial class and
2692       //   a standard-layout class, and has no non-static data members of type
2693       //   non-POD struct, non-POD union (or array of such types). [...]
2694       //
2695       // We don't directly query the recursive aspect as the requirements for
2696       // both standard-layout classes and trivial classes apply recursively
2697       // already.
2698     }
2699 
2700     return true;
2701   }
2702 
2703   // No other types can match.
2704   return false;
2705 }
2706 
isNothrowT() const2707 bool Type::isNothrowT() const {
2708   if (const auto *RD = getAsCXXRecordDecl()) {
2709     IdentifierInfo *II = RD->getIdentifier();
2710     if (II && II->isStr("nothrow_t") && RD->isInStdNamespace())
2711       return true;
2712   }
2713   return false;
2714 }
2715 
isAlignValT() const2716 bool Type::isAlignValT() const {
2717   if (const auto *ET = getAs<EnumType>()) {
2718     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2719     if (II && II->isStr("align_val_t") && ET->getDecl()->isInStdNamespace())
2720       return true;
2721   }
2722   return false;
2723 }
2724 
isStdByteType() const2725 bool Type::isStdByteType() const {
2726   if (const auto *ET = getAs<EnumType>()) {
2727     IdentifierInfo *II = ET->getDecl()->getIdentifier();
2728     if (II && II->isStr("byte") && ET->getDecl()->isInStdNamespace())
2729       return true;
2730   }
2731   return false;
2732 }
2733 
isPromotableIntegerType() const2734 bool Type::isPromotableIntegerType() const {
2735   if (const auto *BT = getAs<BuiltinType>())
2736     switch (BT->getKind()) {
2737     case BuiltinType::Bool:
2738     case BuiltinType::Char_S:
2739     case BuiltinType::Char_U:
2740     case BuiltinType::SChar:
2741     case BuiltinType::UChar:
2742     case BuiltinType::Short:
2743     case BuiltinType::UShort:
2744     case BuiltinType::WChar_S:
2745     case BuiltinType::WChar_U:
2746     case BuiltinType::Char8:
2747     case BuiltinType::Char16:
2748     case BuiltinType::Char32:
2749       return true;
2750     default:
2751       return false;
2752     }
2753 
2754   // Enumerated types are promotable to their compatible integer types
2755   // (C99 6.3.1.1) a.k.a. its underlying type (C++ [conv.prom]p2).
2756   if (const auto *ET = getAs<EnumType>()){
2757     if (this->isDependentType() || ET->getDecl()->getPromotionType().isNull()
2758         || ET->getDecl()->isScoped())
2759       return false;
2760 
2761     return true;
2762   }
2763 
2764   return false;
2765 }
2766 
isSpecifierType() const2767 bool Type::isSpecifierType() const {
2768   // Note that this intentionally does not use the canonical type.
2769   switch (getTypeClass()) {
2770   case Builtin:
2771   case Record:
2772   case Enum:
2773   case Typedef:
2774   case Complex:
2775   case TypeOfExpr:
2776   case TypeOf:
2777   case TemplateTypeParm:
2778   case SubstTemplateTypeParm:
2779   case TemplateSpecialization:
2780   case Elaborated:
2781   case DependentName:
2782   case DependentTemplateSpecialization:
2783   case ObjCInterface:
2784   case ObjCObject:
2785   case ObjCObjectPointer: // FIXME: object pointers aren't really specifiers
2786     return true;
2787   default:
2788     return false;
2789   }
2790 }
2791 
2792 ElaboratedTypeKeyword
getKeywordForTypeSpec(unsigned TypeSpec)2793 TypeWithKeyword::getKeywordForTypeSpec(unsigned TypeSpec) {
2794   switch (TypeSpec) {
2795   default: return ETK_None;
2796   case TST_typename: return ETK_Typename;
2797   case TST_class: return ETK_Class;
2798   case TST_struct: return ETK_Struct;
2799   case TST_interface: return ETK_Interface;
2800   case TST_union: return ETK_Union;
2801   case TST_enum: return ETK_Enum;
2802   }
2803 }
2804 
2805 TagTypeKind
getTagTypeKindForTypeSpec(unsigned TypeSpec)2806 TypeWithKeyword::getTagTypeKindForTypeSpec(unsigned TypeSpec) {
2807   switch(TypeSpec) {
2808   case TST_class: return TTK_Class;
2809   case TST_struct: return TTK_Struct;
2810   case TST_interface: return TTK_Interface;
2811   case TST_union: return TTK_Union;
2812   case TST_enum: return TTK_Enum;
2813   }
2814 
2815   llvm_unreachable("Type specifier is not a tag type kind.");
2816 }
2817 
2818 ElaboratedTypeKeyword
getKeywordForTagTypeKind(TagTypeKind Kind)2819 TypeWithKeyword::getKeywordForTagTypeKind(TagTypeKind Kind) {
2820   switch (Kind) {
2821   case TTK_Class: return ETK_Class;
2822   case TTK_Struct: return ETK_Struct;
2823   case TTK_Interface: return ETK_Interface;
2824   case TTK_Union: return ETK_Union;
2825   case TTK_Enum: return ETK_Enum;
2826   }
2827   llvm_unreachable("Unknown tag type kind.");
2828 }
2829 
2830 TagTypeKind
getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword)2831 TypeWithKeyword::getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword) {
2832   switch (Keyword) {
2833   case ETK_Class: return TTK_Class;
2834   case ETK_Struct: return TTK_Struct;
2835   case ETK_Interface: return TTK_Interface;
2836   case ETK_Union: return TTK_Union;
2837   case ETK_Enum: return TTK_Enum;
2838   case ETK_None: // Fall through.
2839   case ETK_Typename:
2840     llvm_unreachable("Elaborated type keyword is not a tag type kind.");
2841   }
2842   llvm_unreachable("Unknown elaborated type keyword.");
2843 }
2844 
2845 bool
KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword)2846 TypeWithKeyword::KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword) {
2847   switch (Keyword) {
2848   case ETK_None:
2849   case ETK_Typename:
2850     return false;
2851   case ETK_Class:
2852   case ETK_Struct:
2853   case ETK_Interface:
2854   case ETK_Union:
2855   case ETK_Enum:
2856     return true;
2857   }
2858   llvm_unreachable("Unknown elaborated type keyword.");
2859 }
2860 
getKeywordName(ElaboratedTypeKeyword Keyword)2861 StringRef TypeWithKeyword::getKeywordName(ElaboratedTypeKeyword Keyword) {
2862   switch (Keyword) {
2863   case ETK_None: return {};
2864   case ETK_Typename: return "typename";
2865   case ETK_Class:  return "class";
2866   case ETK_Struct: return "struct";
2867   case ETK_Interface: return "__interface";
2868   case ETK_Union:  return "union";
2869   case ETK_Enum:   return "enum";
2870   }
2871 
2872   llvm_unreachable("Unknown elaborated type keyword.");
2873 }
2874 
DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,NestedNameSpecifier * NNS,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args,QualType Canon)2875 DependentTemplateSpecializationType::DependentTemplateSpecializationType(
2876     ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
2877     const IdentifierInfo *Name, ArrayRef<TemplateArgument> Args, QualType Canon)
2878     : TypeWithKeyword(Keyword, DependentTemplateSpecialization, Canon,
2879                       TypeDependence::DependentInstantiation |
2880                           (NNS ? toTypeDependence(NNS->getDependence())
2881                                : TypeDependence::None)),
2882       NNS(NNS), Name(Name) {
2883   DependentTemplateSpecializationTypeBits.NumArgs = Args.size();
2884   assert((!NNS || NNS->isDependent()) &&
2885          "DependentTemplateSpecializatonType requires dependent qualifier");
2886   TemplateArgument *ArgBuffer = getArgBuffer();
2887   for (const TemplateArgument &Arg : Args) {
2888     addDependence(toTypeDependence(Arg.getDependence() &
2889                                    TemplateArgumentDependence::UnexpandedPack));
2890 
2891     new (ArgBuffer++) TemplateArgument(Arg);
2892   }
2893 }
2894 
2895 void
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,ElaboratedTypeKeyword Keyword,NestedNameSpecifier * Qualifier,const IdentifierInfo * Name,ArrayRef<TemplateArgument> Args)2896 DependentTemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
2897                                              const ASTContext &Context,
2898                                              ElaboratedTypeKeyword Keyword,
2899                                              NestedNameSpecifier *Qualifier,
2900                                              const IdentifierInfo *Name,
2901                                              ArrayRef<TemplateArgument> Args) {
2902   ID.AddInteger(Keyword);
2903   ID.AddPointer(Qualifier);
2904   ID.AddPointer(Name);
2905   for (const TemplateArgument &Arg : Args)
2906     Arg.Profile(ID, Context);
2907 }
2908 
isElaboratedTypeSpecifier() const2909 bool Type::isElaboratedTypeSpecifier() const {
2910   ElaboratedTypeKeyword Keyword;
2911   if (const auto *Elab = dyn_cast<ElaboratedType>(this))
2912     Keyword = Elab->getKeyword();
2913   else if (const auto *DepName = dyn_cast<DependentNameType>(this))
2914     Keyword = DepName->getKeyword();
2915   else if (const auto *DepTST =
2916                dyn_cast<DependentTemplateSpecializationType>(this))
2917     Keyword = DepTST->getKeyword();
2918   else
2919     return false;
2920 
2921   return TypeWithKeyword::KeywordIsTagTypeKind(Keyword);
2922 }
2923 
getTypeClassName() const2924 const char *Type::getTypeClassName() const {
2925   switch (TypeBits.TC) {
2926 #define ABSTRACT_TYPE(Derived, Base)
2927 #define TYPE(Derived, Base) case Derived: return #Derived;
2928 #include "clang/AST/TypeNodes.inc"
2929   }
2930 
2931   llvm_unreachable("Invalid type class.");
2932 }
2933 
getName(const PrintingPolicy & Policy) const2934 StringRef BuiltinType::getName(const PrintingPolicy &Policy) const {
2935   switch (getKind()) {
2936   case Void:
2937     return "void";
2938   case Bool:
2939     return Policy.Bool ? "bool" : "_Bool";
2940   case Char_S:
2941     return "char";
2942   case Char_U:
2943     return "char";
2944   case SChar:
2945     return "signed char";
2946   case Short:
2947     return "short";
2948   case Int:
2949     return "int";
2950   case Long:
2951     return "long";
2952   case LongLong:
2953     return "long long";
2954   case Int128:
2955     return "__int128";
2956   case UChar:
2957     return "unsigned char";
2958   case UShort:
2959     return "unsigned short";
2960   case UInt:
2961     return "unsigned int";
2962   case ULong:
2963     return "unsigned long";
2964   case ULongLong:
2965     return "unsigned long long";
2966   case UInt128:
2967     return "unsigned __int128";
2968   case Half:
2969     return Policy.Half ? "half" : "__fp16";
2970   case BFloat16:
2971     return "__bf16";
2972   case Float:
2973     return "float";
2974   case Double:
2975     return "double";
2976   case LongDouble:
2977     return "long double";
2978   case ShortAccum:
2979     return "short _Accum";
2980   case Accum:
2981     return "_Accum";
2982   case LongAccum:
2983     return "long _Accum";
2984   case UShortAccum:
2985     return "unsigned short _Accum";
2986   case UAccum:
2987     return "unsigned _Accum";
2988   case ULongAccum:
2989     return "unsigned long _Accum";
2990   case BuiltinType::ShortFract:
2991     return "short _Fract";
2992   case BuiltinType::Fract:
2993     return "_Fract";
2994   case BuiltinType::LongFract:
2995     return "long _Fract";
2996   case BuiltinType::UShortFract:
2997     return "unsigned short _Fract";
2998   case BuiltinType::UFract:
2999     return "unsigned _Fract";
3000   case BuiltinType::ULongFract:
3001     return "unsigned long _Fract";
3002   case BuiltinType::SatShortAccum:
3003     return "_Sat short _Accum";
3004   case BuiltinType::SatAccum:
3005     return "_Sat _Accum";
3006   case BuiltinType::SatLongAccum:
3007     return "_Sat long _Accum";
3008   case BuiltinType::SatUShortAccum:
3009     return "_Sat unsigned short _Accum";
3010   case BuiltinType::SatUAccum:
3011     return "_Sat unsigned _Accum";
3012   case BuiltinType::SatULongAccum:
3013     return "_Sat unsigned long _Accum";
3014   case BuiltinType::SatShortFract:
3015     return "_Sat short _Fract";
3016   case BuiltinType::SatFract:
3017     return "_Sat _Fract";
3018   case BuiltinType::SatLongFract:
3019     return "_Sat long _Fract";
3020   case BuiltinType::SatUShortFract:
3021     return "_Sat unsigned short _Fract";
3022   case BuiltinType::SatUFract:
3023     return "_Sat unsigned _Fract";
3024   case BuiltinType::SatULongFract:
3025     return "_Sat unsigned long _Fract";
3026   case Float16:
3027     return "_Float16";
3028   case Float128:
3029     return "__float128";
3030   case WChar_S:
3031   case WChar_U:
3032     return Policy.MSWChar ? "__wchar_t" : "wchar_t";
3033   case Char8:
3034     return "char8_t";
3035   case Char16:
3036     return "char16_t";
3037   case Char32:
3038     return "char32_t";
3039   case NullPtr:
3040     return "nullptr_t";
3041   case Overload:
3042     return "<overloaded function type>";
3043   case BoundMember:
3044     return "<bound member function type>";
3045   case PseudoObject:
3046     return "<pseudo-object type>";
3047   case Dependent:
3048     return "<dependent type>";
3049   case UnknownAny:
3050     return "<unknown type>";
3051   case ARCUnbridgedCast:
3052     return "<ARC unbridged cast type>";
3053   case BuiltinFn:
3054     return "<builtin fn type>";
3055   case ObjCId:
3056     return "id";
3057   case ObjCClass:
3058     return "Class";
3059   case ObjCSel:
3060     return "SEL";
3061 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
3062   case Id: \
3063     return "__" #Access " " #ImgType "_t";
3064 #include "clang/Basic/OpenCLImageTypes.def"
3065   case OCLSampler:
3066     return "sampler_t";
3067   case OCLEvent:
3068     return "event_t";
3069   case OCLClkEvent:
3070     return "clk_event_t";
3071   case OCLQueue:
3072     return "queue_t";
3073   case OCLReserveID:
3074     return "reserve_id_t";
3075   case IncompleteMatrixIdx:
3076     return "<incomplete matrix index type>";
3077   case OMPArraySection:
3078     return "<OpenMP array section type>";
3079   case OMPArrayShaping:
3080     return "<OpenMP array shaping type>";
3081   case OMPIterator:
3082     return "<OpenMP iterator type>";
3083 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
3084   case Id: \
3085     return #ExtType;
3086 #include "clang/Basic/OpenCLExtensionTypes.def"
3087 #define SVE_TYPE(Name, Id, SingletonId) \
3088   case Id: \
3089     return Name;
3090 #include "clang/Basic/AArch64SVEACLETypes.def"
3091 #define PPC_VECTOR_TYPE(Name, Id, Size) \
3092   case Id: \
3093     return #Name;
3094 #include "clang/Basic/PPCTypes.def"
3095 #define RVV_TYPE(Name, Id, SingletonId)                                        \
3096   case Id:                                                                     \
3097     return Name;
3098 #include "clang/Basic/RISCVVTypes.def"
3099   }
3100 
3101   llvm_unreachable("Invalid builtin type.");
3102 }
3103 
getNonPackExpansionType() const3104 QualType QualType::getNonPackExpansionType() const {
3105   // We never wrap type sugar around a PackExpansionType.
3106   if (auto *PET = dyn_cast<PackExpansionType>(getTypePtr()))
3107     return PET->getPattern();
3108   return *this;
3109 }
3110 
getNonLValueExprType(const ASTContext & Context) const3111 QualType QualType::getNonLValueExprType(const ASTContext &Context) const {
3112   if (const auto *RefType = getTypePtr()->getAs<ReferenceType>())
3113     return RefType->getPointeeType();
3114 
3115   // C++0x [basic.lval]:
3116   //   Class prvalues can have cv-qualified types; non-class prvalues always
3117   //   have cv-unqualified types.
3118   //
3119   // See also C99 6.3.2.1p2.
3120   if (!Context.getLangOpts().CPlusPlus ||
3121       (!getTypePtr()->isDependentType() && !getTypePtr()->isRecordType()))
3122     return getUnqualifiedType();
3123 
3124   return *this;
3125 }
3126 
getNameForCallConv(CallingConv CC)3127 StringRef FunctionType::getNameForCallConv(CallingConv CC) {
3128   switch (CC) {
3129   case CC_C: return "cdecl";
3130   case CC_X86StdCall: return "stdcall";
3131   case CC_X86FastCall: return "fastcall";
3132   case CC_X86ThisCall: return "thiscall";
3133   case CC_X86Pascal: return "pascal";
3134   case CC_X86VectorCall: return "vectorcall";
3135   case CC_Win64: return "ms_abi";
3136   case CC_X86_64SysV: return "sysv_abi";
3137   case CC_X86RegCall : return "regcall";
3138   case CC_AAPCS: return "aapcs";
3139   case CC_AAPCS_VFP: return "aapcs-vfp";
3140   case CC_AArch64VectorCall: return "aarch64_vector_pcs";
3141   case CC_IntelOclBicc: return "intel_ocl_bicc";
3142   case CC_SpirFunction: return "spir_function";
3143   case CC_OpenCLKernel: return "opencl_kernel";
3144   case CC_Swift: return "swiftcall";
3145   case CC_PreserveMost: return "preserve_most";
3146   case CC_PreserveAll: return "preserve_all";
3147   }
3148 
3149   llvm_unreachable("Invalid calling convention.");
3150 }
3151 
FunctionProtoType(QualType result,ArrayRef<QualType> params,QualType canonical,const ExtProtoInfo & epi)3152 FunctionProtoType::FunctionProtoType(QualType result, ArrayRef<QualType> params,
3153                                      QualType canonical,
3154                                      const ExtProtoInfo &epi)
3155     : FunctionType(FunctionProto, result, canonical, result->getDependence(),
3156                    epi.ExtInfo) {
3157   FunctionTypeBits.FastTypeQuals = epi.TypeQuals.getFastQualifiers();
3158   FunctionTypeBits.RefQualifier = epi.RefQualifier;
3159   FunctionTypeBits.NumParams = params.size();
3160   assert(getNumParams() == params.size() && "NumParams overflow!");
3161   FunctionTypeBits.ExceptionSpecType = epi.ExceptionSpec.Type;
3162   FunctionTypeBits.HasExtParameterInfos = !!epi.ExtParameterInfos;
3163   FunctionTypeBits.Variadic = epi.Variadic;
3164   FunctionTypeBits.HasTrailingReturn = epi.HasTrailingReturn;
3165 
3166   // Fill in the extra trailing bitfields if present.
3167   if (hasExtraBitfields(epi.ExceptionSpec.Type)) {
3168     auto &ExtraBits = *getTrailingObjects<FunctionTypeExtraBitfields>();
3169     ExtraBits.NumExceptionType = epi.ExceptionSpec.Exceptions.size();
3170   }
3171 
3172   // Fill in the trailing argument array.
3173   auto *argSlot = getTrailingObjects<QualType>();
3174   for (unsigned i = 0; i != getNumParams(); ++i) {
3175     addDependence(params[i]->getDependence() &
3176                   ~TypeDependence::VariablyModified);
3177     argSlot[i] = params[i];
3178   }
3179 
3180   // Fill in the exception type array if present.
3181   if (getExceptionSpecType() == EST_Dynamic) {
3182     assert(hasExtraBitfields() && "missing trailing extra bitfields!");
3183     auto *exnSlot =
3184         reinterpret_cast<QualType *>(getTrailingObjects<ExceptionType>());
3185     unsigned I = 0;
3186     for (QualType ExceptionType : epi.ExceptionSpec.Exceptions) {
3187       // Note that, before C++17, a dependent exception specification does
3188       // *not* make a type dependent; it's not even part of the C++ type
3189       // system.
3190       addDependence(
3191           ExceptionType->getDependence() &
3192           (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3193 
3194       exnSlot[I++] = ExceptionType;
3195     }
3196   }
3197   // Fill in the Expr * in the exception specification if present.
3198   else if (isComputedNoexcept(getExceptionSpecType())) {
3199     assert(epi.ExceptionSpec.NoexceptExpr && "computed noexcept with no expr");
3200     assert((getExceptionSpecType() == EST_DependentNoexcept) ==
3201            epi.ExceptionSpec.NoexceptExpr->isValueDependent());
3202 
3203     // Store the noexcept expression and context.
3204     *getTrailingObjects<Expr *>() = epi.ExceptionSpec.NoexceptExpr;
3205 
3206     addDependence(
3207         toTypeDependence(epi.ExceptionSpec.NoexceptExpr->getDependence()) &
3208         (TypeDependence::Instantiation | TypeDependence::UnexpandedPack));
3209   }
3210   // Fill in the FunctionDecl * in the exception specification if present.
3211   else if (getExceptionSpecType() == EST_Uninstantiated) {
3212     // Store the function decl from which we will resolve our
3213     // exception specification.
3214     auto **slot = getTrailingObjects<FunctionDecl *>();
3215     slot[0] = epi.ExceptionSpec.SourceDecl;
3216     slot[1] = epi.ExceptionSpec.SourceTemplate;
3217     // This exception specification doesn't make the type dependent, because
3218     // it's not instantiated as part of instantiating the type.
3219   } else if (getExceptionSpecType() == EST_Unevaluated) {
3220     // Store the function decl from which we will resolve our
3221     // exception specification.
3222     auto **slot = getTrailingObjects<FunctionDecl *>();
3223     slot[0] = epi.ExceptionSpec.SourceDecl;
3224   }
3225 
3226   // If this is a canonical type, and its exception specification is dependent,
3227   // then it's a dependent type. This only happens in C++17 onwards.
3228   if (isCanonicalUnqualified()) {
3229     if (getExceptionSpecType() == EST_Dynamic ||
3230         getExceptionSpecType() == EST_DependentNoexcept) {
3231       assert(hasDependentExceptionSpec() && "type should not be canonical");
3232       addDependence(TypeDependence::DependentInstantiation);
3233     }
3234   } else if (getCanonicalTypeInternal()->isDependentType()) {
3235     // Ask our canonical type whether our exception specification was dependent.
3236     addDependence(TypeDependence::DependentInstantiation);
3237   }
3238 
3239   // Fill in the extra parameter info if present.
3240   if (epi.ExtParameterInfos) {
3241     auto *extParamInfos = getTrailingObjects<ExtParameterInfo>();
3242     for (unsigned i = 0; i != getNumParams(); ++i)
3243       extParamInfos[i] = epi.ExtParameterInfos[i];
3244   }
3245 
3246   if (epi.TypeQuals.hasNonFastQualifiers()) {
3247     FunctionTypeBits.HasExtQuals = 1;
3248     *getTrailingObjects<Qualifiers>() = epi.TypeQuals;
3249   } else {
3250     FunctionTypeBits.HasExtQuals = 0;
3251   }
3252 
3253   // Fill in the Ellipsis location info if present.
3254   if (epi.Variadic) {
3255     auto &EllipsisLoc = *getTrailingObjects<SourceLocation>();
3256     EllipsisLoc = epi.EllipsisLoc;
3257   }
3258 }
3259 
hasDependentExceptionSpec() const3260 bool FunctionProtoType::hasDependentExceptionSpec() const {
3261   if (Expr *NE = getNoexceptExpr())
3262     return NE->isValueDependent();
3263   for (QualType ET : exceptions())
3264     // A pack expansion with a non-dependent pattern is still dependent,
3265     // because we don't know whether the pattern is in the exception spec
3266     // or not (that depends on whether the pack has 0 expansions).
3267     if (ET->isDependentType() || ET->getAs<PackExpansionType>())
3268       return true;
3269   return false;
3270 }
3271 
hasInstantiationDependentExceptionSpec() const3272 bool FunctionProtoType::hasInstantiationDependentExceptionSpec() const {
3273   if (Expr *NE = getNoexceptExpr())
3274     return NE->isInstantiationDependent();
3275   for (QualType ET : exceptions())
3276     if (ET->isInstantiationDependentType())
3277       return true;
3278   return false;
3279 }
3280 
canThrow() const3281 CanThrowResult FunctionProtoType::canThrow() const {
3282   switch (getExceptionSpecType()) {
3283   case EST_Unparsed:
3284   case EST_Unevaluated:
3285   case EST_Uninstantiated:
3286     llvm_unreachable("should not call this with unresolved exception specs");
3287 
3288   case EST_DynamicNone:
3289   case EST_BasicNoexcept:
3290   case EST_NoexceptTrue:
3291   case EST_NoThrow:
3292     return CT_Cannot;
3293 
3294   case EST_None:
3295   case EST_MSAny:
3296   case EST_NoexceptFalse:
3297     return CT_Can;
3298 
3299   case EST_Dynamic:
3300     // A dynamic exception specification is throwing unless every exception
3301     // type is an (unexpanded) pack expansion type.
3302     for (unsigned I = 0; I != getNumExceptions(); ++I)
3303       if (!getExceptionType(I)->getAs<PackExpansionType>())
3304         return CT_Can;
3305     return CT_Dependent;
3306 
3307   case EST_DependentNoexcept:
3308     return CT_Dependent;
3309   }
3310 
3311   llvm_unreachable("unexpected exception specification kind");
3312 }
3313 
isTemplateVariadic() const3314 bool FunctionProtoType::isTemplateVariadic() const {
3315   for (unsigned ArgIdx = getNumParams(); ArgIdx; --ArgIdx)
3316     if (isa<PackExpansionType>(getParamType(ArgIdx - 1)))
3317       return true;
3318 
3319   return false;
3320 }
3321 
Profile(llvm::FoldingSetNodeID & ID,QualType Result,const QualType * ArgTys,unsigned NumParams,const ExtProtoInfo & epi,const ASTContext & Context,bool Canonical)3322 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID, QualType Result,
3323                                 const QualType *ArgTys, unsigned NumParams,
3324                                 const ExtProtoInfo &epi,
3325                                 const ASTContext &Context, bool Canonical) {
3326   // We have to be careful not to get ambiguous profile encodings.
3327   // Note that valid type pointers are never ambiguous with anything else.
3328   //
3329   // The encoding grammar begins:
3330   //      type type* bool int bool
3331   // If that final bool is true, then there is a section for the EH spec:
3332   //      bool type*
3333   // This is followed by an optional "consumed argument" section of the
3334   // same length as the first type sequence:
3335   //      bool*
3336   // Finally, we have the ext info and trailing return type flag:
3337   //      int bool
3338   //
3339   // There is no ambiguity between the consumed arguments and an empty EH
3340   // spec because of the leading 'bool' which unambiguously indicates
3341   // whether the following bool is the EH spec or part of the arguments.
3342 
3343   ID.AddPointer(Result.getAsOpaquePtr());
3344   for (unsigned i = 0; i != NumParams; ++i)
3345     ID.AddPointer(ArgTys[i].getAsOpaquePtr());
3346   // This method is relatively performance sensitive, so as a performance
3347   // shortcut, use one AddInteger call instead of four for the next four
3348   // fields.
3349   assert(!(unsigned(epi.Variadic) & ~1) &&
3350          !(unsigned(epi.RefQualifier) & ~3) &&
3351          !(unsigned(epi.ExceptionSpec.Type) & ~15) &&
3352          "Values larger than expected.");
3353   ID.AddInteger(unsigned(epi.Variadic) +
3354                 (epi.RefQualifier << 1) +
3355                 (epi.ExceptionSpec.Type << 3));
3356   ID.Add(epi.TypeQuals);
3357   if (epi.ExceptionSpec.Type == EST_Dynamic) {
3358     for (QualType Ex : epi.ExceptionSpec.Exceptions)
3359       ID.AddPointer(Ex.getAsOpaquePtr());
3360   } else if (isComputedNoexcept(epi.ExceptionSpec.Type)) {
3361     epi.ExceptionSpec.NoexceptExpr->Profile(ID, Context, Canonical);
3362   } else if (epi.ExceptionSpec.Type == EST_Uninstantiated ||
3363              epi.ExceptionSpec.Type == EST_Unevaluated) {
3364     ID.AddPointer(epi.ExceptionSpec.SourceDecl->getCanonicalDecl());
3365   }
3366   if (epi.ExtParameterInfos) {
3367     for (unsigned i = 0; i != NumParams; ++i)
3368       ID.AddInteger(epi.ExtParameterInfos[i].getOpaqueValue());
3369   }
3370   epi.ExtInfo.Profile(ID);
3371   ID.AddBoolean(epi.HasTrailingReturn);
3372 }
3373 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Ctx)3374 void FunctionProtoType::Profile(llvm::FoldingSetNodeID &ID,
3375                                 const ASTContext &Ctx) {
3376   Profile(ID, getReturnType(), param_type_begin(), getNumParams(),
3377           getExtProtoInfo(), Ctx, isCanonicalUnqualified());
3378 }
3379 
TypedefType(TypeClass tc,const TypedefNameDecl * D,QualType underlying,QualType can)3380 TypedefType::TypedefType(TypeClass tc, const TypedefNameDecl *D,
3381                          QualType underlying, QualType can)
3382     : Type(tc, can, underlying->getDependence()),
3383       Decl(const_cast<TypedefNameDecl *>(D)) {
3384   assert(!isa<TypedefType>(can) && "Invalid canonical type");
3385 }
3386 
desugar() const3387 QualType TypedefType::desugar() const {
3388   return getDecl()->getUnderlyingType();
3389 }
3390 
desugar() const3391 QualType MacroQualifiedType::desugar() const { return getUnderlyingType(); }
3392 
getModifiedType() const3393 QualType MacroQualifiedType::getModifiedType() const {
3394   // Step over MacroQualifiedTypes from the same macro to find the type
3395   // ultimately qualified by the macro qualifier.
3396   QualType Inner = cast<AttributedType>(getUnderlyingType())->getModifiedType();
3397   while (auto *InnerMQT = dyn_cast<MacroQualifiedType>(Inner)) {
3398     if (InnerMQT->getMacroIdentifier() != getMacroIdentifier())
3399       break;
3400     Inner = InnerMQT->getModifiedType();
3401   }
3402   return Inner;
3403 }
3404 
TypeOfExprType(Expr * E,QualType can)3405 TypeOfExprType::TypeOfExprType(Expr *E, QualType can)
3406     : Type(TypeOfExpr, can,
3407            toTypeDependence(E->getDependence()) |
3408                (E->getType()->getDependence() &
3409                 TypeDependence::VariablyModified)),
3410       TOExpr(E) {}
3411 
isSugared() const3412 bool TypeOfExprType::isSugared() const {
3413   return !TOExpr->isTypeDependent();
3414 }
3415 
desugar() const3416 QualType TypeOfExprType::desugar() const {
3417   if (isSugared())
3418     return getUnderlyingExpr()->getType();
3419 
3420   return QualType(this, 0);
3421 }
3422 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)3423 void DependentTypeOfExprType::Profile(llvm::FoldingSetNodeID &ID,
3424                                       const ASTContext &Context, Expr *E) {
3425   E->Profile(ID, Context, true);
3426 }
3427 
DecltypeType(Expr * E,QualType underlyingType,QualType can)3428 DecltypeType::DecltypeType(Expr *E, QualType underlyingType, QualType can)
3429     // C++11 [temp.type]p2: "If an expression e involves a template parameter,
3430     // decltype(e) denotes a unique dependent type." Hence a decltype type is
3431     // type-dependent even if its expression is only instantiation-dependent.
3432     : Type(Decltype, can,
3433            toTypeDependence(E->getDependence()) |
3434                (E->isInstantiationDependent() ? TypeDependence::Dependent
3435                                               : TypeDependence::None) |
3436                (E->getType()->getDependence() &
3437                 TypeDependence::VariablyModified)),
3438       E(E), UnderlyingType(underlyingType) {}
3439 
isSugared() const3440 bool DecltypeType::isSugared() const { return !E->isInstantiationDependent(); }
3441 
desugar() const3442 QualType DecltypeType::desugar() const {
3443   if (isSugared())
3444     return getUnderlyingType();
3445 
3446   return QualType(this, 0);
3447 }
3448 
DependentDecltypeType(const ASTContext & Context,Expr * E)3449 DependentDecltypeType::DependentDecltypeType(const ASTContext &Context, Expr *E)
3450     : DecltypeType(E, Context.DependentTy), Context(Context) {}
3451 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,Expr * E)3452 void DependentDecltypeType::Profile(llvm::FoldingSetNodeID &ID,
3453                                     const ASTContext &Context, Expr *E) {
3454   E->Profile(ID, Context, true);
3455 }
3456 
UnaryTransformType(QualType BaseType,QualType UnderlyingType,UTTKind UKind,QualType CanonicalType)3457 UnaryTransformType::UnaryTransformType(QualType BaseType,
3458                                        QualType UnderlyingType, UTTKind UKind,
3459                                        QualType CanonicalType)
3460     : Type(UnaryTransform, CanonicalType, BaseType->getDependence()),
3461       BaseType(BaseType), UnderlyingType(UnderlyingType), UKind(UKind) {}
3462 
DependentUnaryTransformType(const ASTContext & C,QualType BaseType,UTTKind UKind)3463 DependentUnaryTransformType::DependentUnaryTransformType(const ASTContext &C,
3464                                                          QualType BaseType,
3465                                                          UTTKind UKind)
3466      : UnaryTransformType(BaseType, C.DependentTy, UKind, QualType()) {}
3467 
TagType(TypeClass TC,const TagDecl * D,QualType can)3468 TagType::TagType(TypeClass TC, const TagDecl *D, QualType can)
3469     : Type(TC, can,
3470            D->isDependentType() ? TypeDependence::DependentInstantiation
3471                                 : TypeDependence::None),
3472       decl(const_cast<TagDecl *>(D)) {}
3473 
getInterestingTagDecl(TagDecl * decl)3474 static TagDecl *getInterestingTagDecl(TagDecl *decl) {
3475   for (auto I : decl->redecls()) {
3476     if (I->isCompleteDefinition() || I->isBeingDefined())
3477       return I;
3478   }
3479   // If there's no definition (not even in progress), return what we have.
3480   return decl;
3481 }
3482 
getDecl() const3483 TagDecl *TagType::getDecl() const {
3484   return getInterestingTagDecl(decl);
3485 }
3486 
isBeingDefined() const3487 bool TagType::isBeingDefined() const {
3488   return getDecl()->isBeingDefined();
3489 }
3490 
hasConstFields() const3491 bool RecordType::hasConstFields() const {
3492   std::vector<const RecordType*> RecordTypeList;
3493   RecordTypeList.push_back(this);
3494   unsigned NextToCheckIndex = 0;
3495 
3496   while (RecordTypeList.size() > NextToCheckIndex) {
3497     for (FieldDecl *FD :
3498          RecordTypeList[NextToCheckIndex]->getDecl()->fields()) {
3499       QualType FieldTy = FD->getType();
3500       if (FieldTy.isConstQualified())
3501         return true;
3502       FieldTy = FieldTy.getCanonicalType();
3503       if (const auto *FieldRecTy = FieldTy->getAs<RecordType>()) {
3504         if (llvm::find(RecordTypeList, FieldRecTy) == RecordTypeList.end())
3505           RecordTypeList.push_back(FieldRecTy);
3506       }
3507     }
3508     ++NextToCheckIndex;
3509   }
3510   return false;
3511 }
3512 
isQualifier() const3513 bool AttributedType::isQualifier() const {
3514   // FIXME: Generate this with TableGen.
3515   switch (getAttrKind()) {
3516   // These are type qualifiers in the traditional C sense: they annotate
3517   // something about a specific value/variable of a type.  (They aren't
3518   // always part of the canonical type, though.)
3519   case attr::ObjCGC:
3520   case attr::ObjCOwnership:
3521   case attr::ObjCInertUnsafeUnretained:
3522   case attr::TypeNonNull:
3523   case attr::TypeNullable:
3524   case attr::TypeNullableResult:
3525   case attr::TypeNullUnspecified:
3526   case attr::LifetimeBound:
3527   case attr::AddressSpace:
3528     return true;
3529 
3530   // All other type attributes aren't qualifiers; they rewrite the modified
3531   // type to be a semantically different type.
3532   default:
3533     return false;
3534   }
3535 }
3536 
isMSTypeSpec() const3537 bool AttributedType::isMSTypeSpec() const {
3538   // FIXME: Generate this with TableGen?
3539   switch (getAttrKind()) {
3540   default: return false;
3541   case attr::Ptr32:
3542   case attr::Ptr64:
3543   case attr::SPtr:
3544   case attr::UPtr:
3545     return true;
3546   }
3547   llvm_unreachable("invalid attr kind");
3548 }
3549 
isCallingConv() const3550 bool AttributedType::isCallingConv() const {
3551   // FIXME: Generate this with TableGen.
3552   switch (getAttrKind()) {
3553   default: return false;
3554   case attr::Pcs:
3555   case attr::CDecl:
3556   case attr::FastCall:
3557   case attr::StdCall:
3558   case attr::ThisCall:
3559   case attr::RegCall:
3560   case attr::SwiftCall:
3561   case attr::VectorCall:
3562   case attr::AArch64VectorPcs:
3563   case attr::Pascal:
3564   case attr::MSABI:
3565   case attr::SysVABI:
3566   case attr::IntelOclBicc:
3567   case attr::PreserveMost:
3568   case attr::PreserveAll:
3569     return true;
3570   }
3571   llvm_unreachable("invalid attr kind");
3572 }
3573 
getDecl() const3574 CXXRecordDecl *InjectedClassNameType::getDecl() const {
3575   return cast<CXXRecordDecl>(getInterestingTagDecl(Decl));
3576 }
3577 
getIdentifier() const3578 IdentifierInfo *TemplateTypeParmType::getIdentifier() const {
3579   return isCanonicalUnqualified() ? nullptr : getDecl()->getIdentifier();
3580 }
3581 
SubstTemplateTypeParmPackType(const TemplateTypeParmType * Param,QualType Canon,const TemplateArgument & ArgPack)3582 SubstTemplateTypeParmPackType::SubstTemplateTypeParmPackType(
3583     const TemplateTypeParmType *Param, QualType Canon,
3584     const TemplateArgument &ArgPack)
3585     : Type(SubstTemplateTypeParmPack, Canon,
3586            TypeDependence::DependentInstantiation |
3587                TypeDependence::UnexpandedPack),
3588       Replaced(Param), Arguments(ArgPack.pack_begin()) {
3589   SubstTemplateTypeParmPackTypeBits.NumArgs = ArgPack.pack_size();
3590 }
3591 
getArgumentPack() const3592 TemplateArgument SubstTemplateTypeParmPackType::getArgumentPack() const {
3593   return TemplateArgument(llvm::makeArrayRef(Arguments, getNumArgs()));
3594 }
3595 
Profile(llvm::FoldingSetNodeID & ID)3596 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID) {
3597   Profile(ID, getReplacedParameter(), getArgumentPack());
3598 }
3599 
Profile(llvm::FoldingSetNodeID & ID,const TemplateTypeParmType * Replaced,const TemplateArgument & ArgPack)3600 void SubstTemplateTypeParmPackType::Profile(llvm::FoldingSetNodeID &ID,
3601                                            const TemplateTypeParmType *Replaced,
3602                                             const TemplateArgument &ArgPack) {
3603   ID.AddPointer(Replaced);
3604   ID.AddInteger(ArgPack.pack_size());
3605   for (const auto &P : ArgPack.pack_elements())
3606     ID.AddPointer(P.getAsType().getAsOpaquePtr());
3607 }
3608 
anyDependentTemplateArguments(const TemplateArgumentListInfo & Args,ArrayRef<TemplateArgument> Converted)3609 bool TemplateSpecializationType::anyDependentTemplateArguments(
3610     const TemplateArgumentListInfo &Args, ArrayRef<TemplateArgument> Converted) {
3611   return anyDependentTemplateArguments(Args.arguments(), Converted);
3612 }
3613 
anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,ArrayRef<TemplateArgument> Converted)3614 bool TemplateSpecializationType::anyDependentTemplateArguments(
3615     ArrayRef<TemplateArgumentLoc> Args, ArrayRef<TemplateArgument> Converted) {
3616   for (const TemplateArgument &Arg : Converted)
3617     if (Arg.isDependent())
3618       return true;
3619   return false;
3620 }
3621 
anyInstantiationDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args)3622 bool TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
3623       ArrayRef<TemplateArgumentLoc> Args) {
3624   for (const TemplateArgumentLoc &ArgLoc : Args) {
3625     if (ArgLoc.getArgument().isInstantiationDependent())
3626       return true;
3627   }
3628   return false;
3629 }
3630 
TemplateSpecializationType(TemplateName T,ArrayRef<TemplateArgument> Args,QualType Canon,QualType AliasedType)3631 TemplateSpecializationType::TemplateSpecializationType(
3632     TemplateName T, ArrayRef<TemplateArgument> Args, QualType Canon,
3633     QualType AliasedType)
3634     : Type(TemplateSpecialization, Canon.isNull() ? QualType(this, 0) : Canon,
3635            (Canon.isNull()
3636                 ? TypeDependence::DependentInstantiation
3637                 : Canon->getDependence() & ~(TypeDependence::VariablyModified |
3638                                              TypeDependence::UnexpandedPack)) |
3639                (toTypeDependence(T.getDependence()) &
3640                 TypeDependence::UnexpandedPack)),
3641       Template(T) {
3642   TemplateSpecializationTypeBits.NumArgs = Args.size();
3643   TemplateSpecializationTypeBits.TypeAlias = !AliasedType.isNull();
3644 
3645   assert(!T.getAsDependentTemplateName() &&
3646          "Use DependentTemplateSpecializationType for dependent template-name");
3647   assert((T.getKind() == TemplateName::Template ||
3648           T.getKind() == TemplateName::SubstTemplateTemplateParm ||
3649           T.getKind() == TemplateName::SubstTemplateTemplateParmPack) &&
3650          "Unexpected template name for TemplateSpecializationType");
3651 
3652   auto *TemplateArgs = reinterpret_cast<TemplateArgument *>(this + 1);
3653   for (const TemplateArgument &Arg : Args) {
3654     // Update instantiation-dependent, variably-modified, and error bits.
3655     // If the canonical type exists and is non-dependent, the template
3656     // specialization type can be non-dependent even if one of the type
3657     // arguments is. Given:
3658     //   template<typename T> using U = int;
3659     // U<T> is always non-dependent, irrespective of the type T.
3660     // However, U<Ts> contains an unexpanded parameter pack, even though
3661     // its expansion (and thus its desugared type) doesn't.
3662     addDependence(toTypeDependence(Arg.getDependence()) &
3663                   ~TypeDependence::Dependent);
3664     if (Arg.getKind() == TemplateArgument::Type)
3665       addDependence(Arg.getAsType()->getDependence() &
3666                     TypeDependence::VariablyModified);
3667     new (TemplateArgs++) TemplateArgument(Arg);
3668   }
3669 
3670   // Store the aliased type if this is a type alias template specialization.
3671   if (isTypeAlias()) {
3672     auto *Begin = reinterpret_cast<TemplateArgument *>(this + 1);
3673     *reinterpret_cast<QualType*>(Begin + getNumArgs()) = AliasedType;
3674   }
3675 }
3676 
3677 void
Profile(llvm::FoldingSetNodeID & ID,TemplateName T,ArrayRef<TemplateArgument> Args,const ASTContext & Context)3678 TemplateSpecializationType::Profile(llvm::FoldingSetNodeID &ID,
3679                                     TemplateName T,
3680                                     ArrayRef<TemplateArgument> Args,
3681                                     const ASTContext &Context) {
3682   T.Profile(ID);
3683   for (const TemplateArgument &Arg : Args)
3684     Arg.Profile(ID, Context);
3685 }
3686 
3687 QualType
apply(const ASTContext & Context,QualType QT) const3688 QualifierCollector::apply(const ASTContext &Context, QualType QT) const {
3689   if (!hasNonFastQualifiers())
3690     return QT.withFastQualifiers(getFastQualifiers());
3691 
3692   return Context.getQualifiedType(QT, *this);
3693 }
3694 
3695 QualType
apply(const ASTContext & Context,const Type * T) const3696 QualifierCollector::apply(const ASTContext &Context, const Type *T) const {
3697   if (!hasNonFastQualifiers())
3698     return QualType(T, getFastQualifiers());
3699 
3700   return Context.getQualifiedType(T, *this);
3701 }
3702 
Profile(llvm::FoldingSetNodeID & ID,QualType BaseType,ArrayRef<QualType> typeArgs,ArrayRef<ObjCProtocolDecl * > protocols,bool isKindOf)3703 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID,
3704                                  QualType BaseType,
3705                                  ArrayRef<QualType> typeArgs,
3706                                  ArrayRef<ObjCProtocolDecl *> protocols,
3707                                  bool isKindOf) {
3708   ID.AddPointer(BaseType.getAsOpaquePtr());
3709   ID.AddInteger(typeArgs.size());
3710   for (auto typeArg : typeArgs)
3711     ID.AddPointer(typeArg.getAsOpaquePtr());
3712   ID.AddInteger(protocols.size());
3713   for (auto proto : protocols)
3714     ID.AddPointer(proto);
3715   ID.AddBoolean(isKindOf);
3716 }
3717 
Profile(llvm::FoldingSetNodeID & ID)3718 void ObjCObjectTypeImpl::Profile(llvm::FoldingSetNodeID &ID) {
3719   Profile(ID, getBaseType(), getTypeArgsAsWritten(),
3720           llvm::makeArrayRef(qual_begin(), getNumProtocols()),
3721           isKindOfTypeAsWritten());
3722 }
3723 
Profile(llvm::FoldingSetNodeID & ID,const ObjCTypeParamDecl * OTPDecl,QualType CanonicalType,ArrayRef<ObjCProtocolDecl * > protocols)3724 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID,
3725                                 const ObjCTypeParamDecl *OTPDecl,
3726                                 QualType CanonicalType,
3727                                 ArrayRef<ObjCProtocolDecl *> protocols) {
3728   ID.AddPointer(OTPDecl);
3729   ID.AddPointer(CanonicalType.getAsOpaquePtr());
3730   ID.AddInteger(protocols.size());
3731   for (auto proto : protocols)
3732     ID.AddPointer(proto);
3733 }
3734 
Profile(llvm::FoldingSetNodeID & ID)3735 void ObjCTypeParamType::Profile(llvm::FoldingSetNodeID &ID) {
3736   Profile(ID, getDecl(), getCanonicalTypeInternal(),
3737           llvm::makeArrayRef(qual_begin(), getNumProtocols()));
3738 }
3739 
3740 namespace {
3741 
3742 /// The cached properties of a type.
3743 class CachedProperties {
3744   Linkage L;
3745   bool local;
3746 
3747 public:
CachedProperties(Linkage L,bool local)3748   CachedProperties(Linkage L, bool local) : L(L), local(local) {}
3749 
getLinkage() const3750   Linkage getLinkage() const { return L; }
hasLocalOrUnnamedType() const3751   bool hasLocalOrUnnamedType() const { return local; }
3752 
merge(CachedProperties L,CachedProperties R)3753   friend CachedProperties merge(CachedProperties L, CachedProperties R) {
3754     Linkage MergedLinkage = minLinkage(L.L, R.L);
3755     return CachedProperties(MergedLinkage,
3756                          L.hasLocalOrUnnamedType() | R.hasLocalOrUnnamedType());
3757   }
3758 };
3759 
3760 } // namespace
3761 
3762 static CachedProperties computeCachedProperties(const Type *T);
3763 
3764 namespace clang {
3765 
3766 /// The type-property cache.  This is templated so as to be
3767 /// instantiated at an internal type to prevent unnecessary symbol
3768 /// leakage.
3769 template <class Private> class TypePropertyCache {
3770 public:
get(QualType T)3771   static CachedProperties get(QualType T) {
3772     return get(T.getTypePtr());
3773   }
3774 
get(const Type * T)3775   static CachedProperties get(const Type *T) {
3776     ensure(T);
3777     return CachedProperties(T->TypeBits.getLinkage(),
3778                             T->TypeBits.hasLocalOrUnnamedType());
3779   }
3780 
ensure(const Type * T)3781   static void ensure(const Type *T) {
3782     // If the cache is valid, we're okay.
3783     if (T->TypeBits.isCacheValid()) return;
3784 
3785     // If this type is non-canonical, ask its canonical type for the
3786     // relevant information.
3787     if (!T->isCanonicalUnqualified()) {
3788       const Type *CT = T->getCanonicalTypeInternal().getTypePtr();
3789       ensure(CT);
3790       T->TypeBits.CacheValid = true;
3791       T->TypeBits.CachedLinkage = CT->TypeBits.CachedLinkage;
3792       T->TypeBits.CachedLocalOrUnnamed = CT->TypeBits.CachedLocalOrUnnamed;
3793       return;
3794     }
3795 
3796     // Compute the cached properties and then set the cache.
3797     CachedProperties Result = computeCachedProperties(T);
3798     T->TypeBits.CacheValid = true;
3799     T->TypeBits.CachedLinkage = Result.getLinkage();
3800     T->TypeBits.CachedLocalOrUnnamed = Result.hasLocalOrUnnamedType();
3801   }
3802 };
3803 
3804 } // namespace clang
3805 
3806 // Instantiate the friend template at a private class.  In a
3807 // reasonable implementation, these symbols will be internal.
3808 // It is terrible that this is the best way to accomplish this.
3809 namespace {
3810 
3811 class Private {};
3812 
3813 } // namespace
3814 
3815 using Cache = TypePropertyCache<Private>;
3816 
computeCachedProperties(const Type * T)3817 static CachedProperties computeCachedProperties(const Type *T) {
3818   switch (T->getTypeClass()) {
3819 #define TYPE(Class,Base)
3820 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3821 #include "clang/AST/TypeNodes.inc"
3822     llvm_unreachable("didn't expect a non-canonical type here");
3823 
3824 #define TYPE(Class,Base)
3825 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3826 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3827 #include "clang/AST/TypeNodes.inc"
3828     // Treat instantiation-dependent types as external.
3829     if (!T->isInstantiationDependentType()) T->dump();
3830     assert(T->isInstantiationDependentType());
3831     return CachedProperties(ExternalLinkage, false);
3832 
3833   case Type::Auto:
3834   case Type::DeducedTemplateSpecialization:
3835     // Give non-deduced 'auto' types external linkage. We should only see them
3836     // here in error recovery.
3837     return CachedProperties(ExternalLinkage, false);
3838 
3839   case Type::ExtInt:
3840   case Type::Builtin:
3841     // C++ [basic.link]p8:
3842     //   A type is said to have linkage if and only if:
3843     //     - it is a fundamental type (3.9.1); or
3844     return CachedProperties(ExternalLinkage, false);
3845 
3846   case Type::Record:
3847   case Type::Enum: {
3848     const TagDecl *Tag = cast<TagType>(T)->getDecl();
3849 
3850     // C++ [basic.link]p8:
3851     //     - it is a class or enumeration type that is named (or has a name
3852     //       for linkage purposes (7.1.3)) and the name has linkage; or
3853     //     -  it is a specialization of a class template (14); or
3854     Linkage L = Tag->getLinkageInternal();
3855     bool IsLocalOrUnnamed =
3856       Tag->getDeclContext()->isFunctionOrMethod() ||
3857       !Tag->hasNameForLinkage();
3858     return CachedProperties(L, IsLocalOrUnnamed);
3859   }
3860 
3861     // C++ [basic.link]p8:
3862     //   - it is a compound type (3.9.2) other than a class or enumeration,
3863     //     compounded exclusively from types that have linkage; or
3864   case Type::Complex:
3865     return Cache::get(cast<ComplexType>(T)->getElementType());
3866   case Type::Pointer:
3867     return Cache::get(cast<PointerType>(T)->getPointeeType());
3868   case Type::BlockPointer:
3869     return Cache::get(cast<BlockPointerType>(T)->getPointeeType());
3870   case Type::LValueReference:
3871   case Type::RValueReference:
3872     return Cache::get(cast<ReferenceType>(T)->getPointeeType());
3873   case Type::MemberPointer: {
3874     const auto *MPT = cast<MemberPointerType>(T);
3875     return merge(Cache::get(MPT->getClass()),
3876                  Cache::get(MPT->getPointeeType()));
3877   }
3878   case Type::ConstantArray:
3879   case Type::IncompleteArray:
3880   case Type::VariableArray:
3881     return Cache::get(cast<ArrayType>(T)->getElementType());
3882   case Type::Vector:
3883   case Type::ExtVector:
3884     return Cache::get(cast<VectorType>(T)->getElementType());
3885   case Type::ConstantMatrix:
3886     return Cache::get(cast<ConstantMatrixType>(T)->getElementType());
3887   case Type::FunctionNoProto:
3888     return Cache::get(cast<FunctionType>(T)->getReturnType());
3889   case Type::FunctionProto: {
3890     const auto *FPT = cast<FunctionProtoType>(T);
3891     CachedProperties result = Cache::get(FPT->getReturnType());
3892     for (const auto &ai : FPT->param_types())
3893       result = merge(result, Cache::get(ai));
3894     return result;
3895   }
3896   case Type::ObjCInterface: {
3897     Linkage L = cast<ObjCInterfaceType>(T)->getDecl()->getLinkageInternal();
3898     return CachedProperties(L, false);
3899   }
3900   case Type::ObjCObject:
3901     return Cache::get(cast<ObjCObjectType>(T)->getBaseType());
3902   case Type::ObjCObjectPointer:
3903     return Cache::get(cast<ObjCObjectPointerType>(T)->getPointeeType());
3904   case Type::Atomic:
3905     return Cache::get(cast<AtomicType>(T)->getValueType());
3906   case Type::Pipe:
3907     return Cache::get(cast<PipeType>(T)->getElementType());
3908   }
3909 
3910   llvm_unreachable("unhandled type class");
3911 }
3912 
3913 /// Determine the linkage of this type.
getLinkage() const3914 Linkage Type::getLinkage() const {
3915   Cache::ensure(this);
3916   return TypeBits.getLinkage();
3917 }
3918 
hasUnnamedOrLocalType() const3919 bool Type::hasUnnamedOrLocalType() const {
3920   Cache::ensure(this);
3921   return TypeBits.hasLocalOrUnnamedType();
3922 }
3923 
computeTypeLinkageInfo(const Type * T)3924 LinkageInfo LinkageComputer::computeTypeLinkageInfo(const Type *T) {
3925   switch (T->getTypeClass()) {
3926 #define TYPE(Class,Base)
3927 #define NON_CANONICAL_TYPE(Class,Base) case Type::Class:
3928 #include "clang/AST/TypeNodes.inc"
3929     llvm_unreachable("didn't expect a non-canonical type here");
3930 
3931 #define TYPE(Class,Base)
3932 #define DEPENDENT_TYPE(Class,Base) case Type::Class:
3933 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class,Base) case Type::Class:
3934 #include "clang/AST/TypeNodes.inc"
3935     // Treat instantiation-dependent types as external.
3936     assert(T->isInstantiationDependentType());
3937     return LinkageInfo::external();
3938 
3939   case Type::ExtInt:
3940   case Type::Builtin:
3941     return LinkageInfo::external();
3942 
3943   case Type::Auto:
3944   case Type::DeducedTemplateSpecialization:
3945     return LinkageInfo::external();
3946 
3947   case Type::Record:
3948   case Type::Enum:
3949     return getDeclLinkageAndVisibility(cast<TagType>(T)->getDecl());
3950 
3951   case Type::Complex:
3952     return computeTypeLinkageInfo(cast<ComplexType>(T)->getElementType());
3953   case Type::Pointer:
3954     return computeTypeLinkageInfo(cast<PointerType>(T)->getPointeeType());
3955   case Type::BlockPointer:
3956     return computeTypeLinkageInfo(cast<BlockPointerType>(T)->getPointeeType());
3957   case Type::LValueReference:
3958   case Type::RValueReference:
3959     return computeTypeLinkageInfo(cast<ReferenceType>(T)->getPointeeType());
3960   case Type::MemberPointer: {
3961     const auto *MPT = cast<MemberPointerType>(T);
3962     LinkageInfo LV = computeTypeLinkageInfo(MPT->getClass());
3963     LV.merge(computeTypeLinkageInfo(MPT->getPointeeType()));
3964     return LV;
3965   }
3966   case Type::ConstantArray:
3967   case Type::IncompleteArray:
3968   case Type::VariableArray:
3969     return computeTypeLinkageInfo(cast<ArrayType>(T)->getElementType());
3970   case Type::Vector:
3971   case Type::ExtVector:
3972     return computeTypeLinkageInfo(cast<VectorType>(T)->getElementType());
3973   case Type::ConstantMatrix:
3974     return computeTypeLinkageInfo(
3975         cast<ConstantMatrixType>(T)->getElementType());
3976   case Type::FunctionNoProto:
3977     return computeTypeLinkageInfo(cast<FunctionType>(T)->getReturnType());
3978   case Type::FunctionProto: {
3979     const auto *FPT = cast<FunctionProtoType>(T);
3980     LinkageInfo LV = computeTypeLinkageInfo(FPT->getReturnType());
3981     for (const auto &ai : FPT->param_types())
3982       LV.merge(computeTypeLinkageInfo(ai));
3983     return LV;
3984   }
3985   case Type::ObjCInterface:
3986     return getDeclLinkageAndVisibility(cast<ObjCInterfaceType>(T)->getDecl());
3987   case Type::ObjCObject:
3988     return computeTypeLinkageInfo(cast<ObjCObjectType>(T)->getBaseType());
3989   case Type::ObjCObjectPointer:
3990     return computeTypeLinkageInfo(
3991         cast<ObjCObjectPointerType>(T)->getPointeeType());
3992   case Type::Atomic:
3993     return computeTypeLinkageInfo(cast<AtomicType>(T)->getValueType());
3994   case Type::Pipe:
3995     return computeTypeLinkageInfo(cast<PipeType>(T)->getElementType());
3996   }
3997 
3998   llvm_unreachable("unhandled type class");
3999 }
4000 
isLinkageValid() const4001 bool Type::isLinkageValid() const {
4002   if (!TypeBits.isCacheValid())
4003     return true;
4004 
4005   Linkage L = LinkageComputer{}
4006                   .computeTypeLinkageInfo(getCanonicalTypeInternal())
4007                   .getLinkage();
4008   return L == TypeBits.getLinkage();
4009 }
4010 
getTypeLinkageAndVisibility(const Type * T)4011 LinkageInfo LinkageComputer::getTypeLinkageAndVisibility(const Type *T) {
4012   if (!T->isCanonicalUnqualified())
4013     return computeTypeLinkageInfo(T->getCanonicalTypeInternal());
4014 
4015   LinkageInfo LV = computeTypeLinkageInfo(T);
4016   assert(LV.getLinkage() == T->getLinkage());
4017   return LV;
4018 }
4019 
getLinkageAndVisibility() const4020 LinkageInfo Type::getLinkageAndVisibility() const {
4021   return LinkageComputer{}.getTypeLinkageAndVisibility(this);
4022 }
4023 
4024 Optional<NullabilityKind>
getNullability(const ASTContext & Context) const4025 Type::getNullability(const ASTContext &Context) const {
4026   QualType Type(this, 0);
4027   while (const auto *AT = Type->getAs<AttributedType>()) {
4028     // Check whether this is an attributed type with nullability
4029     // information.
4030     if (auto Nullability = AT->getImmediateNullability())
4031       return Nullability;
4032 
4033     Type = AT->getEquivalentType();
4034   }
4035   return None;
4036 }
4037 
canHaveNullability(bool ResultIfUnknown) const4038 bool Type::canHaveNullability(bool ResultIfUnknown) const {
4039   QualType type = getCanonicalTypeInternal();
4040 
4041   switch (type->getTypeClass()) {
4042   // We'll only see canonical types here.
4043 #define NON_CANONICAL_TYPE(Class, Parent)       \
4044   case Type::Class:                             \
4045     llvm_unreachable("non-canonical type");
4046 #define TYPE(Class, Parent)
4047 #include "clang/AST/TypeNodes.inc"
4048 
4049   // Pointer types.
4050   case Type::Pointer:
4051   case Type::BlockPointer:
4052   case Type::MemberPointer:
4053   case Type::ObjCObjectPointer:
4054     return true;
4055 
4056   // Dependent types that could instantiate to pointer types.
4057   case Type::UnresolvedUsing:
4058   case Type::TypeOfExpr:
4059   case Type::TypeOf:
4060   case Type::Decltype:
4061   case Type::UnaryTransform:
4062   case Type::TemplateTypeParm:
4063   case Type::SubstTemplateTypeParmPack:
4064   case Type::DependentName:
4065   case Type::DependentTemplateSpecialization:
4066   case Type::Auto:
4067     return ResultIfUnknown;
4068 
4069   // Dependent template specializations can instantiate to pointer
4070   // types unless they're known to be specializations of a class
4071   // template.
4072   case Type::TemplateSpecialization:
4073     if (TemplateDecl *templateDecl
4074           = cast<TemplateSpecializationType>(type.getTypePtr())
4075               ->getTemplateName().getAsTemplateDecl()) {
4076       if (isa<ClassTemplateDecl>(templateDecl))
4077         return false;
4078     }
4079     return ResultIfUnknown;
4080 
4081   case Type::Builtin:
4082     switch (cast<BuiltinType>(type.getTypePtr())->getKind()) {
4083       // Signed, unsigned, and floating-point types cannot have nullability.
4084 #define SIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4085 #define UNSIGNED_TYPE(Id, SingletonId) case BuiltinType::Id:
4086 #define FLOATING_TYPE(Id, SingletonId) case BuiltinType::Id:
4087 #define BUILTIN_TYPE(Id, SingletonId)
4088 #include "clang/AST/BuiltinTypes.def"
4089       return false;
4090 
4091     // Dependent types that could instantiate to a pointer type.
4092     case BuiltinType::Dependent:
4093     case BuiltinType::Overload:
4094     case BuiltinType::BoundMember:
4095     case BuiltinType::PseudoObject:
4096     case BuiltinType::UnknownAny:
4097     case BuiltinType::ARCUnbridgedCast:
4098       return ResultIfUnknown;
4099 
4100     case BuiltinType::Void:
4101     case BuiltinType::ObjCId:
4102     case BuiltinType::ObjCClass:
4103     case BuiltinType::ObjCSel:
4104 #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
4105     case BuiltinType::Id:
4106 #include "clang/Basic/OpenCLImageTypes.def"
4107 #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
4108     case BuiltinType::Id:
4109 #include "clang/Basic/OpenCLExtensionTypes.def"
4110     case BuiltinType::OCLSampler:
4111     case BuiltinType::OCLEvent:
4112     case BuiltinType::OCLClkEvent:
4113     case BuiltinType::OCLQueue:
4114     case BuiltinType::OCLReserveID:
4115 #define SVE_TYPE(Name, Id, SingletonId) \
4116     case BuiltinType::Id:
4117 #include "clang/Basic/AArch64SVEACLETypes.def"
4118 #define PPC_VECTOR_TYPE(Name, Id, Size) \
4119     case BuiltinType::Id:
4120 #include "clang/Basic/PPCTypes.def"
4121 #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id:
4122 #include "clang/Basic/RISCVVTypes.def"
4123     case BuiltinType::BuiltinFn:
4124     case BuiltinType::NullPtr:
4125     case BuiltinType::IncompleteMatrixIdx:
4126     case BuiltinType::OMPArraySection:
4127     case BuiltinType::OMPArrayShaping:
4128     case BuiltinType::OMPIterator:
4129       return false;
4130     }
4131     llvm_unreachable("unknown builtin type");
4132 
4133   // Non-pointer types.
4134   case Type::Complex:
4135   case Type::LValueReference:
4136   case Type::RValueReference:
4137   case Type::ConstantArray:
4138   case Type::IncompleteArray:
4139   case Type::VariableArray:
4140   case Type::DependentSizedArray:
4141   case Type::DependentVector:
4142   case Type::DependentSizedExtVector:
4143   case Type::Vector:
4144   case Type::ExtVector:
4145   case Type::ConstantMatrix:
4146   case Type::DependentSizedMatrix:
4147   case Type::DependentAddressSpace:
4148   case Type::FunctionProto:
4149   case Type::FunctionNoProto:
4150   case Type::Record:
4151   case Type::DeducedTemplateSpecialization:
4152   case Type::Enum:
4153   case Type::InjectedClassName:
4154   case Type::PackExpansion:
4155   case Type::ObjCObject:
4156   case Type::ObjCInterface:
4157   case Type::Atomic:
4158   case Type::Pipe:
4159   case Type::ExtInt:
4160   case Type::DependentExtInt:
4161     return false;
4162   }
4163   llvm_unreachable("bad type kind!");
4164 }
4165 
4166 llvm::Optional<NullabilityKind>
getImmediateNullability() const4167 AttributedType::getImmediateNullability() const {
4168   if (getAttrKind() == attr::TypeNonNull)
4169     return NullabilityKind::NonNull;
4170   if (getAttrKind() == attr::TypeNullable)
4171     return NullabilityKind::Nullable;
4172   if (getAttrKind() == attr::TypeNullUnspecified)
4173     return NullabilityKind::Unspecified;
4174   if (getAttrKind() == attr::TypeNullableResult)
4175     return NullabilityKind::NullableResult;
4176   return None;
4177 }
4178 
stripOuterNullability(QualType & T)4179 Optional<NullabilityKind> AttributedType::stripOuterNullability(QualType &T) {
4180   QualType AttrTy = T;
4181   if (auto MacroTy = dyn_cast<MacroQualifiedType>(T))
4182     AttrTy = MacroTy->getUnderlyingType();
4183 
4184   if (auto attributed = dyn_cast<AttributedType>(AttrTy)) {
4185     if (auto nullability = attributed->getImmediateNullability()) {
4186       T = attributed->getModifiedType();
4187       return nullability;
4188     }
4189   }
4190 
4191   return None;
4192 }
4193 
isBlockCompatibleObjCPointerType(ASTContext & ctx) const4194 bool Type::isBlockCompatibleObjCPointerType(ASTContext &ctx) const {
4195   const auto *objcPtr = getAs<ObjCObjectPointerType>();
4196   if (!objcPtr)
4197     return false;
4198 
4199   if (objcPtr->isObjCIdType()) {
4200     // id is always okay.
4201     return true;
4202   }
4203 
4204   // Blocks are NSObjects.
4205   if (ObjCInterfaceDecl *iface = objcPtr->getInterfaceDecl()) {
4206     if (iface->getIdentifier() != ctx.getNSObjectName())
4207       return false;
4208 
4209     // Continue to check qualifiers, below.
4210   } else if (objcPtr->isObjCQualifiedIdType()) {
4211     // Continue to check qualifiers, below.
4212   } else {
4213     return false;
4214   }
4215 
4216   // Check protocol qualifiers.
4217   for (ObjCProtocolDecl *proto : objcPtr->quals()) {
4218     // Blocks conform to NSObject and NSCopying.
4219     if (proto->getIdentifier() != ctx.getNSObjectName() &&
4220         proto->getIdentifier() != ctx.getNSCopyingName())
4221       return false;
4222   }
4223 
4224   return true;
4225 }
4226 
getObjCARCImplicitLifetime() const4227 Qualifiers::ObjCLifetime Type::getObjCARCImplicitLifetime() const {
4228   if (isObjCARCImplicitlyUnretainedType())
4229     return Qualifiers::OCL_ExplicitNone;
4230   return Qualifiers::OCL_Strong;
4231 }
4232 
isObjCARCImplicitlyUnretainedType() const4233 bool Type::isObjCARCImplicitlyUnretainedType() const {
4234   assert(isObjCLifetimeType() &&
4235          "cannot query implicit lifetime for non-inferrable type");
4236 
4237   const Type *canon = getCanonicalTypeInternal().getTypePtr();
4238 
4239   // Walk down to the base type.  We don't care about qualifiers for this.
4240   while (const auto *array = dyn_cast<ArrayType>(canon))
4241     canon = array->getElementType().getTypePtr();
4242 
4243   if (const auto *opt = dyn_cast<ObjCObjectPointerType>(canon)) {
4244     // Class and Class<Protocol> don't require retention.
4245     if (opt->getObjectType()->isObjCClass())
4246       return true;
4247   }
4248 
4249   return false;
4250 }
4251 
isObjCNSObjectType() const4252 bool Type::isObjCNSObjectType() const {
4253   const Type *cur = this;
4254   while (true) {
4255     if (const auto *typedefType = dyn_cast<TypedefType>(cur))
4256       return typedefType->getDecl()->hasAttr<ObjCNSObjectAttr>();
4257 
4258     // Single-step desugar until we run out of sugar.
4259     QualType next = cur->getLocallyUnqualifiedSingleStepDesugaredType();
4260     if (next.getTypePtr() == cur) return false;
4261     cur = next.getTypePtr();
4262   }
4263 }
4264 
isObjCIndependentClassType() const4265 bool Type::isObjCIndependentClassType() const {
4266   if (const auto *typedefType = dyn_cast<TypedefType>(this))
4267     return typedefType->getDecl()->hasAttr<ObjCIndependentClassAttr>();
4268   return false;
4269 }
4270 
isObjCRetainableType() const4271 bool Type::isObjCRetainableType() const {
4272   return isObjCObjectPointerType() ||
4273          isBlockPointerType() ||
4274          isObjCNSObjectType();
4275 }
4276 
isObjCIndirectLifetimeType() const4277 bool Type::isObjCIndirectLifetimeType() const {
4278   if (isObjCLifetimeType())
4279     return true;
4280   if (const auto *OPT = getAs<PointerType>())
4281     return OPT->getPointeeType()->isObjCIndirectLifetimeType();
4282   if (const auto *Ref = getAs<ReferenceType>())
4283     return Ref->getPointeeType()->isObjCIndirectLifetimeType();
4284   if (const auto *MemPtr = getAs<MemberPointerType>())
4285     return MemPtr->getPointeeType()->isObjCIndirectLifetimeType();
4286   return false;
4287 }
4288 
4289 /// Returns true if objects of this type have lifetime semantics under
4290 /// ARC.
isObjCLifetimeType() const4291 bool Type::isObjCLifetimeType() const {
4292   const Type *type = this;
4293   while (const ArrayType *array = type->getAsArrayTypeUnsafe())
4294     type = array->getElementType().getTypePtr();
4295   return type->isObjCRetainableType();
4296 }
4297 
4298 /// Determine whether the given type T is a "bridgable" Objective-C type,
4299 /// which is either an Objective-C object pointer type or an
isObjCARCBridgableType() const4300 bool Type::isObjCARCBridgableType() const {
4301   return isObjCObjectPointerType() || isBlockPointerType();
4302 }
4303 
4304 /// Determine whether the given type T is a "bridgeable" C type.
isCARCBridgableType() const4305 bool Type::isCARCBridgableType() const {
4306   const auto *Pointer = getAs<PointerType>();
4307   if (!Pointer)
4308     return false;
4309 
4310   QualType Pointee = Pointer->getPointeeType();
4311   return Pointee->isVoidType() || Pointee->isRecordType();
4312 }
4313 
4314 /// Check if the specified type is the CUDA device builtin surface type.
isCUDADeviceBuiltinSurfaceType() const4315 bool Type::isCUDADeviceBuiltinSurfaceType() const {
4316   if (const auto *RT = getAs<RecordType>())
4317     return RT->getDecl()->hasAttr<CUDADeviceBuiltinSurfaceTypeAttr>();
4318   return false;
4319 }
4320 
4321 /// Check if the specified type is the CUDA device builtin texture type.
isCUDADeviceBuiltinTextureType() const4322 bool Type::isCUDADeviceBuiltinTextureType() const {
4323   if (const auto *RT = getAs<RecordType>())
4324     return RT->getDecl()->hasAttr<CUDADeviceBuiltinTextureTypeAttr>();
4325   return false;
4326 }
4327 
hasSizedVLAType() const4328 bool Type::hasSizedVLAType() const {
4329   if (!isVariablyModifiedType()) return false;
4330 
4331   if (const auto *ptr = getAs<PointerType>())
4332     return ptr->getPointeeType()->hasSizedVLAType();
4333   if (const auto *ref = getAs<ReferenceType>())
4334     return ref->getPointeeType()->hasSizedVLAType();
4335   if (const ArrayType *arr = getAsArrayTypeUnsafe()) {
4336     if (isa<VariableArrayType>(arr) &&
4337         cast<VariableArrayType>(arr)->getSizeExpr())
4338       return true;
4339 
4340     return arr->getElementType()->hasSizedVLAType();
4341   }
4342 
4343   return false;
4344 }
4345 
isDestructedTypeImpl(QualType type)4346 QualType::DestructionKind QualType::isDestructedTypeImpl(QualType type) {
4347   switch (type.getObjCLifetime()) {
4348   case Qualifiers::OCL_None:
4349   case Qualifiers::OCL_ExplicitNone:
4350   case Qualifiers::OCL_Autoreleasing:
4351     break;
4352 
4353   case Qualifiers::OCL_Strong:
4354     return DK_objc_strong_lifetime;
4355   case Qualifiers::OCL_Weak:
4356     return DK_objc_weak_lifetime;
4357   }
4358 
4359   if (const auto *RT =
4360           type->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
4361     const RecordDecl *RD = RT->getDecl();
4362     if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
4363       /// Check if this is a C++ object with a non-trivial destructor.
4364       if (CXXRD->hasDefinition() && !CXXRD->hasTrivialDestructor())
4365         return DK_cxx_destructor;
4366     } else {
4367       /// Check if this is a C struct that is non-trivial to destroy or an array
4368       /// that contains such a struct.
4369       if (RD->isNonTrivialToPrimitiveDestroy())
4370         return DK_nontrivial_c_struct;
4371     }
4372   }
4373 
4374   return DK_none;
4375 }
4376 
getMostRecentCXXRecordDecl() const4377 CXXRecordDecl *MemberPointerType::getMostRecentCXXRecordDecl() const {
4378   return getClass()->getAsCXXRecordDecl()->getMostRecentNonInjectedDecl();
4379 }
4380 
FixedPointValueToString(SmallVectorImpl<char> & Str,llvm::APSInt Val,unsigned Scale)4381 void clang::FixedPointValueToString(SmallVectorImpl<char> &Str,
4382                                     llvm::APSInt Val, unsigned Scale) {
4383   llvm::FixedPointSemantics FXSema(Val.getBitWidth(), Scale, Val.isSigned(),
4384                                    /*IsSaturated=*/false,
4385                                    /*HasUnsignedPadding=*/false);
4386   llvm::APFixedPoint(Val, FXSema).toString(Str);
4387 }
4388 
AutoType(QualType DeducedAsType,AutoTypeKeyword Keyword,TypeDependence ExtraDependence,ConceptDecl * TypeConstraintConcept,ArrayRef<TemplateArgument> TypeConstraintArgs)4389 AutoType::AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4390                    TypeDependence ExtraDependence,
4391                    ConceptDecl *TypeConstraintConcept,
4392                    ArrayRef<TemplateArgument> TypeConstraintArgs)
4393     : DeducedType(Auto, DeducedAsType, ExtraDependence) {
4394   AutoTypeBits.Keyword = (unsigned)Keyword;
4395   AutoTypeBits.NumArgs = TypeConstraintArgs.size();
4396   this->TypeConstraintConcept = TypeConstraintConcept;
4397   if (TypeConstraintConcept) {
4398     TemplateArgument *ArgBuffer = getArgBuffer();
4399     for (const TemplateArgument &Arg : TypeConstraintArgs) {
4400       addDependence(
4401           toSyntacticDependence(toTypeDependence(Arg.getDependence())));
4402 
4403       new (ArgBuffer++) TemplateArgument(Arg);
4404     }
4405   }
4406 }
4407 
Profile(llvm::FoldingSetNodeID & ID,const ASTContext & Context,QualType Deduced,AutoTypeKeyword Keyword,bool IsDependent,ConceptDecl * CD,ArrayRef<TemplateArgument> Arguments)4408 void AutoType::Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4409                       QualType Deduced, AutoTypeKeyword Keyword,
4410                       bool IsDependent, ConceptDecl *CD,
4411                       ArrayRef<TemplateArgument> Arguments) {
4412   ID.AddPointer(Deduced.getAsOpaquePtr());
4413   ID.AddInteger((unsigned)Keyword);
4414   ID.AddBoolean(IsDependent);
4415   ID.AddPointer(CD);
4416   for (const TemplateArgument &Arg : Arguments)
4417     Arg.Profile(ID, Context);
4418 }
4419