1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - this file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 ///   [1] Linear-Time Algorithms for Dominators and Related Problems
15 ///   Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 ///   ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// Semi-NCA algorithm runs in O(n^2) worst-case time but usually slightly
19 /// faster than Simple Lengauer-Tarjan in practice.
20 ///
21 /// O(n^2) worst cases happen when the computation of nearest common ancestors
22 /// requires O(n) average time, which is very unlikely in real world. If this
23 /// ever turns out to be an issue, consider implementing a hybrid algorithm
24 /// that uses SLT to perform full constructions and SemiNCA for incremental
25 /// updates.
26 ///
27 /// The file uses the Depth Based Search algorithm to perform incremental
28 /// updates (insertion and deletions). The implemented algorithm is based on
29 /// this publication:
30 ///
31 ///   [2] An Experimental Study of Dynamic Dominators
32 ///   Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
33 ///   https://arxiv.org/pdf/1604.02711.pdf
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
38 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
39 
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseSet.h"
42 #include "llvm/ADT/DepthFirstIterator.h"
43 #include "llvm/ADT/SmallPtrSet.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/GenericDomTree.h"
46 #include <optional>
47 #include <queue>
48 
49 #define DEBUG_TYPE "dom-tree-builder"
50 
51 namespace llvm {
52 namespace DomTreeBuilder {
53 
54 template <typename DomTreeT>
55 struct SemiNCAInfo {
56   using NodePtr = typename DomTreeT::NodePtr;
57   using NodeT = typename DomTreeT::NodeType;
58   using TreeNodePtr = DomTreeNodeBase<NodeT> *;
59   using RootsT = decltype(DomTreeT::Roots);
60   static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
61   using GraphDiffT = GraphDiff<NodePtr, IsPostDom>;
62 
63   // Information record used by Semi-NCA during tree construction.
64   struct InfoRec {
65     unsigned DFSNum = 0;
66     unsigned Parent = 0;
67     unsigned Semi = 0;
68     unsigned Label = 0;
69     NodePtr IDom = nullptr;
70     SmallVector<unsigned, 4> ReverseChildren;
71   };
72 
73   // Number to node mapping is 1-based. Initialize the mapping to start with
74   // a dummy element.
75   std::vector<NodePtr> NumToNode = {nullptr};
76   DenseMap<NodePtr, InfoRec> NodeToInfo;
77 
78   using UpdateT = typename DomTreeT::UpdateType;
79   using UpdateKind = typename DomTreeT::UpdateKind;
80   struct BatchUpdateInfo {
81     // Note: Updates inside PreViewCFG are already legalized.
82     BatchUpdateInfo(GraphDiffT &PreViewCFG, GraphDiffT *PostViewCFG = nullptr)
PreViewCFGSemiNCAInfo::BatchUpdateInfo83         : PreViewCFG(PreViewCFG), PostViewCFG(PostViewCFG),
84           NumLegalized(PreViewCFG.getNumLegalizedUpdates()) {}
85 
86     // Remembers if the whole tree was recalculated at some point during the
87     // current batch update.
88     bool IsRecalculated = false;
89     GraphDiffT &PreViewCFG;
90     GraphDiffT *PostViewCFG;
91     const size_t NumLegalized;
92   };
93 
94   BatchUpdateInfo *BatchUpdates;
95   using BatchUpdatePtr = BatchUpdateInfo *;
96 
97   // If BUI is a nullptr, then there's no batch update in progress.
SemiNCAInfoSemiNCAInfo98   SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
99 
clearSemiNCAInfo100   void clear() {
101     NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
102     NodeToInfo.clear();
103     // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
104     // in progress, we need this information to continue it.
105   }
106 
107   template <bool Inversed>
getChildrenSemiNCAInfo108   static SmallVector<NodePtr, 8> getChildren(NodePtr N, BatchUpdatePtr BUI) {
109     if (BUI)
110       return BUI->PreViewCFG.template getChildren<Inversed>(N);
111     return getChildren<Inversed>(N);
112   }
113 
114   template <bool Inversed>
getChildrenSemiNCAInfo115   static SmallVector<NodePtr, 8> getChildren(NodePtr N) {
116     using DirectedNodeT =
117         std::conditional_t<Inversed, Inverse<NodePtr>, NodePtr>;
118     auto R = children<DirectedNodeT>(N);
119     SmallVector<NodePtr, 8> Res(detail::reverse_if<!Inversed>(R));
120 
121     // Remove nullptr children for clang.
122     llvm::erase(Res, nullptr);
123     return Res;
124   }
125 
getIDomSemiNCAInfo126   NodePtr getIDom(NodePtr BB) const {
127     auto InfoIt = NodeToInfo.find(BB);
128     if (InfoIt == NodeToInfo.end()) return nullptr;
129 
130     return InfoIt->second.IDom;
131   }
132 
getNodeForBlockSemiNCAInfo133   TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
134     if (TreeNodePtr Node = DT.getNode(BB)) return Node;
135 
136     // Haven't calculated this node yet?  Get or calculate the node for the
137     // immediate dominator.
138     NodePtr IDom = getIDom(BB);
139 
140     assert(IDom || DT.DomTreeNodes[nullptr]);
141     TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
142 
143     // Add a new tree node for this NodeT, and link it as a child of
144     // IDomNode
145     return DT.createChild(BB, IDomNode);
146   }
147 
AlwaysDescendSemiNCAInfo148   static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
149 
150   struct BlockNamePrinter {
151     NodePtr N;
152 
BlockNamePrinterSemiNCAInfo::BlockNamePrinter153     BlockNamePrinter(NodePtr Block) : N(Block) {}
BlockNamePrinterSemiNCAInfo::BlockNamePrinter154     BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
155 
156     friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
157       if (!BP.N)
158         O << "nullptr";
159       else
160         BP.N->printAsOperand(O, false);
161 
162       return O;
163     }
164   };
165 
166   using NodeOrderMap = DenseMap<NodePtr, unsigned>;
167 
168   // Custom DFS implementation which can skip nodes based on a provided
169   // predicate. It also collects ReverseChildren so that we don't have to spend
170   // time getting predecessors in SemiNCA.
171   //
172   // If IsReverse is set to true, the DFS walk will be performed backwards
173   // relative to IsPostDom -- using reverse edges for dominators and forward
174   // edges for postdominators.
175   //
176   // If SuccOrder is specified then in this order the DFS traverses the children
177   // otherwise the order is implied by the results of getChildren().
178   template <bool IsReverse = false, typename DescendCondition>
179   unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
180                   unsigned AttachToNum,
181                   const NodeOrderMap *SuccOrder = nullptr) {
182     assert(V);
183     SmallVector<NodePtr, 64> WorkList = {V};
184     NodeToInfo[V].Parent = AttachToNum;
185 
186     while (!WorkList.empty()) {
187       const NodePtr BB = WorkList.pop_back_val();
188       auto &BBInfo = NodeToInfo[BB];
189 
190       // Visited nodes always have positive DFS numbers.
191       if (BBInfo.DFSNum != 0) continue;
192       BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = ++LastNum;
193       NumToNode.push_back(BB);
194 
195       constexpr bool Direction = IsReverse != IsPostDom;  // XOR.
196       auto Successors = getChildren<Direction>(BB, BatchUpdates);
197       if (SuccOrder && Successors.size() > 1)
198         llvm::sort(
199             Successors.begin(), Successors.end(), [=](NodePtr A, NodePtr B) {
200               return SuccOrder->find(A)->second < SuccOrder->find(B)->second;
201             });
202 
203       for (const NodePtr Succ : Successors) {
204         const auto SIT = NodeToInfo.find(Succ);
205         // Don't visit nodes more than once but remember to collect
206         // ReverseChildren.
207         if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
208           if (Succ != BB) SIT->second.ReverseChildren.push_back(LastNum);
209           continue;
210         }
211 
212         if (!Condition(BB, Succ)) continue;
213 
214         // It's fine to add Succ to the map, because we know that it will be
215         // visited later.
216         auto &SuccInfo = NodeToInfo[Succ];
217         WorkList.push_back(Succ);
218         SuccInfo.Parent = LastNum;
219         SuccInfo.ReverseChildren.push_back(LastNum);
220       }
221     }
222 
223     return LastNum;
224   }
225 
226   // V is a predecessor of W. eval() returns V if V < W, otherwise the minimum
227   // of sdom(U), where U > W and there is a virtual forest path from U to V. The
228   // virtual forest consists of linked edges of processed vertices.
229   //
230   // We can follow Parent pointers (virtual forest edges) to determine the
231   // ancestor U with minimum sdom(U). But it is slow and thus we employ the path
232   // compression technique to speed up to O(m*log(n)). Theoretically the virtual
233   // forest can be organized as balanced trees to achieve almost linear
234   // O(m*alpha(m,n)) running time. But it requires two auxiliary arrays (Size
235   // and Child) and is unlikely to be faster than the simple implementation.
236   //
237   // For each vertex V, its Label points to the vertex with the minimal sdom(U)
238   // (Semi) in its path from V (included) to NodeToInfo[V].Parent (excluded).
evalSemiNCAInfo239   unsigned eval(unsigned V, unsigned LastLinked,
240                 SmallVectorImpl<InfoRec *> &Stack,
241                 ArrayRef<InfoRec *> NumToInfo) {
242     InfoRec *VInfo = NumToInfo[V];
243     if (VInfo->Parent < LastLinked)
244       return VInfo->Label;
245 
246     // Store ancestors except the last (root of a virtual tree) into a stack.
247     assert(Stack.empty());
248     do {
249       Stack.push_back(VInfo);
250       VInfo = NumToInfo[VInfo->Parent];
251     } while (VInfo->Parent >= LastLinked);
252 
253     // Path compression. Point each vertex's Parent to the root and update its
254     // Label if any of its ancestors (PInfo->Label) has a smaller Semi.
255     const InfoRec *PInfo = VInfo;
256     const InfoRec *PLabelInfo = NumToInfo[PInfo->Label];
257     do {
258       VInfo = Stack.pop_back_val();
259       VInfo->Parent = PInfo->Parent;
260       const InfoRec *VLabelInfo = NumToInfo[VInfo->Label];
261       if (PLabelInfo->Semi < VLabelInfo->Semi)
262         VInfo->Label = PInfo->Label;
263       else
264         PLabelInfo = VLabelInfo;
265       PInfo = VInfo;
266     } while (!Stack.empty());
267     return VInfo->Label;
268   }
269 
270   // This function requires DFS to be run before calling it.
runSemiNCASemiNCAInfo271   void runSemiNCA() {
272     const unsigned NextDFSNum(NumToNode.size());
273     SmallVector<InfoRec *, 8> NumToInfo = {nullptr};
274     NumToInfo.reserve(NextDFSNum);
275     // Initialize IDoms to spanning tree parents.
276     for (unsigned i = 1; i < NextDFSNum; ++i) {
277       const NodePtr V = NumToNode[i];
278       auto &VInfo = NodeToInfo[V];
279       VInfo.IDom = NumToNode[VInfo.Parent];
280       NumToInfo.push_back(&VInfo);
281     }
282 
283     // Step #1: Calculate the semidominators of all vertices.
284     SmallVector<InfoRec *, 32> EvalStack;
285     for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
286       auto &WInfo = *NumToInfo[i];
287 
288       // Initialize the semi dominator to point to the parent node.
289       WInfo.Semi = WInfo.Parent;
290       for (unsigned N : WInfo.ReverseChildren) {
291         unsigned SemiU = NumToInfo[eval(N, i + 1, EvalStack, NumToInfo)]->Semi;
292         if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
293       }
294     }
295 
296     // Step #2: Explicitly define the immediate dominator of each vertex.
297     //          IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
298     // Note that the parents were stored in IDoms and later got invalidated
299     // during path compression in Eval.
300     for (unsigned i = 2; i < NextDFSNum; ++i) {
301       auto &WInfo = *NumToInfo[i];
302       assert(WInfo.Semi != 0);
303       const unsigned SDomNum = NumToInfo[WInfo.Semi]->DFSNum;
304       NodePtr WIDomCandidate = WInfo.IDom;
305       while (true) {
306         auto &WIDomCandidateInfo = NodeToInfo.find(WIDomCandidate)->second;
307         if (WIDomCandidateInfo.DFSNum <= SDomNum)
308           break;
309         WIDomCandidate = WIDomCandidateInfo.IDom;
310       }
311 
312       WInfo.IDom = WIDomCandidate;
313     }
314   }
315 
316   // PostDominatorTree always has a virtual root that represents a virtual CFG
317   // node that serves as a single exit from the function. All the other exits
318   // (CFG nodes with terminators and nodes in infinite loops are logically
319   // connected to this virtual CFG exit node).
320   // This functions maps a nullptr CFG node to the virtual root tree node.
addVirtualRootSemiNCAInfo321   void addVirtualRoot() {
322     assert(IsPostDom && "Only postdominators have a virtual root");
323     assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
324 
325     auto &BBInfo = NodeToInfo[nullptr];
326     BBInfo.DFSNum = BBInfo.Semi = BBInfo.Label = 1;
327 
328     NumToNode.push_back(nullptr);  // NumToNode[1] = nullptr;
329   }
330 
331   // For postdominators, nodes with no forward successors are trivial roots that
332   // are always selected as tree roots. Roots with forward successors correspond
333   // to CFG nodes within infinite loops.
HasForwardSuccessorsSemiNCAInfo334   static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
335     assert(N && "N must be a valid node");
336     return !getChildren<false>(N, BUI).empty();
337   }
338 
GetEntryNodeSemiNCAInfo339   static NodePtr GetEntryNode(const DomTreeT &DT) {
340     assert(DT.Parent && "Parent not set");
341     return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
342   }
343 
344   // Finds all roots without relaying on the set of roots already stored in the
345   // tree.
346   // We define roots to be some non-redundant set of the CFG nodes
FindRootsSemiNCAInfo347   static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
348     assert(DT.Parent && "Parent pointer is not set");
349     RootsT Roots;
350 
351     // For dominators, function entry CFG node is always a tree root node.
352     if (!IsPostDom) {
353       Roots.push_back(GetEntryNode(DT));
354       return Roots;
355     }
356 
357     SemiNCAInfo SNCA(BUI);
358 
359     // PostDominatorTree always has a virtual root.
360     SNCA.addVirtualRoot();
361     unsigned Num = 1;
362 
363     LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
364 
365     // Step #1: Find all the trivial roots that are going to will definitely
366     // remain tree roots.
367     unsigned Total = 0;
368     // It may happen that there are some new nodes in the CFG that are result of
369     // the ongoing batch update, but we cannot really pretend that they don't
370     // exist -- we won't see any outgoing or incoming edges to them, so it's
371     // fine to discover them here, as they would end up appearing in the CFG at
372     // some point anyway.
373     for (const NodePtr N : nodes(DT.Parent)) {
374       ++Total;
375       // If it has no *successors*, it is definitely a root.
376       if (!HasForwardSuccessors(N, BUI)) {
377         Roots.push_back(N);
378         // Run DFS not to walk this part of CFG later.
379         Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
380         LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
381                           << "\n");
382         LLVM_DEBUG(dbgs() << "Last visited node: "
383                           << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
384       }
385     }
386 
387     LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
388 
389     // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
390     // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
391     // nodes in infinite loops).
392     bool HasNonTrivialRoots = false;
393     // Accounting for the virtual exit, see if we had any reverse-unreachable
394     // nodes.
395     if (Total + 1 != Num) {
396       HasNonTrivialRoots = true;
397 
398       // SuccOrder is the order of blocks in the function. It is needed to make
399       // the calculation of the FurthestAway node and the whole PostDomTree
400       // immune to swap successors transformation (e.g. canonicalizing branch
401       // predicates). SuccOrder is initialized lazily only for successors of
402       // reverse unreachable nodes.
403       std::optional<NodeOrderMap> SuccOrder;
404       auto InitSuccOrderOnce = [&]() {
405         SuccOrder = NodeOrderMap();
406         for (const auto Node : nodes(DT.Parent))
407           if (SNCA.NodeToInfo.count(Node) == 0)
408             for (const auto Succ : getChildren<false>(Node, SNCA.BatchUpdates))
409               SuccOrder->try_emplace(Succ, 0);
410 
411         // Add mapping for all entries of SuccOrder.
412         unsigned NodeNum = 0;
413         for (const auto Node : nodes(DT.Parent)) {
414           ++NodeNum;
415           auto Order = SuccOrder->find(Node);
416           if (Order != SuccOrder->end()) {
417             assert(Order->second == 0);
418             Order->second = NodeNum;
419           }
420         }
421       };
422 
423       // Make another DFS pass over all other nodes to find the
424       // reverse-unreachable blocks, and find the furthest paths we'll be able
425       // to make.
426       // Note that this looks N^2, but it's really 2N worst case, if every node
427       // is unreachable. This is because we are still going to only visit each
428       // unreachable node once, we may just visit it in two directions,
429       // depending on how lucky we get.
430       for (const NodePtr I : nodes(DT.Parent)) {
431         if (SNCA.NodeToInfo.count(I) == 0) {
432           LLVM_DEBUG(dbgs()
433                      << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
434           // Find the furthest away we can get by following successors, then
435           // follow them in reverse.  This gives us some reasonable answer about
436           // the post-dom tree inside any infinite loop. In particular, it
437           // guarantees we get to the farthest away point along *some*
438           // path. This also matches the GCC's behavior.
439           // If we really wanted a totally complete picture of dominance inside
440           // this infinite loop, we could do it with SCC-like algorithms to find
441           // the lowest and highest points in the infinite loop.  In theory, it
442           // would be nice to give the canonical backedge for the loop, but it's
443           // expensive and does not always lead to a minimal set of roots.
444           LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
445 
446           if (!SuccOrder)
447             InitSuccOrderOnce();
448           assert(SuccOrder);
449 
450           const unsigned NewNum =
451               SNCA.runDFS<true>(I, Num, AlwaysDescend, Num, &*SuccOrder);
452           const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
453           LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
454                             << "(non-trivial root): "
455                             << BlockNamePrinter(FurthestAway) << "\n");
456           Roots.push_back(FurthestAway);
457           LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
458                             << NewNum << "\n\t\t\tRemoving DFS info\n");
459           for (unsigned i = NewNum; i > Num; --i) {
460             const NodePtr N = SNCA.NumToNode[i];
461             LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
462                               << BlockNamePrinter(N) << "\n");
463             SNCA.NodeToInfo.erase(N);
464             SNCA.NumToNode.pop_back();
465           }
466           const unsigned PrevNum = Num;
467           LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
468           Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
469           for (unsigned i = PrevNum + 1; i <= Num; ++i)
470             LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
471                               << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
472         }
473       }
474     }
475 
476     LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
477     LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
478     LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
479                << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
480 
481     assert((Total + 1 == Num) && "Everything should have been visited");
482 
483     // Step #3: If we found some non-trivial roots, make them non-redundant.
484     if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
485 
486     LLVM_DEBUG(dbgs() << "Found roots: ");
487     LLVM_DEBUG(for (auto *Root
488                     : Roots) dbgs()
489                << BlockNamePrinter(Root) << " ");
490     LLVM_DEBUG(dbgs() << "\n");
491 
492     return Roots;
493   }
494 
495   // This function only makes sense for postdominators.
496   // We define roots to be some set of CFG nodes where (reverse) DFS walks have
497   // to start in order to visit all the CFG nodes (including the
498   // reverse-unreachable ones).
499   // When the search for non-trivial roots is done it may happen that some of
500   // the non-trivial roots are reverse-reachable from other non-trivial roots,
501   // which makes them redundant. This function removes them from the set of
502   // input roots.
RemoveRedundantRootsSemiNCAInfo503   static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
504                                    RootsT &Roots) {
505     assert(IsPostDom && "This function is for postdominators only");
506     LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
507 
508     SemiNCAInfo SNCA(BUI);
509 
510     for (unsigned i = 0; i < Roots.size(); ++i) {
511       auto &Root = Roots[i];
512       // Trivial roots are always non-redundant.
513       if (!HasForwardSuccessors(Root, BUI)) continue;
514       LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
515                         << " remains a root\n");
516       SNCA.clear();
517       // Do a forward walk looking for the other roots.
518       const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
519       // Skip the start node and begin from the second one (note that DFS uses
520       // 1-based indexing).
521       for (unsigned x = 2; x <= Num; ++x) {
522         const NodePtr N = SNCA.NumToNode[x];
523         // If we wound another root in a (forward) DFS walk, remove the current
524         // root from the set of roots, as it is reverse-reachable from the other
525         // one.
526         if (llvm::is_contained(Roots, N)) {
527           LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
528                             << BlockNamePrinter(N) << "\n\tRemoving root "
529                             << BlockNamePrinter(Root) << "\n");
530           std::swap(Root, Roots.back());
531           Roots.pop_back();
532 
533           // Root at the back takes the current root's place.
534           // Start the next loop iteration with the same index.
535           --i;
536           break;
537         }
538       }
539     }
540   }
541 
542   template <typename DescendCondition>
doFullDFSWalkSemiNCAInfo543   void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
544     if (!IsPostDom) {
545       assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
546       runDFS(DT.Roots[0], 0, DC, 0);
547       return;
548     }
549 
550     addVirtualRoot();
551     unsigned Num = 1;
552     for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 1);
553   }
554 
CalculateFromScratchSemiNCAInfo555   static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
556     auto *Parent = DT.Parent;
557     DT.reset();
558     DT.Parent = Parent;
559     // If the update is using the actual CFG, BUI is null. If it's using a view,
560     // BUI is non-null and the PreCFGView is used. When calculating from
561     // scratch, make the PreViewCFG equal to the PostCFGView, so Post is used.
562     BatchUpdatePtr PostViewBUI = nullptr;
563     if (BUI && BUI->PostViewCFG) {
564       BUI->PreViewCFG = *BUI->PostViewCFG;
565       PostViewBUI = BUI;
566     }
567     // This is rebuilding the whole tree, not incrementally, but PostViewBUI is
568     // used in case the caller needs a DT update with a CFGView.
569     SemiNCAInfo SNCA(PostViewBUI);
570 
571     // Step #0: Number blocks in depth-first order and initialize variables used
572     // in later stages of the algorithm.
573     DT.Roots = FindRoots(DT, PostViewBUI);
574     SNCA.doFullDFSWalk(DT, AlwaysDescend);
575 
576     SNCA.runSemiNCA();
577     if (BUI) {
578       BUI->IsRecalculated = true;
579       LLVM_DEBUG(
580           dbgs() << "DomTree recalculated, skipping future batch updates\n");
581     }
582 
583     if (DT.Roots.empty()) return;
584 
585     // Add a node for the root. If the tree is a PostDominatorTree it will be
586     // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
587     // all real exits (including multiple exit blocks, infinite loops).
588     NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
589 
590     DT.RootNode = DT.createNode(Root);
591     SNCA.attachNewSubtree(DT, DT.RootNode);
592   }
593 
attachNewSubtreeSemiNCAInfo594   void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
595     // Attach the first unreachable block to AttachTo.
596     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
597     // Loop over all of the discovered blocks in the function...
598     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
599       NodePtr W = NumToNode[i];
600 
601       // Don't replace this with 'count', the insertion side effect is important
602       if (DT.DomTreeNodes[W]) continue;  // Haven't calculated this node yet?
603 
604       NodePtr ImmDom = getIDom(W);
605 
606       // Get or calculate the node for the immediate dominator.
607       TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
608 
609       // Add a new tree node for this BasicBlock, and link it as a child of
610       // IDomNode.
611       DT.createChild(W, IDomNode);
612     }
613   }
614 
reattachExistingSubtreeSemiNCAInfo615   void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
616     NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
617     for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
618       const NodePtr N = NumToNode[i];
619       const TreeNodePtr TN = DT.getNode(N);
620       assert(TN);
621       const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
622       TN->setIDom(NewIDom);
623     }
624   }
625 
626   // Helper struct used during edge insertions.
627   struct InsertionInfo {
628     struct Compare {
operatorSemiNCAInfo::InsertionInfo::Compare629       bool operator()(TreeNodePtr LHS, TreeNodePtr RHS) const {
630         return LHS->getLevel() < RHS->getLevel();
631       }
632     };
633 
634     // Bucket queue of tree nodes ordered by descending level. For simplicity,
635     // we use a priority_queue here.
636     std::priority_queue<TreeNodePtr, SmallVector<TreeNodePtr, 8>,
637                         Compare>
638         Bucket;
639     SmallDenseSet<TreeNodePtr, 8> Visited;
640     SmallVector<TreeNodePtr, 8> Affected;
641 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
642     SmallVector<TreeNodePtr, 8> VisitedUnaffected;
643 #endif
644   };
645 
InsertEdgeSemiNCAInfo646   static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
647                          const NodePtr From, const NodePtr To) {
648     assert((From || IsPostDom) &&
649            "From has to be a valid CFG node or a virtual root");
650     assert(To && "Cannot be a nullptr");
651     LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
652                       << BlockNamePrinter(To) << "\n");
653     TreeNodePtr FromTN = DT.getNode(From);
654 
655     if (!FromTN) {
656       // Ignore edges from unreachable nodes for (forward) dominators.
657       if (!IsPostDom) return;
658 
659       // The unreachable node becomes a new root -- a tree node for it.
660       TreeNodePtr VirtualRoot = DT.getNode(nullptr);
661       FromTN = DT.createChild(From, VirtualRoot);
662       DT.Roots.push_back(From);
663     }
664 
665     DT.DFSInfoValid = false;
666 
667     const TreeNodePtr ToTN = DT.getNode(To);
668     if (!ToTN)
669       InsertUnreachable(DT, BUI, FromTN, To);
670     else
671       InsertReachable(DT, BUI, FromTN, ToTN);
672   }
673 
674   // Determines if some existing root becomes reverse-reachable after the
675   // insertion. Rebuilds the whole tree if that situation happens.
UpdateRootsBeforeInsertionSemiNCAInfo676   static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
677                                          const TreeNodePtr From,
678                                          const TreeNodePtr To) {
679     assert(IsPostDom && "This function is only for postdominators");
680     // Destination node is not attached to the virtual root, so it cannot be a
681     // root.
682     if (!DT.isVirtualRoot(To->getIDom())) return false;
683 
684     if (!llvm::is_contained(DT.Roots, To->getBlock()))
685       return false;  // To is not a root, nothing to update.
686 
687     LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
688                       << " is no longer a root\n\t\tRebuilding the tree!!!\n");
689 
690     CalculateFromScratch(DT, BUI);
691     return true;
692   }
693 
isPermutationSemiNCAInfo694   static bool isPermutation(const SmallVectorImpl<NodePtr> &A,
695                             const SmallVectorImpl<NodePtr> &B) {
696     if (A.size() != B.size())
697       return false;
698     SmallPtrSet<NodePtr, 4> Set(A.begin(), A.end());
699     for (NodePtr N : B)
700       if (Set.count(N) == 0)
701         return false;
702     return true;
703   }
704 
705   // Updates the set of roots after insertion or deletion. This ensures that
706   // roots are the same when after a series of updates and when the tree would
707   // be built from scratch.
UpdateRootsAfterUpdateSemiNCAInfo708   static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
709     assert(IsPostDom && "This function is only for postdominators");
710 
711     // The tree has only trivial roots -- nothing to update.
712     if (llvm::none_of(DT.Roots, [BUI](const NodePtr N) {
713           return HasForwardSuccessors(N, BUI);
714         }))
715       return;
716 
717     // Recalculate the set of roots.
718     RootsT Roots = FindRoots(DT, BUI);
719     if (!isPermutation(DT.Roots, Roots)) {
720       // The roots chosen in the CFG have changed. This is because the
721       // incremental algorithm does not really know or use the set of roots and
722       // can make a different (implicit) decision about which node within an
723       // infinite loop becomes a root.
724 
725       LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
726                         << "The entire tree needs to be rebuilt\n");
727       // It may be possible to update the tree without recalculating it, but
728       // we do not know yet how to do it, and it happens rarely in practice.
729       CalculateFromScratch(DT, BUI);
730     }
731   }
732 
733   // Handles insertion to a node already in the dominator tree.
InsertReachableSemiNCAInfo734   static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
735                               const TreeNodePtr From, const TreeNodePtr To) {
736     LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
737                       << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
738     if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
739     // DT.findNCD expects both pointers to be valid. When From is a virtual
740     // root, then its CFG block pointer is a nullptr, so we have to 'compute'
741     // the NCD manually.
742     const NodePtr NCDBlock =
743         (From->getBlock() && To->getBlock())
744             ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
745             : nullptr;
746     assert(NCDBlock || DT.isPostDominator());
747     const TreeNodePtr NCD = DT.getNode(NCDBlock);
748     assert(NCD);
749 
750     LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
751     const unsigned NCDLevel = NCD->getLevel();
752 
753     // Based on Lemma 2.5 from [2], after insertion of (From,To), v is affected
754     // iff depth(NCD)+1 < depth(v) && a path P from To to v exists where every
755     // w on P s.t. depth(v) <= depth(w)
756     //
757     // This reduces to a widest path problem (maximizing the depth of the
758     // minimum vertex in the path) which can be solved by a modified version of
759     // Dijkstra with a bucket queue (named depth-based search in [2]).
760 
761     // To is in the path, so depth(NCD)+1 < depth(v) <= depth(To). Nothing
762     // affected if this does not hold.
763     if (NCDLevel + 1 >= To->getLevel())
764       return;
765 
766     InsertionInfo II;
767     SmallVector<TreeNodePtr, 8> UnaffectedOnCurrentLevel;
768     II.Bucket.push(To);
769     II.Visited.insert(To);
770 
771     while (!II.Bucket.empty()) {
772       TreeNodePtr TN = II.Bucket.top();
773       II.Bucket.pop();
774       II.Affected.push_back(TN);
775 
776       const unsigned CurrentLevel = TN->getLevel();
777       LLVM_DEBUG(dbgs() << "Mark " << BlockNamePrinter(TN) <<
778                  "as affected, CurrentLevel " << CurrentLevel << "\n");
779 
780       assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
781 
782       while (true) {
783         // Unlike regular Dijkstra, we have an inner loop to expand more
784         // vertices. The first iteration is for the (affected) vertex popped
785         // from II.Bucket and the rest are for vertices in
786         // UnaffectedOnCurrentLevel, which may eventually expand to affected
787         // vertices.
788         //
789         // Invariant: there is an optimal path from `To` to TN with the minimum
790         // depth being CurrentLevel.
791         for (const NodePtr Succ : getChildren<IsPostDom>(TN->getBlock(), BUI)) {
792           const TreeNodePtr SuccTN = DT.getNode(Succ);
793           assert(SuccTN &&
794                  "Unreachable successor found at reachable insertion");
795           const unsigned SuccLevel = SuccTN->getLevel();
796 
797           LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
798                             << ", level = " << SuccLevel << "\n");
799 
800           // There is an optimal path from `To` to Succ with the minimum depth
801           // being min(CurrentLevel, SuccLevel).
802           //
803           // If depth(NCD)+1 < depth(Succ) is not satisfied, Succ is unaffected
804           // and no affected vertex may be reached by a path passing through it.
805           // Stop here. Also, Succ may be visited by other predecessors but the
806           // first visit has the optimal path. Stop if Succ has been visited.
807           if (SuccLevel <= NCDLevel + 1 || !II.Visited.insert(SuccTN).second)
808             continue;
809 
810           if (SuccLevel > CurrentLevel) {
811             // Succ is unaffected but it may (transitively) expand to affected
812             // vertices. Store it in UnaffectedOnCurrentLevel.
813             LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
814                               << BlockNamePrinter(Succ) << "\n");
815             UnaffectedOnCurrentLevel.push_back(SuccTN);
816 #ifndef NDEBUG
817             II.VisitedUnaffected.push_back(SuccTN);
818 #endif
819           } else {
820             // The condition is satisfied (Succ is affected). Add Succ to the
821             // bucket queue.
822             LLVM_DEBUG(dbgs() << "\t\tAdd " << BlockNamePrinter(Succ)
823                               << " to a Bucket\n");
824             II.Bucket.push(SuccTN);
825           }
826         }
827 
828         if (UnaffectedOnCurrentLevel.empty())
829           break;
830         TN = UnaffectedOnCurrentLevel.pop_back_val();
831         LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(TN) << "\n");
832       }
833     }
834 
835     // Finish by updating immediate dominators and levels.
836     UpdateInsertion(DT, BUI, NCD, II);
837   }
838 
839   // Updates immediate dominators and levels after insertion.
UpdateInsertionSemiNCAInfo840   static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
841                               const TreeNodePtr NCD, InsertionInfo &II) {
842     LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
843 
844     for (const TreeNodePtr TN : II.Affected) {
845       LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
846                         << ") = " << BlockNamePrinter(NCD) << "\n");
847       TN->setIDom(NCD);
848     }
849 
850 #if defined(LLVM_ENABLE_ABI_BREAKING_CHECKS) && !defined(NDEBUG)
851     for (const TreeNodePtr TN : II.VisitedUnaffected)
852       assert(TN->getLevel() == TN->getIDom()->getLevel() + 1 &&
853              "TN should have been updated by an affected ancestor");
854 #endif
855 
856     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
857   }
858 
859   // Handles insertion to previously unreachable nodes.
InsertUnreachableSemiNCAInfo860   static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
861                                 const TreeNodePtr From, const NodePtr To) {
862     LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
863                       << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
864 
865     // Collect discovered edges to already reachable nodes.
866     SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
867     // Discover and connect nodes that became reachable with the insertion.
868     ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
869 
870     LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
871                       << " -> (prev unreachable) " << BlockNamePrinter(To)
872                       << "\n");
873 
874     // Used the discovered edges and inset discovered connecting (incoming)
875     // edges.
876     for (const auto &Edge : DiscoveredEdgesToReachable) {
877       LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
878                         << BlockNamePrinter(Edge.first) << " -> "
879                         << BlockNamePrinter(Edge.second) << "\n");
880       InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
881     }
882   }
883 
884   // Connects nodes that become reachable with an insertion.
ComputeUnreachableDominatorsSemiNCAInfo885   static void ComputeUnreachableDominators(
886       DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
887       const TreeNodePtr Incoming,
888       SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
889           &DiscoveredConnectingEdges) {
890     assert(!DT.getNode(Root) && "Root must not be reachable");
891 
892     // Visit only previously unreachable nodes.
893     auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
894                                                                   NodePtr To) {
895       const TreeNodePtr ToTN = DT.getNode(To);
896       if (!ToTN) return true;
897 
898       DiscoveredConnectingEdges.push_back({From, ToTN});
899       return false;
900     };
901 
902     SemiNCAInfo SNCA(BUI);
903     SNCA.runDFS(Root, 0, UnreachableDescender, 0);
904     SNCA.runSemiNCA();
905     SNCA.attachNewSubtree(DT, Incoming);
906 
907     LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
908   }
909 
DeleteEdgeSemiNCAInfo910   static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
911                          const NodePtr From, const NodePtr To) {
912     assert(From && To && "Cannot disconnect nullptrs");
913     LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
914                       << BlockNamePrinter(To) << "\n");
915 
916 #ifdef LLVM_ENABLE_ABI_BREAKING_CHECKS
917     // Ensure that the edge was in fact deleted from the CFG before informing
918     // the DomTree about it.
919     // The check is O(N), so run it only in debug configuration.
920     auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
921       auto Successors = getChildren<IsPostDom>(Of, BUI);
922       return llvm::is_contained(Successors, SuccCandidate);
923     };
924     (void)IsSuccessor;
925     assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
926 #endif
927 
928     const TreeNodePtr FromTN = DT.getNode(From);
929     // Deletion in an unreachable subtree -- nothing to do.
930     if (!FromTN) return;
931 
932     const TreeNodePtr ToTN = DT.getNode(To);
933     if (!ToTN) {
934       LLVM_DEBUG(
935           dbgs() << "\tTo (" << BlockNamePrinter(To)
936                  << ") already unreachable -- there is no edge to delete\n");
937       return;
938     }
939 
940     const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
941     const TreeNodePtr NCD = DT.getNode(NCDBlock);
942 
943     // If To dominates From -- nothing to do.
944     if (ToTN != NCD) {
945       DT.DFSInfoValid = false;
946 
947       const TreeNodePtr ToIDom = ToTN->getIDom();
948       LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
949                         << BlockNamePrinter(ToIDom) << "\n");
950 
951       // To remains reachable after deletion.
952       // (Based on the caption under Figure 4. from [2].)
953       if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
954         DeleteReachable(DT, BUI, FromTN, ToTN);
955       else
956         DeleteUnreachable(DT, BUI, ToTN);
957     }
958 
959     if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
960   }
961 
962   // Handles deletions that leave destination nodes reachable.
DeleteReachableSemiNCAInfo963   static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
964                               const TreeNodePtr FromTN,
965                               const TreeNodePtr ToTN) {
966     LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
967                       << " -> " << BlockNamePrinter(ToTN) << "\n");
968     LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
969 
970     // Find the top of the subtree that needs to be rebuilt.
971     // (Based on the lemma 2.6 from [2].)
972     const NodePtr ToIDom =
973         DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
974     assert(ToIDom || DT.isPostDominator());
975     const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
976     assert(ToIDomTN);
977     const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
978     // Top of the subtree to rebuild is the root node. Rebuild the tree from
979     // scratch.
980     if (!PrevIDomSubTree) {
981       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
982       CalculateFromScratch(DT, BUI);
983       return;
984     }
985 
986     // Only visit nodes in the subtree starting at To.
987     const unsigned Level = ToIDomTN->getLevel();
988     auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
989       return DT.getNode(To)->getLevel() > Level;
990     };
991 
992     LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
993                       << "\n");
994 
995     SemiNCAInfo SNCA(BUI);
996     SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
997     LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
998     SNCA.runSemiNCA();
999     SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1000   }
1001 
1002   // Checks if a node has proper support, as defined on the page 3 and later
1003   // explained on the page 7 of [2].
HasProperSupportSemiNCAInfo1004   static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1005                                const TreeNodePtr TN) {
1006     LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1007                       << "\n");
1008     auto TNB = TN->getBlock();
1009     for (const NodePtr Pred : getChildren<!IsPostDom>(TNB, BUI)) {
1010       LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1011       if (!DT.getNode(Pred)) continue;
1012 
1013       const NodePtr Support = DT.findNearestCommonDominator(TNB, Pred);
1014       LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1015       if (Support != TNB) {
1016         LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1017                           << " is reachable from support "
1018                           << BlockNamePrinter(Support) << "\n");
1019         return true;
1020       }
1021     }
1022 
1023     return false;
1024   }
1025 
1026   // Handle deletions that make destination node unreachable.
1027   // (Based on the lemma 2.7 from the [2].)
DeleteUnreachableSemiNCAInfo1028   static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1029                                 const TreeNodePtr ToTN) {
1030     LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1031                       << BlockNamePrinter(ToTN) << "\n");
1032     assert(ToTN);
1033     assert(ToTN->getBlock());
1034 
1035     if (IsPostDom) {
1036       // Deletion makes a region reverse-unreachable and creates a new root.
1037       // Simulate that by inserting an edge from the virtual root to ToTN and
1038       // adding it as a new root.
1039       LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1040       LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1041                         << "\n");
1042       DT.Roots.push_back(ToTN->getBlock());
1043       InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1044       return;
1045     }
1046 
1047     SmallVector<NodePtr, 16> AffectedQueue;
1048     const unsigned Level = ToTN->getLevel();
1049 
1050     // Traverse destination node's descendants with greater level in the tree
1051     // and collect visited nodes.
1052     auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1053       const TreeNodePtr TN = DT.getNode(To);
1054       assert(TN);
1055       if (TN->getLevel() > Level) return true;
1056       if (!llvm::is_contained(AffectedQueue, To))
1057         AffectedQueue.push_back(To);
1058 
1059       return false;
1060     };
1061 
1062     SemiNCAInfo SNCA(BUI);
1063     unsigned LastDFSNum =
1064         SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1065 
1066     TreeNodePtr MinNode = ToTN;
1067 
1068     // Identify the top of the subtree to rebuild by finding the NCD of all
1069     // the affected nodes.
1070     for (const NodePtr N : AffectedQueue) {
1071       const TreeNodePtr TN = DT.getNode(N);
1072       const NodePtr NCDBlock =
1073           DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1074       assert(NCDBlock || DT.isPostDominator());
1075       const TreeNodePtr NCD = DT.getNode(NCDBlock);
1076       assert(NCD);
1077 
1078       LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1079                         << " with NCD = " << BlockNamePrinter(NCD)
1080                         << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1081       if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1082     }
1083 
1084     // Root reached, rebuild the whole tree from scratch.
1085     if (!MinNode->getIDom()) {
1086       LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1087       CalculateFromScratch(DT, BUI);
1088       return;
1089     }
1090 
1091     // Erase the unreachable subtree in reverse preorder to process all children
1092     // before deleting their parent.
1093     for (unsigned i = LastDFSNum; i > 0; --i) {
1094       const NodePtr N = SNCA.NumToNode[i];
1095       const TreeNodePtr TN = DT.getNode(N);
1096       LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1097 
1098       EraseNode(DT, TN);
1099     }
1100 
1101     // The affected subtree start at the To node -- there's no extra work to do.
1102     if (MinNode == ToTN) return;
1103 
1104     LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1105                       << BlockNamePrinter(MinNode) << "\n");
1106     const unsigned MinLevel = MinNode->getLevel();
1107     const TreeNodePtr PrevIDom = MinNode->getIDom();
1108     assert(PrevIDom);
1109     SNCA.clear();
1110 
1111     // Identify nodes that remain in the affected subtree.
1112     auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1113       const TreeNodePtr ToTN = DT.getNode(To);
1114       return ToTN && ToTN->getLevel() > MinLevel;
1115     };
1116     SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1117 
1118     LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1119                       << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1120 
1121     // Rebuild the remaining part of affected subtree.
1122     SNCA.runSemiNCA();
1123     SNCA.reattachExistingSubtree(DT, PrevIDom);
1124   }
1125 
1126   // Removes leaf tree nodes from the dominator tree.
EraseNodeSemiNCAInfo1127   static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1128     assert(TN);
1129     assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1130 
1131     const TreeNodePtr IDom = TN->getIDom();
1132     assert(IDom);
1133 
1134     auto ChIt = llvm::find(IDom->Children, TN);
1135     assert(ChIt != IDom->Children.end());
1136     std::swap(*ChIt, IDom->Children.back());
1137     IDom->Children.pop_back();
1138 
1139     DT.DomTreeNodes.erase(TN->getBlock());
1140   }
1141 
1142   //~~
1143   //===--------------------- DomTree Batch Updater --------------------------===
1144   //~~
1145 
ApplyUpdatesSemiNCAInfo1146   static void ApplyUpdates(DomTreeT &DT, GraphDiffT &PreViewCFG,
1147                            GraphDiffT *PostViewCFG) {
1148     // Note: the PostViewCFG is only used when computing from scratch. It's data
1149     // should already included in the PreViewCFG for incremental updates.
1150     const size_t NumUpdates = PreViewCFG.getNumLegalizedUpdates();
1151     if (NumUpdates == 0)
1152       return;
1153 
1154     // Take the fast path for a single update and avoid running the batch update
1155     // machinery.
1156     if (NumUpdates == 1) {
1157       UpdateT Update = PreViewCFG.popUpdateForIncrementalUpdates();
1158       if (!PostViewCFG) {
1159         if (Update.getKind() == UpdateKind::Insert)
1160           InsertEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1161         else
1162           DeleteEdge(DT, /*BUI=*/nullptr, Update.getFrom(), Update.getTo());
1163       } else {
1164         BatchUpdateInfo BUI(*PostViewCFG, PostViewCFG);
1165         if (Update.getKind() == UpdateKind::Insert)
1166           InsertEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1167         else
1168           DeleteEdge(DT, &BUI, Update.getFrom(), Update.getTo());
1169       }
1170       return;
1171     }
1172 
1173     BatchUpdateInfo BUI(PreViewCFG, PostViewCFG);
1174     // Recalculate the DominatorTree when the number of updates
1175     // exceeds a threshold, which usually makes direct updating slower than
1176     // recalculation. We select this threshold proportional to the
1177     // size of the DominatorTree. The constant is selected
1178     // by choosing the one with an acceptable performance on some real-world
1179     // inputs.
1180 
1181     // Make unittests of the incremental algorithm work
1182     if (DT.DomTreeNodes.size() <= 100) {
1183       if (BUI.NumLegalized > DT.DomTreeNodes.size())
1184         CalculateFromScratch(DT, &BUI);
1185     } else if (BUI.NumLegalized > DT.DomTreeNodes.size() / 40)
1186       CalculateFromScratch(DT, &BUI);
1187 
1188     // If the DominatorTree was recalculated at some point, stop the batch
1189     // updates. Full recalculations ignore batch updates and look at the actual
1190     // CFG.
1191     for (size_t i = 0; i < BUI.NumLegalized && !BUI.IsRecalculated; ++i)
1192       ApplyNextUpdate(DT, BUI);
1193   }
1194 
ApplyNextUpdateSemiNCAInfo1195   static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1196     // Popping the next update, will move the PreViewCFG to the next snapshot.
1197     UpdateT CurrentUpdate = BUI.PreViewCFG.popUpdateForIncrementalUpdates();
1198 #if 0
1199     // FIXME: The LLVM_DEBUG macro only plays well with a modular
1200     // build of LLVM when the header is marked as textual, but doing
1201     // so causes redefinition errors.
1202     LLVM_DEBUG(dbgs() << "Applying update: ");
1203     LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1204 #endif
1205 
1206     if (CurrentUpdate.getKind() == UpdateKind::Insert)
1207       InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1208     else
1209       DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1210   }
1211 
1212   //~~
1213   //===--------------- DomTree correctness verification ---------------------===
1214   //~~
1215 
1216   // Check if the tree has correct roots. A DominatorTree always has a single
1217   // root which is the function's entry node. A PostDominatorTree can have
1218   // multiple roots - one for each node with no successors and for infinite
1219   // loops.
1220   // Running time: O(N).
verifyRootsSemiNCAInfo1221   bool verifyRoots(const DomTreeT &DT) {
1222     if (!DT.Parent && !DT.Roots.empty()) {
1223       errs() << "Tree has no parent but has roots!\n";
1224       errs().flush();
1225       return false;
1226     }
1227 
1228     if (!IsPostDom) {
1229       if (DT.Roots.empty()) {
1230         errs() << "Tree doesn't have a root!\n";
1231         errs().flush();
1232         return false;
1233       }
1234 
1235       if (DT.getRoot() != GetEntryNode(DT)) {
1236         errs() << "Tree's root is not its parent's entry node!\n";
1237         errs().flush();
1238         return false;
1239       }
1240     }
1241 
1242     RootsT ComputedRoots = FindRoots(DT, nullptr);
1243     if (!isPermutation(DT.Roots, ComputedRoots)) {
1244       errs() << "Tree has different roots than freshly computed ones!\n";
1245       errs() << "\tPDT roots: ";
1246       for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1247       errs() << "\n\tComputed roots: ";
1248       for (const NodePtr N : ComputedRoots)
1249         errs() << BlockNamePrinter(N) << ", ";
1250       errs() << "\n";
1251       errs().flush();
1252       return false;
1253     }
1254 
1255     return true;
1256   }
1257 
1258   // Checks if the tree contains all reachable nodes in the input graph.
1259   // Running time: O(N).
verifyReachabilitySemiNCAInfo1260   bool verifyReachability(const DomTreeT &DT) {
1261     clear();
1262     doFullDFSWalk(DT, AlwaysDescend);
1263 
1264     for (auto &NodeToTN : DT.DomTreeNodes) {
1265       const TreeNodePtr TN = NodeToTN.second.get();
1266       const NodePtr BB = TN->getBlock();
1267 
1268       // Virtual root has a corresponding virtual CFG node.
1269       if (DT.isVirtualRoot(TN)) continue;
1270 
1271       if (NodeToInfo.count(BB) == 0) {
1272         errs() << "DomTree node " << BlockNamePrinter(BB)
1273                << " not found by DFS walk!\n";
1274         errs().flush();
1275 
1276         return false;
1277       }
1278     }
1279 
1280     for (const NodePtr N : NumToNode) {
1281       if (N && !DT.getNode(N)) {
1282         errs() << "CFG node " << BlockNamePrinter(N)
1283                << " not found in the DomTree!\n";
1284         errs().flush();
1285 
1286         return false;
1287       }
1288     }
1289 
1290     return true;
1291   }
1292 
1293   // Check if for every parent with a level L in the tree all of its children
1294   // have level L + 1.
1295   // Running time: O(N).
VerifyLevelsSemiNCAInfo1296   static bool VerifyLevels(const DomTreeT &DT) {
1297     for (auto &NodeToTN : DT.DomTreeNodes) {
1298       const TreeNodePtr TN = NodeToTN.second.get();
1299       const NodePtr BB = TN->getBlock();
1300       if (!BB) continue;
1301 
1302       const TreeNodePtr IDom = TN->getIDom();
1303       if (!IDom && TN->getLevel() != 0) {
1304         errs() << "Node without an IDom " << BlockNamePrinter(BB)
1305                << " has a nonzero level " << TN->getLevel() << "!\n";
1306         errs().flush();
1307 
1308         return false;
1309       }
1310 
1311       if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1312         errs() << "Node " << BlockNamePrinter(BB) << " has level "
1313                << TN->getLevel() << " while its IDom "
1314                << BlockNamePrinter(IDom->getBlock()) << " has level "
1315                << IDom->getLevel() << "!\n";
1316         errs().flush();
1317 
1318         return false;
1319       }
1320     }
1321 
1322     return true;
1323   }
1324 
1325   // Check if the computed DFS numbers are correct. Note that DFS info may not
1326   // be valid, and when that is the case, we don't verify the numbers.
1327   // Running time: O(N log(N)).
VerifyDFSNumbersSemiNCAInfo1328   static bool VerifyDFSNumbers(const DomTreeT &DT) {
1329     if (!DT.DFSInfoValid || !DT.Parent)
1330       return true;
1331 
1332     const NodePtr RootBB = IsPostDom ? nullptr : *DT.root_begin();
1333     const TreeNodePtr Root = DT.getNode(RootBB);
1334 
1335     auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1336       errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1337              << TN->getDFSNumOut() << '}';
1338     };
1339 
1340     // Verify the root's DFS In number. Although DFS numbering would also work
1341     // if we started from some other value, we assume 0-based numbering.
1342     if (Root->getDFSNumIn() != 0) {
1343       errs() << "DFSIn number for the tree root is not:\n\t";
1344       PrintNodeAndDFSNums(Root);
1345       errs() << '\n';
1346       errs().flush();
1347       return false;
1348     }
1349 
1350     // For each tree node verify if children's DFS numbers cover their parent's
1351     // DFS numbers with no gaps.
1352     for (const auto &NodeToTN : DT.DomTreeNodes) {
1353       const TreeNodePtr Node = NodeToTN.second.get();
1354 
1355       // Handle tree leaves.
1356       if (Node->isLeaf()) {
1357         if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1358           errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1359           PrintNodeAndDFSNums(Node);
1360           errs() << '\n';
1361           errs().flush();
1362           return false;
1363         }
1364 
1365         continue;
1366       }
1367 
1368       // Make a copy and sort it such that it is possible to check if there are
1369       // no gaps between DFS numbers of adjacent children.
1370       SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1371       llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1372         return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1373       });
1374 
1375       auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1376           const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1377         assert(FirstCh);
1378 
1379         errs() << "Incorrect DFS numbers for:\n\tParent ";
1380         PrintNodeAndDFSNums(Node);
1381 
1382         errs() << "\n\tChild ";
1383         PrintNodeAndDFSNums(FirstCh);
1384 
1385         if (SecondCh) {
1386           errs() << "\n\tSecond child ";
1387           PrintNodeAndDFSNums(SecondCh);
1388         }
1389 
1390         errs() << "\nAll children: ";
1391         for (const TreeNodePtr Ch : Children) {
1392           PrintNodeAndDFSNums(Ch);
1393           errs() << ", ";
1394         }
1395 
1396         errs() << '\n';
1397         errs().flush();
1398       };
1399 
1400       if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1401         PrintChildrenError(Children.front(), nullptr);
1402         return false;
1403       }
1404 
1405       if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1406         PrintChildrenError(Children.back(), nullptr);
1407         return false;
1408       }
1409 
1410       for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1411         if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1412           PrintChildrenError(Children[i], Children[i + 1]);
1413           return false;
1414         }
1415       }
1416     }
1417 
1418     return true;
1419   }
1420 
1421   // The below routines verify the correctness of the dominator tree relative to
1422   // the CFG it's coming from.  A tree is a dominator tree iff it has two
1423   // properties, called the parent property and the sibling property.  Tarjan
1424   // and Lengauer prove (but don't explicitly name) the properties as part of
1425   // the proofs in their 1972 paper, but the proofs are mostly part of proving
1426   // things about semidominators and idoms, and some of them are simply asserted
1427   // based on even earlier papers (see, e.g., lemma 2).  Some papers refer to
1428   // these properties as "valid" and "co-valid".  See, e.g., "Dominators,
1429   // directed bipolar orders, and independent spanning trees" by Loukas
1430   // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1431   // and Vertex-Disjoint Paths " by the same authors.
1432 
1433   // A very simple and direct explanation of these properties can be found in
1434   // "An Experimental Study of Dynamic Dominators", found at
1435   // https://arxiv.org/abs/1604.02711
1436 
1437   // The easiest way to think of the parent property is that it's a requirement
1438   // of being a dominator.  Let's just take immediate dominators.  For PARENT to
1439   // be an immediate dominator of CHILD, all paths in the CFG must go through
1440   // PARENT before they hit CHILD.  This implies that if you were to cut PARENT
1441   // out of the CFG, there should be no paths to CHILD that are reachable.  If
1442   // there are, then you now have a path from PARENT to CHILD that goes around
1443   // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1444   // a dominator of CHILD (let alone an immediate one).
1445 
1446   // The sibling property is similar.  It says that for each pair of sibling
1447   // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1448   // other.  If sibling LEFT dominated sibling RIGHT, it means there are no
1449   // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1450   // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1451   // RIGHT, not a sibling.
1452 
1453   // It is possible to verify the parent and sibling properties in linear time,
1454   // but the algorithms are complex. Instead, we do it in a straightforward
1455   // N^2 and N^3 way below, using direct path reachability.
1456 
1457   // Checks if the tree has the parent property: if for all edges from V to W in
1458   // the input graph, such that V is reachable, the parent of W in the tree is
1459   // an ancestor of V in the tree.
1460   // Running time: O(N^2).
1461   //
1462   // This means that if a node gets disconnected from the graph, then all of
1463   // the nodes it dominated previously will now become unreachable.
verifyParentPropertySemiNCAInfo1464   bool verifyParentProperty(const DomTreeT &DT) {
1465     for (auto &NodeToTN : DT.DomTreeNodes) {
1466       const TreeNodePtr TN = NodeToTN.second.get();
1467       const NodePtr BB = TN->getBlock();
1468       if (!BB || TN->isLeaf())
1469         continue;
1470 
1471       LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1472                         << BlockNamePrinter(TN) << "\n");
1473       clear();
1474       doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1475         return From != BB && To != BB;
1476       });
1477 
1478       for (TreeNodePtr Child : TN->children())
1479         if (NodeToInfo.count(Child->getBlock()) != 0) {
1480           errs() << "Child " << BlockNamePrinter(Child)
1481                  << " reachable after its parent " << BlockNamePrinter(BB)
1482                  << " is removed!\n";
1483           errs().flush();
1484 
1485           return false;
1486         }
1487     }
1488 
1489     return true;
1490   }
1491 
1492   // Check if the tree has sibling property: if a node V does not dominate a
1493   // node W for all siblings V and W in the tree.
1494   // Running time: O(N^3).
1495   //
1496   // This means that if a node gets disconnected from the graph, then all of its
1497   // siblings will now still be reachable.
verifySiblingPropertySemiNCAInfo1498   bool verifySiblingProperty(const DomTreeT &DT) {
1499     for (auto &NodeToTN : DT.DomTreeNodes) {
1500       const TreeNodePtr TN = NodeToTN.second.get();
1501       const NodePtr BB = TN->getBlock();
1502       if (!BB || TN->isLeaf())
1503         continue;
1504 
1505       for (const TreeNodePtr N : TN->children()) {
1506         clear();
1507         NodePtr BBN = N->getBlock();
1508         doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1509           return From != BBN && To != BBN;
1510         });
1511 
1512         for (const TreeNodePtr S : TN->children()) {
1513           if (S == N) continue;
1514 
1515           if (NodeToInfo.count(S->getBlock()) == 0) {
1516             errs() << "Node " << BlockNamePrinter(S)
1517                    << " not reachable when its sibling " << BlockNamePrinter(N)
1518                    << " is removed!\n";
1519             errs().flush();
1520 
1521             return false;
1522           }
1523         }
1524       }
1525     }
1526 
1527     return true;
1528   }
1529 
1530   // Check if the given tree is the same as a freshly computed one for the same
1531   // Parent.
1532   // Running time: O(N^2), but faster in practice (same as tree construction).
1533   //
1534   // Note that this does not check if that the tree construction algorithm is
1535   // correct and should be only used for fast (but possibly unsound)
1536   // verification.
IsSameAsFreshTreeSemiNCAInfo1537   static bool IsSameAsFreshTree(const DomTreeT &DT) {
1538     DomTreeT FreshTree;
1539     FreshTree.recalculate(*DT.Parent);
1540     const bool Different = DT.compare(FreshTree);
1541 
1542     if (Different) {
1543       errs() << (DT.isPostDominator() ? "Post" : "")
1544              << "DominatorTree is different than a freshly computed one!\n"
1545              << "\tCurrent:\n";
1546       DT.print(errs());
1547       errs() << "\n\tFreshly computed tree:\n";
1548       FreshTree.print(errs());
1549       errs().flush();
1550     }
1551 
1552     return !Different;
1553   }
1554 };
1555 
1556 template <class DomTreeT>
Calculate(DomTreeT & DT)1557 void Calculate(DomTreeT &DT) {
1558   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1559 }
1560 
1561 template <typename DomTreeT>
CalculateWithUpdates(DomTreeT & DT,ArrayRef<typename DomTreeT::UpdateType> Updates)1562 void CalculateWithUpdates(DomTreeT &DT,
1563                           ArrayRef<typename DomTreeT::UpdateType> Updates) {
1564   // FIXME: Updated to use the PreViewCFG and behave the same as until now.
1565   // This behavior is however incorrect; this actually needs the PostViewCFG.
1566   GraphDiff<typename DomTreeT::NodePtr, DomTreeT::IsPostDominator> PreViewCFG(
1567       Updates, /*ReverseApplyUpdates=*/true);
1568   typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI(PreViewCFG);
1569   SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1570 }
1571 
1572 template <class DomTreeT>
InsertEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1573 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1574                 typename DomTreeT::NodePtr To) {
1575   if (DT.isPostDominator()) std::swap(From, To);
1576   SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1577 }
1578 
1579 template <class DomTreeT>
DeleteEdge(DomTreeT & DT,typename DomTreeT::NodePtr From,typename DomTreeT::NodePtr To)1580 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1581                 typename DomTreeT::NodePtr To) {
1582   if (DT.isPostDominator()) std::swap(From, To);
1583   SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1584 }
1585 
1586 template <class DomTreeT>
ApplyUpdates(DomTreeT & DT,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> & PreViewCFG,GraphDiff<typename DomTreeT::NodePtr,DomTreeT::IsPostDominator> * PostViewCFG)1587 void ApplyUpdates(DomTreeT &DT,
1588                   GraphDiff<typename DomTreeT::NodePtr,
1589                             DomTreeT::IsPostDominator> &PreViewCFG,
1590                   GraphDiff<typename DomTreeT::NodePtr,
1591                             DomTreeT::IsPostDominator> *PostViewCFG) {
1592   SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, PreViewCFG, PostViewCFG);
1593 }
1594 
1595 template <class DomTreeT>
Verify(const DomTreeT & DT,typename DomTreeT::VerificationLevel VL)1596 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1597   SemiNCAInfo<DomTreeT> SNCA(nullptr);
1598 
1599   // Simplist check is to compare against a new tree. This will also
1600   // usefully print the old and new trees, if they are different.
1601   if (!SNCA.IsSameAsFreshTree(DT))
1602     return false;
1603 
1604   // Common checks to verify the properties of the tree. O(N log N) at worst.
1605   if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1606       !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1607     return false;
1608 
1609   // Extra checks depending on VerificationLevel. Up to O(N^3).
1610   if (VL == DomTreeT::VerificationLevel::Basic ||
1611       VL == DomTreeT::VerificationLevel::Full)
1612     if (!SNCA.verifyParentProperty(DT))
1613       return false;
1614   if (VL == DomTreeT::VerificationLevel::Full)
1615     if (!SNCA.verifySiblingProperty(DT))
1616       return false;
1617 
1618   return true;
1619 }
1620 
1621 }  // namespace DomTreeBuilder
1622 }  // namespace llvm
1623 
1624 #undef DEBUG_TYPE
1625 
1626 #endif
1627