1 //===- CXXInheritance.h - C++ Inheritance -----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides routines that help analyzing C++ inheritance hierarchies.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #ifndef LLVM_CLANG_AST_CXXINHERITANCE_H
14 #define LLVM_CLANG_AST_CXXINHERITANCE_H
15
16 #include "clang/AST/DeclBase.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclarationName.h"
19 #include "clang/AST/Type.h"
20 #include "clang/AST/TypeOrdering.h"
21 #include "clang/Basic/Specifiers.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/SmallSet.h"
26 #include "llvm/ADT/SmallVector.h"
27 #include "llvm/ADT/iterator_range.h"
28 #include <list>
29 #include <memory>
30 #include <utility>
31
32 namespace clang {
33
34 class ASTContext;
35 class NamedDecl;
36
37 /// Represents an element in a path from a derived class to a
38 /// base class.
39 ///
40 /// Each step in the path references the link from a
41 /// derived class to one of its direct base classes, along with a
42 /// base "number" that identifies which base subobject of the
43 /// original derived class we are referencing.
44 struct CXXBasePathElement {
45 /// The base specifier that states the link from a derived
46 /// class to a base class, which will be followed by this base
47 /// path element.
48 const CXXBaseSpecifier *Base;
49
50 /// The record decl of the class that the base is a base of.
51 const CXXRecordDecl *Class;
52
53 /// Identifies which base class subobject (of type
54 /// \c Base->getType()) this base path element refers to.
55 ///
56 /// This value is only valid if \c !Base->isVirtual(), because there
57 /// is no base numbering for the zero or one virtual bases of a
58 /// given type.
59 int SubobjectNumber;
60 };
61
62 /// Represents a path from a specific derived class
63 /// (which is not represented as part of the path) to a particular
64 /// (direct or indirect) base class subobject.
65 ///
66 /// Individual elements in the path are described by the \c CXXBasePathElement
67 /// structure, which captures both the link from a derived class to one of its
68 /// direct bases and identification describing which base class
69 /// subobject is being used.
70 class CXXBasePath : public SmallVector<CXXBasePathElement, 4> {
71 public:
72 /// The access along this inheritance path. This is only
73 /// calculated when recording paths. AS_none is a special value
74 /// used to indicate a path which permits no legal access.
75 AccessSpecifier Access = AS_public;
76
77 CXXBasePath() = default;
78
79 /// The declarations found inside this base class subobject.
80 DeclContext::lookup_iterator Decls;
81
clear()82 void clear() {
83 SmallVectorImpl<CXXBasePathElement>::clear();
84 Access = AS_public;
85 }
86 };
87
88 /// BasePaths - Represents the set of paths from a derived class to
89 /// one of its (direct or indirect) bases. For example, given the
90 /// following class hierarchy:
91 ///
92 /// @code
93 /// class A { };
94 /// class B : public A { };
95 /// class C : public A { };
96 /// class D : public B, public C{ };
97 /// @endcode
98 ///
99 /// There are two potential BasePaths to represent paths from D to a
100 /// base subobject of type A. One path is (D,0) -> (B,0) -> (A,0)
101 /// and another is (D,0)->(C,0)->(A,1). These two paths actually
102 /// refer to two different base class subobjects of the same type,
103 /// so the BasePaths object refers to an ambiguous path. On the
104 /// other hand, consider the following class hierarchy:
105 ///
106 /// @code
107 /// class A { };
108 /// class B : public virtual A { };
109 /// class C : public virtual A { };
110 /// class D : public B, public C{ };
111 /// @endcode
112 ///
113 /// Here, there are two potential BasePaths again, (D, 0) -> (B, 0)
114 /// -> (A,v) and (D, 0) -> (C, 0) -> (A, v), but since both of them
115 /// refer to the same base class subobject of type A (the virtual
116 /// one), there is no ambiguity.
117 class CXXBasePaths {
118 friend class CXXRecordDecl;
119
120 /// The type from which this search originated.
121 const CXXRecordDecl *Origin = nullptr;
122
123 /// Paths - The actual set of paths that can be taken from the
124 /// derived class to the same base class.
125 std::list<CXXBasePath> Paths;
126
127 /// ClassSubobjects - Records the class subobjects for each class
128 /// type that we've seen. The first element IsVirtBase says
129 /// whether we found a path to a virtual base for that class type,
130 /// while NumberOfNonVirtBases contains the number of non-virtual base
131 /// class subobjects for that class type. The key of the map is
132 /// the cv-unqualified canonical type of the base class subobject.
133 struct IsVirtBaseAndNumberNonVirtBases {
134 unsigned IsVirtBase : 1;
135 unsigned NumberOfNonVirtBases : 31;
136 };
137 llvm::SmallDenseMap<QualType, IsVirtBaseAndNumberNonVirtBases, 8>
138 ClassSubobjects;
139
140 /// VisitedDependentRecords - Records the dependent records that have been
141 /// already visited.
142 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedDependentRecords;
143
144 /// DetectedVirtual - The base class that is virtual.
145 const RecordType *DetectedVirtual = nullptr;
146
147 /// ScratchPath - A BasePath that is used by Sema::lookupInBases
148 /// to help build the set of paths.
149 CXXBasePath ScratchPath;
150
151 /// FindAmbiguities - Whether Sema::IsDerivedFrom should try find
152 /// ambiguous paths while it is looking for a path from a derived
153 /// type to a base type.
154 bool FindAmbiguities;
155
156 /// RecordPaths - Whether Sema::IsDerivedFrom should record paths
157 /// while it is determining whether there are paths from a derived
158 /// type to a base type.
159 bool RecordPaths;
160
161 /// DetectVirtual - Whether Sema::IsDerivedFrom should abort the search
162 /// if it finds a path that goes across a virtual base. The virtual class
163 /// is also recorded.
164 bool DetectVirtual;
165
166 bool lookupInBases(ASTContext &Context, const CXXRecordDecl *Record,
167 CXXRecordDecl::BaseMatchesCallback BaseMatches,
168 bool LookupInDependent = false);
169
170 public:
171 using paths_iterator = std::list<CXXBasePath>::iterator;
172 using const_paths_iterator = std::list<CXXBasePath>::const_iterator;
173 using decl_iterator = NamedDecl **;
174
175 /// BasePaths - Construct a new BasePaths structure to record the
176 /// paths for a derived-to-base search.
177 explicit CXXBasePaths(bool FindAmbiguities = true, bool RecordPaths = true,
178 bool DetectVirtual = true)
FindAmbiguities(FindAmbiguities)179 : FindAmbiguities(FindAmbiguities), RecordPaths(RecordPaths),
180 DetectVirtual(DetectVirtual) {}
181
begin()182 paths_iterator begin() { return Paths.begin(); }
end()183 paths_iterator end() { return Paths.end(); }
begin()184 const_paths_iterator begin() const { return Paths.begin(); }
end()185 const_paths_iterator end() const { return Paths.end(); }
186
front()187 CXXBasePath& front() { return Paths.front(); }
front()188 const CXXBasePath& front() const { return Paths.front(); }
189
190 using decl_range = llvm::iterator_range<decl_iterator>;
191
192 /// Determine whether the path from the most-derived type to the
193 /// given base type is ambiguous (i.e., it refers to multiple subobjects of
194 /// the same base type).
195 bool isAmbiguous(CanQualType BaseType);
196
197 /// Whether we are finding multiple paths to detect ambiguities.
isFindingAmbiguities()198 bool isFindingAmbiguities() const { return FindAmbiguities; }
199
200 /// Whether we are recording paths.
isRecordingPaths()201 bool isRecordingPaths() const { return RecordPaths; }
202
203 /// Specify whether we should be recording paths or not.
setRecordingPaths(bool RP)204 void setRecordingPaths(bool RP) { RecordPaths = RP; }
205
206 /// Whether we are detecting virtual bases.
isDetectingVirtual()207 bool isDetectingVirtual() const { return DetectVirtual; }
208
209 /// The virtual base discovered on the path (if we are merely
210 /// detecting virtuals).
getDetectedVirtual()211 const RecordType* getDetectedVirtual() const {
212 return DetectedVirtual;
213 }
214
215 /// Retrieve the type from which this base-paths search
216 /// began
getOrigin()217 const CXXRecordDecl *getOrigin() const { return Origin; }
setOrigin(const CXXRecordDecl * Rec)218 void setOrigin(const CXXRecordDecl *Rec) { Origin = Rec; }
219
220 /// Clear the base-paths results.
221 void clear();
222
223 /// Swap this data structure's contents with another CXXBasePaths
224 /// object.
225 void swap(CXXBasePaths &Other);
226 };
227
228 /// Uniquely identifies a virtual method within a class
229 /// hierarchy by the method itself and a class subobject number.
230 struct UniqueVirtualMethod {
231 /// The overriding virtual method.
232 CXXMethodDecl *Method = nullptr;
233
234 /// The subobject in which the overriding virtual method
235 /// resides.
236 unsigned Subobject = 0;
237
238 /// The virtual base class subobject of which this overridden
239 /// virtual method is a part. Note that this records the closest
240 /// derived virtual base class subobject.
241 const CXXRecordDecl *InVirtualSubobject = nullptr;
242
243 UniqueVirtualMethod() = default;
244
UniqueVirtualMethodUniqueVirtualMethod245 UniqueVirtualMethod(CXXMethodDecl *Method, unsigned Subobject,
246 const CXXRecordDecl *InVirtualSubobject)
247 : Method(Method), Subobject(Subobject),
248 InVirtualSubobject(InVirtualSubobject) {}
249
250 friend bool operator==(const UniqueVirtualMethod &X,
251 const UniqueVirtualMethod &Y) {
252 return X.Method == Y.Method && X.Subobject == Y.Subobject &&
253 X.InVirtualSubobject == Y.InVirtualSubobject;
254 }
255
256 friend bool operator!=(const UniqueVirtualMethod &X,
257 const UniqueVirtualMethod &Y) {
258 return !(X == Y);
259 }
260 };
261
262 /// The set of methods that override a given virtual method in
263 /// each subobject where it occurs.
264 ///
265 /// The first part of the pair is the subobject in which the
266 /// overridden virtual function occurs, while the second part of the
267 /// pair is the virtual method that overrides it (including the
268 /// subobject in which that virtual function occurs).
269 class OverridingMethods {
270 using ValuesT = SmallVector<UniqueVirtualMethod, 4>;
271 using MapType = llvm::MapVector<unsigned, ValuesT>;
272
273 MapType Overrides;
274
275 public:
276 // Iterate over the set of subobjects that have overriding methods.
277 using iterator = MapType::iterator;
278 using const_iterator = MapType::const_iterator;
279
begin()280 iterator begin() { return Overrides.begin(); }
begin()281 const_iterator begin() const { return Overrides.begin(); }
end()282 iterator end() { return Overrides.end(); }
end()283 const_iterator end() const { return Overrides.end(); }
size()284 unsigned size() const { return Overrides.size(); }
285
286 // Iterate over the set of overriding virtual methods in a given
287 // subobject.
288 using overriding_iterator =
289 SmallVectorImpl<UniqueVirtualMethod>::iterator;
290 using overriding_const_iterator =
291 SmallVectorImpl<UniqueVirtualMethod>::const_iterator;
292
293 // Add a new overriding method for a particular subobject.
294 void add(unsigned OverriddenSubobject, UniqueVirtualMethod Overriding);
295
296 // Add all of the overriding methods from "other" into overrides for
297 // this method. Used when merging the overrides from multiple base
298 // class subobjects.
299 void add(const OverridingMethods &Other);
300
301 // Replace all overriding virtual methods in all subobjects with the
302 // given virtual method.
303 void replaceAll(UniqueVirtualMethod Overriding);
304 };
305
306 /// A mapping from each virtual member function to its set of
307 /// final overriders.
308 ///
309 /// Within a class hierarchy for a given derived class, each virtual
310 /// member function in that hierarchy has one or more "final
311 /// overriders" (C++ [class.virtual]p2). A final overrider for a
312 /// virtual function "f" is the virtual function that will actually be
313 /// invoked when dispatching a call to "f" through the
314 /// vtable. Well-formed classes have a single final overrider for each
315 /// virtual function; in abstract classes, the final overrider for at
316 /// least one virtual function is a pure virtual function. Due to
317 /// multiple, virtual inheritance, it is possible for a class to have
318 /// more than one final overrider. Athough this is an error (per C++
319 /// [class.virtual]p2), it is not considered an error here: the final
320 /// overrider map can represent multiple final overriders for a
321 /// method, and it is up to the client to determine whether they are
322 /// problem. For example, the following class \c D has two final
323 /// overriders for the virtual function \c A::f(), one in \c C and one
324 /// in \c D:
325 ///
326 /// \code
327 /// struct A { virtual void f(); };
328 /// struct B : virtual A { virtual void f(); };
329 /// struct C : virtual A { virtual void f(); };
330 /// struct D : B, C { };
331 /// \endcode
332 ///
333 /// This data structure contains a mapping from every virtual
334 /// function *that does not override an existing virtual function* and
335 /// in every subobject where that virtual function occurs to the set
336 /// of virtual functions that override it. Thus, the same virtual
337 /// function \c A::f can actually occur in multiple subobjects of type
338 /// \c A due to multiple inheritance, and may be overridden by
339 /// different virtual functions in each, as in the following example:
340 ///
341 /// \code
342 /// struct A { virtual void f(); };
343 /// struct B : A { virtual void f(); };
344 /// struct C : A { virtual void f(); };
345 /// struct D : B, C { };
346 /// \endcode
347 ///
348 /// Unlike in the previous example, where the virtual functions \c
349 /// B::f and \c C::f both overrode \c A::f in the same subobject of
350 /// type \c A, in this example the two virtual functions both override
351 /// \c A::f but in *different* subobjects of type A. This is
352 /// represented by numbering the subobjects in which the overridden
353 /// and the overriding virtual member functions are located. Subobject
354 /// 0 represents the virtual base class subobject of that type, while
355 /// subobject numbers greater than 0 refer to non-virtual base class
356 /// subobjects of that type.
357 class CXXFinalOverriderMap
358 : public llvm::MapVector<const CXXMethodDecl *, OverridingMethods> {};
359
360 /// A set of all the primary bases for a class.
361 class CXXIndirectPrimaryBaseSet
362 : public llvm::SmallSet<const CXXRecordDecl*, 32> {};
363
364 inline bool
inheritanceModelHasVBPtrOffsetField(MSInheritanceModel Inheritance)365 inheritanceModelHasVBPtrOffsetField(MSInheritanceModel Inheritance) {
366 return Inheritance == MSInheritanceModel::Unspecified;
367 }
368
369 // Only member pointers to functions need a this adjustment, since it can be
370 // combined with the field offset for data pointers.
inheritanceModelHasNVOffsetField(bool IsMemberFunction,MSInheritanceModel Inheritance)371 inline bool inheritanceModelHasNVOffsetField(bool IsMemberFunction,
372 MSInheritanceModel Inheritance) {
373 return IsMemberFunction && Inheritance >= MSInheritanceModel::Multiple;
374 }
375
376 inline bool
inheritanceModelHasVBTableOffsetField(MSInheritanceModel Inheritance)377 inheritanceModelHasVBTableOffsetField(MSInheritanceModel Inheritance) {
378 return Inheritance >= MSInheritanceModel::Virtual;
379 }
380
inheritanceModelHasOnlyOneField(bool IsMemberFunction,MSInheritanceModel Inheritance)381 inline bool inheritanceModelHasOnlyOneField(bool IsMemberFunction,
382 MSInheritanceModel Inheritance) {
383 if (IsMemberFunction)
384 return Inheritance <= MSInheritanceModel::Single;
385 return Inheritance <= MSInheritanceModel::Multiple;
386 }
387
388 } // namespace clang
389
390 #endif // LLVM_CLANG_AST_CXXINHERITANCE_H
391