1 //===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG.  A natural loop
11 // has exactly one entry-point, which is called the header. Note that natural
12 // loops may actually be several loops that share the same header node.
13 //
14 // This analysis calculates the nesting structure of loops in a function.  For
15 // each natural loop identified, this analysis identifies natural loops
16 // contained entirely within the loop and the basic blocks the make up the loop.
17 //
18 // It can calculate on the fly various bits of information, for example:
19 //
20 //  * whether there is a preheader for the loop
21 //  * the number of back edges to the header
22 //  * whether or not a particular block branches out of the loop
23 //  * the successor blocks of the loop
24 //  * the loop depth
25 //  * etc...
26 //
27 // Note that this analysis specifically identifies *Loops* not cycles or SCCs
28 // in the CFG.  There can be strongly connected components in the CFG which
29 // this analysis will not recognize and that will not be represented by a Loop
30 // instance.  In particular, a Loop might be inside such a non-loop SCC, or a
31 // non-loop SCC might contain a sub-SCC which is a Loop.
32 //
33 // For an overview of terminology used in this API (and thus all of our loop
34 // analyses or transforms), see docs/LoopTerminology.rst.
35 //
36 //===----------------------------------------------------------------------===//
37 
38 #ifndef LLVM_ANALYSIS_LOOPINFO_H
39 #define LLVM_ANALYSIS_LOOPINFO_H
40 
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/DenseSet.h"
43 #include "llvm/ADT/GraphTraits.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/IR/CFG.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/Pass.h"
51 #include "llvm/Support/Allocator.h"
52 #include <algorithm>
53 #include <utility>
54 
55 namespace llvm {
56 
57 class DominatorTree;
58 class LoopInfo;
59 class Loop;
60 class InductionDescriptor;
61 class MDNode;
62 class MemorySSAUpdater;
63 class ScalarEvolution;
64 class raw_ostream;
65 template <class N, bool IsPostDom> class DominatorTreeBase;
66 template <class N, class M> class LoopInfoBase;
67 template <class N, class M> class LoopBase;
68 
69 //===----------------------------------------------------------------------===//
70 /// Instances of this class are used to represent loops that are detected in the
71 /// flow graph.
72 ///
73 template <class BlockT, class LoopT> class LoopBase {
74   LoopT *ParentLoop;
75   // Loops contained entirely within this one.
76   std::vector<LoopT *> SubLoops;
77 
78   // The list of blocks in this loop. First entry is the header node.
79   std::vector<BlockT *> Blocks;
80 
81   SmallPtrSet<const BlockT *, 8> DenseBlockSet;
82 
83 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
84   /// Indicator that this loop is no longer a valid loop.
85   bool IsInvalid = false;
86 #endif
87 
88   LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
89   const LoopBase<BlockT, LoopT> &
90   operator=(const LoopBase<BlockT, LoopT> &) = delete;
91 
92 public:
93   /// Return the nesting level of this loop.  An outer-most loop has depth 1,
94   /// for consistency with loop depth values used for basic blocks, where depth
95   /// 0 is used for blocks not inside any loops.
getLoopDepth()96   unsigned getLoopDepth() const {
97     assert(!isInvalid() && "Loop not in a valid state!");
98     unsigned D = 1;
99     for (const LoopT *CurLoop = ParentLoop; CurLoop;
100          CurLoop = CurLoop->ParentLoop)
101       ++D;
102     return D;
103   }
getHeader()104   BlockT *getHeader() const { return getBlocks().front(); }
105   /// Return the parent loop if it exists or nullptr for top
106   /// level loops.
107 
108   /// A loop is either top-level in a function (that is, it is not
109   /// contained in any other loop) or it is entirely enclosed in
110   /// some other loop.
111   /// If a loop is top-level, it has no parent, otherwise its
112   /// parent is the innermost loop in which it is enclosed.
getParentLoop()113   LoopT *getParentLoop() const { return ParentLoop; }
114 
115   /// This is a raw interface for bypassing addChildLoop.
setParentLoop(LoopT * L)116   void setParentLoop(LoopT *L) {
117     assert(!isInvalid() && "Loop not in a valid state!");
118     ParentLoop = L;
119   }
120 
121   /// Return true if the specified loop is contained within in this loop.
contains(const LoopT * L)122   bool contains(const LoopT *L) const {
123     assert(!isInvalid() && "Loop not in a valid state!");
124     if (L == this)
125       return true;
126     if (!L)
127       return false;
128     return contains(L->getParentLoop());
129   }
130 
131   /// Return true if the specified basic block is in this loop.
contains(const BlockT * BB)132   bool contains(const BlockT *BB) const {
133     assert(!isInvalid() && "Loop not in a valid state!");
134     return DenseBlockSet.count(BB);
135   }
136 
137   /// Return true if the specified instruction is in this loop.
contains(const InstT * Inst)138   template <class InstT> bool contains(const InstT *Inst) const {
139     return contains(Inst->getParent());
140   }
141 
142   /// Return the loops contained entirely within this loop.
getSubLoops()143   const std::vector<LoopT *> &getSubLoops() const {
144     assert(!isInvalid() && "Loop not in a valid state!");
145     return SubLoops;
146   }
getSubLoopsVector()147   std::vector<LoopT *> &getSubLoopsVector() {
148     assert(!isInvalid() && "Loop not in a valid state!");
149     return SubLoops;
150   }
151   typedef typename std::vector<LoopT *>::const_iterator iterator;
152   typedef
153       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
begin()154   iterator begin() const { return getSubLoops().begin(); }
end()155   iterator end() const { return getSubLoops().end(); }
rbegin()156   reverse_iterator rbegin() const { return getSubLoops().rbegin(); }
rend()157   reverse_iterator rend() const { return getSubLoops().rend(); }
158 
159   // LoopInfo does not detect irreducible control flow, just natural
160   // loops. That is, it is possible that there is cyclic control
161   // flow within the "innermost loop" or around the "outermost
162   // loop".
163 
164   /// Return true if the loop does not contain any (natural) loops.
isInnermost()165   bool isInnermost() const { return getSubLoops().empty(); }
166   /// Return true if the loop does not have a parent (natural) loop
167   // (i.e. it is outermost, which is the same as top-level).
isOutermost()168   bool isOutermost() const { return getParentLoop() == nullptr; }
169 
170   /// Get a list of the basic blocks which make up this loop.
getBlocks()171   ArrayRef<BlockT *> getBlocks() const {
172     assert(!isInvalid() && "Loop not in a valid state!");
173     return Blocks;
174   }
175   typedef typename ArrayRef<BlockT *>::const_iterator block_iterator;
block_begin()176   block_iterator block_begin() const { return getBlocks().begin(); }
block_end()177   block_iterator block_end() const { return getBlocks().end(); }
blocks()178   inline iterator_range<block_iterator> blocks() const {
179     assert(!isInvalid() && "Loop not in a valid state!");
180     return make_range(block_begin(), block_end());
181   }
182 
183   /// Get the number of blocks in this loop in constant time.
184   /// Invalidate the loop, indicating that it is no longer a loop.
getNumBlocks()185   unsigned getNumBlocks() const {
186     assert(!isInvalid() && "Loop not in a valid state!");
187     return Blocks.size();
188   }
189 
190   /// Return a direct, mutable handle to the blocks vector so that we can
191   /// mutate it efficiently with techniques like `std::remove`.
getBlocksVector()192   std::vector<BlockT *> &getBlocksVector() {
193     assert(!isInvalid() && "Loop not in a valid state!");
194     return Blocks;
195   }
196   /// Return a direct, mutable handle to the blocks set so that we can
197   /// mutate it efficiently.
getBlocksSet()198   SmallPtrSetImpl<const BlockT *> &getBlocksSet() {
199     assert(!isInvalid() && "Loop not in a valid state!");
200     return DenseBlockSet;
201   }
202 
203   /// Return a direct, immutable handle to the blocks set.
getBlocksSet()204   const SmallPtrSetImpl<const BlockT *> &getBlocksSet() const {
205     assert(!isInvalid() && "Loop not in a valid state!");
206     return DenseBlockSet;
207   }
208 
209   /// Return true if this loop is no longer valid.  The only valid use of this
210   /// helper is "assert(L.isInvalid())" or equivalent, since IsInvalid is set to
211   /// true by the destructor.  In other words, if this accessor returns true,
212   /// the caller has already triggered UB by calling this accessor; and so it
213   /// can only be called in a context where a return value of true indicates a
214   /// programmer error.
isInvalid()215   bool isInvalid() const {
216 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
217     return IsInvalid;
218 #else
219     return false;
220 #endif
221   }
222 
223   /// True if terminator in the block can branch to another block that is
224   /// outside of the current loop. \p BB must be inside the loop.
isLoopExiting(const BlockT * BB)225   bool isLoopExiting(const BlockT *BB) const {
226     assert(!isInvalid() && "Loop not in a valid state!");
227     assert(contains(BB) && "Exiting block must be part of the loop");
228     for (const auto *Succ : children<const BlockT *>(BB)) {
229       if (!contains(Succ))
230         return true;
231     }
232     return false;
233   }
234 
235   /// Returns true if \p BB is a loop-latch.
236   /// A latch block is a block that contains a branch back to the header.
237   /// This function is useful when there are multiple latches in a loop
238   /// because \fn getLoopLatch will return nullptr in that case.
isLoopLatch(const BlockT * BB)239   bool isLoopLatch(const BlockT *BB) const {
240     assert(!isInvalid() && "Loop not in a valid state!");
241     assert(contains(BB) && "block does not belong to the loop");
242 
243     BlockT *Header = getHeader();
244     auto PredBegin = GraphTraits<Inverse<BlockT *>>::child_begin(Header);
245     auto PredEnd = GraphTraits<Inverse<BlockT *>>::child_end(Header);
246     return std::find(PredBegin, PredEnd, BB) != PredEnd;
247   }
248 
249   /// Calculate the number of back edges to the loop header.
getNumBackEdges()250   unsigned getNumBackEdges() const {
251     assert(!isInvalid() && "Loop not in a valid state!");
252     unsigned NumBackEdges = 0;
253     BlockT *H = getHeader();
254 
255     for (const auto Pred : children<Inverse<BlockT *>>(H))
256       if (contains(Pred))
257         ++NumBackEdges;
258 
259     return NumBackEdges;
260   }
261 
262   //===--------------------------------------------------------------------===//
263   // APIs for simple analysis of the loop.
264   //
265   // Note that all of these methods can fail on general loops (ie, there may not
266   // be a preheader, etc).  For best success, the loop simplification and
267   // induction variable canonicalization pass should be used to normalize loops
268   // for easy analysis.  These methods assume canonical loops.
269 
270   /// Return all blocks inside the loop that have successors outside of the
271   /// loop. These are the blocks _inside of the current loop_ which branch out.
272   /// The returned list is always unique.
273   void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;
274 
275   /// If getExitingBlocks would return exactly one block, return that block.
276   /// Otherwise return null.
277   BlockT *getExitingBlock() const;
278 
279   /// Return all of the successor blocks of this loop. These are the blocks
280   /// _outside of the current loop_ which are branched to.
281   void getExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
282 
283   /// If getExitBlocks would return exactly one block, return that block.
284   /// Otherwise return null.
285   BlockT *getExitBlock() const;
286 
287   /// Return true if no exit block for the loop has a predecessor that is
288   /// outside the loop.
289   bool hasDedicatedExits() const;
290 
291   /// Return all unique successor blocks of this loop.
292   /// These are the blocks _outside of the current loop_ which are branched to.
293   void getUniqueExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
294 
295   /// Return all unique successor blocks of this loop except successors from
296   /// Latch block are not considered. If the exit comes from Latch has also
297   /// non Latch predecessor in a loop it will be added to ExitBlocks.
298   /// These are the blocks _outside of the current loop_ which are branched to.
299   void getUniqueNonLatchExitBlocks(SmallVectorImpl<BlockT *> &ExitBlocks) const;
300 
301   /// If getUniqueExitBlocks would return exactly one block, return that block.
302   /// Otherwise return null.
303   BlockT *getUniqueExitBlock() const;
304 
305   /// Return true if this loop does not have any exit blocks.
306   bool hasNoExitBlocks() const;
307 
308   /// Edge type.
309   typedef std::pair<BlockT *, BlockT *> Edge;
310 
311   /// Return all pairs of (_inside_block_,_outside_block_).
312   void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;
313 
314   /// If there is a preheader for this loop, return it. A loop has a preheader
315   /// if there is only one edge to the header of the loop from outside of the
316   /// loop. If this is the case, the block branching to the header of the loop
317   /// is the preheader node.
318   ///
319   /// This method returns null if there is no preheader for the loop.
320   BlockT *getLoopPreheader() const;
321 
322   /// If the given loop's header has exactly one unique predecessor outside the
323   /// loop, return it. Otherwise return null.
324   ///  This is less strict that the loop "preheader" concept, which requires
325   /// the predecessor to have exactly one successor.
326   BlockT *getLoopPredecessor() const;
327 
328   /// If there is a single latch block for this loop, return it.
329   /// A latch block is a block that contains a branch back to the header.
330   BlockT *getLoopLatch() const;
331 
332   /// Return all loop latch blocks of this loop. A latch block is a block that
333   /// contains a branch back to the header.
getLoopLatches(SmallVectorImpl<BlockT * > & LoopLatches)334   void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
335     assert(!isInvalid() && "Loop not in a valid state!");
336     BlockT *H = getHeader();
337     for (const auto Pred : children<Inverse<BlockT *>>(H))
338       if (contains(Pred))
339         LoopLatches.push_back(Pred);
340   }
341 
342   /// Return all inner loops in the loop nest rooted by the loop in preorder,
343   /// with siblings in forward program order.
344   template <class Type>
getInnerLoopsInPreorder(const LoopT & L,SmallVectorImpl<Type> & PreOrderLoops)345   static void getInnerLoopsInPreorder(const LoopT &L,
346                                       SmallVectorImpl<Type> &PreOrderLoops) {
347     SmallVector<LoopT *, 4> PreOrderWorklist;
348     PreOrderWorklist.append(L.rbegin(), L.rend());
349 
350     while (!PreOrderWorklist.empty()) {
351       LoopT *L = PreOrderWorklist.pop_back_val();
352       // Sub-loops are stored in forward program order, but will process the
353       // worklist backwards so append them in reverse order.
354       PreOrderWorklist.append(L->rbegin(), L->rend());
355       PreOrderLoops.push_back(L);
356     }
357   }
358 
359   /// Return all loops in the loop nest rooted by the loop in preorder, with
360   /// siblings in forward program order.
getLoopsInPreorder()361   SmallVector<const LoopT *, 4> getLoopsInPreorder() const {
362     SmallVector<const LoopT *, 4> PreOrderLoops;
363     const LoopT *CurLoop = static_cast<const LoopT *>(this);
364     PreOrderLoops.push_back(CurLoop);
365     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
366     return PreOrderLoops;
367   }
getLoopsInPreorder()368   SmallVector<LoopT *, 4> getLoopsInPreorder() {
369     SmallVector<LoopT *, 4> PreOrderLoops;
370     LoopT *CurLoop = static_cast<LoopT *>(this);
371     PreOrderLoops.push_back(CurLoop);
372     getInnerLoopsInPreorder(*CurLoop, PreOrderLoops);
373     return PreOrderLoops;
374   }
375 
376   //===--------------------------------------------------------------------===//
377   // APIs for updating loop information after changing the CFG
378   //
379 
380   /// This method is used by other analyses to update loop information.
381   /// NewBB is set to be a new member of the current loop.
382   /// Because of this, it is added as a member of all parent loops, and is added
383   /// to the specified LoopInfo object as being in the current basic block.  It
384   /// is not valid to replace the loop header with this method.
385   void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);
386 
387   /// This is used when splitting loops up. It replaces the OldChild entry in
388   /// our children list with NewChild, and updates the parent pointer of
389   /// OldChild to be null and the NewChild to be this loop.
390   /// This updates the loop depth of the new child.
391   void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);
392 
393   /// Add the specified loop to be a child of this loop.
394   /// This updates the loop depth of the new child.
addChildLoop(LoopT * NewChild)395   void addChildLoop(LoopT *NewChild) {
396     assert(!isInvalid() && "Loop not in a valid state!");
397     assert(!NewChild->ParentLoop && "NewChild already has a parent!");
398     NewChild->ParentLoop = static_cast<LoopT *>(this);
399     SubLoops.push_back(NewChild);
400   }
401 
402   /// This removes the specified child from being a subloop of this loop. The
403   /// loop is not deleted, as it will presumably be inserted into another loop.
removeChildLoop(iterator I)404   LoopT *removeChildLoop(iterator I) {
405     assert(!isInvalid() && "Loop not in a valid state!");
406     assert(I != SubLoops.end() && "Cannot remove end iterator!");
407     LoopT *Child = *I;
408     assert(Child->ParentLoop == this && "Child is not a child of this loop!");
409     SubLoops.erase(SubLoops.begin() + (I - begin()));
410     Child->ParentLoop = nullptr;
411     return Child;
412   }
413 
414   /// This removes the specified child from being a subloop of this loop. The
415   /// loop is not deleted, as it will presumably be inserted into another loop.
removeChildLoop(LoopT * Child)416   LoopT *removeChildLoop(LoopT *Child) {
417     return removeChildLoop(llvm::find(*this, Child));
418   }
419 
420   /// This adds a basic block directly to the basic block list.
421   /// This should only be used by transformations that create new loops.  Other
422   /// transformations should use addBasicBlockToLoop.
addBlockEntry(BlockT * BB)423   void addBlockEntry(BlockT *BB) {
424     assert(!isInvalid() && "Loop not in a valid state!");
425     Blocks.push_back(BB);
426     DenseBlockSet.insert(BB);
427   }
428 
429   /// interface to reverse Blocks[from, end of loop] in this loop
reverseBlock(unsigned from)430   void reverseBlock(unsigned from) {
431     assert(!isInvalid() && "Loop not in a valid state!");
432     std::reverse(Blocks.begin() + from, Blocks.end());
433   }
434 
435   /// interface to do reserve() for Blocks
reserveBlocks(unsigned size)436   void reserveBlocks(unsigned size) {
437     assert(!isInvalid() && "Loop not in a valid state!");
438     Blocks.reserve(size);
439   }
440 
441   /// This method is used to move BB (which must be part of this loop) to be the
442   /// loop header of the loop (the block that dominates all others).
moveToHeader(BlockT * BB)443   void moveToHeader(BlockT *BB) {
444     assert(!isInvalid() && "Loop not in a valid state!");
445     if (Blocks[0] == BB)
446       return;
447     for (unsigned i = 0;; ++i) {
448       assert(i != Blocks.size() && "Loop does not contain BB!");
449       if (Blocks[i] == BB) {
450         Blocks[i] = Blocks[0];
451         Blocks[0] = BB;
452         return;
453       }
454     }
455   }
456 
457   /// This removes the specified basic block from the current loop, updating the
458   /// Blocks as appropriate. This does not update the mapping in the LoopInfo
459   /// class.
removeBlockFromLoop(BlockT * BB)460   void removeBlockFromLoop(BlockT *BB) {
461     assert(!isInvalid() && "Loop not in a valid state!");
462     auto I = find(Blocks, BB);
463     assert(I != Blocks.end() && "N is not in this list!");
464     Blocks.erase(I);
465 
466     DenseBlockSet.erase(BB);
467   }
468 
469   /// Verify loop structure
470   void verifyLoop() const;
471 
472   /// Verify loop structure of this loop and all nested loops.
473   void verifyLoopNest(DenseSet<const LoopT *> *Loops) const;
474 
475   /// Returns true if the loop is annotated parallel.
476   ///
477   /// Derived classes can override this method using static template
478   /// polymorphism.
isAnnotatedParallel()479   bool isAnnotatedParallel() const { return false; }
480 
481   /// Print loop with all the BBs inside it.
482   void print(raw_ostream &OS, bool Verbose = false, bool PrintNested = true,
483              unsigned Depth = 0) const;
484 
485 protected:
486   friend class LoopInfoBase<BlockT, LoopT>;
487 
488   /// This creates an empty loop.
LoopBase()489   LoopBase() : ParentLoop(nullptr) {}
490 
LoopBase(BlockT * BB)491   explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
492     Blocks.push_back(BB);
493     DenseBlockSet.insert(BB);
494   }
495 
496   // Since loop passes like SCEV are allowed to key analysis results off of
497   // `Loop` pointers, we cannot re-use pointers within a loop pass manager.
498   // This means loop passes should not be `delete` ing `Loop` objects directly
499   // (and risk a later `Loop` allocation re-using the address of a previous one)
500   // but should be using LoopInfo::markAsRemoved, which keeps around the `Loop`
501   // pointer till the end of the lifetime of the `LoopInfo` object.
502   //
503   // To make it easier to follow this rule, we mark the destructor as
504   // non-public.
~LoopBase()505   ~LoopBase() {
506     for (auto *SubLoop : SubLoops)
507       SubLoop->~LoopT();
508 
509 #if LLVM_ENABLE_ABI_BREAKING_CHECKS
510     IsInvalid = true;
511 #endif
512     SubLoops.clear();
513     Blocks.clear();
514     DenseBlockSet.clear();
515     ParentLoop = nullptr;
516   }
517 };
518 
519 template <class BlockT, class LoopT>
520 raw_ostream &operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
521   Loop.print(OS);
522   return OS;
523 }
524 
525 // Implementation in LoopInfoImpl.h
526 extern template class LoopBase<BasicBlock, Loop>;
527 
528 /// Represents a single loop in the control flow graph.  Note that not all SCCs
529 /// in the CFG are necessarily loops.
530 class Loop : public LoopBase<BasicBlock, Loop> {
531 public:
532   /// A range representing the start and end location of a loop.
533   class LocRange {
534     DebugLoc Start;
535     DebugLoc End;
536 
537   public:
LocRange()538     LocRange() {}
LocRange(DebugLoc Start)539     LocRange(DebugLoc Start) : Start(Start), End(Start) {}
LocRange(DebugLoc Start,DebugLoc End)540     LocRange(DebugLoc Start, DebugLoc End)
541         : Start(std::move(Start)), End(std::move(End)) {}
542 
getStart()543     const DebugLoc &getStart() const { return Start; }
getEnd()544     const DebugLoc &getEnd() const { return End; }
545 
546     /// Check for null.
547     ///
548     explicit operator bool() const { return Start && End; }
549   };
550 
551   /// Return true if the specified value is loop invariant.
552   bool isLoopInvariant(const Value *V) const;
553 
554   /// Return true if all the operands of the specified instruction are loop
555   /// invariant.
556   bool hasLoopInvariantOperands(const Instruction *I) const;
557 
558   /// If the given value is an instruction inside of the loop and it can be
559   /// hoisted, do so to make it trivially loop-invariant.
560   /// Return true if the value after any hoisting is loop invariant. This
561   /// function can be used as a slightly more aggressive replacement for
562   /// isLoopInvariant.
563   ///
564   /// If InsertPt is specified, it is the point to hoist instructions to.
565   /// If null, the terminator of the loop preheader is used.
566   bool makeLoopInvariant(Value *V, bool &Changed,
567                          Instruction *InsertPt = nullptr,
568                          MemorySSAUpdater *MSSAU = nullptr) const;
569 
570   /// If the given instruction is inside of the loop and it can be hoisted, do
571   /// so to make it trivially loop-invariant.
572   /// Return true if the instruction after any hoisting is loop invariant. This
573   /// function can be used as a slightly more aggressive replacement for
574   /// isLoopInvariant.
575   ///
576   /// If InsertPt is specified, it is the point to hoist instructions to.
577   /// If null, the terminator of the loop preheader is used.
578   ///
579   bool makeLoopInvariant(Instruction *I, bool &Changed,
580                          Instruction *InsertPt = nullptr,
581                          MemorySSAUpdater *MSSAU = nullptr) const;
582 
583   /// Check to see if the loop has a canonical induction variable: an integer
584   /// recurrence that starts at 0 and increments by one each time through the
585   /// loop. If so, return the phi node that corresponds to it.
586   ///
587   /// The IndVarSimplify pass transforms loops to have a canonical induction
588   /// variable.
589   ///
590   PHINode *getCanonicalInductionVariable() const;
591 
592   /// Obtain the unique incoming and back edge. Return false if they are
593   /// non-unique or the loop is dead; otherwise, return true.
594   bool getIncomingAndBackEdge(BasicBlock *&Incoming,
595                               BasicBlock *&Backedge) const;
596 
597   /// Below are some utilities to get the loop guard, loop bounds and induction
598   /// variable, and to check if a given phinode is an auxiliary induction
599   /// variable, if the loop is guarded, and if the loop is canonical.
600   ///
601   /// Here is an example:
602   /// \code
603   /// for (int i = lb; i < ub; i+=step)
604   ///   <loop body>
605   /// --- pseudo LLVMIR ---
606   /// beforeloop:
607   ///   guardcmp = (lb < ub)
608   ///   if (guardcmp) goto preheader; else goto afterloop
609   /// preheader:
610   /// loop:
611   ///   i_1 = phi[{lb, preheader}, {i_2, latch}]
612   ///   <loop body>
613   ///   i_2 = i_1 + step
614   /// latch:
615   ///   cmp = (i_2 < ub)
616   ///   if (cmp) goto loop
617   /// exit:
618   /// afterloop:
619   /// \endcode
620   ///
621   /// - getBounds
622   ///   - getInitialIVValue      --> lb
623   ///   - getStepInst            --> i_2 = i_1 + step
624   ///   - getStepValue           --> step
625   ///   - getFinalIVValue        --> ub
626   ///   - getCanonicalPredicate  --> '<'
627   ///   - getDirection           --> Increasing
628   ///
629   /// - getInductionVariable            --> i_1
630   /// - isAuxiliaryInductionVariable(x) --> true if x == i_1
631   /// - getLoopGuardBranch()
632   ///                 --> `if (guardcmp) goto preheader; else goto afterloop`
633   /// - isGuarded()                     --> true
634   /// - isCanonical                     --> false
635   struct LoopBounds {
636     /// Return the LoopBounds object if
637     /// - the given \p IndVar is an induction variable
638     /// - the initial value of the induction variable can be found
639     /// - the step instruction of the induction variable can be found
640     /// - the final value of the induction variable can be found
641     ///
642     /// Else None.
643     static Optional<Loop::LoopBounds> getBounds(const Loop &L, PHINode &IndVar,
644                                                 ScalarEvolution &SE);
645 
646     /// Get the initial value of the loop induction variable.
getInitialIVValueLoopBounds647     Value &getInitialIVValue() const { return InitialIVValue; }
648 
649     /// Get the instruction that updates the loop induction variable.
getStepInstLoopBounds650     Instruction &getStepInst() const { return StepInst; }
651 
652     /// Get the step that the loop induction variable gets updated by in each
653     /// loop iteration. Return nullptr if not found.
getStepValueLoopBounds654     Value *getStepValue() const { return StepValue; }
655 
656     /// Get the final value of the loop induction variable.
getFinalIVValueLoopBounds657     Value &getFinalIVValue() const { return FinalIVValue; }
658 
659     /// Return the canonical predicate for the latch compare instruction, if
660     /// able to be calcuated. Else BAD_ICMP_PREDICATE.
661     ///
662     /// A predicate is considered as canonical if requirements below are all
663     /// satisfied:
664     /// 1. The first successor of the latch branch is the loop header
665     ///    If not, inverse the predicate.
666     /// 2. One of the operands of the latch comparison is StepInst
667     ///    If not, and
668     ///    - if the current calcuated predicate is not ne or eq, flip the
669     ///      predicate.
670     ///    - else if the loop is increasing, return slt
671     ///      (notice that it is safe to change from ne or eq to sign compare)
672     ///    - else if the loop is decreasing, return sgt
673     ///      (notice that it is safe to change from ne or eq to sign compare)
674     ///
675     /// Here is an example when both (1) and (2) are not satisfied:
676     /// \code
677     /// loop.header:
678     ///  %iv = phi [%initialiv, %loop.preheader], [%inc, %loop.header]
679     ///  %inc = add %iv, %step
680     ///  %cmp = slt %iv, %finaliv
681     ///  br %cmp, %loop.exit, %loop.header
682     /// loop.exit:
683     /// \endcode
684     /// - The second successor of the latch branch is the loop header instead
685     ///   of the first successor (slt -> sge)
686     /// - The first operand of the latch comparison (%cmp) is the IndVar (%iv)
687     ///   instead of the StepInst (%inc) (sge -> sgt)
688     ///
689     /// The predicate would be sgt if both (1) and (2) are satisfied.
690     /// getCanonicalPredicate() returns sgt for this example.
691     /// Note: The IR is not changed.
692     ICmpInst::Predicate getCanonicalPredicate() const;
693 
694     /// An enum for the direction of the loop
695     /// - for (int i = 0; i < ub; ++i)  --> Increasing
696     /// - for (int i = ub; i > 0; --i)  --> Descresing
697     /// - for (int i = x; i != y; i+=z) --> Unknown
698     enum class Direction { Increasing, Decreasing, Unknown };
699 
700     /// Get the direction of the loop.
701     Direction getDirection() const;
702 
703   private:
LoopBoundsLoopBounds704     LoopBounds(const Loop &Loop, Value &I, Instruction &SI, Value *SV, Value &F,
705                ScalarEvolution &SE)
706         : L(Loop), InitialIVValue(I), StepInst(SI), StepValue(SV),
707           FinalIVValue(F), SE(SE) {}
708 
709     const Loop &L;
710 
711     // The initial value of the loop induction variable
712     Value &InitialIVValue;
713 
714     // The instruction that updates the loop induction variable
715     Instruction &StepInst;
716 
717     // The value that the loop induction variable gets updated by in each loop
718     // iteration
719     Value *StepValue;
720 
721     // The final value of the loop induction variable
722     Value &FinalIVValue;
723 
724     ScalarEvolution &SE;
725   };
726 
727   /// Return the struct LoopBounds collected if all struct members are found,
728   /// else None.
729   Optional<LoopBounds> getBounds(ScalarEvolution &SE) const;
730 
731   /// Return the loop induction variable if found, else return nullptr.
732   /// An instruction is considered as the loop induction variable if
733   /// - it is an induction variable of the loop; and
734   /// - it is used to determine the condition of the branch in the loop latch
735   ///
736   /// Note: the induction variable doesn't need to be canonical, i.e. starts at
737   /// zero and increments by one each time through the loop (but it can be).
738   PHINode *getInductionVariable(ScalarEvolution &SE) const;
739 
740   /// Get the loop induction descriptor for the loop induction variable. Return
741   /// true if the loop induction variable is found.
742   bool getInductionDescriptor(ScalarEvolution &SE,
743                               InductionDescriptor &IndDesc) const;
744 
745   /// Return true if the given PHINode \p AuxIndVar is
746   /// - in the loop header
747   /// - not used outside of the loop
748   /// - incremented by a loop invariant step for each loop iteration
749   /// - step instruction opcode should be add or sub
750   /// Note: auxiliary induction variable is not required to be used in the
751   ///       conditional branch in the loop latch. (but it can be)
752   bool isAuxiliaryInductionVariable(PHINode &AuxIndVar,
753                                     ScalarEvolution &SE) const;
754 
755   /// Return the loop guard branch, if it exists.
756   ///
757   /// This currently only works on simplified loop, as it requires a preheader
758   /// and a latch to identify the guard. It will work on loops of the form:
759   /// \code
760   /// GuardBB:
761   ///   br cond1, Preheader, ExitSucc <== GuardBranch
762   /// Preheader:
763   ///   br Header
764   /// Header:
765   ///  ...
766   ///   br Latch
767   /// Latch:
768   ///   br cond2, Header, ExitBlock
769   /// ExitBlock:
770   ///   br ExitSucc
771   /// ExitSucc:
772   /// \endcode
773   BranchInst *getLoopGuardBranch() const;
774 
775   /// Return true iff the loop is
776   /// - in simplify rotated form, and
777   /// - guarded by a loop guard branch.
isGuarded()778   bool isGuarded() const { return (getLoopGuardBranch() != nullptr); }
779 
780   /// Return true if the loop is in rotated form.
781   ///
782   /// This does not check if the loop was rotated by loop rotation, instead it
783   /// only checks if the loop is in rotated form (has a valid latch that exists
784   /// the loop).
isRotatedForm()785   bool isRotatedForm() const {
786     assert(!isInvalid() && "Loop not in a valid state!");
787     BasicBlock *Latch = getLoopLatch();
788     return Latch && isLoopExiting(Latch);
789   }
790 
791   /// Return true if the loop induction variable starts at zero and increments
792   /// by one each time through the loop.
793   bool isCanonical(ScalarEvolution &SE) const;
794 
795   /// Return true if the Loop is in LCSSA form.
796   bool isLCSSAForm(const DominatorTree &DT) const;
797 
798   /// Return true if this Loop and all inner subloops are in LCSSA form.
799   bool isRecursivelyLCSSAForm(const DominatorTree &DT,
800                               const LoopInfo &LI) const;
801 
802   /// Return true if the Loop is in the form that the LoopSimplify form
803   /// transforms loops to, which is sometimes called normal form.
804   bool isLoopSimplifyForm() const;
805 
806   /// Return true if the loop body is safe to clone in practice.
807   bool isSafeToClone() const;
808 
809   /// Returns true if the loop is annotated parallel.
810   ///
811   /// A parallel loop can be assumed to not contain any dependencies between
812   /// iterations by the compiler. That is, any loop-carried dependency checking
813   /// can be skipped completely when parallelizing the loop on the target
814   /// machine. Thus, if the parallel loop information originates from the
815   /// programmer, e.g. via the OpenMP parallel for pragma, it is the
816   /// programmer's responsibility to ensure there are no loop-carried
817   /// dependencies. The final execution order of the instructions across
818   /// iterations is not guaranteed, thus, the end result might or might not
819   /// implement actual concurrent execution of instructions across multiple
820   /// iterations.
821   bool isAnnotatedParallel() const;
822 
823   /// Return the llvm.loop loop id metadata node for this loop if it is present.
824   ///
825   /// If this loop contains the same llvm.loop metadata on each branch to the
826   /// header then the node is returned. If any latch instruction does not
827   /// contain llvm.loop or if multiple latches contain different nodes then
828   /// 0 is returned.
829   MDNode *getLoopID() const;
830   /// Set the llvm.loop loop id metadata for this loop.
831   ///
832   /// The LoopID metadata node will be added to each terminator instruction in
833   /// the loop that branches to the loop header.
834   ///
835   /// The LoopID metadata node should have one or more operands and the first
836   /// operand should be the node itself.
837   void setLoopID(MDNode *LoopID) const;
838 
839   /// Add llvm.loop.unroll.disable to this loop's loop id metadata.
840   ///
841   /// Remove existing unroll metadata and add unroll disable metadata to
842   /// indicate the loop has already been unrolled.  This prevents a loop
843   /// from being unrolled more than is directed by a pragma if the loop
844   /// unrolling pass is run more than once (which it generally is).
845   void setLoopAlreadyUnrolled();
846 
847   /// Add llvm.loop.mustprogress to this loop's loop id metadata.
848   void setLoopMustProgress();
849 
850   void dump() const;
851   void dumpVerbose() const;
852 
853   /// Return the debug location of the start of this loop.
854   /// This looks for a BB terminating instruction with a known debug
855   /// location by looking at the preheader and header blocks. If it
856   /// cannot find a terminating instruction with location information,
857   /// it returns an unknown location.
858   DebugLoc getStartLoc() const;
859 
860   /// Return the source code span of the loop.
861   LocRange getLocRange() const;
862 
getName()863   StringRef getName() const {
864     if (BasicBlock *Header = getHeader())
865       if (Header->hasName())
866         return Header->getName();
867     return "<unnamed loop>";
868   }
869 
870 private:
871   Loop() = default;
872 
873   friend class LoopInfoBase<BasicBlock, Loop>;
874   friend class LoopBase<BasicBlock, Loop>;
Loop(BasicBlock * BB)875   explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
876   ~Loop() = default;
877 };
878 
879 //===----------------------------------------------------------------------===//
880 /// This class builds and contains all of the top-level loop
881 /// structures in the specified function.
882 ///
883 
884 template <class BlockT, class LoopT> class LoopInfoBase {
885   // BBMap - Mapping of basic blocks to the inner most loop they occur in
886   DenseMap<const BlockT *, LoopT *> BBMap;
887   std::vector<LoopT *> TopLevelLoops;
888   BumpPtrAllocator LoopAllocator;
889 
890   friend class LoopBase<BlockT, LoopT>;
891   friend class LoopInfo;
892 
893   void operator=(const LoopInfoBase &) = delete;
894   LoopInfoBase(const LoopInfoBase &) = delete;
895 
896 public:
LoopInfoBase()897   LoopInfoBase() {}
~LoopInfoBase()898   ~LoopInfoBase() { releaseMemory(); }
899 
LoopInfoBase(LoopInfoBase && Arg)900   LoopInfoBase(LoopInfoBase &&Arg)
901       : BBMap(std::move(Arg.BBMap)),
902         TopLevelLoops(std::move(Arg.TopLevelLoops)),
903         LoopAllocator(std::move(Arg.LoopAllocator)) {
904     // We have to clear the arguments top level loops as we've taken ownership.
905     Arg.TopLevelLoops.clear();
906   }
907   LoopInfoBase &operator=(LoopInfoBase &&RHS) {
908     BBMap = std::move(RHS.BBMap);
909 
910     for (auto *L : TopLevelLoops)
911       L->~LoopT();
912 
913     TopLevelLoops = std::move(RHS.TopLevelLoops);
914     LoopAllocator = std::move(RHS.LoopAllocator);
915     RHS.TopLevelLoops.clear();
916     return *this;
917   }
918 
releaseMemory()919   void releaseMemory() {
920     BBMap.clear();
921 
922     for (auto *L : TopLevelLoops)
923       L->~LoopT();
924     TopLevelLoops.clear();
925     LoopAllocator.Reset();
926   }
927 
AllocateLoop(ArgsTy &&...Args)928   template <typename... ArgsTy> LoopT *AllocateLoop(ArgsTy &&... Args) {
929     LoopT *Storage = LoopAllocator.Allocate<LoopT>();
930     return new (Storage) LoopT(std::forward<ArgsTy>(Args)...);
931   }
932 
933   /// iterator/begin/end - The interface to the top-level loops in the current
934   /// function.
935   ///
936   typedef typename std::vector<LoopT *>::const_iterator iterator;
937   typedef
938       typename std::vector<LoopT *>::const_reverse_iterator reverse_iterator;
begin()939   iterator begin() const { return TopLevelLoops.begin(); }
end()940   iterator end() const { return TopLevelLoops.end(); }
rbegin()941   reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
rend()942   reverse_iterator rend() const { return TopLevelLoops.rend(); }
empty()943   bool empty() const { return TopLevelLoops.empty(); }
944 
945   /// Return all of the loops in the function in preorder across the loop
946   /// nests, with siblings in forward program order.
947   ///
948   /// Note that because loops form a forest of trees, preorder is equivalent to
949   /// reverse postorder.
950   SmallVector<LoopT *, 4> getLoopsInPreorder();
951 
952   /// Return all of the loops in the function in preorder across the loop
953   /// nests, with siblings in *reverse* program order.
954   ///
955   /// Note that because loops form a forest of trees, preorder is equivalent to
956   /// reverse postorder.
957   ///
958   /// Also note that this is *not* a reverse preorder. Only the siblings are in
959   /// reverse program order.
960   SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();
961 
962   /// Return the inner most loop that BB lives in. If a basic block is in no
963   /// loop (for example the entry node), null is returned.
getLoopFor(const BlockT * BB)964   LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }
965 
966   /// Same as getLoopFor.
967   const LoopT *operator[](const BlockT *BB) const { return getLoopFor(BB); }
968 
969   /// Return the loop nesting level of the specified block. A depth of 0 means
970   /// the block is not inside any loop.
getLoopDepth(const BlockT * BB)971   unsigned getLoopDepth(const BlockT *BB) const {
972     const LoopT *L = getLoopFor(BB);
973     return L ? L->getLoopDepth() : 0;
974   }
975 
976   // True if the block is a loop header node
isLoopHeader(const BlockT * BB)977   bool isLoopHeader(const BlockT *BB) const {
978     const LoopT *L = getLoopFor(BB);
979     return L && L->getHeader() == BB;
980   }
981 
982   /// Return the top-level loops.
getTopLevelLoops()983   const std::vector<LoopT *> &getTopLevelLoops() const { return TopLevelLoops; }
984 
985   /// Return the top-level loops.
getTopLevelLoopsVector()986   std::vector<LoopT *> &getTopLevelLoopsVector() { return TopLevelLoops; }
987 
988   /// This removes the specified top-level loop from this loop info object.
989   /// The loop is not deleted, as it will presumably be inserted into
990   /// another loop.
removeLoop(iterator I)991   LoopT *removeLoop(iterator I) {
992     assert(I != end() && "Cannot remove end iterator!");
993     LoopT *L = *I;
994     assert(L->isOutermost() && "Not a top-level loop!");
995     TopLevelLoops.erase(TopLevelLoops.begin() + (I - begin()));
996     return L;
997   }
998 
999   /// Change the top-level loop that contains BB to the specified loop.
1000   /// This should be used by transformations that restructure the loop hierarchy
1001   /// tree.
changeLoopFor(BlockT * BB,LoopT * L)1002   void changeLoopFor(BlockT *BB, LoopT *L) {
1003     if (!L) {
1004       BBMap.erase(BB);
1005       return;
1006     }
1007     BBMap[BB] = L;
1008   }
1009 
1010   /// Replace the specified loop in the top-level loops list with the indicated
1011   /// loop.
changeTopLevelLoop(LoopT * OldLoop,LoopT * NewLoop)1012   void changeTopLevelLoop(LoopT *OldLoop, LoopT *NewLoop) {
1013     auto I = find(TopLevelLoops, OldLoop);
1014     assert(I != TopLevelLoops.end() && "Old loop not at top level!");
1015     *I = NewLoop;
1016     assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
1017            "Loops already embedded into a subloop!");
1018   }
1019 
1020   /// This adds the specified loop to the collection of top-level loops.
addTopLevelLoop(LoopT * New)1021   void addTopLevelLoop(LoopT *New) {
1022     assert(New->isOutermost() && "Loop already in subloop!");
1023     TopLevelLoops.push_back(New);
1024   }
1025 
1026   /// This method completely removes BB from all data structures,
1027   /// including all of the Loop objects it is nested in and our mapping from
1028   /// BasicBlocks to loops.
removeBlock(BlockT * BB)1029   void removeBlock(BlockT *BB) {
1030     auto I = BBMap.find(BB);
1031     if (I != BBMap.end()) {
1032       for (LoopT *L = I->second; L; L = L->getParentLoop())
1033         L->removeBlockFromLoop(BB);
1034 
1035       BBMap.erase(I);
1036     }
1037   }
1038 
1039   // Internals
1040 
isNotAlreadyContainedIn(const LoopT * SubLoop,const LoopT * ParentLoop)1041   static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
1042                                       const LoopT *ParentLoop) {
1043     if (!SubLoop)
1044       return true;
1045     if (SubLoop == ParentLoop)
1046       return false;
1047     return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
1048   }
1049 
1050   /// Create the loop forest using a stable algorithm.
1051   void analyze(const DominatorTreeBase<BlockT, false> &DomTree);
1052 
1053   // Debugging
1054   void print(raw_ostream &OS) const;
1055 
1056   void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
1057 
1058   /// Destroy a loop that has been removed from the `LoopInfo` nest.
1059   ///
1060   /// This runs the destructor of the loop object making it invalid to
1061   /// reference afterward. The memory is retained so that the *pointer* to the
1062   /// loop remains valid.
1063   ///
1064   /// The caller is responsible for removing this loop from the loop nest and
1065   /// otherwise disconnecting it from the broader `LoopInfo` data structures.
1066   /// Callers that don't naturally handle this themselves should probably call
1067   /// `erase' instead.
destroy(LoopT * L)1068   void destroy(LoopT *L) {
1069     L->~LoopT();
1070 
1071     // Since LoopAllocator is a BumpPtrAllocator, this Deallocate only poisons
1072     // \c L, but the pointer remains valid for non-dereferencing uses.
1073     LoopAllocator.Deallocate(L);
1074   }
1075 };
1076 
1077 // Implementation in LoopInfoImpl.h
1078 extern template class LoopInfoBase<BasicBlock, Loop>;
1079 
1080 class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
1081   typedef LoopInfoBase<BasicBlock, Loop> BaseT;
1082 
1083   friend class LoopBase<BasicBlock, Loop>;
1084 
1085   void operator=(const LoopInfo &) = delete;
1086   LoopInfo(const LoopInfo &) = delete;
1087 
1088 public:
LoopInfo()1089   LoopInfo() {}
1090   explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);
1091 
LoopInfo(LoopInfo && Arg)1092   LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
1093   LoopInfo &operator=(LoopInfo &&RHS) {
1094     BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
1095     return *this;
1096   }
1097 
1098   /// Handle invalidation explicitly.
1099   bool invalidate(Function &F, const PreservedAnalyses &PA,
1100                   FunctionAnalysisManager::Invalidator &);
1101 
1102   // Most of the public interface is provided via LoopInfoBase.
1103 
1104   /// Update LoopInfo after removing the last backedge from a loop. This updates
1105   /// the loop forest and parent loops for each block so that \c L is no longer
1106   /// referenced, but does not actually delete \c L immediately. The pointer
1107   /// will remain valid until this LoopInfo's memory is released.
1108   void erase(Loop *L);
1109 
1110   /// Returns true if replacing From with To everywhere is guaranteed to
1111   /// preserve LCSSA form.
replacementPreservesLCSSAForm(Instruction * From,Value * To)1112   bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
1113     // Preserving LCSSA form is only problematic if the replacing value is an
1114     // instruction.
1115     Instruction *I = dyn_cast<Instruction>(To);
1116     if (!I)
1117       return true;
1118     // If both instructions are defined in the same basic block then replacement
1119     // cannot break LCSSA form.
1120     if (I->getParent() == From->getParent())
1121       return true;
1122     // If the instruction is not defined in a loop then it can safely replace
1123     // anything.
1124     Loop *ToLoop = getLoopFor(I->getParent());
1125     if (!ToLoop)
1126       return true;
1127     // If the replacing instruction is defined in the same loop as the original
1128     // instruction, or in a loop that contains it as an inner loop, then using
1129     // it as a replacement will not break LCSSA form.
1130     return ToLoop->contains(getLoopFor(From->getParent()));
1131   }
1132 
1133   /// Checks if moving a specific instruction can break LCSSA in any loop.
1134   ///
1135   /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
1136   /// assuming that the function containing \p Inst and \p NewLoc is currently
1137   /// in LCSSA form.
movementPreservesLCSSAForm(Instruction * Inst,Instruction * NewLoc)1138   bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
1139     assert(Inst->getFunction() == NewLoc->getFunction() &&
1140            "Can't reason about IPO!");
1141 
1142     auto *OldBB = Inst->getParent();
1143     auto *NewBB = NewLoc->getParent();
1144 
1145     // Movement within the same loop does not break LCSSA (the equality check is
1146     // to avoid doing a hashtable lookup in case of intra-block movement).
1147     if (OldBB == NewBB)
1148       return true;
1149 
1150     auto *OldLoop = getLoopFor(OldBB);
1151     auto *NewLoop = getLoopFor(NewBB);
1152 
1153     if (OldLoop == NewLoop)
1154       return true;
1155 
1156     // Check if Outer contains Inner; with the null loop counting as the
1157     // "outermost" loop.
1158     auto Contains = [](const Loop *Outer, const Loop *Inner) {
1159       return !Outer || Outer->contains(Inner);
1160     };
1161 
1162     // To check that the movement of Inst to before NewLoc does not break LCSSA,
1163     // we need to check two sets of uses for possible LCSSA violations at
1164     // NewLoc: the users of NewInst, and the operands of NewInst.
1165 
1166     // If we know we're hoisting Inst out of an inner loop to an outer loop,
1167     // then the uses *of* Inst don't need to be checked.
1168 
1169     if (!Contains(NewLoop, OldLoop)) {
1170       for (Use &U : Inst->uses()) {
1171         auto *UI = cast<Instruction>(U.getUser());
1172         auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
1173                                      : UI->getParent();
1174         if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
1175           return false;
1176       }
1177     }
1178 
1179     // If we know we're sinking Inst from an outer loop into an inner loop, then
1180     // the *operands* of Inst don't need to be checked.
1181 
1182     if (!Contains(OldLoop, NewLoop)) {
1183       // See below on why we can't handle phi nodes here.
1184       if (isa<PHINode>(Inst))
1185         return false;
1186 
1187       for (Use &U : Inst->operands()) {
1188         auto *DefI = dyn_cast<Instruction>(U.get());
1189         if (!DefI)
1190           return false;
1191 
1192         // This would need adjustment if we allow Inst to be a phi node -- the
1193         // new use block won't simply be NewBB.
1194 
1195         auto *DefBlock = DefI->getParent();
1196         if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
1197           return false;
1198       }
1199     }
1200 
1201     return true;
1202   }
1203 
1204   // Return true if a new use of V added in ExitBB would require an LCSSA PHI
1205   // to be inserted at the begining of the block.  Note that V is assumed to
1206   // dominate ExitBB, and ExitBB must be the exit block of some loop.  The
1207   // IR is assumed to be in LCSSA form before the planned insertion.
1208   bool wouldBeOutOfLoopUseRequiringLCSSA(const Value *V,
1209                                          const BasicBlock *ExitBB) const;
1210 
1211 };
1212 
1213 // Allow clients to walk the list of nested loops...
1214 template <> struct GraphTraits<const Loop *> {
1215   typedef const Loop *NodeRef;
1216   typedef LoopInfo::iterator ChildIteratorType;
1217 
1218   static NodeRef getEntryNode(const Loop *L) { return L; }
1219   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1220   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1221 };
1222 
1223 template <> struct GraphTraits<Loop *> {
1224   typedef Loop *NodeRef;
1225   typedef LoopInfo::iterator ChildIteratorType;
1226 
1227   static NodeRef getEntryNode(Loop *L) { return L; }
1228   static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
1229   static ChildIteratorType child_end(NodeRef N) { return N->end(); }
1230 };
1231 
1232 /// Analysis pass that exposes the \c LoopInfo for a function.
1233 class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
1234   friend AnalysisInfoMixin<LoopAnalysis>;
1235   static AnalysisKey Key;
1236 
1237 public:
1238   typedef LoopInfo Result;
1239 
1240   LoopInfo run(Function &F, FunctionAnalysisManager &AM);
1241 };
1242 
1243 /// Printer pass for the \c LoopAnalysis results.
1244 class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
1245   raw_ostream &OS;
1246 
1247 public:
1248   explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
1249   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1250 };
1251 
1252 /// Verifier pass for the \c LoopAnalysis results.
1253 struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
1254   PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
1255 };
1256 
1257 /// The legacy pass manager's analysis pass to compute loop information.
1258 class LoopInfoWrapperPass : public FunctionPass {
1259   LoopInfo LI;
1260 
1261 public:
1262   static char ID; // Pass identification, replacement for typeid
1263 
1264   LoopInfoWrapperPass();
1265 
1266   LoopInfo &getLoopInfo() { return LI; }
1267   const LoopInfo &getLoopInfo() const { return LI; }
1268 
1269   /// Calculate the natural loop information for a given function.
1270   bool runOnFunction(Function &F) override;
1271 
1272   void verifyAnalysis() const override;
1273 
1274   void releaseMemory() override { LI.releaseMemory(); }
1275 
1276   void print(raw_ostream &O, const Module *M = nullptr) const override;
1277 
1278   void getAnalysisUsage(AnalysisUsage &AU) const override;
1279 };
1280 
1281 /// Function to print a loop's contents as LLVM's text IR assembly.
1282 void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");
1283 
1284 /// Find and return the loop attribute node for the attribute @p Name in
1285 /// @p LoopID. Return nullptr if there is no such attribute.
1286 MDNode *findOptionMDForLoopID(MDNode *LoopID, StringRef Name);
1287 
1288 /// Find string metadata for a loop.
1289 ///
1290 /// Returns the MDNode where the first operand is the metadata's name. The
1291 /// following operands are the metadata's values. If no metadata with @p Name is
1292 /// found, return nullptr.
1293 MDNode *findOptionMDForLoop(const Loop *TheLoop, StringRef Name);
1294 
1295 /// Return whether an MDNode might represent an access group.
1296 ///
1297 /// Access group metadata nodes have to be distinct and empty. Being
1298 /// always-empty ensures that it never needs to be changed (which -- because
1299 /// MDNodes are designed immutable -- would require creating a new MDNode). Note
1300 /// that this is not a sufficient condition: not every distinct and empty NDNode
1301 /// is representing an access group.
1302 bool isValidAsAccessGroup(MDNode *AccGroup);
1303 
1304 /// Create a new LoopID after the loop has been transformed.
1305 ///
1306 /// This can be used when no follow-up loop attributes are defined
1307 /// (llvm::makeFollowupLoopID returning None) to stop transformations to be
1308 /// applied again.
1309 ///
1310 /// @param Context        The LLVMContext in which to create the new LoopID.
1311 /// @param OrigLoopID     The original LoopID; can be nullptr if the original
1312 ///                       loop has no LoopID.
1313 /// @param RemovePrefixes Remove all loop attributes that have these prefixes.
1314 ///                       Use to remove metadata of the transformation that has
1315 ///                       been applied.
1316 /// @param AddAttrs       Add these loop attributes to the new LoopID.
1317 ///
1318 /// @return A new LoopID that can be applied using Loop::setLoopID().
1319 llvm::MDNode *
1320 makePostTransformationMetadata(llvm::LLVMContext &Context, MDNode *OrigLoopID,
1321                                llvm::ArrayRef<llvm::StringRef> RemovePrefixes,
1322                                llvm::ArrayRef<llvm::MDNode *> AddAttrs);
1323 
1324 } // End llvm namespace
1325 
1326 #endif
1327