1 //===- AArch64ErrataFix.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // This file implements Section Patching for the purpose of working around
9 // the AArch64 Cortex-53 errata 843419 that affects r0p0, r0p1, r0p2 and r0p4
10 // versions of the core.
11 //
12 // The general principle is that an erratum sequence of one or
13 // more instructions is detected in the instruction stream, one of the
14 // instructions in the sequence is replaced with a branch to a patch sequence
15 // of replacement instructions. At the end of the replacement sequence the
16 // patch branches back to the instruction stream.
17
18 // This technique is only suitable for fixing an erratum when:
19 // - There is a set of necessary conditions required to trigger the erratum that
20 // can be detected at static link time.
21 // - There is a set of replacement instructions that can be used to remove at
22 // least one of the necessary conditions that trigger the erratum.
23 // - We can overwrite an instruction in the erratum sequence with a branch to
24 // the replacement sequence.
25 // - We can place the replacement sequence within range of the branch.
26 //===----------------------------------------------------------------------===//
27
28 #include "AArch64ErrataFix.h"
29 #include "InputFiles.h"
30 #include "LinkerScript.h"
31 #include "OutputSections.h"
32 #include "Relocations.h"
33 #include "Symbols.h"
34 #include "SyntheticSections.h"
35 #include "Target.h"
36 #include "lld/Common/CommonLinkerContext.h"
37 #include "lld/Common/Strings.h"
38 #include "llvm/Support/Endian.h"
39 #include <algorithm>
40
41 using namespace llvm;
42 using namespace llvm::ELF;
43 using namespace llvm::object;
44 using namespace llvm::support;
45 using namespace llvm::support::endian;
46 using namespace lld;
47 using namespace lld::elf;
48
49 // Helper functions to identify instructions and conditions needed to trigger
50 // the Cortex-A53-843419 erratum.
51
52 // ADRP
53 // | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
isADRP(uint32_t instr)54 static bool isADRP(uint32_t instr) {
55 return (instr & 0x9f000000) == 0x90000000;
56 }
57
58 // Load and store bit patterns from ARMv8-A.
59 // Instructions appear in order of appearance starting from table in
60 // C4.1.3 Loads and Stores.
61
62 // All loads and stores have 1 (at bit position 27), (0 at bit position 25).
63 // | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
isLoadStoreClass(uint32_t instr)64 static bool isLoadStoreClass(uint32_t instr) {
65 return (instr & 0x0a000000) == 0x08000000;
66 }
67
68 // LDN/STN multiple no offset
69 // | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
70 // LDN/STN multiple post-indexed
71 // | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
72 // L == 0 for stores.
73
74 // Utility routine to decode opcode field of LDN/STN multiple structure
75 // instructions to find the ST1 instructions.
76 // opcode == 0010 ST1 4 registers.
77 // opcode == 0110 ST1 3 registers.
78 // opcode == 0111 ST1 1 register.
79 // opcode == 1010 ST1 2 registers.
isST1MultipleOpcode(uint32_t instr)80 static bool isST1MultipleOpcode(uint32_t instr) {
81 return (instr & 0x0000f000) == 0x00002000 ||
82 (instr & 0x0000f000) == 0x00006000 ||
83 (instr & 0x0000f000) == 0x00007000 ||
84 (instr & 0x0000f000) == 0x0000a000;
85 }
86
isST1Multiple(uint32_t instr)87 static bool isST1Multiple(uint32_t instr) {
88 return (instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(instr);
89 }
90
91 // Writes to Rn (writeback).
isST1MultiplePost(uint32_t instr)92 static bool isST1MultiplePost(uint32_t instr) {
93 return (instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(instr);
94 }
95
96 // LDN/STN single no offset
97 // | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
98 // LDN/STN single post-indexed
99 // | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
100 // L == 0 for stores
101
102 // Utility routine to decode opcode field of LDN/STN single structure
103 // instructions to find the ST1 instructions.
104 // R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
105 // opcode == 000 ST1 8-bit.
106 // opcode == 010 ST1 16-bit.
107 // opcode == 100 ST1 32 or 64-bit (Size determines which).
isST1SingleOpcode(uint32_t instr)108 static bool isST1SingleOpcode(uint32_t instr) {
109 return (instr & 0x0040e000) == 0x00000000 ||
110 (instr & 0x0040e000) == 0x00004000 ||
111 (instr & 0x0040e000) == 0x00008000;
112 }
113
isST1Single(uint32_t instr)114 static bool isST1Single(uint32_t instr) {
115 return (instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(instr);
116 }
117
118 // Writes to Rn (writeback).
isST1SinglePost(uint32_t instr)119 static bool isST1SinglePost(uint32_t instr) {
120 return (instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(instr);
121 }
122
isST1(uint32_t instr)123 static bool isST1(uint32_t instr) {
124 return isST1Multiple(instr) || isST1MultiplePost(instr) ||
125 isST1Single(instr) || isST1SinglePost(instr);
126 }
127
128 // Load/store exclusive
129 // | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
130 // L == 0 for Stores.
isLoadStoreExclusive(uint32_t instr)131 static bool isLoadStoreExclusive(uint32_t instr) {
132 return (instr & 0x3f000000) == 0x08000000;
133 }
134
isLoadExclusive(uint32_t instr)135 static bool isLoadExclusive(uint32_t instr) {
136 return (instr & 0x3f400000) == 0x08400000;
137 }
138
139 // Load register literal
140 // | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
isLoadLiteral(uint32_t instr)141 static bool isLoadLiteral(uint32_t instr) {
142 return (instr & 0x3b000000) == 0x18000000;
143 }
144
145 // Load/store no-allocate pair
146 // (offset)
147 // | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
148 // L == 0 for stores.
149 // Never writes to register
isSTNP(uint32_t instr)150 static bool isSTNP(uint32_t instr) {
151 return (instr & 0x3bc00000) == 0x28000000;
152 }
153
154 // Load/store register pair
155 // (post-indexed)
156 // | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
157 // L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
158 // Writes to Rn.
isSTPPost(uint32_t instr)159 static bool isSTPPost(uint32_t instr) {
160 return (instr & 0x3bc00000) == 0x28800000;
161 }
162
163 // (offset)
164 // | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
isSTPOffset(uint32_t instr)165 static bool isSTPOffset(uint32_t instr) {
166 return (instr & 0x3bc00000) == 0x29000000;
167 }
168
169 // (pre-index)
170 // | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
171 // Writes to Rn.
isSTPPre(uint32_t instr)172 static bool isSTPPre(uint32_t instr) {
173 return (instr & 0x3bc00000) == 0x29800000;
174 }
175
isSTP(uint32_t instr)176 static bool isSTP(uint32_t instr) {
177 return isSTPPost(instr) || isSTPOffset(instr) || isSTPPre(instr);
178 }
179
180 // Load/store register (unscaled immediate)
181 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
182 // V == 0 for Scalar, V == 1 for Simd/FP.
isLoadStoreUnscaled(uint32_t instr)183 static bool isLoadStoreUnscaled(uint32_t instr) {
184 return (instr & 0x3b000c00) == 0x38000000;
185 }
186
187 // Load/store register (immediate post-indexed)
188 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
isLoadStoreImmediatePost(uint32_t instr)189 static bool isLoadStoreImmediatePost(uint32_t instr) {
190 return (instr & 0x3b200c00) == 0x38000400;
191 }
192
193 // Load/store register (unprivileged)
194 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
isLoadStoreUnpriv(uint32_t instr)195 static bool isLoadStoreUnpriv(uint32_t instr) {
196 return (instr & 0x3b200c00) == 0x38000800;
197 }
198
199 // Load/store register (immediate pre-indexed)
200 // | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
isLoadStoreImmediatePre(uint32_t instr)201 static bool isLoadStoreImmediatePre(uint32_t instr) {
202 return (instr & 0x3b200c00) == 0x38000c00;
203 }
204
205 // Load/store register (register offset)
206 // | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
isLoadStoreRegisterOff(uint32_t instr)207 static bool isLoadStoreRegisterOff(uint32_t instr) {
208 return (instr & 0x3b200c00) == 0x38200800;
209 }
210
211 // Load/store register (unsigned immediate)
212 // | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
isLoadStoreRegisterUnsigned(uint32_t instr)213 static bool isLoadStoreRegisterUnsigned(uint32_t instr) {
214 return (instr & 0x3b000000) == 0x39000000;
215 }
216
217 // Rt is always in bit position 0 - 4.
getRt(uint32_t instr)218 static uint32_t getRt(uint32_t instr) { return (instr & 0x1f); }
219
220 // Rn is always in bit position 5 - 9.
getRn(uint32_t instr)221 static uint32_t getRn(uint32_t instr) { return (instr >> 5) & 0x1f; }
222
223 // C4.1.2 Branches, Exception Generating and System instructions
224 // | op0 (3) 1 | 01 op1 (4) | x (22) |
225 // op0 == 010 101 op1 == 0xxx Conditional Branch.
226 // op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
227 // op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
228 // op0 == x01 101 op1 == 0xxx Compare and branch immediate.
229 // op0 == x01 101 op1 == 1xxx Test and branch immediate.
isBranch(uint32_t instr)230 static bool isBranch(uint32_t instr) {
231 return ((instr & 0xfe000000) == 0xd6000000) || // Cond branch.
232 ((instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
233 ((instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
234 ((instr & 0x7c000000) == 0x34000000); // Compare and test branch.
235 }
236
isV8SingleRegisterNonStructureLoadStore(uint32_t instr)237 static bool isV8SingleRegisterNonStructureLoadStore(uint32_t instr) {
238 return isLoadStoreUnscaled(instr) || isLoadStoreImmediatePost(instr) ||
239 isLoadStoreUnpriv(instr) || isLoadStoreImmediatePre(instr) ||
240 isLoadStoreRegisterOff(instr) || isLoadStoreRegisterUnsigned(instr);
241 }
242
243 // Note that this function refers to v8.0 only and does not include the
244 // additional load and store instructions added for in later revisions of
245 // the architecture such as the Atomic memory operations introduced
246 // in v8.1.
isV8NonStructureLoad(uint32_t instr)247 static bool isV8NonStructureLoad(uint32_t instr) {
248 if (isLoadExclusive(instr))
249 return true;
250 if (isLoadLiteral(instr))
251 return true;
252 else if (isV8SingleRegisterNonStructureLoadStore(instr)) {
253 // For Load and Store single register, Loads are derived from a
254 // combination of the Size, V and Opc fields.
255 uint32_t size = (instr >> 30) & 0xff;
256 uint32_t v = (instr >> 26) & 0x1;
257 uint32_t opc = (instr >> 22) & 0x3;
258 // For the load and store instructions that we are decoding.
259 // Opc == 0 are all stores.
260 // Opc == 1 with a couple of exceptions are loads. The exceptions are:
261 // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
262 // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
263 return opc != 0 && !(size == 0 && v == 1 && opc == 2) &&
264 !(size == 3 && v == 0 && opc == 2);
265 }
266 return false;
267 }
268
269 // The following decode instructions are only complete up to the instructions
270 // needed for errata 843419.
271
272 // Instruction with writeback updates the index register after the load/store.
hasWriteback(uint32_t instr)273 static bool hasWriteback(uint32_t instr) {
274 return isLoadStoreImmediatePre(instr) || isLoadStoreImmediatePost(instr) ||
275 isSTPPre(instr) || isSTPPost(instr) || isST1SinglePost(instr) ||
276 isST1MultiplePost(instr);
277 }
278
279 // For the load and store class of instructions, a load can write to the
280 // destination register, a load and a store can write to the base register when
281 // the instruction has writeback.
doesLoadStoreWriteToReg(uint32_t instr,uint32_t reg)282 static bool doesLoadStoreWriteToReg(uint32_t instr, uint32_t reg) {
283 return (isV8NonStructureLoad(instr) && getRt(instr) == reg) ||
284 (hasWriteback(instr) && getRn(instr) == reg);
285 }
286
287 // Scanner for Cortex-A53 errata 843419
288 // Full details are available in the Cortex A53 MPCore revision 0 Software
289 // Developers Errata Notice (ARM-EPM-048406).
290 //
291 // The instruction sequence that triggers the erratum is common in compiled
292 // AArch64 code, however it is sensitive to the offset of the sequence within
293 // a 4k page. This means that by scanning and fixing the patch after we have
294 // assigned addresses we only need to disassemble and fix instances of the
295 // sequence in the range of affected offsets.
296 //
297 // In summary the erratum conditions are a series of 4 instructions:
298 // 1.) An ADRP instruction that writes to register Rn with low 12 bits of
299 // address of instruction either 0xff8 or 0xffc.
300 // 2.) A load or store instruction that can be:
301 // - A single register load or store, of either integer or vector registers.
302 // - An STP or STNP, of either integer or vector registers.
303 // - An Advanced SIMD ST1 store instruction.
304 // - Must not write to Rn, but may optionally read from it.
305 // 3.) An optional instruction that is not a branch and does not write to Rn.
306 // 4.) A load or store from the Load/store register (unsigned immediate) class
307 // that uses Rn as the base address register.
308 //
309 // Note that we do not attempt to scan for Sequence 2 as described in the
310 // Software Developers Errata Notice as this has been assessed to be extremely
311 // unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
312
313 // Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
314 // the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
315 // and 4.) in the Scanner for Cortex-A53 errata comment above.
is843419ErratumSequence(uint32_t instr1,uint32_t instr2,uint32_t instr4)316 static bool is843419ErratumSequence(uint32_t instr1, uint32_t instr2,
317 uint32_t instr4) {
318 if (!isADRP(instr1))
319 return false;
320
321 uint32_t rn = getRt(instr1);
322 return isLoadStoreClass(instr2) &&
323 (isLoadStoreExclusive(instr2) || isLoadLiteral(instr2) ||
324 isV8SingleRegisterNonStructureLoadStore(instr2) || isSTP(instr2) ||
325 isSTNP(instr2) || isST1(instr2)) &&
326 !doesLoadStoreWriteToReg(instr2, rn) &&
327 isLoadStoreRegisterUnsigned(instr4) && getRn(instr4) == rn;
328 }
329
330 // Scan the instruction sequence starting at Offset Off from the base of
331 // InputSection isec. We update Off in this function rather than in the caller
332 // as we can skip ahead much further into the section when we know how many
333 // instructions we've scanned.
334 // Return the offset of the load or store instruction in isec that we want to
335 // patch or 0 if no patch required.
scanCortexA53Errata843419(InputSection * isec,uint64_t & off,uint64_t limit)336 static uint64_t scanCortexA53Errata843419(InputSection *isec, uint64_t &off,
337 uint64_t limit) {
338 uint64_t isecAddr = isec->getVA(0);
339
340 // Advance Off so that (isecAddr + Off) modulo 0x1000 is at least 0xff8.
341 uint64_t initialPageOff = (isecAddr + off) & 0xfff;
342 if (initialPageOff < 0xff8)
343 off += 0xff8 - initialPageOff;
344
345 bool optionalAllowed = limit - off > 12;
346 if (off >= limit || limit - off < 12) {
347 // Need at least 3 4-byte sized instructions to trigger erratum.
348 off = limit;
349 return 0;
350 }
351
352 uint64_t patchOff = 0;
353 const uint8_t *buf = isec->content().begin();
354 const ulittle32_t *instBuf = reinterpret_cast<const ulittle32_t *>(buf + off);
355 uint32_t instr1 = *instBuf++;
356 uint32_t instr2 = *instBuf++;
357 uint32_t instr3 = *instBuf++;
358 if (is843419ErratumSequence(instr1, instr2, instr3)) {
359 patchOff = off + 8;
360 } else if (optionalAllowed && !isBranch(instr3)) {
361 uint32_t instr4 = *instBuf++;
362 if (is843419ErratumSequence(instr1, instr2, instr4))
363 patchOff = off + 12;
364 }
365 if (((isecAddr + off) & 0xfff) == 0xff8)
366 off += 4;
367 else
368 off += 0xffc;
369 return patchOff;
370 }
371
372 class elf::Patch843419Section final : public SyntheticSection {
373 public:
374 Patch843419Section(InputSection *p, uint64_t off);
375
376 void writeTo(uint8_t *buf) override;
377
getSize() const378 size_t getSize() const override { return 8; }
379
380 uint64_t getLDSTAddr() const;
381
classof(const SectionBase * d)382 static bool classof(const SectionBase *d) {
383 return d->kind() == InputSectionBase::Synthetic && d->name == ".text.patch";
384 }
385
386 // The Section we are patching.
387 const InputSection *patchee;
388 // The offset of the instruction in the patchee section we are patching.
389 uint64_t patcheeOffset;
390 // A label for the start of the Patch that we can use as a relocation target.
391 Symbol *patchSym;
392 };
393
Patch843419Section(InputSection * p,uint64_t off)394 Patch843419Section::Patch843419Section(InputSection *p, uint64_t off)
395 : SyntheticSection(SHF_ALLOC | SHF_EXECINSTR, SHT_PROGBITS, 4,
396 ".text.patch"),
397 patchee(p), patcheeOffset(off) {
398 this->parent = p->getParent();
399 patchSym = addSyntheticLocal(
400 saver().save("__CortexA53843419_" + utohexstr(getLDSTAddr())), STT_FUNC,
401 0, getSize(), *this);
402 addSyntheticLocal(saver().save("$x"), STT_NOTYPE, 0, 0, *this);
403 }
404
getLDSTAddr() const405 uint64_t Patch843419Section::getLDSTAddr() const {
406 return patchee->getVA(patcheeOffset);
407 }
408
writeTo(uint8_t * buf)409 void Patch843419Section::writeTo(uint8_t *buf) {
410 // Copy the instruction that we will be replacing with a branch in the
411 // patchee Section.
412 write32le(buf, read32le(patchee->content().begin() + patcheeOffset));
413
414 // Apply any relocation transferred from the original patchee section.
415 target->relocateAlloc(*this, buf);
416
417 // Return address is the next instruction after the one we have just copied.
418 uint64_t s = getLDSTAddr() + 4;
419 uint64_t p = patchSym->getVA() + 4;
420 target->relocateNoSym(buf + 4, R_AARCH64_JUMP26, s - p);
421 }
422
init()423 void AArch64Err843419Patcher::init() {
424 // The AArch64 ABI permits data in executable sections. We must avoid scanning
425 // this data as if it were instructions to avoid false matches. We use the
426 // mapping symbols in the InputObjects to identify this data, caching the
427 // results in sectionMap so we don't have to recalculate it each pass.
428
429 // The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
430 // half open intervals [Symbol Value, Next Symbol Value) of code and data
431 // within sections. If there is no next symbol then the half open interval is
432 // [Symbol Value, End of section). The type, code or data, is determined by
433 // the mapping symbol name, $x for code, $d for data.
434 auto isCodeMapSymbol = [](const Symbol *b) {
435 return b->getName() == "$x" || b->getName().startswith("$x.");
436 };
437 auto isDataMapSymbol = [](const Symbol *b) {
438 return b->getName() == "$d" || b->getName().startswith("$d.");
439 };
440
441 // Collect mapping symbols for every executable InputSection.
442 for (ELFFileBase *file : ctx.objectFiles) {
443 for (Symbol *b : file->getLocalSymbols()) {
444 auto *def = dyn_cast<Defined>(b);
445 if (!def)
446 continue;
447 if (!isCodeMapSymbol(def) && !isDataMapSymbol(def))
448 continue;
449 if (auto *sec = dyn_cast_or_null<InputSection>(def->section))
450 if (sec->flags & SHF_EXECINSTR)
451 sectionMap[sec].push_back(def);
452 }
453 }
454 // For each InputSection make sure the mapping symbols are in sorted in
455 // ascending order and free from consecutive runs of mapping symbols with
456 // the same type. For example we must remove the redundant $d.1 from $x.0
457 // $d.0 $d.1 $x.1.
458 for (auto &kv : sectionMap) {
459 std::vector<const Defined *> &mapSyms = kv.second;
460 llvm::stable_sort(mapSyms, [](const Defined *a, const Defined *b) {
461 return a->value < b->value;
462 });
463 mapSyms.erase(
464 std::unique(mapSyms.begin(), mapSyms.end(),
465 [=](const Defined *a, const Defined *b) {
466 return isCodeMapSymbol(a) == isCodeMapSymbol(b);
467 }),
468 mapSyms.end());
469 // Always start with a Code Mapping Symbol.
470 if (!mapSyms.empty() && !isCodeMapSymbol(mapSyms.front()))
471 mapSyms.erase(mapSyms.begin());
472 }
473 initialized = true;
474 }
475
476 // Insert the PatchSections we have created back into the
477 // InputSectionDescription. As inserting patches alters the addresses of
478 // InputSections that follow them, we try and place the patches after all the
479 // executable sections, although we may need to insert them earlier if the
480 // InputSectionDescription is larger than the maximum branch range.
insertPatches(InputSectionDescription & isd,std::vector<Patch843419Section * > & patches)481 void AArch64Err843419Patcher::insertPatches(
482 InputSectionDescription &isd, std::vector<Patch843419Section *> &patches) {
483 uint64_t isecLimit;
484 uint64_t prevIsecLimit = isd.sections.front()->outSecOff;
485 uint64_t patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
486 uint64_t outSecAddr = isd.sections.front()->getParent()->addr;
487
488 // Set the outSecOff of patches to the place where we want to insert them.
489 // We use a similar strategy to Thunk placement. Place patches roughly
490 // every multiple of maximum branch range.
491 auto patchIt = patches.begin();
492 auto patchEnd = patches.end();
493 for (const InputSection *isec : isd.sections) {
494 isecLimit = isec->outSecOff + isec->getSize();
495 if (isecLimit > patchUpperBound) {
496 while (patchIt != patchEnd) {
497 if ((*patchIt)->getLDSTAddr() - outSecAddr >= prevIsecLimit)
498 break;
499 (*patchIt)->outSecOff = prevIsecLimit;
500 ++patchIt;
501 }
502 patchUpperBound = prevIsecLimit + target->getThunkSectionSpacing();
503 }
504 prevIsecLimit = isecLimit;
505 }
506 for (; patchIt != patchEnd; ++patchIt) {
507 (*patchIt)->outSecOff = isecLimit;
508 }
509
510 // Merge all patch sections. We use the outSecOff assigned above to
511 // determine the insertion point. This is ok as we only merge into an
512 // InputSectionDescription once per pass, and at the end of the pass
513 // assignAddresses() will recalculate all the outSecOff values.
514 SmallVector<InputSection *, 0> tmp;
515 tmp.reserve(isd.sections.size() + patches.size());
516 auto mergeCmp = [](const InputSection *a, const InputSection *b) {
517 if (a->outSecOff != b->outSecOff)
518 return a->outSecOff < b->outSecOff;
519 return isa<Patch843419Section>(a) && !isa<Patch843419Section>(b);
520 };
521 std::merge(isd.sections.begin(), isd.sections.end(), patches.begin(),
522 patches.end(), std::back_inserter(tmp), mergeCmp);
523 isd.sections = std::move(tmp);
524 }
525
526 // Given an erratum sequence that starts at address adrpAddr, with an
527 // instruction that we need to patch at patcheeOffset from the start of
528 // InputSection isec, create a Patch843419 Section and add it to the
529 // Patches that we need to insert.
implementPatch(uint64_t adrpAddr,uint64_t patcheeOffset,InputSection * isec,std::vector<Patch843419Section * > & patches)530 static void implementPatch(uint64_t adrpAddr, uint64_t patcheeOffset,
531 InputSection *isec,
532 std::vector<Patch843419Section *> &patches) {
533 // There may be a relocation at the same offset that we are patching. There
534 // are four cases that we need to consider.
535 // Case 1: R_AARCH64_JUMP26 branch relocation. We have already patched this
536 // instance of the erratum on a previous patch and altered the relocation. We
537 // have nothing more to do.
538 // Case 2: A TLS Relaxation R_RELAX_TLS_IE_TO_LE. In this case the ADRP that
539 // we read will be transformed into a MOVZ later so we actually don't match
540 // the sequence and have nothing more to do.
541 // Case 3: A load/store register (unsigned immediate) class relocation. There
542 // are two of these R_AARCH_LD64_ABS_LO12_NC and R_AARCH_LD64_GOT_LO12_NC and
543 // they are both absolute. We need to add the same relocation to the patch,
544 // and replace the relocation with a R_AARCH_JUMP26 branch relocation.
545 // Case 4: No relocation. We must create a new R_AARCH64_JUMP26 branch
546 // relocation at the offset.
547 auto relIt = llvm::find_if(isec->relocs(), [=](const Relocation &r) {
548 return r.offset == patcheeOffset;
549 });
550 if (relIt != isec->relocs().end() &&
551 (relIt->type == R_AARCH64_JUMP26 || relIt->expr == R_RELAX_TLS_IE_TO_LE))
552 return;
553
554 log("detected cortex-a53-843419 erratum sequence starting at " +
555 utohexstr(adrpAddr) + " in unpatched output.");
556
557 auto *ps = make<Patch843419Section>(isec, patcheeOffset);
558 patches.push_back(ps);
559
560 auto makeRelToPatch = [](uint64_t offset, Symbol *patchSym) {
561 return Relocation{R_PC, R_AARCH64_JUMP26, offset, 0, patchSym};
562 };
563
564 if (relIt != isec->relocs().end()) {
565 ps->addReloc({relIt->expr, relIt->type, 0, relIt->addend, relIt->sym});
566 *relIt = makeRelToPatch(patcheeOffset, ps->patchSym);
567 } else
568 isec->addReloc(makeRelToPatch(patcheeOffset, ps->patchSym));
569 }
570
571 // Scan all the instructions in InputSectionDescription, for each instance of
572 // the erratum sequence create a Patch843419Section. We return the list of
573 // Patch843419Sections that need to be applied to the InputSectionDescription.
574 std::vector<Patch843419Section *>
patchInputSectionDescription(InputSectionDescription & isd)575 AArch64Err843419Patcher::patchInputSectionDescription(
576 InputSectionDescription &isd) {
577 std::vector<Patch843419Section *> patches;
578 for (InputSection *isec : isd.sections) {
579 // LLD doesn't use the erratum sequence in SyntheticSections.
580 if (isa<SyntheticSection>(isec))
581 continue;
582 // Use sectionMap to make sure we only scan code and not inline data.
583 // We have already sorted MapSyms in ascending order and removed consecutive
584 // mapping symbols of the same type. Our range of executable instructions to
585 // scan is therefore [codeSym->value, dataSym->value) or [codeSym->value,
586 // section size).
587 std::vector<const Defined *> &mapSyms = sectionMap[isec];
588
589 auto codeSym = mapSyms.begin();
590 while (codeSym != mapSyms.end()) {
591 auto dataSym = std::next(codeSym);
592 uint64_t off = (*codeSym)->value;
593 uint64_t limit = (dataSym == mapSyms.end()) ? isec->content().size()
594 : (*dataSym)->value;
595
596 while (off < limit) {
597 uint64_t startAddr = isec->getVA(off);
598 if (uint64_t patcheeOffset =
599 scanCortexA53Errata843419(isec, off, limit))
600 implementPatch(startAddr, patcheeOffset, isec, patches);
601 }
602 if (dataSym == mapSyms.end())
603 break;
604 codeSym = std::next(dataSym);
605 }
606 }
607 return patches;
608 }
609
610 // For each InputSectionDescription make one pass over the executable sections
611 // looking for the erratum sequence; creating a synthetic Patch843419Section
612 // for each instance found. We insert these synthetic patch sections after the
613 // executable code in each InputSectionDescription.
614 //
615 // PreConditions:
616 // The Output and Input Sections have had their final addresses assigned.
617 //
618 // PostConditions:
619 // Returns true if at least one patch was added. The addresses of the
620 // Output and Input Sections may have been changed.
621 // Returns false if no patches were required and no changes were made.
createFixes()622 bool AArch64Err843419Patcher::createFixes() {
623 if (!initialized)
624 init();
625
626 bool addressesChanged = false;
627 for (OutputSection *os : outputSections) {
628 if (!(os->flags & SHF_ALLOC) || !(os->flags & SHF_EXECINSTR))
629 continue;
630 for (SectionCommand *cmd : os->commands)
631 if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) {
632 std::vector<Patch843419Section *> patches =
633 patchInputSectionDescription(*isd);
634 if (!patches.empty()) {
635 insertPatches(*isd, patches);
636 addressesChanged = true;
637 }
638 }
639 }
640 return addressesChanged;
641 }
642