1 /*
2  * Copyright 2010      INRIA Saclay
3  *
4  * Use of this software is governed by the MIT license
5  *
6  * Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
7  * Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
8  * 91893 Orsay, France
9  */
10 
11 #include <stdlib.h>
12 #include <isl_ctx_private.h>
13 #include <isl_map_private.h>
14 #include <isl_factorization.h>
15 #include <isl_lp_private.h>
16 #include <isl_seq.h>
17 #include <isl_union_map_private.h>
18 #include <isl_constraint_private.h>
19 #include <isl_polynomial_private.h>
20 #include <isl_point_private.h>
21 #include <isl_space_private.h>
22 #include <isl_mat_private.h>
23 #include <isl_vec_private.h>
24 #include <isl_range.h>
25 #include <isl_local.h>
26 #include <isl_local_space_private.h>
27 #include <isl_aff_private.h>
28 #include <isl_val_private.h>
29 #include <isl_config.h>
30 
31 #undef BASE
32 #define BASE pw_qpolynomial
33 
34 #include <isl_list_templ.c>
35 
pos(__isl_keep isl_space * dim,enum isl_dim_type type)36 static unsigned pos(__isl_keep isl_space *dim, enum isl_dim_type type)
37 {
38 	switch (type) {
39 	case isl_dim_param:	return 0;
40 	case isl_dim_in:	return dim->nparam;
41 	case isl_dim_out:	return dim->nparam + dim->n_in;
42 	default:		return 0;
43 	}
44 }
45 
isl_upoly_is_cst(__isl_keep struct isl_upoly * up)46 int isl_upoly_is_cst(__isl_keep struct isl_upoly *up)
47 {
48 	if (!up)
49 		return -1;
50 
51 	return up->var < 0;
52 }
53 
isl_upoly_as_cst(__isl_keep struct isl_upoly * up)54 __isl_keep struct isl_upoly_cst *isl_upoly_as_cst(__isl_keep struct isl_upoly *up)
55 {
56 	if (!up)
57 		return NULL;
58 
59 	isl_assert(up->ctx, up->var < 0, return NULL);
60 
61 	return (struct isl_upoly_cst *)up;
62 }
63 
isl_upoly_as_rec(__isl_keep struct isl_upoly * up)64 __isl_keep struct isl_upoly_rec *isl_upoly_as_rec(__isl_keep struct isl_upoly *up)
65 {
66 	if (!up)
67 		return NULL;
68 
69 	isl_assert(up->ctx, up->var >= 0, return NULL);
70 
71 	return (struct isl_upoly_rec *)up;
72 }
73 
74 /* Compare two polynomials.
75  *
76  * Return -1 if "up1" is "smaller" than "up2", 1 if "up1" is "greater"
77  * than "up2" and 0 if they are equal.
78  */
isl_upoly_plain_cmp(__isl_keep struct isl_upoly * up1,__isl_keep struct isl_upoly * up2)79 static int isl_upoly_plain_cmp(__isl_keep struct isl_upoly *up1,
80 	__isl_keep struct isl_upoly *up2)
81 {
82 	int i;
83 	struct isl_upoly_rec *rec1, *rec2;
84 
85 	if (up1 == up2)
86 		return 0;
87 	if (!up1)
88 		return -1;
89 	if (!up2)
90 		return 1;
91 	if (up1->var != up2->var)
92 		return up1->var - up2->var;
93 
94 	if (isl_upoly_is_cst(up1)) {
95 		struct isl_upoly_cst *cst1, *cst2;
96 		int cmp;
97 
98 		cst1 = isl_upoly_as_cst(up1);
99 		cst2 = isl_upoly_as_cst(up2);
100 		if (!cst1 || !cst2)
101 			return 0;
102 		cmp = isl_int_cmp(cst1->n, cst2->n);
103 		if (cmp != 0)
104 			return cmp;
105 		return isl_int_cmp(cst1->d, cst2->d);
106 	}
107 
108 	rec1 = isl_upoly_as_rec(up1);
109 	rec2 = isl_upoly_as_rec(up2);
110 	if (!rec1 || !rec2)
111 		return 0;
112 
113 	if (rec1->n != rec2->n)
114 		return rec1->n - rec2->n;
115 
116 	for (i = 0; i < rec1->n; ++i) {
117 		int cmp = isl_upoly_plain_cmp(rec1->p[i], rec2->p[i]);
118 		if (cmp != 0)
119 			return cmp;
120 	}
121 
122 	return 0;
123 }
124 
isl_upoly_is_equal(__isl_keep struct isl_upoly * up1,__isl_keep struct isl_upoly * up2)125 isl_bool isl_upoly_is_equal(__isl_keep struct isl_upoly *up1,
126 	__isl_keep struct isl_upoly *up2)
127 {
128 	int i;
129 	struct isl_upoly_rec *rec1, *rec2;
130 
131 	if (!up1 || !up2)
132 		return isl_bool_error;
133 	if (up1 == up2)
134 		return isl_bool_true;
135 	if (up1->var != up2->var)
136 		return isl_bool_false;
137 	if (isl_upoly_is_cst(up1)) {
138 		struct isl_upoly_cst *cst1, *cst2;
139 		cst1 = isl_upoly_as_cst(up1);
140 		cst2 = isl_upoly_as_cst(up2);
141 		if (!cst1 || !cst2)
142 			return isl_bool_error;
143 		return isl_int_eq(cst1->n, cst2->n) &&
144 		       isl_int_eq(cst1->d, cst2->d);
145 	}
146 
147 	rec1 = isl_upoly_as_rec(up1);
148 	rec2 = isl_upoly_as_rec(up2);
149 	if (!rec1 || !rec2)
150 		return isl_bool_error;
151 
152 	if (rec1->n != rec2->n)
153 		return isl_bool_false;
154 
155 	for (i = 0; i < rec1->n; ++i) {
156 		isl_bool eq = isl_upoly_is_equal(rec1->p[i], rec2->p[i]);
157 		if (eq < 0 || !eq)
158 			return eq;
159 	}
160 
161 	return isl_bool_true;
162 }
163 
isl_upoly_is_zero(__isl_keep struct isl_upoly * up)164 int isl_upoly_is_zero(__isl_keep struct isl_upoly *up)
165 {
166 	struct isl_upoly_cst *cst;
167 
168 	if (!up)
169 		return -1;
170 	if (!isl_upoly_is_cst(up))
171 		return 0;
172 
173 	cst = isl_upoly_as_cst(up);
174 	if (!cst)
175 		return -1;
176 
177 	return isl_int_is_zero(cst->n) && isl_int_is_pos(cst->d);
178 }
179 
isl_upoly_sgn(__isl_keep struct isl_upoly * up)180 int isl_upoly_sgn(__isl_keep struct isl_upoly *up)
181 {
182 	struct isl_upoly_cst *cst;
183 
184 	if (!up)
185 		return 0;
186 	if (!isl_upoly_is_cst(up))
187 		return 0;
188 
189 	cst = isl_upoly_as_cst(up);
190 	if (!cst)
191 		return 0;
192 
193 	return isl_int_sgn(cst->n);
194 }
195 
isl_upoly_is_nan(__isl_keep struct isl_upoly * up)196 int isl_upoly_is_nan(__isl_keep struct isl_upoly *up)
197 {
198 	struct isl_upoly_cst *cst;
199 
200 	if (!up)
201 		return -1;
202 	if (!isl_upoly_is_cst(up))
203 		return 0;
204 
205 	cst = isl_upoly_as_cst(up);
206 	if (!cst)
207 		return -1;
208 
209 	return isl_int_is_zero(cst->n) && isl_int_is_zero(cst->d);
210 }
211 
isl_upoly_is_infty(__isl_keep struct isl_upoly * up)212 int isl_upoly_is_infty(__isl_keep struct isl_upoly *up)
213 {
214 	struct isl_upoly_cst *cst;
215 
216 	if (!up)
217 		return -1;
218 	if (!isl_upoly_is_cst(up))
219 		return 0;
220 
221 	cst = isl_upoly_as_cst(up);
222 	if (!cst)
223 		return -1;
224 
225 	return isl_int_is_pos(cst->n) && isl_int_is_zero(cst->d);
226 }
227 
isl_upoly_is_neginfty(__isl_keep struct isl_upoly * up)228 int isl_upoly_is_neginfty(__isl_keep struct isl_upoly *up)
229 {
230 	struct isl_upoly_cst *cst;
231 
232 	if (!up)
233 		return -1;
234 	if (!isl_upoly_is_cst(up))
235 		return 0;
236 
237 	cst = isl_upoly_as_cst(up);
238 	if (!cst)
239 		return -1;
240 
241 	return isl_int_is_neg(cst->n) && isl_int_is_zero(cst->d);
242 }
243 
isl_upoly_is_one(__isl_keep struct isl_upoly * up)244 int isl_upoly_is_one(__isl_keep struct isl_upoly *up)
245 {
246 	struct isl_upoly_cst *cst;
247 
248 	if (!up)
249 		return -1;
250 	if (!isl_upoly_is_cst(up))
251 		return 0;
252 
253 	cst = isl_upoly_as_cst(up);
254 	if (!cst)
255 		return -1;
256 
257 	return isl_int_eq(cst->n, cst->d) && isl_int_is_pos(cst->d);
258 }
259 
isl_upoly_is_negone(__isl_keep struct isl_upoly * up)260 int isl_upoly_is_negone(__isl_keep struct isl_upoly *up)
261 {
262 	struct isl_upoly_cst *cst;
263 
264 	if (!up)
265 		return -1;
266 	if (!isl_upoly_is_cst(up))
267 		return 0;
268 
269 	cst = isl_upoly_as_cst(up);
270 	if (!cst)
271 		return -1;
272 
273 	return isl_int_is_negone(cst->n) && isl_int_is_one(cst->d);
274 }
275 
isl_upoly_cst_alloc(struct isl_ctx * ctx)276 __isl_give struct isl_upoly_cst *isl_upoly_cst_alloc(struct isl_ctx *ctx)
277 {
278 	struct isl_upoly_cst *cst;
279 
280 	cst = isl_alloc_type(ctx, struct isl_upoly_cst);
281 	if (!cst)
282 		return NULL;
283 
284 	cst->up.ref = 1;
285 	cst->up.ctx = ctx;
286 	isl_ctx_ref(ctx);
287 	cst->up.var = -1;
288 
289 	isl_int_init(cst->n);
290 	isl_int_init(cst->d);
291 
292 	return cst;
293 }
294 
isl_upoly_zero(struct isl_ctx * ctx)295 __isl_give struct isl_upoly *isl_upoly_zero(struct isl_ctx *ctx)
296 {
297 	struct isl_upoly_cst *cst;
298 
299 	cst = isl_upoly_cst_alloc(ctx);
300 	if (!cst)
301 		return NULL;
302 
303 	isl_int_set_si(cst->n, 0);
304 	isl_int_set_si(cst->d, 1);
305 
306 	return &cst->up;
307 }
308 
isl_upoly_one(struct isl_ctx * ctx)309 __isl_give struct isl_upoly *isl_upoly_one(struct isl_ctx *ctx)
310 {
311 	struct isl_upoly_cst *cst;
312 
313 	cst = isl_upoly_cst_alloc(ctx);
314 	if (!cst)
315 		return NULL;
316 
317 	isl_int_set_si(cst->n, 1);
318 	isl_int_set_si(cst->d, 1);
319 
320 	return &cst->up;
321 }
322 
isl_upoly_infty(struct isl_ctx * ctx)323 __isl_give struct isl_upoly *isl_upoly_infty(struct isl_ctx *ctx)
324 {
325 	struct isl_upoly_cst *cst;
326 
327 	cst = isl_upoly_cst_alloc(ctx);
328 	if (!cst)
329 		return NULL;
330 
331 	isl_int_set_si(cst->n, 1);
332 	isl_int_set_si(cst->d, 0);
333 
334 	return &cst->up;
335 }
336 
isl_upoly_neginfty(struct isl_ctx * ctx)337 __isl_give struct isl_upoly *isl_upoly_neginfty(struct isl_ctx *ctx)
338 {
339 	struct isl_upoly_cst *cst;
340 
341 	cst = isl_upoly_cst_alloc(ctx);
342 	if (!cst)
343 		return NULL;
344 
345 	isl_int_set_si(cst->n, -1);
346 	isl_int_set_si(cst->d, 0);
347 
348 	return &cst->up;
349 }
350 
isl_upoly_nan(struct isl_ctx * ctx)351 __isl_give struct isl_upoly *isl_upoly_nan(struct isl_ctx *ctx)
352 {
353 	struct isl_upoly_cst *cst;
354 
355 	cst = isl_upoly_cst_alloc(ctx);
356 	if (!cst)
357 		return NULL;
358 
359 	isl_int_set_si(cst->n, 0);
360 	isl_int_set_si(cst->d, 0);
361 
362 	return &cst->up;
363 }
364 
isl_upoly_rat_cst(struct isl_ctx * ctx,isl_int n,isl_int d)365 __isl_give struct isl_upoly *isl_upoly_rat_cst(struct isl_ctx *ctx,
366 	isl_int n, isl_int d)
367 {
368 	struct isl_upoly_cst *cst;
369 
370 	cst = isl_upoly_cst_alloc(ctx);
371 	if (!cst)
372 		return NULL;
373 
374 	isl_int_set(cst->n, n);
375 	isl_int_set(cst->d, d);
376 
377 	return &cst->up;
378 }
379 
isl_upoly_alloc_rec(struct isl_ctx * ctx,int var,int size)380 __isl_give struct isl_upoly_rec *isl_upoly_alloc_rec(struct isl_ctx *ctx,
381 	int var, int size)
382 {
383 	struct isl_upoly_rec *rec;
384 
385 	isl_assert(ctx, var >= 0, return NULL);
386 	isl_assert(ctx, size >= 0, return NULL);
387 	rec = isl_calloc(ctx, struct isl_upoly_rec,
388 			sizeof(struct isl_upoly_rec) +
389 			size * sizeof(struct isl_upoly *));
390 	if (!rec)
391 		return NULL;
392 
393 	rec->up.ref = 1;
394 	rec->up.ctx = ctx;
395 	isl_ctx_ref(ctx);
396 	rec->up.var = var;
397 
398 	rec->n = 0;
399 	rec->size = size;
400 
401 	return rec;
402 }
403 
isl_qpolynomial_reset_domain_space(__isl_take isl_qpolynomial * qp,__isl_take isl_space * dim)404 __isl_give isl_qpolynomial *isl_qpolynomial_reset_domain_space(
405 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *dim)
406 {
407 	qp = isl_qpolynomial_cow(qp);
408 	if (!qp || !dim)
409 		goto error;
410 
411 	isl_space_free(qp->dim);
412 	qp->dim = dim;
413 
414 	return qp;
415 error:
416 	isl_qpolynomial_free(qp);
417 	isl_space_free(dim);
418 	return NULL;
419 }
420 
421 /* Reset the space of "qp".  This function is called from isl_pw_templ.c
422  * and doesn't know if the space of an element object is represented
423  * directly or through its domain.  It therefore passes along both.
424  */
isl_qpolynomial_reset_space_and_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_space * space,__isl_take isl_space * domain)425 __isl_give isl_qpolynomial *isl_qpolynomial_reset_space_and_domain(
426 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *space,
427 	__isl_take isl_space *domain)
428 {
429 	isl_space_free(space);
430 	return isl_qpolynomial_reset_domain_space(qp, domain);
431 }
432 
isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial * qp)433 isl_ctx *isl_qpolynomial_get_ctx(__isl_keep isl_qpolynomial *qp)
434 {
435 	return qp ? qp->dim->ctx : NULL;
436 }
437 
isl_qpolynomial_get_domain_space(__isl_keep isl_qpolynomial * qp)438 __isl_give isl_space *isl_qpolynomial_get_domain_space(
439 	__isl_keep isl_qpolynomial *qp)
440 {
441 	return qp ? isl_space_copy(qp->dim) : NULL;
442 }
443 
isl_qpolynomial_get_space(__isl_keep isl_qpolynomial * qp)444 __isl_give isl_space *isl_qpolynomial_get_space(__isl_keep isl_qpolynomial *qp)
445 {
446 	isl_space *space;
447 	if (!qp)
448 		return NULL;
449 	space = isl_space_copy(qp->dim);
450 	space = isl_space_from_domain(space);
451 	space = isl_space_add_dims(space, isl_dim_out, 1);
452 	return space;
453 }
454 
455 /* Return the number of variables of the given type in the domain of "qp".
456  */
isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)457 unsigned isl_qpolynomial_domain_dim(__isl_keep isl_qpolynomial *qp,
458 	enum isl_dim_type type)
459 {
460 	if (!qp)
461 		return 0;
462 	if (type == isl_dim_div)
463 		return qp->div->n_row;
464 	if (type == isl_dim_all)
465 		return isl_space_dim(qp->dim, isl_dim_all) +
466 				    isl_qpolynomial_domain_dim(qp, isl_dim_div);
467 	return isl_space_dim(qp->dim, type);
468 }
469 
470 /* Externally, an isl_qpolynomial has a map space, but internally, the
471  * ls field corresponds to the domain of that space.
472  */
isl_qpolynomial_dim(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)473 unsigned isl_qpolynomial_dim(__isl_keep isl_qpolynomial *qp,
474 	enum isl_dim_type type)
475 {
476 	if (!qp)
477 		return 0;
478 	if (type == isl_dim_out)
479 		return 1;
480 	if (type == isl_dim_in)
481 		type = isl_dim_set;
482 	return isl_qpolynomial_domain_dim(qp, type);
483 }
484 
485 /* Return the offset of the first coefficient of type "type" in
486  * the domain of "qp".
487  */
isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type)488 unsigned isl_qpolynomial_domain_offset(__isl_keep isl_qpolynomial *qp,
489 	enum isl_dim_type type)
490 {
491 	if (!qp)
492 		return 0;
493 	switch (type) {
494 	case isl_dim_cst:
495 		return 0;
496 	case isl_dim_param:
497 	case isl_dim_set:
498 		return 1 + isl_space_offset(qp->dim, type);
499 	case isl_dim_div:
500 		return 1 + isl_space_dim(qp->dim, isl_dim_all);
501 	default:
502 		return 0;
503 	}
504 }
505 
isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial * qp)506 isl_bool isl_qpolynomial_is_zero(__isl_keep isl_qpolynomial *qp)
507 {
508 	return qp ? isl_upoly_is_zero(qp->upoly) : isl_bool_error;
509 }
510 
isl_qpolynomial_is_one(__isl_keep isl_qpolynomial * qp)511 isl_bool isl_qpolynomial_is_one(__isl_keep isl_qpolynomial *qp)
512 {
513 	return qp ? isl_upoly_is_one(qp->upoly) : isl_bool_error;
514 }
515 
isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial * qp)516 isl_bool isl_qpolynomial_is_nan(__isl_keep isl_qpolynomial *qp)
517 {
518 	return qp ? isl_upoly_is_nan(qp->upoly) : isl_bool_error;
519 }
520 
isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial * qp)521 isl_bool isl_qpolynomial_is_infty(__isl_keep isl_qpolynomial *qp)
522 {
523 	return qp ? isl_upoly_is_infty(qp->upoly) : isl_bool_error;
524 }
525 
isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial * qp)526 isl_bool isl_qpolynomial_is_neginfty(__isl_keep isl_qpolynomial *qp)
527 {
528 	return qp ? isl_upoly_is_neginfty(qp->upoly) : isl_bool_error;
529 }
530 
isl_qpolynomial_sgn(__isl_keep isl_qpolynomial * qp)531 int isl_qpolynomial_sgn(__isl_keep isl_qpolynomial *qp)
532 {
533 	return qp ? isl_upoly_sgn(qp->upoly) : 0;
534 }
535 
upoly_free_cst(__isl_take struct isl_upoly_cst * cst)536 static void upoly_free_cst(__isl_take struct isl_upoly_cst *cst)
537 {
538 	isl_int_clear(cst->n);
539 	isl_int_clear(cst->d);
540 }
541 
upoly_free_rec(__isl_take struct isl_upoly_rec * rec)542 static void upoly_free_rec(__isl_take struct isl_upoly_rec *rec)
543 {
544 	int i;
545 
546 	for (i = 0; i < rec->n; ++i)
547 		isl_upoly_free(rec->p[i]);
548 }
549 
isl_upoly_copy(__isl_keep struct isl_upoly * up)550 __isl_give struct isl_upoly *isl_upoly_copy(__isl_keep struct isl_upoly *up)
551 {
552 	if (!up)
553 		return NULL;
554 
555 	up->ref++;
556 	return up;
557 }
558 
isl_upoly_dup_cst(__isl_keep struct isl_upoly * up)559 __isl_give struct isl_upoly *isl_upoly_dup_cst(__isl_keep struct isl_upoly *up)
560 {
561 	struct isl_upoly_cst *cst;
562 	struct isl_upoly_cst *dup;
563 
564 	cst = isl_upoly_as_cst(up);
565 	if (!cst)
566 		return NULL;
567 
568 	dup = isl_upoly_as_cst(isl_upoly_zero(up->ctx));
569 	if (!dup)
570 		return NULL;
571 	isl_int_set(dup->n, cst->n);
572 	isl_int_set(dup->d, cst->d);
573 
574 	return &dup->up;
575 }
576 
isl_upoly_dup_rec(__isl_keep struct isl_upoly * up)577 __isl_give struct isl_upoly *isl_upoly_dup_rec(__isl_keep struct isl_upoly *up)
578 {
579 	int i;
580 	struct isl_upoly_rec *rec;
581 	struct isl_upoly_rec *dup;
582 
583 	rec = isl_upoly_as_rec(up);
584 	if (!rec)
585 		return NULL;
586 
587 	dup = isl_upoly_alloc_rec(up->ctx, up->var, rec->n);
588 	if (!dup)
589 		return NULL;
590 
591 	for (i = 0; i < rec->n; ++i) {
592 		dup->p[i] = isl_upoly_copy(rec->p[i]);
593 		if (!dup->p[i])
594 			goto error;
595 		dup->n++;
596 	}
597 
598 	return &dup->up;
599 error:
600 	isl_upoly_free(&dup->up);
601 	return NULL;
602 }
603 
isl_upoly_dup(__isl_keep struct isl_upoly * up)604 __isl_give struct isl_upoly *isl_upoly_dup(__isl_keep struct isl_upoly *up)
605 {
606 	if (!up)
607 		return NULL;
608 
609 	if (isl_upoly_is_cst(up))
610 		return isl_upoly_dup_cst(up);
611 	else
612 		return isl_upoly_dup_rec(up);
613 }
614 
isl_upoly_cow(__isl_take struct isl_upoly * up)615 __isl_give struct isl_upoly *isl_upoly_cow(__isl_take struct isl_upoly *up)
616 {
617 	if (!up)
618 		return NULL;
619 
620 	if (up->ref == 1)
621 		return up;
622 	up->ref--;
623 	return isl_upoly_dup(up);
624 }
625 
isl_upoly_free(__isl_take struct isl_upoly * up)626 __isl_null struct isl_upoly *isl_upoly_free(__isl_take struct isl_upoly *up)
627 {
628 	if (!up)
629 		return NULL;
630 
631 	if (--up->ref > 0)
632 		return NULL;
633 
634 	if (up->var < 0)
635 		upoly_free_cst((struct isl_upoly_cst *)up);
636 	else
637 		upoly_free_rec((struct isl_upoly_rec *)up);
638 
639 	isl_ctx_deref(up->ctx);
640 	free(up);
641 	return NULL;
642 }
643 
isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst * cst)644 static void isl_upoly_cst_reduce(__isl_keep struct isl_upoly_cst *cst)
645 {
646 	isl_int gcd;
647 
648 	isl_int_init(gcd);
649 	isl_int_gcd(gcd, cst->n, cst->d);
650 	if (!isl_int_is_zero(gcd) && !isl_int_is_one(gcd)) {
651 		isl_int_divexact(cst->n, cst->n, gcd);
652 		isl_int_divexact(cst->d, cst->d, gcd);
653 	}
654 	isl_int_clear(gcd);
655 }
656 
isl_upoly_sum_cst(__isl_take struct isl_upoly * up1,__isl_take struct isl_upoly * up2)657 __isl_give struct isl_upoly *isl_upoly_sum_cst(__isl_take struct isl_upoly *up1,
658 	__isl_take struct isl_upoly *up2)
659 {
660 	struct isl_upoly_cst *cst1;
661 	struct isl_upoly_cst *cst2;
662 
663 	up1 = isl_upoly_cow(up1);
664 	if (!up1 || !up2)
665 		goto error;
666 
667 	cst1 = isl_upoly_as_cst(up1);
668 	cst2 = isl_upoly_as_cst(up2);
669 
670 	if (isl_int_eq(cst1->d, cst2->d))
671 		isl_int_add(cst1->n, cst1->n, cst2->n);
672 	else {
673 		isl_int_mul(cst1->n, cst1->n, cst2->d);
674 		isl_int_addmul(cst1->n, cst2->n, cst1->d);
675 		isl_int_mul(cst1->d, cst1->d, cst2->d);
676 	}
677 
678 	isl_upoly_cst_reduce(cst1);
679 
680 	isl_upoly_free(up2);
681 	return up1;
682 error:
683 	isl_upoly_free(up1);
684 	isl_upoly_free(up2);
685 	return NULL;
686 }
687 
replace_by_zero(__isl_take struct isl_upoly * up)688 static __isl_give struct isl_upoly *replace_by_zero(
689 	__isl_take struct isl_upoly *up)
690 {
691 	struct isl_ctx *ctx;
692 
693 	if (!up)
694 		return NULL;
695 	ctx = up->ctx;
696 	isl_upoly_free(up);
697 	return isl_upoly_zero(ctx);
698 }
699 
replace_by_constant_term(__isl_take struct isl_upoly * up)700 static __isl_give struct isl_upoly *replace_by_constant_term(
701 	__isl_take struct isl_upoly *up)
702 {
703 	struct isl_upoly_rec *rec;
704 	struct isl_upoly *cst;
705 
706 	if (!up)
707 		return NULL;
708 
709 	rec = isl_upoly_as_rec(up);
710 	if (!rec)
711 		goto error;
712 	cst = isl_upoly_copy(rec->p[0]);
713 	isl_upoly_free(up);
714 	return cst;
715 error:
716 	isl_upoly_free(up);
717 	return NULL;
718 }
719 
isl_upoly_sum(__isl_take struct isl_upoly * up1,__isl_take struct isl_upoly * up2)720 __isl_give struct isl_upoly *isl_upoly_sum(__isl_take struct isl_upoly *up1,
721 	__isl_take struct isl_upoly *up2)
722 {
723 	int i;
724 	struct isl_upoly_rec *rec1, *rec2;
725 
726 	if (!up1 || !up2)
727 		goto error;
728 
729 	if (isl_upoly_is_nan(up1)) {
730 		isl_upoly_free(up2);
731 		return up1;
732 	}
733 
734 	if (isl_upoly_is_nan(up2)) {
735 		isl_upoly_free(up1);
736 		return up2;
737 	}
738 
739 	if (isl_upoly_is_zero(up1)) {
740 		isl_upoly_free(up1);
741 		return up2;
742 	}
743 
744 	if (isl_upoly_is_zero(up2)) {
745 		isl_upoly_free(up2);
746 		return up1;
747 	}
748 
749 	if (up1->var < up2->var)
750 		return isl_upoly_sum(up2, up1);
751 
752 	if (up2->var < up1->var) {
753 		struct isl_upoly_rec *rec;
754 		if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
755 			isl_upoly_free(up1);
756 			return up2;
757 		}
758 		up1 = isl_upoly_cow(up1);
759 		rec = isl_upoly_as_rec(up1);
760 		if (!rec)
761 			goto error;
762 		rec->p[0] = isl_upoly_sum(rec->p[0], up2);
763 		if (rec->n == 1)
764 			up1 = replace_by_constant_term(up1);
765 		return up1;
766 	}
767 
768 	if (isl_upoly_is_cst(up1))
769 		return isl_upoly_sum_cst(up1, up2);
770 
771 	rec1 = isl_upoly_as_rec(up1);
772 	rec2 = isl_upoly_as_rec(up2);
773 	if (!rec1 || !rec2)
774 		goto error;
775 
776 	if (rec1->n < rec2->n)
777 		return isl_upoly_sum(up2, up1);
778 
779 	up1 = isl_upoly_cow(up1);
780 	rec1 = isl_upoly_as_rec(up1);
781 	if (!rec1)
782 		goto error;
783 
784 	for (i = rec2->n - 1; i >= 0; --i) {
785 		rec1->p[i] = isl_upoly_sum(rec1->p[i],
786 					    isl_upoly_copy(rec2->p[i]));
787 		if (!rec1->p[i])
788 			goto error;
789 		if (i == rec1->n - 1 && isl_upoly_is_zero(rec1->p[i])) {
790 			isl_upoly_free(rec1->p[i]);
791 			rec1->n--;
792 		}
793 	}
794 
795 	if (rec1->n == 0)
796 		up1 = replace_by_zero(up1);
797 	else if (rec1->n == 1)
798 		up1 = replace_by_constant_term(up1);
799 
800 	isl_upoly_free(up2);
801 
802 	return up1;
803 error:
804 	isl_upoly_free(up1);
805 	isl_upoly_free(up2);
806 	return NULL;
807 }
808 
isl_upoly_cst_add_isl_int(__isl_take struct isl_upoly * up,isl_int v)809 __isl_give struct isl_upoly *isl_upoly_cst_add_isl_int(
810 	__isl_take struct isl_upoly *up, isl_int v)
811 {
812 	struct isl_upoly_cst *cst;
813 
814 	up = isl_upoly_cow(up);
815 	if (!up)
816 		return NULL;
817 
818 	cst = isl_upoly_as_cst(up);
819 
820 	isl_int_addmul(cst->n, cst->d, v);
821 
822 	return up;
823 }
824 
isl_upoly_add_isl_int(__isl_take struct isl_upoly * up,isl_int v)825 __isl_give struct isl_upoly *isl_upoly_add_isl_int(
826 	__isl_take struct isl_upoly *up, isl_int v)
827 {
828 	struct isl_upoly_rec *rec;
829 
830 	if (!up)
831 		return NULL;
832 
833 	if (isl_upoly_is_cst(up))
834 		return isl_upoly_cst_add_isl_int(up, v);
835 
836 	up = isl_upoly_cow(up);
837 	rec = isl_upoly_as_rec(up);
838 	if (!rec)
839 		goto error;
840 
841 	rec->p[0] = isl_upoly_add_isl_int(rec->p[0], v);
842 	if (!rec->p[0])
843 		goto error;
844 
845 	return up;
846 error:
847 	isl_upoly_free(up);
848 	return NULL;
849 }
850 
isl_upoly_cst_mul_isl_int(__isl_take struct isl_upoly * up,isl_int v)851 __isl_give struct isl_upoly *isl_upoly_cst_mul_isl_int(
852 	__isl_take struct isl_upoly *up, isl_int v)
853 {
854 	struct isl_upoly_cst *cst;
855 
856 	if (isl_upoly_is_zero(up))
857 		return up;
858 
859 	up = isl_upoly_cow(up);
860 	if (!up)
861 		return NULL;
862 
863 	cst = isl_upoly_as_cst(up);
864 
865 	isl_int_mul(cst->n, cst->n, v);
866 
867 	return up;
868 }
869 
isl_upoly_mul_isl_int(__isl_take struct isl_upoly * up,isl_int v)870 __isl_give struct isl_upoly *isl_upoly_mul_isl_int(
871 	__isl_take struct isl_upoly *up, isl_int v)
872 {
873 	int i;
874 	struct isl_upoly_rec *rec;
875 
876 	if (!up)
877 		return NULL;
878 
879 	if (isl_upoly_is_cst(up))
880 		return isl_upoly_cst_mul_isl_int(up, v);
881 
882 	up = isl_upoly_cow(up);
883 	rec = isl_upoly_as_rec(up);
884 	if (!rec)
885 		goto error;
886 
887 	for (i = 0; i < rec->n; ++i) {
888 		rec->p[i] = isl_upoly_mul_isl_int(rec->p[i], v);
889 		if (!rec->p[i])
890 			goto error;
891 	}
892 
893 	return up;
894 error:
895 	isl_upoly_free(up);
896 	return NULL;
897 }
898 
899 /* Multiply the constant polynomial "up" by "v".
900  */
isl_upoly_cst_scale_val(__isl_take struct isl_upoly * up,__isl_keep isl_val * v)901 static __isl_give struct isl_upoly *isl_upoly_cst_scale_val(
902 	__isl_take struct isl_upoly *up, __isl_keep isl_val *v)
903 {
904 	struct isl_upoly_cst *cst;
905 
906 	if (isl_upoly_is_zero(up))
907 		return up;
908 
909 	up = isl_upoly_cow(up);
910 	if (!up)
911 		return NULL;
912 
913 	cst = isl_upoly_as_cst(up);
914 
915 	isl_int_mul(cst->n, cst->n, v->n);
916 	isl_int_mul(cst->d, cst->d, v->d);
917 	isl_upoly_cst_reduce(cst);
918 
919 	return up;
920 }
921 
922 /* Multiply the polynomial "up" by "v".
923  */
isl_upoly_scale_val(__isl_take struct isl_upoly * up,__isl_keep isl_val * v)924 static __isl_give struct isl_upoly *isl_upoly_scale_val(
925 	__isl_take struct isl_upoly *up, __isl_keep isl_val *v)
926 {
927 	int i;
928 	struct isl_upoly_rec *rec;
929 
930 	if (!up)
931 		return NULL;
932 
933 	if (isl_upoly_is_cst(up))
934 		return isl_upoly_cst_scale_val(up, v);
935 
936 	up = isl_upoly_cow(up);
937 	rec = isl_upoly_as_rec(up);
938 	if (!rec)
939 		goto error;
940 
941 	for (i = 0; i < rec->n; ++i) {
942 		rec->p[i] = isl_upoly_scale_val(rec->p[i], v);
943 		if (!rec->p[i])
944 			goto error;
945 	}
946 
947 	return up;
948 error:
949 	isl_upoly_free(up);
950 	return NULL;
951 }
952 
isl_upoly_mul_cst(__isl_take struct isl_upoly * up1,__isl_take struct isl_upoly * up2)953 __isl_give struct isl_upoly *isl_upoly_mul_cst(__isl_take struct isl_upoly *up1,
954 	__isl_take struct isl_upoly *up2)
955 {
956 	struct isl_upoly_cst *cst1;
957 	struct isl_upoly_cst *cst2;
958 
959 	up1 = isl_upoly_cow(up1);
960 	if (!up1 || !up2)
961 		goto error;
962 
963 	cst1 = isl_upoly_as_cst(up1);
964 	cst2 = isl_upoly_as_cst(up2);
965 
966 	isl_int_mul(cst1->n, cst1->n, cst2->n);
967 	isl_int_mul(cst1->d, cst1->d, cst2->d);
968 
969 	isl_upoly_cst_reduce(cst1);
970 
971 	isl_upoly_free(up2);
972 	return up1;
973 error:
974 	isl_upoly_free(up1);
975 	isl_upoly_free(up2);
976 	return NULL;
977 }
978 
isl_upoly_mul_rec(__isl_take struct isl_upoly * up1,__isl_take struct isl_upoly * up2)979 __isl_give struct isl_upoly *isl_upoly_mul_rec(__isl_take struct isl_upoly *up1,
980 	__isl_take struct isl_upoly *up2)
981 {
982 	struct isl_upoly_rec *rec1;
983 	struct isl_upoly_rec *rec2;
984 	struct isl_upoly_rec *res = NULL;
985 	int i, j;
986 	int size;
987 
988 	rec1 = isl_upoly_as_rec(up1);
989 	rec2 = isl_upoly_as_rec(up2);
990 	if (!rec1 || !rec2)
991 		goto error;
992 	size = rec1->n + rec2->n - 1;
993 	res = isl_upoly_alloc_rec(up1->ctx, up1->var, size);
994 	if (!res)
995 		goto error;
996 
997 	for (i = 0; i < rec1->n; ++i) {
998 		res->p[i] = isl_upoly_mul(isl_upoly_copy(rec2->p[0]),
999 					    isl_upoly_copy(rec1->p[i]));
1000 		if (!res->p[i])
1001 			goto error;
1002 		res->n++;
1003 	}
1004 	for (; i < size; ++i) {
1005 		res->p[i] = isl_upoly_zero(up1->ctx);
1006 		if (!res->p[i])
1007 			goto error;
1008 		res->n++;
1009 	}
1010 	for (i = 0; i < rec1->n; ++i) {
1011 		for (j = 1; j < rec2->n; ++j) {
1012 			struct isl_upoly *up;
1013 			up = isl_upoly_mul(isl_upoly_copy(rec2->p[j]),
1014 					    isl_upoly_copy(rec1->p[i]));
1015 			res->p[i + j] = isl_upoly_sum(res->p[i + j], up);
1016 			if (!res->p[i + j])
1017 				goto error;
1018 		}
1019 	}
1020 
1021 	isl_upoly_free(up1);
1022 	isl_upoly_free(up2);
1023 
1024 	return &res->up;
1025 error:
1026 	isl_upoly_free(up1);
1027 	isl_upoly_free(up2);
1028 	isl_upoly_free(&res->up);
1029 	return NULL;
1030 }
1031 
isl_upoly_mul(__isl_take struct isl_upoly * up1,__isl_take struct isl_upoly * up2)1032 __isl_give struct isl_upoly *isl_upoly_mul(__isl_take struct isl_upoly *up1,
1033 	__isl_take struct isl_upoly *up2)
1034 {
1035 	if (!up1 || !up2)
1036 		goto error;
1037 
1038 	if (isl_upoly_is_nan(up1)) {
1039 		isl_upoly_free(up2);
1040 		return up1;
1041 	}
1042 
1043 	if (isl_upoly_is_nan(up2)) {
1044 		isl_upoly_free(up1);
1045 		return up2;
1046 	}
1047 
1048 	if (isl_upoly_is_zero(up1)) {
1049 		isl_upoly_free(up2);
1050 		return up1;
1051 	}
1052 
1053 	if (isl_upoly_is_zero(up2)) {
1054 		isl_upoly_free(up1);
1055 		return up2;
1056 	}
1057 
1058 	if (isl_upoly_is_one(up1)) {
1059 		isl_upoly_free(up1);
1060 		return up2;
1061 	}
1062 
1063 	if (isl_upoly_is_one(up2)) {
1064 		isl_upoly_free(up2);
1065 		return up1;
1066 	}
1067 
1068 	if (up1->var < up2->var)
1069 		return isl_upoly_mul(up2, up1);
1070 
1071 	if (up2->var < up1->var) {
1072 		int i;
1073 		struct isl_upoly_rec *rec;
1074 		if (isl_upoly_is_infty(up2) || isl_upoly_is_neginfty(up2)) {
1075 			isl_ctx *ctx = up1->ctx;
1076 			isl_upoly_free(up1);
1077 			isl_upoly_free(up2);
1078 			return isl_upoly_nan(ctx);
1079 		}
1080 		up1 = isl_upoly_cow(up1);
1081 		rec = isl_upoly_as_rec(up1);
1082 		if (!rec)
1083 			goto error;
1084 
1085 		for (i = 0; i < rec->n; ++i) {
1086 			rec->p[i] = isl_upoly_mul(rec->p[i],
1087 						    isl_upoly_copy(up2));
1088 			if (!rec->p[i])
1089 				goto error;
1090 		}
1091 		isl_upoly_free(up2);
1092 		return up1;
1093 	}
1094 
1095 	if (isl_upoly_is_cst(up1))
1096 		return isl_upoly_mul_cst(up1, up2);
1097 
1098 	return isl_upoly_mul_rec(up1, up2);
1099 error:
1100 	isl_upoly_free(up1);
1101 	isl_upoly_free(up2);
1102 	return NULL;
1103 }
1104 
isl_upoly_pow(__isl_take struct isl_upoly * up,unsigned power)1105 __isl_give struct isl_upoly *isl_upoly_pow(__isl_take struct isl_upoly *up,
1106 	unsigned power)
1107 {
1108 	struct isl_upoly *res;
1109 
1110 	if (!up)
1111 		return NULL;
1112 	if (power == 1)
1113 		return up;
1114 
1115 	if (power % 2)
1116 		res = isl_upoly_copy(up);
1117 	else
1118 		res = isl_upoly_one(up->ctx);
1119 
1120 	while (power >>= 1) {
1121 		up = isl_upoly_mul(up, isl_upoly_copy(up));
1122 		if (power % 2)
1123 			res = isl_upoly_mul(res, isl_upoly_copy(up));
1124 	}
1125 
1126 	isl_upoly_free(up);
1127 	return res;
1128 }
1129 
isl_qpolynomial_alloc(__isl_take isl_space * dim,unsigned n_div,__isl_take struct isl_upoly * up)1130 __isl_give isl_qpolynomial *isl_qpolynomial_alloc(__isl_take isl_space *dim,
1131 	unsigned n_div, __isl_take struct isl_upoly *up)
1132 {
1133 	struct isl_qpolynomial *qp = NULL;
1134 	unsigned total;
1135 
1136 	if (!dim || !up)
1137 		goto error;
1138 
1139 	if (!isl_space_is_set(dim))
1140 		isl_die(isl_space_get_ctx(dim), isl_error_invalid,
1141 			"domain of polynomial should be a set", goto error);
1142 
1143 	total = isl_space_dim(dim, isl_dim_all);
1144 
1145 	qp = isl_calloc_type(dim->ctx, struct isl_qpolynomial);
1146 	if (!qp)
1147 		goto error;
1148 
1149 	qp->ref = 1;
1150 	qp->div = isl_mat_alloc(dim->ctx, n_div, 1 + 1 + total + n_div);
1151 	if (!qp->div)
1152 		goto error;
1153 
1154 	qp->dim = dim;
1155 	qp->upoly = up;
1156 
1157 	return qp;
1158 error:
1159 	isl_space_free(dim);
1160 	isl_upoly_free(up);
1161 	isl_qpolynomial_free(qp);
1162 	return NULL;
1163 }
1164 
isl_qpolynomial_copy(__isl_keep isl_qpolynomial * qp)1165 __isl_give isl_qpolynomial *isl_qpolynomial_copy(__isl_keep isl_qpolynomial *qp)
1166 {
1167 	if (!qp)
1168 		return NULL;
1169 
1170 	qp->ref++;
1171 	return qp;
1172 }
1173 
isl_qpolynomial_dup(__isl_keep isl_qpolynomial * qp)1174 __isl_give isl_qpolynomial *isl_qpolynomial_dup(__isl_keep isl_qpolynomial *qp)
1175 {
1176 	struct isl_qpolynomial *dup;
1177 
1178 	if (!qp)
1179 		return NULL;
1180 
1181 	dup = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row,
1182 				    isl_upoly_copy(qp->upoly));
1183 	if (!dup)
1184 		return NULL;
1185 	isl_mat_free(dup->div);
1186 	dup->div = isl_mat_copy(qp->div);
1187 	if (!dup->div)
1188 		goto error;
1189 
1190 	return dup;
1191 error:
1192 	isl_qpolynomial_free(dup);
1193 	return NULL;
1194 }
1195 
isl_qpolynomial_cow(__isl_take isl_qpolynomial * qp)1196 __isl_give isl_qpolynomial *isl_qpolynomial_cow(__isl_take isl_qpolynomial *qp)
1197 {
1198 	if (!qp)
1199 		return NULL;
1200 
1201 	if (qp->ref == 1)
1202 		return qp;
1203 	qp->ref--;
1204 	return isl_qpolynomial_dup(qp);
1205 }
1206 
isl_qpolynomial_free(__isl_take isl_qpolynomial * qp)1207 __isl_null isl_qpolynomial *isl_qpolynomial_free(
1208 	__isl_take isl_qpolynomial *qp)
1209 {
1210 	if (!qp)
1211 		return NULL;
1212 
1213 	if (--qp->ref > 0)
1214 		return NULL;
1215 
1216 	isl_space_free(qp->dim);
1217 	isl_mat_free(qp->div);
1218 	isl_upoly_free(qp->upoly);
1219 
1220 	free(qp);
1221 	return NULL;
1222 }
1223 
isl_upoly_var_pow(isl_ctx * ctx,int pos,int power)1224 __isl_give struct isl_upoly *isl_upoly_var_pow(isl_ctx *ctx, int pos, int power)
1225 {
1226 	int i;
1227 	struct isl_upoly_rec *rec;
1228 	struct isl_upoly_cst *cst;
1229 
1230 	rec = isl_upoly_alloc_rec(ctx, pos, 1 + power);
1231 	if (!rec)
1232 		return NULL;
1233 	for (i = 0; i < 1 + power; ++i) {
1234 		rec->p[i] = isl_upoly_zero(ctx);
1235 		if (!rec->p[i])
1236 			goto error;
1237 		rec->n++;
1238 	}
1239 	cst = isl_upoly_as_cst(rec->p[power]);
1240 	isl_int_set_si(cst->n, 1);
1241 
1242 	return &rec->up;
1243 error:
1244 	isl_upoly_free(&rec->up);
1245 	return NULL;
1246 }
1247 
1248 /* r array maps original positions to new positions.
1249  */
reorder(__isl_take struct isl_upoly * up,int * r)1250 static __isl_give struct isl_upoly *reorder(__isl_take struct isl_upoly *up,
1251 	int *r)
1252 {
1253 	int i;
1254 	struct isl_upoly_rec *rec;
1255 	struct isl_upoly *base;
1256 	struct isl_upoly *res;
1257 
1258 	if (isl_upoly_is_cst(up))
1259 		return up;
1260 
1261 	rec = isl_upoly_as_rec(up);
1262 	if (!rec)
1263 		goto error;
1264 
1265 	isl_assert(up->ctx, rec->n >= 1, goto error);
1266 
1267 	base = isl_upoly_var_pow(up->ctx, r[up->var], 1);
1268 	res = reorder(isl_upoly_copy(rec->p[rec->n - 1]), r);
1269 
1270 	for (i = rec->n - 2; i >= 0; --i) {
1271 		res = isl_upoly_mul(res, isl_upoly_copy(base));
1272 		res = isl_upoly_sum(res, reorder(isl_upoly_copy(rec->p[i]), r));
1273 	}
1274 
1275 	isl_upoly_free(base);
1276 	isl_upoly_free(up);
1277 
1278 	return res;
1279 error:
1280 	isl_upoly_free(up);
1281 	return NULL;
1282 }
1283 
compatible_divs(__isl_keep isl_mat * div1,__isl_keep isl_mat * div2)1284 static isl_bool compatible_divs(__isl_keep isl_mat *div1,
1285 	__isl_keep isl_mat *div2)
1286 {
1287 	int n_row, n_col;
1288 	isl_bool equal;
1289 
1290 	isl_assert(div1->ctx, div1->n_row >= div2->n_row &&
1291 				div1->n_col >= div2->n_col,
1292 		    return isl_bool_error);
1293 
1294 	if (div1->n_row == div2->n_row)
1295 		return isl_mat_is_equal(div1, div2);
1296 
1297 	n_row = div1->n_row;
1298 	n_col = div1->n_col;
1299 	div1->n_row = div2->n_row;
1300 	div1->n_col = div2->n_col;
1301 
1302 	equal = isl_mat_is_equal(div1, div2);
1303 
1304 	div1->n_row = n_row;
1305 	div1->n_col = n_col;
1306 
1307 	return equal;
1308 }
1309 
cmp_row(__isl_keep isl_mat * div,int i,int j)1310 static int cmp_row(__isl_keep isl_mat *div, int i, int j)
1311 {
1312 	int li, lj;
1313 
1314 	li = isl_seq_last_non_zero(div->row[i], div->n_col);
1315 	lj = isl_seq_last_non_zero(div->row[j], div->n_col);
1316 
1317 	if (li != lj)
1318 		return li - lj;
1319 
1320 	return isl_seq_cmp(div->row[i], div->row[j], div->n_col);
1321 }
1322 
1323 struct isl_div_sort_info {
1324 	isl_mat	*div;
1325 	int	 row;
1326 };
1327 
div_sort_cmp(const void * p1,const void * p2)1328 static int div_sort_cmp(const void *p1, const void *p2)
1329 {
1330 	const struct isl_div_sort_info *i1, *i2;
1331 	i1 = (const struct isl_div_sort_info *) p1;
1332 	i2 = (const struct isl_div_sort_info *) p2;
1333 
1334 	return cmp_row(i1->div, i1->row, i2->row);
1335 }
1336 
1337 /* Sort divs and remove duplicates.
1338  */
sort_divs(__isl_take isl_qpolynomial * qp)1339 static __isl_give isl_qpolynomial *sort_divs(__isl_take isl_qpolynomial *qp)
1340 {
1341 	int i;
1342 	int skip;
1343 	int len;
1344 	struct isl_div_sort_info *array = NULL;
1345 	int *pos = NULL, *at = NULL;
1346 	int *reordering = NULL;
1347 	unsigned div_pos;
1348 
1349 	if (!qp)
1350 		return NULL;
1351 	if (qp->div->n_row <= 1)
1352 		return qp;
1353 
1354 	div_pos = isl_space_dim(qp->dim, isl_dim_all);
1355 
1356 	array = isl_alloc_array(qp->div->ctx, struct isl_div_sort_info,
1357 				qp->div->n_row);
1358 	pos = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1359 	at = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
1360 	len = qp->div->n_col - 2;
1361 	reordering = isl_alloc_array(qp->div->ctx, int, len);
1362 	if (!array || !pos || !at || !reordering)
1363 		goto error;
1364 
1365 	for (i = 0; i < qp->div->n_row; ++i) {
1366 		array[i].div = qp->div;
1367 		array[i].row = i;
1368 		pos[i] = i;
1369 		at[i] = i;
1370 	}
1371 
1372 	qsort(array, qp->div->n_row, sizeof(struct isl_div_sort_info),
1373 		div_sort_cmp);
1374 
1375 	for (i = 0; i < div_pos; ++i)
1376 		reordering[i] = i;
1377 
1378 	for (i = 0; i < qp->div->n_row; ++i) {
1379 		if (pos[array[i].row] == i)
1380 			continue;
1381 		qp->div = isl_mat_swap_rows(qp->div, i, pos[array[i].row]);
1382 		pos[at[i]] = pos[array[i].row];
1383 		at[pos[array[i].row]] = at[i];
1384 		at[i] = array[i].row;
1385 		pos[array[i].row] = i;
1386 	}
1387 
1388 	skip = 0;
1389 	for (i = 0; i < len - div_pos; ++i) {
1390 		if (i > 0 &&
1391 		    isl_seq_eq(qp->div->row[i - skip - 1],
1392 			       qp->div->row[i - skip], qp->div->n_col)) {
1393 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
1394 			isl_mat_col_add(qp->div, 2 + div_pos + i - skip - 1,
1395 						 2 + div_pos + i - skip);
1396 			qp->div = isl_mat_drop_cols(qp->div,
1397 						    2 + div_pos + i - skip, 1);
1398 			skip++;
1399 		}
1400 		reordering[div_pos + array[i].row] = div_pos + i - skip;
1401 	}
1402 
1403 	qp->upoly = reorder(qp->upoly, reordering);
1404 
1405 	if (!qp->upoly || !qp->div)
1406 		goto error;
1407 
1408 	free(at);
1409 	free(pos);
1410 	free(array);
1411 	free(reordering);
1412 
1413 	return qp;
1414 error:
1415 	free(at);
1416 	free(pos);
1417 	free(array);
1418 	free(reordering);
1419 	isl_qpolynomial_free(qp);
1420 	return NULL;
1421 }
1422 
expand(__isl_take struct isl_upoly * up,int * exp,int first)1423 static __isl_give struct isl_upoly *expand(__isl_take struct isl_upoly *up,
1424 	int *exp, int first)
1425 {
1426 	int i;
1427 	struct isl_upoly_rec *rec;
1428 
1429 	if (isl_upoly_is_cst(up))
1430 		return up;
1431 
1432 	if (up->var < first)
1433 		return up;
1434 
1435 	if (exp[up->var - first] == up->var - first)
1436 		return up;
1437 
1438 	up = isl_upoly_cow(up);
1439 	if (!up)
1440 		goto error;
1441 
1442 	up->var = exp[up->var - first] + first;
1443 
1444 	rec = isl_upoly_as_rec(up);
1445 	if (!rec)
1446 		goto error;
1447 
1448 	for (i = 0; i < rec->n; ++i) {
1449 		rec->p[i] = expand(rec->p[i], exp, first);
1450 		if (!rec->p[i])
1451 			goto error;
1452 	}
1453 
1454 	return up;
1455 error:
1456 	isl_upoly_free(up);
1457 	return NULL;
1458 }
1459 
with_merged_divs(__isl_give isl_qpolynomial * (* fn)(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2),__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1460 static __isl_give isl_qpolynomial *with_merged_divs(
1461 	__isl_give isl_qpolynomial *(*fn)(__isl_take isl_qpolynomial *qp1,
1462 					  __isl_take isl_qpolynomial *qp2),
1463 	__isl_take isl_qpolynomial *qp1, __isl_take isl_qpolynomial *qp2)
1464 {
1465 	int *exp1 = NULL;
1466 	int *exp2 = NULL;
1467 	isl_mat *div = NULL;
1468 	int n_div1, n_div2;
1469 
1470 	qp1 = isl_qpolynomial_cow(qp1);
1471 	qp2 = isl_qpolynomial_cow(qp2);
1472 
1473 	if (!qp1 || !qp2)
1474 		goto error;
1475 
1476 	isl_assert(qp1->div->ctx, qp1->div->n_row >= qp2->div->n_row &&
1477 				qp1->div->n_col >= qp2->div->n_col, goto error);
1478 
1479 	n_div1 = qp1->div->n_row;
1480 	n_div2 = qp2->div->n_row;
1481 	exp1 = isl_alloc_array(qp1->div->ctx, int, n_div1);
1482 	exp2 = isl_alloc_array(qp2->div->ctx, int, n_div2);
1483 	if ((n_div1 && !exp1) || (n_div2 && !exp2))
1484 		goto error;
1485 
1486 	div = isl_merge_divs(qp1->div, qp2->div, exp1, exp2);
1487 	if (!div)
1488 		goto error;
1489 
1490 	isl_mat_free(qp1->div);
1491 	qp1->div = isl_mat_copy(div);
1492 	isl_mat_free(qp2->div);
1493 	qp2->div = isl_mat_copy(div);
1494 
1495 	qp1->upoly = expand(qp1->upoly, exp1, div->n_col - div->n_row - 2);
1496 	qp2->upoly = expand(qp2->upoly, exp2, div->n_col - div->n_row - 2);
1497 
1498 	if (!qp1->upoly || !qp2->upoly)
1499 		goto error;
1500 
1501 	isl_mat_free(div);
1502 	free(exp1);
1503 	free(exp2);
1504 
1505 	return fn(qp1, qp2);
1506 error:
1507 	isl_mat_free(div);
1508 	free(exp1);
1509 	free(exp2);
1510 	isl_qpolynomial_free(qp1);
1511 	isl_qpolynomial_free(qp2);
1512 	return NULL;
1513 }
1514 
isl_qpolynomial_add(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1515 __isl_give isl_qpolynomial *isl_qpolynomial_add(__isl_take isl_qpolynomial *qp1,
1516 	__isl_take isl_qpolynomial *qp2)
1517 {
1518 	isl_bool compatible;
1519 
1520 	qp1 = isl_qpolynomial_cow(qp1);
1521 
1522 	if (!qp1 || !qp2)
1523 		goto error;
1524 
1525 	if (qp1->div->n_row < qp2->div->n_row)
1526 		return isl_qpolynomial_add(qp2, qp1);
1527 
1528 	isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1529 	compatible = compatible_divs(qp1->div, qp2->div);
1530 	if (compatible < 0)
1531 		goto error;
1532 	if (!compatible)
1533 		return with_merged_divs(isl_qpolynomial_add, qp1, qp2);
1534 
1535 	qp1->upoly = isl_upoly_sum(qp1->upoly, isl_upoly_copy(qp2->upoly));
1536 	if (!qp1->upoly)
1537 		goto error;
1538 
1539 	isl_qpolynomial_free(qp2);
1540 
1541 	return qp1;
1542 error:
1543 	isl_qpolynomial_free(qp1);
1544 	isl_qpolynomial_free(qp2);
1545 	return NULL;
1546 }
1547 
isl_qpolynomial_add_on_domain(__isl_keep isl_set * dom,__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1548 __isl_give isl_qpolynomial *isl_qpolynomial_add_on_domain(
1549 	__isl_keep isl_set *dom,
1550 	__isl_take isl_qpolynomial *qp1,
1551 	__isl_take isl_qpolynomial *qp2)
1552 {
1553 	qp1 = isl_qpolynomial_add(qp1, qp2);
1554 	qp1 = isl_qpolynomial_gist(qp1, isl_set_copy(dom));
1555 	return qp1;
1556 }
1557 
isl_qpolynomial_sub(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1558 __isl_give isl_qpolynomial *isl_qpolynomial_sub(__isl_take isl_qpolynomial *qp1,
1559 	__isl_take isl_qpolynomial *qp2)
1560 {
1561 	return isl_qpolynomial_add(qp1, isl_qpolynomial_neg(qp2));
1562 }
1563 
isl_qpolynomial_add_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1564 __isl_give isl_qpolynomial *isl_qpolynomial_add_isl_int(
1565 	__isl_take isl_qpolynomial *qp, isl_int v)
1566 {
1567 	if (isl_int_is_zero(v))
1568 		return qp;
1569 
1570 	qp = isl_qpolynomial_cow(qp);
1571 	if (!qp)
1572 		return NULL;
1573 
1574 	qp->upoly = isl_upoly_add_isl_int(qp->upoly, v);
1575 	if (!qp->upoly)
1576 		goto error;
1577 
1578 	return qp;
1579 error:
1580 	isl_qpolynomial_free(qp);
1581 	return NULL;
1582 
1583 }
1584 
isl_qpolynomial_neg(__isl_take isl_qpolynomial * qp)1585 __isl_give isl_qpolynomial *isl_qpolynomial_neg(__isl_take isl_qpolynomial *qp)
1586 {
1587 	if (!qp)
1588 		return NULL;
1589 
1590 	return isl_qpolynomial_mul_isl_int(qp, qp->dim->ctx->negone);
1591 }
1592 
isl_qpolynomial_mul_isl_int(__isl_take isl_qpolynomial * qp,isl_int v)1593 __isl_give isl_qpolynomial *isl_qpolynomial_mul_isl_int(
1594 	__isl_take isl_qpolynomial *qp, isl_int v)
1595 {
1596 	if (isl_int_is_one(v))
1597 		return qp;
1598 
1599 	if (qp && isl_int_is_zero(v)) {
1600 		isl_qpolynomial *zero;
1601 		zero = isl_qpolynomial_zero_on_domain(isl_space_copy(qp->dim));
1602 		isl_qpolynomial_free(qp);
1603 		return zero;
1604 	}
1605 
1606 	qp = isl_qpolynomial_cow(qp);
1607 	if (!qp)
1608 		return NULL;
1609 
1610 	qp->upoly = isl_upoly_mul_isl_int(qp->upoly, v);
1611 	if (!qp->upoly)
1612 		goto error;
1613 
1614 	return qp;
1615 error:
1616 	isl_qpolynomial_free(qp);
1617 	return NULL;
1618 }
1619 
isl_qpolynomial_scale(__isl_take isl_qpolynomial * qp,isl_int v)1620 __isl_give isl_qpolynomial *isl_qpolynomial_scale(
1621 	__isl_take isl_qpolynomial *qp, isl_int v)
1622 {
1623 	return isl_qpolynomial_mul_isl_int(qp, v);
1624 }
1625 
1626 /* Multiply "qp" by "v".
1627  */
isl_qpolynomial_scale_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1628 __isl_give isl_qpolynomial *isl_qpolynomial_scale_val(
1629 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1630 {
1631 	if (!qp || !v)
1632 		goto error;
1633 
1634 	if (!isl_val_is_rat(v))
1635 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1636 			"expecting rational factor", goto error);
1637 
1638 	if (isl_val_is_one(v)) {
1639 		isl_val_free(v);
1640 		return qp;
1641 	}
1642 
1643 	if (isl_val_is_zero(v)) {
1644 		isl_space *space;
1645 
1646 		space = isl_qpolynomial_get_domain_space(qp);
1647 		isl_qpolynomial_free(qp);
1648 		isl_val_free(v);
1649 		return isl_qpolynomial_zero_on_domain(space);
1650 	}
1651 
1652 	qp = isl_qpolynomial_cow(qp);
1653 	if (!qp)
1654 		goto error;
1655 
1656 	qp->upoly = isl_upoly_scale_val(qp->upoly, v);
1657 	if (!qp->upoly)
1658 		qp = isl_qpolynomial_free(qp);
1659 
1660 	isl_val_free(v);
1661 	return qp;
1662 error:
1663 	isl_val_free(v);
1664 	isl_qpolynomial_free(qp);
1665 	return NULL;
1666 }
1667 
1668 /* Divide "qp" by "v".
1669  */
isl_qpolynomial_scale_down_val(__isl_take isl_qpolynomial * qp,__isl_take isl_val * v)1670 __isl_give isl_qpolynomial *isl_qpolynomial_scale_down_val(
1671 	__isl_take isl_qpolynomial *qp, __isl_take isl_val *v)
1672 {
1673 	if (!qp || !v)
1674 		goto error;
1675 
1676 	if (!isl_val_is_rat(v))
1677 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
1678 			"expecting rational factor", goto error);
1679 	if (isl_val_is_zero(v))
1680 		isl_die(isl_val_get_ctx(v), isl_error_invalid,
1681 			"cannot scale down by zero", goto error);
1682 
1683 	return isl_qpolynomial_scale_val(qp, isl_val_inv(v));
1684 error:
1685 	isl_val_free(v);
1686 	isl_qpolynomial_free(qp);
1687 	return NULL;
1688 }
1689 
isl_qpolynomial_mul(__isl_take isl_qpolynomial * qp1,__isl_take isl_qpolynomial * qp2)1690 __isl_give isl_qpolynomial *isl_qpolynomial_mul(__isl_take isl_qpolynomial *qp1,
1691 	__isl_take isl_qpolynomial *qp2)
1692 {
1693 	isl_bool compatible;
1694 
1695 	qp1 = isl_qpolynomial_cow(qp1);
1696 
1697 	if (!qp1 || !qp2)
1698 		goto error;
1699 
1700 	if (qp1->div->n_row < qp2->div->n_row)
1701 		return isl_qpolynomial_mul(qp2, qp1);
1702 
1703 	isl_assert(qp1->dim->ctx, isl_space_is_equal(qp1->dim, qp2->dim), goto error);
1704 	compatible = compatible_divs(qp1->div, qp2->div);
1705 	if (compatible < 0)
1706 		goto error;
1707 	if (!compatible)
1708 		return with_merged_divs(isl_qpolynomial_mul, qp1, qp2);
1709 
1710 	qp1->upoly = isl_upoly_mul(qp1->upoly, isl_upoly_copy(qp2->upoly));
1711 	if (!qp1->upoly)
1712 		goto error;
1713 
1714 	isl_qpolynomial_free(qp2);
1715 
1716 	return qp1;
1717 error:
1718 	isl_qpolynomial_free(qp1);
1719 	isl_qpolynomial_free(qp2);
1720 	return NULL;
1721 }
1722 
isl_qpolynomial_pow(__isl_take isl_qpolynomial * qp,unsigned power)1723 __isl_give isl_qpolynomial *isl_qpolynomial_pow(__isl_take isl_qpolynomial *qp,
1724 	unsigned power)
1725 {
1726 	qp = isl_qpolynomial_cow(qp);
1727 
1728 	if (!qp)
1729 		return NULL;
1730 
1731 	qp->upoly = isl_upoly_pow(qp->upoly, power);
1732 	if (!qp->upoly)
1733 		goto error;
1734 
1735 	return qp;
1736 error:
1737 	isl_qpolynomial_free(qp);
1738 	return NULL;
1739 }
1740 
isl_pw_qpolynomial_pow(__isl_take isl_pw_qpolynomial * pwqp,unsigned power)1741 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_pow(
1742 	__isl_take isl_pw_qpolynomial *pwqp, unsigned power)
1743 {
1744 	int i;
1745 
1746 	if (power == 1)
1747 		return pwqp;
1748 
1749 	pwqp = isl_pw_qpolynomial_cow(pwqp);
1750 	if (!pwqp)
1751 		return NULL;
1752 
1753 	for (i = 0; i < pwqp->n; ++i) {
1754 		pwqp->p[i].qp = isl_qpolynomial_pow(pwqp->p[i].qp, power);
1755 		if (!pwqp->p[i].qp)
1756 			return isl_pw_qpolynomial_free(pwqp);
1757 	}
1758 
1759 	return pwqp;
1760 }
1761 
isl_qpolynomial_zero_on_domain(__isl_take isl_space * dim)1762 __isl_give isl_qpolynomial *isl_qpolynomial_zero_on_domain(
1763 	__isl_take isl_space *dim)
1764 {
1765 	if (!dim)
1766 		return NULL;
1767 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1768 }
1769 
isl_qpolynomial_one_on_domain(__isl_take isl_space * dim)1770 __isl_give isl_qpolynomial *isl_qpolynomial_one_on_domain(
1771 	__isl_take isl_space *dim)
1772 {
1773 	if (!dim)
1774 		return NULL;
1775 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_one(dim->ctx));
1776 }
1777 
isl_qpolynomial_infty_on_domain(__isl_take isl_space * dim)1778 __isl_give isl_qpolynomial *isl_qpolynomial_infty_on_domain(
1779 	__isl_take isl_space *dim)
1780 {
1781 	if (!dim)
1782 		return NULL;
1783 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_infty(dim->ctx));
1784 }
1785 
isl_qpolynomial_neginfty_on_domain(__isl_take isl_space * dim)1786 __isl_give isl_qpolynomial *isl_qpolynomial_neginfty_on_domain(
1787 	__isl_take isl_space *dim)
1788 {
1789 	if (!dim)
1790 		return NULL;
1791 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_neginfty(dim->ctx));
1792 }
1793 
isl_qpolynomial_nan_on_domain(__isl_take isl_space * dim)1794 __isl_give isl_qpolynomial *isl_qpolynomial_nan_on_domain(
1795 	__isl_take isl_space *dim)
1796 {
1797 	if (!dim)
1798 		return NULL;
1799 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_nan(dim->ctx));
1800 }
1801 
isl_qpolynomial_cst_on_domain(__isl_take isl_space * dim,isl_int v)1802 __isl_give isl_qpolynomial *isl_qpolynomial_cst_on_domain(
1803 	__isl_take isl_space *dim,
1804 	isl_int v)
1805 {
1806 	struct isl_qpolynomial *qp;
1807 	struct isl_upoly_cst *cst;
1808 
1809 	if (!dim)
1810 		return NULL;
1811 
1812 	qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
1813 	if (!qp)
1814 		return NULL;
1815 
1816 	cst = isl_upoly_as_cst(qp->upoly);
1817 	isl_int_set(cst->n, v);
1818 
1819 	return qp;
1820 }
1821 
isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial * qp,isl_int * n,isl_int * d)1822 int isl_qpolynomial_is_cst(__isl_keep isl_qpolynomial *qp,
1823 	isl_int *n, isl_int *d)
1824 {
1825 	struct isl_upoly_cst *cst;
1826 
1827 	if (!qp)
1828 		return -1;
1829 
1830 	if (!isl_upoly_is_cst(qp->upoly))
1831 		return 0;
1832 
1833 	cst = isl_upoly_as_cst(qp->upoly);
1834 	if (!cst)
1835 		return -1;
1836 
1837 	if (n)
1838 		isl_int_set(*n, cst->n);
1839 	if (d)
1840 		isl_int_set(*d, cst->d);
1841 
1842 	return 1;
1843 }
1844 
1845 /* Return the constant term of "up".
1846  */
isl_upoly_get_constant_val(__isl_keep struct isl_upoly * up)1847 static __isl_give isl_val *isl_upoly_get_constant_val(
1848 	__isl_keep struct isl_upoly *up)
1849 {
1850 	struct isl_upoly_cst *cst;
1851 
1852 	if (!up)
1853 		return NULL;
1854 
1855 	while (!isl_upoly_is_cst(up)) {
1856 		struct isl_upoly_rec *rec;
1857 
1858 		rec = isl_upoly_as_rec(up);
1859 		if (!rec)
1860 			return NULL;
1861 		up = rec->p[0];
1862 	}
1863 
1864 	cst = isl_upoly_as_cst(up);
1865 	if (!cst)
1866 		return NULL;
1867 	return isl_val_rat_from_isl_int(cst->up.ctx, cst->n, cst->d);
1868 }
1869 
1870 /* Return the constant term of "qp".
1871  */
isl_qpolynomial_get_constant_val(__isl_keep isl_qpolynomial * qp)1872 __isl_give isl_val *isl_qpolynomial_get_constant_val(
1873 	__isl_keep isl_qpolynomial *qp)
1874 {
1875 	if (!qp)
1876 		return NULL;
1877 
1878 	return isl_upoly_get_constant_val(qp->upoly);
1879 }
1880 
isl_upoly_is_affine(__isl_keep struct isl_upoly * up)1881 int isl_upoly_is_affine(__isl_keep struct isl_upoly *up)
1882 {
1883 	int is_cst;
1884 	struct isl_upoly_rec *rec;
1885 
1886 	if (!up)
1887 		return -1;
1888 
1889 	if (up->var < 0)
1890 		return 1;
1891 
1892 	rec = isl_upoly_as_rec(up);
1893 	if (!rec)
1894 		return -1;
1895 
1896 	if (rec->n > 2)
1897 		return 0;
1898 
1899 	isl_assert(up->ctx, rec->n > 1, return -1);
1900 
1901 	is_cst = isl_upoly_is_cst(rec->p[1]);
1902 	if (is_cst < 0)
1903 		return -1;
1904 	if (!is_cst)
1905 		return 0;
1906 
1907 	return isl_upoly_is_affine(rec->p[0]);
1908 }
1909 
isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial * qp)1910 int isl_qpolynomial_is_affine(__isl_keep isl_qpolynomial *qp)
1911 {
1912 	if (!qp)
1913 		return -1;
1914 
1915 	if (qp->div->n_row > 0)
1916 		return 0;
1917 
1918 	return isl_upoly_is_affine(qp->upoly);
1919 }
1920 
update_coeff(__isl_keep isl_vec * aff,__isl_keep struct isl_upoly_cst * cst,int pos)1921 static void update_coeff(__isl_keep isl_vec *aff,
1922 	__isl_keep struct isl_upoly_cst *cst, int pos)
1923 {
1924 	isl_int gcd;
1925 	isl_int f;
1926 
1927 	if (isl_int_is_zero(cst->n))
1928 		return;
1929 
1930 	isl_int_init(gcd);
1931 	isl_int_init(f);
1932 	isl_int_gcd(gcd, cst->d, aff->el[0]);
1933 	isl_int_divexact(f, cst->d, gcd);
1934 	isl_int_divexact(gcd, aff->el[0], gcd);
1935 	isl_seq_scale(aff->el, aff->el, f, aff->size);
1936 	isl_int_mul(aff->el[1 + pos], gcd, cst->n);
1937 	isl_int_clear(gcd);
1938 	isl_int_clear(f);
1939 }
1940 
isl_upoly_update_affine(__isl_keep struct isl_upoly * up,__isl_keep isl_vec * aff)1941 int isl_upoly_update_affine(__isl_keep struct isl_upoly *up,
1942 	__isl_keep isl_vec *aff)
1943 {
1944 	struct isl_upoly_cst *cst;
1945 	struct isl_upoly_rec *rec;
1946 
1947 	if (!up || !aff)
1948 		return -1;
1949 
1950 	if (up->var < 0) {
1951 		struct isl_upoly_cst *cst;
1952 
1953 		cst = isl_upoly_as_cst(up);
1954 		if (!cst)
1955 			return -1;
1956 		update_coeff(aff, cst, 0);
1957 		return 0;
1958 	}
1959 
1960 	rec = isl_upoly_as_rec(up);
1961 	if (!rec)
1962 		return -1;
1963 	isl_assert(up->ctx, rec->n == 2, return -1);
1964 
1965 	cst = isl_upoly_as_cst(rec->p[1]);
1966 	if (!cst)
1967 		return -1;
1968 	update_coeff(aff, cst, 1 + up->var);
1969 
1970 	return isl_upoly_update_affine(rec->p[0], aff);
1971 }
1972 
isl_qpolynomial_extract_affine(__isl_keep isl_qpolynomial * qp)1973 __isl_give isl_vec *isl_qpolynomial_extract_affine(
1974 	__isl_keep isl_qpolynomial *qp)
1975 {
1976 	isl_vec *aff;
1977 	unsigned d;
1978 
1979 	if (!qp)
1980 		return NULL;
1981 
1982 	d = isl_space_dim(qp->dim, isl_dim_all);
1983 	aff = isl_vec_alloc(qp->div->ctx, 2 + d + qp->div->n_row);
1984 	if (!aff)
1985 		return NULL;
1986 
1987 	isl_seq_clr(aff->el + 1, 1 + d + qp->div->n_row);
1988 	isl_int_set_si(aff->el[0], 1);
1989 
1990 	if (isl_upoly_update_affine(qp->upoly, aff) < 0)
1991 		goto error;
1992 
1993 	return aff;
1994 error:
1995 	isl_vec_free(aff);
1996 	return NULL;
1997 }
1998 
1999 /* Compare two quasi-polynomials.
2000  *
2001  * Return -1 if "qp1" is "smaller" than "qp2", 1 if "qp1" is "greater"
2002  * than "qp2" and 0 if they are equal.
2003  */
isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2004 int isl_qpolynomial_plain_cmp(__isl_keep isl_qpolynomial *qp1,
2005 	__isl_keep isl_qpolynomial *qp2)
2006 {
2007 	int cmp;
2008 
2009 	if (qp1 == qp2)
2010 		return 0;
2011 	if (!qp1)
2012 		return -1;
2013 	if (!qp2)
2014 		return 1;
2015 
2016 	cmp = isl_space_cmp(qp1->dim, qp2->dim);
2017 	if (cmp != 0)
2018 		return cmp;
2019 
2020 	cmp = isl_local_cmp(qp1->div, qp2->div);
2021 	if (cmp != 0)
2022 		return cmp;
2023 
2024 	return isl_upoly_plain_cmp(qp1->upoly, qp2->upoly);
2025 }
2026 
2027 /* Is "qp1" obviously equal to "qp2"?
2028  *
2029  * NaN is not equal to anything, not even to another NaN.
2030  */
isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial * qp1,__isl_keep isl_qpolynomial * qp2)2031 isl_bool isl_qpolynomial_plain_is_equal(__isl_keep isl_qpolynomial *qp1,
2032 	__isl_keep isl_qpolynomial *qp2)
2033 {
2034 	isl_bool equal;
2035 
2036 	if (!qp1 || !qp2)
2037 		return isl_bool_error;
2038 
2039 	if (isl_qpolynomial_is_nan(qp1) || isl_qpolynomial_is_nan(qp2))
2040 		return isl_bool_false;
2041 
2042 	equal = isl_space_is_equal(qp1->dim, qp2->dim);
2043 	if (equal < 0 || !equal)
2044 		return equal;
2045 
2046 	equal = isl_mat_is_equal(qp1->div, qp2->div);
2047 	if (equal < 0 || !equal)
2048 		return equal;
2049 
2050 	return isl_upoly_is_equal(qp1->upoly, qp2->upoly);
2051 }
2052 
upoly_update_den(__isl_keep struct isl_upoly * up,isl_int * d)2053 static void upoly_update_den(__isl_keep struct isl_upoly *up, isl_int *d)
2054 {
2055 	int i;
2056 	struct isl_upoly_rec *rec;
2057 
2058 	if (isl_upoly_is_cst(up)) {
2059 		struct isl_upoly_cst *cst;
2060 		cst = isl_upoly_as_cst(up);
2061 		if (!cst)
2062 			return;
2063 		isl_int_lcm(*d, *d, cst->d);
2064 		return;
2065 	}
2066 
2067 	rec = isl_upoly_as_rec(up);
2068 	if (!rec)
2069 		return;
2070 
2071 	for (i = 0; i < rec->n; ++i)
2072 		upoly_update_den(rec->p[i], d);
2073 }
2074 
isl_qpolynomial_get_den(__isl_keep isl_qpolynomial * qp,isl_int * d)2075 void isl_qpolynomial_get_den(__isl_keep isl_qpolynomial *qp, isl_int *d)
2076 {
2077 	isl_int_set_si(*d, 1);
2078 	if (!qp)
2079 		return;
2080 	upoly_update_den(qp->upoly, d);
2081 }
2082 
isl_qpolynomial_var_pow_on_domain(__isl_take isl_space * dim,int pos,int power)2083 __isl_give isl_qpolynomial *isl_qpolynomial_var_pow_on_domain(
2084 	__isl_take isl_space *dim, int pos, int power)
2085 {
2086 	struct isl_ctx *ctx;
2087 
2088 	if (!dim)
2089 		return NULL;
2090 
2091 	ctx = dim->ctx;
2092 
2093 	return isl_qpolynomial_alloc(dim, 0, isl_upoly_var_pow(ctx, pos, power));
2094 }
2095 
isl_qpolynomial_var_on_domain(__isl_take isl_space * dim,enum isl_dim_type type,unsigned pos)2096 __isl_give isl_qpolynomial *isl_qpolynomial_var_on_domain(__isl_take isl_space *dim,
2097 	enum isl_dim_type type, unsigned pos)
2098 {
2099 	if (!dim)
2100 		return NULL;
2101 
2102 	isl_assert(dim->ctx, isl_space_dim(dim, isl_dim_in) == 0, goto error);
2103 	isl_assert(dim->ctx, pos < isl_space_dim(dim, type), goto error);
2104 
2105 	if (type == isl_dim_set)
2106 		pos += isl_space_dim(dim, isl_dim_param);
2107 
2108 	return isl_qpolynomial_var_pow_on_domain(dim, pos, 1);
2109 error:
2110 	isl_space_free(dim);
2111 	return NULL;
2112 }
2113 
isl_upoly_subs(__isl_take struct isl_upoly * up,unsigned first,unsigned n,__isl_keep struct isl_upoly ** subs)2114 __isl_give struct isl_upoly *isl_upoly_subs(__isl_take struct isl_upoly *up,
2115 	unsigned first, unsigned n, __isl_keep struct isl_upoly **subs)
2116 {
2117 	int i;
2118 	struct isl_upoly_rec *rec;
2119 	struct isl_upoly *base, *res;
2120 
2121 	if (!up)
2122 		return NULL;
2123 
2124 	if (isl_upoly_is_cst(up))
2125 		return up;
2126 
2127 	if (up->var < first)
2128 		return up;
2129 
2130 	rec = isl_upoly_as_rec(up);
2131 	if (!rec)
2132 		goto error;
2133 
2134 	isl_assert(up->ctx, rec->n >= 1, goto error);
2135 
2136 	if (up->var >= first + n)
2137 		base = isl_upoly_var_pow(up->ctx, up->var, 1);
2138 	else
2139 		base = isl_upoly_copy(subs[up->var - first]);
2140 
2141 	res = isl_upoly_subs(isl_upoly_copy(rec->p[rec->n - 1]), first, n, subs);
2142 	for (i = rec->n - 2; i >= 0; --i) {
2143 		struct isl_upoly *t;
2144 		t = isl_upoly_subs(isl_upoly_copy(rec->p[i]), first, n, subs);
2145 		res = isl_upoly_mul(res, isl_upoly_copy(base));
2146 		res = isl_upoly_sum(res, t);
2147 	}
2148 
2149 	isl_upoly_free(base);
2150 	isl_upoly_free(up);
2151 
2152 	return res;
2153 error:
2154 	isl_upoly_free(up);
2155 	return NULL;
2156 }
2157 
isl_upoly_from_affine(isl_ctx * ctx,isl_int * f,isl_int denom,unsigned len)2158 __isl_give struct isl_upoly *isl_upoly_from_affine(isl_ctx *ctx, isl_int *f,
2159 	isl_int denom, unsigned len)
2160 {
2161 	int i;
2162 	struct isl_upoly *up;
2163 
2164 	isl_assert(ctx, len >= 1, return NULL);
2165 
2166 	up = isl_upoly_rat_cst(ctx, f[0], denom);
2167 	for (i = 0; i < len - 1; ++i) {
2168 		struct isl_upoly *t;
2169 		struct isl_upoly *c;
2170 
2171 		if (isl_int_is_zero(f[1 + i]))
2172 			continue;
2173 
2174 		c = isl_upoly_rat_cst(ctx, f[1 + i], denom);
2175 		t = isl_upoly_var_pow(ctx, i, 1);
2176 		t = isl_upoly_mul(c, t);
2177 		up = isl_upoly_sum(up, t);
2178 	}
2179 
2180 	return up;
2181 }
2182 
2183 /* Remove common factor of non-constant terms and denominator.
2184  */
normalize_div(__isl_keep isl_qpolynomial * qp,int div)2185 static void normalize_div(__isl_keep isl_qpolynomial *qp, int div)
2186 {
2187 	isl_ctx *ctx = qp->div->ctx;
2188 	unsigned total = qp->div->n_col - 2;
2189 
2190 	isl_seq_gcd(qp->div->row[div] + 2, total, &ctx->normalize_gcd);
2191 	isl_int_gcd(ctx->normalize_gcd,
2192 		    ctx->normalize_gcd, qp->div->row[div][0]);
2193 	if (isl_int_is_one(ctx->normalize_gcd))
2194 		return;
2195 
2196 	isl_seq_scale_down(qp->div->row[div] + 2, qp->div->row[div] + 2,
2197 			    ctx->normalize_gcd, total);
2198 	isl_int_divexact(qp->div->row[div][0], qp->div->row[div][0],
2199 			    ctx->normalize_gcd);
2200 	isl_int_fdiv_q(qp->div->row[div][1], qp->div->row[div][1],
2201 			    ctx->normalize_gcd);
2202 }
2203 
2204 /* Replace the integer division identified by "div" by the polynomial "s".
2205  * The integer division is assumed not to appear in the definition
2206  * of any other integer divisions.
2207  */
substitute_div(__isl_take isl_qpolynomial * qp,int div,__isl_take struct isl_upoly * s)2208 static __isl_give isl_qpolynomial *substitute_div(
2209 	__isl_take isl_qpolynomial *qp,
2210 	int div, __isl_take struct isl_upoly *s)
2211 {
2212 	int i;
2213 	int total;
2214 	int *reordering;
2215 
2216 	if (!qp || !s)
2217 		goto error;
2218 
2219 	qp = isl_qpolynomial_cow(qp);
2220 	if (!qp)
2221 		goto error;
2222 
2223 	total = isl_space_dim(qp->dim, isl_dim_all);
2224 	qp->upoly = isl_upoly_subs(qp->upoly, total + div, 1, &s);
2225 	if (!qp->upoly)
2226 		goto error;
2227 
2228 	reordering = isl_alloc_array(qp->dim->ctx, int, total + qp->div->n_row);
2229 	if (!reordering)
2230 		goto error;
2231 	for (i = 0; i < total + div; ++i)
2232 		reordering[i] = i;
2233 	for (i = total + div + 1; i < total + qp->div->n_row; ++i)
2234 		reordering[i] = i - 1;
2235 	qp->div = isl_mat_drop_rows(qp->div, div, 1);
2236 	qp->div = isl_mat_drop_cols(qp->div, 2 + total + div, 1);
2237 	qp->upoly = reorder(qp->upoly, reordering);
2238 	free(reordering);
2239 
2240 	if (!qp->upoly || !qp->div)
2241 		goto error;
2242 
2243 	isl_upoly_free(s);
2244 	return qp;
2245 error:
2246 	isl_qpolynomial_free(qp);
2247 	isl_upoly_free(s);
2248 	return NULL;
2249 }
2250 
2251 /* Replace all integer divisions [e/d] that turn out to not actually be integer
2252  * divisions because d is equal to 1 by their definition, i.e., e.
2253  */
substitute_non_divs(__isl_take isl_qpolynomial * qp)2254 static __isl_give isl_qpolynomial *substitute_non_divs(
2255 	__isl_take isl_qpolynomial *qp)
2256 {
2257 	int i, j;
2258 	int total;
2259 	struct isl_upoly *s;
2260 
2261 	if (!qp)
2262 		return NULL;
2263 
2264 	total = isl_space_dim(qp->dim, isl_dim_all);
2265 	for (i = 0; qp && i < qp->div->n_row; ++i) {
2266 		if (!isl_int_is_one(qp->div->row[i][0]))
2267 			continue;
2268 		for (j = i + 1; j < qp->div->n_row; ++j) {
2269 			if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
2270 				continue;
2271 			isl_seq_combine(qp->div->row[j] + 1,
2272 				qp->div->ctx->one, qp->div->row[j] + 1,
2273 				qp->div->row[j][2 + total + i],
2274 				qp->div->row[i] + 1, 1 + total + i);
2275 			isl_int_set_si(qp->div->row[j][2 + total + i], 0);
2276 			normalize_div(qp, j);
2277 		}
2278 		s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
2279 					qp->div->row[i][0], qp->div->n_col - 1);
2280 		qp = substitute_div(qp, i, s);
2281 		--i;
2282 	}
2283 
2284 	return qp;
2285 }
2286 
2287 /* Reduce the coefficients of div "div" to lie in the interval [0, d-1],
2288  * with d the denominator.  When replacing the coefficient e of x by
2289  * d * frac(e/d) = e - d * floor(e/d), we are subtracting d * floor(e/d) * x
2290  * inside the division, so we need to add floor(e/d) * x outside.
2291  * That is, we replace q by q' + floor(e/d) * x and we therefore need
2292  * to adjust the coefficient of x in each later div that depends on the
2293  * current div "div" and also in the affine expressions in the rows of "mat"
2294  * (if they too depend on "div").
2295  */
reduce_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2296 static void reduce_div(__isl_keep isl_qpolynomial *qp, int div,
2297 	__isl_keep isl_mat **mat)
2298 {
2299 	int i, j;
2300 	isl_int v;
2301 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2302 
2303 	isl_int_init(v);
2304 	for (i = 0; i < 1 + total + div; ++i) {
2305 		if (isl_int_is_nonneg(qp->div->row[div][1 + i]) &&
2306 		    isl_int_lt(qp->div->row[div][1 + i], qp->div->row[div][0]))
2307 			continue;
2308 		isl_int_fdiv_q(v, qp->div->row[div][1 + i], qp->div->row[div][0]);
2309 		isl_int_fdiv_r(qp->div->row[div][1 + i],
2310 				qp->div->row[div][1 + i], qp->div->row[div][0]);
2311 		*mat = isl_mat_col_addmul(*mat, i, v, 1 + total + div);
2312 		for (j = div + 1; j < qp->div->n_row; ++j) {
2313 			if (isl_int_is_zero(qp->div->row[j][2 + total + div]))
2314 				continue;
2315 			isl_int_addmul(qp->div->row[j][1 + i],
2316 					v, qp->div->row[j][2 + total + div]);
2317 		}
2318 	}
2319 	isl_int_clear(v);
2320 }
2321 
2322 /* Check if the last non-zero coefficient is bigger that half of the
2323  * denominator.  If so, we will invert the div to further reduce the number
2324  * of distinct divs that may appear.
2325  * If the last non-zero coefficient is exactly half the denominator,
2326  * then we continue looking for earlier coefficients that are bigger
2327  * than half the denominator.
2328  */
needs_invert(__isl_keep isl_mat * div,int row)2329 static int needs_invert(__isl_keep isl_mat *div, int row)
2330 {
2331 	int i;
2332 	int cmp;
2333 
2334 	for (i = div->n_col - 1; i >= 1; --i) {
2335 		if (isl_int_is_zero(div->row[row][i]))
2336 			continue;
2337 		isl_int_mul_ui(div->row[row][i], div->row[row][i], 2);
2338 		cmp = isl_int_cmp(div->row[row][i], div->row[row][0]);
2339 		isl_int_divexact_ui(div->row[row][i], div->row[row][i], 2);
2340 		if (cmp)
2341 			return cmp > 0;
2342 		if (i == 1)
2343 			return 1;
2344 	}
2345 
2346 	return 0;
2347 }
2348 
2349 /* Replace div "div" q = [e/d] by -[(-e+(d-1))/d].
2350  * We only invert the coefficients of e (and the coefficient of q in
2351  * later divs and in the rows of "mat").  After calling this function, the
2352  * coefficients of e should be reduced again.
2353  */
invert_div(__isl_keep isl_qpolynomial * qp,int div,__isl_keep isl_mat ** mat)2354 static void invert_div(__isl_keep isl_qpolynomial *qp, int div,
2355 	__isl_keep isl_mat **mat)
2356 {
2357 	unsigned total = qp->div->n_col - qp->div->n_row - 2;
2358 
2359 	isl_seq_neg(qp->div->row[div] + 1,
2360 		    qp->div->row[div] + 1, qp->div->n_col - 1);
2361 	isl_int_sub_ui(qp->div->row[div][1], qp->div->row[div][1], 1);
2362 	isl_int_add(qp->div->row[div][1],
2363 		    qp->div->row[div][1], qp->div->row[div][0]);
2364 	*mat = isl_mat_col_neg(*mat, 1 + total + div);
2365 	isl_mat_col_mul(qp->div, 2 + total + div,
2366 			qp->div->ctx->negone, 2 + total + div);
2367 }
2368 
2369 /* Reduce all divs of "qp" to have coefficients
2370  * in the interval [0, d-1], with d the denominator and such that the
2371  * last non-zero coefficient that is not equal to d/2 is smaller than d/2.
2372  * The modifications to the integer divisions need to be reflected
2373  * in the factors of the polynomial that refer to the original
2374  * integer divisions.  To this end, the modifications are collected
2375  * as a set of affine expressions and then plugged into the polynomial.
2376  *
2377  * After the reduction, some divs may have become redundant or identical,
2378  * so we call substitute_non_divs and sort_divs.  If these functions
2379  * eliminate divs or merge two or more divs into one, the coefficients
2380  * of the enclosing divs may have to be reduced again, so we call
2381  * ourselves recursively if the number of divs decreases.
2382  */
reduce_divs(__isl_take isl_qpolynomial * qp)2383 static __isl_give isl_qpolynomial *reduce_divs(__isl_take isl_qpolynomial *qp)
2384 {
2385 	int i;
2386 	isl_ctx *ctx;
2387 	isl_mat *mat;
2388 	struct isl_upoly **s;
2389 	unsigned o_div, n_div, total;
2390 
2391 	if (!qp)
2392 		return NULL;
2393 
2394 	total = isl_qpolynomial_domain_dim(qp, isl_dim_all);
2395 	n_div = isl_qpolynomial_domain_dim(qp, isl_dim_div);
2396 	o_div = isl_qpolynomial_domain_offset(qp, isl_dim_div);
2397 	ctx = isl_qpolynomial_get_ctx(qp);
2398 	mat = isl_mat_zero(ctx, n_div, 1 + total);
2399 
2400 	for (i = 0; i < n_div; ++i)
2401 		mat = isl_mat_set_element_si(mat, i, o_div + i, 1);
2402 
2403 	for (i = 0; i < qp->div->n_row; ++i) {
2404 		normalize_div(qp, i);
2405 		reduce_div(qp, i, &mat);
2406 		if (needs_invert(qp->div, i)) {
2407 			invert_div(qp, i, &mat);
2408 			reduce_div(qp, i, &mat);
2409 		}
2410 	}
2411 	if (!mat)
2412 		goto error;
2413 
2414 	s = isl_alloc_array(ctx, struct isl_upoly *, n_div);
2415 	if (n_div && !s)
2416 		goto error;
2417 	for (i = 0; i < n_div; ++i)
2418 		s[i] = isl_upoly_from_affine(ctx, mat->row[i], ctx->one,
2419 					    1 + total);
2420 	qp->upoly = isl_upoly_subs(qp->upoly, o_div - 1, n_div, s);
2421 	for (i = 0; i < n_div; ++i)
2422 		isl_upoly_free(s[i]);
2423 	free(s);
2424 	if (!qp->upoly)
2425 		goto error;
2426 
2427 	isl_mat_free(mat);
2428 
2429 	qp = substitute_non_divs(qp);
2430 	qp = sort_divs(qp);
2431 	if (qp && isl_qpolynomial_domain_dim(qp, isl_dim_div) < n_div)
2432 		return reduce_divs(qp);
2433 
2434 	return qp;
2435 error:
2436 	isl_qpolynomial_free(qp);
2437 	isl_mat_free(mat);
2438 	return NULL;
2439 }
2440 
isl_qpolynomial_rat_cst_on_domain(__isl_take isl_space * dim,const isl_int n,const isl_int d)2441 __isl_give isl_qpolynomial *isl_qpolynomial_rat_cst_on_domain(
2442 	__isl_take isl_space *dim, const isl_int n, const isl_int d)
2443 {
2444 	struct isl_qpolynomial *qp;
2445 	struct isl_upoly_cst *cst;
2446 
2447 	if (!dim)
2448 		return NULL;
2449 
2450 	qp = isl_qpolynomial_alloc(dim, 0, isl_upoly_zero(dim->ctx));
2451 	if (!qp)
2452 		return NULL;
2453 
2454 	cst = isl_upoly_as_cst(qp->upoly);
2455 	isl_int_set(cst->n, n);
2456 	isl_int_set(cst->d, d);
2457 
2458 	return qp;
2459 }
2460 
2461 /* Return an isl_qpolynomial that is equal to "val" on domain space "domain".
2462  */
isl_qpolynomial_val_on_domain(__isl_take isl_space * domain,__isl_take isl_val * val)2463 __isl_give isl_qpolynomial *isl_qpolynomial_val_on_domain(
2464 	__isl_take isl_space *domain, __isl_take isl_val *val)
2465 {
2466 	isl_qpolynomial *qp;
2467 	struct isl_upoly_cst *cst;
2468 
2469 	if (!domain || !val)
2470 		goto error;
2471 
2472 	qp = isl_qpolynomial_alloc(isl_space_copy(domain), 0,
2473 					isl_upoly_zero(domain->ctx));
2474 	if (!qp)
2475 		goto error;
2476 
2477 	cst = isl_upoly_as_cst(qp->upoly);
2478 	isl_int_set(cst->n, val->n);
2479 	isl_int_set(cst->d, val->d);
2480 
2481 	isl_space_free(domain);
2482 	isl_val_free(val);
2483 	return qp;
2484 error:
2485 	isl_space_free(domain);
2486 	isl_val_free(val);
2487 	return NULL;
2488 }
2489 
up_set_active(__isl_keep struct isl_upoly * up,int * active,int d)2490 static int up_set_active(__isl_keep struct isl_upoly *up, int *active, int d)
2491 {
2492 	struct isl_upoly_rec *rec;
2493 	int i;
2494 
2495 	if (!up)
2496 		return -1;
2497 
2498 	if (isl_upoly_is_cst(up))
2499 		return 0;
2500 
2501 	if (up->var < d)
2502 		active[up->var] = 1;
2503 
2504 	rec = isl_upoly_as_rec(up);
2505 	for (i = 0; i < rec->n; ++i)
2506 		if (up_set_active(rec->p[i], active, d) < 0)
2507 			return -1;
2508 
2509 	return 0;
2510 }
2511 
set_active(__isl_keep isl_qpolynomial * qp,int * active)2512 static int set_active(__isl_keep isl_qpolynomial *qp, int *active)
2513 {
2514 	int i, j;
2515 	int d = isl_space_dim(qp->dim, isl_dim_all);
2516 
2517 	if (!qp || !active)
2518 		return -1;
2519 
2520 	for (i = 0; i < d; ++i)
2521 		for (j = 0; j < qp->div->n_row; ++j) {
2522 			if (isl_int_is_zero(qp->div->row[j][2 + i]))
2523 				continue;
2524 			active[i] = 1;
2525 			break;
2526 		}
2527 
2528 	return up_set_active(qp->upoly, active, d);
2529 }
2530 
isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)2531 isl_bool isl_qpolynomial_involves_dims(__isl_keep isl_qpolynomial *qp,
2532 	enum isl_dim_type type, unsigned first, unsigned n)
2533 {
2534 	int i;
2535 	int *active = NULL;
2536 	isl_bool involves = isl_bool_false;
2537 
2538 	if (!qp)
2539 		return isl_bool_error;
2540 	if (n == 0)
2541 		return isl_bool_false;
2542 
2543 	isl_assert(qp->dim->ctx,
2544 		    first + n <= isl_qpolynomial_dim(qp, type),
2545 		    return isl_bool_error);
2546 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
2547 				 type == isl_dim_in, return isl_bool_error);
2548 
2549 	active = isl_calloc_array(qp->dim->ctx, int,
2550 					isl_space_dim(qp->dim, isl_dim_all));
2551 	if (set_active(qp, active) < 0)
2552 		goto error;
2553 
2554 	if (type == isl_dim_in)
2555 		first += isl_space_dim(qp->dim, isl_dim_param);
2556 	for (i = 0; i < n; ++i)
2557 		if (active[first + i]) {
2558 			involves = isl_bool_true;
2559 			break;
2560 		}
2561 
2562 	free(active);
2563 
2564 	return involves;
2565 error:
2566 	free(active);
2567 	return isl_bool_error;
2568 }
2569 
2570 /* Remove divs that do not appear in the quasi-polynomial, nor in any
2571  * of the divs that do appear in the quasi-polynomial.
2572  */
remove_redundant_divs(__isl_take isl_qpolynomial * qp)2573 static __isl_give isl_qpolynomial *remove_redundant_divs(
2574 	__isl_take isl_qpolynomial *qp)
2575 {
2576 	int i, j;
2577 	int d;
2578 	int len;
2579 	int skip;
2580 	int *active = NULL;
2581 	int *reordering = NULL;
2582 	int redundant = 0;
2583 	int n_div;
2584 	isl_ctx *ctx;
2585 
2586 	if (!qp)
2587 		return NULL;
2588 	if (qp->div->n_row == 0)
2589 		return qp;
2590 
2591 	d = isl_space_dim(qp->dim, isl_dim_all);
2592 	len = qp->div->n_col - 2;
2593 	ctx = isl_qpolynomial_get_ctx(qp);
2594 	active = isl_calloc_array(ctx, int, len);
2595 	if (!active)
2596 		goto error;
2597 
2598 	if (up_set_active(qp->upoly, active, len) < 0)
2599 		goto error;
2600 
2601 	for (i = qp->div->n_row - 1; i >= 0; --i) {
2602 		if (!active[d + i]) {
2603 			redundant = 1;
2604 			continue;
2605 		}
2606 		for (j = 0; j < i; ++j) {
2607 			if (isl_int_is_zero(qp->div->row[i][2 + d + j]))
2608 				continue;
2609 			active[d + j] = 1;
2610 			break;
2611 		}
2612 	}
2613 
2614 	if (!redundant) {
2615 		free(active);
2616 		return qp;
2617 	}
2618 
2619 	reordering = isl_alloc_array(qp->div->ctx, int, len);
2620 	if (!reordering)
2621 		goto error;
2622 
2623 	for (i = 0; i < d; ++i)
2624 		reordering[i] = i;
2625 
2626 	skip = 0;
2627 	n_div = qp->div->n_row;
2628 	for (i = 0; i < n_div; ++i) {
2629 		if (!active[d + i]) {
2630 			qp->div = isl_mat_drop_rows(qp->div, i - skip, 1);
2631 			qp->div = isl_mat_drop_cols(qp->div,
2632 						    2 + d + i - skip, 1);
2633 			skip++;
2634 		}
2635 		reordering[d + i] = d + i - skip;
2636 	}
2637 
2638 	qp->upoly = reorder(qp->upoly, reordering);
2639 
2640 	if (!qp->upoly || !qp->div)
2641 		goto error;
2642 
2643 	free(active);
2644 	free(reordering);
2645 
2646 	return qp;
2647 error:
2648 	free(active);
2649 	free(reordering);
2650 	isl_qpolynomial_free(qp);
2651 	return NULL;
2652 }
2653 
isl_upoly_drop(__isl_take struct isl_upoly * up,unsigned first,unsigned n)2654 __isl_give struct isl_upoly *isl_upoly_drop(__isl_take struct isl_upoly *up,
2655 	unsigned first, unsigned n)
2656 {
2657 	int i;
2658 	struct isl_upoly_rec *rec;
2659 
2660 	if (!up)
2661 		return NULL;
2662 	if (n == 0 || up->var < 0 || up->var < first)
2663 		return up;
2664 	if (up->var < first + n) {
2665 		up = replace_by_constant_term(up);
2666 		return isl_upoly_drop(up, first, n);
2667 	}
2668 	up = isl_upoly_cow(up);
2669 	if (!up)
2670 		return NULL;
2671 	up->var -= n;
2672 	rec = isl_upoly_as_rec(up);
2673 	if (!rec)
2674 		goto error;
2675 
2676 	for (i = 0; i < rec->n; ++i) {
2677 		rec->p[i] = isl_upoly_drop(rec->p[i], first, n);
2678 		if (!rec->p[i])
2679 			goto error;
2680 	}
2681 
2682 	return up;
2683 error:
2684 	isl_upoly_free(up);
2685 	return NULL;
2686 }
2687 
isl_qpolynomial_set_dim_name(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned pos,const char * s)2688 __isl_give isl_qpolynomial *isl_qpolynomial_set_dim_name(
2689 	__isl_take isl_qpolynomial *qp,
2690 	enum isl_dim_type type, unsigned pos, const char *s)
2691 {
2692 	qp = isl_qpolynomial_cow(qp);
2693 	if (!qp)
2694 		return NULL;
2695 	if (type == isl_dim_out)
2696 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2697 			"cannot set name of output/set dimension",
2698 			return isl_qpolynomial_free(qp));
2699 	if (type == isl_dim_in)
2700 		type = isl_dim_set;
2701 	qp->dim = isl_space_set_dim_name(qp->dim, type, pos, s);
2702 	if (!qp->dim)
2703 		goto error;
2704 	return qp;
2705 error:
2706 	isl_qpolynomial_free(qp);
2707 	return NULL;
2708 }
2709 
isl_qpolynomial_drop_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)2710 __isl_give isl_qpolynomial *isl_qpolynomial_drop_dims(
2711 	__isl_take isl_qpolynomial *qp,
2712 	enum isl_dim_type type, unsigned first, unsigned n)
2713 {
2714 	if (!qp)
2715 		return NULL;
2716 	if (type == isl_dim_out)
2717 		isl_die(qp->dim->ctx, isl_error_invalid,
2718 			"cannot drop output/set dimension",
2719 			goto error);
2720 	if (type == isl_dim_in)
2721 		type = isl_dim_set;
2722 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
2723 		return qp;
2724 
2725 	qp = isl_qpolynomial_cow(qp);
2726 	if (!qp)
2727 		return NULL;
2728 
2729 	isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
2730 			goto error);
2731 	isl_assert(qp->dim->ctx, type == isl_dim_param ||
2732 				 type == isl_dim_set, goto error);
2733 
2734 	qp->dim = isl_space_drop_dims(qp->dim, type, first, n);
2735 	if (!qp->dim)
2736 		goto error;
2737 
2738 	if (type == isl_dim_set)
2739 		first += isl_space_dim(qp->dim, isl_dim_param);
2740 
2741 	qp->div = isl_mat_drop_cols(qp->div, 2 + first, n);
2742 	if (!qp->div)
2743 		goto error;
2744 
2745 	qp->upoly = isl_upoly_drop(qp->upoly, first, n);
2746 	if (!qp->upoly)
2747 		goto error;
2748 
2749 	return qp;
2750 error:
2751 	isl_qpolynomial_free(qp);
2752 	return NULL;
2753 }
2754 
2755 /* Project the domain of the quasi-polynomial onto its parameter space.
2756  * The quasi-polynomial may not involve any of the domain dimensions.
2757  */
isl_qpolynomial_project_domain_on_params(__isl_take isl_qpolynomial * qp)2758 __isl_give isl_qpolynomial *isl_qpolynomial_project_domain_on_params(
2759 	__isl_take isl_qpolynomial *qp)
2760 {
2761 	isl_space *space;
2762 	unsigned n;
2763 	int involves;
2764 
2765 	n = isl_qpolynomial_dim(qp, isl_dim_in);
2766 	involves = isl_qpolynomial_involves_dims(qp, isl_dim_in, 0, n);
2767 	if (involves < 0)
2768 		return isl_qpolynomial_free(qp);
2769 	if (involves)
2770 		isl_die(isl_qpolynomial_get_ctx(qp), isl_error_invalid,
2771 			"polynomial involves some of the domain dimensions",
2772 			return isl_qpolynomial_free(qp));
2773 	qp = isl_qpolynomial_drop_dims(qp, isl_dim_in, 0, n);
2774 	space = isl_qpolynomial_get_domain_space(qp);
2775 	space = isl_space_params(space);
2776 	qp = isl_qpolynomial_reset_domain_space(qp, space);
2777 	return qp;
2778 }
2779 
isl_qpolynomial_substitute_equalities_lifted(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)2780 static __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities_lifted(
2781 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2782 {
2783 	int i, j, k;
2784 	isl_int denom;
2785 	unsigned total;
2786 	unsigned n_div;
2787 	struct isl_upoly *up;
2788 
2789 	if (!eq)
2790 		goto error;
2791 	if (eq->n_eq == 0) {
2792 		isl_basic_set_free(eq);
2793 		return qp;
2794 	}
2795 
2796 	qp = isl_qpolynomial_cow(qp);
2797 	if (!qp)
2798 		goto error;
2799 	qp->div = isl_mat_cow(qp->div);
2800 	if (!qp->div)
2801 		goto error;
2802 
2803 	total = 1 + isl_space_dim(eq->dim, isl_dim_all);
2804 	n_div = eq->n_div;
2805 	isl_int_init(denom);
2806 	for (i = 0; i < eq->n_eq; ++i) {
2807 		j = isl_seq_last_non_zero(eq->eq[i], total + n_div);
2808 		if (j < 0 || j == 0 || j >= total)
2809 			continue;
2810 
2811 		for (k = 0; k < qp->div->n_row; ++k) {
2812 			if (isl_int_is_zero(qp->div->row[k][1 + j]))
2813 				continue;
2814 			isl_seq_elim(qp->div->row[k] + 1, eq->eq[i], j, total,
2815 					&qp->div->row[k][0]);
2816 			normalize_div(qp, k);
2817 		}
2818 
2819 		if (isl_int_is_pos(eq->eq[i][j]))
2820 			isl_seq_neg(eq->eq[i], eq->eq[i], total);
2821 		isl_int_abs(denom, eq->eq[i][j]);
2822 		isl_int_set_si(eq->eq[i][j], 0);
2823 
2824 		up = isl_upoly_from_affine(qp->dim->ctx,
2825 						   eq->eq[i], denom, total);
2826 		qp->upoly = isl_upoly_subs(qp->upoly, j - 1, 1, &up);
2827 		isl_upoly_free(up);
2828 	}
2829 	isl_int_clear(denom);
2830 
2831 	if (!qp->upoly)
2832 		goto error;
2833 
2834 	isl_basic_set_free(eq);
2835 
2836 	qp = substitute_non_divs(qp);
2837 	qp = sort_divs(qp);
2838 
2839 	return qp;
2840 error:
2841 	isl_basic_set_free(eq);
2842 	isl_qpolynomial_free(qp);
2843 	return NULL;
2844 }
2845 
2846 /* Exploit the equalities in "eq" to simplify the quasi-polynomial.
2847  */
isl_qpolynomial_substitute_equalities(__isl_take isl_qpolynomial * qp,__isl_take isl_basic_set * eq)2848 __isl_give isl_qpolynomial *isl_qpolynomial_substitute_equalities(
2849 	__isl_take isl_qpolynomial *qp, __isl_take isl_basic_set *eq)
2850 {
2851 	if (!qp || !eq)
2852 		goto error;
2853 	if (qp->div->n_row > 0)
2854 		eq = isl_basic_set_add_dims(eq, isl_dim_set, qp->div->n_row);
2855 	return isl_qpolynomial_substitute_equalities_lifted(qp, eq);
2856 error:
2857 	isl_basic_set_free(eq);
2858 	isl_qpolynomial_free(qp);
2859 	return NULL;
2860 }
2861 
add_div_constraints(__isl_take isl_basic_set * bset,__isl_take isl_mat * div)2862 static __isl_give isl_basic_set *add_div_constraints(
2863 	__isl_take isl_basic_set *bset, __isl_take isl_mat *div)
2864 {
2865 	int i;
2866 	unsigned total;
2867 
2868 	if (!bset || !div)
2869 		goto error;
2870 
2871 	bset = isl_basic_set_extend_constraints(bset, 0, 2 * div->n_row);
2872 	if (!bset)
2873 		goto error;
2874 	total = isl_basic_set_total_dim(bset);
2875 	for (i = 0; i < div->n_row; ++i)
2876 		if (isl_basic_set_add_div_constraints_var(bset,
2877 				    total - div->n_row + i, div->row[i]) < 0)
2878 			goto error;
2879 
2880 	isl_mat_free(div);
2881 	return bset;
2882 error:
2883 	isl_mat_free(div);
2884 	isl_basic_set_free(bset);
2885 	return NULL;
2886 }
2887 
2888 /* Look for equalities among the variables shared by context and qp
2889  * and the integer divisions of qp, if any.
2890  * The equalities are then used to eliminate variables and/or integer
2891  * divisions from qp.
2892  */
isl_qpolynomial_gist(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)2893 __isl_give isl_qpolynomial *isl_qpolynomial_gist(
2894 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2895 {
2896 	isl_basic_set *aff;
2897 
2898 	if (!qp)
2899 		goto error;
2900 	if (qp->div->n_row > 0) {
2901 		isl_basic_set *bset;
2902 		context = isl_set_add_dims(context, isl_dim_set,
2903 					    qp->div->n_row);
2904 		bset = isl_basic_set_universe(isl_set_get_space(context));
2905 		bset = add_div_constraints(bset, isl_mat_copy(qp->div));
2906 		context = isl_set_intersect(context,
2907 					    isl_set_from_basic_set(bset));
2908 	}
2909 
2910 	aff = isl_set_affine_hull(context);
2911 	return isl_qpolynomial_substitute_equalities_lifted(qp, aff);
2912 error:
2913 	isl_qpolynomial_free(qp);
2914 	isl_set_free(context);
2915 	return NULL;
2916 }
2917 
isl_qpolynomial_gist_params(__isl_take isl_qpolynomial * qp,__isl_take isl_set * context)2918 __isl_give isl_qpolynomial *isl_qpolynomial_gist_params(
2919 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *context)
2920 {
2921 	isl_space *space = isl_qpolynomial_get_domain_space(qp);
2922 	isl_set *dom_context = isl_set_universe(space);
2923 	dom_context = isl_set_intersect_params(dom_context, context);
2924 	return isl_qpolynomial_gist(qp, dom_context);
2925 }
2926 
isl_pw_qpolynomial_from_qpolynomial(__isl_take isl_qpolynomial * qp)2927 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_qpolynomial(
2928 	__isl_take isl_qpolynomial *qp)
2929 {
2930 	isl_set *dom;
2931 
2932 	if (!qp)
2933 		return NULL;
2934 	if (isl_qpolynomial_is_zero(qp)) {
2935 		isl_space *dim = isl_qpolynomial_get_space(qp);
2936 		isl_qpolynomial_free(qp);
2937 		return isl_pw_qpolynomial_zero(dim);
2938 	}
2939 
2940 	dom = isl_set_universe(isl_qpolynomial_get_domain_space(qp));
2941 	return isl_pw_qpolynomial_alloc(dom, qp);
2942 }
2943 
2944 #define isl_qpolynomial_involves_nan isl_qpolynomial_is_nan
2945 
2946 #undef PW
2947 #define PW isl_pw_qpolynomial
2948 #undef EL
2949 #define EL isl_qpolynomial
2950 #undef EL_IS_ZERO
2951 #define EL_IS_ZERO is_zero
2952 #undef ZERO
2953 #define ZERO zero
2954 #undef IS_ZERO
2955 #define IS_ZERO is_zero
2956 #undef FIELD
2957 #define FIELD qp
2958 #undef DEFAULT_IS_ZERO
2959 #define DEFAULT_IS_ZERO 1
2960 
2961 #define NO_PULLBACK
2962 
2963 #include <isl_pw_templ.c>
2964 #include <isl_pw_eval.c>
2965 
2966 #undef BASE
2967 #define BASE pw_qpolynomial
2968 
2969 #include <isl_union_single.c>
2970 #include <isl_union_eval.c>
2971 #include <isl_union_neg.c>
2972 
isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial * pwqp)2973 int isl_pw_qpolynomial_is_one(__isl_keep isl_pw_qpolynomial *pwqp)
2974 {
2975 	if (!pwqp)
2976 		return -1;
2977 
2978 	if (pwqp->n != -1)
2979 		return 0;
2980 
2981 	if (!isl_set_plain_is_universe(pwqp->p[0].set))
2982 		return 0;
2983 
2984 	return isl_qpolynomial_is_one(pwqp->p[0].qp);
2985 }
2986 
isl_pw_qpolynomial_add(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)2987 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add(
2988 	__isl_take isl_pw_qpolynomial *pwqp1,
2989 	__isl_take isl_pw_qpolynomial *pwqp2)
2990 {
2991 	return isl_pw_qpolynomial_union_add_(pwqp1, pwqp2);
2992 }
2993 
isl_pw_qpolynomial_mul(__isl_take isl_pw_qpolynomial * pwqp1,__isl_take isl_pw_qpolynomial * pwqp2)2994 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_mul(
2995 	__isl_take isl_pw_qpolynomial *pwqp1,
2996 	__isl_take isl_pw_qpolynomial *pwqp2)
2997 {
2998 	int i, j, n;
2999 	struct isl_pw_qpolynomial *res;
3000 
3001 	if (!pwqp1 || !pwqp2)
3002 		goto error;
3003 
3004 	isl_assert(pwqp1->dim->ctx, isl_space_is_equal(pwqp1->dim, pwqp2->dim),
3005 			goto error);
3006 
3007 	if (isl_pw_qpolynomial_is_zero(pwqp1)) {
3008 		isl_pw_qpolynomial_free(pwqp2);
3009 		return pwqp1;
3010 	}
3011 
3012 	if (isl_pw_qpolynomial_is_zero(pwqp2)) {
3013 		isl_pw_qpolynomial_free(pwqp1);
3014 		return pwqp2;
3015 	}
3016 
3017 	if (isl_pw_qpolynomial_is_one(pwqp1)) {
3018 		isl_pw_qpolynomial_free(pwqp1);
3019 		return pwqp2;
3020 	}
3021 
3022 	if (isl_pw_qpolynomial_is_one(pwqp2)) {
3023 		isl_pw_qpolynomial_free(pwqp2);
3024 		return pwqp1;
3025 	}
3026 
3027 	n = pwqp1->n * pwqp2->n;
3028 	res = isl_pw_qpolynomial_alloc_size(isl_space_copy(pwqp1->dim), n);
3029 
3030 	for (i = 0; i < pwqp1->n; ++i) {
3031 		for (j = 0; j < pwqp2->n; ++j) {
3032 			struct isl_set *common;
3033 			struct isl_qpolynomial *prod;
3034 			common = isl_set_intersect(isl_set_copy(pwqp1->p[i].set),
3035 						isl_set_copy(pwqp2->p[j].set));
3036 			if (isl_set_plain_is_empty(common)) {
3037 				isl_set_free(common);
3038 				continue;
3039 			}
3040 
3041 			prod = isl_qpolynomial_mul(
3042 				isl_qpolynomial_copy(pwqp1->p[i].qp),
3043 				isl_qpolynomial_copy(pwqp2->p[j].qp));
3044 
3045 			res = isl_pw_qpolynomial_add_piece(res, common, prod);
3046 		}
3047 	}
3048 
3049 	isl_pw_qpolynomial_free(pwqp1);
3050 	isl_pw_qpolynomial_free(pwqp2);
3051 
3052 	return res;
3053 error:
3054 	isl_pw_qpolynomial_free(pwqp1);
3055 	isl_pw_qpolynomial_free(pwqp2);
3056 	return NULL;
3057 }
3058 
isl_upoly_eval(__isl_take struct isl_upoly * up,__isl_take isl_vec * vec)3059 __isl_give isl_val *isl_upoly_eval(__isl_take struct isl_upoly *up,
3060 	__isl_take isl_vec *vec)
3061 {
3062 	int i;
3063 	struct isl_upoly_rec *rec;
3064 	isl_val *res;
3065 	isl_val *base;
3066 
3067 	if (isl_upoly_is_cst(up)) {
3068 		isl_vec_free(vec);
3069 		res = isl_upoly_get_constant_val(up);
3070 		isl_upoly_free(up);
3071 		return res;
3072 	}
3073 
3074 	rec = isl_upoly_as_rec(up);
3075 	if (!rec || !vec)
3076 		goto error;
3077 
3078 	isl_assert(up->ctx, rec->n >= 1, goto error);
3079 
3080 	base = isl_val_rat_from_isl_int(up->ctx,
3081 					vec->el[1 + up->var], vec->el[0]);
3082 
3083 	res = isl_upoly_eval(isl_upoly_copy(rec->p[rec->n - 1]),
3084 				isl_vec_copy(vec));
3085 
3086 	for (i = rec->n - 2; i >= 0; --i) {
3087 		res = isl_val_mul(res, isl_val_copy(base));
3088 		res = isl_val_add(res,
3089 			    isl_upoly_eval(isl_upoly_copy(rec->p[i]),
3090 							    isl_vec_copy(vec)));
3091 	}
3092 
3093 	isl_val_free(base);
3094 	isl_upoly_free(up);
3095 	isl_vec_free(vec);
3096 	return res;
3097 error:
3098 	isl_upoly_free(up);
3099 	isl_vec_free(vec);
3100 	return NULL;
3101 }
3102 
3103 /* Evaluate "qp" in the void point "pnt".
3104  * In particular, return the value NaN.
3105  */
eval_void(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3106 static __isl_give isl_val *eval_void(__isl_take isl_qpolynomial *qp,
3107 	__isl_take isl_point *pnt)
3108 {
3109 	isl_ctx *ctx;
3110 
3111 	ctx = isl_point_get_ctx(pnt);
3112 	isl_qpolynomial_free(qp);
3113 	isl_point_free(pnt);
3114 	return isl_val_nan(ctx);
3115 }
3116 
isl_qpolynomial_eval(__isl_take isl_qpolynomial * qp,__isl_take isl_point * pnt)3117 __isl_give isl_val *isl_qpolynomial_eval(__isl_take isl_qpolynomial *qp,
3118 	__isl_take isl_point *pnt)
3119 {
3120 	isl_bool is_void;
3121 	isl_vec *ext;
3122 	isl_val *v;
3123 
3124 	if (!qp || !pnt)
3125 		goto error;
3126 	isl_assert(pnt->dim->ctx, isl_space_is_equal(pnt->dim, qp->dim), goto error);
3127 	is_void = isl_point_is_void(pnt);
3128 	if (is_void < 0)
3129 		goto error;
3130 	if (is_void)
3131 		return eval_void(qp, pnt);
3132 
3133 	ext = isl_local_extend_point_vec(qp->div, isl_vec_copy(pnt->vec));
3134 
3135 	v = isl_upoly_eval(isl_upoly_copy(qp->upoly), ext);
3136 
3137 	isl_qpolynomial_free(qp);
3138 	isl_point_free(pnt);
3139 
3140 	return v;
3141 error:
3142 	isl_qpolynomial_free(qp);
3143 	isl_point_free(pnt);
3144 	return NULL;
3145 }
3146 
isl_upoly_cmp(__isl_keep struct isl_upoly_cst * cst1,__isl_keep struct isl_upoly_cst * cst2)3147 int isl_upoly_cmp(__isl_keep struct isl_upoly_cst *cst1,
3148 	__isl_keep struct isl_upoly_cst *cst2)
3149 {
3150 	int cmp;
3151 	isl_int t;
3152 	isl_int_init(t);
3153 	isl_int_mul(t, cst1->n, cst2->d);
3154 	isl_int_submul(t, cst2->n, cst1->d);
3155 	cmp = isl_int_sgn(t);
3156 	isl_int_clear(t);
3157 	return cmp;
3158 }
3159 
isl_qpolynomial_insert_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n)3160 __isl_give isl_qpolynomial *isl_qpolynomial_insert_dims(
3161 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type,
3162 	unsigned first, unsigned n)
3163 {
3164 	unsigned total;
3165 	unsigned g_pos;
3166 	int *exp;
3167 
3168 	if (!qp)
3169 		return NULL;
3170 	if (type == isl_dim_out)
3171 		isl_die(qp->div->ctx, isl_error_invalid,
3172 			"cannot insert output/set dimensions",
3173 			goto error);
3174 	if (type == isl_dim_in)
3175 		type = isl_dim_set;
3176 	if (n == 0 && !isl_space_is_named_or_nested(qp->dim, type))
3177 		return qp;
3178 
3179 	qp = isl_qpolynomial_cow(qp);
3180 	if (!qp)
3181 		return NULL;
3182 
3183 	isl_assert(qp->div->ctx, first <= isl_space_dim(qp->dim, type),
3184 		    goto error);
3185 
3186 	g_pos = pos(qp->dim, type) + first;
3187 
3188 	qp->div = isl_mat_insert_zero_cols(qp->div, 2 + g_pos, n);
3189 	if (!qp->div)
3190 		goto error;
3191 
3192 	total = qp->div->n_col - 2;
3193 	if (total > g_pos) {
3194 		int i;
3195 		exp = isl_alloc_array(qp->div->ctx, int, total - g_pos);
3196 		if (!exp)
3197 			goto error;
3198 		for (i = 0; i < total - g_pos; ++i)
3199 			exp[i] = i + n;
3200 		qp->upoly = expand(qp->upoly, exp, g_pos);
3201 		free(exp);
3202 		if (!qp->upoly)
3203 			goto error;
3204 	}
3205 
3206 	qp->dim = isl_space_insert_dims(qp->dim, type, first, n);
3207 	if (!qp->dim)
3208 		goto error;
3209 
3210 	return qp;
3211 error:
3212 	isl_qpolynomial_free(qp);
3213 	return NULL;
3214 }
3215 
isl_qpolynomial_add_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned n)3216 __isl_give isl_qpolynomial *isl_qpolynomial_add_dims(
3217 	__isl_take isl_qpolynomial *qp, enum isl_dim_type type, unsigned n)
3218 {
3219 	unsigned pos;
3220 
3221 	pos = isl_qpolynomial_dim(qp, type);
3222 
3223 	return isl_qpolynomial_insert_dims(qp, type, pos, n);
3224 }
3225 
isl_pw_qpolynomial_add_dims(__isl_take isl_pw_qpolynomial * pwqp,enum isl_dim_type type,unsigned n)3226 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_add_dims(
3227 	__isl_take isl_pw_qpolynomial *pwqp,
3228 	enum isl_dim_type type, unsigned n)
3229 {
3230 	unsigned pos;
3231 
3232 	pos = isl_pw_qpolynomial_dim(pwqp, type);
3233 
3234 	return isl_pw_qpolynomial_insert_dims(pwqp, type, pos, n);
3235 }
3236 
reordering_move(isl_ctx * ctx,unsigned len,unsigned dst,unsigned src,unsigned n)3237 static int *reordering_move(isl_ctx *ctx,
3238 	unsigned len, unsigned dst, unsigned src, unsigned n)
3239 {
3240 	int i;
3241 	int *reordering;
3242 
3243 	reordering = isl_alloc_array(ctx, int, len);
3244 	if (!reordering)
3245 		return NULL;
3246 
3247 	if (dst <= src) {
3248 		for (i = 0; i < dst; ++i)
3249 			reordering[i] = i;
3250 		for (i = 0; i < n; ++i)
3251 			reordering[src + i] = dst + i;
3252 		for (i = 0; i < src - dst; ++i)
3253 			reordering[dst + i] = dst + n + i;
3254 		for (i = 0; i < len - src - n; ++i)
3255 			reordering[src + n + i] = src + n + i;
3256 	} else {
3257 		for (i = 0; i < src; ++i)
3258 			reordering[i] = i;
3259 		for (i = 0; i < n; ++i)
3260 			reordering[src + i] = dst + i;
3261 		for (i = 0; i < dst - src; ++i)
3262 			reordering[src + n + i] = src + i;
3263 		for (i = 0; i < len - dst - n; ++i)
3264 			reordering[dst + n + i] = dst + n + i;
3265 	}
3266 
3267 	return reordering;
3268 }
3269 
isl_qpolynomial_move_dims(__isl_take isl_qpolynomial * qp,enum isl_dim_type dst_type,unsigned dst_pos,enum isl_dim_type src_type,unsigned src_pos,unsigned n)3270 __isl_give isl_qpolynomial *isl_qpolynomial_move_dims(
3271 	__isl_take isl_qpolynomial *qp,
3272 	enum isl_dim_type dst_type, unsigned dst_pos,
3273 	enum isl_dim_type src_type, unsigned src_pos, unsigned n)
3274 {
3275 	unsigned g_dst_pos;
3276 	unsigned g_src_pos;
3277 	int *reordering;
3278 
3279 	if (!qp)
3280 		return NULL;
3281 
3282 	if (dst_type == isl_dim_out || src_type == isl_dim_out)
3283 		isl_die(qp->dim->ctx, isl_error_invalid,
3284 			"cannot move output/set dimension",
3285 			goto error);
3286 	if (dst_type == isl_dim_in)
3287 		dst_type = isl_dim_set;
3288 	if (src_type == isl_dim_in)
3289 		src_type = isl_dim_set;
3290 
3291 	if (n == 0 &&
3292 	    !isl_space_is_named_or_nested(qp->dim, src_type) &&
3293 	    !isl_space_is_named_or_nested(qp->dim, dst_type))
3294 		return qp;
3295 
3296 	qp = isl_qpolynomial_cow(qp);
3297 	if (!qp)
3298 		return NULL;
3299 
3300 	isl_assert(qp->dim->ctx, src_pos + n <= isl_space_dim(qp->dim, src_type),
3301 		goto error);
3302 
3303 	g_dst_pos = pos(qp->dim, dst_type) + dst_pos;
3304 	g_src_pos = pos(qp->dim, src_type) + src_pos;
3305 	if (dst_type > src_type)
3306 		g_dst_pos -= n;
3307 
3308 	qp->div = isl_mat_move_cols(qp->div, 2 + g_dst_pos, 2 + g_src_pos, n);
3309 	if (!qp->div)
3310 		goto error;
3311 	qp = sort_divs(qp);
3312 	if (!qp)
3313 		goto error;
3314 
3315 	reordering = reordering_move(qp->dim->ctx,
3316 				qp->div->n_col - 2, g_dst_pos, g_src_pos, n);
3317 	if (!reordering)
3318 		goto error;
3319 
3320 	qp->upoly = reorder(qp->upoly, reordering);
3321 	free(reordering);
3322 	if (!qp->upoly)
3323 		goto error;
3324 
3325 	qp->dim = isl_space_move_dims(qp->dim, dst_type, dst_pos, src_type, src_pos, n);
3326 	if (!qp->dim)
3327 		goto error;
3328 
3329 	return qp;
3330 error:
3331 	isl_qpolynomial_free(qp);
3332 	return NULL;
3333 }
3334 
isl_qpolynomial_from_affine(__isl_take isl_space * dim,isl_int * f,isl_int denom)3335 __isl_give isl_qpolynomial *isl_qpolynomial_from_affine(__isl_take isl_space *dim,
3336 	isl_int *f, isl_int denom)
3337 {
3338 	struct isl_upoly *up;
3339 
3340 	dim = isl_space_domain(dim);
3341 	if (!dim)
3342 		return NULL;
3343 
3344 	up = isl_upoly_from_affine(dim->ctx, f, denom,
3345 					1 + isl_space_dim(dim, isl_dim_all));
3346 
3347 	return isl_qpolynomial_alloc(dim, 0, up);
3348 }
3349 
isl_qpolynomial_from_aff(__isl_take isl_aff * aff)3350 __isl_give isl_qpolynomial *isl_qpolynomial_from_aff(__isl_take isl_aff *aff)
3351 {
3352 	isl_ctx *ctx;
3353 	struct isl_upoly *up;
3354 	isl_qpolynomial *qp;
3355 
3356 	if (!aff)
3357 		return NULL;
3358 
3359 	ctx = isl_aff_get_ctx(aff);
3360 	up = isl_upoly_from_affine(ctx, aff->v->el + 1, aff->v->el[0],
3361 				    aff->v->size - 1);
3362 
3363 	qp = isl_qpolynomial_alloc(isl_aff_get_domain_space(aff),
3364 				    aff->ls->div->n_row, up);
3365 	if (!qp)
3366 		goto error;
3367 
3368 	isl_mat_free(qp->div);
3369 	qp->div = isl_mat_copy(aff->ls->div);
3370 	qp->div = isl_mat_cow(qp->div);
3371 	if (!qp->div)
3372 		goto error;
3373 
3374 	isl_aff_free(aff);
3375 	qp = reduce_divs(qp);
3376 	qp = remove_redundant_divs(qp);
3377 	return qp;
3378 error:
3379 	isl_aff_free(aff);
3380 	return isl_qpolynomial_free(qp);
3381 }
3382 
isl_pw_qpolynomial_from_pw_aff(__isl_take isl_pw_aff * pwaff)3383 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_from_pw_aff(
3384 	__isl_take isl_pw_aff *pwaff)
3385 {
3386 	int i;
3387 	isl_pw_qpolynomial *pwqp;
3388 
3389 	if (!pwaff)
3390 		return NULL;
3391 
3392 	pwqp = isl_pw_qpolynomial_alloc_size(isl_pw_aff_get_space(pwaff),
3393 						pwaff->n);
3394 
3395 	for (i = 0; i < pwaff->n; ++i) {
3396 		isl_set *dom;
3397 		isl_qpolynomial *qp;
3398 
3399 		dom = isl_set_copy(pwaff->p[i].set);
3400 		qp = isl_qpolynomial_from_aff(isl_aff_copy(pwaff->p[i].aff));
3401 		pwqp = isl_pw_qpolynomial_add_piece(pwqp,  dom, qp);
3402 	}
3403 
3404 	isl_pw_aff_free(pwaff);
3405 	return pwqp;
3406 }
3407 
isl_qpolynomial_from_constraint(__isl_take isl_constraint * c,enum isl_dim_type type,unsigned pos)3408 __isl_give isl_qpolynomial *isl_qpolynomial_from_constraint(
3409 	__isl_take isl_constraint *c, enum isl_dim_type type, unsigned pos)
3410 {
3411 	isl_aff *aff;
3412 
3413 	aff = isl_constraint_get_bound(c, type, pos);
3414 	isl_constraint_free(c);
3415 	return isl_qpolynomial_from_aff(aff);
3416 }
3417 
3418 /* For each 0 <= i < "n", replace variable "first" + i of type "type"
3419  * in "qp" by subs[i].
3420  */
isl_qpolynomial_substitute(__isl_take isl_qpolynomial * qp,enum isl_dim_type type,unsigned first,unsigned n,__isl_keep isl_qpolynomial ** subs)3421 __isl_give isl_qpolynomial *isl_qpolynomial_substitute(
3422 	__isl_take isl_qpolynomial *qp,
3423 	enum isl_dim_type type, unsigned first, unsigned n,
3424 	__isl_keep isl_qpolynomial **subs)
3425 {
3426 	int i;
3427 	struct isl_upoly **ups;
3428 
3429 	if (n == 0)
3430 		return qp;
3431 
3432 	qp = isl_qpolynomial_cow(qp);
3433 	if (!qp)
3434 		return NULL;
3435 
3436 	if (type == isl_dim_out)
3437 		isl_die(qp->dim->ctx, isl_error_invalid,
3438 			"cannot substitute output/set dimension",
3439 			goto error);
3440 	if (type == isl_dim_in)
3441 		type = isl_dim_set;
3442 
3443 	for (i = 0; i < n; ++i)
3444 		if (!subs[i])
3445 			goto error;
3446 
3447 	isl_assert(qp->dim->ctx, first + n <= isl_space_dim(qp->dim, type),
3448 			goto error);
3449 
3450 	for (i = 0; i < n; ++i)
3451 		isl_assert(qp->dim->ctx, isl_space_is_equal(qp->dim, subs[i]->dim),
3452 				goto error);
3453 
3454 	isl_assert(qp->dim->ctx, qp->div->n_row == 0, goto error);
3455 	for (i = 0; i < n; ++i)
3456 		isl_assert(qp->dim->ctx, subs[i]->div->n_row == 0, goto error);
3457 
3458 	first += pos(qp->dim, type);
3459 
3460 	ups = isl_alloc_array(qp->dim->ctx, struct isl_upoly *, n);
3461 	if (!ups)
3462 		goto error;
3463 	for (i = 0; i < n; ++i)
3464 		ups[i] = subs[i]->upoly;
3465 
3466 	qp->upoly = isl_upoly_subs(qp->upoly, first, n, ups);
3467 
3468 	free(ups);
3469 
3470 	if (!qp->upoly)
3471 		goto error;
3472 
3473 	return qp;
3474 error:
3475 	isl_qpolynomial_free(qp);
3476 	return NULL;
3477 }
3478 
3479 /* Extend "bset" with extra set dimensions for each integer division
3480  * in "qp" and then call "fn" with the extended bset and the polynomial
3481  * that results from replacing each of the integer divisions by the
3482  * corresponding extra set dimension.
3483  */
isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial * qp,__isl_keep isl_basic_set * bset,isl_stat (* fn)(__isl_take isl_basic_set * bset,__isl_take isl_qpolynomial * poly,void * user),void * user)3484 isl_stat isl_qpolynomial_as_polynomial_on_domain(__isl_keep isl_qpolynomial *qp,
3485 	__isl_keep isl_basic_set *bset,
3486 	isl_stat (*fn)(__isl_take isl_basic_set *bset,
3487 		  __isl_take isl_qpolynomial *poly, void *user), void *user)
3488 {
3489 	isl_space *dim;
3490 	isl_mat *div;
3491 	isl_qpolynomial *poly;
3492 
3493 	if (!qp || !bset)
3494 		return isl_stat_error;
3495 	if (qp->div->n_row == 0)
3496 		return fn(isl_basic_set_copy(bset), isl_qpolynomial_copy(qp),
3497 			  user);
3498 
3499 	div = isl_mat_copy(qp->div);
3500 	dim = isl_space_copy(qp->dim);
3501 	dim = isl_space_add_dims(dim, isl_dim_set, qp->div->n_row);
3502 	poly = isl_qpolynomial_alloc(dim, 0, isl_upoly_copy(qp->upoly));
3503 	bset = isl_basic_set_copy(bset);
3504 	bset = isl_basic_set_add_dims(bset, isl_dim_set, qp->div->n_row);
3505 	bset = add_div_constraints(bset, div);
3506 
3507 	return fn(bset, poly, user);
3508 }
3509 
3510 /* Return total degree in variables first (inclusive) up to last (exclusive).
3511  */
isl_upoly_degree(__isl_keep struct isl_upoly * up,int first,int last)3512 int isl_upoly_degree(__isl_keep struct isl_upoly *up, int first, int last)
3513 {
3514 	int deg = -1;
3515 	int i;
3516 	struct isl_upoly_rec *rec;
3517 
3518 	if (!up)
3519 		return -2;
3520 	if (isl_upoly_is_zero(up))
3521 		return -1;
3522 	if (isl_upoly_is_cst(up) || up->var < first)
3523 		return 0;
3524 
3525 	rec = isl_upoly_as_rec(up);
3526 	if (!rec)
3527 		return -2;
3528 
3529 	for (i = 0; i < rec->n; ++i) {
3530 		int d;
3531 
3532 		if (isl_upoly_is_zero(rec->p[i]))
3533 			continue;
3534 		d = isl_upoly_degree(rec->p[i], first, last);
3535 		if (up->var < last)
3536 			d += i;
3537 		if (d > deg)
3538 			deg = d;
3539 	}
3540 
3541 	return deg;
3542 }
3543 
3544 /* Return total degree in set variables.
3545  */
isl_qpolynomial_degree(__isl_keep isl_qpolynomial * poly)3546 int isl_qpolynomial_degree(__isl_keep isl_qpolynomial *poly)
3547 {
3548 	unsigned ovar;
3549 	unsigned nvar;
3550 
3551 	if (!poly)
3552 		return -2;
3553 
3554 	ovar = isl_space_offset(poly->dim, isl_dim_set);
3555 	nvar = isl_space_dim(poly->dim, isl_dim_set);
3556 	return isl_upoly_degree(poly->upoly, ovar, ovar + nvar);
3557 }
3558 
isl_upoly_coeff(__isl_keep struct isl_upoly * up,unsigned pos,int deg)3559 __isl_give struct isl_upoly *isl_upoly_coeff(__isl_keep struct isl_upoly *up,
3560 	unsigned pos, int deg)
3561 {
3562 	int i;
3563 	struct isl_upoly_rec *rec;
3564 
3565 	if (!up)
3566 		return NULL;
3567 
3568 	if (isl_upoly_is_cst(up) || up->var < pos) {
3569 		if (deg == 0)
3570 			return isl_upoly_copy(up);
3571 		else
3572 			return isl_upoly_zero(up->ctx);
3573 	}
3574 
3575 	rec = isl_upoly_as_rec(up);
3576 	if (!rec)
3577 		return NULL;
3578 
3579 	if (up->var == pos) {
3580 		if (deg < rec->n)
3581 			return isl_upoly_copy(rec->p[deg]);
3582 		else
3583 			return isl_upoly_zero(up->ctx);
3584 	}
3585 
3586 	up = isl_upoly_copy(up);
3587 	up = isl_upoly_cow(up);
3588 	rec = isl_upoly_as_rec(up);
3589 	if (!rec)
3590 		goto error;
3591 
3592 	for (i = 0; i < rec->n; ++i) {
3593 		struct isl_upoly *t;
3594 		t = isl_upoly_coeff(rec->p[i], pos, deg);
3595 		if (!t)
3596 			goto error;
3597 		isl_upoly_free(rec->p[i]);
3598 		rec->p[i] = t;
3599 	}
3600 
3601 	return up;
3602 error:
3603 	isl_upoly_free(up);
3604 	return NULL;
3605 }
3606 
3607 /* Return coefficient of power "deg" of variable "t_pos" of type "type".
3608  */
isl_qpolynomial_coeff(__isl_keep isl_qpolynomial * qp,enum isl_dim_type type,unsigned t_pos,int deg)3609 __isl_give isl_qpolynomial *isl_qpolynomial_coeff(
3610 	__isl_keep isl_qpolynomial *qp,
3611 	enum isl_dim_type type, unsigned t_pos, int deg)
3612 {
3613 	unsigned g_pos;
3614 	struct isl_upoly *up;
3615 	isl_qpolynomial *c;
3616 
3617 	if (!qp)
3618 		return NULL;
3619 
3620 	if (type == isl_dim_out)
3621 		isl_die(qp->div->ctx, isl_error_invalid,
3622 			"output/set dimension does not have a coefficient",
3623 			return NULL);
3624 	if (type == isl_dim_in)
3625 		type = isl_dim_set;
3626 
3627 	isl_assert(qp->div->ctx, t_pos < isl_space_dim(qp->dim, type),
3628 			return NULL);
3629 
3630 	g_pos = pos(qp->dim, type) + t_pos;
3631 	up = isl_upoly_coeff(qp->upoly, g_pos, deg);
3632 
3633 	c = isl_qpolynomial_alloc(isl_space_copy(qp->dim), qp->div->n_row, up);
3634 	if (!c)
3635 		return NULL;
3636 	isl_mat_free(c->div);
3637 	c->div = isl_mat_copy(qp->div);
3638 	if (!c->div)
3639 		goto error;
3640 	return c;
3641 error:
3642 	isl_qpolynomial_free(c);
3643 	return NULL;
3644 }
3645 
3646 /* Homogenize the polynomial in the variables first (inclusive) up to
3647  * last (exclusive) by inserting powers of variable first.
3648  * Variable first is assumed not to appear in the input.
3649  */
isl_upoly_homogenize(__isl_take struct isl_upoly * up,int deg,int target,int first,int last)3650 __isl_give struct isl_upoly *isl_upoly_homogenize(
3651 	__isl_take struct isl_upoly *up, int deg, int target,
3652 	int first, int last)
3653 {
3654 	int i;
3655 	struct isl_upoly_rec *rec;
3656 
3657 	if (!up)
3658 		return NULL;
3659 	if (isl_upoly_is_zero(up))
3660 		return up;
3661 	if (deg == target)
3662 		return up;
3663 	if (isl_upoly_is_cst(up) || up->var < first) {
3664 		struct isl_upoly *hom;
3665 
3666 		hom = isl_upoly_var_pow(up->ctx, first, target - deg);
3667 		if (!hom)
3668 			goto error;
3669 		rec = isl_upoly_as_rec(hom);
3670 		rec->p[target - deg] = isl_upoly_mul(rec->p[target - deg], up);
3671 
3672 		return hom;
3673 	}
3674 
3675 	up = isl_upoly_cow(up);
3676 	rec = isl_upoly_as_rec(up);
3677 	if (!rec)
3678 		goto error;
3679 
3680 	for (i = 0; i < rec->n; ++i) {
3681 		if (isl_upoly_is_zero(rec->p[i]))
3682 			continue;
3683 		rec->p[i] = isl_upoly_homogenize(rec->p[i],
3684 				up->var < last ? deg + i : i, target,
3685 				first, last);
3686 		if (!rec->p[i])
3687 			goto error;
3688 	}
3689 
3690 	return up;
3691 error:
3692 	isl_upoly_free(up);
3693 	return NULL;
3694 }
3695 
3696 /* Homogenize the polynomial in the set variables by introducing
3697  * powers of an extra set variable at position 0.
3698  */
isl_qpolynomial_homogenize(__isl_take isl_qpolynomial * poly)3699 __isl_give isl_qpolynomial *isl_qpolynomial_homogenize(
3700 	__isl_take isl_qpolynomial *poly)
3701 {
3702 	unsigned ovar;
3703 	unsigned nvar;
3704 	int deg = isl_qpolynomial_degree(poly);
3705 
3706 	if (deg < -1)
3707 		goto error;
3708 
3709 	poly = isl_qpolynomial_insert_dims(poly, isl_dim_in, 0, 1);
3710 	poly = isl_qpolynomial_cow(poly);
3711 	if (!poly)
3712 		goto error;
3713 
3714 	ovar = isl_space_offset(poly->dim, isl_dim_set);
3715 	nvar = isl_space_dim(poly->dim, isl_dim_set);
3716 	poly->upoly = isl_upoly_homogenize(poly->upoly, 0, deg,
3717 						ovar, ovar + nvar);
3718 	if (!poly->upoly)
3719 		goto error;
3720 
3721 	return poly;
3722 error:
3723 	isl_qpolynomial_free(poly);
3724 	return NULL;
3725 }
3726 
isl_term_alloc(__isl_take isl_space * dim,__isl_take isl_mat * div)3727 __isl_give isl_term *isl_term_alloc(__isl_take isl_space *dim,
3728 	__isl_take isl_mat *div)
3729 {
3730 	isl_term *term;
3731 	int n;
3732 
3733 	if (!dim || !div)
3734 		goto error;
3735 
3736 	n = isl_space_dim(dim, isl_dim_all) + div->n_row;
3737 
3738 	term = isl_calloc(dim->ctx, struct isl_term,
3739 			sizeof(struct isl_term) + (n - 1) * sizeof(int));
3740 	if (!term)
3741 		goto error;
3742 
3743 	term->ref = 1;
3744 	term->dim = dim;
3745 	term->div = div;
3746 	isl_int_init(term->n);
3747 	isl_int_init(term->d);
3748 
3749 	return term;
3750 error:
3751 	isl_space_free(dim);
3752 	isl_mat_free(div);
3753 	return NULL;
3754 }
3755 
isl_term_copy(__isl_keep isl_term * term)3756 __isl_give isl_term *isl_term_copy(__isl_keep isl_term *term)
3757 {
3758 	if (!term)
3759 		return NULL;
3760 
3761 	term->ref++;
3762 	return term;
3763 }
3764 
isl_term_dup(__isl_keep isl_term * term)3765 __isl_give isl_term *isl_term_dup(__isl_keep isl_term *term)
3766 {
3767 	int i;
3768 	isl_term *dup;
3769 	unsigned total;
3770 
3771 	if (!term)
3772 		return NULL;
3773 
3774 	total = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3775 
3776 	dup = isl_term_alloc(isl_space_copy(term->dim), isl_mat_copy(term->div));
3777 	if (!dup)
3778 		return NULL;
3779 
3780 	isl_int_set(dup->n, term->n);
3781 	isl_int_set(dup->d, term->d);
3782 
3783 	for (i = 0; i < total; ++i)
3784 		dup->pow[i] = term->pow[i];
3785 
3786 	return dup;
3787 }
3788 
isl_term_cow(__isl_take isl_term * term)3789 __isl_give isl_term *isl_term_cow(__isl_take isl_term *term)
3790 {
3791 	if (!term)
3792 		return NULL;
3793 
3794 	if (term->ref == 1)
3795 		return term;
3796 	term->ref--;
3797 	return isl_term_dup(term);
3798 }
3799 
isl_term_free(__isl_take isl_term * term)3800 void isl_term_free(__isl_take isl_term *term)
3801 {
3802 	if (!term)
3803 		return;
3804 
3805 	if (--term->ref > 0)
3806 		return;
3807 
3808 	isl_space_free(term->dim);
3809 	isl_mat_free(term->div);
3810 	isl_int_clear(term->n);
3811 	isl_int_clear(term->d);
3812 	free(term);
3813 }
3814 
isl_term_dim(__isl_keep isl_term * term,enum isl_dim_type type)3815 unsigned isl_term_dim(__isl_keep isl_term *term, enum isl_dim_type type)
3816 {
3817 	if (!term)
3818 		return 0;
3819 
3820 	switch (type) {
3821 	case isl_dim_param:
3822 	case isl_dim_in:
3823 	case isl_dim_out:	return isl_space_dim(term->dim, type);
3824 	case isl_dim_div:	return term->div->n_row;
3825 	case isl_dim_all:	return isl_space_dim(term->dim, isl_dim_all) +
3826 								term->div->n_row;
3827 	default:		return 0;
3828 	}
3829 }
3830 
isl_term_get_ctx(__isl_keep isl_term * term)3831 isl_ctx *isl_term_get_ctx(__isl_keep isl_term *term)
3832 {
3833 	return term ? term->dim->ctx : NULL;
3834 }
3835 
isl_term_get_num(__isl_keep isl_term * term,isl_int * n)3836 void isl_term_get_num(__isl_keep isl_term *term, isl_int *n)
3837 {
3838 	if (!term)
3839 		return;
3840 	isl_int_set(*n, term->n);
3841 }
3842 
3843 /* Return the coefficient of the term "term".
3844  */
isl_term_get_coefficient_val(__isl_keep isl_term * term)3845 __isl_give isl_val *isl_term_get_coefficient_val(__isl_keep isl_term *term)
3846 {
3847 	if (!term)
3848 		return NULL;
3849 
3850 	return isl_val_rat_from_isl_int(isl_term_get_ctx(term),
3851 					term->n, term->d);
3852 }
3853 
isl_term_get_exp(__isl_keep isl_term * term,enum isl_dim_type type,unsigned pos)3854 int isl_term_get_exp(__isl_keep isl_term *term,
3855 	enum isl_dim_type type, unsigned pos)
3856 {
3857 	if (!term)
3858 		return -1;
3859 
3860 	isl_assert(term->dim->ctx, pos < isl_term_dim(term, type), return -1);
3861 
3862 	if (type >= isl_dim_set)
3863 		pos += isl_space_dim(term->dim, isl_dim_param);
3864 	if (type >= isl_dim_div)
3865 		pos += isl_space_dim(term->dim, isl_dim_set);
3866 
3867 	return term->pow[pos];
3868 }
3869 
isl_term_get_div(__isl_keep isl_term * term,unsigned pos)3870 __isl_give isl_aff *isl_term_get_div(__isl_keep isl_term *term, unsigned pos)
3871 {
3872 	isl_local_space *ls;
3873 	isl_aff *aff;
3874 
3875 	if (!term)
3876 		return NULL;
3877 
3878 	isl_assert(term->dim->ctx, pos < isl_term_dim(term, isl_dim_div),
3879 			return NULL);
3880 
3881 	ls = isl_local_space_alloc_div(isl_space_copy(term->dim),
3882 					isl_mat_copy(term->div));
3883 	aff = isl_aff_alloc(ls);
3884 	if (!aff)
3885 		return NULL;
3886 
3887 	isl_seq_cpy(aff->v->el, term->div->row[pos], aff->v->size);
3888 
3889 	aff = isl_aff_normalize(aff);
3890 
3891 	return aff;
3892 }
3893 
isl_upoly_foreach_term(__isl_keep struct isl_upoly * up,isl_stat (* fn)(__isl_take isl_term * term,void * user),__isl_take isl_term * term,void * user)3894 __isl_give isl_term *isl_upoly_foreach_term(__isl_keep struct isl_upoly *up,
3895 	isl_stat (*fn)(__isl_take isl_term *term, void *user),
3896 	__isl_take isl_term *term, void *user)
3897 {
3898 	int i;
3899 	struct isl_upoly_rec *rec;
3900 
3901 	if (!up || !term)
3902 		goto error;
3903 
3904 	if (isl_upoly_is_zero(up))
3905 		return term;
3906 
3907 	isl_assert(up->ctx, !isl_upoly_is_nan(up), goto error);
3908 	isl_assert(up->ctx, !isl_upoly_is_infty(up), goto error);
3909 	isl_assert(up->ctx, !isl_upoly_is_neginfty(up), goto error);
3910 
3911 	if (isl_upoly_is_cst(up)) {
3912 		struct isl_upoly_cst *cst;
3913 		cst = isl_upoly_as_cst(up);
3914 		if (!cst)
3915 			goto error;
3916 		term = isl_term_cow(term);
3917 		if (!term)
3918 			goto error;
3919 		isl_int_set(term->n, cst->n);
3920 		isl_int_set(term->d, cst->d);
3921 		if (fn(isl_term_copy(term), user) < 0)
3922 			goto error;
3923 		return term;
3924 	}
3925 
3926 	rec = isl_upoly_as_rec(up);
3927 	if (!rec)
3928 		goto error;
3929 
3930 	for (i = 0; i < rec->n; ++i) {
3931 		term = isl_term_cow(term);
3932 		if (!term)
3933 			goto error;
3934 		term->pow[up->var] = i;
3935 		term = isl_upoly_foreach_term(rec->p[i], fn, term, user);
3936 		if (!term)
3937 			goto error;
3938 	}
3939 	term->pow[up->var] = 0;
3940 
3941 	return term;
3942 error:
3943 	isl_term_free(term);
3944 	return NULL;
3945 }
3946 
isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial * qp,isl_stat (* fn)(__isl_take isl_term * term,void * user),void * user)3947 isl_stat isl_qpolynomial_foreach_term(__isl_keep isl_qpolynomial *qp,
3948 	isl_stat (*fn)(__isl_take isl_term *term, void *user), void *user)
3949 {
3950 	isl_term *term;
3951 
3952 	if (!qp)
3953 		return isl_stat_error;
3954 
3955 	term = isl_term_alloc(isl_space_copy(qp->dim), isl_mat_copy(qp->div));
3956 	if (!term)
3957 		return isl_stat_error;
3958 
3959 	term = isl_upoly_foreach_term(qp->upoly, fn, term, user);
3960 
3961 	isl_term_free(term);
3962 
3963 	return term ? isl_stat_ok : isl_stat_error;
3964 }
3965 
isl_qpolynomial_from_term(__isl_take isl_term * term)3966 __isl_give isl_qpolynomial *isl_qpolynomial_from_term(__isl_take isl_term *term)
3967 {
3968 	struct isl_upoly *up;
3969 	isl_qpolynomial *qp;
3970 	int i, n;
3971 
3972 	if (!term)
3973 		return NULL;
3974 
3975 	n = isl_space_dim(term->dim, isl_dim_all) + term->div->n_row;
3976 
3977 	up = isl_upoly_rat_cst(term->dim->ctx, term->n, term->d);
3978 	for (i = 0; i < n; ++i) {
3979 		if (!term->pow[i])
3980 			continue;
3981 		up = isl_upoly_mul(up,
3982 			isl_upoly_var_pow(term->dim->ctx, i, term->pow[i]));
3983 	}
3984 
3985 	qp = isl_qpolynomial_alloc(isl_space_copy(term->dim), term->div->n_row, up);
3986 	if (!qp)
3987 		goto error;
3988 	isl_mat_free(qp->div);
3989 	qp->div = isl_mat_copy(term->div);
3990 	if (!qp->div)
3991 		goto error;
3992 
3993 	isl_term_free(term);
3994 	return qp;
3995 error:
3996 	isl_qpolynomial_free(qp);
3997 	isl_term_free(term);
3998 	return NULL;
3999 }
4000 
isl_qpolynomial_lift(__isl_take isl_qpolynomial * qp,__isl_take isl_space * dim)4001 __isl_give isl_qpolynomial *isl_qpolynomial_lift(__isl_take isl_qpolynomial *qp,
4002 	__isl_take isl_space *dim)
4003 {
4004 	int i;
4005 	int extra;
4006 	unsigned total;
4007 
4008 	if (!qp || !dim)
4009 		goto error;
4010 
4011 	if (isl_space_is_equal(qp->dim, dim)) {
4012 		isl_space_free(dim);
4013 		return qp;
4014 	}
4015 
4016 	qp = isl_qpolynomial_cow(qp);
4017 	if (!qp)
4018 		goto error;
4019 
4020 	extra = isl_space_dim(dim, isl_dim_set) -
4021 			isl_space_dim(qp->dim, isl_dim_set);
4022 	total = isl_space_dim(qp->dim, isl_dim_all);
4023 	if (qp->div->n_row) {
4024 		int *exp;
4025 
4026 		exp = isl_alloc_array(qp->div->ctx, int, qp->div->n_row);
4027 		if (!exp)
4028 			goto error;
4029 		for (i = 0; i < qp->div->n_row; ++i)
4030 			exp[i] = extra + i;
4031 		qp->upoly = expand(qp->upoly, exp, total);
4032 		free(exp);
4033 		if (!qp->upoly)
4034 			goto error;
4035 	}
4036 	qp->div = isl_mat_insert_cols(qp->div, 2 + total, extra);
4037 	if (!qp->div)
4038 		goto error;
4039 	for (i = 0; i < qp->div->n_row; ++i)
4040 		isl_seq_clr(qp->div->row[i] + 2 + total, extra);
4041 
4042 	isl_space_free(qp->dim);
4043 	qp->dim = dim;
4044 
4045 	return qp;
4046 error:
4047 	isl_space_free(dim);
4048 	isl_qpolynomial_free(qp);
4049 	return NULL;
4050 }
4051 
4052 /* For each parameter or variable that does not appear in qp,
4053  * first eliminate the variable from all constraints and then set it to zero.
4054  */
fix_inactive(__isl_take isl_set * set,__isl_keep isl_qpolynomial * qp)4055 static __isl_give isl_set *fix_inactive(__isl_take isl_set *set,
4056 	__isl_keep isl_qpolynomial *qp)
4057 {
4058 	int *active = NULL;
4059 	int i;
4060 	int d;
4061 	unsigned nparam;
4062 	unsigned nvar;
4063 
4064 	if (!set || !qp)
4065 		goto error;
4066 
4067 	d = isl_space_dim(set->dim, isl_dim_all);
4068 	active = isl_calloc_array(set->ctx, int, d);
4069 	if (set_active(qp, active) < 0)
4070 		goto error;
4071 
4072 	for (i = 0; i < d; ++i)
4073 		if (!active[i])
4074 			break;
4075 
4076 	if (i == d) {
4077 		free(active);
4078 		return set;
4079 	}
4080 
4081 	nparam = isl_space_dim(set->dim, isl_dim_param);
4082 	nvar = isl_space_dim(set->dim, isl_dim_set);
4083 	for (i = 0; i < nparam; ++i) {
4084 		if (active[i])
4085 			continue;
4086 		set = isl_set_eliminate(set, isl_dim_param, i, 1);
4087 		set = isl_set_fix_si(set, isl_dim_param, i, 0);
4088 	}
4089 	for (i = 0; i < nvar; ++i) {
4090 		if (active[nparam + i])
4091 			continue;
4092 		set = isl_set_eliminate(set, isl_dim_set, i, 1);
4093 		set = isl_set_fix_si(set, isl_dim_set, i, 0);
4094 	}
4095 
4096 	free(active);
4097 
4098 	return set;
4099 error:
4100 	free(active);
4101 	isl_set_free(set);
4102 	return NULL;
4103 }
4104 
4105 struct isl_opt_data {
4106 	isl_qpolynomial *qp;
4107 	int first;
4108 	isl_val *opt;
4109 	int max;
4110 };
4111 
opt_fn(__isl_take isl_point * pnt,void * user)4112 static isl_stat opt_fn(__isl_take isl_point *pnt, void *user)
4113 {
4114 	struct isl_opt_data *data = (struct isl_opt_data *)user;
4115 	isl_val *val;
4116 
4117 	val = isl_qpolynomial_eval(isl_qpolynomial_copy(data->qp), pnt);
4118 	if (data->first) {
4119 		data->first = 0;
4120 		data->opt = val;
4121 	} else if (data->max) {
4122 		data->opt = isl_val_max(data->opt, val);
4123 	} else {
4124 		data->opt = isl_val_min(data->opt, val);
4125 	}
4126 
4127 	return isl_stat_ok;
4128 }
4129 
isl_qpolynomial_opt_on_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_set * set,int max)4130 __isl_give isl_val *isl_qpolynomial_opt_on_domain(
4131 	__isl_take isl_qpolynomial *qp, __isl_take isl_set *set, int max)
4132 {
4133 	struct isl_opt_data data = { NULL, 1, NULL, max };
4134 
4135 	if (!set || !qp)
4136 		goto error;
4137 
4138 	if (isl_upoly_is_cst(qp->upoly)) {
4139 		isl_set_free(set);
4140 		data.opt = isl_qpolynomial_get_constant_val(qp);
4141 		isl_qpolynomial_free(qp);
4142 		return data.opt;
4143 	}
4144 
4145 	set = fix_inactive(set, qp);
4146 
4147 	data.qp = qp;
4148 	if (isl_set_foreach_point(set, opt_fn, &data) < 0)
4149 		goto error;
4150 
4151 	if (data.first)
4152 		data.opt = isl_val_zero(isl_set_get_ctx(set));
4153 
4154 	isl_set_free(set);
4155 	isl_qpolynomial_free(qp);
4156 	return data.opt;
4157 error:
4158 	isl_set_free(set);
4159 	isl_qpolynomial_free(qp);
4160 	isl_val_free(data.opt);
4161 	return NULL;
4162 }
4163 
isl_qpolynomial_morph_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_morph * morph)4164 __isl_give isl_qpolynomial *isl_qpolynomial_morph_domain(
4165 	__isl_take isl_qpolynomial *qp, __isl_take isl_morph *morph)
4166 {
4167 	int i;
4168 	int n_sub;
4169 	isl_ctx *ctx;
4170 	struct isl_upoly **subs;
4171 	isl_mat *mat, *diag;
4172 
4173 	qp = isl_qpolynomial_cow(qp);
4174 	if (!qp || !morph)
4175 		goto error;
4176 
4177 	ctx = qp->dim->ctx;
4178 	isl_assert(ctx, isl_space_is_equal(qp->dim, morph->dom->dim), goto error);
4179 
4180 	n_sub = morph->inv->n_row - 1;
4181 	if (morph->inv->n_row != morph->inv->n_col)
4182 		n_sub += qp->div->n_row;
4183 	subs = isl_calloc_array(ctx, struct isl_upoly *, n_sub);
4184 	if (n_sub && !subs)
4185 		goto error;
4186 
4187 	for (i = 0; 1 + i < morph->inv->n_row; ++i)
4188 		subs[i] = isl_upoly_from_affine(ctx, morph->inv->row[1 + i],
4189 					morph->inv->row[0][0], morph->inv->n_col);
4190 	if (morph->inv->n_row != morph->inv->n_col)
4191 		for (i = 0; i < qp->div->n_row; ++i)
4192 			subs[morph->inv->n_row - 1 + i] =
4193 			    isl_upoly_var_pow(ctx, morph->inv->n_col - 1 + i, 1);
4194 
4195 	qp->upoly = isl_upoly_subs(qp->upoly, 0, n_sub, subs);
4196 
4197 	for (i = 0; i < n_sub; ++i)
4198 		isl_upoly_free(subs[i]);
4199 	free(subs);
4200 
4201 	diag = isl_mat_diag(ctx, 1, morph->inv->row[0][0]);
4202 	mat = isl_mat_diagonal(diag, isl_mat_copy(morph->inv));
4203 	diag = isl_mat_diag(ctx, qp->div->n_row, morph->inv->row[0][0]);
4204 	mat = isl_mat_diagonal(mat, diag);
4205 	qp->div = isl_mat_product(qp->div, mat);
4206 	isl_space_free(qp->dim);
4207 	qp->dim = isl_space_copy(morph->ran->dim);
4208 
4209 	if (!qp->upoly || !qp->div || !qp->dim)
4210 		goto error;
4211 
4212 	isl_morph_free(morph);
4213 
4214 	return qp;
4215 error:
4216 	isl_qpolynomial_free(qp);
4217 	isl_morph_free(morph);
4218 	return NULL;
4219 }
4220 
isl_union_pw_qpolynomial_mul(__isl_take isl_union_pw_qpolynomial * upwqp1,__isl_take isl_union_pw_qpolynomial * upwqp2)4221 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_mul(
4222 	__isl_take isl_union_pw_qpolynomial *upwqp1,
4223 	__isl_take isl_union_pw_qpolynomial *upwqp2)
4224 {
4225 	return isl_union_pw_qpolynomial_match_bin_op(upwqp1, upwqp2,
4226 						&isl_pw_qpolynomial_mul);
4227 }
4228 
4229 /* Reorder the dimension of "qp" according to the given reordering.
4230  */
isl_qpolynomial_realign_domain(__isl_take isl_qpolynomial * qp,__isl_take isl_reordering * r)4231 __isl_give isl_qpolynomial *isl_qpolynomial_realign_domain(
4232 	__isl_take isl_qpolynomial *qp, __isl_take isl_reordering *r)
4233 {
4234 	isl_space *space;
4235 
4236 	qp = isl_qpolynomial_cow(qp);
4237 	if (!qp)
4238 		goto error;
4239 
4240 	r = isl_reordering_extend(r, qp->div->n_row);
4241 	if (!r)
4242 		goto error;
4243 
4244 	qp->div = isl_local_reorder(qp->div, isl_reordering_copy(r));
4245 	if (!qp->div)
4246 		goto error;
4247 
4248 	qp->upoly = reorder(qp->upoly, r->pos);
4249 	if (!qp->upoly)
4250 		goto error;
4251 
4252 	space = isl_reordering_get_space(r);
4253 	qp = isl_qpolynomial_reset_domain_space(qp, space);
4254 
4255 	isl_reordering_free(r);
4256 	return qp;
4257 error:
4258 	isl_qpolynomial_free(qp);
4259 	isl_reordering_free(r);
4260 	return NULL;
4261 }
4262 
isl_qpolynomial_align_params(__isl_take isl_qpolynomial * qp,__isl_take isl_space * model)4263 __isl_give isl_qpolynomial *isl_qpolynomial_align_params(
4264 	__isl_take isl_qpolynomial *qp, __isl_take isl_space *model)
4265 {
4266 	isl_bool equal_params;
4267 
4268 	if (!qp || !model)
4269 		goto error;
4270 
4271 	equal_params = isl_space_has_equal_params(qp->dim, model);
4272 	if (equal_params < 0)
4273 		goto error;
4274 	if (!equal_params) {
4275 		isl_reordering *exp;
4276 
4277 		exp = isl_parameter_alignment_reordering(qp->dim, model);
4278 		exp = isl_reordering_extend_space(exp,
4279 					isl_qpolynomial_get_domain_space(qp));
4280 		qp = isl_qpolynomial_realign_domain(qp, exp);
4281 	}
4282 
4283 	isl_space_free(model);
4284 	return qp;
4285 error:
4286 	isl_space_free(model);
4287 	isl_qpolynomial_free(qp);
4288 	return NULL;
4289 }
4290 
4291 struct isl_split_periods_data {
4292 	int max_periods;
4293 	isl_pw_qpolynomial *res;
4294 };
4295 
4296 /* Create a slice where the integer division "div" has the fixed value "v".
4297  * In particular, if "div" refers to floor(f/m), then create a slice
4298  *
4299  *	m v <= f <= m v + (m - 1)
4300  *
4301  * or
4302  *
4303  *	f - m v >= 0
4304  *	-f + m v + (m - 1) >= 0
4305  */
set_div_slice(__isl_take isl_space * dim,__isl_keep isl_qpolynomial * qp,int div,isl_int v)4306 static __isl_give isl_set *set_div_slice(__isl_take isl_space *dim,
4307 	__isl_keep isl_qpolynomial *qp, int div, isl_int v)
4308 {
4309 	int total;
4310 	isl_basic_set *bset = NULL;
4311 	int k;
4312 
4313 	if (!dim || !qp)
4314 		goto error;
4315 
4316 	total = isl_space_dim(dim, isl_dim_all);
4317 	bset = isl_basic_set_alloc_space(isl_space_copy(dim), 0, 0, 2);
4318 
4319 	k = isl_basic_set_alloc_inequality(bset);
4320 	if (k < 0)
4321 		goto error;
4322 	isl_seq_cpy(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4323 	isl_int_submul(bset->ineq[k][0], v, qp->div->row[div][0]);
4324 
4325 	k = isl_basic_set_alloc_inequality(bset);
4326 	if (k < 0)
4327 		goto error;
4328 	isl_seq_neg(bset->ineq[k], qp->div->row[div] + 1, 1 + total);
4329 	isl_int_addmul(bset->ineq[k][0], v, qp->div->row[div][0]);
4330 	isl_int_add(bset->ineq[k][0], bset->ineq[k][0], qp->div->row[div][0]);
4331 	isl_int_sub_ui(bset->ineq[k][0], bset->ineq[k][0], 1);
4332 
4333 	isl_space_free(dim);
4334 	return isl_set_from_basic_set(bset);
4335 error:
4336 	isl_basic_set_free(bset);
4337 	isl_space_free(dim);
4338 	return NULL;
4339 }
4340 
4341 static isl_stat split_periods(__isl_take isl_set *set,
4342 	__isl_take isl_qpolynomial *qp, void *user);
4343 
4344 /* Create a slice of the domain "set" such that integer division "div"
4345  * has the fixed value "v" and add the results to data->res,
4346  * replacing the integer division by "v" in "qp".
4347  */
set_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int v,struct isl_split_periods_data * data)4348 static isl_stat set_div(__isl_take isl_set *set,
4349 	__isl_take isl_qpolynomial *qp, int div, isl_int v,
4350 	struct isl_split_periods_data *data)
4351 {
4352 	int i;
4353 	int total;
4354 	isl_set *slice;
4355 	struct isl_upoly *cst;
4356 
4357 	slice = set_div_slice(isl_set_get_space(set), qp, div, v);
4358 	set = isl_set_intersect(set, slice);
4359 
4360 	if (!qp)
4361 		goto error;
4362 
4363 	total = isl_space_dim(qp->dim, isl_dim_all);
4364 
4365 	for (i = div + 1; i < qp->div->n_row; ++i) {
4366 		if (isl_int_is_zero(qp->div->row[i][2 + total + div]))
4367 			continue;
4368 		isl_int_addmul(qp->div->row[i][1],
4369 				qp->div->row[i][2 + total + div], v);
4370 		isl_int_set_si(qp->div->row[i][2 + total + div], 0);
4371 	}
4372 
4373 	cst = isl_upoly_rat_cst(qp->dim->ctx, v, qp->dim->ctx->one);
4374 	qp = substitute_div(qp, div, cst);
4375 
4376 	return split_periods(set, qp, data);
4377 error:
4378 	isl_set_free(set);
4379 	isl_qpolynomial_free(qp);
4380 	return isl_stat_error;
4381 }
4382 
4383 /* Split the domain "set" such that integer division "div"
4384  * has a fixed value (ranging from "min" to "max") on each slice
4385  * and add the results to data->res.
4386  */
split_div(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,int div,isl_int min,isl_int max,struct isl_split_periods_data * data)4387 static isl_stat split_div(__isl_take isl_set *set,
4388 	__isl_take isl_qpolynomial *qp, int div, isl_int min, isl_int max,
4389 	struct isl_split_periods_data *data)
4390 {
4391 	for (; isl_int_le(min, max); isl_int_add_ui(min, min, 1)) {
4392 		isl_set *set_i = isl_set_copy(set);
4393 		isl_qpolynomial *qp_i = isl_qpolynomial_copy(qp);
4394 
4395 		if (set_div(set_i, qp_i, div, min, data) < 0)
4396 			goto error;
4397 	}
4398 	isl_set_free(set);
4399 	isl_qpolynomial_free(qp);
4400 	return isl_stat_ok;
4401 error:
4402 	isl_set_free(set);
4403 	isl_qpolynomial_free(qp);
4404 	return isl_stat_error;
4405 }
4406 
4407 /* If "qp" refers to any integer division
4408  * that can only attain "max_periods" distinct values on "set"
4409  * then split the domain along those distinct values.
4410  * Add the results (or the original if no splitting occurs)
4411  * to data->res.
4412  */
split_periods(__isl_take isl_set * set,__isl_take isl_qpolynomial * qp,void * user)4413 static isl_stat split_periods(__isl_take isl_set *set,
4414 	__isl_take isl_qpolynomial *qp, void *user)
4415 {
4416 	int i;
4417 	isl_pw_qpolynomial *pwqp;
4418 	struct isl_split_periods_data *data;
4419 	isl_int min, max;
4420 	int total;
4421 	isl_stat r = isl_stat_ok;
4422 
4423 	data = (struct isl_split_periods_data *)user;
4424 
4425 	if (!set || !qp)
4426 		goto error;
4427 
4428 	if (qp->div->n_row == 0) {
4429 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4430 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4431 		return isl_stat_ok;
4432 	}
4433 
4434 	isl_int_init(min);
4435 	isl_int_init(max);
4436 	total = isl_space_dim(qp->dim, isl_dim_all);
4437 	for (i = 0; i < qp->div->n_row; ++i) {
4438 		enum isl_lp_result lp_res;
4439 
4440 		if (isl_seq_first_non_zero(qp->div->row[i] + 2 + total,
4441 						qp->div->n_row) != -1)
4442 			continue;
4443 
4444 		lp_res = isl_set_solve_lp(set, 0, qp->div->row[i] + 1,
4445 					  set->ctx->one, &min, NULL, NULL);
4446 		if (lp_res == isl_lp_error)
4447 			goto error2;
4448 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4449 			continue;
4450 		isl_int_fdiv_q(min, min, qp->div->row[i][0]);
4451 
4452 		lp_res = isl_set_solve_lp(set, 1, qp->div->row[i] + 1,
4453 					  set->ctx->one, &max, NULL, NULL);
4454 		if (lp_res == isl_lp_error)
4455 			goto error2;
4456 		if (lp_res == isl_lp_unbounded || lp_res == isl_lp_empty)
4457 			continue;
4458 		isl_int_fdiv_q(max, max, qp->div->row[i][0]);
4459 
4460 		isl_int_sub(max, max, min);
4461 		if (isl_int_cmp_si(max, data->max_periods) < 0) {
4462 			isl_int_add(max, max, min);
4463 			break;
4464 		}
4465 	}
4466 
4467 	if (i < qp->div->n_row) {
4468 		r = split_div(set, qp, i, min, max, data);
4469 	} else {
4470 		pwqp = isl_pw_qpolynomial_alloc(set, qp);
4471 		data->res = isl_pw_qpolynomial_add_disjoint(data->res, pwqp);
4472 	}
4473 
4474 	isl_int_clear(max);
4475 	isl_int_clear(min);
4476 
4477 	return r;
4478 error2:
4479 	isl_int_clear(max);
4480 	isl_int_clear(min);
4481 error:
4482 	isl_set_free(set);
4483 	isl_qpolynomial_free(qp);
4484 	return isl_stat_error;
4485 }
4486 
4487 /* If any quasi-polynomial in pwqp refers to any integer division
4488  * that can only attain "max_periods" distinct values on its domain
4489  * then split the domain along those distinct values.
4490  */
isl_pw_qpolynomial_split_periods(__isl_take isl_pw_qpolynomial * pwqp,int max_periods)4491 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_split_periods(
4492 	__isl_take isl_pw_qpolynomial *pwqp, int max_periods)
4493 {
4494 	struct isl_split_periods_data data;
4495 
4496 	data.max_periods = max_periods;
4497 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4498 
4499 	if (isl_pw_qpolynomial_foreach_piece(pwqp, &split_periods, &data) < 0)
4500 		goto error;
4501 
4502 	isl_pw_qpolynomial_free(pwqp);
4503 
4504 	return data.res;
4505 error:
4506 	isl_pw_qpolynomial_free(data.res);
4507 	isl_pw_qpolynomial_free(pwqp);
4508 	return NULL;
4509 }
4510 
4511 /* Construct a piecewise quasipolynomial that is constant on the given
4512  * domain.  In particular, it is
4513  *	0	if cst == 0
4514  *	1	if cst == 1
4515  *  infinity	if cst == -1
4516  *
4517  * If cst == -1, then explicitly check whether the domain is empty and,
4518  * if so, return 0 instead.
4519  */
constant_on_domain(__isl_take isl_basic_set * bset,int cst)4520 static __isl_give isl_pw_qpolynomial *constant_on_domain(
4521 	__isl_take isl_basic_set *bset, int cst)
4522 {
4523 	isl_space *dim;
4524 	isl_qpolynomial *qp;
4525 
4526 	if (cst < 0 && isl_basic_set_is_empty(bset) == isl_bool_true)
4527 		cst = 0;
4528 	if (!bset)
4529 		return NULL;
4530 
4531 	bset = isl_basic_set_params(bset);
4532 	dim = isl_basic_set_get_space(bset);
4533 	if (cst < 0)
4534 		qp = isl_qpolynomial_infty_on_domain(dim);
4535 	else if (cst == 0)
4536 		qp = isl_qpolynomial_zero_on_domain(dim);
4537 	else
4538 		qp = isl_qpolynomial_one_on_domain(dim);
4539 	return isl_pw_qpolynomial_alloc(isl_set_from_basic_set(bset), qp);
4540 }
4541 
4542 /* Factor bset, call fn on each of the factors and return the product.
4543  *
4544  * If no factors can be found, simply call fn on the input.
4545  * Otherwise, construct the factors based on the factorizer,
4546  * call fn on each factor and compute the product.
4547  */
compressed_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4548 static __isl_give isl_pw_qpolynomial *compressed_multiplicative_call(
4549 	__isl_take isl_basic_set *bset,
4550 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4551 {
4552 	int i, n;
4553 	isl_space *space;
4554 	isl_set *set;
4555 	isl_factorizer *f;
4556 	isl_qpolynomial *qp;
4557 	isl_pw_qpolynomial *pwqp;
4558 	unsigned nparam;
4559 	unsigned nvar;
4560 
4561 	f = isl_basic_set_factorizer(bset);
4562 	if (!f)
4563 		goto error;
4564 	if (f->n_group == 0) {
4565 		isl_factorizer_free(f);
4566 		return fn(bset);
4567 	}
4568 
4569 	nparam = isl_basic_set_dim(bset, isl_dim_param);
4570 	nvar = isl_basic_set_dim(bset, isl_dim_set);
4571 
4572 	space = isl_basic_set_get_space(bset);
4573 	space = isl_space_params(space);
4574 	set = isl_set_universe(isl_space_copy(space));
4575 	qp = isl_qpolynomial_one_on_domain(space);
4576 	pwqp = isl_pw_qpolynomial_alloc(set, qp);
4577 
4578 	bset = isl_morph_basic_set(isl_morph_copy(f->morph), bset);
4579 
4580 	for (i = 0, n = 0; i < f->n_group; ++i) {
4581 		isl_basic_set *bset_i;
4582 		isl_pw_qpolynomial *pwqp_i;
4583 
4584 		bset_i = isl_basic_set_copy(bset);
4585 		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4586 			    nparam + n + f->len[i], nvar - n - f->len[i]);
4587 		bset_i = isl_basic_set_drop_constraints_involving(bset_i,
4588 			    nparam, n);
4589 		bset_i = isl_basic_set_drop(bset_i, isl_dim_set,
4590 			    n + f->len[i], nvar - n - f->len[i]);
4591 		bset_i = isl_basic_set_drop(bset_i, isl_dim_set, 0, n);
4592 
4593 		pwqp_i = fn(bset_i);
4594 		pwqp = isl_pw_qpolynomial_mul(pwqp, pwqp_i);
4595 
4596 		n += f->len[i];
4597 	}
4598 
4599 	isl_basic_set_free(bset);
4600 	isl_factorizer_free(f);
4601 
4602 	return pwqp;
4603 error:
4604 	isl_basic_set_free(bset);
4605 	return NULL;
4606 }
4607 
4608 /* Factor bset, call fn on each of the factors and return the product.
4609  * The function is assumed to evaluate to zero on empty domains,
4610  * to one on zero-dimensional domains and to infinity on unbounded domains
4611  * and will not be called explicitly on zero-dimensional or unbounded domains.
4612  *
4613  * We first check for some special cases and remove all equalities.
4614  * Then we hand over control to compressed_multiplicative_call.
4615  */
isl_basic_set_multiplicative_call(__isl_take isl_basic_set * bset,__isl_give isl_pw_qpolynomial * (* fn)(__isl_take isl_basic_set * bset))4616 __isl_give isl_pw_qpolynomial *isl_basic_set_multiplicative_call(
4617 	__isl_take isl_basic_set *bset,
4618 	__isl_give isl_pw_qpolynomial *(*fn)(__isl_take isl_basic_set *bset))
4619 {
4620 	isl_bool bounded;
4621 	isl_morph *morph;
4622 	isl_pw_qpolynomial *pwqp;
4623 
4624 	if (!bset)
4625 		return NULL;
4626 
4627 	if (isl_basic_set_plain_is_empty(bset))
4628 		return constant_on_domain(bset, 0);
4629 
4630 	if (isl_basic_set_dim(bset, isl_dim_set) == 0)
4631 		return constant_on_domain(bset, 1);
4632 
4633 	bounded = isl_basic_set_is_bounded(bset);
4634 	if (bounded < 0)
4635 		goto error;
4636 	if (!bounded)
4637 		return constant_on_domain(bset, -1);
4638 
4639 	if (bset->n_eq == 0)
4640 		return compressed_multiplicative_call(bset, fn);
4641 
4642 	morph = isl_basic_set_full_compression(bset);
4643 	bset = isl_morph_basic_set(isl_morph_copy(morph), bset);
4644 
4645 	pwqp = compressed_multiplicative_call(bset, fn);
4646 
4647 	morph = isl_morph_dom_params(morph);
4648 	morph = isl_morph_ran_params(morph);
4649 	morph = isl_morph_inverse(morph);
4650 
4651 	pwqp = isl_pw_qpolynomial_morph_domain(pwqp, morph);
4652 
4653 	return pwqp;
4654 error:
4655 	isl_basic_set_free(bset);
4656 	return NULL;
4657 }
4658 
4659 /* Drop all floors in "qp", turning each integer division [a/m] into
4660  * a rational division a/m.  If "down" is set, then the integer division
4661  * is replaced by (a-(m-1))/m instead.
4662  */
qp_drop_floors(__isl_take isl_qpolynomial * qp,int down)4663 static __isl_give isl_qpolynomial *qp_drop_floors(
4664 	__isl_take isl_qpolynomial *qp, int down)
4665 {
4666 	int i;
4667 	struct isl_upoly *s;
4668 
4669 	if (!qp)
4670 		return NULL;
4671 	if (qp->div->n_row == 0)
4672 		return qp;
4673 
4674 	qp = isl_qpolynomial_cow(qp);
4675 	if (!qp)
4676 		return NULL;
4677 
4678 	for (i = qp->div->n_row - 1; i >= 0; --i) {
4679 		if (down) {
4680 			isl_int_sub(qp->div->row[i][1],
4681 				    qp->div->row[i][1], qp->div->row[i][0]);
4682 			isl_int_add_ui(qp->div->row[i][1],
4683 				       qp->div->row[i][1], 1);
4684 		}
4685 		s = isl_upoly_from_affine(qp->dim->ctx, qp->div->row[i] + 1,
4686 					qp->div->row[i][0], qp->div->n_col - 1);
4687 		qp = substitute_div(qp, i, s);
4688 		if (!qp)
4689 			return NULL;
4690 	}
4691 
4692 	return qp;
4693 }
4694 
4695 /* Drop all floors in "pwqp", turning each integer division [a/m] into
4696  * a rational division a/m.
4697  */
pwqp_drop_floors(__isl_take isl_pw_qpolynomial * pwqp)4698 static __isl_give isl_pw_qpolynomial *pwqp_drop_floors(
4699 	__isl_take isl_pw_qpolynomial *pwqp)
4700 {
4701 	int i;
4702 
4703 	if (!pwqp)
4704 		return NULL;
4705 
4706 	if (isl_pw_qpolynomial_is_zero(pwqp))
4707 		return pwqp;
4708 
4709 	pwqp = isl_pw_qpolynomial_cow(pwqp);
4710 	if (!pwqp)
4711 		return NULL;
4712 
4713 	for (i = 0; i < pwqp->n; ++i) {
4714 		pwqp->p[i].qp = qp_drop_floors(pwqp->p[i].qp, 0);
4715 		if (!pwqp->p[i].qp)
4716 			goto error;
4717 	}
4718 
4719 	return pwqp;
4720 error:
4721 	isl_pw_qpolynomial_free(pwqp);
4722 	return NULL;
4723 }
4724 
4725 /* Adjust all the integer divisions in "qp" such that they are at least
4726  * one over the given orthant (identified by "signs").  This ensures
4727  * that they will still be non-negative even after subtracting (m-1)/m.
4728  *
4729  * In particular, f is replaced by f' + v, changing f = [a/m]
4730  * to f' = [(a - m v)/m].
4731  * If the constant term k in a is smaller than m,
4732  * the constant term of v is set to floor(k/m) - 1.
4733  * For any other term, if the coefficient c and the variable x have
4734  * the same sign, then no changes are needed.
4735  * Otherwise, if the variable is positive (and c is negative),
4736  * then the coefficient of x in v is set to floor(c/m).
4737  * If the variable is negative (and c is positive),
4738  * then the coefficient of x in v is set to ceil(c/m).
4739  */
make_divs_pos(__isl_take isl_qpolynomial * qp,int * signs)4740 static __isl_give isl_qpolynomial *make_divs_pos(__isl_take isl_qpolynomial *qp,
4741 	int *signs)
4742 {
4743 	int i, j;
4744 	int total;
4745 	isl_vec *v = NULL;
4746 	struct isl_upoly *s;
4747 
4748 	qp = isl_qpolynomial_cow(qp);
4749 	if (!qp)
4750 		return NULL;
4751 	qp->div = isl_mat_cow(qp->div);
4752 	if (!qp->div)
4753 		goto error;
4754 
4755 	total = isl_space_dim(qp->dim, isl_dim_all);
4756 	v = isl_vec_alloc(qp->div->ctx, qp->div->n_col - 1);
4757 
4758 	for (i = 0; i < qp->div->n_row; ++i) {
4759 		isl_int *row = qp->div->row[i];
4760 		v = isl_vec_clr(v);
4761 		if (!v)
4762 			goto error;
4763 		if (isl_int_lt(row[1], row[0])) {
4764 			isl_int_fdiv_q(v->el[0], row[1], row[0]);
4765 			isl_int_sub_ui(v->el[0], v->el[0], 1);
4766 			isl_int_submul(row[1], row[0], v->el[0]);
4767 		}
4768 		for (j = 0; j < total; ++j) {
4769 			if (isl_int_sgn(row[2 + j]) * signs[j] >= 0)
4770 				continue;
4771 			if (signs[j] < 0)
4772 				isl_int_cdiv_q(v->el[1 + j], row[2 + j], row[0]);
4773 			else
4774 				isl_int_fdiv_q(v->el[1 + j], row[2 + j], row[0]);
4775 			isl_int_submul(row[2 + j], row[0], v->el[1 + j]);
4776 		}
4777 		for (j = 0; j < i; ++j) {
4778 			if (isl_int_sgn(row[2 + total + j]) >= 0)
4779 				continue;
4780 			isl_int_fdiv_q(v->el[1 + total + j],
4781 					row[2 + total + j], row[0]);
4782 			isl_int_submul(row[2 + total + j],
4783 					row[0], v->el[1 + total + j]);
4784 		}
4785 		for (j = i + 1; j < qp->div->n_row; ++j) {
4786 			if (isl_int_is_zero(qp->div->row[j][2 + total + i]))
4787 				continue;
4788 			isl_seq_combine(qp->div->row[j] + 1,
4789 				qp->div->ctx->one, qp->div->row[j] + 1,
4790 				qp->div->row[j][2 + total + i], v->el, v->size);
4791 		}
4792 		isl_int_set_si(v->el[1 + total + i], 1);
4793 		s = isl_upoly_from_affine(qp->dim->ctx, v->el,
4794 					qp->div->ctx->one, v->size);
4795 		qp->upoly = isl_upoly_subs(qp->upoly, total + i, 1, &s);
4796 		isl_upoly_free(s);
4797 		if (!qp->upoly)
4798 			goto error;
4799 	}
4800 
4801 	isl_vec_free(v);
4802 	return qp;
4803 error:
4804 	isl_vec_free(v);
4805 	isl_qpolynomial_free(qp);
4806 	return NULL;
4807 }
4808 
4809 struct isl_to_poly_data {
4810 	int sign;
4811 	isl_pw_qpolynomial *res;
4812 	isl_qpolynomial *qp;
4813 };
4814 
4815 /* Appoximate data->qp by a polynomial on the orthant identified by "signs".
4816  * We first make all integer divisions positive and then split the
4817  * quasipolynomials into terms with sign data->sign (the direction
4818  * of the requested approximation) and terms with the opposite sign.
4819  * In the first set of terms, each integer division [a/m] is
4820  * overapproximated by a/m, while in the second it is underapproximated
4821  * by (a-(m-1))/m.
4822  */
to_polynomial_on_orthant(__isl_take isl_set * orthant,int * signs,void * user)4823 static isl_stat to_polynomial_on_orthant(__isl_take isl_set *orthant,
4824 	int *signs, void *user)
4825 {
4826 	struct isl_to_poly_data *data = user;
4827 	isl_pw_qpolynomial *t;
4828 	isl_qpolynomial *qp, *up, *down;
4829 
4830 	qp = isl_qpolynomial_copy(data->qp);
4831 	qp = make_divs_pos(qp, signs);
4832 
4833 	up = isl_qpolynomial_terms_of_sign(qp, signs, data->sign);
4834 	up = qp_drop_floors(up, 0);
4835 	down = isl_qpolynomial_terms_of_sign(qp, signs, -data->sign);
4836 	down = qp_drop_floors(down, 1);
4837 
4838 	isl_qpolynomial_free(qp);
4839 	qp = isl_qpolynomial_add(up, down);
4840 
4841 	t = isl_pw_qpolynomial_alloc(orthant, qp);
4842 	data->res = isl_pw_qpolynomial_add_disjoint(data->res, t);
4843 
4844 	return isl_stat_ok;
4845 }
4846 
4847 /* Approximate each quasipolynomial by a polynomial.  If "sign" is positive,
4848  * the polynomial will be an overapproximation.  If "sign" is negative,
4849  * it will be an underapproximation.  If "sign" is zero, the approximation
4850  * will lie somewhere in between.
4851  *
4852  * In particular, is sign == 0, we simply drop the floors, turning
4853  * the integer divisions into rational divisions.
4854  * Otherwise, we split the domains into orthants, make all integer divisions
4855  * positive and then approximate each [a/m] by either a/m or (a-(m-1))/m,
4856  * depending on the requested sign and the sign of the term in which
4857  * the integer division appears.
4858  */
isl_pw_qpolynomial_to_polynomial(__isl_take isl_pw_qpolynomial * pwqp,int sign)4859 __isl_give isl_pw_qpolynomial *isl_pw_qpolynomial_to_polynomial(
4860 	__isl_take isl_pw_qpolynomial *pwqp, int sign)
4861 {
4862 	int i;
4863 	struct isl_to_poly_data data;
4864 
4865 	if (sign == 0)
4866 		return pwqp_drop_floors(pwqp);
4867 
4868 	if (!pwqp)
4869 		return NULL;
4870 
4871 	data.sign = sign;
4872 	data.res = isl_pw_qpolynomial_zero(isl_pw_qpolynomial_get_space(pwqp));
4873 
4874 	for (i = 0; i < pwqp->n; ++i) {
4875 		if (pwqp->p[i].qp->div->n_row == 0) {
4876 			isl_pw_qpolynomial *t;
4877 			t = isl_pw_qpolynomial_alloc(
4878 					isl_set_copy(pwqp->p[i].set),
4879 					isl_qpolynomial_copy(pwqp->p[i].qp));
4880 			data.res = isl_pw_qpolynomial_add_disjoint(data.res, t);
4881 			continue;
4882 		}
4883 		data.qp = pwqp->p[i].qp;
4884 		if (isl_set_foreach_orthant(pwqp->p[i].set,
4885 					&to_polynomial_on_orthant, &data) < 0)
4886 			goto error;
4887 	}
4888 
4889 	isl_pw_qpolynomial_free(pwqp);
4890 
4891 	return data.res;
4892 error:
4893 	isl_pw_qpolynomial_free(pwqp);
4894 	isl_pw_qpolynomial_free(data.res);
4895 	return NULL;
4896 }
4897 
poly_entry(__isl_take isl_pw_qpolynomial * pwqp,void * user)4898 static __isl_give isl_pw_qpolynomial *poly_entry(
4899 	__isl_take isl_pw_qpolynomial *pwqp, void *user)
4900 {
4901 	int *sign = user;
4902 
4903 	return isl_pw_qpolynomial_to_polynomial(pwqp, *sign);
4904 }
4905 
isl_union_pw_qpolynomial_to_polynomial(__isl_take isl_union_pw_qpolynomial * upwqp,int sign)4906 __isl_give isl_union_pw_qpolynomial *isl_union_pw_qpolynomial_to_polynomial(
4907 	__isl_take isl_union_pw_qpolynomial *upwqp, int sign)
4908 {
4909 	return isl_union_pw_qpolynomial_transform_inplace(upwqp,
4910 				   &poly_entry, &sign);
4911 }
4912 
isl_basic_map_from_qpolynomial(__isl_take isl_qpolynomial * qp)4913 __isl_give isl_basic_map *isl_basic_map_from_qpolynomial(
4914 	__isl_take isl_qpolynomial *qp)
4915 {
4916 	int i, k;
4917 	isl_space *dim;
4918 	isl_vec *aff = NULL;
4919 	isl_basic_map *bmap = NULL;
4920 	unsigned pos;
4921 	unsigned n_div;
4922 
4923 	if (!qp)
4924 		return NULL;
4925 	if (!isl_upoly_is_affine(qp->upoly))
4926 		isl_die(qp->dim->ctx, isl_error_invalid,
4927 			"input quasi-polynomial not affine", goto error);
4928 	aff = isl_qpolynomial_extract_affine(qp);
4929 	if (!aff)
4930 		goto error;
4931 	dim = isl_qpolynomial_get_space(qp);
4932 	pos = 1 + isl_space_offset(dim, isl_dim_out);
4933 	n_div = qp->div->n_row;
4934 	bmap = isl_basic_map_alloc_space(dim, n_div, 1, 2 * n_div);
4935 
4936 	for (i = 0; i < n_div; ++i) {
4937 		k = isl_basic_map_alloc_div(bmap);
4938 		if (k < 0)
4939 			goto error;
4940 		isl_seq_cpy(bmap->div[k], qp->div->row[i], qp->div->n_col);
4941 		isl_int_set_si(bmap->div[k][qp->div->n_col], 0);
4942 		if (isl_basic_map_add_div_constraints(bmap, k) < 0)
4943 			goto error;
4944 	}
4945 	k = isl_basic_map_alloc_equality(bmap);
4946 	if (k < 0)
4947 		goto error;
4948 	isl_int_neg(bmap->eq[k][pos], aff->el[0]);
4949 	isl_seq_cpy(bmap->eq[k], aff->el + 1, pos);
4950 	isl_seq_cpy(bmap->eq[k] + pos + 1, aff->el + 1 + pos, n_div);
4951 
4952 	isl_vec_free(aff);
4953 	isl_qpolynomial_free(qp);
4954 	bmap = isl_basic_map_finalize(bmap);
4955 	return bmap;
4956 error:
4957 	isl_vec_free(aff);
4958 	isl_qpolynomial_free(qp);
4959 	isl_basic_map_free(bmap);
4960 	return NULL;
4961 }
4962