1{
2    "_cosine_cdf": {
3        "_cosine.h": {
4            "cosine_cdf": "d->d"
5        }
6    },
7    "_cosine_invcdf": {
8        "_cosine.h": {
9            "cosine_invcdf": "d->d"
10        }
11    },
12    "_cospi": {
13	"cephes.h": {
14	    "cospi": "d->d"
15	},
16        "_trig.pxd": {
17            "ccospi": "D->D"
18        }
19    },
20    "_ellip_harm": {
21        "_ellip_harm.pxd": {
22            "ellip_harmonic": "ddiiddd->d"
23        },
24        "_legacy.pxd": {
25            "ellip_harmonic_unsafe": "ddddddd->d"
26        }
27    },
28    "_igam_fac": {
29        "cephes.h": {
30            "igam_fac": "dd->d"
31        }
32    },
33    "_lambertw": {
34        "_lambertw.pxd": {
35            "lambertw_scalar": "Dld->D"
36        }
37    },
38    "_lanczos_sum_expg_scaled": {
39        "cephes.h": {
40            "lanczos_sum_expg_scaled": "d->d"
41        }
42    },
43    "_lgam1p": {
44        "cephes.h": {
45            "lgam1p": "d->d"
46        }
47    },
48    "_log1pmx": {
49        "cephes.h": {
50            "log1pmx": "d->d"
51        }
52    },
53    "_sf_error_test_function": {
54        "sf_error.pxd": {
55            "_sf_error_test_function": "i->i"
56        }
57    },
58    "_sinpi": {
59	"cephes.h": {
60	    "sinpi": "d->d"
61	},
62        "_trig.pxd": {
63            "csinpi": "D->D"
64        }
65    },
66    "_spherical_in": {
67        "_spherical_bessel.pxd": {
68            "spherical_in_complex": "lD->D",
69            "spherical_in_real": "ld->d"
70        }
71    },
72    "_spherical_in_d": {
73        "_spherical_bessel.pxd": {
74            "spherical_in_d_complex": "lD->D",
75            "spherical_in_d_real": "ld->d"
76        }
77    },
78    "_spherical_jn": {
79        "_spherical_bessel.pxd": {
80            "spherical_jn_complex": "lD->D",
81            "spherical_jn_real": "ld->d"
82        }
83    },
84    "_spherical_jn_d": {
85        "_spherical_bessel.pxd": {
86            "spherical_jn_d_complex": "lD->D",
87            "spherical_jn_d_real": "ld->d"
88        }
89    },
90    "_spherical_kn": {
91        "_spherical_bessel.pxd": {
92            "spherical_kn_complex": "lD->D",
93            "spherical_kn_real": "ld->d"
94        }
95    },
96    "_spherical_kn_d": {
97        "_spherical_bessel.pxd": {
98            "spherical_kn_d_complex": "lD->D",
99            "spherical_kn_d_real": "ld->d"
100        }
101    },
102    "_spherical_yn": {
103        "_spherical_bessel.pxd": {
104            "spherical_yn_complex": "lD->D",
105            "spherical_yn_real": "ld->d"
106        }
107    },
108    "_spherical_yn_d": {
109        "_spherical_bessel.pxd": {
110            "spherical_yn_d_complex": "lD->D",
111            "spherical_yn_d_real": "ld->d"
112        }
113    },
114    "_struve_asymp_large_z": {
115        "cephes.h": {
116            "struve_asymp_large_z": "ddi*d->d"
117        }
118    },
119    "_struve_bessel_series": {
120        "cephes.h": {
121            "struve_bessel_series": "ddi*d->d"
122        }
123    },
124    "_struve_power_series": {
125        "cephes.h": {
126            "struve_power_series": "ddi*d->d"
127        }
128    },
129    "voigt_profile" : {
130        "_faddeeva.h++" : {
131            "faddeeva_voigt_profile": "ddd->d"
132        }
133    },
134    "_zeta": {
135        "cephes.h": {
136            "zeta": "dd->d"
137        }
138    },
139    "agm": {
140        "_agm.pxd": {
141            "agm": "dd->d"
142        }
143    },
144    "airy": {
145        "amos_wrappers.h": {
146            "airy_wrap": "d*dddd->*i",
147            "cairy_wrap": "D*DDDD->*i"
148        }
149    },
150    "airye": {
151        "amos_wrappers.h": {
152            "cairy_wrap_e": "D*DDDD->*i",
153            "cairy_wrap_e_real": "d*dddd->*i"
154        }
155    },
156    "bdtr": {
157        "_legacy.pxd": {
158            "bdtr_unsafe": "ddd->d"
159        },
160        "cephes.h": {
161            "bdtr": "did->d"
162        }
163    },
164    "bdtrc": {
165        "_legacy.pxd": {
166            "bdtrc_unsafe": "ddd->d"
167        },
168        "cephes.h": {
169            "bdtrc": "did->d"
170        }
171    },
172    "bdtri": {
173        "_legacy.pxd": {
174            "bdtri_unsafe": "ddd->d"
175        },
176        "cephes.h": {
177            "bdtri": "did->d"
178        }
179    },
180    "bdtrik": {
181        "cdf_wrappers.h": {
182            "cdfbin2_wrap": "ddd->d"
183        }
184    },
185    "bdtrin": {
186        "cdf_wrappers.h": {
187            "cdfbin3_wrap": "ddd->d"
188        }
189    },
190    "bei": {
191        "specfun_wrappers.h": {
192            "bei_wrap": "d->d"
193        }
194    },
195    "beip": {
196        "specfun_wrappers.h": {
197            "beip_wrap": "d->d"
198        }
199    },
200    "ber": {
201        "specfun_wrappers.h": {
202            "ber_wrap": "d->d"
203        }
204    },
205    "berp": {
206        "specfun_wrappers.h": {
207            "berp_wrap": "d->d"
208        }
209    },
210    "besselpoly": {
211        "cephes.h": {
212            "besselpoly": "ddd->d"
213        }
214    },
215    "beta": {
216        "cephes.h": {
217            "beta": "dd->d"
218        }
219    },
220    "betainc": {
221        "cephes.h": {
222            "incbet": "ddd->d"
223        }
224    },
225    "betaincinv": {
226        "cephes.h": {
227            "incbi": "ddd->d"
228        }
229    },
230    "betaln": {
231        "cephes.h": {
232            "lbeta": "dd->d"
233        }
234    },
235    "binom": {
236        "orthogonal_eval.pxd": {
237            "binom": "dd->d"
238        }
239    },
240    "boxcox": {
241        "_boxcox.pxd": {
242            "boxcox": "dd->d"
243        }
244    },
245    "boxcox1p": {
246        "_boxcox.pxd": {
247            "boxcox1p": "dd->d"
248        }
249    },
250    "btdtr": {
251        "cephes.h": {
252            "btdtr": "ddd->d"
253        }
254    },
255    "btdtri": {
256        "cephes.h": {
257            "incbi": "ddd->d"
258        }
259    },
260    "btdtria": {
261        "cdf_wrappers.h": {
262            "cdfbet3_wrap": "ddd->d"
263        }
264    },
265    "btdtrib": {
266        "cdf_wrappers.h": {
267            "cdfbet4_wrap": "ddd->d"
268        }
269    },
270    "cbrt": {
271        "cephes.h": {
272            "cbrt": "d->d"
273        }
274    },
275    "chdtr": {
276        "cephes.h": {
277            "chdtr": "dd->d"
278        }
279    },
280    "chdtrc": {
281        "cephes.h": {
282            "chdtrc": "dd->d"
283        }
284    },
285    "chdtri": {
286        "cephes.h": {
287            "chdtri": "dd->d"
288        }
289    },
290    "chdtriv": {
291        "cdf_wrappers.h": {
292            "cdfchi3_wrap": "dd->d"
293        }
294    },
295    "chndtr": {
296        "cdf_wrappers.h": {
297            "cdfchn1_wrap": "ddd->d"
298        }
299    },
300    "chndtridf": {
301        "cdf_wrappers.h": {
302            "cdfchn3_wrap": "ddd->d"
303        }
304    },
305    "chndtrinc": {
306        "cdf_wrappers.h": {
307            "cdfchn4_wrap": "ddd->d"
308        }
309    },
310    "chndtrix": {
311        "cdf_wrappers.h": {
312            "cdfchn2_wrap": "ddd->d"
313        }
314    },
315    "cosdg": {
316        "cephes.h": {
317            "cosdg": "d->d"
318        }
319    },
320    "cosm1": {
321        "cephes.h": {
322            "cosm1": "d->d"
323        }
324    },
325    "cotdg": {
326        "cephes.h": {
327            "cotdg": "d->d"
328        }
329    },
330    "dawsn": {
331        "_faddeeva.h++": {
332            "faddeeva_dawsn": "d->d",
333            "faddeeva_dawsn_complex": "D->D"
334        }
335    },
336    "ellipe": {
337        "cephes.h": {
338            "ellpe": "d->d"
339        }
340    },
341    "ellipeinc": {
342        "cephes.h": {
343            "ellie": "dd->d"
344        }
345    },
346    "ellipj": {
347        "cephes.h": {
348            "ellpj": "dd*dddd->*i"
349        }
350    },
351    "ellipkinc": {
352        "cephes.h": {
353            "ellik": "dd->d"
354        }
355    },
356    "ellipkm1": {
357        "cephes.h": {
358            "ellpk": "d->d"
359        }
360    },
361    "ellipk": {
362	"_ellipk.pxd": {
363	    "ellipk": "d->d"
364	}
365    },
366    "_factorial": {
367	"_factorial.pxd": {
368	    "_factorial": "d->d"
369	}
370    },
371    "entr": {
372        "_convex_analysis.pxd": {
373            "entr": "d->d"
374        }
375    },
376    "erf": {
377        "_faddeeva.h++": {
378            "faddeeva_erf": "D->D"
379        },
380        "cephes.h": {
381            "erf": "d->d"
382        }
383    },
384    "erfc": {
385        "_faddeeva.h++": {
386            "faddeeva_erfc": "D->D"
387        },
388        "cephes.h": {
389            "erfc": "d->d"
390        }
391    },
392    "erfcx": {
393        "_faddeeva.h++": {
394            "faddeeva_erfcx": "d->d",
395            "faddeeva_erfcx_complex": "D->D"
396        }
397    },
398    "erfi": {
399        "_faddeeva.h++": {
400            "faddeeva_erfi": "d->d",
401            "faddeeva_erfi_complex": "D->D"
402        }
403    },
404    "erfinv": {
405        "cephes.h": {
406            "erfinv": "d->d"
407        }
408    },
409    "erfcinv": {
410        "cephes.h": {
411            "erfcinv": "d->d"
412        }
413    },
414    "eval_chebyc": {
415        "orthogonal_eval.pxd": {
416            "eval_chebyc[double complex]": "dD->D",
417            "eval_chebyc[double]": "dd->d",
418            "eval_chebyc_l": "ld->d"
419        }
420    },
421    "eval_chebys": {
422        "orthogonal_eval.pxd": {
423            "eval_chebys[double complex]": "dD->D",
424            "eval_chebys[double]": "dd->d",
425            "eval_chebys_l": "ld->d"
426        }
427    },
428    "eval_chebyt": {
429        "orthogonal_eval.pxd": {
430            "eval_chebyt[double complex]": "dD->D",
431            "eval_chebyt[double]": "dd->d",
432            "eval_chebyt_l": "ld->d"
433        }
434    },
435    "eval_chebyu": {
436        "orthogonal_eval.pxd": {
437            "eval_chebyu[double complex]": "dD->D",
438            "eval_chebyu[double]": "dd->d",
439            "eval_chebyu_l": "ld->d"
440        }
441    },
442    "eval_gegenbauer": {
443        "orthogonal_eval.pxd": {
444            "eval_gegenbauer[double complex]": "ddD->D",
445            "eval_gegenbauer[double]": "ddd->d",
446            "eval_gegenbauer_l": "ldd->d"
447        }
448    },
449    "eval_genlaguerre": {
450        "orthogonal_eval.pxd": {
451            "eval_genlaguerre[double complex]": "ddD->D",
452            "eval_genlaguerre[double]": "ddd->d",
453            "eval_genlaguerre_l": "ldd->d"
454        }
455    },
456    "eval_hermite": {
457        "orthogonal_eval.pxd": {
458            "eval_hermite": "ld->d"
459        }
460    },
461    "eval_hermitenorm": {
462        "orthogonal_eval.pxd": {
463            "eval_hermitenorm": "ld->d"
464        }
465    },
466    "eval_jacobi": {
467        "orthogonal_eval.pxd": {
468            "eval_jacobi[double complex]": "dddD->D",
469            "eval_jacobi[double]": "dddd->d",
470            "eval_jacobi_l": "lddd->d"
471        }
472    },
473    "eval_laguerre": {
474        "orthogonal_eval.pxd": {
475            "eval_laguerre[double complex]": "dD->D",
476            "eval_laguerre[double]": "dd->d",
477            "eval_laguerre_l": "ld->d"
478        }
479    },
480    "eval_legendre": {
481        "orthogonal_eval.pxd": {
482            "eval_legendre[double complex]": "dD->D",
483            "eval_legendre[double]": "dd->d",
484            "eval_legendre_l": "ld->d"
485        }
486    },
487    "eval_sh_chebyt": {
488        "orthogonal_eval.pxd": {
489            "eval_sh_chebyt[double complex]": "dD->D",
490            "eval_sh_chebyt[double]": "dd->d",
491            "eval_sh_chebyt_l": "ld->d"
492        }
493    },
494    "eval_sh_chebyu": {
495        "orthogonal_eval.pxd": {
496            "eval_sh_chebyu[double complex]": "dD->D",
497            "eval_sh_chebyu[double]": "dd->d",
498            "eval_sh_chebyu_l": "ld->d"
499        }
500    },
501    "eval_sh_jacobi": {
502        "orthogonal_eval.pxd": {
503            "eval_sh_jacobi[double complex]": "dddD->D",
504            "eval_sh_jacobi[double]": "dddd->d",
505            "eval_sh_jacobi_l": "lddd->d"
506        }
507    },
508    "eval_sh_legendre": {
509        "orthogonal_eval.pxd": {
510            "eval_sh_legendre[double complex]": "dD->D",
511            "eval_sh_legendre[double]": "dd->d",
512            "eval_sh_legendre_l": "ld->d"
513        }
514    },
515    "exp1": {
516        "specfun_wrappers.h": {
517            "cexp1_wrap": "D->D",
518            "exp1_wrap": "d->d"
519        }
520    },
521    "exp10": {
522        "cephes.h": {
523            "exp10": "d->d"
524        }
525    },
526    "exp2": {
527        "cephes.h": {
528            "exp2": "d->d"
529        }
530    },
531    "expi": {
532        "specfun_wrappers.h": {
533            "cexpi_wrap": "D->D",
534            "expi_wrap": "d->d"
535        }
536    },
537    "expit": {
538        "_logit.h++": {
539            "expit": "d->d",
540            "expitf": "f->f",
541            "expitl": "g->g"
542        }
543    },
544    "expm1": {
545        "_cunity.pxd": {
546            "cexpm1": "D->D"
547        },
548        "cephes.h": {
549            "expm1": "d->d"
550        }
551    },
552    "expn": {
553        "_legacy.pxd": {
554            "expn_unsafe": "dd->d"
555        },
556        "cephes.h": {
557            "expn": "id->d"
558        }
559    },
560    "exprel": {
561        "_exprel.pxd": {
562            "exprel": "d->d"
563        }
564    },
565    "fdtr": {
566        "cephes.h": {
567            "fdtr": "ddd->d"
568        }
569    },
570    "fdtrc": {
571        "cephes.h": {
572            "fdtrc": "ddd->d"
573        }
574    },
575    "fdtri": {
576        "cephes.h": {
577            "fdtri": "ddd->d"
578        }
579    },
580    "fdtridfd": {
581        "cdf_wrappers.h": {
582            "cdff4_wrap": "ddd->d"
583        }
584    },
585    "fresnel": {
586        "cephes.h": {
587            "fresnl": "d*dd->*i"
588        },
589        "specfun_wrappers.h": {
590            "cfresnl_wrap": "D*DD->*i"
591        }
592    },
593    "gamma": {
594        "_loggamma.pxd": {
595            "cgamma": "D->D"
596        },
597        "cephes.h": {
598            "Gamma": "d->d"
599        }
600    },
601    "gammainc": {
602        "cephes.h": {
603            "igam": "dd->d"
604        }
605    },
606    "gammaincc": {
607        "cephes.h": {
608            "igamc": "dd->d"
609        }
610    },
611    "gammainccinv": {
612        "cephes.h": {
613            "igamci": "dd->d"
614        }
615    },
616    "gammaincinv": {
617        "cephes.h": {
618            "igami": "dd->d"
619        }
620    },
621    "gammaln": {
622        "cephes.h": {
623            "lgam": "d->d"
624        }
625    },
626    "gammasgn": {
627        "cephes.h": {
628            "gammasgn": "d->d"
629        }
630    },
631    "gdtr": {
632        "cephes.h": {
633            "gdtr": "ddd->d"
634        }
635    },
636    "gdtrc": {
637        "cephes.h": {
638            "gdtrc": "ddd->d"
639        }
640    },
641    "gdtria": {
642        "cdf_wrappers.h": {
643            "cdfgam4_wrap": "ddd->d"
644        }
645    },
646    "gdtrib": {
647        "cdf_wrappers.h": {
648            "cdfgam3_wrap": "ddd->d"
649        }
650    },
651    "gdtrix": {
652        "cdf_wrappers.h": {
653            "cdfgam2_wrap": "ddd->d"
654        }
655    },
656    "hankel1": {
657        "amos_wrappers.h": {
658            "cbesh_wrap1": "dD->D"
659        }
660    },
661    "hankel1e": {
662        "amos_wrappers.h": {
663            "cbesh_wrap1_e": "dD->D"
664        }
665    },
666    "hankel2": {
667        "amos_wrappers.h": {
668            "cbesh_wrap2": "dD->D"
669        }
670    },
671    "hankel2e": {
672        "amos_wrappers.h": {
673            "cbesh_wrap2_e": "dD->D"
674        }
675    },
676    "huber": {
677        "_convex_analysis.pxd": {
678            "huber": "dd->d"
679        }
680    },
681    "hyp0f1": {
682        "_hyp0f1.pxd": {
683            "_hyp0f1_cmplx": "dD->D",
684            "_hyp0f1_real": "dd->d"
685        }
686    },
687    "hyp1f1": {
688	"_hypergeometric.pxd": {
689	    "hyp1f1": "ddd->d"
690	},
691        "specfun_wrappers.h": {
692            "chyp1f1_wrap": "ddD->D"
693        }
694    },
695    "hyp2f1": {
696        "cephes.h": {
697            "hyp2f1": "dddd->d"
698        },
699        "specfun_wrappers.h": {
700            "chyp2f1_wrap": "dddD->D"
701        }
702    },
703    "hyperu": {
704        "_hypergeometric.pxd": {
705            "hyperu": "ddd->d"
706        }
707    },
708    "i0": {
709        "cephes.h": {
710            "i0": "d->d"
711        }
712    },
713    "i0e": {
714        "cephes.h": {
715            "i0e": "d->d"
716        }
717    },
718    "i1": {
719        "cephes.h": {
720            "i1": "d->d"
721        }
722    },
723    "i1e": {
724        "cephes.h": {
725            "i1e": "d->d"
726        }
727    },
728    "inv_boxcox": {
729        "_boxcox.pxd": {
730            "inv_boxcox": "dd->d"
731        }
732    },
733    "inv_boxcox1p": {
734        "_boxcox.pxd": {
735            "inv_boxcox1p": "dd->d"
736        }
737    },
738    "it2i0k0": {
739        "specfun_wrappers.h": {
740            "it2i0k0_wrap": "d*dd->*i"
741        }
742    },
743    "it2j0y0": {
744        "specfun_wrappers.h": {
745            "it2j0y0_wrap": "d*dd->*i"
746        }
747    },
748    "it2struve0": {
749        "specfun_wrappers.h": {
750            "it2struve0_wrap": "d->d"
751        }
752    },
753    "itairy": {
754        "specfun_wrappers.h": {
755            "itairy_wrap": "d*dddd->*i"
756        }
757    },
758    "iti0k0": {
759        "specfun_wrappers.h": {
760            "it1i0k0_wrap": "d*dd->*i"
761        }
762    },
763    "itj0y0": {
764        "specfun_wrappers.h": {
765            "it1j0y0_wrap": "d*dd->*i"
766        }
767    },
768    "itmodstruve0": {
769        "specfun_wrappers.h": {
770            "itmodstruve0_wrap": "d->d"
771        }
772    },
773    "itstruve0": {
774        "specfun_wrappers.h": {
775            "itstruve0_wrap": "d->d"
776        }
777    },
778    "iv": {
779        "amos_wrappers.h": {
780            "cbesi_wrap": "dD->D"
781        },
782        "cephes.h": {
783            "iv": "dd->d"
784        }
785    },
786    "ive": {
787        "amos_wrappers.h": {
788            "cbesi_wrap_e": "dD->D",
789            "cbesi_wrap_e_real": "dd->d"
790        }
791    },
792    "j0": {
793        "cephes.h": {
794            "j0": "d->d"
795        }
796    },
797    "j1": {
798        "cephes.h": {
799            "j1": "d->d"
800        }
801    },
802    "jv": {
803        "amos_wrappers.h": {
804            "cbesj_wrap": "dD->D",
805            "cbesj_wrap_real": "dd->d"
806        }
807    },
808    "jve": {
809        "amos_wrappers.h": {
810            "cbesj_wrap_e": "dD->D",
811            "cbesj_wrap_e_real": "dd->d"
812        }
813    },
814    "k0": {
815        "cephes.h": {
816            "k0": "d->d"
817        }
818    },
819    "k0e": {
820        "cephes.h": {
821            "k0e": "d->d"
822        }
823    },
824    "k1": {
825        "cephes.h": {
826            "k1": "d->d"
827        }
828    },
829    "k1e": {
830        "cephes.h": {
831            "k1e": "d->d"
832        }
833    },
834    "kei": {
835        "specfun_wrappers.h": {
836            "kei_wrap": "d->d"
837        }
838    },
839    "keip": {
840        "specfun_wrappers.h": {
841            "keip_wrap": "d->d"
842        }
843    },
844    "kelvin": {
845        "specfun_wrappers.h": {
846            "kelvin_wrap": "d*DDDD->*i"
847        }
848    },
849    "ker": {
850        "specfun_wrappers.h": {
851            "ker_wrap": "d->d"
852        }
853    },
854    "kerp": {
855        "specfun_wrappers.h": {
856            "kerp_wrap": "d->d"
857        }
858    },
859    "kl_div": {
860        "_convex_analysis.pxd": {
861            "kl_div": "dd->d"
862        }
863    },
864    "kn": {
865        "_legacy.pxd": {
866            "kn_unsafe": "dd->d"
867        },
868        "cephes.h": {
869            "cbesk_wrap_real_int": "id->d"
870        }
871    },
872    "_kolmogc": {
873        "cephes.h": {
874            "kolmogc": "d->d"
875        }
876    },
877    "_kolmogci": {
878        "cephes.h": {
879            "kolmogci": "d->d"
880        }
881    },
882    "kolmogi": {
883        "cephes.h": {
884            "kolmogi": "d->d"
885        }
886    },
887    "_kolmogp": {
888        "cephes.h": {
889            "kolmogp": "d->d"
890        }
891    },
892    "kolmogorov": {
893        "cephes.h": {
894            "kolmogorov": "d->d"
895        }
896    },
897    "kv": {
898        "amos_wrappers.h": {
899            "cbesk_wrap": "dD->D",
900            "cbesk_wrap_real": "dd->d"
901        }
902    },
903    "kve": {
904        "amos_wrappers.h": {
905            "cbesk_wrap_e": "dD->D",
906            "cbesk_wrap_e_real": "dd->d"
907        }
908    },
909    "log1p": {
910        "_cunity.pxd": {
911            "clog1p": "D->D"
912        },
913        "cephes.h": {
914            "log1p": "d->d"
915        }
916    },
917    "log_ndtr": {
918        "_faddeeva.h++": {
919            "faddeeva_log_ndtr": "D->D"
920        },
921        "cephes.h": {
922            "log_ndtr": "d->d"
923        }
924    },
925    "loggamma": {
926        "_loggamma.pxd": {
927	    "loggamma_real": "d->d",
928            "loggamma": "D->D"
929        }
930    },
931    "logit": {
932        "_logit.h++": {
933            "logit": "d->d",
934            "logitf": "f->f",
935            "logitl": "g->g"
936        }
937    },
938    "lpmv": {
939        "specfun_wrappers.h": {
940            "pmv_wrap": "ddd->d"
941        }
942    },
943    "mathieu_a": {
944        "specfun_wrappers.h": {
945            "cem_cva_wrap": "dd->d"
946        }
947    },
948    "mathieu_b": {
949        "specfun_wrappers.h": {
950            "sem_cva_wrap": "dd->d"
951        }
952    },
953    "mathieu_cem": {
954        "specfun_wrappers.h": {
955            "cem_wrap": "ddd*dd->*i"
956        }
957    },
958    "mathieu_modcem1": {
959        "specfun_wrappers.h": {
960            "mcm1_wrap": "ddd*dd->*i"
961        }
962    },
963    "mathieu_modcem2": {
964        "specfun_wrappers.h": {
965            "mcm2_wrap": "ddd*dd->*i"
966        }
967    },
968    "mathieu_modsem1": {
969        "specfun_wrappers.h": {
970            "msm1_wrap": "ddd*dd->*i"
971        }
972    },
973    "mathieu_modsem2": {
974        "specfun_wrappers.h": {
975            "msm2_wrap": "ddd*dd->*i"
976        }
977    },
978    "mathieu_sem": {
979        "specfun_wrappers.h": {
980            "sem_wrap": "ddd*dd->*i"
981        }
982    },
983    "modfresnelm": {
984        "specfun_wrappers.h": {
985            "modified_fresnel_minus_wrap": "d*DD->*i"
986        }
987    },
988    "modfresnelp": {
989        "specfun_wrappers.h": {
990            "modified_fresnel_plus_wrap": "d*DD->*i"
991        }
992    },
993    "modstruve": {
994        "cephes.h": {
995            "struve_l": "dd->d"
996        }
997    },
998    "nbdtr": {
999        "_legacy.pxd": {
1000            "nbdtr_unsafe": "ddd->d"
1001        },
1002        "cephes.h": {
1003            "nbdtr": "iid->d"
1004        }
1005    },
1006    "nbdtrc": {
1007        "_legacy.pxd": {
1008            "nbdtrc_unsafe": "ddd->d"
1009        },
1010        "cephes.h": {
1011            "nbdtrc": "iid->d"
1012        }
1013    },
1014    "nbdtri": {
1015        "_legacy.pxd": {
1016            "nbdtri_unsafe": "ddd->d"
1017        },
1018        "cephes.h": {
1019            "nbdtri": "iid->d"
1020        }
1021    },
1022    "nbdtrik": {
1023        "cdf_wrappers.h": {
1024            "cdfnbn2_wrap": "ddd->d"
1025        }
1026    },
1027    "nbdtrin": {
1028        "cdf_wrappers.h": {
1029            "cdfnbn3_wrap": "ddd->d"
1030        }
1031    },
1032    "ncfdtr": {
1033        "cdf_wrappers.h": {
1034            "cdffnc1_wrap": "dddd->d"
1035        }
1036    },
1037    "ncfdtri": {
1038        "cdf_wrappers.h": {
1039            "cdffnc2_wrap": "dddd->d"
1040        }
1041    },
1042    "ncfdtridfd": {
1043        "cdf_wrappers.h": {
1044            "cdffnc4_wrap": "dddd->d"
1045        }
1046    },
1047    "ncfdtridfn": {
1048        "cdf_wrappers.h": {
1049            "cdffnc3_wrap": "dddd->d"
1050        }
1051    },
1052    "ncfdtrinc": {
1053        "cdf_wrappers.h": {
1054            "cdffnc5_wrap": "dddd->d"
1055        }
1056    },
1057    "nctdtr": {
1058        "cdf_wrappers.h": {
1059            "cdftnc1_wrap": "ddd->d"
1060        }
1061    },
1062    "nctdtridf": {
1063        "cdf_wrappers.h": {
1064            "cdftnc3_wrap": "ddd->d"
1065        }
1066    },
1067    "nctdtrinc": {
1068        "cdf_wrappers.h": {
1069            "cdftnc4_wrap": "ddd->d"
1070        }
1071    },
1072    "nctdtrit": {
1073        "cdf_wrappers.h": {
1074            "cdftnc2_wrap": "ddd->d"
1075        }
1076    },
1077    "ndtr": {
1078        "_faddeeva.h++": {
1079            "faddeeva_ndtr": "D->D"
1080        },
1081        "cephes.h": {
1082            "ndtr": "d->d"
1083        }
1084    },
1085    "ndtri": {
1086        "cephes.h": {
1087            "ndtri": "d->d"
1088        }
1089    },
1090    "nrdtrimn": {
1091        "cdf_wrappers.h": {
1092            "cdfnor3_wrap": "ddd->d"
1093        }
1094    },
1095    "nrdtrisd": {
1096        "cdf_wrappers.h": {
1097            "cdfnor4_wrap": "ddd->d"
1098        }
1099    },
1100    "obl_ang1": {
1101        "specfun_wrappers.h": {
1102            "oblate_aswfa_nocv_wrap": "dddd*d->d"
1103        }
1104    },
1105    "obl_ang1_cv": {
1106        "specfun_wrappers.h": {
1107            "oblate_aswfa_wrap": "ddddd*dd->*i"
1108        }
1109    },
1110    "obl_cv": {
1111        "specfun_wrappers.h": {
1112            "oblate_segv_wrap": "ddd->d"
1113        }
1114    },
1115    "obl_rad1": {
1116        "specfun_wrappers.h": {
1117            "oblate_radial1_nocv_wrap": "dddd*d->d"
1118        }
1119    },
1120    "obl_rad1_cv": {
1121        "specfun_wrappers.h": {
1122            "oblate_radial1_wrap": "ddddd*dd->*i"
1123        }
1124    },
1125    "obl_rad2": {
1126        "specfun_wrappers.h": {
1127            "oblate_radial2_nocv_wrap": "dddd*d->d"
1128        }
1129    },
1130    "obl_rad2_cv": {
1131        "specfun_wrappers.h": {
1132            "oblate_radial2_wrap": "ddddd*dd->*i"
1133        }
1134    },
1135    "owens_t": {
1136        "cephes.h": {
1137            "owens_t": "dd->d"
1138        }
1139    },
1140    "pbdv": {
1141        "specfun_wrappers.h": {
1142            "pbdv_wrap": "dd*dd->*i"
1143        }
1144    },
1145    "pbvv": {
1146        "specfun_wrappers.h": {
1147            "pbvv_wrap": "dd*dd->*i"
1148        }
1149    },
1150    "pbwa": {
1151        "specfun_wrappers.h": {
1152            "pbwa_wrap": "dd*dd->*i"
1153        }
1154    },
1155    "pdtr": {
1156        "cephes.h": {
1157            "pdtr": "dd->d"
1158        }
1159    },
1160    "pdtrc": {
1161        "cephes.h": {
1162            "pdtrc": "dd->d"
1163        }
1164    },
1165    "pdtri": {
1166        "_legacy.pxd": {
1167            "pdtri_unsafe": "dd->d"
1168        },
1169        "cephes.h": {
1170            "pdtri": "id->d"
1171        }
1172    },
1173    "pdtrik": {
1174        "cdf_wrappers.h": {
1175            "cdfpoi2_wrap": "dd->d"
1176        }
1177    },
1178    "poch": {
1179        "cephes.h": {
1180            "poch": "dd->d"
1181        }
1182    },
1183    "pro_ang1": {
1184        "specfun_wrappers.h": {
1185            "prolate_aswfa_nocv_wrap": "dddd*d->d"
1186        }
1187    },
1188    "pro_ang1_cv": {
1189        "specfun_wrappers.h": {
1190            "prolate_aswfa_wrap": "ddddd*dd->*i"
1191        }
1192    },
1193    "pro_cv": {
1194        "specfun_wrappers.h": {
1195            "prolate_segv_wrap": "ddd->d"
1196        }
1197    },
1198    "pro_rad1": {
1199        "specfun_wrappers.h": {
1200            "prolate_radial1_nocv_wrap": "dddd*d->d"
1201        }
1202    },
1203    "pro_rad1_cv": {
1204        "specfun_wrappers.h": {
1205            "prolate_radial1_wrap": "ddddd*dd->*i"
1206        }
1207    },
1208    "pro_rad2": {
1209        "specfun_wrappers.h": {
1210            "prolate_radial2_nocv_wrap": "dddd*d->d"
1211        }
1212    },
1213    "pro_rad2_cv": {
1214        "specfun_wrappers.h": {
1215            "prolate_radial2_wrap": "ddddd*dd->*i"
1216        }
1217    },
1218    "pseudo_huber": {
1219        "_convex_analysis.pxd": {
1220            "pseudo_huber": "dd->d"
1221        }
1222    },
1223    "psi": {
1224        "_digamma.pxd": {
1225            "cdigamma": "D->D",
1226            "digamma": "d->d"
1227        }
1228    },
1229    "radian": {
1230        "cephes.h": {
1231            "radian": "ddd->d"
1232        }
1233    },
1234    "rel_entr": {
1235        "_convex_analysis.pxd": {
1236            "rel_entr": "dd->d"
1237        }
1238    },
1239    "rgamma": {
1240        "_loggamma.pxd": {
1241            "crgamma": "D->D"
1242        },
1243        "cephes.h": {
1244            "rgamma": "d->d"
1245        }
1246    },
1247    "round": {
1248        "cephes.h": {
1249            "round": "d->d"
1250        }
1251    },
1252    "shichi": {
1253        "_sici.pxd": {
1254            "cshichi": "D*DD->*i"
1255        },
1256        "cephes.h": {
1257            "shichi": "d*dd->*i"
1258        }
1259    },
1260    "sici": {
1261        "_sici.pxd": {
1262            "csici": "D*DD->*i"
1263        },
1264        "cephes.h": {
1265            "sici": "d*dd->*i"
1266        }
1267    },
1268    "sindg": {
1269        "cephes.h": {
1270            "sindg": "d->d"
1271        }
1272    },
1273    "smirnov": {
1274        "_legacy.pxd": {
1275            "smirnov_unsafe": "dd->d"
1276        },
1277        "cephes.h": {
1278            "smirnov": "id->d"
1279        }
1280    },
1281    "_smirnovc": {
1282        "_legacy.pxd": {
1283            "smirnovc_unsafe": "dd->d"
1284        },
1285        "cephes.h": {
1286            "smirnovc": "id->d"
1287        }
1288    },
1289    "_smirnovci": {
1290        "_legacy.pxd": {
1291            "smirnovci_unsafe": "dd->d"
1292        },
1293        "cephes.h": {
1294            "smirnovci": "id->d"
1295        }
1296    },
1297    "smirnovi": {
1298        "_legacy.pxd": {
1299            "smirnovi_unsafe": "dd->d"
1300        },
1301        "cephes.h": {
1302            "smirnovi": "id->d"
1303        }
1304    },
1305    "_smirnovp": {
1306        "_legacy.pxd": {
1307            "smirnovp_unsafe": "dd->d"
1308        },
1309        "cephes.h": {
1310            "smirnovp": "id->d"
1311        }
1312    },
1313    "spence": {
1314        "_spence.pxd": {
1315            "cspence": "D-> D"
1316        },
1317        "cephes.h": {
1318            "spence": "d->d"
1319        }
1320    },
1321    "sph_harm": {
1322        "_legacy.pxd": {
1323            "sph_harmonic_unsafe": "dddd->D"
1324        },
1325        "sph_harm.pxd": {
1326            "sph_harmonic": "iidd->D"
1327        }
1328    },
1329    "stdtr": {
1330        "cdf_wrappers.h": {
1331            "cdft1_wrap": "dd->d"
1332        }
1333    },
1334    "stdtridf": {
1335        "cdf_wrappers.h": {
1336            "cdft3_wrap": "dd->d"
1337        }
1338    },
1339    "stdtrit": {
1340        "cdf_wrappers.h": {
1341            "cdft2_wrap": "dd->d"
1342        }
1343    },
1344    "struve": {
1345        "cephes.h": {
1346            "struve_h": "dd->d"
1347        }
1348    },
1349    "tandg": {
1350        "cephes.h": {
1351            "tandg": "d->d"
1352        }
1353    },
1354    "tklmbda": {
1355        "cdf_wrappers.h": {
1356            "tukeylambdacdf": "dd->d"
1357        }
1358    },
1359    "wofz": {
1360        "_faddeeva.h++": {
1361            "faddeeva_w": "D->D"
1362        }
1363    },
1364    "wrightomega": {
1365        "_wright.h++": {
1366            "wrightomega": "D->D",
1367            "wrightomega_real": "d->d"
1368        }
1369    },
1370    "xlog1py": {
1371        "_xlogy.pxd": {
1372            "xlog1py[double]": "dd->d",
1373            "xlog1py[double_complex]": "DD->D"
1374        }
1375    },
1376    "xlogy": {
1377        "_xlogy.pxd": {
1378            "xlogy[double]": "dd->d",
1379            "xlogy[double_complex]": "DD->D"
1380        }
1381    },
1382    "y0": {
1383        "cephes.h": {
1384            "y0": "d->d"
1385        }
1386    },
1387    "y1": {
1388        "cephes.h": {
1389            "y1": "d->d"
1390        }
1391    },
1392    "yn": {
1393        "_legacy.pxd": {
1394            "yn_unsafe": "dd->d"
1395        },
1396        "cephes.h": {
1397            "yn": "id->d"
1398        }
1399    },
1400    "yv": {
1401        "amos_wrappers.h": {
1402            "cbesy_wrap": "dD->D",
1403            "cbesy_wrap_real": "dd->d"
1404        }
1405    },
1406    "yve": {
1407        "amos_wrappers.h": {
1408            "cbesy_wrap_e": "dD->D",
1409            "cbesy_wrap_e_real": "dd->d"
1410        }
1411    },
1412    "zetac": {
1413        "cephes.h": {
1414            "zetac": "d->d"
1415        }
1416    },
1417    "_riemann_zeta": {
1418        "cephes.h": {
1419            "riemann_zeta": "d->d"
1420        }
1421    },
1422    "wright_bessel": {
1423        "_wright_bessel.pxd": {
1424            "wright_bessel_scalar": "ddd->d"
1425        }
1426    },
1427    "ndtri_exp": {
1428	"_ndtri_exp.pxd": {
1429	    "ndtri_exp": "d->d"
1430	}
1431    }
1432}
1433