1{ 2 "_cosine_cdf": { 3 "_cosine.h": { 4 "cosine_cdf": "d->d" 5 } 6 }, 7 "_cosine_invcdf": { 8 "_cosine.h": { 9 "cosine_invcdf": "d->d" 10 } 11 }, 12 "_cospi": { 13 "cephes.h": { 14 "cospi": "d->d" 15 }, 16 "_trig.pxd": { 17 "ccospi": "D->D" 18 } 19 }, 20 "_ellip_harm": { 21 "_ellip_harm.pxd": { 22 "ellip_harmonic": "ddiiddd->d" 23 }, 24 "_legacy.pxd": { 25 "ellip_harmonic_unsafe": "ddddddd->d" 26 } 27 }, 28 "_igam_fac": { 29 "cephes.h": { 30 "igam_fac": "dd->d" 31 } 32 }, 33 "_lambertw": { 34 "_lambertw.pxd": { 35 "lambertw_scalar": "Dld->D" 36 } 37 }, 38 "_lanczos_sum_expg_scaled": { 39 "cephes.h": { 40 "lanczos_sum_expg_scaled": "d->d" 41 } 42 }, 43 "_lgam1p": { 44 "cephes.h": { 45 "lgam1p": "d->d" 46 } 47 }, 48 "_log1pmx": { 49 "cephes.h": { 50 "log1pmx": "d->d" 51 } 52 }, 53 "_sf_error_test_function": { 54 "sf_error.pxd": { 55 "_sf_error_test_function": "i->i" 56 } 57 }, 58 "_sinpi": { 59 "cephes.h": { 60 "sinpi": "d->d" 61 }, 62 "_trig.pxd": { 63 "csinpi": "D->D" 64 } 65 }, 66 "_spherical_in": { 67 "_spherical_bessel.pxd": { 68 "spherical_in_complex": "lD->D", 69 "spherical_in_real": "ld->d" 70 } 71 }, 72 "_spherical_in_d": { 73 "_spherical_bessel.pxd": { 74 "spherical_in_d_complex": "lD->D", 75 "spherical_in_d_real": "ld->d" 76 } 77 }, 78 "_spherical_jn": { 79 "_spherical_bessel.pxd": { 80 "spherical_jn_complex": "lD->D", 81 "spherical_jn_real": "ld->d" 82 } 83 }, 84 "_spherical_jn_d": { 85 "_spherical_bessel.pxd": { 86 "spherical_jn_d_complex": "lD->D", 87 "spherical_jn_d_real": "ld->d" 88 } 89 }, 90 "_spherical_kn": { 91 "_spherical_bessel.pxd": { 92 "spherical_kn_complex": "lD->D", 93 "spherical_kn_real": "ld->d" 94 } 95 }, 96 "_spherical_kn_d": { 97 "_spherical_bessel.pxd": { 98 "spherical_kn_d_complex": "lD->D", 99 "spherical_kn_d_real": "ld->d" 100 } 101 }, 102 "_spherical_yn": { 103 "_spherical_bessel.pxd": { 104 "spherical_yn_complex": "lD->D", 105 "spherical_yn_real": "ld->d" 106 } 107 }, 108 "_spherical_yn_d": { 109 "_spherical_bessel.pxd": { 110 "spherical_yn_d_complex": "lD->D", 111 "spherical_yn_d_real": "ld->d" 112 } 113 }, 114 "_struve_asymp_large_z": { 115 "cephes.h": { 116 "struve_asymp_large_z": "ddi*d->d" 117 } 118 }, 119 "_struve_bessel_series": { 120 "cephes.h": { 121 "struve_bessel_series": "ddi*d->d" 122 } 123 }, 124 "_struve_power_series": { 125 "cephes.h": { 126 "struve_power_series": "ddi*d->d" 127 } 128 }, 129 "voigt_profile" : { 130 "_faddeeva.h++" : { 131 "faddeeva_voigt_profile": "ddd->d" 132 } 133 }, 134 "_zeta": { 135 "cephes.h": { 136 "zeta": "dd->d" 137 } 138 }, 139 "agm": { 140 "_agm.pxd": { 141 "agm": "dd->d" 142 } 143 }, 144 "airy": { 145 "amos_wrappers.h": { 146 "airy_wrap": "d*dddd->*i", 147 "cairy_wrap": "D*DDDD->*i" 148 } 149 }, 150 "airye": { 151 "amos_wrappers.h": { 152 "cairy_wrap_e": "D*DDDD->*i", 153 "cairy_wrap_e_real": "d*dddd->*i" 154 } 155 }, 156 "bdtr": { 157 "_legacy.pxd": { 158 "bdtr_unsafe": "ddd->d" 159 }, 160 "cephes.h": { 161 "bdtr": "did->d" 162 } 163 }, 164 "bdtrc": { 165 "_legacy.pxd": { 166 "bdtrc_unsafe": "ddd->d" 167 }, 168 "cephes.h": { 169 "bdtrc": "did->d" 170 } 171 }, 172 "bdtri": { 173 "_legacy.pxd": { 174 "bdtri_unsafe": "ddd->d" 175 }, 176 "cephes.h": { 177 "bdtri": "did->d" 178 } 179 }, 180 "bdtrik": { 181 "cdf_wrappers.h": { 182 "cdfbin2_wrap": "ddd->d" 183 } 184 }, 185 "bdtrin": { 186 "cdf_wrappers.h": { 187 "cdfbin3_wrap": "ddd->d" 188 } 189 }, 190 "bei": { 191 "specfun_wrappers.h": { 192 "bei_wrap": "d->d" 193 } 194 }, 195 "beip": { 196 "specfun_wrappers.h": { 197 "beip_wrap": "d->d" 198 } 199 }, 200 "ber": { 201 "specfun_wrappers.h": { 202 "ber_wrap": "d->d" 203 } 204 }, 205 "berp": { 206 "specfun_wrappers.h": { 207 "berp_wrap": "d->d" 208 } 209 }, 210 "besselpoly": { 211 "cephes.h": { 212 "besselpoly": "ddd->d" 213 } 214 }, 215 "beta": { 216 "cephes.h": { 217 "beta": "dd->d" 218 } 219 }, 220 "betainc": { 221 "cephes.h": { 222 "incbet": "ddd->d" 223 } 224 }, 225 "betaincinv": { 226 "cephes.h": { 227 "incbi": "ddd->d" 228 } 229 }, 230 "betaln": { 231 "cephes.h": { 232 "lbeta": "dd->d" 233 } 234 }, 235 "binom": { 236 "orthogonal_eval.pxd": { 237 "binom": "dd->d" 238 } 239 }, 240 "boxcox": { 241 "_boxcox.pxd": { 242 "boxcox": "dd->d" 243 } 244 }, 245 "boxcox1p": { 246 "_boxcox.pxd": { 247 "boxcox1p": "dd->d" 248 } 249 }, 250 "btdtr": { 251 "cephes.h": { 252 "btdtr": "ddd->d" 253 } 254 }, 255 "btdtri": { 256 "cephes.h": { 257 "incbi": "ddd->d" 258 } 259 }, 260 "btdtria": { 261 "cdf_wrappers.h": { 262 "cdfbet3_wrap": "ddd->d" 263 } 264 }, 265 "btdtrib": { 266 "cdf_wrappers.h": { 267 "cdfbet4_wrap": "ddd->d" 268 } 269 }, 270 "cbrt": { 271 "cephes.h": { 272 "cbrt": "d->d" 273 } 274 }, 275 "chdtr": { 276 "cephes.h": { 277 "chdtr": "dd->d" 278 } 279 }, 280 "chdtrc": { 281 "cephes.h": { 282 "chdtrc": "dd->d" 283 } 284 }, 285 "chdtri": { 286 "cephes.h": { 287 "chdtri": "dd->d" 288 } 289 }, 290 "chdtriv": { 291 "cdf_wrappers.h": { 292 "cdfchi3_wrap": "dd->d" 293 } 294 }, 295 "chndtr": { 296 "cdf_wrappers.h": { 297 "cdfchn1_wrap": "ddd->d" 298 } 299 }, 300 "chndtridf": { 301 "cdf_wrappers.h": { 302 "cdfchn3_wrap": "ddd->d" 303 } 304 }, 305 "chndtrinc": { 306 "cdf_wrappers.h": { 307 "cdfchn4_wrap": "ddd->d" 308 } 309 }, 310 "chndtrix": { 311 "cdf_wrappers.h": { 312 "cdfchn2_wrap": "ddd->d" 313 } 314 }, 315 "cosdg": { 316 "cephes.h": { 317 "cosdg": "d->d" 318 } 319 }, 320 "cosm1": { 321 "cephes.h": { 322 "cosm1": "d->d" 323 } 324 }, 325 "cotdg": { 326 "cephes.h": { 327 "cotdg": "d->d" 328 } 329 }, 330 "dawsn": { 331 "_faddeeva.h++": { 332 "faddeeva_dawsn": "d->d", 333 "faddeeva_dawsn_complex": "D->D" 334 } 335 }, 336 "ellipe": { 337 "cephes.h": { 338 "ellpe": "d->d" 339 } 340 }, 341 "ellipeinc": { 342 "cephes.h": { 343 "ellie": "dd->d" 344 } 345 }, 346 "ellipj": { 347 "cephes.h": { 348 "ellpj": "dd*dddd->*i" 349 } 350 }, 351 "ellipkinc": { 352 "cephes.h": { 353 "ellik": "dd->d" 354 } 355 }, 356 "ellipkm1": { 357 "cephes.h": { 358 "ellpk": "d->d" 359 } 360 }, 361 "ellipk": { 362 "_ellipk.pxd": { 363 "ellipk": "d->d" 364 } 365 }, 366 "_factorial": { 367 "_factorial.pxd": { 368 "_factorial": "d->d" 369 } 370 }, 371 "entr": { 372 "_convex_analysis.pxd": { 373 "entr": "d->d" 374 } 375 }, 376 "erf": { 377 "_faddeeva.h++": { 378 "faddeeva_erf": "D->D" 379 }, 380 "cephes.h": { 381 "erf": "d->d" 382 } 383 }, 384 "erfc": { 385 "_faddeeva.h++": { 386 "faddeeva_erfc": "D->D" 387 }, 388 "cephes.h": { 389 "erfc": "d->d" 390 } 391 }, 392 "erfcx": { 393 "_faddeeva.h++": { 394 "faddeeva_erfcx": "d->d", 395 "faddeeva_erfcx_complex": "D->D" 396 } 397 }, 398 "erfi": { 399 "_faddeeva.h++": { 400 "faddeeva_erfi": "d->d", 401 "faddeeva_erfi_complex": "D->D" 402 } 403 }, 404 "erfinv": { 405 "cephes.h": { 406 "erfinv": "d->d" 407 } 408 }, 409 "erfcinv": { 410 "cephes.h": { 411 "erfcinv": "d->d" 412 } 413 }, 414 "eval_chebyc": { 415 "orthogonal_eval.pxd": { 416 "eval_chebyc[double complex]": "dD->D", 417 "eval_chebyc[double]": "dd->d", 418 "eval_chebyc_l": "ld->d" 419 } 420 }, 421 "eval_chebys": { 422 "orthogonal_eval.pxd": { 423 "eval_chebys[double complex]": "dD->D", 424 "eval_chebys[double]": "dd->d", 425 "eval_chebys_l": "ld->d" 426 } 427 }, 428 "eval_chebyt": { 429 "orthogonal_eval.pxd": { 430 "eval_chebyt[double complex]": "dD->D", 431 "eval_chebyt[double]": "dd->d", 432 "eval_chebyt_l": "ld->d" 433 } 434 }, 435 "eval_chebyu": { 436 "orthogonal_eval.pxd": { 437 "eval_chebyu[double complex]": "dD->D", 438 "eval_chebyu[double]": "dd->d", 439 "eval_chebyu_l": "ld->d" 440 } 441 }, 442 "eval_gegenbauer": { 443 "orthogonal_eval.pxd": { 444 "eval_gegenbauer[double complex]": "ddD->D", 445 "eval_gegenbauer[double]": "ddd->d", 446 "eval_gegenbauer_l": "ldd->d" 447 } 448 }, 449 "eval_genlaguerre": { 450 "orthogonal_eval.pxd": { 451 "eval_genlaguerre[double complex]": "ddD->D", 452 "eval_genlaguerre[double]": "ddd->d", 453 "eval_genlaguerre_l": "ldd->d" 454 } 455 }, 456 "eval_hermite": { 457 "orthogonal_eval.pxd": { 458 "eval_hermite": "ld->d" 459 } 460 }, 461 "eval_hermitenorm": { 462 "orthogonal_eval.pxd": { 463 "eval_hermitenorm": "ld->d" 464 } 465 }, 466 "eval_jacobi": { 467 "orthogonal_eval.pxd": { 468 "eval_jacobi[double complex]": "dddD->D", 469 "eval_jacobi[double]": "dddd->d", 470 "eval_jacobi_l": "lddd->d" 471 } 472 }, 473 "eval_laguerre": { 474 "orthogonal_eval.pxd": { 475 "eval_laguerre[double complex]": "dD->D", 476 "eval_laguerre[double]": "dd->d", 477 "eval_laguerre_l": "ld->d" 478 } 479 }, 480 "eval_legendre": { 481 "orthogonal_eval.pxd": { 482 "eval_legendre[double complex]": "dD->D", 483 "eval_legendre[double]": "dd->d", 484 "eval_legendre_l": "ld->d" 485 } 486 }, 487 "eval_sh_chebyt": { 488 "orthogonal_eval.pxd": { 489 "eval_sh_chebyt[double complex]": "dD->D", 490 "eval_sh_chebyt[double]": "dd->d", 491 "eval_sh_chebyt_l": "ld->d" 492 } 493 }, 494 "eval_sh_chebyu": { 495 "orthogonal_eval.pxd": { 496 "eval_sh_chebyu[double complex]": "dD->D", 497 "eval_sh_chebyu[double]": "dd->d", 498 "eval_sh_chebyu_l": "ld->d" 499 } 500 }, 501 "eval_sh_jacobi": { 502 "orthogonal_eval.pxd": { 503 "eval_sh_jacobi[double complex]": "dddD->D", 504 "eval_sh_jacobi[double]": "dddd->d", 505 "eval_sh_jacobi_l": "lddd->d" 506 } 507 }, 508 "eval_sh_legendre": { 509 "orthogonal_eval.pxd": { 510 "eval_sh_legendre[double complex]": "dD->D", 511 "eval_sh_legendre[double]": "dd->d", 512 "eval_sh_legendre_l": "ld->d" 513 } 514 }, 515 "exp1": { 516 "specfun_wrappers.h": { 517 "cexp1_wrap": "D->D", 518 "exp1_wrap": "d->d" 519 } 520 }, 521 "exp10": { 522 "cephes.h": { 523 "exp10": "d->d" 524 } 525 }, 526 "exp2": { 527 "cephes.h": { 528 "exp2": "d->d" 529 } 530 }, 531 "expi": { 532 "specfun_wrappers.h": { 533 "cexpi_wrap": "D->D", 534 "expi_wrap": "d->d" 535 } 536 }, 537 "expit": { 538 "_logit.h++": { 539 "expit": "d->d", 540 "expitf": "f->f", 541 "expitl": "g->g" 542 } 543 }, 544 "expm1": { 545 "_cunity.pxd": { 546 "cexpm1": "D->D" 547 }, 548 "cephes.h": { 549 "expm1": "d->d" 550 } 551 }, 552 "expn": { 553 "_legacy.pxd": { 554 "expn_unsafe": "dd->d" 555 }, 556 "cephes.h": { 557 "expn": "id->d" 558 } 559 }, 560 "exprel": { 561 "_exprel.pxd": { 562 "exprel": "d->d" 563 } 564 }, 565 "fdtr": { 566 "cephes.h": { 567 "fdtr": "ddd->d" 568 } 569 }, 570 "fdtrc": { 571 "cephes.h": { 572 "fdtrc": "ddd->d" 573 } 574 }, 575 "fdtri": { 576 "cephes.h": { 577 "fdtri": "ddd->d" 578 } 579 }, 580 "fdtridfd": { 581 "cdf_wrappers.h": { 582 "cdff4_wrap": "ddd->d" 583 } 584 }, 585 "fresnel": { 586 "cephes.h": { 587 "fresnl": "d*dd->*i" 588 }, 589 "specfun_wrappers.h": { 590 "cfresnl_wrap": "D*DD->*i" 591 } 592 }, 593 "gamma": { 594 "_loggamma.pxd": { 595 "cgamma": "D->D" 596 }, 597 "cephes.h": { 598 "Gamma": "d->d" 599 } 600 }, 601 "gammainc": { 602 "cephes.h": { 603 "igam": "dd->d" 604 } 605 }, 606 "gammaincc": { 607 "cephes.h": { 608 "igamc": "dd->d" 609 } 610 }, 611 "gammainccinv": { 612 "cephes.h": { 613 "igamci": "dd->d" 614 } 615 }, 616 "gammaincinv": { 617 "cephes.h": { 618 "igami": "dd->d" 619 } 620 }, 621 "gammaln": { 622 "cephes.h": { 623 "lgam": "d->d" 624 } 625 }, 626 "gammasgn": { 627 "cephes.h": { 628 "gammasgn": "d->d" 629 } 630 }, 631 "gdtr": { 632 "cephes.h": { 633 "gdtr": "ddd->d" 634 } 635 }, 636 "gdtrc": { 637 "cephes.h": { 638 "gdtrc": "ddd->d" 639 } 640 }, 641 "gdtria": { 642 "cdf_wrappers.h": { 643 "cdfgam4_wrap": "ddd->d" 644 } 645 }, 646 "gdtrib": { 647 "cdf_wrappers.h": { 648 "cdfgam3_wrap": "ddd->d" 649 } 650 }, 651 "gdtrix": { 652 "cdf_wrappers.h": { 653 "cdfgam2_wrap": "ddd->d" 654 } 655 }, 656 "hankel1": { 657 "amos_wrappers.h": { 658 "cbesh_wrap1": "dD->D" 659 } 660 }, 661 "hankel1e": { 662 "amos_wrappers.h": { 663 "cbesh_wrap1_e": "dD->D" 664 } 665 }, 666 "hankel2": { 667 "amos_wrappers.h": { 668 "cbesh_wrap2": "dD->D" 669 } 670 }, 671 "hankel2e": { 672 "amos_wrappers.h": { 673 "cbesh_wrap2_e": "dD->D" 674 } 675 }, 676 "huber": { 677 "_convex_analysis.pxd": { 678 "huber": "dd->d" 679 } 680 }, 681 "hyp0f1": { 682 "_hyp0f1.pxd": { 683 "_hyp0f1_cmplx": "dD->D", 684 "_hyp0f1_real": "dd->d" 685 } 686 }, 687 "hyp1f1": { 688 "_hypergeometric.pxd": { 689 "hyp1f1": "ddd->d" 690 }, 691 "specfun_wrappers.h": { 692 "chyp1f1_wrap": "ddD->D" 693 } 694 }, 695 "hyp2f1": { 696 "cephes.h": { 697 "hyp2f1": "dddd->d" 698 }, 699 "specfun_wrappers.h": { 700 "chyp2f1_wrap": "dddD->D" 701 } 702 }, 703 "hyperu": { 704 "_hypergeometric.pxd": { 705 "hyperu": "ddd->d" 706 } 707 }, 708 "i0": { 709 "cephes.h": { 710 "i0": "d->d" 711 } 712 }, 713 "i0e": { 714 "cephes.h": { 715 "i0e": "d->d" 716 } 717 }, 718 "i1": { 719 "cephes.h": { 720 "i1": "d->d" 721 } 722 }, 723 "i1e": { 724 "cephes.h": { 725 "i1e": "d->d" 726 } 727 }, 728 "inv_boxcox": { 729 "_boxcox.pxd": { 730 "inv_boxcox": "dd->d" 731 } 732 }, 733 "inv_boxcox1p": { 734 "_boxcox.pxd": { 735 "inv_boxcox1p": "dd->d" 736 } 737 }, 738 "it2i0k0": { 739 "specfun_wrappers.h": { 740 "it2i0k0_wrap": "d*dd->*i" 741 } 742 }, 743 "it2j0y0": { 744 "specfun_wrappers.h": { 745 "it2j0y0_wrap": "d*dd->*i" 746 } 747 }, 748 "it2struve0": { 749 "specfun_wrappers.h": { 750 "it2struve0_wrap": "d->d" 751 } 752 }, 753 "itairy": { 754 "specfun_wrappers.h": { 755 "itairy_wrap": "d*dddd->*i" 756 } 757 }, 758 "iti0k0": { 759 "specfun_wrappers.h": { 760 "it1i0k0_wrap": "d*dd->*i" 761 } 762 }, 763 "itj0y0": { 764 "specfun_wrappers.h": { 765 "it1j0y0_wrap": "d*dd->*i" 766 } 767 }, 768 "itmodstruve0": { 769 "specfun_wrappers.h": { 770 "itmodstruve0_wrap": "d->d" 771 } 772 }, 773 "itstruve0": { 774 "specfun_wrappers.h": { 775 "itstruve0_wrap": "d->d" 776 } 777 }, 778 "iv": { 779 "amos_wrappers.h": { 780 "cbesi_wrap": "dD->D" 781 }, 782 "cephes.h": { 783 "iv": "dd->d" 784 } 785 }, 786 "ive": { 787 "amos_wrappers.h": { 788 "cbesi_wrap_e": "dD->D", 789 "cbesi_wrap_e_real": "dd->d" 790 } 791 }, 792 "j0": { 793 "cephes.h": { 794 "j0": "d->d" 795 } 796 }, 797 "j1": { 798 "cephes.h": { 799 "j1": "d->d" 800 } 801 }, 802 "jv": { 803 "amos_wrappers.h": { 804 "cbesj_wrap": "dD->D", 805 "cbesj_wrap_real": "dd->d" 806 } 807 }, 808 "jve": { 809 "amos_wrappers.h": { 810 "cbesj_wrap_e": "dD->D", 811 "cbesj_wrap_e_real": "dd->d" 812 } 813 }, 814 "k0": { 815 "cephes.h": { 816 "k0": "d->d" 817 } 818 }, 819 "k0e": { 820 "cephes.h": { 821 "k0e": "d->d" 822 } 823 }, 824 "k1": { 825 "cephes.h": { 826 "k1": "d->d" 827 } 828 }, 829 "k1e": { 830 "cephes.h": { 831 "k1e": "d->d" 832 } 833 }, 834 "kei": { 835 "specfun_wrappers.h": { 836 "kei_wrap": "d->d" 837 } 838 }, 839 "keip": { 840 "specfun_wrappers.h": { 841 "keip_wrap": "d->d" 842 } 843 }, 844 "kelvin": { 845 "specfun_wrappers.h": { 846 "kelvin_wrap": "d*DDDD->*i" 847 } 848 }, 849 "ker": { 850 "specfun_wrappers.h": { 851 "ker_wrap": "d->d" 852 } 853 }, 854 "kerp": { 855 "specfun_wrappers.h": { 856 "kerp_wrap": "d->d" 857 } 858 }, 859 "kl_div": { 860 "_convex_analysis.pxd": { 861 "kl_div": "dd->d" 862 } 863 }, 864 "kn": { 865 "_legacy.pxd": { 866 "kn_unsafe": "dd->d" 867 }, 868 "cephes.h": { 869 "cbesk_wrap_real_int": "id->d" 870 } 871 }, 872 "_kolmogc": { 873 "cephes.h": { 874 "kolmogc": "d->d" 875 } 876 }, 877 "_kolmogci": { 878 "cephes.h": { 879 "kolmogci": "d->d" 880 } 881 }, 882 "kolmogi": { 883 "cephes.h": { 884 "kolmogi": "d->d" 885 } 886 }, 887 "_kolmogp": { 888 "cephes.h": { 889 "kolmogp": "d->d" 890 } 891 }, 892 "kolmogorov": { 893 "cephes.h": { 894 "kolmogorov": "d->d" 895 } 896 }, 897 "kv": { 898 "amos_wrappers.h": { 899 "cbesk_wrap": "dD->D", 900 "cbesk_wrap_real": "dd->d" 901 } 902 }, 903 "kve": { 904 "amos_wrappers.h": { 905 "cbesk_wrap_e": "dD->D", 906 "cbesk_wrap_e_real": "dd->d" 907 } 908 }, 909 "log1p": { 910 "_cunity.pxd": { 911 "clog1p": "D->D" 912 }, 913 "cephes.h": { 914 "log1p": "d->d" 915 } 916 }, 917 "log_ndtr": { 918 "_faddeeva.h++": { 919 "faddeeva_log_ndtr": "D->D" 920 }, 921 "cephes.h": { 922 "log_ndtr": "d->d" 923 } 924 }, 925 "loggamma": { 926 "_loggamma.pxd": { 927 "loggamma_real": "d->d", 928 "loggamma": "D->D" 929 } 930 }, 931 "logit": { 932 "_logit.h++": { 933 "logit": "d->d", 934 "logitf": "f->f", 935 "logitl": "g->g" 936 } 937 }, 938 "lpmv": { 939 "specfun_wrappers.h": { 940 "pmv_wrap": "ddd->d" 941 } 942 }, 943 "mathieu_a": { 944 "specfun_wrappers.h": { 945 "cem_cva_wrap": "dd->d" 946 } 947 }, 948 "mathieu_b": { 949 "specfun_wrappers.h": { 950 "sem_cva_wrap": "dd->d" 951 } 952 }, 953 "mathieu_cem": { 954 "specfun_wrappers.h": { 955 "cem_wrap": "ddd*dd->*i" 956 } 957 }, 958 "mathieu_modcem1": { 959 "specfun_wrappers.h": { 960 "mcm1_wrap": "ddd*dd->*i" 961 } 962 }, 963 "mathieu_modcem2": { 964 "specfun_wrappers.h": { 965 "mcm2_wrap": "ddd*dd->*i" 966 } 967 }, 968 "mathieu_modsem1": { 969 "specfun_wrappers.h": { 970 "msm1_wrap": "ddd*dd->*i" 971 } 972 }, 973 "mathieu_modsem2": { 974 "specfun_wrappers.h": { 975 "msm2_wrap": "ddd*dd->*i" 976 } 977 }, 978 "mathieu_sem": { 979 "specfun_wrappers.h": { 980 "sem_wrap": "ddd*dd->*i" 981 } 982 }, 983 "modfresnelm": { 984 "specfun_wrappers.h": { 985 "modified_fresnel_minus_wrap": "d*DD->*i" 986 } 987 }, 988 "modfresnelp": { 989 "specfun_wrappers.h": { 990 "modified_fresnel_plus_wrap": "d*DD->*i" 991 } 992 }, 993 "modstruve": { 994 "cephes.h": { 995 "struve_l": "dd->d" 996 } 997 }, 998 "nbdtr": { 999 "_legacy.pxd": { 1000 "nbdtr_unsafe": "ddd->d" 1001 }, 1002 "cephes.h": { 1003 "nbdtr": "iid->d" 1004 } 1005 }, 1006 "nbdtrc": { 1007 "_legacy.pxd": { 1008 "nbdtrc_unsafe": "ddd->d" 1009 }, 1010 "cephes.h": { 1011 "nbdtrc": "iid->d" 1012 } 1013 }, 1014 "nbdtri": { 1015 "_legacy.pxd": { 1016 "nbdtri_unsafe": "ddd->d" 1017 }, 1018 "cephes.h": { 1019 "nbdtri": "iid->d" 1020 } 1021 }, 1022 "nbdtrik": { 1023 "cdf_wrappers.h": { 1024 "cdfnbn2_wrap": "ddd->d" 1025 } 1026 }, 1027 "nbdtrin": { 1028 "cdf_wrappers.h": { 1029 "cdfnbn3_wrap": "ddd->d" 1030 } 1031 }, 1032 "ncfdtr": { 1033 "cdf_wrappers.h": { 1034 "cdffnc1_wrap": "dddd->d" 1035 } 1036 }, 1037 "ncfdtri": { 1038 "cdf_wrappers.h": { 1039 "cdffnc2_wrap": "dddd->d" 1040 } 1041 }, 1042 "ncfdtridfd": { 1043 "cdf_wrappers.h": { 1044 "cdffnc4_wrap": "dddd->d" 1045 } 1046 }, 1047 "ncfdtridfn": { 1048 "cdf_wrappers.h": { 1049 "cdffnc3_wrap": "dddd->d" 1050 } 1051 }, 1052 "ncfdtrinc": { 1053 "cdf_wrappers.h": { 1054 "cdffnc5_wrap": "dddd->d" 1055 } 1056 }, 1057 "nctdtr": { 1058 "cdf_wrappers.h": { 1059 "cdftnc1_wrap": "ddd->d" 1060 } 1061 }, 1062 "nctdtridf": { 1063 "cdf_wrappers.h": { 1064 "cdftnc3_wrap": "ddd->d" 1065 } 1066 }, 1067 "nctdtrinc": { 1068 "cdf_wrappers.h": { 1069 "cdftnc4_wrap": "ddd->d" 1070 } 1071 }, 1072 "nctdtrit": { 1073 "cdf_wrappers.h": { 1074 "cdftnc2_wrap": "ddd->d" 1075 } 1076 }, 1077 "ndtr": { 1078 "_faddeeva.h++": { 1079 "faddeeva_ndtr": "D->D" 1080 }, 1081 "cephes.h": { 1082 "ndtr": "d->d" 1083 } 1084 }, 1085 "ndtri": { 1086 "cephes.h": { 1087 "ndtri": "d->d" 1088 } 1089 }, 1090 "nrdtrimn": { 1091 "cdf_wrappers.h": { 1092 "cdfnor3_wrap": "ddd->d" 1093 } 1094 }, 1095 "nrdtrisd": { 1096 "cdf_wrappers.h": { 1097 "cdfnor4_wrap": "ddd->d" 1098 } 1099 }, 1100 "obl_ang1": { 1101 "specfun_wrappers.h": { 1102 "oblate_aswfa_nocv_wrap": "dddd*d->d" 1103 } 1104 }, 1105 "obl_ang1_cv": { 1106 "specfun_wrappers.h": { 1107 "oblate_aswfa_wrap": "ddddd*dd->*i" 1108 } 1109 }, 1110 "obl_cv": { 1111 "specfun_wrappers.h": { 1112 "oblate_segv_wrap": "ddd->d" 1113 } 1114 }, 1115 "obl_rad1": { 1116 "specfun_wrappers.h": { 1117 "oblate_radial1_nocv_wrap": "dddd*d->d" 1118 } 1119 }, 1120 "obl_rad1_cv": { 1121 "specfun_wrappers.h": { 1122 "oblate_radial1_wrap": "ddddd*dd->*i" 1123 } 1124 }, 1125 "obl_rad2": { 1126 "specfun_wrappers.h": { 1127 "oblate_radial2_nocv_wrap": "dddd*d->d" 1128 } 1129 }, 1130 "obl_rad2_cv": { 1131 "specfun_wrappers.h": { 1132 "oblate_radial2_wrap": "ddddd*dd->*i" 1133 } 1134 }, 1135 "owens_t": { 1136 "cephes.h": { 1137 "owens_t": "dd->d" 1138 } 1139 }, 1140 "pbdv": { 1141 "specfun_wrappers.h": { 1142 "pbdv_wrap": "dd*dd->*i" 1143 } 1144 }, 1145 "pbvv": { 1146 "specfun_wrappers.h": { 1147 "pbvv_wrap": "dd*dd->*i" 1148 } 1149 }, 1150 "pbwa": { 1151 "specfun_wrappers.h": { 1152 "pbwa_wrap": "dd*dd->*i" 1153 } 1154 }, 1155 "pdtr": { 1156 "cephes.h": { 1157 "pdtr": "dd->d" 1158 } 1159 }, 1160 "pdtrc": { 1161 "cephes.h": { 1162 "pdtrc": "dd->d" 1163 } 1164 }, 1165 "pdtri": { 1166 "_legacy.pxd": { 1167 "pdtri_unsafe": "dd->d" 1168 }, 1169 "cephes.h": { 1170 "pdtri": "id->d" 1171 } 1172 }, 1173 "pdtrik": { 1174 "cdf_wrappers.h": { 1175 "cdfpoi2_wrap": "dd->d" 1176 } 1177 }, 1178 "poch": { 1179 "cephes.h": { 1180 "poch": "dd->d" 1181 } 1182 }, 1183 "pro_ang1": { 1184 "specfun_wrappers.h": { 1185 "prolate_aswfa_nocv_wrap": "dddd*d->d" 1186 } 1187 }, 1188 "pro_ang1_cv": { 1189 "specfun_wrappers.h": { 1190 "prolate_aswfa_wrap": "ddddd*dd->*i" 1191 } 1192 }, 1193 "pro_cv": { 1194 "specfun_wrappers.h": { 1195 "prolate_segv_wrap": "ddd->d" 1196 } 1197 }, 1198 "pro_rad1": { 1199 "specfun_wrappers.h": { 1200 "prolate_radial1_nocv_wrap": "dddd*d->d" 1201 } 1202 }, 1203 "pro_rad1_cv": { 1204 "specfun_wrappers.h": { 1205 "prolate_radial1_wrap": "ddddd*dd->*i" 1206 } 1207 }, 1208 "pro_rad2": { 1209 "specfun_wrappers.h": { 1210 "prolate_radial2_nocv_wrap": "dddd*d->d" 1211 } 1212 }, 1213 "pro_rad2_cv": { 1214 "specfun_wrappers.h": { 1215 "prolate_radial2_wrap": "ddddd*dd->*i" 1216 } 1217 }, 1218 "pseudo_huber": { 1219 "_convex_analysis.pxd": { 1220 "pseudo_huber": "dd->d" 1221 } 1222 }, 1223 "psi": { 1224 "_digamma.pxd": { 1225 "cdigamma": "D->D", 1226 "digamma": "d->d" 1227 } 1228 }, 1229 "radian": { 1230 "cephes.h": { 1231 "radian": "ddd->d" 1232 } 1233 }, 1234 "rel_entr": { 1235 "_convex_analysis.pxd": { 1236 "rel_entr": "dd->d" 1237 } 1238 }, 1239 "rgamma": { 1240 "_loggamma.pxd": { 1241 "crgamma": "D->D" 1242 }, 1243 "cephes.h": { 1244 "rgamma": "d->d" 1245 } 1246 }, 1247 "round": { 1248 "cephes.h": { 1249 "round": "d->d" 1250 } 1251 }, 1252 "shichi": { 1253 "_sici.pxd": { 1254 "cshichi": "D*DD->*i" 1255 }, 1256 "cephes.h": { 1257 "shichi": "d*dd->*i" 1258 } 1259 }, 1260 "sici": { 1261 "_sici.pxd": { 1262 "csici": "D*DD->*i" 1263 }, 1264 "cephes.h": { 1265 "sici": "d*dd->*i" 1266 } 1267 }, 1268 "sindg": { 1269 "cephes.h": { 1270 "sindg": "d->d" 1271 } 1272 }, 1273 "smirnov": { 1274 "_legacy.pxd": { 1275 "smirnov_unsafe": "dd->d" 1276 }, 1277 "cephes.h": { 1278 "smirnov": "id->d" 1279 } 1280 }, 1281 "_smirnovc": { 1282 "_legacy.pxd": { 1283 "smirnovc_unsafe": "dd->d" 1284 }, 1285 "cephes.h": { 1286 "smirnovc": "id->d" 1287 } 1288 }, 1289 "_smirnovci": { 1290 "_legacy.pxd": { 1291 "smirnovci_unsafe": "dd->d" 1292 }, 1293 "cephes.h": { 1294 "smirnovci": "id->d" 1295 } 1296 }, 1297 "smirnovi": { 1298 "_legacy.pxd": { 1299 "smirnovi_unsafe": "dd->d" 1300 }, 1301 "cephes.h": { 1302 "smirnovi": "id->d" 1303 } 1304 }, 1305 "_smirnovp": { 1306 "_legacy.pxd": { 1307 "smirnovp_unsafe": "dd->d" 1308 }, 1309 "cephes.h": { 1310 "smirnovp": "id->d" 1311 } 1312 }, 1313 "spence": { 1314 "_spence.pxd": { 1315 "cspence": "D-> D" 1316 }, 1317 "cephes.h": { 1318 "spence": "d->d" 1319 } 1320 }, 1321 "sph_harm": { 1322 "_legacy.pxd": { 1323 "sph_harmonic_unsafe": "dddd->D" 1324 }, 1325 "sph_harm.pxd": { 1326 "sph_harmonic": "iidd->D" 1327 } 1328 }, 1329 "stdtr": { 1330 "cdf_wrappers.h": { 1331 "cdft1_wrap": "dd->d" 1332 } 1333 }, 1334 "stdtridf": { 1335 "cdf_wrappers.h": { 1336 "cdft3_wrap": "dd->d" 1337 } 1338 }, 1339 "stdtrit": { 1340 "cdf_wrappers.h": { 1341 "cdft2_wrap": "dd->d" 1342 } 1343 }, 1344 "struve": { 1345 "cephes.h": { 1346 "struve_h": "dd->d" 1347 } 1348 }, 1349 "tandg": { 1350 "cephes.h": { 1351 "tandg": "d->d" 1352 } 1353 }, 1354 "tklmbda": { 1355 "cdf_wrappers.h": { 1356 "tukeylambdacdf": "dd->d" 1357 } 1358 }, 1359 "wofz": { 1360 "_faddeeva.h++": { 1361 "faddeeva_w": "D->D" 1362 } 1363 }, 1364 "wrightomega": { 1365 "_wright.h++": { 1366 "wrightomega": "D->D", 1367 "wrightomega_real": "d->d" 1368 } 1369 }, 1370 "xlog1py": { 1371 "_xlogy.pxd": { 1372 "xlog1py[double]": "dd->d", 1373 "xlog1py[double_complex]": "DD->D" 1374 } 1375 }, 1376 "xlogy": { 1377 "_xlogy.pxd": { 1378 "xlogy[double]": "dd->d", 1379 "xlogy[double_complex]": "DD->D" 1380 } 1381 }, 1382 "y0": { 1383 "cephes.h": { 1384 "y0": "d->d" 1385 } 1386 }, 1387 "y1": { 1388 "cephes.h": { 1389 "y1": "d->d" 1390 } 1391 }, 1392 "yn": { 1393 "_legacy.pxd": { 1394 "yn_unsafe": "dd->d" 1395 }, 1396 "cephes.h": { 1397 "yn": "id->d" 1398 } 1399 }, 1400 "yv": { 1401 "amos_wrappers.h": { 1402 "cbesy_wrap": "dD->D", 1403 "cbesy_wrap_real": "dd->d" 1404 } 1405 }, 1406 "yve": { 1407 "amos_wrappers.h": { 1408 "cbesy_wrap_e": "dD->D", 1409 "cbesy_wrap_e_real": "dd->d" 1410 } 1411 }, 1412 "zetac": { 1413 "cephes.h": { 1414 "zetac": "d->d" 1415 } 1416 }, 1417 "_riemann_zeta": { 1418 "cephes.h": { 1419 "riemann_zeta": "d->d" 1420 } 1421 }, 1422 "wright_bessel": { 1423 "_wright_bessel.pxd": { 1424 "wright_bessel_scalar": "ddd->d" 1425 } 1426 }, 1427 "ndtri_exp": { 1428 "_ndtri_exp.pxd": { 1429 "ndtri_exp": "d->d" 1430 } 1431 } 1432} 1433