xref: /openbsd/sys/dev/pci/if_iwn.c (revision 0f9891f1)
1 /*	$OpenBSD: if_iwn.c,v 1.263 2024/05/24 06:02:53 jsg Exp $	*/
2 
3 /*-
4  * Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  */
18 
19 /*
20  * Driver for Intel WiFi Link 4965 and 1000/5000/6000 Series 802.11 network
21  * adapters.
22  */
23 
24 #include "bpfilter.h"
25 
26 #include <sys/param.h>
27 #include <sys/sockio.h>
28 #include <sys/mbuf.h>
29 #include <sys/rwlock.h>
30 #include <sys/socket.h>
31 #include <sys/systm.h>
32 #include <sys/malloc.h>
33 #include <sys/device.h>
34 #include <sys/task.h>
35 #include <sys/endian.h>
36 
37 #include <machine/bus.h>
38 #include <machine/intr.h>
39 
40 #include <dev/pci/pcireg.h>
41 #include <dev/pci/pcivar.h>
42 #include <dev/pci/pcidevs.h>
43 
44 #if NBPFILTER > 0
45 #include <net/bpf.h>
46 #endif
47 #include <net/if.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/if_ether.h>
53 
54 #include <net80211/ieee80211_var.h>
55 #include <net80211/ieee80211_amrr.h>
56 #include <net80211/ieee80211_ra.h>
57 #include <net80211/ieee80211_radiotap.h>
58 #include <net80211/ieee80211_priv.h> /* for SEQ_LT */
59 #undef DPRINTF /* defined in ieee80211_priv.h */
60 
61 #include <dev/pci/if_iwnreg.h>
62 #include <dev/pci/if_iwnvar.h>
63 
64 static const struct pci_matchid iwn_devices[] = {
65 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_1 },
66 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_4965_2 },
67 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_1 },
68 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5100_2 },
69 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_1 },
70 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5150_2 },
71 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_1 },
72 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5300_2 },
73 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_1 },
74 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_5350_2 },
75 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_1 },
76 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1000_2 },
77 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_1 },
78 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6300_2 },
79 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_1 },
80 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6200_2 },
81 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_1 },
82 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6050_2 },
83 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_1 },
84 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6005_2 },
85 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_1 },
86 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6030_2 },
87 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_1 },
88 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_1030_2 },
89 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_1 },
90 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_100_2 },
91 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_1 },
92 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_130_2 },
93 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_1 },
94 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_6235_2 },
95 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_1 },
96 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2230_2 },
97 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_1 },
98 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_2200_2 },
99 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_1 },
100 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_135_2 },
101 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_1 },
102 	{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_WL_105_2 },
103 };
104 
105 int		iwn_match(struct device *, void *, void *);
106 void		iwn_attach(struct device *, struct device *, void *);
107 int		iwn4965_attach(struct iwn_softc *, pci_product_id_t);
108 int		iwn5000_attach(struct iwn_softc *, pci_product_id_t);
109 #if NBPFILTER > 0
110 void		iwn_radiotap_attach(struct iwn_softc *);
111 #endif
112 int		iwn_detach(struct device *, int);
113 int		iwn_activate(struct device *, int);
114 void		iwn_wakeup(struct iwn_softc *);
115 void		iwn_init_task(void *);
116 int		iwn_nic_lock(struct iwn_softc *);
117 int		iwn_eeprom_lock(struct iwn_softc *);
118 int		iwn_init_otprom(struct iwn_softc *);
119 int		iwn_read_prom_data(struct iwn_softc *, uint32_t, void *, int);
120 int		iwn_dma_contig_alloc(bus_dma_tag_t, struct iwn_dma_info *,
121 		    void **, bus_size_t, bus_size_t);
122 void		iwn_dma_contig_free(struct iwn_dma_info *);
123 int		iwn_alloc_sched(struct iwn_softc *);
124 void		iwn_free_sched(struct iwn_softc *);
125 int		iwn_alloc_kw(struct iwn_softc *);
126 void		iwn_free_kw(struct iwn_softc *);
127 int		iwn_alloc_ict(struct iwn_softc *);
128 void		iwn_free_ict(struct iwn_softc *);
129 int		iwn_alloc_fwmem(struct iwn_softc *);
130 void		iwn_free_fwmem(struct iwn_softc *);
131 int		iwn_alloc_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
132 void		iwn_reset_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
133 void		iwn_free_rx_ring(struct iwn_softc *, struct iwn_rx_ring *);
134 int		iwn_alloc_tx_ring(struct iwn_softc *, struct iwn_tx_ring *,
135 		    int);
136 void		iwn_reset_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
137 void		iwn_free_tx_ring(struct iwn_softc *, struct iwn_tx_ring *);
138 void		iwn5000_ict_reset(struct iwn_softc *);
139 int		iwn_read_eeprom(struct iwn_softc *);
140 void		iwn4965_read_eeprom(struct iwn_softc *);
141 void		iwn4965_print_power_group(struct iwn_softc *, int);
142 void		iwn5000_read_eeprom(struct iwn_softc *);
143 void		iwn_read_eeprom_channels(struct iwn_softc *, int, uint32_t);
144 void		iwn_read_eeprom_enhinfo(struct iwn_softc *);
145 struct		ieee80211_node *iwn_node_alloc(struct ieee80211com *);
146 void		iwn_newassoc(struct ieee80211com *, struct ieee80211_node *,
147 		    int);
148 int		iwn_media_change(struct ifnet *);
149 int		iwn_newstate(struct ieee80211com *, enum ieee80211_state, int);
150 void		iwn_iter_func(void *, struct ieee80211_node *);
151 void		iwn_calib_timeout(void *);
152 int		iwn_ccmp_decap(struct iwn_softc *, struct mbuf *,
153 		    struct ieee80211_node *);
154 void		iwn_rx_phy(struct iwn_softc *, struct iwn_rx_desc *,
155 		    struct iwn_rx_data *);
156 void		iwn_rx_done(struct iwn_softc *, struct iwn_rx_desc *,
157 		    struct iwn_rx_data *, struct mbuf_list *);
158 void		iwn_ra_choose(struct iwn_softc *, struct ieee80211_node *);
159 void		iwn_ampdu_rate_control(struct iwn_softc *, struct ieee80211_node *,
160 		    struct iwn_tx_ring *, uint16_t, uint16_t);
161 void		iwn_ht_single_rate_control(struct iwn_softc *,
162 		    struct ieee80211_node *, uint8_t, uint8_t, uint8_t, int);
163 void		iwn_rx_compressed_ba(struct iwn_softc *, struct iwn_rx_desc *,
164 		    struct iwn_rx_data *);
165 void		iwn5000_rx_calib_results(struct iwn_softc *,
166 		    struct iwn_rx_desc *, struct iwn_rx_data *);
167 void		iwn_rx_statistics(struct iwn_softc *, struct iwn_rx_desc *,
168 		    struct iwn_rx_data *);
169 void		iwn_ampdu_txq_advance(struct iwn_softc *, struct iwn_tx_ring *,
170 		    int, int);
171 void		iwn_ampdu_tx_done(struct iwn_softc *, struct iwn_tx_ring *,
172 		    struct iwn_rx_desc *, uint16_t, uint8_t, uint8_t, uint8_t,
173 		    int, uint32_t, struct iwn_txagg_status *);
174 void		iwn4965_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
175 		    struct iwn_rx_data *);
176 void		iwn5000_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
177 		    struct iwn_rx_data *);
178 void		iwn_tx_done_free_txdata(struct iwn_softc *,
179 		    struct iwn_tx_data *);
180 void		iwn_clear_oactive(struct iwn_softc *, struct iwn_tx_ring *);
181 void		iwn_tx_done(struct iwn_softc *, struct iwn_rx_desc *,
182 		    uint8_t, uint8_t, uint8_t, int, int, uint16_t);
183 void		iwn_cmd_done(struct iwn_softc *, struct iwn_rx_desc *);
184 void		iwn_notif_intr(struct iwn_softc *);
185 void		iwn_wakeup_intr(struct iwn_softc *);
186 void		iwn_fatal_intr(struct iwn_softc *);
187 int		iwn_intr(void *);
188 void		iwn4965_update_sched(struct iwn_softc *, int, int, uint8_t,
189 		    uint16_t);
190 void		iwn4965_reset_sched(struct iwn_softc *, int, int);
191 void		iwn5000_update_sched(struct iwn_softc *, int, int, uint8_t,
192 		    uint16_t);
193 void		iwn5000_reset_sched(struct iwn_softc *, int, int);
194 int		iwn_tx(struct iwn_softc *, struct mbuf *,
195 		    struct ieee80211_node *);
196 int		iwn_rval2ridx(int);
197 void		iwn_start(struct ifnet *);
198 void		iwn_watchdog(struct ifnet *);
199 int		iwn_ioctl(struct ifnet *, u_long, caddr_t);
200 int		iwn_cmd(struct iwn_softc *, int, const void *, int, int);
201 int		iwn4965_add_node(struct iwn_softc *, struct iwn_node_info *,
202 		    int);
203 int		iwn5000_add_node(struct iwn_softc *, struct iwn_node_info *,
204 		    int);
205 int		iwn_set_link_quality(struct iwn_softc *,
206 		    struct ieee80211_node *);
207 int		iwn_add_broadcast_node(struct iwn_softc *, int, int);
208 void		iwn_updateedca(struct ieee80211com *);
209 void		iwn_set_led(struct iwn_softc *, uint8_t, uint8_t, uint8_t);
210 int		iwn_set_critical_temp(struct iwn_softc *);
211 int		iwn_set_timing(struct iwn_softc *, struct ieee80211_node *);
212 void		iwn4965_power_calibration(struct iwn_softc *, int);
213 int		iwn4965_set_txpower(struct iwn_softc *, int);
214 int		iwn5000_set_txpower(struct iwn_softc *, int);
215 int		iwn4965_get_rssi(const struct iwn_rx_stat *);
216 int		iwn5000_get_rssi(const struct iwn_rx_stat *);
217 int		iwn_get_noise(const struct iwn_rx_general_stats *);
218 int		iwn4965_get_temperature(struct iwn_softc *);
219 int		iwn5000_get_temperature(struct iwn_softc *);
220 int		iwn_init_sensitivity(struct iwn_softc *);
221 void		iwn_collect_noise(struct iwn_softc *,
222 		    const struct iwn_rx_general_stats *);
223 int		iwn4965_init_gains(struct iwn_softc *);
224 int		iwn5000_init_gains(struct iwn_softc *);
225 int		iwn4965_set_gains(struct iwn_softc *);
226 int		iwn5000_set_gains(struct iwn_softc *);
227 void		iwn_tune_sensitivity(struct iwn_softc *,
228 		    const struct iwn_rx_stats *);
229 int		iwn_send_sensitivity(struct iwn_softc *);
230 int		iwn_set_pslevel(struct iwn_softc *, int, int, int);
231 int		iwn_send_btcoex(struct iwn_softc *);
232 int		iwn_send_advanced_btcoex(struct iwn_softc *);
233 int		iwn5000_runtime_calib(struct iwn_softc *);
234 int		iwn_config(struct iwn_softc *);
235 uint16_t	iwn_get_active_dwell_time(struct iwn_softc *, uint16_t, uint8_t);
236 uint16_t	iwn_limit_dwell(struct iwn_softc *, uint16_t);
237 uint16_t	iwn_get_passive_dwell_time(struct iwn_softc *, uint16_t);
238 int		iwn_scan(struct iwn_softc *, uint16_t, int);
239 void		iwn_scan_abort(struct iwn_softc *);
240 int		iwn_bgscan(struct ieee80211com *);
241 void		iwn_rxon_configure_ht40(struct ieee80211com *,
242 		    struct ieee80211_node *);
243 int		iwn_rxon_ht40_enabled(struct iwn_softc *);
244 int		iwn_auth(struct iwn_softc *, int);
245 int		iwn_run(struct iwn_softc *);
246 int		iwn_set_key(struct ieee80211com *, struct ieee80211_node *,
247 		    struct ieee80211_key *);
248 void		iwn_delete_key(struct ieee80211com *, struct ieee80211_node *,
249 		    struct ieee80211_key *);
250 void		iwn_updatechan(struct ieee80211com *);
251 void		iwn_updateprot(struct ieee80211com *);
252 void		iwn_updateslot(struct ieee80211com *);
253 void		iwn_update_rxon_restore_power(struct iwn_softc *);
254 void		iwn5000_update_rxon(struct iwn_softc *);
255 void		iwn4965_update_rxon(struct iwn_softc *);
256 int		iwn_ampdu_rx_start(struct ieee80211com *,
257 		    struct ieee80211_node *, uint8_t);
258 void		iwn_ampdu_rx_stop(struct ieee80211com *,
259 		    struct ieee80211_node *, uint8_t);
260 int		iwn_ampdu_tx_start(struct ieee80211com *,
261 		    struct ieee80211_node *, uint8_t);
262 void		iwn_ampdu_tx_stop(struct ieee80211com *,
263 		    struct ieee80211_node *, uint8_t);
264 void		iwn4965_ampdu_tx_start(struct iwn_softc *,
265 		    struct ieee80211_node *, uint8_t, uint16_t);
266 void		iwn4965_ampdu_tx_stop(struct iwn_softc *,
267 		    uint8_t, uint16_t);
268 void		iwn5000_ampdu_tx_start(struct iwn_softc *,
269 		    struct ieee80211_node *, uint8_t, uint16_t);
270 void		iwn5000_ampdu_tx_stop(struct iwn_softc *,
271 		    uint8_t, uint16_t);
272 int		iwn5000_query_calibration(struct iwn_softc *);
273 int		iwn5000_send_calibration(struct iwn_softc *);
274 int		iwn5000_send_wimax_coex(struct iwn_softc *);
275 int		iwn5000_crystal_calib(struct iwn_softc *);
276 int		iwn6000_temp_offset_calib(struct iwn_softc *);
277 int		iwn2000_temp_offset_calib(struct iwn_softc *);
278 int		iwn4965_post_alive(struct iwn_softc *);
279 int		iwn5000_post_alive(struct iwn_softc *);
280 int		iwn4965_load_bootcode(struct iwn_softc *, const uint8_t *,
281 		    int);
282 int		iwn4965_load_firmware(struct iwn_softc *);
283 int		iwn5000_load_firmware_section(struct iwn_softc *, uint32_t,
284 		    const uint8_t *, int);
285 int		iwn5000_load_firmware(struct iwn_softc *);
286 int		iwn_read_firmware_leg(struct iwn_softc *,
287 		    struct iwn_fw_info *);
288 int		iwn_read_firmware_tlv(struct iwn_softc *,
289 		    struct iwn_fw_info *, uint16_t);
290 int		iwn_read_firmware(struct iwn_softc *);
291 int		iwn_clock_wait(struct iwn_softc *);
292 int		iwn_apm_init(struct iwn_softc *);
293 void		iwn_apm_stop_master(struct iwn_softc *);
294 void		iwn_apm_stop(struct iwn_softc *);
295 int		iwn4965_nic_config(struct iwn_softc *);
296 int		iwn5000_nic_config(struct iwn_softc *);
297 int		iwn_hw_prepare(struct iwn_softc *);
298 int		iwn_hw_init(struct iwn_softc *);
299 void		iwn_hw_stop(struct iwn_softc *);
300 int		iwn_init(struct ifnet *);
301 void		iwn_stop(struct ifnet *);
302 
303 #ifdef IWN_DEBUG
304 #define DPRINTF(x)	do { if (iwn_debug > 0) printf x; } while (0)
305 #define DPRINTFN(n, x)	do { if (iwn_debug >= (n)) printf x; } while (0)
306 int iwn_debug = 1;
307 #else
308 #define DPRINTF(x)
309 #define DPRINTFN(n, x)
310 #endif
311 
312 struct cfdriver iwn_cd = {
313 	NULL, "iwn", DV_IFNET
314 };
315 
316 const struct cfattach iwn_ca = {
317 	sizeof (struct iwn_softc), iwn_match, iwn_attach, iwn_detach,
318 	iwn_activate
319 };
320 
321 int
iwn_match(struct device * parent,void * match,void * aux)322 iwn_match(struct device *parent, void *match, void *aux)
323 {
324 	return pci_matchbyid((struct pci_attach_args *)aux, iwn_devices,
325 	    nitems(iwn_devices));
326 }
327 
328 void
iwn_attach(struct device * parent,struct device * self,void * aux)329 iwn_attach(struct device *parent, struct device *self, void *aux)
330 {
331 	struct iwn_softc *sc = (struct iwn_softc *)self;
332 	struct ieee80211com *ic = &sc->sc_ic;
333 	struct ifnet *ifp = &ic->ic_if;
334 	struct pci_attach_args *pa = aux;
335 	const char *intrstr;
336 	pci_intr_handle_t ih;
337 	pcireg_t memtype, reg;
338 	int i, error;
339 
340 	sc->sc_pct = pa->pa_pc;
341 	sc->sc_pcitag = pa->pa_tag;
342 	sc->sc_dmat = pa->pa_dmat;
343 
344 	/*
345 	 * Get the offset of the PCI Express Capability Structure in PCI
346 	 * Configuration Space.
347 	 */
348 	error = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
349 	    PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
350 	if (error == 0) {
351 		printf(": PCIe capability structure not found!\n");
352 		return;
353 	}
354 
355 	/* Clear device-specific "PCI retry timeout" register (41h). */
356 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
357 	if (reg & 0xff00)
358 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
359 
360 	/* Hardware bug workaround. */
361 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
362 	if (reg & PCI_COMMAND_INTERRUPT_DISABLE) {
363 		DPRINTF(("PCIe INTx Disable set\n"));
364 		reg &= ~PCI_COMMAND_INTERRUPT_DISABLE;
365 		pci_conf_write(sc->sc_pct, sc->sc_pcitag,
366 		    PCI_COMMAND_STATUS_REG, reg);
367 	}
368 
369 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, IWN_PCI_BAR0);
370 	error = pci_mapreg_map(pa, IWN_PCI_BAR0, memtype, 0, &sc->sc_st,
371 	    &sc->sc_sh, NULL, &sc->sc_sz, 0);
372 	if (error != 0) {
373 		printf(": can't map mem space\n");
374 		return;
375 	}
376 
377 	/* Install interrupt handler. */
378 	if (pci_intr_map_msi(pa, &ih) != 0 && pci_intr_map(pa, &ih) != 0) {
379 		printf(": can't map interrupt\n");
380 		return;
381 	}
382 	intrstr = pci_intr_string(sc->sc_pct, ih);
383 	sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, iwn_intr, sc,
384 	    sc->sc_dev.dv_xname);
385 	if (sc->sc_ih == NULL) {
386 		printf(": can't establish interrupt");
387 		if (intrstr != NULL)
388 			printf(" at %s", intrstr);
389 		printf("\n");
390 		return;
391 	}
392 	printf(": %s", intrstr);
393 
394 	/* Read hardware revision and attach. */
395 	sc->hw_type = (IWN_READ(sc, IWN_HW_REV) >> 4) & 0x1f;
396 	if (sc->hw_type == IWN_HW_REV_TYPE_4965)
397 		error = iwn4965_attach(sc, PCI_PRODUCT(pa->pa_id));
398 	else
399 		error = iwn5000_attach(sc, PCI_PRODUCT(pa->pa_id));
400 	if (error != 0) {
401 		printf(": could not attach device\n");
402 		return;
403 	}
404 
405 	if ((error = iwn_hw_prepare(sc)) != 0) {
406 		printf(": hardware not ready\n");
407 		return;
408 	}
409 
410 	/* Read MAC address, channels, etc from EEPROM. */
411 	if ((error = iwn_read_eeprom(sc)) != 0) {
412 		printf(": could not read EEPROM\n");
413 		return;
414 	}
415 
416 	/* Allocate DMA memory for firmware transfers. */
417 	if ((error = iwn_alloc_fwmem(sc)) != 0) {
418 		printf(": could not allocate memory for firmware\n");
419 		return;
420 	}
421 
422 	/* Allocate "Keep Warm" page. */
423 	if ((error = iwn_alloc_kw(sc)) != 0) {
424 		printf(": could not allocate keep warm page\n");
425 		goto fail1;
426 	}
427 
428 	/* Allocate ICT table for 5000 Series. */
429 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
430 	    (error = iwn_alloc_ict(sc)) != 0) {
431 		printf(": could not allocate ICT table\n");
432 		goto fail2;
433 	}
434 
435 	/* Allocate TX scheduler "rings". */
436 	if ((error = iwn_alloc_sched(sc)) != 0) {
437 		printf(": could not allocate TX scheduler rings\n");
438 		goto fail3;
439 	}
440 
441 	/* Allocate TX rings (16 on 4965AGN, 20 on >=5000). */
442 	for (i = 0; i < sc->ntxqs; i++) {
443 		if ((error = iwn_alloc_tx_ring(sc, &sc->txq[i], i)) != 0) {
444 			printf(": could not allocate TX ring %d\n", i);
445 			goto fail4;
446 		}
447 	}
448 
449 	/* Allocate RX ring. */
450 	if ((error = iwn_alloc_rx_ring(sc, &sc->rxq)) != 0) {
451 		printf(": could not allocate RX ring\n");
452 		goto fail4;
453 	}
454 
455 	/* Clear pending interrupts. */
456 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
457 
458 	/* Count the number of available chains. */
459 	sc->ntxchains =
460 	    ((sc->txchainmask >> 2) & 1) +
461 	    ((sc->txchainmask >> 1) & 1) +
462 	    ((sc->txchainmask >> 0) & 1);
463 	sc->nrxchains =
464 	    ((sc->rxchainmask >> 2) & 1) +
465 	    ((sc->rxchainmask >> 1) & 1) +
466 	    ((sc->rxchainmask >> 0) & 1);
467 	printf(", MIMO %dT%dR, %.4s, address %s\n", sc->ntxchains,
468 	    sc->nrxchains, sc->eeprom_domain, ether_sprintf(ic->ic_myaddr));
469 
470 	ic->ic_phytype = IEEE80211_T_OFDM;	/* not only, but not used */
471 	ic->ic_opmode = IEEE80211_M_STA;	/* default to BSS mode */
472 	ic->ic_state = IEEE80211_S_INIT;
473 
474 	/* Set device capabilities. */
475 	ic->ic_caps =
476 	    IEEE80211_C_WEP |		/* WEP */
477 	    IEEE80211_C_RSN |		/* WPA/RSN */
478 	    IEEE80211_C_SCANALL |	/* device scans all channels at once */
479 	    IEEE80211_C_SCANALLBAND |	/* driver scans all bands at once */
480 	    IEEE80211_C_MONITOR |	/* monitor mode supported */
481 	    IEEE80211_C_SHSLOT |	/* short slot time supported */
482 	    IEEE80211_C_SHPREAMBLE |	/* short preamble supported */
483 	    IEEE80211_C_PMGT;		/* power saving supported */
484 
485 	/* No optional HT features supported for now, */
486 	ic->ic_htcaps = 0;
487 	ic->ic_htxcaps = 0;
488 	ic->ic_txbfcaps = 0;
489 	ic->ic_aselcaps = 0;
490 	ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
491 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
492 		ic->ic_caps |= (IEEE80211_C_QOS | IEEE80211_C_TX_AMPDU);
493 		/* Set HT capabilities. */
494 		ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
495 		/* 6200 devices have issues with SGI40 for some reason. */
496 		if ((sc->sc_flags & IWN_FLAG_INTERNAL_PA) == 0)
497 			ic->ic_htcaps |= IEEE80211_HTCAP_SGI40;
498 		ic->ic_htcaps |= IEEE80211_HTCAP_CBW20_40;
499 #ifdef notyet
500 		ic->ic_htcaps |=
501 #if IWN_RBUF_SIZE == 8192
502 		    IEEE80211_HTCAP_AMSDU7935 |
503 #endif
504 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
505 			ic->ic_htcaps |= IEEE80211_HTCAP_GF;
506 		if (sc->hw_type == IWN_HW_REV_TYPE_6050)
507 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DYN;
508 		else
509 			ic->ic_htcaps |= IEEE80211_HTCAP_SMPS_DIS;
510 #endif	/* notyet */
511 	}
512 
513 	/* Set supported legacy rates. */
514 	ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
515 	ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
516 	if (sc->sc_flags & IWN_FLAG_HAS_5GHZ) {
517 		ic->ic_sup_rates[IEEE80211_MODE_11A] =
518 		    ieee80211_std_rateset_11a;
519 	}
520 	if (sc->sc_flags & IWN_FLAG_HAS_11N) {
521 		/* Set supported HT rates. */
522 		ic->ic_sup_mcs[0] = 0xff;		/* MCS 0-7 */
523 #ifdef notyet
524 		if (sc->nrxchains > 1)
525 			ic->ic_sup_mcs[1] = 0xff;	/* MCS 8-15 */
526 		if (sc->nrxchains > 2)
527 			ic->ic_sup_mcs[2] = 0xff;	/* MCS 16-23 */
528 #endif
529 	}
530 
531 	/* IBSS channel undefined for now. */
532 	ic->ic_ibss_chan = &ic->ic_channels[0];
533 
534 	ifp->if_softc = sc;
535 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
536 	ifp->if_ioctl = iwn_ioctl;
537 	ifp->if_start = iwn_start;
538 	ifp->if_watchdog = iwn_watchdog;
539 	memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ);
540 
541 	if_attach(ifp);
542 	ieee80211_ifattach(ifp);
543 	ic->ic_node_alloc = iwn_node_alloc;
544 	ic->ic_bgscan_start = iwn_bgscan;
545 	ic->ic_newassoc = iwn_newassoc;
546 	ic->ic_updateedca = iwn_updateedca;
547 	ic->ic_set_key = iwn_set_key;
548 	ic->ic_delete_key = iwn_delete_key;
549 	ic->ic_updatechan = iwn_updatechan;
550 	ic->ic_updateprot = iwn_updateprot;
551 	ic->ic_updateslot = iwn_updateslot;
552 	ic->ic_ampdu_rx_start = iwn_ampdu_rx_start;
553 	ic->ic_ampdu_rx_stop = iwn_ampdu_rx_stop;
554 	ic->ic_ampdu_tx_start = iwn_ampdu_tx_start;
555 	ic->ic_ampdu_tx_stop = iwn_ampdu_tx_stop;
556 
557 	/* Override 802.11 state transition machine. */
558 	sc->sc_newstate = ic->ic_newstate;
559 	ic->ic_newstate = iwn_newstate;
560 	ieee80211_media_init(ifp, iwn_media_change, ieee80211_media_status);
561 
562 	sc->amrr.amrr_min_success_threshold =  1;
563 	sc->amrr.amrr_max_success_threshold = 15;
564 
565 #if NBPFILTER > 0
566 	iwn_radiotap_attach(sc);
567 #endif
568 	timeout_set(&sc->calib_to, iwn_calib_timeout, sc);
569 	rw_init(&sc->sc_rwlock, "iwnlock");
570 	task_set(&sc->init_task, iwn_init_task, sc);
571 	return;
572 
573 	/* Free allocated memory if something failed during attachment. */
574 fail4:	while (--i >= 0)
575 		iwn_free_tx_ring(sc, &sc->txq[i]);
576 	iwn_free_sched(sc);
577 fail3:	if (sc->ict != NULL)
578 		iwn_free_ict(sc);
579 fail2:	iwn_free_kw(sc);
580 fail1:	iwn_free_fwmem(sc);
581 }
582 
583 int
iwn4965_attach(struct iwn_softc * sc,pci_product_id_t pid)584 iwn4965_attach(struct iwn_softc *sc, pci_product_id_t pid)
585 {
586 	struct iwn_ops *ops = &sc->ops;
587 
588 	ops->load_firmware = iwn4965_load_firmware;
589 	ops->read_eeprom = iwn4965_read_eeprom;
590 	ops->post_alive = iwn4965_post_alive;
591 	ops->nic_config = iwn4965_nic_config;
592 	ops->reset_sched = iwn4965_reset_sched;
593 	ops->update_sched = iwn4965_update_sched;
594 	ops->update_rxon = iwn4965_update_rxon;
595 	ops->get_temperature = iwn4965_get_temperature;
596 	ops->get_rssi = iwn4965_get_rssi;
597 	ops->set_txpower = iwn4965_set_txpower;
598 	ops->init_gains = iwn4965_init_gains;
599 	ops->set_gains = iwn4965_set_gains;
600 	ops->add_node = iwn4965_add_node;
601 	ops->tx_done = iwn4965_tx_done;
602 	ops->ampdu_tx_start = iwn4965_ampdu_tx_start;
603 	ops->ampdu_tx_stop = iwn4965_ampdu_tx_stop;
604 	sc->ntxqs = IWN4965_NTXQUEUES;
605 	sc->first_agg_txq = IWN4965_FIRST_AGG_TXQUEUE;
606 	sc->ndmachnls = IWN4965_NDMACHNLS;
607 	sc->broadcast_id = IWN4965_ID_BROADCAST;
608 	sc->rxonsz = IWN4965_RXONSZ;
609 	sc->schedsz = IWN4965_SCHEDSZ;
610 	sc->fw_text_maxsz = IWN4965_FW_TEXT_MAXSZ;
611 	sc->fw_data_maxsz = IWN4965_FW_DATA_MAXSZ;
612 	sc->fwsz = IWN4965_FWSZ;
613 	sc->sched_txfact_addr = IWN4965_SCHED_TXFACT;
614 	sc->limits = &iwn4965_sensitivity_limits;
615 	sc->fwname = "iwn-4965";
616 	/* Override chains masks, ROM is known to be broken. */
617 	sc->txchainmask = IWN_ANT_AB;
618 	sc->rxchainmask = IWN_ANT_ABC;
619 
620 	return 0;
621 }
622 
623 int
iwn5000_attach(struct iwn_softc * sc,pci_product_id_t pid)624 iwn5000_attach(struct iwn_softc *sc, pci_product_id_t pid)
625 {
626 	struct iwn_ops *ops = &sc->ops;
627 
628 	ops->load_firmware = iwn5000_load_firmware;
629 	ops->read_eeprom = iwn5000_read_eeprom;
630 	ops->post_alive = iwn5000_post_alive;
631 	ops->nic_config = iwn5000_nic_config;
632 	ops->reset_sched = iwn5000_reset_sched;
633 	ops->update_sched = iwn5000_update_sched;
634 	ops->update_rxon = iwn5000_update_rxon;
635 	ops->get_temperature = iwn5000_get_temperature;
636 	ops->get_rssi = iwn5000_get_rssi;
637 	ops->set_txpower = iwn5000_set_txpower;
638 	ops->init_gains = iwn5000_init_gains;
639 	ops->set_gains = iwn5000_set_gains;
640 	ops->add_node = iwn5000_add_node;
641 	ops->tx_done = iwn5000_tx_done;
642 	ops->ampdu_tx_start = iwn5000_ampdu_tx_start;
643 	ops->ampdu_tx_stop = iwn5000_ampdu_tx_stop;
644 	sc->ntxqs = IWN5000_NTXQUEUES;
645 	sc->first_agg_txq = IWN5000_FIRST_AGG_TXQUEUE;
646 	sc->ndmachnls = IWN5000_NDMACHNLS;
647 	sc->broadcast_id = IWN5000_ID_BROADCAST;
648 	sc->rxonsz = IWN5000_RXONSZ;
649 	sc->schedsz = IWN5000_SCHEDSZ;
650 	sc->fw_text_maxsz = IWN5000_FW_TEXT_MAXSZ;
651 	sc->fw_data_maxsz = IWN5000_FW_DATA_MAXSZ;
652 	sc->fwsz = IWN5000_FWSZ;
653 	sc->sched_txfact_addr = IWN5000_SCHED_TXFACT;
654 
655 	switch (sc->hw_type) {
656 	case IWN_HW_REV_TYPE_5100:
657 		sc->limits = &iwn5000_sensitivity_limits;
658 		sc->fwname = "iwn-5000";
659 		/* Override chains masks, ROM is known to be broken. */
660 		sc->txchainmask = IWN_ANT_B;
661 		sc->rxchainmask = IWN_ANT_AB;
662 		break;
663 	case IWN_HW_REV_TYPE_5150:
664 		sc->limits = &iwn5150_sensitivity_limits;
665 		sc->fwname = "iwn-5150";
666 		break;
667 	case IWN_HW_REV_TYPE_5300:
668 	case IWN_HW_REV_TYPE_5350:
669 		sc->limits = &iwn5000_sensitivity_limits;
670 		sc->fwname = "iwn-5000";
671 		break;
672 	case IWN_HW_REV_TYPE_1000:
673 		sc->limits = &iwn1000_sensitivity_limits;
674 		sc->fwname = "iwn-1000";
675 		break;
676 	case IWN_HW_REV_TYPE_6000:
677 		sc->limits = &iwn6000_sensitivity_limits;
678 		sc->fwname = "iwn-6000";
679 		if (pid == PCI_PRODUCT_INTEL_WL_6200_1 ||
680 		    pid == PCI_PRODUCT_INTEL_WL_6200_2) {
681 			sc->sc_flags |= IWN_FLAG_INTERNAL_PA;
682 			/* Override chains masks, ROM is known to be broken. */
683 			sc->txchainmask = IWN_ANT_BC;
684 			sc->rxchainmask = IWN_ANT_BC;
685 		}
686 		break;
687 	case IWN_HW_REV_TYPE_6050:
688 		sc->limits = &iwn6000_sensitivity_limits;
689 		sc->fwname = "iwn-6050";
690 		break;
691 	case IWN_HW_REV_TYPE_6005:
692 		sc->limits = &iwn6000_sensitivity_limits;
693 		if (pid != PCI_PRODUCT_INTEL_WL_6005_1 &&
694 		    pid != PCI_PRODUCT_INTEL_WL_6005_2) {
695 			sc->fwname = "iwn-6030";
696 			sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
697 		} else
698 			sc->fwname = "iwn-6005";
699 		break;
700 	case IWN_HW_REV_TYPE_2030:
701 		sc->limits = &iwn2000_sensitivity_limits;
702 		sc->fwname = "iwn-2030";
703 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
704 		break;
705 	case IWN_HW_REV_TYPE_2000:
706 		sc->limits = &iwn2000_sensitivity_limits;
707 		sc->fwname = "iwn-2000";
708 		break;
709 	case IWN_HW_REV_TYPE_135:
710 		sc->limits = &iwn2000_sensitivity_limits;
711 		sc->fwname = "iwn-135";
712 		sc->sc_flags |= IWN_FLAG_ADV_BT_COEX;
713 		break;
714 	case IWN_HW_REV_TYPE_105:
715 		sc->limits = &iwn2000_sensitivity_limits;
716 		sc->fwname = "iwn-105";
717 		break;
718 	default:
719 		printf(": adapter type %d not supported\n", sc->hw_type);
720 		return ENOTSUP;
721 	}
722 	return 0;
723 }
724 
725 #if NBPFILTER > 0
726 /*
727  * Attach the interface to 802.11 radiotap.
728  */
729 void
iwn_radiotap_attach(struct iwn_softc * sc)730 iwn_radiotap_attach(struct iwn_softc *sc)
731 {
732 	bpfattach(&sc->sc_drvbpf, &sc->sc_ic.ic_if, DLT_IEEE802_11_RADIO,
733 	    sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN);
734 
735 	sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
736 	sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
737 	sc->sc_rxtap.wr_ihdr.it_present = htole32(IWN_RX_RADIOTAP_PRESENT);
738 
739 	sc->sc_txtap_len = sizeof sc->sc_txtapu;
740 	sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
741 	sc->sc_txtap.wt_ihdr.it_present = htole32(IWN_TX_RADIOTAP_PRESENT);
742 }
743 #endif
744 
745 int
iwn_detach(struct device * self,int flags)746 iwn_detach(struct device *self, int flags)
747 {
748 	struct iwn_softc *sc = (struct iwn_softc *)self;
749 	struct ifnet *ifp = &sc->sc_ic.ic_if;
750 	int qid;
751 
752 	timeout_del(&sc->calib_to);
753 	task_del(systq, &sc->init_task);
754 
755 	/* Uninstall interrupt handler. */
756 	if (sc->sc_ih != NULL)
757 		pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
758 
759 	/* Free DMA resources. */
760 	iwn_free_rx_ring(sc, &sc->rxq);
761 	for (qid = 0; qid < sc->ntxqs; qid++)
762 		iwn_free_tx_ring(sc, &sc->txq[qid]);
763 	iwn_free_sched(sc);
764 	iwn_free_kw(sc);
765 	if (sc->ict != NULL)
766 		iwn_free_ict(sc);
767 	iwn_free_fwmem(sc);
768 
769 	bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
770 
771 	ieee80211_ifdetach(ifp);
772 	if_detach(ifp);
773 
774 	return 0;
775 }
776 
777 int
iwn_activate(struct device * self,int act)778 iwn_activate(struct device *self, int act)
779 {
780 	struct iwn_softc *sc = (struct iwn_softc *)self;
781 	struct ifnet *ifp = &sc->sc_ic.ic_if;
782 
783 	switch (act) {
784 	case DVACT_SUSPEND:
785 		if (ifp->if_flags & IFF_RUNNING)
786 			iwn_stop(ifp);
787 		break;
788 	case DVACT_WAKEUP:
789 		iwn_wakeup(sc);
790 		break;
791 	}
792 
793 	return 0;
794 }
795 
796 void
iwn_wakeup(struct iwn_softc * sc)797 iwn_wakeup(struct iwn_softc *sc)
798 {
799 	pcireg_t reg;
800 
801 	/* Clear device-specific "PCI retry timeout" register (41h). */
802 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
803 	if (reg & 0xff00)
804 		pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
805 	iwn_init_task(sc);
806 }
807 
808 void
iwn_init_task(void * arg1)809 iwn_init_task(void *arg1)
810 {
811 	struct iwn_softc *sc = arg1;
812 	struct ifnet *ifp = &sc->sc_ic.ic_if;
813 	int s;
814 
815 	rw_enter_write(&sc->sc_rwlock);
816 	s = splnet();
817 
818 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
819 		iwn_init(ifp);
820 
821 	splx(s);
822 	rw_exit_write(&sc->sc_rwlock);
823 }
824 
825 int
iwn_nic_lock(struct iwn_softc * sc)826 iwn_nic_lock(struct iwn_softc *sc)
827 {
828 	int ntries;
829 
830 	/* Request exclusive access to NIC. */
831 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
832 
833 	/* Spin until we actually get the lock. */
834 	for (ntries = 0; ntries < 1000; ntries++) {
835 		if ((IWN_READ(sc, IWN_GP_CNTRL) &
836 		     (IWN_GP_CNTRL_MAC_ACCESS_ENA | IWN_GP_CNTRL_SLEEP)) ==
837 		    IWN_GP_CNTRL_MAC_ACCESS_ENA)
838 			return 0;
839 		DELAY(10);
840 	}
841 	return ETIMEDOUT;
842 }
843 
844 static __inline void
iwn_nic_unlock(struct iwn_softc * sc)845 iwn_nic_unlock(struct iwn_softc *sc)
846 {
847 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_MAC_ACCESS_REQ);
848 }
849 
850 static __inline uint32_t
iwn_prph_read(struct iwn_softc * sc,uint32_t addr)851 iwn_prph_read(struct iwn_softc *sc, uint32_t addr)
852 {
853 	IWN_WRITE(sc, IWN_PRPH_RADDR, IWN_PRPH_DWORD | addr);
854 	IWN_BARRIER_READ_WRITE(sc);
855 	return IWN_READ(sc, IWN_PRPH_RDATA);
856 }
857 
858 static __inline void
iwn_prph_write(struct iwn_softc * sc,uint32_t addr,uint32_t data)859 iwn_prph_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
860 {
861 	IWN_WRITE(sc, IWN_PRPH_WADDR, IWN_PRPH_DWORD | addr);
862 	IWN_BARRIER_WRITE(sc);
863 	IWN_WRITE(sc, IWN_PRPH_WDATA, data);
864 }
865 
866 static __inline void
iwn_prph_setbits(struct iwn_softc * sc,uint32_t addr,uint32_t mask)867 iwn_prph_setbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
868 {
869 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) | mask);
870 }
871 
872 static __inline void
iwn_prph_clrbits(struct iwn_softc * sc,uint32_t addr,uint32_t mask)873 iwn_prph_clrbits(struct iwn_softc *sc, uint32_t addr, uint32_t mask)
874 {
875 	iwn_prph_write(sc, addr, iwn_prph_read(sc, addr) & ~mask);
876 }
877 
878 static __inline void
iwn_prph_write_region_4(struct iwn_softc * sc,uint32_t addr,const uint32_t * data,int count)879 iwn_prph_write_region_4(struct iwn_softc *sc, uint32_t addr,
880     const uint32_t *data, int count)
881 {
882 	for (; count > 0; count--, data++, addr += 4)
883 		iwn_prph_write(sc, addr, *data);
884 }
885 
886 static __inline uint32_t
iwn_mem_read(struct iwn_softc * sc,uint32_t addr)887 iwn_mem_read(struct iwn_softc *sc, uint32_t addr)
888 {
889 	IWN_WRITE(sc, IWN_MEM_RADDR, addr);
890 	IWN_BARRIER_READ_WRITE(sc);
891 	return IWN_READ(sc, IWN_MEM_RDATA);
892 }
893 
894 static __inline void
iwn_mem_write(struct iwn_softc * sc,uint32_t addr,uint32_t data)895 iwn_mem_write(struct iwn_softc *sc, uint32_t addr, uint32_t data)
896 {
897 	IWN_WRITE(sc, IWN_MEM_WADDR, addr);
898 	IWN_BARRIER_WRITE(sc);
899 	IWN_WRITE(sc, IWN_MEM_WDATA, data);
900 }
901 
902 static __inline void
iwn_mem_write_2(struct iwn_softc * sc,uint32_t addr,uint16_t data)903 iwn_mem_write_2(struct iwn_softc *sc, uint32_t addr, uint16_t data)
904 {
905 	uint32_t tmp;
906 
907 	tmp = iwn_mem_read(sc, addr & ~3);
908 	if (addr & 3)
909 		tmp = (tmp & 0x0000ffff) | data << 16;
910 	else
911 		tmp = (tmp & 0xffff0000) | data;
912 	iwn_mem_write(sc, addr & ~3, tmp);
913 }
914 
915 static __inline void
iwn_mem_read_region_4(struct iwn_softc * sc,uint32_t addr,uint32_t * data,int count)916 iwn_mem_read_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t *data,
917     int count)
918 {
919 	for (; count > 0; count--, addr += 4)
920 		*data++ = iwn_mem_read(sc, addr);
921 }
922 
923 static __inline void
iwn_mem_set_region_4(struct iwn_softc * sc,uint32_t addr,uint32_t val,int count)924 iwn_mem_set_region_4(struct iwn_softc *sc, uint32_t addr, uint32_t val,
925     int count)
926 {
927 	for (; count > 0; count--, addr += 4)
928 		iwn_mem_write(sc, addr, val);
929 }
930 
931 int
iwn_eeprom_lock(struct iwn_softc * sc)932 iwn_eeprom_lock(struct iwn_softc *sc)
933 {
934 	int i, ntries;
935 
936 	for (i = 0; i < 100; i++) {
937 		/* Request exclusive access to EEPROM. */
938 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
939 		    IWN_HW_IF_CONFIG_EEPROM_LOCKED);
940 
941 		/* Spin until we actually get the lock. */
942 		for (ntries = 0; ntries < 100; ntries++) {
943 			if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
944 			    IWN_HW_IF_CONFIG_EEPROM_LOCKED)
945 				return 0;
946 			DELAY(10);
947 		}
948 	}
949 	return ETIMEDOUT;
950 }
951 
952 static __inline void
iwn_eeprom_unlock(struct iwn_softc * sc)953 iwn_eeprom_unlock(struct iwn_softc *sc)
954 {
955 	IWN_CLRBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_EEPROM_LOCKED);
956 }
957 
958 /*
959  * Initialize access by host to One Time Programmable ROM.
960  * NB: This kind of ROM can be found on 1000 or 6000 Series only.
961  */
962 int
iwn_init_otprom(struct iwn_softc * sc)963 iwn_init_otprom(struct iwn_softc *sc)
964 {
965 	uint16_t prev, base, next;
966 	int count, error;
967 
968 	/* Wait for clock stabilization before accessing prph. */
969 	if ((error = iwn_clock_wait(sc)) != 0)
970 		return error;
971 
972 	if ((error = iwn_nic_lock(sc)) != 0)
973 		return error;
974 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
975 	DELAY(5);
976 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_RESET_REQ);
977 	iwn_nic_unlock(sc);
978 
979 	/* Set auto clock gate disable bit for HW with OTP shadow RAM. */
980 	if (sc->hw_type != IWN_HW_REV_TYPE_1000) {
981 		IWN_SETBITS(sc, IWN_DBG_LINK_PWR_MGMT,
982 		    IWN_RESET_LINK_PWR_MGMT_DIS);
983 	}
984 	IWN_CLRBITS(sc, IWN_EEPROM_GP, IWN_EEPROM_GP_IF_OWNER);
985 	/* Clear ECC status. */
986 	IWN_SETBITS(sc, IWN_OTP_GP,
987 	    IWN_OTP_GP_ECC_CORR_STTS | IWN_OTP_GP_ECC_UNCORR_STTS);
988 
989 	/*
990 	 * Find the block before last block (contains the EEPROM image)
991 	 * for HW without OTP shadow RAM.
992 	 */
993 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
994 		/* Switch to absolute addressing mode. */
995 		IWN_CLRBITS(sc, IWN_OTP_GP, IWN_OTP_GP_RELATIVE_ACCESS);
996 		base = 0;
997 		for (count = 0; count < IWN1000_OTP_NBLOCKS; count++) {
998 			error = iwn_read_prom_data(sc, base, &next, 2);
999 			if (error != 0)
1000 				return error;
1001 			if (next == 0)	/* End of linked-list. */
1002 				break;
1003 			prev = base;
1004 			base = letoh16(next);
1005 		}
1006 		if (count == 0 || count == IWN1000_OTP_NBLOCKS)
1007 			return EIO;
1008 		/* Skip "next" word. */
1009 		sc->prom_base = prev + 1;
1010 	}
1011 	return 0;
1012 }
1013 
1014 int
iwn_read_prom_data(struct iwn_softc * sc,uint32_t addr,void * data,int count)1015 iwn_read_prom_data(struct iwn_softc *sc, uint32_t addr, void *data, int count)
1016 {
1017 	uint8_t *out = data;
1018 	uint32_t val, tmp;
1019 	int ntries;
1020 
1021 	addr += sc->prom_base;
1022 	for (; count > 0; count -= 2, addr++) {
1023 		IWN_WRITE(sc, IWN_EEPROM, addr << 2);
1024 		for (ntries = 0; ntries < 10; ntries++) {
1025 			val = IWN_READ(sc, IWN_EEPROM);
1026 			if (val & IWN_EEPROM_READ_VALID)
1027 				break;
1028 			DELAY(5);
1029 		}
1030 		if (ntries == 10) {
1031 			printf("%s: timeout reading ROM at 0x%x\n",
1032 			    sc->sc_dev.dv_xname, addr);
1033 			return ETIMEDOUT;
1034 		}
1035 		if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1036 			/* OTPROM, check for ECC errors. */
1037 			tmp = IWN_READ(sc, IWN_OTP_GP);
1038 			if (tmp & IWN_OTP_GP_ECC_UNCORR_STTS) {
1039 				printf("%s: OTPROM ECC error at 0x%x\n",
1040 				    sc->sc_dev.dv_xname, addr);
1041 				return EIO;
1042 			}
1043 			if (tmp & IWN_OTP_GP_ECC_CORR_STTS) {
1044 				/* Correctable ECC error, clear bit. */
1045 				IWN_SETBITS(sc, IWN_OTP_GP,
1046 				    IWN_OTP_GP_ECC_CORR_STTS);
1047 			}
1048 		}
1049 		*out++ = val >> 16;
1050 		if (count > 1)
1051 			*out++ = val >> 24;
1052 	}
1053 	return 0;
1054 }
1055 
1056 int
iwn_dma_contig_alloc(bus_dma_tag_t tag,struct iwn_dma_info * dma,void ** kvap,bus_size_t size,bus_size_t alignment)1057 iwn_dma_contig_alloc(bus_dma_tag_t tag, struct iwn_dma_info *dma, void **kvap,
1058     bus_size_t size, bus_size_t alignment)
1059 {
1060 	int nsegs, error;
1061 
1062 	dma->tag = tag;
1063 	dma->size = size;
1064 
1065 	error = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
1066 	    &dma->map);
1067 	if (error != 0)
1068 		goto fail;
1069 
1070 	error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
1071 	    BUS_DMA_NOWAIT | BUS_DMA_ZERO);
1072 	if (error != 0)
1073 		goto fail;
1074 
1075 	error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr,
1076 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
1077 	if (error != 0)
1078 		goto fail;
1079 
1080 	error = bus_dmamap_load_raw(tag, dma->map, &dma->seg, 1, size,
1081 	    BUS_DMA_NOWAIT);
1082 	if (error != 0)
1083 		goto fail;
1084 
1085 	bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
1086 
1087 	dma->paddr = dma->map->dm_segs[0].ds_addr;
1088 	if (kvap != NULL)
1089 		*kvap = dma->vaddr;
1090 
1091 	return 0;
1092 
1093 fail:	iwn_dma_contig_free(dma);
1094 	return error;
1095 }
1096 
1097 void
iwn_dma_contig_free(struct iwn_dma_info * dma)1098 iwn_dma_contig_free(struct iwn_dma_info *dma)
1099 {
1100 	if (dma->map != NULL) {
1101 		if (dma->vaddr != NULL) {
1102 			bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
1103 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1104 			bus_dmamap_unload(dma->tag, dma->map);
1105 			bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
1106 			bus_dmamem_free(dma->tag, &dma->seg, 1);
1107 			dma->vaddr = NULL;
1108 		}
1109 		bus_dmamap_destroy(dma->tag, dma->map);
1110 		dma->map = NULL;
1111 	}
1112 }
1113 
1114 int
iwn_alloc_sched(struct iwn_softc * sc)1115 iwn_alloc_sched(struct iwn_softc *sc)
1116 {
1117 	/* TX scheduler rings must be aligned on a 1KB boundary. */
1118 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
1119 	    (void **)&sc->sched, sc->schedsz, 1024);
1120 }
1121 
1122 void
iwn_free_sched(struct iwn_softc * sc)1123 iwn_free_sched(struct iwn_softc *sc)
1124 {
1125 	iwn_dma_contig_free(&sc->sched_dma);
1126 }
1127 
1128 int
iwn_alloc_kw(struct iwn_softc * sc)1129 iwn_alloc_kw(struct iwn_softc *sc)
1130 {
1131 	/* "Keep Warm" page must be aligned on a 4KB boundary. */
1132 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, NULL, 4096,
1133 	    4096);
1134 }
1135 
1136 void
iwn_free_kw(struct iwn_softc * sc)1137 iwn_free_kw(struct iwn_softc *sc)
1138 {
1139 	iwn_dma_contig_free(&sc->kw_dma);
1140 }
1141 
1142 int
iwn_alloc_ict(struct iwn_softc * sc)1143 iwn_alloc_ict(struct iwn_softc *sc)
1144 {
1145 	/* ICT table must be aligned on a 4KB boundary. */
1146 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma,
1147 	    (void **)&sc->ict, IWN_ICT_SIZE, 4096);
1148 }
1149 
1150 void
iwn_free_ict(struct iwn_softc * sc)1151 iwn_free_ict(struct iwn_softc *sc)
1152 {
1153 	iwn_dma_contig_free(&sc->ict_dma);
1154 }
1155 
1156 int
iwn_alloc_fwmem(struct iwn_softc * sc)1157 iwn_alloc_fwmem(struct iwn_softc *sc)
1158 {
1159 	/* Must be aligned on a 16-byte boundary. */
1160 	return iwn_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
1161 	    sc->fwsz, 16);
1162 }
1163 
1164 void
iwn_free_fwmem(struct iwn_softc * sc)1165 iwn_free_fwmem(struct iwn_softc *sc)
1166 {
1167 	iwn_dma_contig_free(&sc->fw_dma);
1168 }
1169 
1170 int
iwn_alloc_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1171 iwn_alloc_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1172 {
1173 	bus_size_t size;
1174 	int i, error;
1175 
1176 	ring->cur = 0;
1177 
1178 	/* Allocate RX descriptors (256-byte aligned). */
1179 	size = IWN_RX_RING_COUNT * sizeof (uint32_t);
1180 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1181 	    (void **)&ring->desc, size, 256);
1182 	if (error != 0) {
1183 		printf("%s: could not allocate RX ring DMA memory\n",
1184 		    sc->sc_dev.dv_xname);
1185 		goto fail;
1186 	}
1187 
1188 	/* Allocate RX status area (16-byte aligned). */
1189 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
1190 	    (void **)&ring->stat, sizeof (struct iwn_rx_status), 16);
1191 	if (error != 0) {
1192 		printf("%s: could not allocate RX status DMA memory\n",
1193 		    sc->sc_dev.dv_xname);
1194 		goto fail;
1195 	}
1196 
1197 	/*
1198 	 * Allocate and map RX buffers.
1199 	 */
1200 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1201 		struct iwn_rx_data *data = &ring->data[i];
1202 
1203 		error = bus_dmamap_create(sc->sc_dmat, IWN_RBUF_SIZE, 1,
1204 		    IWN_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
1205 		    &data->map);
1206 		if (error != 0) {
1207 			printf("%s: could not create RX buf DMA map\n",
1208 			    sc->sc_dev.dv_xname);
1209 			goto fail;
1210 		}
1211 
1212 		data->m = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
1213 		if (data->m == NULL) {
1214 			printf("%s: could not allocate RX mbuf\n",
1215 			    sc->sc_dev.dv_xname);
1216 			error = ENOBUFS;
1217 			goto fail;
1218 		}
1219 
1220 		error = bus_dmamap_load(sc->sc_dmat, data->map,
1221 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
1222 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
1223 		if (error != 0) {
1224 			printf("%s: can't map mbuf (error %d)\n",
1225 			    sc->sc_dev.dv_xname, error);
1226 			goto fail;
1227 		}
1228 
1229 		/* Set physical address of RX buffer (256-byte aligned). */
1230 		ring->desc[i] = htole32(data->map->dm_segs[0].ds_addr >> 8);
1231 	}
1232 
1233 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, size,
1234 	    BUS_DMASYNC_PREWRITE);
1235 
1236 	return 0;
1237 
1238 fail:	iwn_free_rx_ring(sc, ring);
1239 	return error;
1240 }
1241 
1242 void
iwn_reset_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1243 iwn_reset_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1244 {
1245 	int ntries;
1246 
1247 	if (iwn_nic_lock(sc) == 0) {
1248 		IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
1249 		for (ntries = 0; ntries < 1000; ntries++) {
1250 			if (IWN_READ(sc, IWN_FH_RX_STATUS) &
1251 			    IWN_FH_RX_STATUS_IDLE)
1252 				break;
1253 			DELAY(10);
1254 		}
1255 		iwn_nic_unlock(sc);
1256 	}
1257 	ring->cur = 0;
1258 	sc->last_rx_valid = 0;
1259 }
1260 
1261 void
iwn_free_rx_ring(struct iwn_softc * sc,struct iwn_rx_ring * ring)1262 iwn_free_rx_ring(struct iwn_softc *sc, struct iwn_rx_ring *ring)
1263 {
1264 	int i;
1265 
1266 	iwn_dma_contig_free(&ring->desc_dma);
1267 	iwn_dma_contig_free(&ring->stat_dma);
1268 
1269 	for (i = 0; i < IWN_RX_RING_COUNT; i++) {
1270 		struct iwn_rx_data *data = &ring->data[i];
1271 
1272 		if (data->m != NULL) {
1273 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1274 			    data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1275 			bus_dmamap_unload(sc->sc_dmat, data->map);
1276 			m_freem(data->m);
1277 		}
1278 		if (data->map != NULL)
1279 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1280 	}
1281 }
1282 
1283 int
iwn_alloc_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring,int qid)1284 iwn_alloc_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring, int qid)
1285 {
1286 	bus_addr_t paddr;
1287 	bus_size_t size;
1288 	int i, error;
1289 
1290 	ring->qid = qid;
1291 	ring->queued = 0;
1292 	ring->cur = 0;
1293 
1294 	/* Allocate TX descriptors (256-byte aligned). */
1295 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_desc);
1296 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
1297 	    (void **)&ring->desc, size, 256);
1298 	if (error != 0) {
1299 		printf("%s: could not allocate TX ring DMA memory\n",
1300 		    sc->sc_dev.dv_xname);
1301 		goto fail;
1302 	}
1303 
1304 	size = IWN_TX_RING_COUNT * sizeof (struct iwn_tx_cmd);
1305 	error = iwn_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
1306 	    (void **)&ring->cmd, size, 4);
1307 	if (error != 0) {
1308 		printf("%s: could not allocate TX cmd DMA memory\n",
1309 		    sc->sc_dev.dv_xname);
1310 		goto fail;
1311 	}
1312 
1313 	paddr = ring->cmd_dma.paddr;
1314 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1315 		struct iwn_tx_data *data = &ring->data[i];
1316 
1317 		data->cmd_paddr = paddr;
1318 		data->scratch_paddr = paddr + 12;
1319 		paddr += sizeof (struct iwn_tx_cmd);
1320 
1321 		error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
1322 		    IWN_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
1323 		    &data->map);
1324 		if (error != 0) {
1325 			printf("%s: could not create TX buf DMA map\n",
1326 			    sc->sc_dev.dv_xname);
1327 			goto fail;
1328 		}
1329 	}
1330 	return 0;
1331 
1332 fail:	iwn_free_tx_ring(sc, ring);
1333 	return error;
1334 }
1335 
1336 void
iwn_reset_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring)1337 iwn_reset_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1338 {
1339 	int i;
1340 
1341 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1342 		struct iwn_tx_data *data = &ring->data[i];
1343 
1344 		if (data->m != NULL) {
1345 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1346 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1347 			bus_dmamap_unload(sc->sc_dmat, data->map);
1348 			m_freem(data->m);
1349 			data->m = NULL;
1350 		}
1351 	}
1352 	/* Clear TX descriptors. */
1353 	memset(ring->desc, 0, ring->desc_dma.size);
1354 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
1355 	    ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
1356 	sc->qfullmsk &= ~(1 << ring->qid);
1357 	ring->queued = 0;
1358 	ring->cur = 0;
1359 }
1360 
1361 void
iwn_free_tx_ring(struct iwn_softc * sc,struct iwn_tx_ring * ring)1362 iwn_free_tx_ring(struct iwn_softc *sc, struct iwn_tx_ring *ring)
1363 {
1364 	int i;
1365 
1366 	iwn_dma_contig_free(&ring->desc_dma);
1367 	iwn_dma_contig_free(&ring->cmd_dma);
1368 
1369 	for (i = 0; i < IWN_TX_RING_COUNT; i++) {
1370 		struct iwn_tx_data *data = &ring->data[i];
1371 
1372 		if (data->m != NULL) {
1373 			bus_dmamap_sync(sc->sc_dmat, data->map, 0,
1374 			    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1375 			bus_dmamap_unload(sc->sc_dmat, data->map);
1376 			m_freem(data->m);
1377 		}
1378 		if (data->map != NULL)
1379 			bus_dmamap_destroy(sc->sc_dmat, data->map);
1380 	}
1381 }
1382 
1383 void
iwn5000_ict_reset(struct iwn_softc * sc)1384 iwn5000_ict_reset(struct iwn_softc *sc)
1385 {
1386 	/* Disable interrupts. */
1387 	IWN_WRITE(sc, IWN_INT_MASK, 0);
1388 
1389 	/* Reset ICT table. */
1390 	memset(sc->ict, 0, IWN_ICT_SIZE);
1391 	sc->ict_cur = 0;
1392 
1393 	/* Set physical address of ICT table (4KB aligned). */
1394 	DPRINTF(("enabling ICT\n"));
1395 	IWN_WRITE(sc, IWN_DRAM_INT_TBL, IWN_DRAM_INT_TBL_ENABLE |
1396 	    IWN_DRAM_INT_TBL_WRAP_CHECK | sc->ict_dma.paddr >> 12);
1397 
1398 	/* Enable periodic RX interrupt. */
1399 	sc->int_mask |= IWN_INT_RX_PERIODIC;
1400 	/* Switch to ICT interrupt mode in driver. */
1401 	sc->sc_flags |= IWN_FLAG_USE_ICT;
1402 
1403 	/* Re-enable interrupts. */
1404 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
1405 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
1406 }
1407 
1408 int
iwn_read_eeprom(struct iwn_softc * sc)1409 iwn_read_eeprom(struct iwn_softc *sc)
1410 {
1411 	struct iwn_ops *ops = &sc->ops;
1412 	struct ieee80211com *ic = &sc->sc_ic;
1413 	uint16_t val;
1414 	int error;
1415 
1416 	/* Check whether adapter has an EEPROM or an OTPROM. */
1417 	if (sc->hw_type >= IWN_HW_REV_TYPE_1000 &&
1418 	    (IWN_READ(sc, IWN_OTP_GP) & IWN_OTP_GP_DEV_SEL_OTP))
1419 		sc->sc_flags |= IWN_FLAG_HAS_OTPROM;
1420 	DPRINTF(("%s found\n", (sc->sc_flags & IWN_FLAG_HAS_OTPROM) ?
1421 	    "OTPROM" : "EEPROM"));
1422 
1423 	/* Adapter has to be powered on for EEPROM access to work. */
1424 	if ((error = iwn_apm_init(sc)) != 0) {
1425 		printf("%s: could not power ON adapter\n",
1426 		    sc->sc_dev.dv_xname);
1427 		return error;
1428 	}
1429 
1430 	if ((IWN_READ(sc, IWN_EEPROM_GP) & 0x7) == 0) {
1431 		printf("%s: bad ROM signature\n", sc->sc_dev.dv_xname);
1432 		return EIO;
1433 	}
1434 	if ((error = iwn_eeprom_lock(sc)) != 0) {
1435 		printf("%s: could not lock ROM (error=%d)\n",
1436 		    sc->sc_dev.dv_xname, error);
1437 		return error;
1438 	}
1439 	if (sc->sc_flags & IWN_FLAG_HAS_OTPROM) {
1440 		if ((error = iwn_init_otprom(sc)) != 0) {
1441 			printf("%s: could not initialize OTPROM\n",
1442 			    sc->sc_dev.dv_xname);
1443 			return error;
1444 		}
1445 	}
1446 
1447 	iwn_read_prom_data(sc, IWN_EEPROM_SKU_CAP, &val, 2);
1448 	DPRINTF(("SKU capabilities=0x%04x\n", letoh16(val)));
1449 	/* Check if HT support is bonded out. */
1450 	if (val & htole16(IWN_EEPROM_SKU_CAP_11N))
1451 		sc->sc_flags |= IWN_FLAG_HAS_11N;
1452 
1453 	iwn_read_prom_data(sc, IWN_EEPROM_RFCFG, &val, 2);
1454 	sc->rfcfg = letoh16(val);
1455 	DPRINTF(("radio config=0x%04x\n", sc->rfcfg));
1456 	/* Read Tx/Rx chains from ROM unless it's known to be broken. */
1457 	if (sc->txchainmask == 0)
1458 		sc->txchainmask = IWN_RFCFG_TXANTMSK(sc->rfcfg);
1459 	if (sc->rxchainmask == 0)
1460 		sc->rxchainmask = IWN_RFCFG_RXANTMSK(sc->rfcfg);
1461 
1462 	/* Read MAC address. */
1463 	iwn_read_prom_data(sc, IWN_EEPROM_MAC, ic->ic_myaddr, 6);
1464 
1465 	/* Read adapter-specific information from EEPROM. */
1466 	ops->read_eeprom(sc);
1467 
1468 	iwn_apm_stop(sc);	/* Power OFF adapter. */
1469 
1470 	iwn_eeprom_unlock(sc);
1471 	return 0;
1472 }
1473 
1474 void
iwn4965_read_eeprom(struct iwn_softc * sc)1475 iwn4965_read_eeprom(struct iwn_softc *sc)
1476 {
1477 	uint32_t addr;
1478 	uint16_t val;
1479 	int i;
1480 
1481 	/* Read regulatory domain (4 ASCII characters). */
1482 	iwn_read_prom_data(sc, IWN4965_EEPROM_DOMAIN, sc->eeprom_domain, 4);
1483 
1484 	/* Read the list of authorized channels. */
1485 	for (i = 0; i < 7; i++) {
1486 		addr = iwn4965_regulatory_bands[i];
1487 		iwn_read_eeprom_channels(sc, i, addr);
1488 	}
1489 
1490 	/* Read maximum allowed TX power for 2GHz and 5GHz bands. */
1491 	iwn_read_prom_data(sc, IWN4965_EEPROM_MAXPOW, &val, 2);
1492 	sc->maxpwr2GHz = val & 0xff;
1493 	sc->maxpwr5GHz = val >> 8;
1494 	/* Check that EEPROM values are within valid range. */
1495 	if (sc->maxpwr5GHz < 20 || sc->maxpwr5GHz > 50)
1496 		sc->maxpwr5GHz = 38;
1497 	if (sc->maxpwr2GHz < 20 || sc->maxpwr2GHz > 50)
1498 		sc->maxpwr2GHz = 38;
1499 	DPRINTF(("maxpwr 2GHz=%d 5GHz=%d\n", sc->maxpwr2GHz, sc->maxpwr5GHz));
1500 
1501 	/* Read samples for each TX power group. */
1502 	iwn_read_prom_data(sc, IWN4965_EEPROM_BANDS, sc->bands,
1503 	    sizeof sc->bands);
1504 
1505 	/* Read voltage at which samples were taken. */
1506 	iwn_read_prom_data(sc, IWN4965_EEPROM_VOLTAGE, &val, 2);
1507 	sc->eeprom_voltage = (int16_t)letoh16(val);
1508 	DPRINTF(("voltage=%d (in 0.3V)\n", sc->eeprom_voltage));
1509 
1510 #ifdef IWN_DEBUG
1511 	/* Print samples. */
1512 	if (iwn_debug > 0) {
1513 		for (i = 0; i < IWN_NBANDS; i++)
1514 			iwn4965_print_power_group(sc, i);
1515 	}
1516 #endif
1517 }
1518 
1519 #ifdef IWN_DEBUG
1520 void
iwn4965_print_power_group(struct iwn_softc * sc,int i)1521 iwn4965_print_power_group(struct iwn_softc *sc, int i)
1522 {
1523 	struct iwn4965_eeprom_band *band = &sc->bands[i];
1524 	struct iwn4965_eeprom_chan_samples *chans = band->chans;
1525 	int j, c;
1526 
1527 	printf("===band %d===\n", i);
1528 	printf("chan lo=%d, chan hi=%d\n", band->lo, band->hi);
1529 	printf("chan1 num=%d\n", chans[0].num);
1530 	for (c = 0; c < 2; c++) {
1531 		for (j = 0; j < IWN_NSAMPLES; j++) {
1532 			printf("chain %d, sample %d: temp=%d gain=%d "
1533 			    "power=%d pa_det=%d\n", c, j,
1534 			    chans[0].samples[c][j].temp,
1535 			    chans[0].samples[c][j].gain,
1536 			    chans[0].samples[c][j].power,
1537 			    chans[0].samples[c][j].pa_det);
1538 		}
1539 	}
1540 	printf("chan2 num=%d\n", chans[1].num);
1541 	for (c = 0; c < 2; c++) {
1542 		for (j = 0; j < IWN_NSAMPLES; j++) {
1543 			printf("chain %d, sample %d: temp=%d gain=%d "
1544 			    "power=%d pa_det=%d\n", c, j,
1545 			    chans[1].samples[c][j].temp,
1546 			    chans[1].samples[c][j].gain,
1547 			    chans[1].samples[c][j].power,
1548 			    chans[1].samples[c][j].pa_det);
1549 		}
1550 	}
1551 }
1552 #endif
1553 
1554 void
iwn5000_read_eeprom(struct iwn_softc * sc)1555 iwn5000_read_eeprom(struct iwn_softc *sc)
1556 {
1557 	struct iwn5000_eeprom_calib_hdr hdr;
1558 	int32_t volt;
1559 	uint32_t base, addr;
1560 	uint16_t val;
1561 	int i;
1562 
1563 	/* Read regulatory domain (4 ASCII characters). */
1564 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1565 	base = letoh16(val);
1566 	iwn_read_prom_data(sc, base + IWN5000_EEPROM_DOMAIN,
1567 	    sc->eeprom_domain, 4);
1568 
1569 	/* Read the list of authorized channels. */
1570 	for (i = 0; i < 7; i++) {
1571 		addr = base + iwn5000_regulatory_bands[i];
1572 		iwn_read_eeprom_channels(sc, i, addr);
1573 	}
1574 
1575 	/* Read enhanced TX power information for 6000 Series. */
1576 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
1577 		iwn_read_eeprom_enhinfo(sc);
1578 
1579 	iwn_read_prom_data(sc, IWN5000_EEPROM_CAL, &val, 2);
1580 	base = letoh16(val);
1581 	iwn_read_prom_data(sc, base, &hdr, sizeof hdr);
1582 	DPRINTF(("calib version=%u pa type=%u voltage=%u\n",
1583 	    hdr.version, hdr.pa_type, letoh16(hdr.volt)));
1584 	sc->calib_ver = hdr.version;
1585 
1586 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
1587 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
1588 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
1589 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
1590 		sc->eeprom_voltage = letoh16(hdr.volt);
1591 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1592 		sc->eeprom_temp = letoh16(val);
1593 		iwn_read_prom_data(sc, base + IWN2000_EEPROM_RAWTEMP, &val, 2);
1594 		sc->eeprom_rawtemp = letoh16(val);
1595 	}
1596 
1597 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
1598 		/* Compute temperature offset. */
1599 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_TEMP, &val, 2);
1600 		sc->eeprom_temp = letoh16(val);
1601 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_VOLT, &val, 2);
1602 		volt = letoh16(val);
1603 		sc->temp_off = sc->eeprom_temp - (volt / -5);
1604 		DPRINTF(("temp=%d volt=%d offset=%dK\n",
1605 		    sc->eeprom_temp, volt, sc->temp_off));
1606 	} else {
1607 		/* Read crystal calibration. */
1608 		iwn_read_prom_data(sc, base + IWN5000_EEPROM_CRYSTAL,
1609 		    &sc->eeprom_crystal, sizeof (uint32_t));
1610 		DPRINTF(("crystal calibration 0x%08x\n",
1611 		    letoh32(sc->eeprom_crystal)));
1612 	}
1613 }
1614 
1615 void
iwn_read_eeprom_channels(struct iwn_softc * sc,int n,uint32_t addr)1616 iwn_read_eeprom_channels(struct iwn_softc *sc, int n, uint32_t addr)
1617 {
1618 	struct ieee80211com *ic = &sc->sc_ic;
1619 	const struct iwn_chan_band *band = &iwn_bands[n];
1620 	struct iwn_eeprom_chan channels[IWN_MAX_CHAN_PER_BAND];
1621 	uint8_t chan;
1622 	int i;
1623 
1624 	iwn_read_prom_data(sc, addr, channels,
1625 	    band->nchan * sizeof (struct iwn_eeprom_chan));
1626 
1627 	for (i = 0; i < band->nchan; i++) {
1628 		if (!(channels[i].flags & IWN_EEPROM_CHAN_VALID))
1629 			continue;
1630 
1631 		chan = band->chan[i];
1632 
1633 		if (n == 0) {	/* 2GHz band */
1634 			ic->ic_channels[chan].ic_freq =
1635 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
1636 			ic->ic_channels[chan].ic_flags =
1637 			    IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
1638 			    IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
1639 
1640 		} else if (n < 5) {	/* 5GHz band */
1641 			/*
1642 			 * Some adapters support channels 7, 8, 11 and 12
1643 			 * both in the 2GHz and 4.9GHz bands.
1644 			 * Because of limitations in our net80211 layer,
1645 			 * we don't support them in the 4.9GHz band.
1646 			 */
1647 			if (chan <= 14)
1648 				continue;
1649 
1650 			ic->ic_channels[chan].ic_freq =
1651 			    ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
1652 			ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
1653 			/* We have at least one valid 5GHz channel. */
1654 			sc->sc_flags |= IWN_FLAG_HAS_5GHZ;
1655 		} else  { /* 40 MHz */
1656 			sc->maxpwr40[chan] = channels[i].maxpwr;
1657 			ic->ic_channels[chan].ic_flags |= IEEE80211_CHAN_40MHZ;
1658 		}
1659 
1660 		if (n < 5) {
1661 			/* Is active scan allowed on this channel? */
1662 			if (!(channels[i].flags & IWN_EEPROM_CHAN_ACTIVE)) {
1663 				ic->ic_channels[chan].ic_flags |=
1664 				    IEEE80211_CHAN_PASSIVE;
1665 			}
1666 
1667 			/* Save maximum allowed TX power for this channel. */
1668 			sc->maxpwr[chan] = channels[i].maxpwr;
1669 
1670 			if (sc->sc_flags & IWN_FLAG_HAS_11N)
1671 				ic->ic_channels[chan].ic_flags |=
1672 				    IEEE80211_CHAN_HT;
1673 		}
1674 
1675 		DPRINTF(("adding chan %d flags=0x%x maxpwr=%d maxpwr40=%d\n",
1676 		    chan, channels[i].flags, sc->maxpwr[chan],
1677 		    sc->maxpwr40[chan]));
1678 	}
1679 }
1680 
1681 void
iwn_read_eeprom_enhinfo(struct iwn_softc * sc)1682 iwn_read_eeprom_enhinfo(struct iwn_softc *sc)
1683 {
1684 	struct iwn_eeprom_enhinfo enhinfo[35];
1685 	uint16_t val, base;
1686 	int8_t maxpwr;
1687 	int i;
1688 
1689 	iwn_read_prom_data(sc, IWN5000_EEPROM_REG, &val, 2);
1690 	base = letoh16(val);
1691 	iwn_read_prom_data(sc, base + IWN6000_EEPROM_ENHINFO,
1692 	    enhinfo, sizeof enhinfo);
1693 
1694 	memset(sc->enh_maxpwr, 0, sizeof sc->enh_maxpwr);
1695 	for (i = 0; i < nitems(enhinfo); i++) {
1696 		if ((enhinfo[i].flags & IWN_TXP_VALID) == 0)
1697 			continue;	/* Skip invalid entries. */
1698 
1699 		maxpwr = 0;
1700 		if (sc->txchainmask & IWN_ANT_A)
1701 			maxpwr = MAX(maxpwr, enhinfo[i].chain[0]);
1702 		if (sc->txchainmask & IWN_ANT_B)
1703 			maxpwr = MAX(maxpwr, enhinfo[i].chain[1]);
1704 		if (sc->txchainmask & IWN_ANT_C)
1705 			maxpwr = MAX(maxpwr, enhinfo[i].chain[2]);
1706 		if (sc->ntxchains == 2)
1707 			maxpwr = MAX(maxpwr, enhinfo[i].mimo2);
1708 		else if (sc->ntxchains == 3)
1709 			maxpwr = MAX(maxpwr, enhinfo[i].mimo3);
1710 		maxpwr /= 2;	/* Convert half-dBm to dBm. */
1711 
1712 		DPRINTF(("enhinfo %d, maxpwr=%d\n", i, maxpwr));
1713 		sc->enh_maxpwr[i] = maxpwr;
1714 	}
1715 }
1716 
1717 struct ieee80211_node *
iwn_node_alloc(struct ieee80211com * ic)1718 iwn_node_alloc(struct ieee80211com *ic)
1719 {
1720 	return malloc(sizeof (struct iwn_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1721 }
1722 
1723 void
iwn_newassoc(struct ieee80211com * ic,struct ieee80211_node * ni,int isnew)1724 iwn_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
1725 {
1726 	struct iwn_softc *sc = ic->ic_if.if_softc;
1727 	struct iwn_node *wn = (void *)ni;
1728 	uint8_t rate;
1729 	int ridx, i;
1730 
1731 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0)
1732 		ieee80211_amrr_node_init(&sc->amrr, &wn->amn);
1733 
1734 	/* Start at lowest available bit-rate, AMRR/MiRA will raise. */
1735 	ni->ni_txrate = 0;
1736 	ni->ni_txmcs = 0;
1737 
1738 	for (i = 0; i < ni->ni_rates.rs_nrates; i++) {
1739 		rate = ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL;
1740 		/* Map 802.11 rate to HW rate index. */
1741 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
1742 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1743 			    iwn_rates[ridx].rate == rate)
1744 				break;
1745 		}
1746 		wn->ridx[i] = ridx;
1747 	}
1748 }
1749 
1750 int
iwn_media_change(struct ifnet * ifp)1751 iwn_media_change(struct ifnet *ifp)
1752 {
1753 	struct iwn_softc *sc = ifp->if_softc;
1754 	struct ieee80211com *ic = &sc->sc_ic;
1755 	uint8_t rate, ridx;
1756 	int error;
1757 
1758 	error = ieee80211_media_change(ifp);
1759 	if (error != ENETRESET)
1760 		return error;
1761 
1762 	if (ic->ic_fixed_mcs != -1)
1763 		sc->fixed_ridx = iwn_mcs2ridx[ic->ic_fixed_mcs];
1764 	if (ic->ic_fixed_rate != -1) {
1765 		rate = ic->ic_sup_rates[ic->ic_curmode].
1766 		    rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
1767 		/* Map 802.11 rate to HW rate index. */
1768 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++)
1769 			if (iwn_rates[ridx].plcp != IWN_PLCP_INVALID &&
1770 			    iwn_rates[ridx].rate == rate)
1771 				break;
1772 		sc->fixed_ridx = ridx;
1773 	}
1774 
1775 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
1776 	    (IFF_UP | IFF_RUNNING)) {
1777 		iwn_stop(ifp);
1778 		error = iwn_init(ifp);
1779 	}
1780 	return error;
1781 }
1782 
1783 int
iwn_newstate(struct ieee80211com * ic,enum ieee80211_state nstate,int arg)1784 iwn_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
1785 {
1786 	struct ifnet *ifp = &ic->ic_if;
1787 	struct iwn_softc *sc = ifp->if_softc;
1788 	struct ieee80211_node *ni = ic->ic_bss;
1789 	int error;
1790 
1791 	if (ic->ic_state == IEEE80211_S_RUN) {
1792 		if (nstate == IEEE80211_S_SCAN) {
1793 			/*
1794 			 * During RUN->SCAN we don't call sc_newstate() so
1795 			 * we must stop A-MPDU Tx ourselves in this case.
1796 			 */
1797 			ieee80211_stop_ampdu_tx(ic, ni, -1);
1798 			ieee80211_ba_del(ni);
1799 		}
1800 		timeout_del(&sc->calib_to);
1801 		sc->calib.state = IWN_CALIB_STATE_INIT;
1802 		if (sc->sc_flags & IWN_FLAG_BGSCAN)
1803 			iwn_scan_abort(sc);
1804 	}
1805 
1806 	if (ic->ic_state == IEEE80211_S_SCAN) {
1807 		if (nstate == IEEE80211_S_SCAN) {
1808 			if (sc->sc_flags & IWN_FLAG_SCANNING)
1809 				return 0;
1810 		} else
1811 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
1812 		/* Turn LED off when leaving scan state. */
1813 		iwn_set_led(sc, IWN_LED_LINK, 1, 0);
1814 	}
1815 
1816 	if (ic->ic_state >= IEEE80211_S_ASSOC &&
1817 	    nstate <= IEEE80211_S_ASSOC) {
1818 		/* Reset state to handle re- and disassociations. */
1819 		sc->rxon.associd = 0;
1820 		sc->rxon.filter &= ~htole32(IWN_FILTER_BSS);
1821 		sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
1822 		    IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
1823 		sc->calib.state = IWN_CALIB_STATE_INIT;
1824 		error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
1825 		if (error != 0)
1826 			printf("%s: RXON command failed\n",
1827 			    sc->sc_dev.dv_xname);
1828 	}
1829 
1830 	switch (nstate) {
1831 	case IEEE80211_S_SCAN:
1832 		/* Make the link LED blink while we're scanning. */
1833 		iwn_set_led(sc, IWN_LED_LINK, 10, 10);
1834 
1835 		if ((sc->sc_flags & IWN_FLAG_BGSCAN) == 0) {
1836 			ieee80211_set_link_state(ic, LINK_STATE_DOWN);
1837 			ieee80211_node_cleanup(ic, ic->ic_bss);
1838 		}
1839 		if (ifp->if_flags & IFF_DEBUG)
1840 			printf("%s: %s -> %s\n", ifp->if_xname,
1841 			    ieee80211_state_name[ic->ic_state],
1842 			    ieee80211_state_name[nstate]);
1843 		ic->ic_state = nstate;
1844 		if ((error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 0)) != 0) {
1845 			printf("%s: could not initiate scan\n",
1846 			    sc->sc_dev.dv_xname);
1847 		}
1848 		return error;
1849 
1850 	case IEEE80211_S_ASSOC:
1851 		if (ic->ic_state != IEEE80211_S_RUN)
1852 			break;
1853 		/* FALLTHROUGH */
1854 	case IEEE80211_S_AUTH:
1855 		if ((error = iwn_auth(sc, arg)) != 0) {
1856 			printf("%s: could not move to auth state\n",
1857 			    sc->sc_dev.dv_xname);
1858 			return error;
1859 		}
1860 		break;
1861 
1862 	case IEEE80211_S_RUN:
1863 		if ((error = iwn_run(sc)) != 0) {
1864 			printf("%s: could not move to run state\n",
1865 			    sc->sc_dev.dv_xname);
1866 			return error;
1867 		}
1868 		break;
1869 
1870 	case IEEE80211_S_INIT:
1871 		sc->calib.state = IWN_CALIB_STATE_INIT;
1872 		break;
1873 	}
1874 
1875 	return sc->sc_newstate(ic, nstate, arg);
1876 }
1877 
1878 void
iwn_iter_func(void * arg,struct ieee80211_node * ni)1879 iwn_iter_func(void *arg, struct ieee80211_node *ni)
1880 {
1881 	struct iwn_softc *sc = arg;
1882 	struct iwn_node *wn = (void *)ni;
1883 
1884 	if ((ni->ni_flags & IEEE80211_NODE_HT) == 0) {
1885 		int old_txrate = ni->ni_txrate;
1886 		ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
1887 		if (old_txrate != ni->ni_txrate)
1888 			iwn_set_link_quality(sc, ni);
1889 	}
1890 }
1891 
1892 void
iwn_calib_timeout(void * arg)1893 iwn_calib_timeout(void *arg)
1894 {
1895 	struct iwn_softc *sc = arg;
1896 	struct ieee80211com *ic = &sc->sc_ic;
1897 	int s;
1898 
1899 	s = splnet();
1900 	if (ic->ic_fixed_rate == -1) {
1901 		if (ic->ic_opmode == IEEE80211_M_STA)
1902 			iwn_iter_func(sc, ic->ic_bss);
1903 		else
1904 			ieee80211_iterate_nodes(ic, iwn_iter_func, sc);
1905 	}
1906 	/* Force automatic TX power calibration every 60 secs. */
1907 	if (++sc->calib_cnt >= 120) {
1908 		uint32_t flags = 0;
1909 
1910 		DPRINTFN(2, ("sending request for statistics\n"));
1911 		(void)iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags,
1912 		    sizeof flags, 1);
1913 		sc->calib_cnt = 0;
1914 	}
1915 	splx(s);
1916 
1917 	/* Automatic rate control triggered every 500ms. */
1918 	timeout_add_msec(&sc->calib_to, 500);
1919 }
1920 
1921 int
iwn_ccmp_decap(struct iwn_softc * sc,struct mbuf * m,struct ieee80211_node * ni)1922 iwn_ccmp_decap(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
1923 {
1924 	struct ieee80211com *ic = &sc->sc_ic;
1925 	struct ieee80211_key *k = &ni->ni_pairwise_key;
1926 	struct ieee80211_frame *wh;
1927 	uint64_t pn, *prsc;
1928 	uint8_t *ivp;
1929 	uint8_t tid;
1930 	int hdrlen, hasqos;
1931 
1932 	wh = mtod(m, struct ieee80211_frame *);
1933 	hdrlen = ieee80211_get_hdrlen(wh);
1934 	ivp = (uint8_t *)wh + hdrlen;
1935 
1936 	/* Check that ExtIV bit is set. */
1937 	if (!(ivp[3] & IEEE80211_WEP_EXTIV)) {
1938 		DPRINTF(("CCMP decap ExtIV not set\n"));
1939 		return 1;
1940 	}
1941 	hasqos = ieee80211_has_qos(wh);
1942 	tid = hasqos ? ieee80211_get_qos(wh) & IEEE80211_QOS_TID : 0;
1943 	prsc = &k->k_rsc[tid];
1944 
1945 	/* Extract the 48-bit PN from the CCMP header. */
1946 	pn = (uint64_t)ivp[0]       |
1947 	     (uint64_t)ivp[1] <<  8 |
1948 	     (uint64_t)ivp[4] << 16 |
1949 	     (uint64_t)ivp[5] << 24 |
1950 	     (uint64_t)ivp[6] << 32 |
1951 	     (uint64_t)ivp[7] << 40;
1952 	if (pn <= *prsc) {
1953 		DPRINTF(("CCMP replayed\n"));
1954 		ic->ic_stats.is_ccmp_replays++;
1955 		return 1;
1956 	}
1957 	/* Last seen packet number is updated in ieee80211_inputm(). */
1958 
1959 	/* Strip MIC. IV will be stripped by ieee80211_inputm(). */
1960 	m_adj(m, -IEEE80211_CCMP_MICLEN);
1961 	return 0;
1962 }
1963 
1964 /*
1965  * Process an RX_PHY firmware notification.  This is usually immediately
1966  * followed by an MPDU_RX_DONE notification.
1967  */
1968 void
iwn_rx_phy(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)1969 iwn_rx_phy(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1970     struct iwn_rx_data *data)
1971 {
1972 	struct iwn_rx_stat *stat = (struct iwn_rx_stat *)(desc + 1);
1973 
1974 	DPRINTFN(2, ("received PHY stats\n"));
1975 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
1976 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
1977 
1978 	/* Save RX statistics, they will be used on MPDU_RX_DONE. */
1979 	memcpy(&sc->last_rx_stat, stat, sizeof (*stat));
1980 	sc->last_rx_valid = IWN_LAST_RX_VALID;
1981 	/*
1982 	 * The firmware does not send separate RX_PHY
1983 	 * notifications for A-MPDU subframes.
1984 	 */
1985 	if (stat->flags & htole16(IWN_STAT_FLAG_AGG))
1986 		sc->last_rx_valid |= IWN_LAST_RX_AMPDU;
1987 }
1988 
1989 /*
1990  * Process an RX_DONE (4965AGN only) or MPDU_RX_DONE firmware notification.
1991  * Each MPDU_RX_DONE notification must be preceded by an RX_PHY one.
1992  */
1993 void
iwn_rx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data,struct mbuf_list * ml)1994 iwn_rx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
1995     struct iwn_rx_data *data, struct mbuf_list *ml)
1996 {
1997 	struct iwn_ops *ops = &sc->ops;
1998 	struct ieee80211com *ic = &sc->sc_ic;
1999 	struct ifnet *ifp = &ic->ic_if;
2000 	struct iwn_rx_ring *ring = &sc->rxq;
2001 	struct ieee80211_frame *wh;
2002 	struct ieee80211_rxinfo rxi;
2003 	struct ieee80211_node *ni;
2004 	struct mbuf *m, *m1;
2005 	struct iwn_rx_stat *stat;
2006 	caddr_t head;
2007 	uint32_t flags;
2008 	int error, len, rssi;
2009 	uint16_t chan;
2010 
2011 	if (desc->type == IWN_MPDU_RX_DONE) {
2012 		/* Check for prior RX_PHY notification. */
2013 		if (!sc->last_rx_valid) {
2014 			DPRINTF(("missing RX_PHY\n"));
2015 			return;
2016 		}
2017 		sc->last_rx_valid &= ~IWN_LAST_RX_VALID;
2018 		stat = &sc->last_rx_stat;
2019 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) &&
2020 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG)) == 0) {
2021 			DPRINTF(("missing RX_PHY (expecting A-MPDU)\n"));
2022 			return;
2023 		}
2024 		if ((sc->last_rx_valid & IWN_LAST_RX_AMPDU) == 0 &&
2025 		    (stat->flags & htole16(IWN_STAT_FLAG_AGG))) {
2026 			DPRINTF(("missing RX_PHY (unexpected A-MPDU)\n"));
2027 			return;
2028 		}
2029 	} else
2030 		stat = (struct iwn_rx_stat *)(desc + 1);
2031 
2032 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWN_RBUF_SIZE,
2033 	    BUS_DMASYNC_POSTREAD);
2034 
2035 	if (stat->cfg_phy_len > IWN_STAT_MAXLEN) {
2036 		printf("%s: invalid RX statistic header\n",
2037 		    sc->sc_dev.dv_xname);
2038 		return;
2039 	}
2040 	if (desc->type == IWN_MPDU_RX_DONE) {
2041 		struct iwn_rx_mpdu *mpdu = (struct iwn_rx_mpdu *)(desc + 1);
2042 		head = (caddr_t)(mpdu + 1);
2043 		len = letoh16(mpdu->len);
2044 	} else {
2045 		head = (caddr_t)(stat + 1) + stat->cfg_phy_len;
2046 		len = letoh16(stat->len);
2047 	}
2048 
2049 	flags = letoh32(*(uint32_t *)(head + len));
2050 
2051 	/* Discard frames with a bad FCS early. */
2052 	if ((flags & IWN_RX_NOERROR) != IWN_RX_NOERROR) {
2053 		DPRINTFN(2, ("RX flags error %x\n", flags));
2054 		ifp->if_ierrors++;
2055 		return;
2056 	}
2057 	/* Discard frames that are too short. */
2058 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
2059 		/* Allow control frames in monitor mode. */
2060 		if (len < sizeof (struct ieee80211_frame_cts)) {
2061 			DPRINTF(("frame too short: %d\n", len));
2062 			ic->ic_stats.is_rx_tooshort++;
2063 			ifp->if_ierrors++;
2064 			return;
2065 		}
2066 	} else if (len < sizeof (*wh)) {
2067 		DPRINTF(("frame too short: %d\n", len));
2068 		ic->ic_stats.is_rx_tooshort++;
2069 		ifp->if_ierrors++;
2070 		return;
2071 	}
2072 
2073 	m1 = MCLGETL(NULL, M_DONTWAIT, IWN_RBUF_SIZE);
2074 	if (m1 == NULL) {
2075 		ic->ic_stats.is_rx_nombuf++;
2076 		ifp->if_ierrors++;
2077 		return;
2078 	}
2079 	bus_dmamap_unload(sc->sc_dmat, data->map);
2080 
2081 	error = bus_dmamap_load(sc->sc_dmat, data->map, mtod(m1, void *),
2082 	    IWN_RBUF_SIZE, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
2083 	if (error != 0) {
2084 		m_freem(m1);
2085 
2086 		/* Try to reload the old mbuf. */
2087 		error = bus_dmamap_load(sc->sc_dmat, data->map,
2088 		    mtod(data->m, void *), IWN_RBUF_SIZE, NULL,
2089 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
2090 		if (error != 0) {
2091 			panic("%s: could not load old RX mbuf",
2092 			    sc->sc_dev.dv_xname);
2093 		}
2094 		/* Physical address may have changed. */
2095 		ring->desc[ring->cur] =
2096 		    htole32(data->map->dm_segs[0].ds_addr >> 8);
2097 		bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2098 		    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2099 		    BUS_DMASYNC_PREWRITE);
2100 		ifp->if_ierrors++;
2101 		return;
2102 	}
2103 
2104 	m = data->m;
2105 	data->m = m1;
2106 	/* Update RX descriptor. */
2107 	ring->desc[ring->cur] = htole32(data->map->dm_segs[0].ds_addr >> 8);
2108 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
2109 	    ring->cur * sizeof (uint32_t), sizeof (uint32_t),
2110 	    BUS_DMASYNC_PREWRITE);
2111 
2112 	/* Finalize mbuf. */
2113 	m->m_data = head;
2114 	m->m_pkthdr.len = m->m_len = len;
2115 
2116 	/*
2117 	 * Grab a reference to the source node. Note that control frames are
2118 	 * shorter than struct ieee80211_frame but ieee80211_find_rxnode()
2119 	 * is being careful about control frames.
2120 	 */
2121 	wh = mtod(m, struct ieee80211_frame *);
2122 	if (len < sizeof (*wh) &&
2123 	   (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
2124 		ic->ic_stats.is_rx_tooshort++;
2125 		ifp->if_ierrors++;
2126 		m_freem(m);
2127 		return;
2128 	}
2129 	ni = ieee80211_find_rxnode(ic, wh);
2130 
2131 	memset(&rxi, 0, sizeof(rxi));
2132 	if (((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL)
2133 	    && (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) &&
2134 	    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
2135 	    (ni->ni_flags & IEEE80211_NODE_RXPROT) &&
2136 	    ni->ni_pairwise_key.k_cipher == IEEE80211_CIPHER_CCMP) {
2137 		if ((flags & IWN_RX_CIPHER_MASK) != IWN_RX_CIPHER_CCMP) {
2138 			ic->ic_stats.is_ccmp_dec_errs++;
2139 			ifp->if_ierrors++;
2140 			m_freem(m);
2141 			ieee80211_release_node(ic, ni);
2142 			return;
2143 		}
2144 		/* Check whether decryption was successful or not. */
2145 		if ((desc->type == IWN_MPDU_RX_DONE &&
2146 		     (flags & (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) !=
2147 		      (IWN_RX_MPDU_DEC | IWN_RX_MPDU_MIC_OK)) ||
2148 		    (desc->type != IWN_MPDU_RX_DONE &&
2149 		     (flags & IWN_RX_DECRYPT_MASK) != IWN_RX_DECRYPT_OK)) {
2150 			DPRINTF(("CCMP decryption failed 0x%x\n", flags));
2151 			ic->ic_stats.is_ccmp_dec_errs++;
2152 			ifp->if_ierrors++;
2153 			m_freem(m);
2154 			ieee80211_release_node(ic, ni);
2155 			return;
2156 		}
2157 		if (iwn_ccmp_decap(sc, m, ni) != 0) {
2158 			ifp->if_ierrors++;
2159 			m_freem(m);
2160 			ieee80211_release_node(ic, ni);
2161 			return;
2162 		}
2163 		rxi.rxi_flags |= IEEE80211_RXI_HWDEC;
2164 	}
2165 
2166 	rssi = ops->get_rssi(stat);
2167 
2168 	chan = stat->chan;
2169 	if (chan > IEEE80211_CHAN_MAX)
2170 		chan = IEEE80211_CHAN_MAX;
2171 
2172 #if NBPFILTER > 0
2173 	if (sc->sc_drvbpf != NULL) {
2174 		struct iwn_rx_radiotap_header *tap = &sc->sc_rxtap;
2175 		uint16_t chan_flags;
2176 
2177 		tap->wr_flags = 0;
2178 		if (stat->flags & htole16(IWN_STAT_FLAG_SHPREAMBLE))
2179 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
2180 		tap->wr_chan_freq = htole16(ic->ic_channels[chan].ic_freq);
2181 		chan_flags = ic->ic_channels[chan].ic_flags;
2182 		if (ic->ic_curmode != IEEE80211_MODE_11N)
2183 			chan_flags &= ~IEEE80211_CHAN_HT;
2184 		tap->wr_chan_flags = htole16(chan_flags);
2185 		tap->wr_dbm_antsignal = (int8_t)rssi;
2186 		tap->wr_dbm_antnoise = (int8_t)sc->noise;
2187 		tap->wr_tsft = stat->tstamp;
2188 		if (stat->rflags & IWN_RFLAG_MCS) {
2189 			tap->wr_rate = (0x80 | stat->rate); /* HT MCS index */
2190 		} else {
2191 			switch (stat->rate) {
2192 			/* CCK rates. */
2193 			case  10: tap->wr_rate =   2; break;
2194 			case  20: tap->wr_rate =   4; break;
2195 			case  55: tap->wr_rate =  11; break;
2196 			case 110: tap->wr_rate =  22; break;
2197 			/* OFDM rates. */
2198 			case 0xd: tap->wr_rate =  12; break;
2199 			case 0xf: tap->wr_rate =  18; break;
2200 			case 0x5: tap->wr_rate =  24; break;
2201 			case 0x7: tap->wr_rate =  36; break;
2202 			case 0x9: tap->wr_rate =  48; break;
2203 			case 0xb: tap->wr_rate =  72; break;
2204 			case 0x1: tap->wr_rate =  96; break;
2205 			case 0x3: tap->wr_rate = 108; break;
2206 			/* Unknown rate: should not happen. */
2207 			default:  tap->wr_rate =  0;
2208 			}
2209 		}
2210 
2211 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_rxtap_len,
2212 		    m, BPF_DIRECTION_IN);
2213 	}
2214 #endif
2215 
2216 	/* Send the frame to the 802.11 layer. */
2217 	rxi.rxi_rssi = rssi;
2218 	rxi.rxi_chan = chan;
2219 	ieee80211_inputm(ifp, m, ni, &rxi, ml);
2220 
2221 	/* Node is no longer needed. */
2222 	ieee80211_release_node(ic, ni);
2223 }
2224 
2225 void
iwn_ra_choose(struct iwn_softc * sc,struct ieee80211_node * ni)2226 iwn_ra_choose(struct iwn_softc *sc, struct ieee80211_node *ni)
2227 {
2228 	struct ieee80211com *ic = &sc->sc_ic;
2229 	struct iwn_node *wn = (void *)ni;
2230 	int old_txmcs = ni->ni_txmcs;
2231 
2232 	ieee80211_ra_choose(&wn->rn, ic, ni);
2233 
2234 	/* Update firmware's LQ retry table if RA has chosen a new MCS. */
2235 	if (ni->ni_txmcs != old_txmcs)
2236 		iwn_set_link_quality(sc, ni);
2237 }
2238 
2239 void
iwn_ampdu_rate_control(struct iwn_softc * sc,struct ieee80211_node * ni,struct iwn_tx_ring * txq,uint16_t seq,uint16_t ssn)2240 iwn_ampdu_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
2241     struct iwn_tx_ring *txq, uint16_t seq, uint16_t ssn)
2242 {
2243 	struct ieee80211com *ic = &sc->sc_ic;
2244 	struct iwn_node *wn = (void *)ni;
2245 	int idx, end_idx;
2246 
2247 	/*
2248 	 * Update Tx rate statistics for A-MPDUs before firmware's BA window.
2249 	 */
2250 	idx = IWN_AGG_SSN_TO_TXQ_IDX(seq);
2251 	end_idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
2252 	while (idx != end_idx) {
2253 		struct iwn_tx_data *txdata = &txq->data[idx];
2254 		if (txdata->m != NULL && txdata->ampdu_nframes > 1) {
2255 			/*
2256 			 * We can assume that this subframe has been ACKed
2257 			 * because ACK failures come as single frames and
2258 			 * before failing an A-MPDU subframe the firmware
2259 			 * sends it as a single frame at least once.
2260 			 */
2261 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
2262 			    txdata->ampdu_txmcs, 1, 0);
2263 
2264 			/* Report this frame only once. */
2265 			txdata->ampdu_nframes = 0;
2266 		}
2267 
2268 		idx = (idx + 1) % IWN_TX_RING_COUNT;
2269 	}
2270 
2271 	iwn_ra_choose(sc, ni);
2272 }
2273 
2274 void
iwn_ht_single_rate_control(struct iwn_softc * sc,struct ieee80211_node * ni,uint8_t rate,uint8_t rflags,uint8_t ackfailcnt,int txfail)2275 iwn_ht_single_rate_control(struct iwn_softc *sc, struct ieee80211_node *ni,
2276     uint8_t rate, uint8_t rflags, uint8_t ackfailcnt, int txfail)
2277 {
2278 	struct ieee80211com *ic = &sc->sc_ic;
2279 	struct iwn_node *wn = (void *)ni;
2280 	int mcs = rate;
2281 	const struct ieee80211_ht_rateset *rs =
2282 	    ieee80211_ra_get_ht_rateset(rate,
2283 		ieee80211_node_supports_ht_chan40(ni),
2284 		ieee80211_ra_use_ht_sgi(ni));
2285 	unsigned int retries = 0, i;
2286 
2287 	/*
2288 	 * Ignore Tx reports which don't match our last LQ command.
2289 	 */
2290 	if (rate != ni->ni_txmcs) {
2291 		if (++wn->lq_rate_mismatch > 15) {
2292 			/* Try to sync firmware with driver. */
2293 			iwn_set_link_quality(sc, ni);
2294 			wn->lq_rate_mismatch = 0;
2295 		}
2296 		return;
2297 	}
2298 
2299 	wn->lq_rate_mismatch = 0;
2300 
2301 	/*
2302 	 * Firmware has attempted rates in this rate set in sequence.
2303 	 * Retries at a basic rate are counted against the minimum MCS.
2304 	 */
2305 	for (i = 0; i < ackfailcnt; i++) {
2306 		if (mcs > rs->min_mcs) {
2307 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
2308 			mcs--;
2309 		} else
2310 			retries++;
2311 	}
2312 
2313 	if (txfail && ackfailcnt == 0)
2314 		ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, 1, 1);
2315 	else
2316 		ieee80211_ra_add_stats_ht(&wn->rn, ic, ni, mcs, retries + 1, retries);
2317 
2318 	iwn_ra_choose(sc, ni);
2319 }
2320 
2321 /*
2322  * Process an incoming Compressed BlockAck.
2323  * Note that these block ack notifications are generated by firmware and do
2324  * not necessarily correspond to contents of block ack frames seen on the air.
2325  */
2326 void
iwn_rx_compressed_ba(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2327 iwn_rx_compressed_ba(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2328     struct iwn_rx_data *data)
2329 {
2330 	struct iwn_compressed_ba *cba = (struct iwn_compressed_ba *)(desc + 1);
2331 	struct ieee80211com *ic = &sc->sc_ic;
2332 	struct ieee80211_node *ni;
2333 	struct ieee80211_tx_ba *ba;
2334 	struct iwn_tx_ring *txq;
2335 	uint16_t seq, ssn;
2336 	int qid;
2337 
2338 	if (ic->ic_state != IEEE80211_S_RUN)
2339 		return;
2340 
2341 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), sizeof (*cba),
2342 	    BUS_DMASYNC_POSTREAD);
2343 
2344 	if (!IEEE80211_ADDR_EQ(ic->ic_bss->ni_macaddr, cba->macaddr))
2345 		return;
2346 
2347 	ni = ic->ic_bss;
2348 
2349 	qid = le16toh(cba->qid);
2350 	if (qid < sc->first_agg_txq || qid >= sc->ntxqs)
2351 		return;
2352 
2353 	txq = &sc->txq[qid];
2354 
2355 	/* Protect against a firmware bug where the queue/TID are off. */
2356 	if (qid != sc->first_agg_txq + cba->tid)
2357 		return;
2358 
2359 	ba = &ni->ni_tx_ba[cba->tid];
2360 	if (ba->ba_state != IEEE80211_BA_AGREED)
2361 		return;
2362 
2363 	/*
2364 	 * The first bit in cba->bitmap corresponds to the sequence number
2365 	 * stored in the sequence control field cba->seq.
2366 	 * Multiple BA notifications in a row may be using this number, with
2367 	 * additional bits being set in cba->bitmap. It is unclear how the
2368 	 * firmware decides to shift this window forward.
2369 	 * We rely on ba->ba_winstart instead.
2370 	 */
2371 	seq = le16toh(cba->seq) >> IEEE80211_SEQ_SEQ_SHIFT;
2372 
2373 	/*
2374 	 * The firmware's new BA window starting sequence number
2375 	 * corresponds to the first hole in cba->bitmap, implying
2376 	 * that all frames between 'seq' and 'ssn' (non-inclusive)
2377 	 * have been acked.
2378 	 */
2379 	ssn = le16toh(cba->ssn);
2380 
2381 	if (SEQ_LT(ssn, ba->ba_winstart))
2382 		return;
2383 
2384 	/* Skip rate control if our Tx rate is fixed. */
2385 	if (ic->ic_fixed_mcs == -1)
2386 		iwn_ampdu_rate_control(sc, ni, txq, ba->ba_winstart, ssn);
2387 
2388 	/*
2389 	 * SSN corresponds to the first (perhaps not yet transmitted) frame
2390 	 * in firmware's BA window. Firmware is not going to retransmit any
2391 	 * frames before its BA window so mark them all as done.
2392 	 */
2393 	ieee80211_output_ba_move_window(ic, ni, cba->tid, ssn);
2394 	iwn_ampdu_txq_advance(sc, txq, qid,
2395 	    IWN_AGG_SSN_TO_TXQ_IDX(ssn));
2396 	iwn_clear_oactive(sc, txq);
2397 }
2398 
2399 /*
2400  * Process a CALIBRATION_RESULT notification sent by the initialization
2401  * firmware on response to a CMD_CALIB_CONFIG command (5000 only).
2402  */
2403 void
iwn5000_rx_calib_results(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2404 iwn5000_rx_calib_results(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2405     struct iwn_rx_data *data)
2406 {
2407 	struct iwn_phy_calib *calib = (struct iwn_phy_calib *)(desc + 1);
2408 	int len, idx = -1;
2409 
2410 	/* Runtime firmware should not send such a notification. */
2411 	if (sc->sc_flags & IWN_FLAG_CALIB_DONE)
2412 		return;
2413 
2414 	len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK) - 4;
2415 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc), len,
2416 	    BUS_DMASYNC_POSTREAD);
2417 
2418 	switch (calib->code) {
2419 	case IWN5000_PHY_CALIB_DC:
2420 		if (sc->hw_type == IWN_HW_REV_TYPE_5150 ||
2421 		    sc->hw_type == IWN_HW_REV_TYPE_2030 ||
2422 		    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
2423 		    sc->hw_type == IWN_HW_REV_TYPE_135 ||
2424 		    sc->hw_type == IWN_HW_REV_TYPE_105)
2425 			idx = 0;
2426 		break;
2427 	case IWN5000_PHY_CALIB_LO:
2428 		idx = 1;
2429 		break;
2430 	case IWN5000_PHY_CALIB_TX_IQ:
2431 		idx = 2;
2432 		break;
2433 	case IWN5000_PHY_CALIB_TX_IQ_PERIODIC:
2434 		if (sc->hw_type < IWN_HW_REV_TYPE_6000 &&
2435 		    sc->hw_type != IWN_HW_REV_TYPE_5150)
2436 			idx = 3;
2437 		break;
2438 	case IWN5000_PHY_CALIB_BASE_BAND:
2439 		idx = 4;
2440 		break;
2441 	}
2442 	if (idx == -1)	/* Ignore other results. */
2443 		return;
2444 
2445 	/* Save calibration result. */
2446 	if (sc->calibcmd[idx].buf != NULL)
2447 		free(sc->calibcmd[idx].buf, M_DEVBUF, 0);
2448 	sc->calibcmd[idx].buf = malloc(len, M_DEVBUF, M_NOWAIT);
2449 	if (sc->calibcmd[idx].buf == NULL) {
2450 		DPRINTF(("not enough memory for calibration result %d\n",
2451 		    calib->code));
2452 		return;
2453 	}
2454 	DPRINTF(("saving calibration result code=%d len=%d\n",
2455 	    calib->code, len));
2456 	sc->calibcmd[idx].len = len;
2457 	memcpy(sc->calibcmd[idx].buf, calib, len);
2458 }
2459 
2460 /*
2461  * Process an RX_STATISTICS or BEACON_STATISTICS firmware notification.
2462  * The latter is sent by the firmware after each received beacon.
2463  */
2464 void
iwn_rx_statistics(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2465 iwn_rx_statistics(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2466     struct iwn_rx_data *data)
2467 {
2468 	struct iwn_ops *ops = &sc->ops;
2469 	struct ieee80211com *ic = &sc->sc_ic;
2470 	struct iwn_calib_state *calib = &sc->calib;
2471 	struct iwn_stats *stats = (struct iwn_stats *)(desc + 1);
2472 	int temp;
2473 
2474 	/* Ignore statistics received during a scan. */
2475 	if (ic->ic_state != IEEE80211_S_RUN)
2476 		return;
2477 
2478 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2479 	    sizeof (*stats), BUS_DMASYNC_POSTREAD);
2480 
2481 	DPRINTFN(3, ("received statistics (cmd=%d)\n", desc->type));
2482 	sc->calib_cnt = 0;	/* Reset TX power calibration timeout. */
2483 
2484 	sc->rx_stats_flags = htole32(stats->flags);
2485 
2486 	/* Test if temperature has changed. */
2487 	if (stats->general.temp != sc->rawtemp) {
2488 		/* Convert "raw" temperature to degC. */
2489 		sc->rawtemp = stats->general.temp;
2490 		temp = ops->get_temperature(sc);
2491 		DPRINTFN(2, ("temperature=%dC\n", temp));
2492 
2493 		/* Update TX power if need be (4965AGN only). */
2494 		if (sc->hw_type == IWN_HW_REV_TYPE_4965)
2495 			iwn4965_power_calibration(sc, temp);
2496 	}
2497 
2498 	if (desc->type != IWN_BEACON_STATISTICS)
2499 		return;	/* Reply to a statistics request. */
2500 
2501 	sc->noise = iwn_get_noise(&stats->rx.general);
2502 
2503 	/* Test that RSSI and noise are present in stats report. */
2504 	if (sc->noise == -127)
2505 		return;
2506 
2507 	if (letoh32(stats->rx.general.flags) != 1) {
2508 		DPRINTF(("received statistics without RSSI\n"));
2509 		return;
2510 	}
2511 
2512 	/*
2513 	 * XXX Differential gain calibration makes the 6005 firmware
2514 	 * crap out, so skip it for now.  This effectively disables
2515 	 * sensitivity tuning as well.
2516 	 */
2517 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
2518 		return;
2519 
2520 	if (calib->state == IWN_CALIB_STATE_ASSOC)
2521 		iwn_collect_noise(sc, &stats->rx.general);
2522 	else if (calib->state == IWN_CALIB_STATE_RUN)
2523 		iwn_tune_sensitivity(sc, &stats->rx);
2524 }
2525 
2526 void
iwn_ampdu_txq_advance(struct iwn_softc * sc,struct iwn_tx_ring * txq,int qid,int idx)2527 iwn_ampdu_txq_advance(struct iwn_softc *sc, struct iwn_tx_ring *txq, int qid,
2528     int idx)
2529 {
2530 	struct iwn_ops *ops = &sc->ops;
2531 
2532 	DPRINTFN(3, ("%s: txq->cur=%d txq->read=%d txq->queued=%d qid=%d "
2533 	    "idx=%d\n", __func__, txq->cur, txq->read, txq->queued, qid, idx));
2534 
2535 	while (txq->read != idx) {
2536 		struct iwn_tx_data *txdata = &txq->data[txq->read];
2537 		if (txdata->m != NULL) {
2538 			ops->reset_sched(sc, qid, txq->read);
2539 			iwn_tx_done_free_txdata(sc, txdata);
2540 			txq->queued--;
2541 		}
2542 		txq->read = (txq->read + 1) % IWN_TX_RING_COUNT;
2543 	}
2544 }
2545 
2546 /*
2547  * Handle A-MPDU Tx queue status report.
2548  * Tx failures come as single frames (perhaps out of order), and before failing
2549  * an A-MPDU subframe the firmware transmits it as a single frame at least once.
2550  * Frames successfully transmitted in an A-MPDU are completed when a compressed
2551  * block ack notification is received.
2552  */
2553 void
iwn_ampdu_tx_done(struct iwn_softc * sc,struct iwn_tx_ring * txq,struct iwn_rx_desc * desc,uint16_t status,uint8_t ackfailcnt,uint8_t rate,uint8_t rflags,int nframes,uint32_t ssn,struct iwn_txagg_status * agg_status)2554 iwn_ampdu_tx_done(struct iwn_softc *sc, struct iwn_tx_ring *txq,
2555     struct iwn_rx_desc *desc, uint16_t status, uint8_t ackfailcnt,
2556     uint8_t rate, uint8_t rflags, int nframes, uint32_t ssn,
2557     struct iwn_txagg_status *agg_status)
2558 {
2559 	struct ieee80211com *ic = &sc->sc_ic;
2560 	int tid = desc->qid - sc->first_agg_txq;
2561 	struct iwn_tx_data *txdata = &txq->data[desc->idx];
2562 	struct ieee80211_node *ni = txdata->ni;
2563 	int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2564 	    status != IWN_TX_STATUS_DIRECT_DONE);
2565 	struct ieee80211_tx_ba *ba;
2566 	uint16_t seq;
2567 
2568 	sc->sc_tx_timer = 0;
2569 
2570 	if (ic->ic_state != IEEE80211_S_RUN)
2571 		return;
2572 
2573 	if (nframes > 1) {
2574 		int i;
2575 
2576  		/*
2577 		 * Collect information about this A-MPDU.
2578 		 */
2579 		for (i = 0; i < nframes; i++) {
2580 			uint8_t qid = agg_status[i].qid;
2581 			uint8_t idx = agg_status[i].idx;
2582 			uint16_t txstatus = (le16toh(agg_status[i].status) &
2583 			    IWN_AGG_TX_STATUS_MASK);
2584 
2585 			if (txstatus != IWN_AGG_TX_STATE_TRANSMITTED)
2586 				continue;
2587 
2588 			if (qid != desc->qid)
2589 				continue;
2590 
2591 			txdata = &txq->data[idx];
2592 			if (txdata->ni == NULL)
2593 				continue;
2594 
2595 			/* The Tx rate was the same for all subframes. */
2596 			txdata->ampdu_txmcs = rate;
2597 			txdata->ampdu_nframes = nframes;
2598 		}
2599 		return;
2600 	}
2601 
2602 	if (ni == NULL)
2603 		return;
2604 
2605 	ba = &ni->ni_tx_ba[tid];
2606 	if (ba->ba_state != IEEE80211_BA_AGREED)
2607 		return;
2608 	if (SEQ_LT(ssn, ba->ba_winstart))
2609 		return;
2610 
2611 	/* This was a final single-frame Tx attempt for frame SSN-1. */
2612 	seq = (ssn - 1) & 0xfff;
2613 
2614 	/*
2615 	 * Skip rate control if our Tx rate is fixed.
2616 	 */
2617 	if (ic->ic_fixed_mcs == -1) {
2618 		if (txdata->ampdu_nframes > 1) {
2619 			struct iwn_node *wn = (void *)ni;
2620 			/*
2621 			 * This frame was once part of an A-MPDU.
2622 			 * Report one failed A-MPDU Tx attempt.
2623 			 * The firmware might have made several such
2624 			 * attempts but we don't keep track of this.
2625 			 */
2626 			ieee80211_ra_add_stats_ht(&wn->rn, ic, ni,
2627 			    txdata->ampdu_txmcs, 1, 1);
2628 		}
2629 
2630 		/* Report the final single-frame Tx attempt. */
2631 		if (rflags & IWN_RFLAG_MCS)
2632 			iwn_ht_single_rate_control(sc, ni, rate, rflags,
2633 			    ackfailcnt, txfail);
2634 	}
2635 
2636 	if (txfail)
2637 		ieee80211_tx_compressed_bar(ic, ni, tid, ssn);
2638 
2639 	/*
2640 	 * SSN corresponds to the first (perhaps not yet transmitted) frame
2641 	 * in firmware's BA window. Firmware is not going to retransmit any
2642 	 * frames before its BA window so mark them all as done.
2643 	 */
2644 	ieee80211_output_ba_move_window(ic, ni, tid, ssn);
2645 	iwn_ampdu_txq_advance(sc, txq, desc->qid, IWN_AGG_SSN_TO_TXQ_IDX(ssn));
2646 	iwn_clear_oactive(sc, txq);
2647 }
2648 
2649 /*
2650  * Process a TX_DONE firmware notification.  Unfortunately, the 4965AGN
2651  * and 5000 adapters have different incompatible TX status formats.
2652  */
2653 void
iwn4965_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2654 iwn4965_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2655     struct iwn_rx_data *data)
2656 {
2657 	struct iwn4965_tx_stat *stat = (struct iwn4965_tx_stat *)(desc + 1);
2658 	struct iwn_tx_ring *ring;
2659 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2660 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2661 	uint32_t ssn;
2662 
2663 	if (desc->qid > IWN4965_NTXQUEUES)
2664 		return;
2665 
2666 	ring = &sc->txq[desc->qid];
2667 
2668 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2669 	    len, BUS_DMASYNC_POSTREAD);
2670 
2671 	/* Sanity checks. */
2672 	if (sizeof(*stat) > len)
2673 		return;
2674 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2675 		return;
2676 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2677 		return;
2678 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2679 	    stat->nframes * sizeof(stat->stat) > len)
2680 		return;
2681 
2682 	if (desc->qid < sc->first_agg_txq) {
2683 		/* XXX 4965 does not report byte count */
2684 		struct iwn_tx_data *txdata = &ring->data[desc->idx];
2685 		uint16_t framelen = txdata->totlen + IEEE80211_CRC_LEN;
2686 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2687 		    status != IWN_TX_STATUS_DIRECT_DONE);
2688 
2689 		iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
2690 		    stat->rflags, txfail, desc->qid, framelen);
2691 	} else {
2692 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2693 		ssn = le32toh(ssn) & 0xfff;
2694 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
2695 		    stat->rate, stat->rflags, stat->nframes, ssn,
2696 		    stat->stat.agg_status);
2697 	}
2698 }
2699 
2700 void
iwn5000_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,struct iwn_rx_data * data)2701 iwn5000_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2702     struct iwn_rx_data *data)
2703 {
2704 	struct iwn5000_tx_stat *stat = (struct iwn5000_tx_stat *)(desc + 1);
2705 	struct iwn_tx_ring *ring;
2706 	size_t len = (letoh32(desc->len) & IWN_RX_DESC_LEN_MASK);
2707 	uint16_t status = letoh32(stat->stat.status) & 0xff;
2708 	uint32_t ssn;
2709 
2710 	if (desc->qid > IWN5000_NTXQUEUES)
2711 		return;
2712 
2713 	ring = &sc->txq[desc->qid];
2714 
2715 	bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2716 	    sizeof (*stat), BUS_DMASYNC_POSTREAD);
2717 
2718 	/* Sanity checks. */
2719 	if (sizeof(*stat) > len)
2720 		return;
2721 	if (stat->nframes < 1 || stat->nframes > IWN_AMPDU_MAX)
2722 		return;
2723 	if (desc->qid < sc->first_agg_txq && stat->nframes > 1)
2724 		return;
2725 	if (desc->qid >= sc->first_agg_txq && sizeof(*stat) + sizeof(ssn) +
2726 	    stat->nframes * sizeof(stat->stat) > len)
2727 		return;
2728 
2729 	/* If this was not an aggregated frame, complete it now. */
2730 	if (desc->qid < sc->first_agg_txq) {
2731 		int txfail = (status != IWN_TX_STATUS_SUCCESS &&
2732 		    status != IWN_TX_STATUS_DIRECT_DONE);
2733 
2734 		/* Reset TX scheduler slot. */
2735 		iwn5000_reset_sched(sc, desc->qid, desc->idx);
2736 
2737 		iwn_tx_done(sc, desc, stat->ackfailcnt, stat->rate,
2738 		    stat->rflags, txfail, desc->qid, letoh16(stat->len));
2739 	} else {
2740 		memcpy(&ssn, &stat->stat.status + stat->nframes, sizeof(ssn));
2741 		ssn = le32toh(ssn) & 0xfff;
2742 		iwn_ampdu_tx_done(sc, ring, desc, status, stat->ackfailcnt,
2743 		    stat->rate, stat->rflags, stat->nframes, ssn,
2744 		    stat->stat.agg_status);
2745 	}
2746 }
2747 
2748 void
iwn_tx_done_free_txdata(struct iwn_softc * sc,struct iwn_tx_data * data)2749 iwn_tx_done_free_txdata(struct iwn_softc *sc, struct iwn_tx_data *data)
2750 {
2751 	struct ieee80211com *ic = &sc->sc_ic;
2752 
2753 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
2754 	    BUS_DMASYNC_POSTWRITE);
2755 	bus_dmamap_unload(sc->sc_dmat, data->map);
2756 	m_freem(data->m);
2757 	data->m = NULL;
2758 	ieee80211_release_node(ic, data->ni);
2759 	data->ni = NULL;
2760 	data->totlen = 0;
2761 	data->ampdu_nframes = 0;
2762 	data->ampdu_txmcs = 0;
2763 }
2764 
2765 void
iwn_clear_oactive(struct iwn_softc * sc,struct iwn_tx_ring * ring)2766 iwn_clear_oactive(struct iwn_softc *sc, struct iwn_tx_ring *ring)
2767 {
2768 	struct ieee80211com *ic = &sc->sc_ic;
2769 	struct ifnet *ifp = &ic->ic_if;
2770 
2771 	if (ring->queued < IWN_TX_RING_LOMARK) {
2772 		sc->qfullmsk &= ~(1 << ring->qid);
2773 		if (sc->qfullmsk == 0 && ifq_is_oactive(&ifp->if_snd)) {
2774 			ifq_clr_oactive(&ifp->if_snd);
2775 			(*ifp->if_start)(ifp);
2776 		}
2777 	}
2778 }
2779 
2780 /*
2781  * Adapter-independent backend for TX_DONE firmware notifications.
2782  * This handles Tx status for non-aggregation queues.
2783  */
2784 void
iwn_tx_done(struct iwn_softc * sc,struct iwn_rx_desc * desc,uint8_t ackfailcnt,uint8_t rate,uint8_t rflags,int txfail,int qid,uint16_t len)2785 iwn_tx_done(struct iwn_softc *sc, struct iwn_rx_desc *desc,
2786     uint8_t ackfailcnt, uint8_t rate, uint8_t rflags, int txfail,
2787     int qid, uint16_t len)
2788 {
2789 	struct ieee80211com *ic = &sc->sc_ic;
2790 	struct ifnet *ifp = &ic->ic_if;
2791 	struct iwn_tx_ring *ring = &sc->txq[qid];
2792 	struct iwn_tx_data *data = &ring->data[desc->idx];
2793 	struct iwn_node *wn = (void *)data->ni;
2794 
2795 	if (data->ni == NULL)
2796 		return;
2797 
2798 	if (data->ni->ni_flags & IEEE80211_NODE_HT) {
2799 		if (ic->ic_state == IEEE80211_S_RUN &&
2800 		    ic->ic_fixed_mcs == -1 && (rflags & IWN_RFLAG_MCS)) {
2801 			iwn_ht_single_rate_control(sc, data->ni, rate, rflags,
2802 			    ackfailcnt, txfail);
2803 		}
2804 	} else {
2805 		if (rate != data->ni->ni_txrate) {
2806 			if (++wn->lq_rate_mismatch > 15) {
2807 				/* Try to sync firmware with driver. */
2808 				iwn_set_link_quality(sc, data->ni);
2809 				wn->lq_rate_mismatch = 0;
2810 			}
2811 		} else {
2812 			wn->lq_rate_mismatch = 0;
2813 
2814 			wn->amn.amn_txcnt++;
2815 			if (ackfailcnt > 0)
2816 				wn->amn.amn_retrycnt++;
2817 			if (txfail)
2818 				wn->amn.amn_retrycnt++;
2819 		}
2820 	}
2821 	if (txfail)
2822 		ifp->if_oerrors++;
2823 
2824 	iwn_tx_done_free_txdata(sc, data);
2825 
2826 	sc->sc_tx_timer = 0;
2827 	ring->queued--;
2828 	iwn_clear_oactive(sc, ring);
2829 }
2830 
2831 /*
2832  * Process a "command done" firmware notification.  This is where we wakeup
2833  * processes waiting for a synchronous command completion.
2834  */
2835 void
iwn_cmd_done(struct iwn_softc * sc,struct iwn_rx_desc * desc)2836 iwn_cmd_done(struct iwn_softc *sc, struct iwn_rx_desc *desc)
2837 {
2838 	struct iwn_tx_ring *ring = &sc->txq[4];
2839 	struct iwn_tx_data *data;
2840 
2841 	if ((desc->qid & 0xf) != 4)
2842 		return;	/* Not a command ack. */
2843 
2844 	data = &ring->data[desc->idx];
2845 
2846 	/* If the command was mapped in an mbuf, free it. */
2847 	if (data->m != NULL) {
2848 		bus_dmamap_sync(sc->sc_dmat, data->map, 0,
2849 		    data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
2850 		bus_dmamap_unload(sc->sc_dmat, data->map);
2851 		m_freem(data->m);
2852 		data->m = NULL;
2853 	}
2854 	wakeup(&ring->desc[desc->idx]);
2855 }
2856 
2857 /*
2858  * Process an INT_FH_RX or INT_SW_RX interrupt.
2859  */
2860 void
iwn_notif_intr(struct iwn_softc * sc)2861 iwn_notif_intr(struct iwn_softc *sc)
2862 {
2863 	struct mbuf_list ml = MBUF_LIST_INITIALIZER();
2864 	struct iwn_ops *ops = &sc->ops;
2865 	struct ieee80211com *ic = &sc->sc_ic;
2866 	struct ifnet *ifp = &ic->ic_if;
2867 	uint16_t hw;
2868 
2869 	bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
2870 	    0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
2871 
2872 	hw = letoh16(sc->rxq.stat->closed_count) & 0xfff;
2873 	while (sc->rxq.cur != hw) {
2874 		struct iwn_rx_data *data = &sc->rxq.data[sc->rxq.cur];
2875 		struct iwn_rx_desc *desc;
2876 
2877 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof (*desc),
2878 		    BUS_DMASYNC_POSTREAD);
2879 		desc = mtod(data->m, struct iwn_rx_desc *);
2880 
2881 		DPRINTFN(4, ("notification qid=%d idx=%d flags=%x type=%d\n",
2882 		    desc->qid & 0xf, desc->idx, desc->flags, desc->type));
2883 
2884 		if (!(desc->qid & 0x80))	/* Reply to a command. */
2885 			iwn_cmd_done(sc, desc);
2886 
2887 		switch (desc->type) {
2888 		case IWN_RX_PHY:
2889 			iwn_rx_phy(sc, desc, data);
2890 			break;
2891 
2892 		case IWN_RX_DONE:		/* 4965AGN only. */
2893 		case IWN_MPDU_RX_DONE:
2894 			/* An 802.11 frame has been received. */
2895 			iwn_rx_done(sc, desc, data, &ml);
2896 			break;
2897 		case IWN_RX_COMPRESSED_BA:
2898 			/* A Compressed BlockAck has been received. */
2899 			iwn_rx_compressed_ba(sc, desc, data);
2900 			break;
2901 		case IWN_TX_DONE:
2902 			/* An 802.11 frame has been transmitted. */
2903 			ops->tx_done(sc, desc, data);
2904 			break;
2905 
2906 		case IWN_RX_STATISTICS:
2907 		case IWN_BEACON_STATISTICS:
2908 			iwn_rx_statistics(sc, desc, data);
2909 			break;
2910 
2911 		case IWN_BEACON_MISSED:
2912 		{
2913 			struct iwn_beacon_missed *miss =
2914 			    (struct iwn_beacon_missed *)(desc + 1);
2915 			uint32_t missed;
2916 
2917 			if ((ic->ic_opmode != IEEE80211_M_STA) ||
2918 			    (ic->ic_state != IEEE80211_S_RUN))
2919 				break;
2920 
2921 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2922 			    sizeof (*miss), BUS_DMASYNC_POSTREAD);
2923 			missed = letoh32(miss->consecutive);
2924 
2925 			/*
2926 			 * If more than 5 consecutive beacons are missed,
2927 			 * reinitialize the sensitivity state machine.
2928 			 */
2929 			if (missed > 5)
2930 				(void)iwn_init_sensitivity(sc);
2931 
2932 			/*
2933 			 * Rather than go directly to scan state, try to send a
2934 			 * directed probe request first. If that fails then the
2935 			 * state machine will drop us into scanning after timing
2936 			 * out waiting for a probe response.
2937 			 */
2938 			if (missed > ic->ic_bmissthres && !ic->ic_mgt_timer) {
2939 				if (ic->ic_if.if_flags & IFF_DEBUG)
2940 					printf("%s: receiving no beacons from "
2941 					    "%s; checking if this AP is still "
2942 					    "responding to probe requests\n",
2943 					    sc->sc_dev.dv_xname, ether_sprintf(
2944 					    ic->ic_bss->ni_macaddr));
2945 				IEEE80211_SEND_MGMT(ic, ic->ic_bss,
2946 				    IEEE80211_FC0_SUBTYPE_PROBE_REQ, 0);
2947 			}
2948 			break;
2949 		}
2950 		case IWN_UC_READY:
2951 		{
2952 			struct iwn_ucode_info *uc =
2953 			    (struct iwn_ucode_info *)(desc + 1);
2954 
2955 			/* The microcontroller is ready. */
2956 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2957 			    sizeof (*uc), BUS_DMASYNC_POSTREAD);
2958 			DPRINTF(("microcode alive notification version=%d.%d "
2959 			    "subtype=%x alive=%x\n", uc->major, uc->minor,
2960 			    uc->subtype, letoh32(uc->valid)));
2961 
2962 			if (letoh32(uc->valid) != 1) {
2963 				printf("%s: microcontroller initialization "
2964 				    "failed\n", sc->sc_dev.dv_xname);
2965 				break;
2966 			}
2967 			if (uc->subtype == IWN_UCODE_INIT) {
2968 				/* Save microcontroller report. */
2969 				memcpy(&sc->ucode_info, uc, sizeof (*uc));
2970 			}
2971 			/* Save the address of the error log in SRAM. */
2972 			sc->errptr = letoh32(uc->errptr);
2973 			break;
2974 		}
2975 		case IWN_STATE_CHANGED:
2976 		{
2977 			uint32_t *status = (uint32_t *)(desc + 1);
2978 
2979 			/* Enabled/disabled notification. */
2980 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2981 			    sizeof (*status), BUS_DMASYNC_POSTREAD);
2982 			DPRINTF(("state changed to %x\n", letoh32(*status)));
2983 
2984 			if (letoh32(*status) & 1) {
2985 				/* Radio transmitter is off, power down. */
2986 				iwn_stop(ifp);
2987 				return;	/* No further processing. */
2988 			}
2989 			break;
2990 		}
2991 		case IWN_START_SCAN:
2992 		{
2993 			struct iwn_start_scan *scan =
2994 			    (struct iwn_start_scan *)(desc + 1);
2995 
2996 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
2997 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
2998 			DPRINTFN(2, ("scan start: chan %d status %x\n",
2999 			    scan->chan, letoh32(scan->status)));
3000 
3001 			if (sc->sc_flags & IWN_FLAG_BGSCAN)
3002 				break;
3003 
3004 			/* Fix current channel. */
3005 			ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
3006 			break;
3007 		}
3008 		case IWN_STOP_SCAN:
3009 		{
3010 			struct iwn_stop_scan *scan =
3011 			    (struct iwn_stop_scan *)(desc + 1);
3012 
3013 			bus_dmamap_sync(sc->sc_dmat, data->map, sizeof (*desc),
3014 			    sizeof (*scan), BUS_DMASYNC_POSTREAD);
3015 			DPRINTFN(2, ("scan stop: nchan=%d status=%d chan=%d\n",
3016 			    scan->nchan, scan->status, scan->chan));
3017 
3018 			if (scan->status == 1 && scan->chan <= 14 &&
3019 			    (sc->sc_flags & IWN_FLAG_HAS_5GHZ)) {
3020 			    	int error;
3021 				/*
3022 				 * We just finished scanning 2GHz channels,
3023 				 * start scanning 5GHz ones.
3024 				 */
3025 				error = iwn_scan(sc, IEEE80211_CHAN_5GHZ,
3026 				    (sc->sc_flags & IWN_FLAG_BGSCAN) ? 1 : 0);
3027 				if (error == 0)
3028 					break;
3029 			}
3030 			sc->sc_flags &= ~IWN_FLAG_SCANNING;
3031 			sc->sc_flags &= ~IWN_FLAG_BGSCAN;
3032 			ieee80211_end_scan(ifp);
3033 			break;
3034 		}
3035 		case IWN5000_CALIBRATION_RESULT:
3036 			iwn5000_rx_calib_results(sc, desc, data);
3037 			break;
3038 
3039 		case IWN5000_CALIBRATION_DONE:
3040 			sc->sc_flags |= IWN_FLAG_CALIB_DONE;
3041 			wakeup(sc);
3042 			break;
3043 		}
3044 
3045 		sc->rxq.cur = (sc->rxq.cur + 1) % IWN_RX_RING_COUNT;
3046 	}
3047 	if_input(&sc->sc_ic.ic_if, &ml);
3048 
3049 	/* Tell the firmware what we have processed. */
3050 	hw = (hw == 0) ? IWN_RX_RING_COUNT - 1 : hw - 1;
3051 	IWN_WRITE(sc, IWN_FH_RX_WPTR, hw & ~7);
3052 }
3053 
3054 /*
3055  * Process an INT_WAKEUP interrupt raised when the microcontroller wakes up
3056  * from power-down sleep mode.
3057  */
3058 void
iwn_wakeup_intr(struct iwn_softc * sc)3059 iwn_wakeup_intr(struct iwn_softc *sc)
3060 {
3061 	int qid;
3062 
3063 	DPRINTF(("ucode wakeup from power-down sleep\n"));
3064 
3065 	/* Wakeup RX and TX rings. */
3066 	IWN_WRITE(sc, IWN_FH_RX_WPTR, sc->rxq.cur & ~7);
3067 	for (qid = 0; qid < sc->ntxqs; qid++) {
3068 		struct iwn_tx_ring *ring = &sc->txq[qid];
3069 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | ring->cur);
3070 	}
3071 }
3072 
3073 /*
3074  * Dump the error log of the firmware when a firmware panic occurs.  Although
3075  * we can't debug the firmware because it is neither open source nor free, it
3076  * can help us to identify certain classes of problems.
3077  */
3078 void
iwn_fatal_intr(struct iwn_softc * sc)3079 iwn_fatal_intr(struct iwn_softc *sc)
3080 {
3081 	struct iwn_fw_dump dump;
3082 	int i;
3083 
3084 	/* Check that the error log address is valid. */
3085 	if (sc->errptr < IWN_FW_DATA_BASE ||
3086 	    sc->errptr + sizeof (dump) >
3087 	    IWN_FW_DATA_BASE + sc->fw_data_maxsz) {
3088 		printf("%s: bad firmware error log address 0x%08x\n",
3089 		    sc->sc_dev.dv_xname, sc->errptr);
3090 		return;
3091 	}
3092 	if (iwn_nic_lock(sc) != 0) {
3093 		printf("%s: could not read firmware error log\n",
3094 		    sc->sc_dev.dv_xname);
3095 		return;
3096 	}
3097 	/* Read firmware error log from SRAM. */
3098 	iwn_mem_read_region_4(sc, sc->errptr, (uint32_t *)&dump,
3099 	    sizeof (dump) / sizeof (uint32_t));
3100 	iwn_nic_unlock(sc);
3101 
3102 	if (dump.valid == 0) {
3103 		printf("%s: firmware error log is empty\n",
3104 		    sc->sc_dev.dv_xname);
3105 		return;
3106 	}
3107 	printf("firmware error log:\n");
3108 	printf("  error type      = \"%s\" (0x%08X)\n",
3109 	    (dump.id < nitems(iwn_fw_errmsg)) ?
3110 		iwn_fw_errmsg[dump.id] : "UNKNOWN",
3111 	    dump.id);
3112 	printf("  program counter = 0x%08X\n", dump.pc);
3113 	printf("  source line     = 0x%08X\n", dump.src_line);
3114 	printf("  error data      = 0x%08X%08X\n",
3115 	    dump.error_data[0], dump.error_data[1]);
3116 	printf("  branch link     = 0x%08X%08X\n",
3117 	    dump.branch_link[0], dump.branch_link[1]);
3118 	printf("  interrupt link  = 0x%08X%08X\n",
3119 	    dump.interrupt_link[0], dump.interrupt_link[1]);
3120 	printf("  time            = %u\n", dump.time[0]);
3121 
3122 	/* Dump driver status (TX and RX rings) while we're here. */
3123 	printf("driver status:\n");
3124 	for (i = 0; i < sc->ntxqs; i++) {
3125 		struct iwn_tx_ring *ring = &sc->txq[i];
3126 		printf("  tx ring %2d: qid=%-2d cur=%-3d queued=%-3d\n",
3127 		    i, ring->qid, ring->cur, ring->queued);
3128 	}
3129 	printf("  rx ring: cur=%d\n", sc->rxq.cur);
3130 	printf("  802.11 state %d\n", sc->sc_ic.ic_state);
3131 }
3132 
3133 int
iwn_intr(void * arg)3134 iwn_intr(void *arg)
3135 {
3136 	struct iwn_softc *sc = arg;
3137 	struct ifnet *ifp = &sc->sc_ic.ic_if;
3138 	uint32_t r1, r2, tmp;
3139 
3140 	/* Disable interrupts. */
3141 	IWN_WRITE(sc, IWN_INT_MASK, 0);
3142 
3143 	/* Read interrupts from ICT (fast) or from registers (slow). */
3144 	if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3145 		tmp = 0;
3146 		while (sc->ict[sc->ict_cur] != 0) {
3147 			tmp |= sc->ict[sc->ict_cur];
3148 			sc->ict[sc->ict_cur] = 0;	/* Acknowledge. */
3149 			sc->ict_cur = (sc->ict_cur + 1) % IWN_ICT_COUNT;
3150 		}
3151 		tmp = letoh32(tmp);
3152 		if (tmp == 0xffffffff)	/* Shouldn't happen. */
3153 			tmp = 0;
3154 		else if (tmp & 0xc0000)	/* Workaround a HW bug. */
3155 			tmp |= 0x8000;
3156 		r1 = (tmp & 0xff00) << 16 | (tmp & 0xff);
3157 		r2 = 0;	/* Unused. */
3158 	} else {
3159 		r1 = IWN_READ(sc, IWN_INT);
3160 		if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
3161 			return 0;	/* Hardware gone! */
3162 		r2 = IWN_READ(sc, IWN_FH_INT);
3163 	}
3164 	if (r1 == 0 && r2 == 0) {
3165 		if (ifp->if_flags & IFF_UP)
3166 			IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3167 		return 0;	/* Interrupt not for us. */
3168 	}
3169 
3170 	/* Acknowledge interrupts. */
3171 	IWN_WRITE(sc, IWN_INT, r1);
3172 	if (!(sc->sc_flags & IWN_FLAG_USE_ICT))
3173 		IWN_WRITE(sc, IWN_FH_INT, r2);
3174 
3175 	if (r1 & IWN_INT_RF_TOGGLED) {
3176 		tmp = IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL;
3177 		printf("%s: RF switch: radio %s\n", sc->sc_dev.dv_xname,
3178 		    tmp ? "enabled" : "disabled");
3179 		if (tmp)
3180 			task_add(systq, &sc->init_task);
3181 	}
3182 	if (r1 & IWN_INT_CT_REACHED) {
3183 		printf("%s: critical temperature reached!\n",
3184 		    sc->sc_dev.dv_xname);
3185 	}
3186 	if (r1 & (IWN_INT_SW_ERR | IWN_INT_HW_ERR)) {
3187 		printf("%s: fatal firmware error\n", sc->sc_dev.dv_xname);
3188 
3189 		/* Force a complete recalibration on next init. */
3190 		sc->sc_flags &= ~IWN_FLAG_CALIB_DONE;
3191 
3192 		/* Dump firmware error log and stop. */
3193 		if (ifp->if_flags & IFF_DEBUG)
3194 			iwn_fatal_intr(sc);
3195 		iwn_stop(ifp);
3196 		task_add(systq, &sc->init_task);
3197 		return 1;
3198 	}
3199 	if ((r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX | IWN_INT_RX_PERIODIC)) ||
3200 	    (r2 & IWN_FH_INT_RX)) {
3201 		if (sc->sc_flags & IWN_FLAG_USE_ICT) {
3202 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX))
3203 				IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_RX);
3204 			IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3205 			    IWN_INT_PERIODIC_DIS);
3206 			iwn_notif_intr(sc);
3207 			if (r1 & (IWN_INT_FH_RX | IWN_INT_SW_RX)) {
3208 				IWN_WRITE_1(sc, IWN_INT_PERIODIC,
3209 				    IWN_INT_PERIODIC_ENA);
3210 			}
3211 		} else
3212 			iwn_notif_intr(sc);
3213 	}
3214 
3215 	if ((r1 & IWN_INT_FH_TX) || (r2 & IWN_FH_INT_TX)) {
3216 		if (sc->sc_flags & IWN_FLAG_USE_ICT)
3217 			IWN_WRITE(sc, IWN_FH_INT, IWN_FH_INT_TX);
3218 		wakeup(sc);	/* FH DMA transfer completed. */
3219 	}
3220 
3221 	if (r1 & IWN_INT_ALIVE)
3222 		wakeup(sc);	/* Firmware is alive. */
3223 
3224 	if (r1 & IWN_INT_WAKEUP)
3225 		iwn_wakeup_intr(sc);
3226 
3227 	/* Re-enable interrupts. */
3228 	if (ifp->if_flags & IFF_UP)
3229 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
3230 
3231 	return 1;
3232 }
3233 
3234 /*
3235  * Update TX scheduler ring when transmitting an 802.11 frame (4965AGN and
3236  * 5000 adapters use a slightly different format).
3237  */
3238 void
iwn4965_update_sched(struct iwn_softc * sc,int qid,int idx,uint8_t id,uint16_t len)3239 iwn4965_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3240     uint16_t len)
3241 {
3242 	uint16_t *w = &sc->sched[qid * IWN4965_SCHED_COUNT + idx];
3243 
3244 	*w = htole16(len + 8);
3245 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3246 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3247 	    BUS_DMASYNC_PREWRITE);
3248 	if (idx < IWN_SCHED_WINSZ) {
3249 		*(w + IWN_TX_RING_COUNT) = *w;
3250 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3251 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3252 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3253 	}
3254 }
3255 
3256 void
iwn4965_reset_sched(struct iwn_softc * sc,int qid,int idx)3257 iwn4965_reset_sched(struct iwn_softc *sc, int qid, int idx)
3258 {
3259 	/* TBD */
3260 }
3261 
3262 void
iwn5000_update_sched(struct iwn_softc * sc,int qid,int idx,uint8_t id,uint16_t len)3263 iwn5000_update_sched(struct iwn_softc *sc, int qid, int idx, uint8_t id,
3264     uint16_t len)
3265 {
3266 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3267 
3268 	*w = htole16(id << 12 | (len + 8));
3269 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3270 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3271 	    BUS_DMASYNC_PREWRITE);
3272 	if (idx < IWN_SCHED_WINSZ) {
3273 		*(w + IWN_TX_RING_COUNT) = *w;
3274 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3275 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3276 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3277 	}
3278 }
3279 
3280 void
iwn5000_reset_sched(struct iwn_softc * sc,int qid,int idx)3281 iwn5000_reset_sched(struct iwn_softc *sc, int qid, int idx)
3282 {
3283 	uint16_t *w = &sc->sched[qid * IWN5000_SCHED_COUNT + idx];
3284 
3285 	*w = (*w & htole16(0xf000)) | htole16(1);
3286 	bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3287 	    (caddr_t)w - sc->sched_dma.vaddr, sizeof (uint16_t),
3288 	    BUS_DMASYNC_PREWRITE);
3289 	if (idx < IWN_SCHED_WINSZ) {
3290 		*(w + IWN_TX_RING_COUNT) = *w;
3291 		bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
3292 		    (caddr_t)(w + IWN_TX_RING_COUNT) - sc->sched_dma.vaddr,
3293 		    sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
3294 	}
3295 }
3296 
3297 int
iwn_rval2ridx(int rval)3298 iwn_rval2ridx(int rval)
3299 {
3300 	int ridx;
3301 
3302 	for (ridx = 0; ridx < nitems(iwn_rates); ridx++) {
3303 		if (rval == iwn_rates[ridx].rate)
3304 			break;
3305 	}
3306 
3307 	return ridx;
3308 }
3309 
3310 int
iwn_tx(struct iwn_softc * sc,struct mbuf * m,struct ieee80211_node * ni)3311 iwn_tx(struct iwn_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
3312 {
3313 	struct iwn_ops *ops = &sc->ops;
3314 	struct ieee80211com *ic = &sc->sc_ic;
3315 	struct iwn_node *wn = (void *)ni;
3316 	struct iwn_tx_ring *ring;
3317 	struct iwn_tx_desc *desc;
3318 	struct iwn_tx_data *data;
3319 	struct iwn_tx_cmd *cmd;
3320 	struct iwn_cmd_data *tx;
3321 	const struct iwn_rate *rinfo;
3322 	struct ieee80211_frame *wh;
3323 	struct ieee80211_key *k = NULL;
3324 	enum ieee80211_edca_ac ac;
3325 	int qid;
3326 	uint32_t flags;
3327 	uint16_t qos;
3328 	u_int hdrlen;
3329 	bus_dma_segment_t *seg;
3330 	uint8_t *ivp, tid, ridx, txant, type, subtype;
3331 	int i, totlen, hasqos, error, pad;
3332 
3333 	wh = mtod(m, struct ieee80211_frame *);
3334 	type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
3335 	subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3336 	if (type == IEEE80211_FC0_TYPE_CTL)
3337 		hdrlen = sizeof(struct ieee80211_frame_min);
3338 	else
3339 		hdrlen = ieee80211_get_hdrlen(wh);
3340 
3341 	if ((hasqos = ieee80211_has_qos(wh))) {
3342 		/* Select EDCA Access Category and TX ring for this frame. */
3343 		struct ieee80211_tx_ba *ba;
3344 		qos = ieee80211_get_qos(wh);
3345 		tid = qos & IEEE80211_QOS_TID;
3346 		ac = ieee80211_up_to_ac(ic, tid);
3347 		qid = ac;
3348 
3349 		/* If possible, put this frame on an aggregation queue. */
3350 		if (sc->sc_tx_ba[tid].wn == wn) {
3351 			ba = &ni->ni_tx_ba[tid];
3352 			if (!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3353 			    ba->ba_state == IEEE80211_BA_AGREED) {
3354 				qid = sc->first_agg_txq + tid;
3355 				if (sc->qfullmsk & (1 << qid)) {
3356 					m_freem(m);
3357 					return ENOBUFS;
3358 				}
3359 			}
3360 		}
3361 	} else {
3362 		qos = 0;
3363 		tid = IWN_NONQOS_TID;
3364 		ac = EDCA_AC_BE;
3365 		qid = ac;
3366 	}
3367 
3368 	ring = &sc->txq[qid];
3369 	desc = &ring->desc[ring->cur];
3370 	data = &ring->data[ring->cur];
3371 
3372 	/* Choose a TX rate index. */
3373 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3374 	    type != IEEE80211_FC0_TYPE_DATA)
3375 		ridx = iwn_rval2ridx(ieee80211_min_basic_rate(ic));
3376 	else if (ic->ic_fixed_mcs != -1)
3377 		ridx = sc->fixed_ridx;
3378 	else if (ic->ic_fixed_rate != -1)
3379 		ridx = sc->fixed_ridx;
3380 	else {
3381 		if (ni->ni_flags & IEEE80211_NODE_HT)
3382 			ridx = iwn_mcs2ridx[ni->ni_txmcs];
3383 		else
3384 			ridx = wn->ridx[ni->ni_txrate];
3385 	}
3386 	rinfo = &iwn_rates[ridx];
3387 #if NBPFILTER > 0
3388 	if (sc->sc_drvbpf != NULL) {
3389 		struct iwn_tx_radiotap_header *tap = &sc->sc_txtap;
3390 		uint16_t chan_flags;
3391 
3392 		tap->wt_flags = 0;
3393 		tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
3394 		chan_flags = ni->ni_chan->ic_flags;
3395 		if (ic->ic_curmode != IEEE80211_MODE_11N)
3396 			chan_flags &= ~IEEE80211_CHAN_HT;
3397 		tap->wt_chan_flags = htole16(chan_flags);
3398 		if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3399 		    !IEEE80211_IS_MULTICAST(wh->i_addr1) &&
3400 		    type == IEEE80211_FC0_TYPE_DATA) {
3401 			tap->wt_rate = (0x80 | ni->ni_txmcs);
3402 		} else
3403 			tap->wt_rate = rinfo->rate;
3404 		if ((ic->ic_flags & IEEE80211_F_WEPON) &&
3405 		    (wh->i_fc[1] & IEEE80211_FC1_PROTECTED))
3406 			tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3407 
3408 		bpf_mtap_hdr(sc->sc_drvbpf, tap, sc->sc_txtap_len,
3409 		    m, BPF_DIRECTION_OUT);
3410 	}
3411 #endif
3412 
3413 	totlen = m->m_pkthdr.len;
3414 
3415 	/* Encrypt the frame if need be. */
3416 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
3417 		/* Retrieve key for TX. */
3418 		k = ieee80211_get_txkey(ic, wh, ni);
3419 		if (k->k_cipher != IEEE80211_CIPHER_CCMP) {
3420 			/* Do software encryption. */
3421 			if ((m = ieee80211_encrypt(ic, m, k)) == NULL)
3422 				return ENOBUFS;
3423 			/* 802.11 header may have moved. */
3424 			wh = mtod(m, struct ieee80211_frame *);
3425 			totlen = m->m_pkthdr.len;
3426 
3427 		} else	/* HW appends CCMP MIC. */
3428 			totlen += IEEE80211_CCMP_HDRLEN;
3429 	}
3430 
3431 	data->totlen = totlen;
3432 
3433 	/* Prepare TX firmware command. */
3434 	cmd = &ring->cmd[ring->cur];
3435 	cmd->code = IWN_CMD_TX_DATA;
3436 	cmd->flags = 0;
3437 	cmd->qid = ring->qid;
3438 	cmd->idx = ring->cur;
3439 
3440 	tx = (struct iwn_cmd_data *)cmd->data;
3441 	/* NB: No need to clear tx, all fields are reinitialized here. */
3442 	tx->scratch = 0;	/* clear "scratch" area */
3443 
3444 	flags = 0;
3445 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3446 		/* Unicast frame, check if an ACK is expected. */
3447 		if (!hasqos || (qos & IEEE80211_QOS_ACK_POLICY_MASK) !=
3448 		    IEEE80211_QOS_ACK_POLICY_NOACK)
3449 			flags |= IWN_TX_NEED_ACK;
3450 	}
3451 	if (type == IEEE80211_FC0_TYPE_CTL &&
3452 	    subtype == IEEE80211_FC0_SUBTYPE_BAR) {
3453 		struct ieee80211_frame_min *mwh;
3454 		uint8_t *barfrm;
3455 		uint16_t ctl;
3456 		mwh = mtod(m, struct ieee80211_frame_min *);
3457 		barfrm = (uint8_t *)&mwh[1];
3458 		ctl = LE_READ_2(barfrm);
3459 		tid = (ctl & IEEE80211_BA_TID_INFO_MASK) >>
3460 		    IEEE80211_BA_TID_INFO_SHIFT;
3461 		flags |= (IWN_TX_NEED_ACK | IWN_TX_IMM_BA);
3462 	}
3463 
3464 	if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
3465 		flags |= IWN_TX_MORE_FRAG;	/* Cannot happen yet. */
3466 
3467 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
3468 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
3469 		/* NB: Group frames are sent using CCK in 802.11b/g/n (2GHz). */
3470 		if (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold) {
3471 			flags |= IWN_TX_NEED_RTS;
3472 		} else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3473 		    ridx >= IWN_RIDX_OFDM6) {
3474 			if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3475 				flags |= IWN_TX_NEED_CTS;
3476 			else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3477 				flags |= IWN_TX_NEED_RTS;
3478 		}
3479 
3480 		if (flags & (IWN_TX_NEED_RTS | IWN_TX_NEED_CTS)) {
3481 			if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
3482 				/* 5000 autoselects RTS/CTS or CTS-to-self. */
3483 				flags &= ~(IWN_TX_NEED_RTS | IWN_TX_NEED_CTS);
3484 				flags |= IWN_TX_NEED_PROTECTION;
3485 			} else
3486 				flags |= IWN_TX_FULL_TXOP;
3487 		}
3488 	}
3489 
3490 	if (type == IEEE80211_FC0_TYPE_CTL &&
3491 	    subtype == IEEE80211_FC0_SUBTYPE_BAR)
3492 		tx->id = wn->id;
3493 	else if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
3494 	    type != IEEE80211_FC0_TYPE_DATA)
3495 		tx->id = sc->broadcast_id;
3496 	else
3497 		tx->id = wn->id;
3498 
3499 	if (type == IEEE80211_FC0_TYPE_MGT) {
3500 #ifndef IEEE80211_STA_ONLY
3501 		/* Tell HW to set timestamp in probe responses. */
3502 		if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3503 			flags |= IWN_TX_INSERT_TSTAMP;
3504 #endif
3505 		if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
3506 		    subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
3507 			tx->timeout = htole16(3);
3508 		else
3509 			tx->timeout = htole16(2);
3510 	} else
3511 		tx->timeout = htole16(0);
3512 
3513 	if (hdrlen & 3) {
3514 		/* First segment length must be a multiple of 4. */
3515 		flags |= IWN_TX_NEED_PADDING;
3516 		pad = 4 - (hdrlen & 3);
3517 	} else
3518 		pad = 0;
3519 
3520 	tx->len = htole16(totlen);
3521 	tx->tid = tid;
3522 	tx->rts_ntries = 60;
3523 	tx->data_ntries = 15;
3524 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
3525 
3526 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3527 	    tx->id != sc->broadcast_id)
3528 		tx->plcp = rinfo->ht_plcp;
3529 	else
3530 		tx->plcp = rinfo->plcp;
3531 
3532 	if ((ni->ni_flags & IEEE80211_NODE_HT) &&
3533 	    tx->id != sc->broadcast_id) {
3534 		tx->rflags = rinfo->ht_flags;
3535 		if (iwn_rxon_ht40_enabled(sc))
3536 			tx->rflags |= IWN_RFLAG_HT40;
3537 		if (ieee80211_ra_use_ht_sgi(ni))
3538 			tx->rflags |= IWN_RFLAG_SGI;
3539 	}
3540 	else
3541 		tx->rflags = rinfo->flags;
3542 	if (tx->id == sc->broadcast_id || ic->ic_fixed_mcs != -1 ||
3543 	    ic->ic_fixed_rate != -1) {
3544 		/* Group or management frame, or fixed Tx rate. */
3545 		tx->linkq = 0;
3546 		/* XXX Alternate between antenna A and B? */
3547 		txant = IWN_LSB(sc->txchainmask);
3548 		tx->rflags |= IWN_RFLAG_ANT(txant);
3549 	} else {
3550 		tx->linkq = 0; /* initial index into firmware LQ retry table */
3551 		flags |= IWN_TX_LINKQ;	/* enable multi-rate retry */
3552 	}
3553 	/* Set physical address of "scratch area". */
3554 	tx->loaddr = htole32(IWN_LOADDR(data->scratch_paddr));
3555 	tx->hiaddr = IWN_HIADDR(data->scratch_paddr);
3556 
3557 	/* Copy 802.11 header in TX command. */
3558 	memcpy((uint8_t *)(tx + 1), wh, hdrlen);
3559 
3560 	if (k != NULL && k->k_cipher == IEEE80211_CIPHER_CCMP) {
3561 		/* Trim 802.11 header and prepend CCMP IV. */
3562 		m_adj(m, hdrlen - IEEE80211_CCMP_HDRLEN);
3563 		ivp = mtod(m, uint8_t *);
3564 		k->k_tsc++;
3565 		ivp[0] = k->k_tsc;
3566 		ivp[1] = k->k_tsc >> 8;
3567 		ivp[2] = 0;
3568 		ivp[3] = k->k_id << 6 | IEEE80211_WEP_EXTIV;
3569 		ivp[4] = k->k_tsc >> 16;
3570 		ivp[5] = k->k_tsc >> 24;
3571 		ivp[6] = k->k_tsc >> 32;
3572 		ivp[7] = k->k_tsc >> 40;
3573 
3574 		tx->security = IWN_CIPHER_CCMP;
3575 		if (qid >= sc->first_agg_txq)
3576 			flags |= IWN_TX_AMPDU_CCMP;
3577 		memcpy(tx->key, k->k_key, k->k_len);
3578 
3579 		/* TX scheduler includes CCMP MIC len w/5000 Series. */
3580 		if (sc->hw_type != IWN_HW_REV_TYPE_4965)
3581 			totlen += IEEE80211_CCMP_MICLEN;
3582 	} else {
3583 		/* Trim 802.11 header. */
3584 		m_adj(m, hdrlen);
3585 		tx->security = 0;
3586 	}
3587 	tx->flags = htole32(flags);
3588 
3589 	error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3590 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3591 	if (error != 0 && error != EFBIG) {
3592 		printf("%s: can't map mbuf (error %d)\n",
3593 		    sc->sc_dev.dv_xname, error);
3594 		m_freem(m);
3595 		return error;
3596 	}
3597 	if (error != 0) {
3598 		/* Too many DMA segments, linearize mbuf. */
3599 		if (m_defrag(m, M_DONTWAIT)) {
3600 			m_freem(m);
3601 			return ENOBUFS;
3602 		}
3603 		error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
3604 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3605 		if (error != 0) {
3606 			printf("%s: can't map mbuf (error %d)\n",
3607 			    sc->sc_dev.dv_xname, error);
3608 			m_freem(m);
3609 			return error;
3610 		}
3611 	}
3612 
3613 	data->m = m;
3614 	data->ni = ni;
3615 	data->ampdu_txmcs = ni->ni_txmcs; /* updated upon Tx interrupt */
3616 
3617 	DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
3618 	    ring->qid, ring->cur, m->m_pkthdr.len, data->map->dm_nsegs));
3619 
3620 	/* Fill TX descriptor. */
3621 	desc->nsegs = 1 + data->map->dm_nsegs;
3622 	/* First DMA segment is used by the TX command. */
3623 	desc->segs[0].addr = htole32(IWN_LOADDR(data->cmd_paddr));
3624 	desc->segs[0].len  = htole16(IWN_HIADDR(data->cmd_paddr) |
3625 	    (4 + sizeof (*tx) + hdrlen + pad) << 4);
3626 	/* Other DMA segments are for data payload. */
3627 	seg = data->map->dm_segs;
3628 	for (i = 1; i <= data->map->dm_nsegs; i++) {
3629 		desc->segs[i].addr = htole32(IWN_LOADDR(seg->ds_addr));
3630 		desc->segs[i].len  = htole16(IWN_HIADDR(seg->ds_addr) |
3631 		    seg->ds_len << 4);
3632 		seg++;
3633 	}
3634 
3635 	bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
3636 	    BUS_DMASYNC_PREWRITE);
3637 	bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3638 	    (caddr_t)cmd - ring->cmd_dma.vaddr, sizeof (*cmd),
3639 	    BUS_DMASYNC_PREWRITE);
3640 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3641 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3642 	    BUS_DMASYNC_PREWRITE);
3643 
3644 	/* Update TX scheduler. */
3645 	ops->update_sched(sc, ring->qid, ring->cur, tx->id, totlen);
3646 
3647 	/* Kick TX ring. */
3648 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3649 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3650 
3651 	/* Mark TX ring as full if we reach a certain threshold. */
3652 	if (++ring->queued > IWN_TX_RING_HIMARK)
3653 		sc->qfullmsk |= 1 << ring->qid;
3654 
3655 	return 0;
3656 }
3657 
3658 void
iwn_start(struct ifnet * ifp)3659 iwn_start(struct ifnet *ifp)
3660 {
3661 	struct iwn_softc *sc = ifp->if_softc;
3662 	struct ieee80211com *ic = &sc->sc_ic;
3663 	struct ieee80211_node *ni;
3664 	struct mbuf *m;
3665 
3666 	if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd))
3667 		return;
3668 
3669 	for (;;) {
3670 		if (sc->qfullmsk != 0) {
3671 			ifq_set_oactive(&ifp->if_snd);
3672 			break;
3673 		}
3674 
3675 		/* Send pending management frames first. */
3676 		m = mq_dequeue(&ic->ic_mgtq);
3677 		if (m != NULL) {
3678 			ni = m->m_pkthdr.ph_cookie;
3679 			goto sendit;
3680 		}
3681 		if (ic->ic_state != IEEE80211_S_RUN ||
3682 		    (ic->ic_xflags & IEEE80211_F_TX_MGMT_ONLY))
3683 			break;
3684 
3685 		/* Encapsulate and send data frames. */
3686 		m = ifq_dequeue(&ifp->if_snd);
3687 		if (m == NULL)
3688 			break;
3689 #if NBPFILTER > 0
3690 		if (ifp->if_bpf != NULL)
3691 			bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT);
3692 #endif
3693 		if ((m = ieee80211_encap(ifp, m, &ni)) == NULL)
3694 			continue;
3695 sendit:
3696 #if NBPFILTER > 0
3697 		if (ic->ic_rawbpf != NULL)
3698 			bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT);
3699 #endif
3700 		if (iwn_tx(sc, m, ni) != 0) {
3701 			ieee80211_release_node(ic, ni);
3702 			ifp->if_oerrors++;
3703 			continue;
3704 		}
3705 
3706 		sc->sc_tx_timer = 5;
3707 		ifp->if_timer = 1;
3708 	}
3709 }
3710 
3711 void
iwn_watchdog(struct ifnet * ifp)3712 iwn_watchdog(struct ifnet *ifp)
3713 {
3714 	struct iwn_softc *sc = ifp->if_softc;
3715 
3716 	ifp->if_timer = 0;
3717 
3718 	if (sc->sc_tx_timer > 0) {
3719 		if (--sc->sc_tx_timer == 0) {
3720 			printf("%s: device timeout\n", sc->sc_dev.dv_xname);
3721 			iwn_stop(ifp);
3722 			ifp->if_oerrors++;
3723 			return;
3724 		}
3725 		ifp->if_timer = 1;
3726 	}
3727 
3728 	ieee80211_watchdog(ifp);
3729 }
3730 
3731 int
iwn_ioctl(struct ifnet * ifp,u_long cmd,caddr_t data)3732 iwn_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
3733 {
3734 	struct iwn_softc *sc = ifp->if_softc;
3735 	struct ieee80211com *ic = &sc->sc_ic;
3736 	int s, error = 0;
3737 
3738 	error = rw_enter(&sc->sc_rwlock, RW_WRITE | RW_INTR);
3739 	if (error)
3740 		return error;
3741 	s = splnet();
3742 
3743 	switch (cmd) {
3744 	case SIOCSIFADDR:
3745 		ifp->if_flags |= IFF_UP;
3746 		/* FALLTHROUGH */
3747 	case SIOCSIFFLAGS:
3748 		if (ifp->if_flags & IFF_UP) {
3749 			if (!(ifp->if_flags & IFF_RUNNING))
3750 				error = iwn_init(ifp);
3751 		} else {
3752 			if (ifp->if_flags & IFF_RUNNING)
3753 				iwn_stop(ifp);
3754 		}
3755 		break;
3756 
3757 	case SIOCS80211POWER:
3758 		error = ieee80211_ioctl(ifp, cmd, data);
3759 		if (error != ENETRESET)
3760 			break;
3761 		if (ic->ic_state == IEEE80211_S_RUN &&
3762 		    sc->calib.state == IWN_CALIB_STATE_RUN) {
3763 			if (ic->ic_flags & IEEE80211_F_PMGTON)
3764 				error = iwn_set_pslevel(sc, 0, 3, 0);
3765 			else	/* back to CAM */
3766 				error = iwn_set_pslevel(sc, 0, 0, 0);
3767 		} else {
3768 			/* Defer until transition to IWN_CALIB_STATE_RUN. */
3769 			error = 0;
3770 		}
3771 		break;
3772 
3773 	default:
3774 		error = ieee80211_ioctl(ifp, cmd, data);
3775 	}
3776 
3777 	if (error == ENETRESET) {
3778 		error = 0;
3779 		if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
3780 		    (IFF_UP | IFF_RUNNING)) {
3781 			iwn_stop(ifp);
3782 			error = iwn_init(ifp);
3783 		}
3784 	}
3785 
3786 	splx(s);
3787 	rw_exit_write(&sc->sc_rwlock);
3788 	return error;
3789 }
3790 
3791 /*
3792  * Send a command to the firmware.
3793  */
3794 int
iwn_cmd(struct iwn_softc * sc,int code,const void * buf,int size,int async)3795 iwn_cmd(struct iwn_softc *sc, int code, const void *buf, int size, int async)
3796 {
3797 	struct iwn_ops *ops = &sc->ops;
3798 	struct iwn_tx_ring *ring = &sc->txq[4];
3799 	struct iwn_tx_desc *desc;
3800 	struct iwn_tx_data *data;
3801 	struct iwn_tx_cmd *cmd;
3802 	struct mbuf *m;
3803 	bus_addr_t paddr;
3804 	int totlen, error;
3805 
3806 	desc = &ring->desc[ring->cur];
3807 	data = &ring->data[ring->cur];
3808 	totlen = 4 + size;
3809 
3810 	if (size > sizeof cmd->data) {
3811 		/* Command is too large to fit in a descriptor. */
3812 		if (totlen > MCLBYTES)
3813 			return EINVAL;
3814 		MGETHDR(m, M_DONTWAIT, MT_DATA);
3815 		if (m == NULL)
3816 			return ENOMEM;
3817 		if (totlen > MHLEN) {
3818 			MCLGET(m, M_DONTWAIT);
3819 			if (!(m->m_flags & M_EXT)) {
3820 				m_freem(m);
3821 				return ENOMEM;
3822 			}
3823 		}
3824 		cmd = mtod(m, struct iwn_tx_cmd *);
3825 		error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, totlen,
3826 		    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
3827 		if (error != 0) {
3828 			m_freem(m);
3829 			return error;
3830 		}
3831 		data->m = m;
3832 		paddr = data->map->dm_segs[0].ds_addr;
3833 	} else {
3834 		cmd = &ring->cmd[ring->cur];
3835 		paddr = data->cmd_paddr;
3836 	}
3837 
3838 	cmd->code = code;
3839 	cmd->flags = 0;
3840 	cmd->qid = ring->qid;
3841 	cmd->idx = ring->cur;
3842 	memcpy(cmd->data, buf, size);
3843 
3844 	desc->nsegs = 1;
3845 	desc->segs[0].addr = htole32(IWN_LOADDR(paddr));
3846 	desc->segs[0].len  = htole16(IWN_HIADDR(paddr) | totlen << 4);
3847 
3848 	if (size > sizeof cmd->data) {
3849 		bus_dmamap_sync(sc->sc_dmat, data->map, 0, totlen,
3850 		    BUS_DMASYNC_PREWRITE);
3851 	} else {
3852 		bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
3853 		    (caddr_t)cmd - ring->cmd_dma.vaddr, totlen,
3854 		    BUS_DMASYNC_PREWRITE);
3855 	}
3856 	bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
3857 	    (caddr_t)desc - ring->desc_dma.vaddr, sizeof (*desc),
3858 	    BUS_DMASYNC_PREWRITE);
3859 
3860 	/* Update TX scheduler. */
3861 	ops->update_sched(sc, ring->qid, ring->cur, 0, 0);
3862 
3863 	/* Kick command ring. */
3864 	ring->cur = (ring->cur + 1) % IWN_TX_RING_COUNT;
3865 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
3866 
3867 	return async ? 0 : tsleep_nsec(desc, PCATCH, "iwncmd", SEC_TO_NSEC(1));
3868 }
3869 
3870 int
iwn4965_add_node(struct iwn_softc * sc,struct iwn_node_info * node,int async)3871 iwn4965_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3872 {
3873 	struct iwn4965_node_info hnode;
3874 	caddr_t src, dst;
3875 
3876 	/*
3877 	 * We use the node structure for 5000 Series internally (it is
3878 	 * a superset of the one for 4965AGN). We thus copy the common
3879 	 * fields before sending the command.
3880 	 */
3881 	src = (caddr_t)node;
3882 	dst = (caddr_t)&hnode;
3883 	memcpy(dst, src, 48);
3884 	/* Skip TSC, RX MIC and TX MIC fields from ``src''. */
3885 	memcpy(dst + 48, src + 72, 20);
3886 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, &hnode, sizeof hnode, async);
3887 }
3888 
3889 int
iwn5000_add_node(struct iwn_softc * sc,struct iwn_node_info * node,int async)3890 iwn5000_add_node(struct iwn_softc *sc, struct iwn_node_info *node, int async)
3891 {
3892 	/* Direct mapping. */
3893 	return iwn_cmd(sc, IWN_CMD_ADD_NODE, node, sizeof (*node), async);
3894 }
3895 
3896 int
iwn_set_link_quality(struct iwn_softc * sc,struct ieee80211_node * ni)3897 iwn_set_link_quality(struct iwn_softc *sc, struct ieee80211_node *ni)
3898 {
3899 	struct ieee80211com *ic = &sc->sc_ic;
3900 	struct iwn_node *wn = (void *)ni;
3901 	struct iwn_cmd_link_quality linkq;
3902 	const struct iwn_rate *rinfo;
3903 	uint8_t txant;
3904 	int i;
3905 
3906 	/* Use the first valid TX antenna. */
3907 	txant = IWN_LSB(sc->txchainmask);
3908 
3909 	memset(&linkq, 0, sizeof linkq);
3910 	linkq.id = wn->id;
3911 	linkq.antmsk_1stream = txant;
3912 	linkq.antmsk_2stream = IWN_ANT_AB;
3913 	linkq.ampdu_max = IWN_AMPDU_MAX;
3914 	linkq.ampdu_threshold = 3;
3915 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3916 
3917 	i = 0;
3918 	if (ni->ni_flags & IEEE80211_NODE_HT) {
3919 		int txmcs;
3920 		for (txmcs = ni->ni_txmcs; txmcs >= 0; txmcs--) {
3921 			rinfo = &iwn_rates[iwn_mcs2ridx[txmcs]];
3922 			linkq.retry[i].plcp = rinfo->ht_plcp;
3923 			linkq.retry[i].rflags = rinfo->ht_flags;
3924 
3925 			/* XXX set correct ant mask for MIMO rates here */
3926 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3927 
3928 			/* First two Tx attempts may use 40MHz/SGI. */
3929 			if (i < 2) {
3930 				if (iwn_rxon_ht40_enabled(sc))
3931 					linkq.retry[i].rflags |= IWN_RFLAG_HT40;
3932 				if (ieee80211_ra_use_ht_sgi(ni))
3933 					linkq.retry[i].rflags |= IWN_RFLAG_SGI;
3934 			}
3935 
3936 			if (++i >= IWN_MAX_TX_RETRIES)
3937 				break;
3938 		}
3939 	} else {
3940 		int txrate;
3941 		for (txrate = ni->ni_txrate; txrate >= 0; txrate--) {
3942 			rinfo = &iwn_rates[wn->ridx[txrate]];
3943 			linkq.retry[i].plcp = rinfo->plcp;
3944 			linkq.retry[i].rflags = rinfo->flags;
3945 			linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3946 			if (++i >= IWN_MAX_TX_RETRIES)
3947 				break;
3948 		}
3949 	}
3950 
3951 	/* Fill the rest with the lowest basic rate. */
3952 	rinfo = &iwn_rates[iwn_rval2ridx(ieee80211_min_basic_rate(ic))];
3953 	while (i < IWN_MAX_TX_RETRIES) {
3954 		linkq.retry[i].plcp = rinfo->plcp;
3955 		linkq.retry[i].rflags = rinfo->flags;
3956 		linkq.retry[i].rflags |= IWN_RFLAG_ANT(txant);
3957 		i++;
3958 	}
3959 
3960 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, 1);
3961 }
3962 
3963 /*
3964  * Broadcast node is used to send group-addressed and management frames.
3965  */
3966 int
iwn_add_broadcast_node(struct iwn_softc * sc,int async,int ridx)3967 iwn_add_broadcast_node(struct iwn_softc *sc, int async, int ridx)
3968 {
3969 	struct iwn_ops *ops = &sc->ops;
3970 	struct iwn_node_info node;
3971 	struct iwn_cmd_link_quality linkq;
3972 	const struct iwn_rate *rinfo;
3973 	uint8_t txant;
3974 	int i, error;
3975 
3976 	memset(&node, 0, sizeof node);
3977 	IEEE80211_ADDR_COPY(node.macaddr, etherbroadcastaddr);
3978 	node.id = sc->broadcast_id;
3979 	DPRINTF(("adding broadcast node\n"));
3980 	if ((error = ops->add_node(sc, &node, async)) != 0)
3981 		return error;
3982 
3983 	/* Use the first valid TX antenna. */
3984 	txant = IWN_LSB(sc->txchainmask);
3985 
3986 	memset(&linkq, 0, sizeof linkq);
3987 	linkq.id = sc->broadcast_id;
3988 	linkq.antmsk_1stream = txant;
3989 	linkq.antmsk_2stream = IWN_ANT_AB;
3990 	linkq.ampdu_max = IWN_AMPDU_MAX_NO_AGG;
3991 	linkq.ampdu_threshold = 3;
3992 	linkq.ampdu_limit = htole16(4000);	/* 4ms */
3993 
3994 	/* Use lowest mandatory bit-rate. */
3995 	rinfo = &iwn_rates[ridx];
3996 	linkq.retry[0].plcp = rinfo->plcp;
3997 	linkq.retry[0].rflags = rinfo->flags;
3998 	linkq.retry[0].rflags |= IWN_RFLAG_ANT(txant);
3999 	/* Use same bit-rate for all TX retries. */
4000 	for (i = 1; i < IWN_MAX_TX_RETRIES; i++) {
4001 		linkq.retry[i].plcp = linkq.retry[0].plcp;
4002 		linkq.retry[i].rflags = linkq.retry[0].rflags;
4003 	}
4004 	return iwn_cmd(sc, IWN_CMD_LINK_QUALITY, &linkq, sizeof linkq, async);
4005 }
4006 
4007 void
iwn_updateedca(struct ieee80211com * ic)4008 iwn_updateedca(struct ieee80211com *ic)
4009 {
4010 #define IWN_EXP2(x)	((1 << (x)) - 1)	/* CWmin = 2^ECWmin - 1 */
4011 	struct iwn_softc *sc = ic->ic_softc;
4012 	struct iwn_edca_params cmd;
4013 	int aci;
4014 
4015 	memset(&cmd, 0, sizeof cmd);
4016 	cmd.flags = htole32(IWN_EDCA_UPDATE);
4017 	for (aci = 0; aci < EDCA_NUM_AC; aci++) {
4018 		const struct ieee80211_edca_ac_params *ac =
4019 		    &ic->ic_edca_ac[aci];
4020 		cmd.ac[aci].aifsn = ac->ac_aifsn;
4021 		cmd.ac[aci].cwmin = htole16(IWN_EXP2(ac->ac_ecwmin));
4022 		cmd.ac[aci].cwmax = htole16(IWN_EXP2(ac->ac_ecwmax));
4023 		cmd.ac[aci].txoplimit =
4024 		    htole16(IEEE80211_TXOP_TO_US(ac->ac_txoplimit));
4025 	}
4026 	(void)iwn_cmd(sc, IWN_CMD_EDCA_PARAMS, &cmd, sizeof cmd, 1);
4027 #undef IWN_EXP2
4028 }
4029 
4030 void
iwn_set_led(struct iwn_softc * sc,uint8_t which,uint8_t off,uint8_t on)4031 iwn_set_led(struct iwn_softc *sc, uint8_t which, uint8_t off, uint8_t on)
4032 {
4033 	struct iwn_cmd_led led;
4034 
4035 	/* Clear microcode LED ownership. */
4036 	IWN_CLRBITS(sc, IWN_LED, IWN_LED_BSM_CTRL);
4037 
4038 	led.which = which;
4039 	led.unit = htole32(10000);	/* on/off in unit of 100ms */
4040 	led.off = off;
4041 	led.on = on;
4042 	(void)iwn_cmd(sc, IWN_CMD_SET_LED, &led, sizeof led, 1);
4043 }
4044 
4045 /*
4046  * Set the critical temperature at which the firmware will stop the radio
4047  * and notify us.
4048  */
4049 int
iwn_set_critical_temp(struct iwn_softc * sc)4050 iwn_set_critical_temp(struct iwn_softc *sc)
4051 {
4052 	struct iwn_critical_temp crit;
4053 	int32_t temp;
4054 
4055 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CTEMP_STOP_RF);
4056 
4057 	if (sc->hw_type == IWN_HW_REV_TYPE_5150)
4058 		temp = (IWN_CTOK(110) - sc->temp_off) * -5;
4059 	else if (sc->hw_type == IWN_HW_REV_TYPE_4965)
4060 		temp = IWN_CTOK(110);
4061 	else
4062 		temp = 110;
4063 	memset(&crit, 0, sizeof crit);
4064 	crit.tempR = htole32(temp);
4065 	DPRINTF(("setting critical temperature to %d\n", temp));
4066 	return iwn_cmd(sc, IWN_CMD_SET_CRITICAL_TEMP, &crit, sizeof crit, 0);
4067 }
4068 
4069 int
iwn_set_timing(struct iwn_softc * sc,struct ieee80211_node * ni)4070 iwn_set_timing(struct iwn_softc *sc, struct ieee80211_node *ni)
4071 {
4072 	struct iwn_cmd_timing cmd;
4073 	uint64_t val, mod;
4074 
4075 	memset(&cmd, 0, sizeof cmd);
4076 	memcpy(&cmd.tstamp, ni->ni_tstamp, sizeof (uint64_t));
4077 	cmd.bintval = htole16(ni->ni_intval);
4078 	cmd.lintval = htole16(10);
4079 
4080 	/* Compute remaining time until next beacon. */
4081 	val = (uint64_t)ni->ni_intval * IEEE80211_DUR_TU;
4082 	mod = letoh64(cmd.tstamp) % val;
4083 	cmd.binitval = htole32((uint32_t)(val - mod));
4084 
4085 	DPRINTF(("timing bintval=%u, tstamp=%llu, init=%u\n",
4086 	    ni->ni_intval, letoh64(cmd.tstamp), (uint32_t)(val - mod)));
4087 
4088 	return iwn_cmd(sc, IWN_CMD_TIMING, &cmd, sizeof cmd, 1);
4089 }
4090 
4091 void
iwn4965_power_calibration(struct iwn_softc * sc,int temp)4092 iwn4965_power_calibration(struct iwn_softc *sc, int temp)
4093 {
4094 	/* Adjust TX power if need be (delta >= 3 degC). */
4095 	DPRINTF(("temperature %d->%d\n", sc->temp, temp));
4096 	if (abs(temp - sc->temp) >= 3) {
4097 		/* Record temperature of last calibration. */
4098 		sc->temp = temp;
4099 		(void)iwn4965_set_txpower(sc, 1);
4100 	}
4101 }
4102 
4103 /*
4104  * Set TX power for current channel (each rate has its own power settings).
4105  * This function takes into account the regulatory information from EEPROM,
4106  * the current temperature and the current voltage.
4107  */
4108 int
iwn4965_set_txpower(struct iwn_softc * sc,int async)4109 iwn4965_set_txpower(struct iwn_softc *sc, int async)
4110 {
4111 /* Fixed-point arithmetic division using a n-bit fractional part. */
4112 #define fdivround(a, b, n)	\
4113 	((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
4114 /* Linear interpolation. */
4115 #define interpolate(x, x1, y1, x2, y2, n)	\
4116 	((y1) + fdivround(((int)(x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
4117 
4118 	static const int tdiv[IWN_NATTEN_GROUPS] = { 9, 8, 8, 8, 6 };
4119 	struct ieee80211com *ic = &sc->sc_ic;
4120 	struct iwn_ucode_info *uc = &sc->ucode_info;
4121 	struct ieee80211_channel *ch;
4122 	struct iwn4965_cmd_txpower cmd;
4123 	struct iwn4965_eeprom_chan_samples *chans;
4124 	const uint8_t *rf_gain, *dsp_gain;
4125 	int32_t vdiff, tdiff;
4126 	int i, c, grp, maxpwr, is_ht40 = 0;
4127 	uint8_t chan, ext_chan;
4128 
4129 	/* Retrieve current channel from last RXON. */
4130 	chan = sc->rxon.chan;
4131 	DPRINTF(("setting TX power for channel %d\n", chan));
4132 	ch = &ic->ic_channels[chan];
4133 
4134 	memset(&cmd, 0, sizeof cmd);
4135 	cmd.band = IEEE80211_IS_CHAN_5GHZ(ch) ? 0 : 1;
4136 	cmd.chan = chan;
4137 
4138 	if (IEEE80211_IS_CHAN_5GHZ(ch)) {
4139 		maxpwr   = sc->maxpwr5GHz;
4140 		rf_gain  = iwn4965_rf_gain_5ghz;
4141 		dsp_gain = iwn4965_dsp_gain_5ghz;
4142 	} else {
4143 		maxpwr   = sc->maxpwr2GHz;
4144 		rf_gain  = iwn4965_rf_gain_2ghz;
4145 		dsp_gain = iwn4965_dsp_gain_2ghz;
4146 	}
4147 
4148 	/* Compute voltage compensation. */
4149 	vdiff = ((int32_t)letoh32(uc->volt) - sc->eeprom_voltage) / 7;
4150 	if (vdiff > 0)
4151 		vdiff *= 2;
4152 	if (abs(vdiff) > 2)
4153 		vdiff = 0;
4154 	DPRINTF(("voltage compensation=%d (UCODE=%d, EEPROM=%d)\n",
4155 	    vdiff, letoh32(uc->volt), sc->eeprom_voltage));
4156 
4157 	/* Get channel attenuation group. */
4158 	if (chan <= 20)		/* 1-20 */
4159 		grp = 4;
4160 	else if (chan <= 43)	/* 34-43 */
4161 		grp = 0;
4162 	else if (chan <= 70)	/* 44-70 */
4163 		grp = 1;
4164 	else if (chan <= 124)	/* 71-124 */
4165 		grp = 2;
4166 	else			/* 125-200 */
4167 		grp = 3;
4168 	DPRINTF(("chan %d, attenuation group=%d\n", chan, grp));
4169 
4170 	/* Get channel sub-band. */
4171 	for (i = 0; i < IWN_NBANDS; i++)
4172 		if (sc->bands[i].lo != 0 &&
4173 		    sc->bands[i].lo <= chan && chan <= sc->bands[i].hi)
4174 			break;
4175 	if (i == IWN_NBANDS)	/* Can't happen in real-life. */
4176 		return EINVAL;
4177 	chans = sc->bands[i].chans;
4178 	DPRINTF(("chan %d sub-band=%d\n", chan, i));
4179 
4180 	if (iwn_rxon_ht40_enabled(sc)) {
4181 		is_ht40 = 1;
4182 		if (le32toh(sc->rxon.flags) & IWN_RXON_HT_HT40MINUS)
4183 			ext_chan = chan - 2;
4184 		else
4185 			ext_chan = chan + 2;
4186 	} else
4187 		ext_chan = chan;
4188 
4189 	for (c = 0; c < 2; c++) {
4190 		uint8_t power, gain, temp;
4191 		int maxchpwr, pwr, ridx, idx;
4192 
4193 		power = interpolate(ext_chan,
4194 		    chans[0].num, chans[0].samples[c][1].power,
4195 		    chans[1].num, chans[1].samples[c][1].power, 1);
4196 		gain  = interpolate(ext_chan,
4197 		    chans[0].num, chans[0].samples[c][1].gain,
4198 		    chans[1].num, chans[1].samples[c][1].gain, 1);
4199 		temp  = interpolate(ext_chan,
4200 		    chans[0].num, chans[0].samples[c][1].temp,
4201 		    chans[1].num, chans[1].samples[c][1].temp, 1);
4202 		DPRINTF(("TX chain %d: power=%d gain=%d temp=%d\n",
4203 		    c, power, gain, temp));
4204 
4205 		/* Compute temperature compensation. */
4206 		tdiff = ((sc->temp - temp) * 2) / tdiv[grp];
4207 		DPRINTF(("temperature compensation=%d (current=%d, "
4208 		    "EEPROM=%d)\n", tdiff, sc->temp, temp));
4209 
4210 		for (ridx = 0; ridx <= IWN_RIDX_MAX; ridx++) {
4211 			/* Convert dBm to half-dBm. */
4212 			if (is_ht40)
4213 				maxchpwr = sc->maxpwr40[chan] * 2;
4214 			else
4215 				maxchpwr = sc->maxpwr[chan] * 2;
4216 #ifdef notyet
4217 			if (ridx > iwn_mcs2ridx[7] && ridx < iwn_mcs2ridx[16])
4218 				maxchpwr -= 6;	/* MIMO 2T: -3dB */
4219 #endif
4220 
4221 			pwr = maxpwr;
4222 
4223 			/* Adjust TX power based on rate. */
4224 			if ((ridx % 8) == 5)
4225 				pwr -= 15;	/* OFDM48: -7.5dB */
4226 			else if ((ridx % 8) == 6)
4227 				pwr -= 17;	/* OFDM54: -8.5dB */
4228 			else if ((ridx % 8) == 7)
4229 				pwr -= 20;	/* OFDM60: -10dB */
4230 			else
4231 				pwr -= 10;	/* Others: -5dB */
4232 
4233 			/* Do not exceed channel max TX power. */
4234 			if (pwr > maxchpwr)
4235 				pwr = maxchpwr;
4236 
4237 			idx = gain - (pwr - power) - tdiff - vdiff;
4238 			if (ridx > iwn_mcs2ridx[7]) /* MIMO */
4239 				idx += (int32_t)letoh32(uc->atten[grp][c]);
4240 
4241 			if (cmd.band == 0)
4242 				idx += 9;	/* 5GHz */
4243 			if (ridx == IWN_RIDX_MAX)
4244 				idx += 5;	/* CCK */
4245 
4246 			/* Make sure idx stays in a valid range. */
4247 			if (idx < 0)
4248 				idx = 0;
4249 			else if (idx > IWN4965_MAX_PWR_INDEX)
4250 				idx = IWN4965_MAX_PWR_INDEX;
4251 
4252 			DPRINTF(("TX chain %d, rate idx %d: power=%d\n",
4253 			    c, ridx, idx));
4254 			cmd.power[ridx].rf_gain[c] = rf_gain[idx];
4255 			cmd.power[ridx].dsp_gain[c] = dsp_gain[idx];
4256 		}
4257 	}
4258 
4259 	DPRINTF(("setting TX power for chan %d\n", chan));
4260 	return iwn_cmd(sc, IWN_CMD_TXPOWER, &cmd, sizeof cmd, async);
4261 
4262 #undef interpolate
4263 #undef fdivround
4264 }
4265 
4266 int
iwn5000_set_txpower(struct iwn_softc * sc,int async)4267 iwn5000_set_txpower(struct iwn_softc *sc, int async)
4268 {
4269 	struct iwn5000_cmd_txpower cmd;
4270 
4271 	/*
4272 	 * TX power calibration is handled automatically by the firmware
4273 	 * for 5000 Series.
4274 	 */
4275 	memset(&cmd, 0, sizeof cmd);
4276 	cmd.global_limit = 2 * IWN5000_TXPOWER_MAX_DBM;	/* 16 dBm */
4277 	cmd.flags = IWN5000_TXPOWER_NO_CLOSED;
4278 	cmd.srv_limit = IWN5000_TXPOWER_AUTO;
4279 	DPRINTF(("setting TX power\n"));
4280 	return iwn_cmd(sc, IWN_CMD_TXPOWER_DBM, &cmd, sizeof cmd, async);
4281 }
4282 
4283 /*
4284  * Retrieve the maximum RSSI (in dBm) among receivers.
4285  */
4286 int
iwn4965_get_rssi(const struct iwn_rx_stat * stat)4287 iwn4965_get_rssi(const struct iwn_rx_stat *stat)
4288 {
4289 	struct iwn4965_rx_phystat *phy = (void *)stat->phybuf;
4290 	uint8_t mask, agc;
4291 	int rssi;
4292 
4293 	mask = (letoh16(phy->antenna) >> 4) & IWN_ANT_ABC;
4294 	agc  = (letoh16(phy->agc) >> 7) & 0x7f;
4295 
4296 	rssi = 0;
4297 	if (mask & IWN_ANT_A)
4298 		rssi = MAX(rssi, phy->rssi[0]);
4299 	if (mask & IWN_ANT_B)
4300 		rssi = MAX(rssi, phy->rssi[2]);
4301 	if (mask & IWN_ANT_C)
4302 		rssi = MAX(rssi, phy->rssi[4]);
4303 
4304 	return rssi - agc - IWN_RSSI_TO_DBM;
4305 }
4306 
4307 int
iwn5000_get_rssi(const struct iwn_rx_stat * stat)4308 iwn5000_get_rssi(const struct iwn_rx_stat *stat)
4309 {
4310 	struct iwn5000_rx_phystat *phy = (void *)stat->phybuf;
4311 	uint8_t agc;
4312 	int rssi;
4313 
4314 	agc = (letoh32(phy->agc) >> 9) & 0x7f;
4315 
4316 	rssi = MAX(letoh16(phy->rssi[0]) & 0xff,
4317 		   letoh16(phy->rssi[1]) & 0xff);
4318 	rssi = MAX(letoh16(phy->rssi[2]) & 0xff, rssi);
4319 
4320 	return rssi - agc - IWN_RSSI_TO_DBM;
4321 }
4322 
4323 /*
4324  * Retrieve the average noise (in dBm) among receivers.
4325  */
4326 int
iwn_get_noise(const struct iwn_rx_general_stats * stats)4327 iwn_get_noise(const struct iwn_rx_general_stats *stats)
4328 {
4329 	int i, total, nbant, noise;
4330 
4331 	total = nbant = 0;
4332 	for (i = 0; i < 3; i++) {
4333 		if ((noise = letoh32(stats->noise[i]) & 0xff) == 0)
4334 			continue;
4335 		total += noise;
4336 		nbant++;
4337 	}
4338 	/* There should be at least one antenna but check anyway. */
4339 	return (nbant == 0) ? -127 : (total / nbant) - 107;
4340 }
4341 
4342 /*
4343  * Compute temperature (in degC) from last received statistics.
4344  */
4345 int
iwn4965_get_temperature(struct iwn_softc * sc)4346 iwn4965_get_temperature(struct iwn_softc *sc)
4347 {
4348 	struct iwn_ucode_info *uc = &sc->ucode_info;
4349 	int32_t r1, r2, r3, r4, temp;
4350 
4351 	if (sc->rx_stats_flags & IWN_STATS_FLAGS_BAND_HT40) {
4352 		r1 = letoh32(uc->temp[0].chan40MHz);
4353 		r2 = letoh32(uc->temp[1].chan40MHz);
4354 		r3 = letoh32(uc->temp[2].chan40MHz);
4355 	} else {
4356 		r1 = letoh32(uc->temp[0].chan20MHz);
4357 		r2 = letoh32(uc->temp[1].chan20MHz);
4358 		r3 = letoh32(uc->temp[2].chan20MHz);
4359 	}
4360 	r4 = letoh32(sc->rawtemp);
4361 
4362 	if (r1 == r3)	/* Prevents division by 0 (should not happen). */
4363 		return 0;
4364 
4365 	/* Sign-extend 23-bit R4 value to 32-bit. */
4366 	r4 = ((r4 & 0xffffff) ^ 0x800000) - 0x800000;
4367 	/* Compute temperature in Kelvin. */
4368 	temp = (259 * (r4 - r2)) / (r3 - r1);
4369 	temp = (temp * 97) / 100 + 8;
4370 
4371 	DPRINTF(("temperature %dK/%dC\n", temp, IWN_KTOC(temp)));
4372 	return IWN_KTOC(temp);
4373 }
4374 
4375 int
iwn5000_get_temperature(struct iwn_softc * sc)4376 iwn5000_get_temperature(struct iwn_softc *sc)
4377 {
4378 	int32_t temp;
4379 
4380 	/*
4381 	 * Temperature is not used by the driver for 5000 Series because
4382 	 * TX power calibration is handled by firmware.
4383 	 */
4384 	temp = letoh32(sc->rawtemp);
4385 	if (sc->hw_type == IWN_HW_REV_TYPE_5150) {
4386 		temp = (temp / -5) + sc->temp_off;
4387 		temp = IWN_KTOC(temp);
4388 	}
4389 	return temp;
4390 }
4391 
4392 /*
4393  * Initialize sensitivity calibration state machine.
4394  */
4395 int
iwn_init_sensitivity(struct iwn_softc * sc)4396 iwn_init_sensitivity(struct iwn_softc *sc)
4397 {
4398 	struct iwn_ops *ops = &sc->ops;
4399 	struct iwn_calib_state *calib = &sc->calib;
4400 	uint32_t flags;
4401 	int error;
4402 
4403 	/* Reset calibration state machine. */
4404 	memset(calib, 0, sizeof (*calib));
4405 	calib->state = IWN_CALIB_STATE_INIT;
4406 	calib->cck_state = IWN_CCK_STATE_HIFA;
4407 	/* Set initial correlation values. */
4408 	calib->ofdm_x1     = sc->limits->min_ofdm_x1;
4409 	calib->ofdm_mrc_x1 = sc->limits->min_ofdm_mrc_x1;
4410 	calib->ofdm_x4     = sc->limits->min_ofdm_x4;
4411 	calib->ofdm_mrc_x4 = sc->limits->min_ofdm_mrc_x4;
4412 	calib->cck_x4      = 125;
4413 	calib->cck_mrc_x4  = sc->limits->min_cck_mrc_x4;
4414 	calib->energy_cck  = sc->limits->energy_cck;
4415 
4416 	/* Write initial sensitivity. */
4417 	if ((error = iwn_send_sensitivity(sc)) != 0)
4418 		return error;
4419 
4420 	/* Write initial gains. */
4421 	if ((error = ops->init_gains(sc)) != 0)
4422 		return error;
4423 
4424 	/* Request statistics at each beacon interval. */
4425 	flags = 0;
4426 	DPRINTFN(2, ("sending request for statistics\n"));
4427 	return iwn_cmd(sc, IWN_CMD_GET_STATISTICS, &flags, sizeof flags, 1);
4428 }
4429 
4430 /*
4431  * Collect noise and RSSI statistics for the first 20 beacons received
4432  * after association and use them to determine connected antennas and
4433  * to set differential gains.
4434  */
4435 void
iwn_collect_noise(struct iwn_softc * sc,const struct iwn_rx_general_stats * stats)4436 iwn_collect_noise(struct iwn_softc *sc,
4437     const struct iwn_rx_general_stats *stats)
4438 {
4439 	struct iwn_ops *ops = &sc->ops;
4440 	struct iwn_calib_state *calib = &sc->calib;
4441 	uint32_t val;
4442 	int i;
4443 
4444 	/* Accumulate RSSI and noise for all 3 antennas. */
4445 	for (i = 0; i < 3; i++) {
4446 		calib->rssi[i] += letoh32(stats->rssi[i]) & 0xff;
4447 		calib->noise[i] += letoh32(stats->noise[i]) & 0xff;
4448 	}
4449 	/* NB: We update differential gains only once after 20 beacons. */
4450 	if (++calib->nbeacons < 20)
4451 		return;
4452 
4453 	/* Determine highest average RSSI. */
4454 	val = MAX(calib->rssi[0], calib->rssi[1]);
4455 	val = MAX(calib->rssi[2], val);
4456 
4457 	/* Determine which antennas are connected. */
4458 	sc->chainmask = sc->rxchainmask;
4459 	for (i = 0; i < 3; i++)
4460 		if (val - calib->rssi[i] > 15 * 20)
4461 			sc->chainmask &= ~(1 << i);
4462 	DPRINTF(("RX chains mask: theoretical=0x%x, actual=0x%x\n",
4463 	    sc->rxchainmask, sc->chainmask));
4464 
4465 	/* If none of the TX antennas are connected, keep at least one. */
4466 	if ((sc->chainmask & sc->txchainmask) == 0)
4467 		sc->chainmask |= IWN_LSB(sc->txchainmask);
4468 
4469 	(void)ops->set_gains(sc);
4470 	calib->state = IWN_CALIB_STATE_RUN;
4471 
4472 #ifdef notyet
4473 	/* XXX Disable RX chains with no antennas connected. */
4474 	sc->rxon.rxchain = htole16(IWN_RXCHAIN_SEL(sc->chainmask));
4475 	(void)iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
4476 #endif
4477 
4478 	/* Enable power-saving mode if requested by user. */
4479 	if (sc->sc_ic.ic_flags & IEEE80211_F_PMGTON)
4480 		(void)iwn_set_pslevel(sc, 0, 3, 1);
4481 }
4482 
4483 int
iwn4965_init_gains(struct iwn_softc * sc)4484 iwn4965_init_gains(struct iwn_softc *sc)
4485 {
4486 	struct iwn_phy_calib_gain cmd;
4487 
4488 	memset(&cmd, 0, sizeof cmd);
4489 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4490 	/* Differential gains initially set to 0 for all 3 antennas. */
4491 	DPRINTF(("setting initial differential gains\n"));
4492 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4493 }
4494 
4495 int
iwn5000_init_gains(struct iwn_softc * sc)4496 iwn5000_init_gains(struct iwn_softc *sc)
4497 {
4498 	struct iwn_phy_calib cmd;
4499 
4500 	memset(&cmd, 0, sizeof cmd);
4501 	cmd.code = sc->reset_noise_gain;
4502 	cmd.ngroups = 1;
4503 	cmd.isvalid = 1;
4504 	DPRINTF(("setting initial differential gains\n"));
4505 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4506 }
4507 
4508 int
iwn4965_set_gains(struct iwn_softc * sc)4509 iwn4965_set_gains(struct iwn_softc *sc)
4510 {
4511 	struct iwn_calib_state *calib = &sc->calib;
4512 	struct iwn_phy_calib_gain cmd;
4513 	int i, delta, noise;
4514 
4515 	/* Get minimal noise among connected antennas. */
4516 	noise = INT_MAX;	/* NB: There's at least one antenna. */
4517 	for (i = 0; i < 3; i++)
4518 		if (sc->chainmask & (1 << i))
4519 			noise = MIN(calib->noise[i], noise);
4520 
4521 	memset(&cmd, 0, sizeof cmd);
4522 	cmd.code = IWN4965_PHY_CALIB_DIFF_GAIN;
4523 	/* Set differential gains for connected antennas. */
4524 	for (i = 0; i < 3; i++) {
4525 		if (sc->chainmask & (1 << i)) {
4526 			/* Compute attenuation (in unit of 1.5dB). */
4527 			delta = (noise - (int32_t)calib->noise[i]) / 30;
4528 			/* NB: delta <= 0 */
4529 			/* Limit to [-4.5dB,0]. */
4530 			cmd.gain[i] = MIN(abs(delta), 3);
4531 			if (delta < 0)
4532 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4533 		}
4534 	}
4535 	DPRINTF(("setting differential gains Ant A/B/C: %x/%x/%x (%x)\n",
4536 	    cmd.gain[0], cmd.gain[1], cmd.gain[2], sc->chainmask));
4537 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4538 }
4539 
4540 int
iwn5000_set_gains(struct iwn_softc * sc)4541 iwn5000_set_gains(struct iwn_softc *sc)
4542 {
4543 	struct iwn_calib_state *calib = &sc->calib;
4544 	struct iwn_phy_calib_gain cmd;
4545 	int i, ant, div, delta;
4546 
4547 	/* We collected 20 beacons and !=6050 need a 1.5 factor. */
4548 	div = (sc->hw_type == IWN_HW_REV_TYPE_6050) ? 20 : 30;
4549 
4550 	memset(&cmd, 0, sizeof cmd);
4551 	cmd.code = sc->noise_gain;
4552 	cmd.ngroups = 1;
4553 	cmd.isvalid = 1;
4554 	/*
4555 	 * Get first available RX antenna as referential.
4556 	 * IWN_LSB() return values start with 1, but antenna gain array
4557 	 * cmd.gain[] and noise array calib->noise[] start with 0.
4558 	 */
4559 	ant = IWN_LSB(sc->rxchainmask) - 1;
4560 
4561 	/* Set differential gains for other antennas. */
4562 	for (i = ant + 1; i < 3; i++) {
4563 		if (sc->chainmask & (1 << i)) {
4564 			/* The delta is relative to antenna "ant". */
4565 			delta = ((int32_t)calib->noise[ant] -
4566 			    (int32_t)calib->noise[i]) / div;
4567 			DPRINTF(("Ant[%d] vs. Ant[%d]: delta %d\n", ant, i, delta));
4568 			/* Limit to [-4.5dB,+4.5dB]. */
4569 			cmd.gain[i] = MIN(abs(delta), 3);
4570 			if (delta < 0)
4571 				cmd.gain[i] |= 1 << 2;	/* sign bit */
4572 			DPRINTF(("Setting differential gains for antenna %d: %x\n",
4573 				i, cmd.gain[i]));
4574 		}
4575 	}
4576 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 1);
4577 }
4578 
4579 /*
4580  * Tune RF RX sensitivity based on the number of false alarms detected
4581  * during the last beacon period.
4582  */
4583 void
iwn_tune_sensitivity(struct iwn_softc * sc,const struct iwn_rx_stats * stats)4584 iwn_tune_sensitivity(struct iwn_softc *sc, const struct iwn_rx_stats *stats)
4585 {
4586 #define inc(val, inc, max)			\
4587 	if ((val) < (max)) {			\
4588 		if ((val) < (max) - (inc))	\
4589 			(val) += (inc);		\
4590 		else				\
4591 			(val) = (max);		\
4592 		needs_update = 1;		\
4593 	}
4594 #define dec(val, dec, min)			\
4595 	if ((val) > (min)) {			\
4596 		if ((val) > (min) + (dec))	\
4597 			(val) -= (dec);		\
4598 		else				\
4599 			(val) = (min);		\
4600 		needs_update = 1;		\
4601 	}
4602 
4603 	const struct iwn_sensitivity_limits *limits = sc->limits;
4604 	struct iwn_calib_state *calib = &sc->calib;
4605 	uint32_t val, rxena, fa;
4606 	uint32_t energy[3], energy_min;
4607 	uint8_t noise[3], noise_ref;
4608 	int i, needs_update = 0;
4609 
4610 	/* Check that we've been enabled long enough. */
4611 	if ((rxena = letoh32(stats->general.load)) == 0)
4612 		return;
4613 
4614 	/* Compute number of false alarms since last call for OFDM. */
4615 	fa  = letoh32(stats->ofdm.bad_plcp) - calib->bad_plcp_ofdm;
4616 	fa += letoh32(stats->ofdm.fa) - calib->fa_ofdm;
4617 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4618 
4619 	/* Save counters values for next call. */
4620 	calib->bad_plcp_ofdm = letoh32(stats->ofdm.bad_plcp);
4621 	calib->fa_ofdm = letoh32(stats->ofdm.fa);
4622 
4623 	if (fa > 50 * rxena) {
4624 		/* High false alarm count, decrease sensitivity. */
4625 		DPRINTFN(2, ("OFDM high false alarm count: %u\n", fa));
4626 		inc(calib->ofdm_x1,     1, limits->max_ofdm_x1);
4627 		inc(calib->ofdm_mrc_x1, 1, limits->max_ofdm_mrc_x1);
4628 		inc(calib->ofdm_x4,     1, limits->max_ofdm_x4);
4629 		inc(calib->ofdm_mrc_x4, 1, limits->max_ofdm_mrc_x4);
4630 
4631 	} else if (fa < 5 * rxena) {
4632 		/* Low false alarm count, increase sensitivity. */
4633 		DPRINTFN(2, ("OFDM low false alarm count: %u\n", fa));
4634 		dec(calib->ofdm_x1,     1, limits->min_ofdm_x1);
4635 		dec(calib->ofdm_mrc_x1, 1, limits->min_ofdm_mrc_x1);
4636 		dec(calib->ofdm_x4,     1, limits->min_ofdm_x4);
4637 		dec(calib->ofdm_mrc_x4, 1, limits->min_ofdm_mrc_x4);
4638 	}
4639 
4640 	/* Compute maximum noise among 3 receivers. */
4641 	for (i = 0; i < 3; i++)
4642 		noise[i] = (letoh32(stats->general.noise[i]) >> 8) & 0xff;
4643 	val = MAX(noise[0], noise[1]);
4644 	val = MAX(noise[2], val);
4645 	/* Insert it into our samples table. */
4646 	calib->noise_samples[calib->cur_noise_sample] = val;
4647 	calib->cur_noise_sample = (calib->cur_noise_sample + 1) % 20;
4648 
4649 	/* Compute maximum noise among last 20 samples. */
4650 	noise_ref = calib->noise_samples[0];
4651 	for (i = 1; i < 20; i++)
4652 		noise_ref = MAX(noise_ref, calib->noise_samples[i]);
4653 
4654 	/* Compute maximum energy among 3 receivers. */
4655 	for (i = 0; i < 3; i++)
4656 		energy[i] = letoh32(stats->general.energy[i]);
4657 	val = MIN(energy[0], energy[1]);
4658 	val = MIN(energy[2], val);
4659 	/* Insert it into our samples table. */
4660 	calib->energy_samples[calib->cur_energy_sample] = val;
4661 	calib->cur_energy_sample = (calib->cur_energy_sample + 1) % 10;
4662 
4663 	/* Compute minimum energy among last 10 samples. */
4664 	energy_min = calib->energy_samples[0];
4665 	for (i = 1; i < 10; i++)
4666 		energy_min = MAX(energy_min, calib->energy_samples[i]);
4667 	energy_min += 6;
4668 
4669 	/* Compute number of false alarms since last call for CCK. */
4670 	fa  = letoh32(stats->cck.bad_plcp) - calib->bad_plcp_cck;
4671 	fa += letoh32(stats->cck.fa) - calib->fa_cck;
4672 	fa *= 200 * IEEE80211_DUR_TU;	/* 200TU */
4673 
4674 	/* Save counters values for next call. */
4675 	calib->bad_plcp_cck = letoh32(stats->cck.bad_plcp);
4676 	calib->fa_cck = letoh32(stats->cck.fa);
4677 
4678 	if (fa > 50 * rxena) {
4679 		/* High false alarm count, decrease sensitivity. */
4680 		DPRINTFN(2, ("CCK high false alarm count: %u\n", fa));
4681 		calib->cck_state = IWN_CCK_STATE_HIFA;
4682 		calib->low_fa = 0;
4683 
4684 		if (calib->cck_x4 > 160) {
4685 			calib->noise_ref = noise_ref;
4686 			if (calib->energy_cck > 2)
4687 				dec(calib->energy_cck, 2, energy_min);
4688 		}
4689 		if (calib->cck_x4 < 160) {
4690 			calib->cck_x4 = 161;
4691 			needs_update = 1;
4692 		} else
4693 			inc(calib->cck_x4, 3, limits->max_cck_x4);
4694 
4695 		inc(calib->cck_mrc_x4, 3, limits->max_cck_mrc_x4);
4696 
4697 	} else if (fa < 5 * rxena) {
4698 		/* Low false alarm count, increase sensitivity. */
4699 		DPRINTFN(2, ("CCK low false alarm count: %u\n", fa));
4700 		calib->cck_state = IWN_CCK_STATE_LOFA;
4701 		calib->low_fa++;
4702 
4703 		if (calib->cck_state != IWN_CCK_STATE_INIT &&
4704 		    (((int32_t)calib->noise_ref - (int32_t)noise_ref) > 2 ||
4705 		     calib->low_fa > 100)) {
4706 			inc(calib->energy_cck, 2, limits->min_energy_cck);
4707 			dec(calib->cck_x4,     3, limits->min_cck_x4);
4708 			dec(calib->cck_mrc_x4, 3, limits->min_cck_mrc_x4);
4709 		}
4710 	} else {
4711 		/* Not worth to increase or decrease sensitivity. */
4712 		DPRINTFN(2, ("CCK normal false alarm count: %u\n", fa));
4713 		calib->low_fa = 0;
4714 		calib->noise_ref = noise_ref;
4715 
4716 		if (calib->cck_state == IWN_CCK_STATE_HIFA) {
4717 			/* Previous interval had many false alarms. */
4718 			dec(calib->energy_cck, 8, energy_min);
4719 		}
4720 		calib->cck_state = IWN_CCK_STATE_INIT;
4721 	}
4722 
4723 	if (needs_update)
4724 		(void)iwn_send_sensitivity(sc);
4725 #undef dec
4726 #undef inc
4727 }
4728 
4729 int
iwn_send_sensitivity(struct iwn_softc * sc)4730 iwn_send_sensitivity(struct iwn_softc *sc)
4731 {
4732 	struct iwn_calib_state *calib = &sc->calib;
4733 	struct iwn_enhanced_sensitivity_cmd cmd;
4734 	int len;
4735 
4736 	memset(&cmd, 0, sizeof cmd);
4737 	len = sizeof (struct iwn_sensitivity_cmd);
4738 	cmd.which = IWN_SENSITIVITY_WORKTBL;
4739 	/* OFDM modulation. */
4740 	cmd.corr_ofdm_x1       = htole16(calib->ofdm_x1);
4741 	cmd.corr_ofdm_mrc_x1   = htole16(calib->ofdm_mrc_x1);
4742 	cmd.corr_ofdm_x4       = htole16(calib->ofdm_x4);
4743 	cmd.corr_ofdm_mrc_x4   = htole16(calib->ofdm_mrc_x4);
4744 	cmd.energy_ofdm        = htole16(sc->limits->energy_ofdm);
4745 	cmd.energy_ofdm_th     = htole16(62);
4746 	/* CCK modulation. */
4747 	cmd.corr_cck_x4        = htole16(calib->cck_x4);
4748 	cmd.corr_cck_mrc_x4    = htole16(calib->cck_mrc_x4);
4749 	cmd.energy_cck         = htole16(calib->energy_cck);
4750 	/* Barker modulation: use default values. */
4751 	cmd.corr_barker        = htole16(190);
4752 	cmd.corr_barker_mrc    = htole16(390);
4753 	if (!(sc->sc_flags & IWN_FLAG_ENH_SENS))
4754 		goto send;
4755 	/* Enhanced sensitivity settings. */
4756 	len = sizeof (struct iwn_enhanced_sensitivity_cmd);
4757 	cmd.ofdm_det_slope_mrc = htole16(668);
4758 	cmd.ofdm_det_icept_mrc = htole16(4);
4759 	cmd.ofdm_det_slope     = htole16(486);
4760 	cmd.ofdm_det_icept     = htole16(37);
4761 	cmd.cck_det_slope_mrc  = htole16(853);
4762 	cmd.cck_det_icept_mrc  = htole16(4);
4763 	cmd.cck_det_slope      = htole16(476);
4764 	cmd.cck_det_icept      = htole16(99);
4765 send:
4766 	return iwn_cmd(sc, IWN_CMD_SET_SENSITIVITY, &cmd, len, 1);
4767 }
4768 
4769 /*
4770  * Set STA mode power saving level (between 0 and 5).
4771  * Level 0 is CAM (Continuously Aware Mode), 5 is for maximum power saving.
4772  */
4773 int
iwn_set_pslevel(struct iwn_softc * sc,int dtim,int level,int async)4774 iwn_set_pslevel(struct iwn_softc *sc, int dtim, int level, int async)
4775 {
4776 	struct iwn_pmgt_cmd cmd;
4777 	const struct iwn_pmgt *pmgt;
4778 	uint32_t max, skip_dtim;
4779 	pcireg_t reg;
4780 	int i;
4781 
4782 	/* Select which PS parameters to use. */
4783 	if (dtim <= 2)
4784 		pmgt = &iwn_pmgt[0][level];
4785 	else if (dtim <= 10)
4786 		pmgt = &iwn_pmgt[1][level];
4787 	else
4788 		pmgt = &iwn_pmgt[2][level];
4789 
4790 	memset(&cmd, 0, sizeof cmd);
4791 	if (level != 0)	/* not CAM */
4792 		cmd.flags |= htole16(IWN_PS_ALLOW_SLEEP);
4793 	if (level == 5)
4794 		cmd.flags |= htole16(IWN_PS_FAST_PD);
4795 	/* Retrieve PCIe Active State Power Management (ASPM). */
4796 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
4797 	    sc->sc_cap_off + PCI_PCIE_LCSR);
4798 	if (!(reg & PCI_PCIE_LCSR_ASPM_L0S))	/* L0s Entry disabled. */
4799 		cmd.flags |= htole16(IWN_PS_PCI_PMGT);
4800 	cmd.rxtimeout = htole32(pmgt->rxtimeout * 1024);
4801 	cmd.txtimeout = htole32(pmgt->txtimeout * 1024);
4802 
4803 	if (dtim == 0) {
4804 		dtim = 1;
4805 		skip_dtim = 0;
4806 	} else
4807 		skip_dtim = pmgt->skip_dtim;
4808 	if (skip_dtim != 0) {
4809 		cmd.flags |= htole16(IWN_PS_SLEEP_OVER_DTIM);
4810 		max = pmgt->intval[4];
4811 		if (max == (uint32_t)-1)
4812 			max = dtim * (skip_dtim + 1);
4813 		else if (max > dtim)
4814 			max = (max / dtim) * dtim;
4815 	} else
4816 		max = dtim;
4817 	for (i = 0; i < 5; i++)
4818 		cmd.intval[i] = htole32(MIN(max, pmgt->intval[i]));
4819 
4820 	DPRINTF(("setting power saving level to %d\n", level));
4821 	return iwn_cmd(sc, IWN_CMD_SET_POWER_MODE, &cmd, sizeof cmd, async);
4822 }
4823 
4824 int
iwn_send_btcoex(struct iwn_softc * sc)4825 iwn_send_btcoex(struct iwn_softc *sc)
4826 {
4827 	struct iwn_bluetooth cmd;
4828 
4829 	memset(&cmd, 0, sizeof cmd);
4830 	cmd.flags = IWN_BT_COEX_CHAN_ANN | IWN_BT_COEX_BT_PRIO;
4831 	cmd.lead_time = IWN_BT_LEAD_TIME_DEF;
4832 	cmd.max_kill = IWN_BT_MAX_KILL_DEF;
4833 	DPRINTF(("configuring bluetooth coexistence\n"));
4834 	return iwn_cmd(sc, IWN_CMD_BT_COEX, &cmd, sizeof(cmd), 0);
4835 }
4836 
4837 int
iwn_send_advanced_btcoex(struct iwn_softc * sc)4838 iwn_send_advanced_btcoex(struct iwn_softc *sc)
4839 {
4840 	static const uint32_t btcoex_3wire[12] = {
4841 		0xaaaaaaaa, 0xaaaaaaaa, 0xaeaaaaaa, 0xaaaaaaaa,
4842 		0xcc00ff28, 0x0000aaaa, 0xcc00aaaa, 0x0000aaaa,
4843 		0xc0004000, 0x00004000, 0xf0005000, 0xf0005000,
4844 	};
4845 	struct iwn_btcoex_priotable btprio;
4846 	struct iwn_btcoex_prot btprot;
4847 	int error, i;
4848 
4849 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4850 	    sc->hw_type == IWN_HW_REV_TYPE_135) {
4851 		struct iwn2000_btcoex_config btconfig;
4852 
4853 		memset(&btconfig, 0, sizeof btconfig);
4854 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4855 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4856 		    IWN_BT_SYNC_2_BT_DISABLE;
4857 		btconfig.max_kill = 5;
4858 		btconfig.bt3_t7_timer = 1;
4859 		btconfig.kill_ack = htole32(0xffff0000);
4860 		btconfig.kill_cts = htole32(0xffff0000);
4861 		btconfig.sample_time = 2;
4862 		btconfig.bt3_t2_timer = 0xc;
4863 		for (i = 0; i < 12; i++)
4864 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4865 		btconfig.valid = htole16(0xff);
4866 		btconfig.prio_boost = htole32(0xf0);
4867 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4868 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4869 		    sizeof(btconfig), 1);
4870 		if (error != 0)
4871 			return (error);
4872 	} else {
4873 		struct iwn6000_btcoex_config btconfig;
4874 
4875 		memset(&btconfig, 0, sizeof btconfig);
4876 		btconfig.flags = IWN_BT_COEX6000_CHAN_INHIBITION |
4877 		    (IWN_BT_COEX6000_MODE_3W << IWN_BT_COEX6000_MODE_SHIFT) |
4878 		    IWN_BT_SYNC_2_BT_DISABLE;
4879 		btconfig.max_kill = 5;
4880 		btconfig.bt3_t7_timer = 1;
4881 		btconfig.kill_ack = htole32(0xffff0000);
4882 		btconfig.kill_cts = htole32(0xffff0000);
4883 		btconfig.sample_time = 2;
4884 		btconfig.bt3_t2_timer = 0xc;
4885 		for (i = 0; i < 12; i++)
4886 			btconfig.lookup_table[i] = htole32(btcoex_3wire[i]);
4887 		btconfig.valid = htole16(0xff);
4888 		btconfig.prio_boost = 0xf0;
4889 		DPRINTF(("configuring advanced bluetooth coexistence\n"));
4890 		error = iwn_cmd(sc, IWN_CMD_BT_COEX, &btconfig,
4891 		    sizeof(btconfig), 1);
4892 		if (error != 0)
4893 			return (error);
4894 	}
4895 
4896 	memset(&btprio, 0, sizeof btprio);
4897 	btprio.calib_init1 = 0x6;
4898 	btprio.calib_init2 = 0x7;
4899 	btprio.calib_periodic_low1 = 0x2;
4900 	btprio.calib_periodic_low2 = 0x3;
4901 	btprio.calib_periodic_high1 = 0x4;
4902 	btprio.calib_periodic_high2 = 0x5;
4903 	btprio.dtim = 0x6;
4904 	btprio.scan52 = 0x8;
4905 	btprio.scan24 = 0xa;
4906 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PRIOTABLE, &btprio, sizeof(btprio),
4907 	    1);
4908 	if (error != 0)
4909 		return (error);
4910 
4911 	/* Force BT state machine change */
4912 	memset(&btprot, 0, sizeof btprot);
4913 	btprot.open = 1;
4914 	btprot.type = 1;
4915 	error = iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1);
4916 	if (error != 0)
4917 		return (error);
4918 
4919 	btprot.open = 0;
4920 	return (iwn_cmd(sc, IWN_CMD_BT_COEX_PROT, &btprot, sizeof(btprot), 1));
4921 }
4922 
4923 int
iwn5000_runtime_calib(struct iwn_softc * sc)4924 iwn5000_runtime_calib(struct iwn_softc *sc)
4925 {
4926 	struct iwn5000_calib_config cmd;
4927 
4928 	memset(&cmd, 0, sizeof cmd);
4929 	cmd.ucode.once.enable = 0xffffffff;
4930 	cmd.ucode.once.start = IWN5000_CALIB_DC;
4931 	DPRINTF(("configuring runtime calibration\n"));
4932 	return iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof(cmd), 0);
4933 }
4934 
4935 int
iwn_config(struct iwn_softc * sc)4936 iwn_config(struct iwn_softc *sc)
4937 {
4938 	struct iwn_ops *ops = &sc->ops;
4939 	struct ieee80211com *ic = &sc->sc_ic;
4940 	struct ifnet *ifp = &ic->ic_if;
4941 	uint32_t txmask;
4942 	uint16_t rxchain;
4943 	int error, ridx;
4944 
4945 	/* Set radio temperature sensor offset. */
4946 	if (sc->hw_type == IWN_HW_REV_TYPE_6005) {
4947 		error = iwn6000_temp_offset_calib(sc);
4948 		if (error != 0) {
4949 			printf("%s: could not set temperature offset\n",
4950 			    sc->sc_dev.dv_xname);
4951 			return error;
4952 		}
4953 	}
4954 
4955 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
4956 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
4957 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
4958 	    sc->hw_type == IWN_HW_REV_TYPE_105) {
4959 		error = iwn2000_temp_offset_calib(sc);
4960 		if (error != 0) {
4961 			printf("%s: could not set temperature offset\n",
4962 			    sc->sc_dev.dv_xname);
4963 			return error;
4964 		}
4965 	}
4966 
4967 	if (sc->hw_type == IWN_HW_REV_TYPE_6050 ||
4968 	    sc->hw_type == IWN_HW_REV_TYPE_6005) {
4969 		/* Configure runtime DC calibration. */
4970 		error = iwn5000_runtime_calib(sc);
4971 		if (error != 0) {
4972 			printf("%s: could not configure runtime calibration\n",
4973 			    sc->sc_dev.dv_xname);
4974 			return error;
4975 		}
4976 	}
4977 
4978 	/* Configure valid TX chains for >=5000 Series. */
4979 	if (sc->hw_type != IWN_HW_REV_TYPE_4965) {
4980 		txmask = htole32(sc->txchainmask);
4981 		DPRINTF(("configuring valid TX chains 0x%x\n", txmask));
4982 		error = iwn_cmd(sc, IWN5000_CMD_TX_ANT_CONFIG, &txmask,
4983 		    sizeof txmask, 0);
4984 		if (error != 0) {
4985 			printf("%s: could not configure valid TX chains\n",
4986 			    sc->sc_dev.dv_xname);
4987 			return error;
4988 		}
4989 	}
4990 
4991 	/* Configure bluetooth coexistence. */
4992 	if (sc->sc_flags & IWN_FLAG_ADV_BT_COEX)
4993 		error = iwn_send_advanced_btcoex(sc);
4994 	else
4995 		error = iwn_send_btcoex(sc);
4996 	if (error != 0) {
4997 		printf("%s: could not configure bluetooth coexistence\n",
4998 		    sc->sc_dev.dv_xname);
4999 		return error;
5000 	}
5001 
5002 	/* Set mode, channel, RX filter and enable RX. */
5003 	memset(&sc->rxon, 0, sizeof (struct iwn_rxon));
5004 	IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl));
5005 	IEEE80211_ADDR_COPY(sc->rxon.myaddr, ic->ic_myaddr);
5006 	IEEE80211_ADDR_COPY(sc->rxon.wlap, ic->ic_myaddr);
5007 	sc->rxon.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
5008 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5009 	if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
5010 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5011 		if (ic->ic_flags & IEEE80211_F_USEPROT)
5012 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5013 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
5014 		    le32toh(sc->rxon.flags)));
5015 	}
5016 	switch (ic->ic_opmode) {
5017 	case IEEE80211_M_STA:
5018 		sc->rxon.mode = IWN_MODE_STA;
5019 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST);
5020 		break;
5021 	case IEEE80211_M_MONITOR:
5022 		sc->rxon.mode = IWN_MODE_MONITOR;
5023 		sc->rxon.filter = htole32(IWN_FILTER_MULTICAST |
5024 		    IWN_FILTER_CTL | IWN_FILTER_PROMISC);
5025 		break;
5026 	default:
5027 		/* Should not get there. */
5028 		break;
5029 	}
5030 	sc->rxon.cck_mask  = 0x0f;	/* not yet negotiated */
5031 	sc->rxon.ofdm_mask = 0xff;	/* not yet negotiated */
5032 	sc->rxon.ht_single_mask = 0xff;
5033 	sc->rxon.ht_dual_mask = 0xff;
5034 	sc->rxon.ht_triple_mask = 0xff;
5035 	rxchain =
5036 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5037 	    IWN_RXCHAIN_MIMO_COUNT(sc->nrxchains) |
5038 	    IWN_RXCHAIN_IDLE_COUNT(sc->nrxchains);
5039 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5040 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5041 		rxchain |= IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask);
5042 	    	rxchain |= (IWN_RXCHAIN_DRIVER_FORCE | IWN_RXCHAIN_MIMO_FORCE);
5043 	}
5044 	sc->rxon.rxchain = htole16(rxchain);
5045 	DPRINTF(("setting configuration\n"));
5046 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x rxchain %x\n",
5047 	    __func__, sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5048 	    sc->rxon.ofdm_mask, sc->rxon.rxchain));
5049 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 0);
5050 	if (error != 0) {
5051 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5052 		return error;
5053 	}
5054 
5055 	ridx = (sc->sc_ic.ic_curmode == IEEE80211_MODE_11A) ?
5056 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5057 	if ((error = iwn_add_broadcast_node(sc, 0, ridx)) != 0) {
5058 		printf("%s: could not add broadcast node\n",
5059 		    sc->sc_dev.dv_xname);
5060 		return error;
5061 	}
5062 
5063 	/* Configuration has changed, set TX power accordingly. */
5064 	if ((error = ops->set_txpower(sc, 0)) != 0) {
5065 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5066 		return error;
5067 	}
5068 
5069 	if ((error = iwn_set_critical_temp(sc)) != 0) {
5070 		printf("%s: could not set critical temperature\n",
5071 		    sc->sc_dev.dv_xname);
5072 		return error;
5073 	}
5074 
5075 	/* Set power saving level to CAM during initialization. */
5076 	if ((error = iwn_set_pslevel(sc, 0, 0, 0)) != 0) {
5077 		printf("%s: could not set power saving level\n",
5078 		    sc->sc_dev.dv_xname);
5079 		return error;
5080 	}
5081 	return 0;
5082 }
5083 
5084 uint16_t
iwn_get_active_dwell_time(struct iwn_softc * sc,uint16_t flags,uint8_t n_probes)5085 iwn_get_active_dwell_time(struct iwn_softc *sc,
5086     uint16_t flags, uint8_t n_probes)
5087 {
5088 	/* No channel? Default to 2GHz settings */
5089 	if (flags & IEEE80211_CHAN_2GHZ) {
5090 		return (IWN_ACTIVE_DWELL_TIME_2GHZ +
5091 		IWN_ACTIVE_DWELL_FACTOR_2GHZ * (n_probes + 1));
5092 	}
5093 
5094 	/* 5GHz dwell time */
5095 	return (IWN_ACTIVE_DWELL_TIME_5GHZ +
5096 	    IWN_ACTIVE_DWELL_FACTOR_5GHZ * (n_probes + 1));
5097 }
5098 
5099 /*
5100  * Limit the total dwell time to 85% of the beacon interval.
5101  *
5102  * Returns the dwell time in milliseconds.
5103  */
5104 uint16_t
iwn_limit_dwell(struct iwn_softc * sc,uint16_t dwell_time)5105 iwn_limit_dwell(struct iwn_softc *sc, uint16_t dwell_time)
5106 {
5107 	struct ieee80211com *ic = &sc->sc_ic;
5108 	struct ieee80211_node *ni = ic->ic_bss;
5109 	int bintval = 0;
5110 
5111 	/* bintval is in TU (1.024mS) */
5112 	if (ni != NULL)
5113 		bintval = ni->ni_intval;
5114 
5115 	/*
5116 	 * If it's non-zero, we should calculate the minimum of
5117 	 * it and the DWELL_BASE.
5118 	 *
5119 	 * XXX Yes, the math should take into account that bintval
5120 	 * is 1.024mS, not 1mS..
5121 	 */
5122 	if (ic->ic_state == IEEE80211_S_RUN && bintval > 0)
5123 		return (MIN(IWN_PASSIVE_DWELL_BASE, ((bintval * 85) / 100)));
5124 
5125 	/* No association context? Default */
5126 	return dwell_time;
5127 }
5128 
5129 uint16_t
iwn_get_passive_dwell_time(struct iwn_softc * sc,uint16_t flags)5130 iwn_get_passive_dwell_time(struct iwn_softc *sc, uint16_t flags)
5131 {
5132 	uint16_t passive;
5133 	if (flags & IEEE80211_CHAN_2GHZ) {
5134 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_2GHZ;
5135 	} else {
5136 		passive = IWN_PASSIVE_DWELL_BASE + IWN_PASSIVE_DWELL_TIME_5GHZ;
5137 	}
5138 
5139 	/* Clamp to the beacon interval if we're associated */
5140 	return (iwn_limit_dwell(sc, passive));
5141 }
5142 
5143 int
iwn_scan(struct iwn_softc * sc,uint16_t flags,int bgscan)5144 iwn_scan(struct iwn_softc *sc, uint16_t flags, int bgscan)
5145 {
5146 	struct ieee80211com *ic = &sc->sc_ic;
5147 	struct iwn_scan_hdr *hdr;
5148 	struct iwn_cmd_data *tx;
5149 	struct iwn_scan_essid *essid;
5150 	struct iwn_scan_chan *chan;
5151 	struct ieee80211_frame *wh;
5152 	struct ieee80211_rateset *rs;
5153 	struct ieee80211_channel *c;
5154 	uint8_t *buf, *frm;
5155 	uint16_t rxchain, dwell_active, dwell_passive;
5156 	uint8_t txant;
5157 	int buflen, error, is_active;
5158 
5159 	buf = malloc(IWN_SCAN_MAXSZ, M_DEVBUF, M_NOWAIT | M_ZERO);
5160 	if (buf == NULL) {
5161 		printf("%s: could not allocate buffer for scan command\n",
5162 		    sc->sc_dev.dv_xname);
5163 		return ENOMEM;
5164 	}
5165 	hdr = (struct iwn_scan_hdr *)buf;
5166 	/*
5167 	 * Move to the next channel if no frames are received within 10ms
5168 	 * after sending the probe request.
5169 	 */
5170 	hdr->quiet_time = htole16(10);		/* timeout in milliseconds */
5171 	hdr->quiet_threshold = htole16(1);	/* min # of packets */
5172 
5173 	if (bgscan) {
5174 		int bintval;
5175 
5176 		/* Set maximum off-channel time. */
5177 		hdr->max_out = htole32(200 * 1024);
5178 
5179 		/* Configure scan pauses which service on-channel traffic. */
5180 		bintval = ic->ic_bss->ni_intval ? ic->ic_bss->ni_intval : 100;
5181 		hdr->pause_scan = htole32(((100 / bintval) << 22) |
5182 		    ((100 % bintval) * 1024));
5183 	}
5184 
5185 	/* Select antennas for scanning. */
5186 	rxchain =
5187 	    IWN_RXCHAIN_VALID(sc->rxchainmask) |
5188 	    IWN_RXCHAIN_FORCE_MIMO_SEL(sc->rxchainmask) |
5189 	    IWN_RXCHAIN_DRIVER_FORCE;
5190 	if ((flags & IEEE80211_CHAN_5GHZ) &&
5191 	    sc->hw_type == IWN_HW_REV_TYPE_4965) {
5192 		/*
5193 		 * On 4965 ant A and C must be avoided in 5GHz because of a
5194 		 * HW bug which causes very weak RSSI values being reported.
5195 		 */
5196 		rxchain |= IWN_RXCHAIN_FORCE_SEL(IWN_ANT_B);
5197 	} else	/* Use all available RX antennas. */
5198 		rxchain |= IWN_RXCHAIN_FORCE_SEL(sc->rxchainmask);
5199 	hdr->rxchain = htole16(rxchain);
5200 	hdr->filter = htole32(IWN_FILTER_MULTICAST | IWN_FILTER_BEACON);
5201 
5202 	tx = (struct iwn_cmd_data *)(hdr + 1);
5203 	tx->flags = htole32(IWN_TX_AUTO_SEQ);
5204 	tx->id = sc->broadcast_id;
5205 	tx->lifetime = htole32(IWN_LIFETIME_INFINITE);
5206 
5207 	if (flags & IEEE80211_CHAN_5GHZ) {
5208 		/* Send probe requests at 6Mbps. */
5209 		tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5210 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
5211 	} else {
5212 		hdr->flags = htole32(IWN_RXON_24GHZ | IWN_RXON_AUTO);
5213 		if (bgscan && sc->hw_type == IWN_HW_REV_TYPE_4965 &&
5214 		    sc->rxon.chan > 14) {
5215 			/*
5216 			 * 4965 firmware can crash when sending probe requests
5217 			 * with CCK rates while associated to a 5GHz AP.
5218 			 * Send probe requests at 6Mbps OFDM as a workaround.
5219 			 */
5220 			tx->plcp = iwn_rates[IWN_RIDX_OFDM6].plcp;
5221 		} else {
5222 			/* Send probe requests at 1Mbps. */
5223 			tx->plcp = iwn_rates[IWN_RIDX_CCK1].plcp;
5224 			tx->rflags = IWN_RFLAG_CCK;
5225 		}
5226 		rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
5227 	}
5228 	/* Use the first valid TX antenna. */
5229 	txant = IWN_LSB(sc->txchainmask);
5230 	tx->rflags |= IWN_RFLAG_ANT(txant);
5231 
5232 	/*
5233 	 * Only do active scanning if we're announcing a probe request
5234 	 * for a given SSID (or more, if we ever add it to the driver.)
5235 	 */
5236 	is_active = 0;
5237 
5238 	/*
5239 	 * If we're scanning for a specific SSID, add it to the command.
5240 	 */
5241 	essid = (struct iwn_scan_essid *)(tx + 1);
5242 	if (ic->ic_des_esslen != 0) {
5243 		essid[0].id = IEEE80211_ELEMID_SSID;
5244 		essid[0].len = ic->ic_des_esslen;
5245 		memcpy(essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
5246 
5247 		is_active = 1;
5248 	}
5249 	/*
5250 	 * Build a probe request frame.  Most of the following code is a
5251 	 * copy & paste of what is done in net80211.
5252 	 */
5253 	wh = (struct ieee80211_frame *)(essid + 20);
5254 	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
5255 	    IEEE80211_FC0_SUBTYPE_PROBE_REQ;
5256 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
5257 	IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
5258 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
5259 	IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
5260 	*(uint16_t *)&wh->i_dur[0] = 0;	/* filled by HW */
5261 	*(uint16_t *)&wh->i_seq[0] = 0;	/* filled by HW */
5262 
5263 	frm = (uint8_t *)(wh + 1);
5264 	frm = ieee80211_add_ssid(frm, NULL, 0);
5265 	frm = ieee80211_add_rates(frm, rs);
5266 	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
5267 		frm = ieee80211_add_xrates(frm, rs);
5268 	if (ic->ic_flags & IEEE80211_F_HTON)
5269 		frm = ieee80211_add_htcaps(frm, ic);
5270 
5271 	/* Set length of probe request. */
5272 	tx->len = htole16(frm - (uint8_t *)wh);
5273 
5274 	/*
5275 	 * If active scanning is requested but a certain channel is
5276 	 * marked passive, we can do active scanning if we detect
5277 	 * transmissions.
5278 	 *
5279 	 * There is an issue with some firmware versions that triggers
5280 	 * a sysassert on a "good CRC threshold" of zero (== disabled),
5281 	 * on a radar channel even though this means that we should NOT
5282 	 * send probes.
5283 	 *
5284 	 * The "good CRC threshold" is the number of frames that we
5285 	 * need to receive during our dwell time on a channel before
5286 	 * sending out probes -- setting this to a huge value will
5287 	 * mean we never reach it, but at the same time work around
5288 	 * the aforementioned issue. Thus use IWN_GOOD_CRC_TH_NEVER
5289 	 * here instead of IWN_GOOD_CRC_TH_DISABLED.
5290 	 *
5291 	 * This was fixed in later versions along with some other
5292 	 * scan changes, and the threshold behaves as a flag in those
5293 	 * versions.
5294 	 */
5295 
5296 	/*
5297 	 * If we're doing active scanning, set the crc_threshold
5298 	 * to a suitable value.  This is different to active veruss
5299 	 * passive scanning depending upon the channel flags; the
5300 	 * firmware will obey that particular check for us.
5301 	 */
5302 	if (sc->tlv_feature_flags & IWN_UCODE_TLV_FLAGS_NEWSCAN)
5303 		hdr->crc_threshold = is_active ?
5304 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_DISABLED;
5305 	else
5306 		hdr->crc_threshold = is_active ?
5307 		    IWN_GOOD_CRC_TH_DEFAULT : IWN_GOOD_CRC_TH_NEVER;
5308 
5309 	chan = (struct iwn_scan_chan *)frm;
5310 	for (c  = &ic->ic_channels[1];
5311 	     c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
5312 		if ((c->ic_flags & flags) != flags)
5313 			continue;
5314 
5315 		chan->chan = htole16(ieee80211_chan2ieee(ic, c));
5316 		DPRINTFN(2, ("adding channel %d\n", chan->chan));
5317 		chan->flags = 0;
5318 		if (ic->ic_des_esslen != 0)
5319 			chan->flags |= htole32(IWN_CHAN_NPBREQS(1));
5320 
5321 		if (c->ic_flags & IEEE80211_CHAN_PASSIVE)
5322 			chan->flags |= htole32(IWN_CHAN_PASSIVE);
5323 		else
5324 			chan->flags |= htole32(IWN_CHAN_ACTIVE);
5325 
5326 		/*
5327 		 * Calculate the active/passive dwell times.
5328 		 */
5329 
5330 		dwell_active = iwn_get_active_dwell_time(sc, flags, is_active);
5331 		dwell_passive = iwn_get_passive_dwell_time(sc, flags);
5332 
5333 		/* Make sure they're valid */
5334 		if (dwell_passive <= dwell_active)
5335 			dwell_passive = dwell_active + 1;
5336 
5337 		chan->active = htole16(dwell_active);
5338 		chan->passive = htole16(dwell_passive);
5339 
5340 		chan->dsp_gain = 0x6e;
5341 		if (IEEE80211_IS_CHAN_5GHZ(c)) {
5342 			chan->rf_gain = 0x3b;
5343 		} else {
5344 			chan->rf_gain = 0x28;
5345 		}
5346 		hdr->nchan++;
5347 		chan++;
5348 	}
5349 
5350 	buflen = (uint8_t *)chan - buf;
5351 	hdr->len = htole16(buflen);
5352 
5353 	error = iwn_cmd(sc, IWN_CMD_SCAN, buf, buflen, 1);
5354 	if (error == 0) {
5355 		/*
5356 		 * The current mode might have been fixed during association.
5357 		 * Ensure all channels get scanned.
5358 		 */
5359 		if (IFM_SUBTYPE(ic->ic_media.ifm_cur->ifm_media) == IFM_AUTO)
5360 			ieee80211_setmode(ic, IEEE80211_MODE_AUTO);
5361 
5362 		sc->sc_flags |= IWN_FLAG_SCANNING;
5363 		if (bgscan)
5364 			sc->sc_flags |= IWN_FLAG_BGSCAN;
5365 	}
5366 	free(buf, M_DEVBUF, IWN_SCAN_MAXSZ);
5367 	return error;
5368 }
5369 
5370 void
iwn_scan_abort(struct iwn_softc * sc)5371 iwn_scan_abort(struct iwn_softc *sc)
5372 {
5373 	iwn_cmd(sc, IWN_CMD_SCAN_ABORT, NULL, 0, 1);
5374 
5375 	/* XXX Cannot wait for status response in interrupt context. */
5376 	DELAY(100);
5377 
5378 	sc->sc_flags &= ~IWN_FLAG_SCANNING;
5379 	sc->sc_flags &= ~IWN_FLAG_BGSCAN;
5380 }
5381 
5382 int
iwn_bgscan(struct ieee80211com * ic)5383 iwn_bgscan(struct ieee80211com *ic)
5384 {
5385 	struct iwn_softc *sc = ic->ic_softc;
5386 	int error;
5387 
5388 	if (sc->sc_flags & IWN_FLAG_SCANNING)
5389 		return 0;
5390 
5391 	error = iwn_scan(sc, IEEE80211_CHAN_2GHZ, 1);
5392 	if (error)
5393 		printf("%s: could not initiate background scan\n",
5394 		    sc->sc_dev.dv_xname);
5395 	return error;
5396 }
5397 
5398 void
iwn_rxon_configure_ht40(struct ieee80211com * ic,struct ieee80211_node * ni)5399 iwn_rxon_configure_ht40(struct ieee80211com *ic, struct ieee80211_node *ni)
5400 {
5401 	struct iwn_softc *sc = ic->ic_softc;
5402 	uint8_t sco = (ni->ni_htop0 & IEEE80211_HTOP0_SCO_MASK);
5403 	enum ieee80211_htprot htprot = (ni->ni_htop1 &
5404 	    IEEE80211_HTOP1_PROT_MASK);
5405 
5406 	sc->rxon.flags &= ~htole32(IWN_RXON_HT_CHANMODE_MIXED2040 |
5407 	    IWN_RXON_HT_CHANMODE_PURE40 | IWN_RXON_HT_HT40MINUS);
5408 
5409 	if (ieee80211_node_supports_ht_chan40(ni) &&
5410 	    (sco == IEEE80211_HTOP0_SCO_SCA ||
5411 	    sco == IEEE80211_HTOP0_SCO_SCB)) {
5412 		if (sco == IEEE80211_HTOP0_SCO_SCB)
5413 			sc->rxon.flags |= htole32(IWN_RXON_HT_HT40MINUS);
5414 		if (htprot == IEEE80211_HTPROT_20MHZ)
5415 			sc->rxon.flags |= htole32(IWN_RXON_HT_CHANMODE_PURE40);
5416 		else
5417 			sc->rxon.flags |= htole32(
5418 			    IWN_RXON_HT_CHANMODE_MIXED2040);
5419 	}
5420 }
5421 
5422 int
iwn_rxon_ht40_enabled(struct iwn_softc * sc)5423 iwn_rxon_ht40_enabled(struct iwn_softc *sc)
5424 {
5425 	return ((le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_MIXED2040) ||
5426 	    (le32toh(sc->rxon.flags) & IWN_RXON_HT_CHANMODE_PURE40)) ? 1 : 0;
5427 }
5428 
5429 int
iwn_auth(struct iwn_softc * sc,int arg)5430 iwn_auth(struct iwn_softc *sc, int arg)
5431 {
5432 	struct iwn_ops *ops = &sc->ops;
5433 	struct ieee80211com *ic = &sc->sc_ic;
5434 	struct ieee80211_node *ni = ic->ic_bss;
5435 	int error, ridx;
5436 	int bss_switch =
5437 	    (!IEEE80211_ADDR_EQ(sc->bss_node_addr, etheranyaddr) &&
5438 	    !IEEE80211_ADDR_EQ(sc->bss_node_addr, ni->ni_macaddr));
5439 
5440 	/* Update adapter configuration. */
5441 	IEEE80211_ADDR_COPY(sc->rxon.bssid, ni->ni_bssid);
5442 	sc->rxon.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
5443 	sc->rxon.flags = htole32(IWN_RXON_TSF | IWN_RXON_CTS_TO_SELF);
5444 	if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
5445 		sc->rxon.flags |= htole32(IWN_RXON_AUTO | IWN_RXON_24GHZ);
5446 		if (ic->ic_flags & IEEE80211_F_USEPROT)
5447 			sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5448 		DPRINTF(("%s: 2ghz prot 0x%x\n", __func__,
5449 		    le32toh(sc->rxon.flags)));
5450 	}
5451 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5452 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5453 	else
5454 		sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
5455 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5456 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5457 	else
5458 		sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5459 	switch (ic->ic_curmode) {
5460 	case IEEE80211_MODE_11A:
5461 		sc->rxon.cck_mask  = 0;
5462 		sc->rxon.ofdm_mask = 0x15;
5463 		break;
5464 	case IEEE80211_MODE_11B:
5465 		sc->rxon.cck_mask  = 0x03;
5466 		sc->rxon.ofdm_mask = 0;
5467 		break;
5468 	default:	/* Assume 802.11b/g/n. */
5469 		sc->rxon.cck_mask  = 0x0f;
5470 		sc->rxon.ofdm_mask = 0x15;
5471 	}
5472 	/* Configure 40MHz early to avoid problems on 6205 devices. */
5473 	iwn_rxon_configure_ht40(ic, ni);
5474 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5475 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5476 	    sc->rxon.ofdm_mask));
5477 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5478 	if (error != 0) {
5479 		printf("%s: RXON command failed\n", sc->sc_dev.dv_xname);
5480 		return error;
5481 	}
5482 
5483 	/* Configuration has changed, set TX power accordingly. */
5484 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5485 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5486 		return error;
5487 	}
5488 	/*
5489 	 * Reconfiguring RXON clears the firmware nodes table so we must
5490 	 * add the broadcast node again.
5491 	 */
5492 	ridx = IEEE80211_IS_CHAN_5GHZ(ni->ni_chan) ?
5493 	    IWN_RIDX_OFDM6 : IWN_RIDX_CCK1;
5494 	if ((error = iwn_add_broadcast_node(sc, 1, ridx)) != 0) {
5495 		printf("%s: could not add broadcast node\n",
5496 		    sc->sc_dev.dv_xname);
5497 		return error;
5498 	}
5499 
5500 	/*
5501 	 * Make sure the firmware gets to see a beacon before we send
5502 	 * the auth request. Otherwise the Tx attempt can fail due to
5503 	 * the firmware's built-in regulatory domain enforcement.
5504 	 * Delaying here for every incoming deauth frame can result in a DoS.
5505 	 * Don't delay if we're here because of an incoming frame (arg != -1)
5506 	 * or if we're already waiting for a response (ic_mgt_timer != 0).
5507 	 * If we are switching APs after a background scan then net80211 has
5508 	 * just faked the reception of a deauth frame from our old AP, so it
5509 	 * is safe to delay in that case.
5510 	 */
5511 	if ((arg == -1 || bss_switch) && ic->ic_mgt_timer == 0)
5512 		DELAY(ni->ni_intval * 3 * IEEE80211_DUR_TU);
5513 
5514 	/* We can now clear the cached address of our previous AP. */
5515 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
5516 
5517 	return 0;
5518 }
5519 
5520 int
iwn_run(struct iwn_softc * sc)5521 iwn_run(struct iwn_softc *sc)
5522 {
5523 	struct iwn_ops *ops = &sc->ops;
5524 	struct ieee80211com *ic = &sc->sc_ic;
5525 	struct ieee80211_node *ni = ic->ic_bss;
5526 	struct iwn_node *wn = (void *)ni;
5527 	struct iwn_node_info node;
5528 	int error;
5529 
5530 	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
5531 		/* Link LED blinks while monitoring. */
5532 		iwn_set_led(sc, IWN_LED_LINK, 50, 50);
5533 		return 0;
5534 	}
5535 	if ((error = iwn_set_timing(sc, ni)) != 0) {
5536 		printf("%s: could not set timing\n", sc->sc_dev.dv_xname);
5537 		return error;
5538 	}
5539 
5540 	/* Update adapter configuration. */
5541 	sc->rxon.associd = htole16(IEEE80211_AID(ni->ni_associd));
5542 	/* Short preamble and slot time are negotiated when associating. */
5543 	sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE | IWN_RXON_SHSLOT);
5544 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5545 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5546 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5547 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5548 	sc->rxon.filter |= htole32(IWN_FILTER_BSS);
5549 
5550 	/* HT is negotiated when associating. */
5551 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5552 		enum ieee80211_htprot htprot =
5553 		    (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
5554 		DPRINTF(("%s: htprot = %d\n", __func__, htprot));
5555 		sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5556 	} else
5557 		sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5558 
5559 	iwn_rxon_configure_ht40(ic, ni);
5560 
5561 	if (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) {
5562 		/* 11a or 11n 5GHz */
5563 		sc->rxon.cck_mask  = 0;
5564 		sc->rxon.ofdm_mask = 0x15;
5565 	} else if (ni->ni_flags & IEEE80211_NODE_HT) {
5566 		/* 11n 2GHz */
5567 		sc->rxon.cck_mask  = 0x0f;
5568 		sc->rxon.ofdm_mask = 0x15;
5569 	} else {
5570 		if (ni->ni_rates.rs_nrates == 4) {
5571 			/* 11b */
5572 			sc->rxon.cck_mask  = 0x03;
5573 			sc->rxon.ofdm_mask = 0;
5574 		} else {
5575 			/* assume 11g */
5576 			sc->rxon.cck_mask  = 0x0f;
5577 			sc->rxon.ofdm_mask = 0x15;
5578 		}
5579 	}
5580 	DPRINTF(("%s: rxon chan %d flags %x cck %x ofdm %x\n", __func__,
5581 	    sc->rxon.chan, le32toh(sc->rxon.flags), sc->rxon.cck_mask,
5582 	    sc->rxon.ofdm_mask));
5583 	error = iwn_cmd(sc, IWN_CMD_RXON, &sc->rxon, sc->rxonsz, 1);
5584 	if (error != 0) {
5585 		printf("%s: could not update configuration\n",
5586 		    sc->sc_dev.dv_xname);
5587 		return error;
5588 	}
5589 
5590 	/* Configuration has changed, set TX power accordingly. */
5591 	if ((error = ops->set_txpower(sc, 1)) != 0) {
5592 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5593 		return error;
5594 	}
5595 
5596 	/* Fake a join to initialize the TX rate. */
5597 	((struct iwn_node *)ni)->id = IWN_ID_BSS;
5598 	iwn_newassoc(ic, ni, 1);
5599 
5600 	/* Add BSS node. */
5601 	memset(&node, 0, sizeof node);
5602 	IEEE80211_ADDR_COPY(node.macaddr, ni->ni_macaddr);
5603 	node.id = IWN_ID_BSS;
5604 	if (ni->ni_flags & IEEE80211_NODE_HT) {
5605 		node.htmask = (IWN_AMDPU_SIZE_FACTOR_MASK |
5606 		    IWN_AMDPU_DENSITY_MASK);
5607 		node.htflags = htole32(
5608 		    IWN_AMDPU_SIZE_FACTOR(
5609 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_LE)) |
5610 		    IWN_AMDPU_DENSITY(
5611 			(ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) >> 2));
5612 		if (iwn_rxon_ht40_enabled(sc))
5613 			node.htflags |= htole32(IWN_40MHZ_ENABLE);
5614 	}
5615 	DPRINTF(("adding BSS node\n"));
5616 	error = ops->add_node(sc, &node, 1);
5617 	if (error != 0) {
5618 		printf("%s: could not add BSS node\n", sc->sc_dev.dv_xname);
5619 		return error;
5620 	}
5621 
5622 	/* Cache address of AP in case it changes after a background scan. */
5623 	IEEE80211_ADDR_COPY(sc->bss_node_addr, ni->ni_macaddr);
5624 
5625 	DPRINTF(("setting link quality for node %d\n", node.id));
5626 	if ((error = iwn_set_link_quality(sc, ni)) != 0) {
5627 		printf("%s: could not setup link quality for node %d\n",
5628 		    sc->sc_dev.dv_xname, node.id);
5629 		return error;
5630 	}
5631 
5632 	if ((error = iwn_init_sensitivity(sc)) != 0) {
5633 		printf("%s: could not set sensitivity\n",
5634 		    sc->sc_dev.dv_xname);
5635 		return error;
5636 	}
5637 	/* Start periodic calibration timer. */
5638 	sc->calib.state = IWN_CALIB_STATE_ASSOC;
5639 	sc->calib_cnt = 0;
5640 	timeout_add_msec(&sc->calib_to, 500);
5641 
5642 	ieee80211_ra_node_init(&wn->rn);
5643 
5644 	/* Link LED always on while associated. */
5645 	iwn_set_led(sc, IWN_LED_LINK, 0, 1);
5646 	return 0;
5647 }
5648 
5649 /*
5650  * We support CCMP hardware encryption/decryption of unicast frames only.
5651  * HW support for TKIP really sucks.  We should let TKIP die anyway.
5652  */
5653 int
iwn_set_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)5654 iwn_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5655     struct ieee80211_key *k)
5656 {
5657 	struct iwn_softc *sc = ic->ic_softc;
5658 	struct iwn_ops *ops = &sc->ops;
5659 	struct iwn_node *wn = (void *)ni;
5660 	struct iwn_node_info node;
5661 	uint16_t kflags;
5662 
5663 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5664 	    k->k_cipher != IEEE80211_CIPHER_CCMP)
5665 		return ieee80211_set_key(ic, ni, k);
5666 
5667 	kflags = IWN_KFLAG_CCMP | IWN_KFLAG_MAP | IWN_KFLAG_KID(k->k_id);
5668 	if (k->k_flags & IEEE80211_KEY_GROUP)
5669 		kflags |= IWN_KFLAG_GROUP;
5670 
5671 	memset(&node, 0, sizeof node);
5672 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5673 	    sc->broadcast_id : wn->id;
5674 	node.control = IWN_NODE_UPDATE;
5675 	node.flags = IWN_FLAG_SET_KEY;
5676 	node.kflags = htole16(kflags);
5677 	node.kid = k->k_id;
5678 	memcpy(node.key, k->k_key, k->k_len);
5679 	DPRINTF(("set key id=%d for node %d\n", k->k_id, node.id));
5680 	return ops->add_node(sc, &node, 1);
5681 }
5682 
5683 void
iwn_delete_key(struct ieee80211com * ic,struct ieee80211_node * ni,struct ieee80211_key * k)5684 iwn_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
5685     struct ieee80211_key *k)
5686 {
5687 	struct iwn_softc *sc = ic->ic_softc;
5688 	struct iwn_ops *ops = &sc->ops;
5689 	struct iwn_node *wn = (void *)ni;
5690 	struct iwn_node_info node;
5691 
5692 	if ((k->k_flags & IEEE80211_KEY_GROUP) ||
5693 	    k->k_cipher != IEEE80211_CIPHER_CCMP) {
5694 		/* See comment about other ciphers above. */
5695 		ieee80211_delete_key(ic, ni, k);
5696 		return;
5697 	}
5698 	if (ic->ic_state != IEEE80211_S_RUN)
5699 		return;	/* Nothing to do. */
5700 	memset(&node, 0, sizeof node);
5701 	node.id = (k->k_flags & IEEE80211_KEY_GROUP) ?
5702 	    sc->broadcast_id : wn->id;
5703 	node.control = IWN_NODE_UPDATE;
5704 	node.flags = IWN_FLAG_SET_KEY;
5705 	node.kflags = htole16(IWN_KFLAG_INVALID);
5706 	node.kid = 0xff;
5707 	DPRINTF(("delete keys for node %d\n", node.id));
5708 	(void)ops->add_node(sc, &node, 1);
5709 }
5710 
5711 void
iwn_updatechan(struct ieee80211com * ic)5712 iwn_updatechan(struct ieee80211com *ic)
5713 {
5714 	struct iwn_softc *sc = ic->ic_softc;
5715 
5716 	if (ic->ic_state != IEEE80211_S_RUN)
5717 		return;
5718 
5719 	iwn_rxon_configure_ht40(ic, ic->ic_bss);
5720 	sc->ops.update_rxon(sc);
5721 	iwn_set_link_quality(sc, ic->ic_bss);
5722 }
5723 
5724 void
iwn_updateprot(struct ieee80211com * ic)5725 iwn_updateprot(struct ieee80211com *ic)
5726 {
5727 	struct iwn_softc *sc = ic->ic_softc;
5728 	enum ieee80211_htprot htprot;
5729 
5730 	if (ic->ic_state != IEEE80211_S_RUN)
5731 		return;
5732 
5733 	/* Update ERP protection setting. */
5734 	if (ic->ic_flags & IEEE80211_F_USEPROT)
5735 		sc->rxon.flags |= htole32(IWN_RXON_TGG_PROT);
5736 	else
5737 		sc->rxon.flags &= ~htole32(IWN_RXON_TGG_PROT);
5738 
5739 	/* Update HT protection mode setting. */
5740 	htprot = (ic->ic_bss->ni_htop1 & IEEE80211_HTOP1_PROT_MASK) >>
5741 	    IEEE80211_HTOP1_PROT_SHIFT;
5742 	sc->rxon.flags &= ~htole32(IWN_RXON_HT_PROTMODE(3));
5743 	sc->rxon.flags |= htole32(IWN_RXON_HT_PROTMODE(htprot));
5744 
5745 	sc->ops.update_rxon(sc);
5746 }
5747 
5748 void
iwn_updateslot(struct ieee80211com * ic)5749 iwn_updateslot(struct ieee80211com *ic)
5750 {
5751 	struct iwn_softc *sc = ic->ic_softc;
5752 
5753 	if (ic->ic_state != IEEE80211_S_RUN)
5754 		return;
5755 
5756 	if (ic->ic_flags & IEEE80211_F_SHSLOT)
5757 		sc->rxon.flags |= htole32(IWN_RXON_SHSLOT);
5758 	else
5759 		sc->rxon.flags &= ~htole32(IWN_RXON_SHSLOT);
5760 
5761 	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
5762 		sc->rxon.flags |= htole32(IWN_RXON_SHPREAMBLE);
5763 	else
5764 		sc->rxon.flags &= ~htole32(IWN_RXON_SHPREAMBLE);
5765 
5766 	sc->ops.update_rxon(sc);
5767 }
5768 
5769 void
iwn_update_rxon_restore_power(struct iwn_softc * sc)5770 iwn_update_rxon_restore_power(struct iwn_softc *sc)
5771 {
5772 	struct ieee80211com *ic = &sc->sc_ic;
5773 	struct iwn_ops *ops = &sc->ops;
5774 	int error;
5775 
5776 	DELAY(100);
5777 
5778 	/* All RXONs wipe the firmware's txpower table. Restore it. */
5779 	error = ops->set_txpower(sc, 1);
5780 	if (error != 0)
5781 		printf("%s: could not set TX power\n", sc->sc_dev.dv_xname);
5782 
5783 	DELAY(100);
5784 
5785 	/* Restore power saving level */
5786 	if (ic->ic_flags & IEEE80211_F_PMGTON)
5787 		error = iwn_set_pslevel(sc, 0, 3, 1);
5788 	else
5789 		error = iwn_set_pslevel(sc, 0, 0, 1);
5790 	if (error != 0)
5791 		printf("%s: could not set PS level\n", sc->sc_dev.dv_xname);
5792 }
5793 
5794 void
iwn5000_update_rxon(struct iwn_softc * sc)5795 iwn5000_update_rxon(struct iwn_softc *sc)
5796 {
5797 	struct iwn_rxon_assoc rxon_assoc;
5798 	int s, error;
5799 
5800 	/* Update RXON config. */
5801 	memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5802 	rxon_assoc.flags = sc->rxon.flags;
5803 	rxon_assoc.filter = sc->rxon.filter;
5804 	rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5805 	rxon_assoc.cck_mask = sc->rxon.cck_mask;
5806 	rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5807 	rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5808 	rxon_assoc.ht_triple_mask = sc->rxon.ht_triple_mask;
5809 	rxon_assoc.rxchain = sc->rxon.rxchain;
5810 	rxon_assoc.acquisition = sc->rxon.acquisition;
5811 
5812 	s = splnet();
5813 
5814 	error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5815 	    sizeof(rxon_assoc), 1);
5816 	if (error != 0)
5817 		printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5818 
5819 	iwn_update_rxon_restore_power(sc);
5820 
5821 	splx(s);
5822 }
5823 
5824 void
iwn4965_update_rxon(struct iwn_softc * sc)5825 iwn4965_update_rxon(struct iwn_softc *sc)
5826 {
5827 	struct iwn4965_rxon_assoc rxon_assoc;
5828 	int s, error;
5829 
5830 	/* Update RXON config. */
5831 	memset(&rxon_assoc, 0, sizeof(rxon_assoc));
5832 	rxon_assoc.flags = sc->rxon.flags;
5833 	rxon_assoc.filter = sc->rxon.filter;
5834 	rxon_assoc.ofdm_mask = sc->rxon.ofdm_mask;
5835 	rxon_assoc.cck_mask = sc->rxon.cck_mask;
5836 	rxon_assoc.ht_single_mask = sc->rxon.ht_single_mask;
5837 	rxon_assoc.ht_dual_mask = sc->rxon.ht_dual_mask;
5838 	rxon_assoc.rxchain = sc->rxon.rxchain;
5839 
5840 	s = splnet();
5841 
5842 	error = iwn_cmd(sc, IWN_CMD_RXON_ASSOC, &rxon_assoc,
5843 	    sizeof(rxon_assoc), 1);
5844 	if (error != 0)
5845 		printf("%s: RXON_ASSOC command failed\n", sc->sc_dev.dv_xname);
5846 
5847 	iwn_update_rxon_restore_power(sc);
5848 
5849 	splx(s);
5850 }
5851 
5852 /*
5853  * This function is called by upper layer when an ADDBA request is received
5854  * from another STA and before the ADDBA response is sent.
5855  */
5856 int
iwn_ampdu_rx_start(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5857 iwn_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5858     uint8_t tid)
5859 {
5860 	struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
5861 	struct iwn_softc *sc = ic->ic_softc;
5862 	struct iwn_ops *ops = &sc->ops;
5863 	struct iwn_node *wn = (void *)ni;
5864 	struct iwn_node_info node;
5865 
5866 	memset(&node, 0, sizeof node);
5867 	node.id = wn->id;
5868 	node.control = IWN_NODE_UPDATE;
5869 	node.flags = IWN_FLAG_SET_ADDBA;
5870 	node.addba_tid = tid;
5871 	node.addba_ssn = htole16(ba->ba_winstart);
5872 	DPRINTF(("ADDBA RA=%d TID=%d SSN=%d\n", wn->id, tid,
5873 	    ba->ba_winstart));
5874 	/* XXX async command, so firmware may still fail to add BA agreement */
5875 	return ops->add_node(sc, &node, 1);
5876 }
5877 
5878 /*
5879  * This function is called by upper layer on teardown of an HT-immediate
5880  * Block Ack agreement (e.g., upon receipt of a DELBA frame).
5881  */
5882 void
iwn_ampdu_rx_stop(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5883 iwn_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5884     uint8_t tid)
5885 {
5886 	struct iwn_softc *sc = ic->ic_softc;
5887 	struct iwn_ops *ops = &sc->ops;
5888 	struct iwn_node *wn = (void *)ni;
5889 	struct iwn_node_info node;
5890 
5891 	memset(&node, 0, sizeof node);
5892 	node.id = wn->id;
5893 	node.control = IWN_NODE_UPDATE;
5894 	node.flags = IWN_FLAG_SET_DELBA;
5895 	node.delba_tid = tid;
5896 	DPRINTF(("DELBA RA=%d TID=%d\n", wn->id, tid));
5897 	(void)ops->add_node(sc, &node, 1);
5898 }
5899 
5900 /*
5901  * This function is called by upper layer when an ADDBA response is received
5902  * from another STA.
5903  */
5904 int
iwn_ampdu_tx_start(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5905 iwn_ampdu_tx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
5906     uint8_t tid)
5907 {
5908 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5909 	struct iwn_softc *sc = ic->ic_softc;
5910 	struct iwn_ops *ops = &sc->ops;
5911 	struct iwn_node *wn = (void *)ni;
5912 	struct iwn_node_info node;
5913 	int qid = sc->first_agg_txq + tid;
5914 	int error;
5915 
5916 	/* Ensure we can map this TID to an aggregation queue. */
5917 	if (tid >= IWN_NUM_AMPDU_TID || ba->ba_winsize > IWN_SCHED_WINSZ ||
5918 	    qid > sc->ntxqs || (sc->agg_queue_mask & (1 << qid)))
5919 		return ENOSPC;
5920 
5921 	/* Enable TX for the specified RA/TID. */
5922 	wn->disable_tid &= ~(1 << tid);
5923 	memset(&node, 0, sizeof node);
5924 	node.id = wn->id;
5925 	node.control = IWN_NODE_UPDATE;
5926 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5927 	node.disable_tid = htole16(wn->disable_tid);
5928 	error = ops->add_node(sc, &node, 1);
5929 	if (error != 0)
5930 		return error;
5931 
5932 	if ((error = iwn_nic_lock(sc)) != 0)
5933 		return error;
5934 	ops->ampdu_tx_start(sc, ni, tid, ba->ba_winstart);
5935 	iwn_nic_unlock(sc);
5936 
5937 	sc->agg_queue_mask |= (1 << qid);
5938 	sc->sc_tx_ba[tid].wn = wn;
5939 	ba->ba_bitmap = 0;
5940 
5941 	return 0;
5942 }
5943 
5944 void
iwn_ampdu_tx_stop(struct ieee80211com * ic,struct ieee80211_node * ni,uint8_t tid)5945 iwn_ampdu_tx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
5946     uint8_t tid)
5947 {
5948 	struct ieee80211_tx_ba *ba = &ni->ni_tx_ba[tid];
5949 	struct iwn_softc *sc = ic->ic_softc;
5950 	struct iwn_ops *ops = &sc->ops;
5951 	int qid = sc->first_agg_txq + tid;
5952 	struct iwn_node *wn = (void *)ni;
5953 	struct iwn_node_info node;
5954 
5955 	/* Discard all frames in the current window. */
5956 	iwn_ampdu_txq_advance(sc, &sc->txq[qid], qid,
5957 	    IWN_AGG_SSN_TO_TXQ_IDX(ba->ba_winend));
5958 
5959 	if (iwn_nic_lock(sc) != 0)
5960 		return;
5961 	ops->ampdu_tx_stop(sc, tid, ba->ba_winstart);
5962 	iwn_nic_unlock(sc);
5963 
5964 	sc->agg_queue_mask &= ~(1 << qid);
5965 	sc->sc_tx_ba[tid].wn = NULL;
5966 	ba->ba_bitmap = 0;
5967 
5968 	/* Disable TX for the specified RA/TID. */
5969 	wn->disable_tid |= (1 << tid);
5970 	memset(&node, 0, sizeof node);
5971 	node.id = wn->id;
5972 	node.control = IWN_NODE_UPDATE;
5973 	node.flags = IWN_FLAG_SET_DISABLE_TID;
5974 	node.disable_tid = htole16(wn->disable_tid);
5975 	ops->add_node(sc, &node, 1);
5976 }
5977 
5978 void
iwn4965_ampdu_tx_start(struct iwn_softc * sc,struct ieee80211_node * ni,uint8_t tid,uint16_t ssn)5979 iwn4965_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
5980     uint8_t tid, uint16_t ssn)
5981 {
5982 	struct iwn_node *wn = (void *)ni;
5983 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
5984 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
5985 
5986 	/* Stop TX scheduler while we're changing its configuration. */
5987 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
5988 	    IWN4965_TXQ_STATUS_CHGACT);
5989 
5990 	/* Assign RA/TID translation to the queue. */
5991 	iwn_mem_write_2(sc, sc->sched_base + IWN4965_SCHED_TRANS_TBL(qid),
5992 	    wn->id << 4 | tid);
5993 
5994 	/* Enable chain-building mode for the queue. */
5995 	iwn_prph_setbits(sc, IWN4965_SCHED_QCHAIN_SEL, 1 << qid);
5996 
5997 	/* Set starting sequence number from the ADDBA request. */
5998 	sc->txq[qid].cur = sc->txq[qid].read = idx;
5999 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6000 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6001 
6002 	/* Set scheduler window size. */
6003 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid),
6004 	    IWN_SCHED_WINSZ);
6005 	/* Set scheduler frame limit. */
6006 	iwn_mem_write(sc, sc->sched_base + IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6007 	    IWN_SCHED_LIMIT << 16);
6008 
6009 	/* Enable interrupts for the queue. */
6010 	iwn_prph_setbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6011 
6012 	/* Mark the queue as active. */
6013 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6014 	    IWN4965_TXQ_STATUS_ACTIVE | IWN4965_TXQ_STATUS_AGGR_ENA |
6015 	    iwn_tid2fifo[tid] << 1);
6016 }
6017 
6018 void
iwn4965_ampdu_tx_stop(struct iwn_softc * sc,uint8_t tid,uint16_t ssn)6019 iwn4965_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6020 {
6021 	int qid = IWN4965_FIRST_AGG_TXQUEUE + tid;
6022 	uint16_t idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6023 
6024 	/* Stop TX scheduler while we're changing its configuration. */
6025 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6026 	    IWN4965_TXQ_STATUS_CHGACT);
6027 
6028 	/* Set starting sequence number from the ADDBA request. */
6029 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6030 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6031 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), ssn);
6032 
6033 	/* Disable interrupts for the queue. */
6034 	iwn_prph_clrbits(sc, IWN4965_SCHED_INTR_MASK, 1 << qid);
6035 
6036 	/* Mark the queue as inactive. */
6037 	iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6038 	    IWN4965_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid] << 1);
6039 }
6040 
6041 void
iwn5000_ampdu_tx_start(struct iwn_softc * sc,struct ieee80211_node * ni,uint8_t tid,uint16_t ssn)6042 iwn5000_ampdu_tx_start(struct iwn_softc *sc, struct ieee80211_node *ni,
6043     uint8_t tid, uint16_t ssn)
6044 {
6045 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
6046 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6047 	struct iwn_node *wn = (void *)ni;
6048 
6049 	/* Stop TX scheduler while we're changing its configuration. */
6050 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6051 	    IWN5000_TXQ_STATUS_CHGACT);
6052 
6053 	/* Assign RA/TID translation to the queue. */
6054 	iwn_mem_write_2(sc, sc->sched_base + IWN5000_SCHED_TRANS_TBL(qid),
6055 	    wn->id << 4 | tid);
6056 
6057 	/* Enable chain-building mode for the queue. */
6058 	iwn_prph_setbits(sc, IWN5000_SCHED_QCHAIN_SEL, 1 << qid);
6059 
6060 	/* Enable aggregation for the queue. */
6061 	iwn_prph_setbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6062 
6063 	/* Set starting sequence number from the ADDBA request. */
6064 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6065 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6066 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6067 
6068 	/* Set scheduler window size and frame limit. */
6069 	iwn_mem_write(sc, sc->sched_base + IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6070 	    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6071 
6072 	/* Enable interrupts for the queue. */
6073 	iwn_prph_setbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6074 
6075 	/* Mark the queue as active. */
6076 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6077 	    IWN5000_TXQ_STATUS_ACTIVE | iwn_tid2fifo[tid]);
6078 }
6079 
6080 void
iwn5000_ampdu_tx_stop(struct iwn_softc * sc,uint8_t tid,uint16_t ssn)6081 iwn5000_ampdu_tx_stop(struct iwn_softc *sc, uint8_t tid, uint16_t ssn)
6082 {
6083 	int qid = IWN5000_FIRST_AGG_TXQUEUE + tid;
6084 	int idx = IWN_AGG_SSN_TO_TXQ_IDX(ssn);
6085 
6086 	/* Stop TX scheduler while we're changing its configuration. */
6087 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6088 	    IWN5000_TXQ_STATUS_CHGACT);
6089 
6090 	/* Disable aggregation for the queue. */
6091 	iwn_prph_clrbits(sc, IWN5000_SCHED_AGGR_SEL, 1 << qid);
6092 
6093 	/* Set starting sequence number from the ADDBA request. */
6094 	sc->txq[qid].cur = sc->txq[qid].read = idx;
6095 	IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | idx);
6096 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), ssn);
6097 
6098 	/* Disable interrupts for the queue. */
6099 	iwn_prph_clrbits(sc, IWN5000_SCHED_INTR_MASK, 1 << qid);
6100 
6101 	/* Mark the queue as inactive. */
6102 	iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6103 	    IWN5000_TXQ_STATUS_INACTIVE | iwn_tid2fifo[tid]);
6104 }
6105 
6106 /*
6107  * Query calibration tables from the initialization firmware.  We do this
6108  * only once at first boot.  Called from a process context.
6109  */
6110 int
iwn5000_query_calibration(struct iwn_softc * sc)6111 iwn5000_query_calibration(struct iwn_softc *sc)
6112 {
6113 	struct iwn5000_calib_config cmd;
6114 	int error;
6115 
6116 	memset(&cmd, 0, sizeof cmd);
6117 	cmd.ucode.once.enable = 0xffffffff;
6118 	cmd.ucode.once.start  = 0xffffffff;
6119 	cmd.ucode.once.send   = 0xffffffff;
6120 	cmd.ucode.flags       = 0xffffffff;
6121 	DPRINTF(("sending calibration query\n"));
6122 	error = iwn_cmd(sc, IWN5000_CMD_CALIB_CONFIG, &cmd, sizeof cmd, 0);
6123 	if (error != 0)
6124 		return error;
6125 
6126 	/* Wait at most two seconds for calibration to complete. */
6127 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE))
6128 		error = tsleep_nsec(sc, PCATCH, "iwncal", SEC_TO_NSEC(2));
6129 	return error;
6130 }
6131 
6132 /*
6133  * Send calibration results to the runtime firmware.  These results were
6134  * obtained on first boot from the initialization firmware.
6135  */
6136 int
iwn5000_send_calibration(struct iwn_softc * sc)6137 iwn5000_send_calibration(struct iwn_softc *sc)
6138 {
6139 	int idx, error;
6140 
6141 	for (idx = 0; idx < 5; idx++) {
6142 		if (sc->calibcmd[idx].buf == NULL)
6143 			continue;	/* No results available. */
6144 		DPRINTF(("send calibration result idx=%d len=%d\n",
6145 		    idx, sc->calibcmd[idx].len));
6146 		error = iwn_cmd(sc, IWN_CMD_PHY_CALIB, sc->calibcmd[idx].buf,
6147 		    sc->calibcmd[idx].len, 0);
6148 		if (error != 0) {
6149 			printf("%s: could not send calibration result\n",
6150 			    sc->sc_dev.dv_xname);
6151 			return error;
6152 		}
6153 	}
6154 	return 0;
6155 }
6156 
6157 int
iwn5000_send_wimax_coex(struct iwn_softc * sc)6158 iwn5000_send_wimax_coex(struct iwn_softc *sc)
6159 {
6160 	struct iwn5000_wimax_coex wimax;
6161 
6162 #ifdef notyet
6163 	if (sc->hw_type == IWN_HW_REV_TYPE_6050) {
6164 		/* Enable WiMAX coexistence for combo adapters. */
6165 		wimax.flags =
6166 		    IWN_WIMAX_COEX_ASSOC_WA_UNMASK |
6167 		    IWN_WIMAX_COEX_UNASSOC_WA_UNMASK |
6168 		    IWN_WIMAX_COEX_STA_TABLE_VALID |
6169 		    IWN_WIMAX_COEX_ENABLE;
6170 		memcpy(wimax.events, iwn6050_wimax_events,
6171 		    sizeof iwn6050_wimax_events);
6172 	} else
6173 #endif
6174 	{
6175 		/* Disable WiMAX coexistence. */
6176 		wimax.flags = 0;
6177 		memset(wimax.events, 0, sizeof wimax.events);
6178 	}
6179 	DPRINTF(("Configuring WiMAX coexistence\n"));
6180 	return iwn_cmd(sc, IWN5000_CMD_WIMAX_COEX, &wimax, sizeof wimax, 0);
6181 }
6182 
6183 int
iwn5000_crystal_calib(struct iwn_softc * sc)6184 iwn5000_crystal_calib(struct iwn_softc *sc)
6185 {
6186 	struct iwn5000_phy_calib_crystal cmd;
6187 
6188 	memset(&cmd, 0, sizeof cmd);
6189 	cmd.code = IWN5000_PHY_CALIB_CRYSTAL;
6190 	cmd.ngroups = 1;
6191 	cmd.isvalid = 1;
6192 	cmd.cap_pin[0] = letoh32(sc->eeprom_crystal) & 0xff;
6193 	cmd.cap_pin[1] = (letoh32(sc->eeprom_crystal) >> 16) & 0xff;
6194 	DPRINTF(("sending crystal calibration %d, %d\n",
6195 	    cmd.cap_pin[0], cmd.cap_pin[1]));
6196 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6197 }
6198 
6199 int
iwn6000_temp_offset_calib(struct iwn_softc * sc)6200 iwn6000_temp_offset_calib(struct iwn_softc *sc)
6201 {
6202 	struct iwn6000_phy_calib_temp_offset cmd;
6203 
6204 	memset(&cmd, 0, sizeof cmd);
6205 	cmd.code = IWN6000_PHY_CALIB_TEMP_OFFSET;
6206 	cmd.ngroups = 1;
6207 	cmd.isvalid = 1;
6208 	if (sc->eeprom_temp != 0)
6209 		cmd.offset = htole16(sc->eeprom_temp);
6210 	else
6211 		cmd.offset = htole16(IWN_DEFAULT_TEMP_OFFSET);
6212 	DPRINTF(("setting radio sensor offset to %d\n", letoh16(cmd.offset)));
6213 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6214 }
6215 
6216 int
iwn2000_temp_offset_calib(struct iwn_softc * sc)6217 iwn2000_temp_offset_calib(struct iwn_softc *sc)
6218 {
6219 	struct iwn2000_phy_calib_temp_offset cmd;
6220 
6221 	memset(&cmd, 0, sizeof cmd);
6222 	cmd.code = IWN2000_PHY_CALIB_TEMP_OFFSET;
6223 	cmd.ngroups = 1;
6224 	cmd.isvalid = 1;
6225 	if (sc->eeprom_rawtemp != 0) {
6226 		cmd.offset_low = htole16(sc->eeprom_rawtemp);
6227 		cmd.offset_high = htole16(sc->eeprom_temp);
6228 	} else {
6229 		cmd.offset_low = htole16(IWN_DEFAULT_TEMP_OFFSET);
6230 		cmd.offset_high = htole16(IWN_DEFAULT_TEMP_OFFSET);
6231 	}
6232 	cmd.burnt_voltage_ref = htole16(sc->eeprom_voltage);
6233 	DPRINTF(("setting radio sensor offset to %d:%d, voltage to %d\n",
6234 	    letoh16(cmd.offset_low), letoh16(cmd.offset_high),
6235 	    letoh16(cmd.burnt_voltage_ref)));
6236 	return iwn_cmd(sc, IWN_CMD_PHY_CALIB, &cmd, sizeof cmd, 0);
6237 }
6238 
6239 /*
6240  * This function is called after the runtime firmware notifies us of its
6241  * readiness (called in a process context).
6242  */
6243 int
iwn4965_post_alive(struct iwn_softc * sc)6244 iwn4965_post_alive(struct iwn_softc *sc)
6245 {
6246 	int error, qid;
6247 
6248 	if ((error = iwn_nic_lock(sc)) != 0)
6249 		return error;
6250 
6251 	/* Clear TX scheduler state in SRAM. */
6252 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6253 	iwn_mem_set_region_4(sc, sc->sched_base + IWN4965_SCHED_CTX_OFF, 0,
6254 	    IWN4965_SCHED_CTX_LEN / sizeof (uint32_t));
6255 
6256 	/* Set physical address of TX scheduler rings (1KB aligned). */
6257 	iwn_prph_write(sc, IWN4965_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6258 
6259 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6260 
6261 	/* Disable chain mode for all our 16 queues. */
6262 	iwn_prph_write(sc, IWN4965_SCHED_QCHAIN_SEL, 0);
6263 
6264 	for (qid = 0; qid < IWN4965_NTXQUEUES; qid++) {
6265 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_RDPTR(qid), 0);
6266 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6267 
6268 		/* Set scheduler window size. */
6269 		iwn_mem_write(sc, sc->sched_base +
6270 		    IWN4965_SCHED_QUEUE_OFFSET(qid), IWN_SCHED_WINSZ);
6271 		/* Set scheduler frame limit. */
6272 		iwn_mem_write(sc, sc->sched_base +
6273 		    IWN4965_SCHED_QUEUE_OFFSET(qid) + 4,
6274 		    IWN_SCHED_LIMIT << 16);
6275 	}
6276 
6277 	/* Enable interrupts for all our 16 queues. */
6278 	iwn_prph_write(sc, IWN4965_SCHED_INTR_MASK, 0xffff);
6279 	/* Identify TX FIFO rings (0-7). */
6280 	iwn_prph_write(sc, IWN4965_SCHED_TXFACT, 0xff);
6281 
6282 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6283 	for (qid = 0; qid < 7; qid++) {
6284 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 4, 5, 6 };
6285 		iwn_prph_write(sc, IWN4965_SCHED_QUEUE_STATUS(qid),
6286 		    IWN4965_TXQ_STATUS_ACTIVE | qid2fifo[qid] << 1);
6287 	}
6288 	iwn_nic_unlock(sc);
6289 	return 0;
6290 }
6291 
6292 /*
6293  * This function is called after the initialization or runtime firmware
6294  * notifies us of its readiness (called in a process context).
6295  */
6296 int
iwn5000_post_alive(struct iwn_softc * sc)6297 iwn5000_post_alive(struct iwn_softc *sc)
6298 {
6299 	int error, qid;
6300 
6301 	/* Switch to using ICT interrupt mode. */
6302 	iwn5000_ict_reset(sc);
6303 
6304 	if ((error = iwn_nic_lock(sc)) != 0)
6305 		return error;
6306 
6307 	/* Clear TX scheduler state in SRAM. */
6308 	sc->sched_base = iwn_prph_read(sc, IWN_SCHED_SRAM_ADDR);
6309 	iwn_mem_set_region_4(sc, sc->sched_base + IWN5000_SCHED_CTX_OFF, 0,
6310 	    IWN5000_SCHED_CTX_LEN / sizeof (uint32_t));
6311 
6312 	/* Set physical address of TX scheduler rings (1KB aligned). */
6313 	iwn_prph_write(sc, IWN5000_SCHED_DRAM_ADDR, sc->sched_dma.paddr >> 10);
6314 
6315 	/* Disable scheduler chain extension (enabled by default in HW). */
6316 	iwn_prph_write(sc, IWN5000_SCHED_CHAINEXT_EN, 0);
6317 
6318 	IWN_SETBITS(sc, IWN_FH_TX_CHICKEN, IWN_FH_TX_CHICKEN_SCHED_RETRY);
6319 
6320 	/* Enable chain mode for all queues, except command queue. */
6321 	iwn_prph_write(sc, IWN5000_SCHED_QCHAIN_SEL, 0xfffef);
6322 	iwn_prph_write(sc, IWN5000_SCHED_AGGR_SEL, 0);
6323 
6324 	for (qid = 0; qid < IWN5000_NTXQUEUES; qid++) {
6325 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_RDPTR(qid), 0);
6326 		IWN_WRITE(sc, IWN_HBUS_TARG_WRPTR, qid << 8 | 0);
6327 
6328 		iwn_mem_write(sc, sc->sched_base +
6329 		    IWN5000_SCHED_QUEUE_OFFSET(qid), 0);
6330 		/* Set scheduler window size and frame limit. */
6331 		iwn_mem_write(sc, sc->sched_base +
6332 		    IWN5000_SCHED_QUEUE_OFFSET(qid) + 4,
6333 		    IWN_SCHED_LIMIT << 16 | IWN_SCHED_WINSZ);
6334 	}
6335 
6336 	/* Enable interrupts for all our 20 queues. */
6337 	iwn_prph_write(sc, IWN5000_SCHED_INTR_MASK, 0xfffff);
6338 	/* Identify TX FIFO rings (0-7). */
6339 	iwn_prph_write(sc, IWN5000_SCHED_TXFACT, 0xff);
6340 
6341 	/* Mark TX rings (4 EDCA + cmd + 2 HCCA) as active. */
6342 	for (qid = 0; qid < 7; qid++) {
6343 		static uint8_t qid2fifo[] = { 3, 2, 1, 0, 7, 5, 6 };
6344 		iwn_prph_write(sc, IWN5000_SCHED_QUEUE_STATUS(qid),
6345 		    IWN5000_TXQ_STATUS_ACTIVE | qid2fifo[qid]);
6346 	}
6347 	iwn_nic_unlock(sc);
6348 
6349 	/* Configure WiMAX coexistence for combo adapters. */
6350 	error = iwn5000_send_wimax_coex(sc);
6351 	if (error != 0) {
6352 		printf("%s: could not configure WiMAX coexistence\n",
6353 		    sc->sc_dev.dv_xname);
6354 		return error;
6355 	}
6356 	if (sc->hw_type != IWN_HW_REV_TYPE_5150) {
6357 		/* Perform crystal calibration. */
6358 		error = iwn5000_crystal_calib(sc);
6359 		if (error != 0) {
6360 			printf("%s: crystal calibration failed\n",
6361 			    sc->sc_dev.dv_xname);
6362 			return error;
6363 		}
6364 	}
6365 	if (!(sc->sc_flags & IWN_FLAG_CALIB_DONE)) {
6366 		/* Query calibration from the initialization firmware. */
6367 		if ((error = iwn5000_query_calibration(sc)) != 0) {
6368 			printf("%s: could not query calibration\n",
6369 			    sc->sc_dev.dv_xname);
6370 			return error;
6371 		}
6372 		/*
6373 		 * We have the calibration results now, reboot with the
6374 		 * runtime firmware (call ourselves recursively!)
6375 		 */
6376 		iwn_hw_stop(sc);
6377 		error = iwn_hw_init(sc);
6378 	} else {
6379 		/* Send calibration results to runtime firmware. */
6380 		error = iwn5000_send_calibration(sc);
6381 	}
6382 	return error;
6383 }
6384 
6385 /*
6386  * The firmware boot code is small and is intended to be copied directly into
6387  * the NIC internal memory (no DMA transfer).
6388  */
6389 int
iwn4965_load_bootcode(struct iwn_softc * sc,const uint8_t * ucode,int size)6390 iwn4965_load_bootcode(struct iwn_softc *sc, const uint8_t *ucode, int size)
6391 {
6392 	int error, ntries;
6393 
6394 	size /= sizeof (uint32_t);
6395 
6396 	if ((error = iwn_nic_lock(sc)) != 0)
6397 		return error;
6398 
6399 	/* Copy microcode image into NIC memory. */
6400 	iwn_prph_write_region_4(sc, IWN_BSM_SRAM_BASE,
6401 	    (const uint32_t *)ucode, size);
6402 
6403 	iwn_prph_write(sc, IWN_BSM_WR_MEM_SRC, 0);
6404 	iwn_prph_write(sc, IWN_BSM_WR_MEM_DST, IWN_FW_TEXT_BASE);
6405 	iwn_prph_write(sc, IWN_BSM_WR_DWCOUNT, size);
6406 
6407 	/* Start boot load now. */
6408 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START);
6409 
6410 	/* Wait for transfer to complete. */
6411 	for (ntries = 0; ntries < 1000; ntries++) {
6412 		if (!(iwn_prph_read(sc, IWN_BSM_WR_CTRL) &
6413 		    IWN_BSM_WR_CTRL_START))
6414 			break;
6415 		DELAY(10);
6416 	}
6417 	if (ntries == 1000) {
6418 		printf("%s: could not load boot firmware\n",
6419 		    sc->sc_dev.dv_xname);
6420 		iwn_nic_unlock(sc);
6421 		return ETIMEDOUT;
6422 	}
6423 
6424 	/* Enable boot after power up. */
6425 	iwn_prph_write(sc, IWN_BSM_WR_CTRL, IWN_BSM_WR_CTRL_START_EN);
6426 
6427 	iwn_nic_unlock(sc);
6428 	return 0;
6429 }
6430 
6431 int
iwn4965_load_firmware(struct iwn_softc * sc)6432 iwn4965_load_firmware(struct iwn_softc *sc)
6433 {
6434 	struct iwn_fw_info *fw = &sc->fw;
6435 	struct iwn_dma_info *dma = &sc->fw_dma;
6436 	int error;
6437 
6438 	/* Copy initialization sections into pre-allocated DMA-safe memory. */
6439 	memcpy(dma->vaddr, fw->init.data, fw->init.datasz);
6440 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->init.datasz,
6441 	    BUS_DMASYNC_PREWRITE);
6442 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6443 	    fw->init.text, fw->init.textsz);
6444 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6445 	    fw->init.textsz, BUS_DMASYNC_PREWRITE);
6446 
6447 	/* Tell adapter where to find initialization sections. */
6448 	if ((error = iwn_nic_lock(sc)) != 0)
6449 		return error;
6450 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6451 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->init.datasz);
6452 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6453 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6454 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE, fw->init.textsz);
6455 	iwn_nic_unlock(sc);
6456 
6457 	/* Load firmware boot code. */
6458 	error = iwn4965_load_bootcode(sc, fw->boot.text, fw->boot.textsz);
6459 	if (error != 0) {
6460 		printf("%s: could not load boot firmware\n",
6461 		    sc->sc_dev.dv_xname);
6462 		return error;
6463 	}
6464 	/* Now press "execute". */
6465 	IWN_WRITE(sc, IWN_RESET, 0);
6466 
6467 	/* Wait at most one second for first alive notification. */
6468 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
6469 		printf("%s: timeout waiting for adapter to initialize\n",
6470 		    sc->sc_dev.dv_xname);
6471 		return error;
6472 	}
6473 
6474 	/* Retrieve current temperature for initial TX power calibration. */
6475 	sc->rawtemp = sc->ucode_info.temp[3].chan20MHz;
6476 	sc->temp = iwn4965_get_temperature(sc);
6477 
6478 	/* Copy runtime sections into pre-allocated DMA-safe memory. */
6479 	memcpy(dma->vaddr, fw->main.data, fw->main.datasz);
6480 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, fw->main.datasz,
6481 	    BUS_DMASYNC_PREWRITE);
6482 	memcpy(dma->vaddr + IWN4965_FW_DATA_MAXSZ,
6483 	    fw->main.text, fw->main.textsz);
6484 	bus_dmamap_sync(sc->sc_dmat, dma->map, IWN4965_FW_DATA_MAXSZ,
6485 	    fw->main.textsz, BUS_DMASYNC_PREWRITE);
6486 
6487 	/* Tell adapter where to find runtime sections. */
6488 	if ((error = iwn_nic_lock(sc)) != 0)
6489 		return error;
6490 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_ADDR, dma->paddr >> 4);
6491 	iwn_prph_write(sc, IWN_BSM_DRAM_DATA_SIZE, fw->main.datasz);
6492 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_ADDR,
6493 	    (dma->paddr + IWN4965_FW_DATA_MAXSZ) >> 4);
6494 	iwn_prph_write(sc, IWN_BSM_DRAM_TEXT_SIZE,
6495 	    IWN_FW_UPDATED | fw->main.textsz);
6496 	iwn_nic_unlock(sc);
6497 
6498 	return 0;
6499 }
6500 
6501 int
iwn5000_load_firmware_section(struct iwn_softc * sc,uint32_t dst,const uint8_t * section,int size)6502 iwn5000_load_firmware_section(struct iwn_softc *sc, uint32_t dst,
6503     const uint8_t *section, int size)
6504 {
6505 	struct iwn_dma_info *dma = &sc->fw_dma;
6506 	int error;
6507 
6508 	/* Copy firmware section into pre-allocated DMA-safe memory. */
6509 	memcpy(dma->vaddr, section, size);
6510 	bus_dmamap_sync(sc->sc_dmat, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
6511 
6512 	if ((error = iwn_nic_lock(sc)) != 0)
6513 		return error;
6514 
6515 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6516 	    IWN_FH_TX_CONFIG_DMA_PAUSE);
6517 
6518 	IWN_WRITE(sc, IWN_FH_SRAM_ADDR(IWN_SRVC_DMACHNL), dst);
6519 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL0(IWN_SRVC_DMACHNL),
6520 	    IWN_LOADDR(dma->paddr));
6521 	IWN_WRITE(sc, IWN_FH_TFBD_CTRL1(IWN_SRVC_DMACHNL),
6522 	    IWN_HIADDR(dma->paddr) << 28 | size);
6523 	IWN_WRITE(sc, IWN_FH_TXBUF_STATUS(IWN_SRVC_DMACHNL),
6524 	    IWN_FH_TXBUF_STATUS_TBNUM(1) |
6525 	    IWN_FH_TXBUF_STATUS_TBIDX(1) |
6526 	    IWN_FH_TXBUF_STATUS_TFBD_VALID);
6527 
6528 	/* Kick Flow Handler to start DMA transfer. */
6529 	IWN_WRITE(sc, IWN_FH_TX_CONFIG(IWN_SRVC_DMACHNL),
6530 	    IWN_FH_TX_CONFIG_DMA_ENA | IWN_FH_TX_CONFIG_CIRQ_HOST_ENDTFD);
6531 
6532 	iwn_nic_unlock(sc);
6533 
6534 	/* Wait at most five seconds for FH DMA transfer to complete. */
6535 	return tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(5));
6536 }
6537 
6538 int
iwn5000_load_firmware(struct iwn_softc * sc)6539 iwn5000_load_firmware(struct iwn_softc *sc)
6540 {
6541 	struct iwn_fw_part *fw;
6542 	int error;
6543 
6544 	/* Load the initialization firmware on first boot only. */
6545 	fw = (sc->sc_flags & IWN_FLAG_CALIB_DONE) ?
6546 	    &sc->fw.main : &sc->fw.init;
6547 
6548 	error = iwn5000_load_firmware_section(sc, IWN_FW_TEXT_BASE,
6549 	    fw->text, fw->textsz);
6550 	if (error != 0) {
6551 		printf("%s: could not load firmware %s section\n",
6552 		    sc->sc_dev.dv_xname, ".text");
6553 		return error;
6554 	}
6555 	error = iwn5000_load_firmware_section(sc, IWN_FW_DATA_BASE,
6556 	    fw->data, fw->datasz);
6557 	if (error != 0) {
6558 		printf("%s: could not load firmware %s section\n",
6559 		    sc->sc_dev.dv_xname, ".data");
6560 		return error;
6561 	}
6562 
6563 	/* Now press "execute". */
6564 	IWN_WRITE(sc, IWN_RESET, 0);
6565 	return 0;
6566 }
6567 
6568 /*
6569  * Extract text and data sections from a legacy firmware image.
6570  */
6571 int
iwn_read_firmware_leg(struct iwn_softc * sc,struct iwn_fw_info * fw)6572 iwn_read_firmware_leg(struct iwn_softc *sc, struct iwn_fw_info *fw)
6573 {
6574 	const uint32_t *ptr;
6575 	size_t hdrlen = 24;
6576 	uint32_t rev;
6577 
6578 	ptr = (const uint32_t *)fw->data;
6579 	rev = letoh32(*ptr++);
6580 
6581 	/* Check firmware API version. */
6582 	if (IWN_FW_API(rev) <= 1) {
6583 		printf("%s: bad firmware, need API version >=2\n",
6584 		    sc->sc_dev.dv_xname);
6585 		return EINVAL;
6586 	}
6587 	if (IWN_FW_API(rev) >= 3) {
6588 		/* Skip build number (version 2 header). */
6589 		hdrlen += 4;
6590 		ptr++;
6591 	}
6592 	if (fw->size < hdrlen) {
6593 		printf("%s: firmware too short: %zu bytes\n",
6594 		    sc->sc_dev.dv_xname, fw->size);
6595 		return EINVAL;
6596 	}
6597 	fw->main.textsz = letoh32(*ptr++);
6598 	fw->main.datasz = letoh32(*ptr++);
6599 	fw->init.textsz = letoh32(*ptr++);
6600 	fw->init.datasz = letoh32(*ptr++);
6601 	fw->boot.textsz = letoh32(*ptr++);
6602 
6603 	/* Check that all firmware sections fit. */
6604 	if (fw->size < hdrlen + fw->main.textsz + fw->main.datasz +
6605 	    fw->init.textsz + fw->init.datasz + fw->boot.textsz) {
6606 		printf("%s: firmware too short: %zu bytes\n",
6607 		    sc->sc_dev.dv_xname, fw->size);
6608 		return EINVAL;
6609 	}
6610 
6611 	/* Get pointers to firmware sections. */
6612 	fw->main.text = (const uint8_t *)ptr;
6613 	fw->main.data = fw->main.text + fw->main.textsz;
6614 	fw->init.text = fw->main.data + fw->main.datasz;
6615 	fw->init.data = fw->init.text + fw->init.textsz;
6616 	fw->boot.text = fw->init.data + fw->init.datasz;
6617 	return 0;
6618 }
6619 
6620 /*
6621  * Extract text and data sections from a TLV firmware image.
6622  */
6623 int
iwn_read_firmware_tlv(struct iwn_softc * sc,struct iwn_fw_info * fw,uint16_t alt)6624 iwn_read_firmware_tlv(struct iwn_softc *sc, struct iwn_fw_info *fw,
6625     uint16_t alt)
6626 {
6627 	const struct iwn_fw_tlv_hdr *hdr;
6628 	const struct iwn_fw_tlv *tlv;
6629 	const uint8_t *ptr, *end;
6630 	uint64_t altmask;
6631 	uint32_t len;
6632 
6633 	if (fw->size < sizeof (*hdr)) {
6634 		printf("%s: firmware too short: %zu bytes\n",
6635 		    sc->sc_dev.dv_xname, fw->size);
6636 		return EINVAL;
6637 	}
6638 	hdr = (const struct iwn_fw_tlv_hdr *)fw->data;
6639 	if (hdr->signature != htole32(IWN_FW_SIGNATURE)) {
6640 		printf("%s: bad firmware signature 0x%08x\n",
6641 		    sc->sc_dev.dv_xname, letoh32(hdr->signature));
6642 		return EINVAL;
6643 	}
6644 	DPRINTF(("FW: \"%.64s\", build 0x%x\n", hdr->descr,
6645 	    letoh32(hdr->build)));
6646 
6647 	/*
6648 	 * Select the closest supported alternative that is less than
6649 	 * or equal to the specified one.
6650 	 */
6651 	altmask = letoh64(hdr->altmask);
6652 	while (alt > 0 && !(altmask & (1ULL << alt)))
6653 		alt--;	/* Downgrade. */
6654 	DPRINTF(("using alternative %d\n", alt));
6655 
6656 	ptr = (const uint8_t *)(hdr + 1);
6657 	end = (const uint8_t *)(fw->data + fw->size);
6658 
6659 	/* Parse type-length-value fields. */
6660 	while (ptr + sizeof (*tlv) <= end) {
6661 		tlv = (const struct iwn_fw_tlv *)ptr;
6662 		len = letoh32(tlv->len);
6663 
6664 		ptr += sizeof (*tlv);
6665 		if (ptr + len > end) {
6666 			printf("%s: firmware too short: %zu bytes\n",
6667 			    sc->sc_dev.dv_xname, fw->size);
6668 			return EINVAL;
6669 		}
6670 		/* Skip other alternatives. */
6671 		if (tlv->alt != 0 && tlv->alt != htole16(alt))
6672 			goto next;
6673 
6674 		switch (letoh16(tlv->type)) {
6675 		case IWN_FW_TLV_MAIN_TEXT:
6676 			fw->main.text = ptr;
6677 			fw->main.textsz = len;
6678 			break;
6679 		case IWN_FW_TLV_MAIN_DATA:
6680 			fw->main.data = ptr;
6681 			fw->main.datasz = len;
6682 			break;
6683 		case IWN_FW_TLV_INIT_TEXT:
6684 			fw->init.text = ptr;
6685 			fw->init.textsz = len;
6686 			break;
6687 		case IWN_FW_TLV_INIT_DATA:
6688 			fw->init.data = ptr;
6689 			fw->init.datasz = len;
6690 			break;
6691 		case IWN_FW_TLV_BOOT_TEXT:
6692 			fw->boot.text = ptr;
6693 			fw->boot.textsz = len;
6694 			break;
6695 		case IWN_FW_TLV_ENH_SENS:
6696 			if (len !=  0) {
6697 				printf("%s: TLV type %d has invalid size %u\n",
6698 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6699 				    len);
6700 				goto next;
6701 			}
6702 			sc->sc_flags |= IWN_FLAG_ENH_SENS;
6703 			break;
6704 		case IWN_FW_TLV_PHY_CALIB:
6705 			if (len != sizeof(uint32_t)) {
6706 				printf("%s: TLV type %d has invalid size %u\n",
6707 				    sc->sc_dev.dv_xname, letoh16(tlv->type),
6708 				    len);
6709 				goto next;
6710 			}
6711 			if (letoh32(*ptr) <= IWN5000_PHY_CALIB_MAX) {
6712 				sc->reset_noise_gain = letoh32(*ptr);
6713 				sc->noise_gain = letoh32(*ptr) + 1;
6714 			}
6715 			break;
6716 		case IWN_FW_TLV_FLAGS:
6717 			if (len < sizeof(uint32_t))
6718 				break;
6719 			if (len % sizeof(uint32_t))
6720 				break;
6721 			sc->tlv_feature_flags = letoh32(*ptr);
6722 			DPRINTF(("feature: 0x%08x\n", sc->tlv_feature_flags));
6723 			break;
6724 		default:
6725 			DPRINTF(("TLV type %d not handled\n",
6726 			    letoh16(tlv->type)));
6727 			break;
6728 		}
6729  next:		/* TLV fields are 32-bit aligned. */
6730 		ptr += (len + 3) & ~3;
6731 	}
6732 	return 0;
6733 }
6734 
6735 int
iwn_read_firmware(struct iwn_softc * sc)6736 iwn_read_firmware(struct iwn_softc *sc)
6737 {
6738 	struct iwn_fw_info *fw = &sc->fw;
6739 	int error;
6740 
6741 	/*
6742 	 * Some PHY calibration commands are firmware-dependent; these
6743 	 * are the default values that will be overridden if
6744 	 * necessary.
6745 	 */
6746 	sc->reset_noise_gain = IWN5000_PHY_CALIB_RESET_NOISE_GAIN;
6747 	sc->noise_gain = IWN5000_PHY_CALIB_NOISE_GAIN;
6748 
6749 	memset(fw, 0, sizeof (*fw));
6750 
6751 	/* Read firmware image from filesystem. */
6752 	if ((error = loadfirmware(sc->fwname, &fw->data, &fw->size)) != 0) {
6753 		printf("%s: could not read firmware %s (error %d)\n",
6754 		    sc->sc_dev.dv_xname, sc->fwname, error);
6755 		return error;
6756 	}
6757 	if (fw->size < sizeof (uint32_t)) {
6758 		printf("%s: firmware too short: %zu bytes\n",
6759 		    sc->sc_dev.dv_xname, fw->size);
6760 		free(fw->data, M_DEVBUF, fw->size);
6761 		return EINVAL;
6762 	}
6763 
6764 	/* Retrieve text and data sections. */
6765 	if (*(const uint32_t *)fw->data != 0)	/* Legacy image. */
6766 		error = iwn_read_firmware_leg(sc, fw);
6767 	else
6768 		error = iwn_read_firmware_tlv(sc, fw, 1);
6769 	if (error != 0) {
6770 		printf("%s: could not read firmware sections\n",
6771 		    sc->sc_dev.dv_xname);
6772 		free(fw->data, M_DEVBUF, fw->size);
6773 		return error;
6774 	}
6775 
6776 	/* Make sure text and data sections fit in hardware memory. */
6777 	if (fw->main.textsz > sc->fw_text_maxsz ||
6778 	    fw->main.datasz > sc->fw_data_maxsz ||
6779 	    fw->init.textsz > sc->fw_text_maxsz ||
6780 	    fw->init.datasz > sc->fw_data_maxsz ||
6781 	    fw->boot.textsz > IWN_FW_BOOT_TEXT_MAXSZ ||
6782 	    (fw->boot.textsz & 3) != 0) {
6783 		printf("%s: firmware sections too large\n",
6784 		    sc->sc_dev.dv_xname);
6785 		free(fw->data, M_DEVBUF, fw->size);
6786 		return EINVAL;
6787 	}
6788 
6789 	/* We can proceed with loading the firmware. */
6790 	return 0;
6791 }
6792 
6793 int
iwn_clock_wait(struct iwn_softc * sc)6794 iwn_clock_wait(struct iwn_softc *sc)
6795 {
6796 	int ntries;
6797 
6798 	/* Set "initialization complete" bit. */
6799 	IWN_SETBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6800 
6801 	/* Wait for clock stabilization. */
6802 	for (ntries = 0; ntries < 2500; ntries++) {
6803 		if (IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_MAC_CLOCK_READY)
6804 			return 0;
6805 		DELAY(10);
6806 	}
6807 	printf("%s: timeout waiting for clock stabilization\n",
6808 	    sc->sc_dev.dv_xname);
6809 	return ETIMEDOUT;
6810 }
6811 
6812 int
iwn_apm_init(struct iwn_softc * sc)6813 iwn_apm_init(struct iwn_softc *sc)
6814 {
6815 	pcireg_t reg;
6816 	int error;
6817 
6818 	/* Disable L0s exit timer (NMI bug workaround). */
6819 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_DIS_L0S_TIMER);
6820 	/* Don't wait for ICH L0s (ICH bug workaround). */
6821 	IWN_SETBITS(sc, IWN_GIO_CHICKEN, IWN_GIO_CHICKEN_L1A_NO_L0S_RX);
6822 
6823 	/* Set FH wait threshold to max (HW bug under stress workaround). */
6824 	IWN_SETBITS(sc, IWN_DBG_HPET_MEM, 0xffff0000);
6825 
6826 	/* Enable HAP INTA to move adapter from L1a to L0s. */
6827 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_HAP_WAKE_L1A);
6828 
6829 	/* Retrieve PCIe Active State Power Management (ASPM). */
6830 	reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
6831 	    sc->sc_cap_off + PCI_PCIE_LCSR);
6832 	/* Workaround for HW instability in PCIe L0->L0s->L1 transition. */
6833 	if (reg & PCI_PCIE_LCSR_ASPM_L1)	/* L1 Entry enabled. */
6834 		IWN_SETBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6835 	else
6836 		IWN_CLRBITS(sc, IWN_GIO, IWN_GIO_L0S_ENA);
6837 
6838 	if (sc->hw_type != IWN_HW_REV_TYPE_4965 &&
6839 	    sc->hw_type <= IWN_HW_REV_TYPE_1000)
6840 		IWN_SETBITS(sc, IWN_ANA_PLL, IWN_ANA_PLL_INIT);
6841 
6842 	/* Wait for clock stabilization before accessing prph. */
6843 	if ((error = iwn_clock_wait(sc)) != 0)
6844 		return error;
6845 
6846 	if ((error = iwn_nic_lock(sc)) != 0)
6847 		return error;
6848 	if (sc->hw_type == IWN_HW_REV_TYPE_4965) {
6849 		/* Enable DMA and BSM (Bootstrap State Machine). */
6850 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6851 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT |
6852 		    IWN_APMG_CLK_CTRL_BSM_CLK_RQT);
6853 	} else {
6854 		/* Enable DMA. */
6855 		iwn_prph_write(sc, IWN_APMG_CLK_EN,
6856 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
6857 	}
6858 	DELAY(20);
6859 	/* Disable L1-Active. */
6860 	iwn_prph_setbits(sc, IWN_APMG_PCI_STT, IWN_APMG_PCI_STT_L1A_DIS);
6861 	iwn_nic_unlock(sc);
6862 
6863 	return 0;
6864 }
6865 
6866 void
iwn_apm_stop_master(struct iwn_softc * sc)6867 iwn_apm_stop_master(struct iwn_softc *sc)
6868 {
6869 	int ntries;
6870 
6871 	/* Stop busmaster DMA activity. */
6872 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_STOP_MASTER);
6873 	for (ntries = 0; ntries < 100; ntries++) {
6874 		if (IWN_READ(sc, IWN_RESET) & IWN_RESET_MASTER_DISABLED)
6875 			return;
6876 		DELAY(10);
6877 	}
6878 	printf("%s: timeout waiting for master\n", sc->sc_dev.dv_xname);
6879 }
6880 
6881 void
iwn_apm_stop(struct iwn_softc * sc)6882 iwn_apm_stop(struct iwn_softc *sc)
6883 {
6884 	iwn_apm_stop_master(sc);
6885 
6886 	/* Reset the entire device. */
6887 	IWN_SETBITS(sc, IWN_RESET, IWN_RESET_SW);
6888 	DELAY(10);
6889 	/* Clear "initialization complete" bit. */
6890 	IWN_CLRBITS(sc, IWN_GP_CNTRL, IWN_GP_CNTRL_INIT_DONE);
6891 }
6892 
6893 int
iwn4965_nic_config(struct iwn_softc * sc)6894 iwn4965_nic_config(struct iwn_softc *sc)
6895 {
6896 	if (IWN_RFCFG_TYPE(sc->rfcfg) == 1) {
6897 		/*
6898 		 * I don't believe this to be correct but this is what the
6899 		 * vendor driver is doing. Probably the bits should not be
6900 		 * shifted in IWN_RFCFG_*.
6901 		 */
6902 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6903 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6904 		    IWN_RFCFG_STEP(sc->rfcfg) |
6905 		    IWN_RFCFG_DASH(sc->rfcfg));
6906 	}
6907 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6908 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6909 	return 0;
6910 }
6911 
6912 int
iwn5000_nic_config(struct iwn_softc * sc)6913 iwn5000_nic_config(struct iwn_softc *sc)
6914 {
6915 	uint32_t tmp;
6916 	int error;
6917 
6918 	if (IWN_RFCFG_TYPE(sc->rfcfg) < 3) {
6919 		IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6920 		    IWN_RFCFG_TYPE(sc->rfcfg) |
6921 		    IWN_RFCFG_STEP(sc->rfcfg) |
6922 		    IWN_RFCFG_DASH(sc->rfcfg));
6923 	}
6924 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG,
6925 	    IWN_HW_IF_CONFIG_RADIO_SI | IWN_HW_IF_CONFIG_MAC_SI);
6926 
6927 	if ((error = iwn_nic_lock(sc)) != 0)
6928 		return error;
6929 	iwn_prph_setbits(sc, IWN_APMG_PS, IWN_APMG_PS_EARLY_PWROFF_DIS);
6930 
6931 	if (sc->hw_type == IWN_HW_REV_TYPE_1000) {
6932 		/*
6933 		 * Select first Switching Voltage Regulator (1.32V) to
6934 		 * solve a stability issue related to noisy DC2DC line
6935 		 * in the silicon of 1000 Series.
6936 		 */
6937 		tmp = iwn_prph_read(sc, IWN_APMG_DIGITAL_SVR);
6938 		tmp &= ~IWN_APMG_DIGITAL_SVR_VOLTAGE_MASK;
6939 		tmp |= IWN_APMG_DIGITAL_SVR_VOLTAGE_1_32;
6940 		iwn_prph_write(sc, IWN_APMG_DIGITAL_SVR, tmp);
6941 	}
6942 	iwn_nic_unlock(sc);
6943 
6944 	if (sc->sc_flags & IWN_FLAG_INTERNAL_PA) {
6945 		/* Use internal power amplifier only. */
6946 		IWN_WRITE(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_2X2_IPA);
6947 	}
6948 	if ((sc->hw_type == IWN_HW_REV_TYPE_6050 ||
6949 	     sc->hw_type == IWN_HW_REV_TYPE_6005) && sc->calib_ver >= 6) {
6950 		/* Indicate that ROM calibration version is >=6. */
6951 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_CALIB_VER6);
6952 	}
6953 	if (sc->hw_type == IWN_HW_REV_TYPE_6005)
6954 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_6050_1X2);
6955 	if (sc->hw_type == IWN_HW_REV_TYPE_2030 ||
6956 	    sc->hw_type == IWN_HW_REV_TYPE_2000 ||
6957 	    sc->hw_type == IWN_HW_REV_TYPE_135 ||
6958 	    sc->hw_type == IWN_HW_REV_TYPE_105)
6959 		IWN_SETBITS(sc, IWN_GP_DRIVER, IWN_GP_DRIVER_RADIO_IQ_INVERT);
6960 	return 0;
6961 }
6962 
6963 /*
6964  * Take NIC ownership over Intel Active Management Technology (AMT).
6965  */
6966 int
iwn_hw_prepare(struct iwn_softc * sc)6967 iwn_hw_prepare(struct iwn_softc *sc)
6968 {
6969 	int ntries;
6970 
6971 	/* Check if hardware is ready. */
6972 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6973 	for (ntries = 0; ntries < 5; ntries++) {
6974 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6975 		    IWN_HW_IF_CONFIG_NIC_READY)
6976 			return 0;
6977 		DELAY(10);
6978 	}
6979 
6980 	/* Hardware not ready, force into ready state. */
6981 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_PREPARE);
6982 	for (ntries = 0; ntries < 15000; ntries++) {
6983 		if (!(IWN_READ(sc, IWN_HW_IF_CONFIG) &
6984 		    IWN_HW_IF_CONFIG_PREPARE_DONE))
6985 			break;
6986 		DELAY(10);
6987 	}
6988 	if (ntries == 15000)
6989 		return ETIMEDOUT;
6990 
6991 	/* Hardware should be ready now. */
6992 	IWN_SETBITS(sc, IWN_HW_IF_CONFIG, IWN_HW_IF_CONFIG_NIC_READY);
6993 	for (ntries = 0; ntries < 5; ntries++) {
6994 		if (IWN_READ(sc, IWN_HW_IF_CONFIG) &
6995 		    IWN_HW_IF_CONFIG_NIC_READY)
6996 			return 0;
6997 		DELAY(10);
6998 	}
6999 	return ETIMEDOUT;
7000 }
7001 
7002 int
iwn_hw_init(struct iwn_softc * sc)7003 iwn_hw_init(struct iwn_softc *sc)
7004 {
7005 	struct iwn_ops *ops = &sc->ops;
7006 	int error, chnl, qid;
7007 
7008 	/* Clear pending interrupts. */
7009 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7010 
7011 	if ((error = iwn_apm_init(sc)) != 0) {
7012 		printf("%s: could not power on adapter\n",
7013 		    sc->sc_dev.dv_xname);
7014 		return error;
7015 	}
7016 
7017 	/* Select VMAIN power source. */
7018 	if ((error = iwn_nic_lock(sc)) != 0)
7019 		return error;
7020 	iwn_prph_clrbits(sc, IWN_APMG_PS, IWN_APMG_PS_PWR_SRC_MASK);
7021 	iwn_nic_unlock(sc);
7022 
7023 	/* Perform adapter-specific initialization. */
7024 	if ((error = ops->nic_config(sc)) != 0)
7025 		return error;
7026 
7027 	/* Initialize RX ring. */
7028 	if ((error = iwn_nic_lock(sc)) != 0)
7029 		return error;
7030 	IWN_WRITE(sc, IWN_FH_RX_CONFIG, 0);
7031 	IWN_WRITE(sc, IWN_FH_RX_WPTR, 0);
7032 	/* Set physical address of RX ring (256-byte aligned). */
7033 	IWN_WRITE(sc, IWN_FH_RX_BASE, sc->rxq.desc_dma.paddr >> 8);
7034 	/* Set physical address of RX status (16-byte aligned). */
7035 	IWN_WRITE(sc, IWN_FH_STATUS_WPTR, sc->rxq.stat_dma.paddr >> 4);
7036 	/* Enable RX. */
7037 	IWN_WRITE(sc, IWN_FH_RX_CONFIG,
7038 	    IWN_FH_RX_CONFIG_ENA           |
7039 	    IWN_FH_RX_CONFIG_IGN_RXF_EMPTY |	/* HW bug workaround */
7040 	    IWN_FH_RX_CONFIG_IRQ_DST_HOST  |
7041 	    IWN_FH_RX_CONFIG_SINGLE_FRAME  |
7042 	    IWN_FH_RX_CONFIG_RB_TIMEOUT(0x11) | /* about 1/2 msec */
7043 	    IWN_FH_RX_CONFIG_NRBD(IWN_RX_RING_COUNT_LOG));
7044 	iwn_nic_unlock(sc);
7045 	IWN_WRITE(sc, IWN_FH_RX_WPTR, (IWN_RX_RING_COUNT - 1) & ~7);
7046 
7047 	if ((error = iwn_nic_lock(sc)) != 0)
7048 		return error;
7049 
7050 	/* Initialize TX scheduler. */
7051 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7052 
7053 	/* Set physical address of "keep warm" page (16-byte aligned). */
7054 	IWN_WRITE(sc, IWN_FH_KW_ADDR, sc->kw_dma.paddr >> 4);
7055 
7056 	/* Initialize TX rings. */
7057 	for (qid = 0; qid < sc->ntxqs; qid++) {
7058 		struct iwn_tx_ring *txq = &sc->txq[qid];
7059 
7060 		/* Set physical address of TX ring (256-byte aligned). */
7061 		IWN_WRITE(sc, IWN_FH_CBBC_QUEUE(qid),
7062 		    txq->desc_dma.paddr >> 8);
7063 	}
7064 	iwn_nic_unlock(sc);
7065 
7066 	/* Enable DMA channels. */
7067 	for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7068 		IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl),
7069 		    IWN_FH_TX_CONFIG_DMA_ENA |
7070 		    IWN_FH_TX_CONFIG_DMA_CREDIT_ENA);
7071 	}
7072 
7073 	/* Clear "radio off" and "commands blocked" bits. */
7074 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7075 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_CMD_BLOCKED);
7076 
7077 	/* Clear pending interrupts. */
7078 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7079 	/* Enable interrupt coalescing. */
7080 	IWN_WRITE(sc, IWN_INT_COALESCING, 512 / 8);
7081 	/* Enable interrupts. */
7082 	IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7083 
7084 	/* _Really_ make sure "radio off" bit is cleared! */
7085 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7086 	IWN_WRITE(sc, IWN_UCODE_GP1_CLR, IWN_UCODE_GP1_RFKILL);
7087 
7088 	/* Enable shadow registers. */
7089 	if (sc->hw_type >= IWN_HW_REV_TYPE_6000)
7090 		IWN_SETBITS(sc, IWN_SHADOW_REG_CTRL, 0x800fffff);
7091 
7092 	if ((error = ops->load_firmware(sc)) != 0) {
7093 		printf("%s: could not load firmware\n", sc->sc_dev.dv_xname);
7094 		return error;
7095 	}
7096 	/* Wait at most one second for firmware alive notification. */
7097 	if ((error = tsleep_nsec(sc, PCATCH, "iwninit", SEC_TO_NSEC(1))) != 0) {
7098 		printf("%s: timeout waiting for adapter to initialize\n",
7099 		    sc->sc_dev.dv_xname);
7100 		return error;
7101 	}
7102 	/* Do post-firmware initialization. */
7103 	return ops->post_alive(sc);
7104 }
7105 
7106 void
iwn_hw_stop(struct iwn_softc * sc)7107 iwn_hw_stop(struct iwn_softc *sc)
7108 {
7109 	int chnl, qid, ntries;
7110 
7111 	IWN_WRITE(sc, IWN_RESET, IWN_RESET_NEVO);
7112 
7113 	/* Disable interrupts. */
7114 	IWN_WRITE(sc, IWN_INT_MASK, 0);
7115 	IWN_WRITE(sc, IWN_INT, 0xffffffff);
7116 	IWN_WRITE(sc, IWN_FH_INT, 0xffffffff);
7117 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7118 
7119 	/* Make sure we no longer hold the NIC lock. */
7120 	iwn_nic_unlock(sc);
7121 
7122 	/* Stop TX scheduler. */
7123 	iwn_prph_write(sc, sc->sched_txfact_addr, 0);
7124 
7125 	/* Stop all DMA channels. */
7126 	if (iwn_nic_lock(sc) == 0) {
7127 		for (chnl = 0; chnl < sc->ndmachnls; chnl++) {
7128 			IWN_WRITE(sc, IWN_FH_TX_CONFIG(chnl), 0);
7129 			for (ntries = 0; ntries < 200; ntries++) {
7130 				if (IWN_READ(sc, IWN_FH_TX_STATUS) &
7131 				    IWN_FH_TX_STATUS_IDLE(chnl))
7132 					break;
7133 				DELAY(10);
7134 			}
7135 		}
7136 		iwn_nic_unlock(sc);
7137 	}
7138 
7139 	/* Stop RX ring. */
7140 	iwn_reset_rx_ring(sc, &sc->rxq);
7141 
7142 	/* Reset all TX rings. */
7143 	for (qid = 0; qid < sc->ntxqs; qid++)
7144 		iwn_reset_tx_ring(sc, &sc->txq[qid]);
7145 
7146 	if (iwn_nic_lock(sc) == 0) {
7147 		iwn_prph_write(sc, IWN_APMG_CLK_DIS,
7148 		    IWN_APMG_CLK_CTRL_DMA_CLK_RQT);
7149 		iwn_nic_unlock(sc);
7150 	}
7151 	DELAY(5);
7152 	/* Power OFF adapter. */
7153 	iwn_apm_stop(sc);
7154 }
7155 
7156 int
iwn_init(struct ifnet * ifp)7157 iwn_init(struct ifnet *ifp)
7158 {
7159 	struct iwn_softc *sc = ifp->if_softc;
7160 	struct ieee80211com *ic = &sc->sc_ic;
7161 	int error;
7162 
7163 	memset(sc->bss_node_addr, 0, sizeof(sc->bss_node_addr));
7164 	sc->agg_queue_mask = 0;
7165 	memset(sc->sc_tx_ba, 0, sizeof(sc->sc_tx_ba));
7166 
7167 	if ((error = iwn_hw_prepare(sc)) != 0) {
7168 		printf("%s: hardware not ready\n", sc->sc_dev.dv_xname);
7169 		goto fail;
7170 	}
7171 
7172 	/* Initialize interrupt mask to default value. */
7173 	sc->int_mask = IWN_INT_MASK_DEF;
7174 	sc->sc_flags &= ~IWN_FLAG_USE_ICT;
7175 
7176 	/* Check that the radio is not disabled by hardware switch. */
7177 	if (!(IWN_READ(sc, IWN_GP_CNTRL) & IWN_GP_CNTRL_RFKILL)) {
7178 		printf("%s: radio is disabled by hardware switch\n",
7179 		    sc->sc_dev.dv_xname);
7180 		error = EPERM;	/* :-) */
7181 		/* Re-enable interrupts. */
7182 		IWN_WRITE(sc, IWN_INT, 0xffffffff);
7183 		IWN_WRITE(sc, IWN_INT_MASK, sc->int_mask);
7184 		return error;
7185 	}
7186 
7187 	/* Read firmware images from the filesystem. */
7188 	if ((error = iwn_read_firmware(sc)) != 0) {
7189 		printf("%s: could not read firmware\n", sc->sc_dev.dv_xname);
7190 		goto fail;
7191 	}
7192 
7193 	/* Initialize hardware and upload firmware. */
7194 	error = iwn_hw_init(sc);
7195 	free(sc->fw.data, M_DEVBUF, sc->fw.size);
7196 	if (error != 0) {
7197 		printf("%s: could not initialize hardware\n",
7198 		    sc->sc_dev.dv_xname);
7199 		goto fail;
7200 	}
7201 
7202 	/* Configure adapter now that it is ready. */
7203 	if ((error = iwn_config(sc)) != 0) {
7204 		printf("%s: could not configure device\n",
7205 		    sc->sc_dev.dv_xname);
7206 		goto fail;
7207 	}
7208 
7209 	ifq_clr_oactive(&ifp->if_snd);
7210 	ifp->if_flags |= IFF_RUNNING;
7211 
7212 	if (ic->ic_opmode != IEEE80211_M_MONITOR)
7213 		ieee80211_begin_scan(ifp);
7214 	else
7215 		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
7216 
7217 	return 0;
7218 
7219 fail:	iwn_stop(ifp);
7220 	return error;
7221 }
7222 
7223 void
iwn_stop(struct ifnet * ifp)7224 iwn_stop(struct ifnet *ifp)
7225 {
7226 	struct iwn_softc *sc = ifp->if_softc;
7227 	struct ieee80211com *ic = &sc->sc_ic;
7228 
7229 	timeout_del(&sc->calib_to);
7230 	ifp->if_timer = sc->sc_tx_timer = 0;
7231 	ifp->if_flags &= ~IFF_RUNNING;
7232 	ifq_clr_oactive(&ifp->if_snd);
7233 
7234 	ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
7235 
7236 	/* Power OFF hardware. */
7237 	iwn_hw_stop(sc);
7238 }
7239