xref: /netbsd/sys/dev/pci/if_jme.c (revision e20e2cb2)
1 /*	$NetBSD: if_jme.c,v 1.55 2022/09/02 23:48:10 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 2008 Manuel Bouyer.  All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
16  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
17  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
18  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
19  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
20  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
21  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
22  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
24  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25  */
26 
27 /*-
28  * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
29  * All rights reserved.
30  *
31  * Redistribution and use in source and binary forms, with or without
32  * modification, are permitted provided that the following conditions
33  * are met:
34  * 1. Redistributions of source code must retain the above copyright
35  *    notice unmodified, this list of conditions, and the following
36  *    disclaimer.
37  * 2. Redistributions in binary form must reproduce the above copyright
38  *    notice, this list of conditions and the following disclaimer in the
39  *    documentation and/or other materials provided with the distribution.
40  *
41  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
51  * SUCH DAMAGE.
52  */
53 
54 
55 /*
56  * Driver for JMicron Technologies JMC250 (Giganbit) and JMC260 (Fast)
57  * Ethernet Controllers.
58  */
59 
60 #include <sys/cdefs.h>
61 __KERNEL_RCSID(0, "$NetBSD: if_jme.c,v 1.55 2022/09/02 23:48:10 thorpej Exp $");
62 
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/mbuf.h>
67 #include <sys/protosw.h>
68 #include <sys/socket.h>
69 #include <sys/ioctl.h>
70 #include <sys/errno.h>
71 #include <sys/malloc.h>
72 #include <sys/kernel.h>
73 #include <sys/proc.h>	/* only for declaration of wakeup() used by vm.h */
74 #include <sys/device.h>
75 #include <sys/syslog.h>
76 #include <sys/sysctl.h>
77 
78 #include <net/if.h>
79 #include <net/if_media.h>
80 #include <net/if_types.h>
81 #include <net/if_dl.h>
82 #include <net/route.h>
83 #include <net/bpf.h>
84 
85 #include <sys/rndsource.h>
86 
87 #include <netinet/in.h>
88 #include <netinet/in_systm.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 
92 #include <netinet6/ip6_var.h>
93 
94 #ifdef INET
95 #include <netinet/in_var.h>
96 #endif
97 
98 #include <netinet/tcp.h>
99 #include <netinet/tcp_timer.h>
100 #include <netinet/tcp_var.h>
101 
102 #include <net/if_ether.h>
103 #if defined(INET)
104 #include <netinet/if_inarp.h>
105 #endif
106 
107 #include <sys/bus.h>
108 #include <sys/intr.h>
109 
110 #include <dev/pci/pcireg.h>
111 #include <dev/pci/pcivar.h>
112 #include <dev/pci/pcidevs.h>
113 #include <dev/pci/if_jmereg.h>
114 
115 #include <dev/mii/mii.h>
116 #include <dev/mii/miivar.h>
117 
118 /* number of entries in transmit and receive rings */
119 #define JME_NBUFS (PAGE_SIZE / sizeof(struct jme_desc))
120 
121 #define JME_DESC_INC(x, y)	((x) = ((x) + 1) % (y))
122 
123 /* Water mark to kick reclaiming Tx buffers. */
124 #define JME_TX_DESC_HIWAT	(JME_NBUFS - (((JME_NBUFS) * 3) / 10))
125 
126 
127 struct jme_softc {
128 	device_t jme_dev;		/* base device */
129 	bus_space_tag_t jme_bt_mac;
130 	bus_space_handle_t jme_bh_mac;	/* Mac registers */
131 	bus_space_tag_t jme_bt_phy;
132 	bus_space_handle_t jme_bh_phy;	/* PHY registers */
133 	bus_space_tag_t jme_bt_misc;
134 	bus_space_handle_t jme_bh_misc; /* Misc registers */
135 	bus_dma_tag_t jme_dmatag;
136 	bus_dma_segment_t jme_txseg;	/* transmit ring seg */
137 	bus_dmamap_t jme_txmap;		/* transmit ring DMA map */
138 	struct jme_desc* jme_txring;	/* transmit ring */
139 	bus_dmamap_t jme_txmbufm[JME_NBUFS]; /* transmit mbufs DMA map */
140 	struct mbuf *jme_txmbuf[JME_NBUFS]; /* mbufs being transmitted */
141 	int jme_tx_cons;		/* transmit ring consumer */
142 	int jme_tx_prod;		/* transmit ring producer */
143 	int jme_tx_cnt;			/* transmit ring active count */
144 	bus_dma_segment_t jme_rxseg;	/* receive ring seg */
145 	bus_dmamap_t jme_rxmap;		/* receive ring DMA map */
146 	struct jme_desc* jme_rxring;	/* receive ring */
147 	bus_dmamap_t jme_rxmbufm[JME_NBUFS]; /* receive mbufs DMA map */
148 	struct mbuf *jme_rxmbuf[JME_NBUFS]; /* mbufs being received */
149 	int jme_rx_cons;		/* receive ring consumer */
150 	int jme_rx_prod;		/* receive ring producer */
151 	void* jme_ih;			/* our interrupt */
152 	struct ethercom jme_ec;
153 	struct callout jme_tick_ch;	/* tick callout */
154 	uint8_t jme_enaddr[ETHER_ADDR_LEN];/* hardware address */
155 	uint8_t jme_phyaddr;		/* address of integrated phy */
156 	uint8_t jme_chip_rev;		/* chip revision */
157 	uint8_t jme_rev;		/* PCI revision */
158 	mii_data_t jme_mii;		/* mii bus */
159 	uint32_t jme_flags;		/* device features, see below */
160 	uint32_t jme_txcsr;		/* TX config register */
161 	uint32_t jme_rxcsr;		/* RX config register */
162 	krndsource_t rnd_source;
163 	/* interrupt coalition parameters */
164 	struct sysctllog *jme_clog;
165 	int jme_intrxto;		/* interrupt RX timeout */
166 	int jme_intrxct;		/* interrupt RX packets counter */
167 	int jme_inttxto;		/* interrupt TX timeout */
168 	int jme_inttxct;		/* interrupt TX packets counter */
169 };
170 
171 #define JME_FLAG_FPGA	0x0001 /* FPGA version */
172 #define JME_FLAG_GIGA	0x0002 /* giga Ethernet capable */
173 
174 
175 #define jme_if	jme_ec.ec_if
176 #define jme_bpf	jme_if.if_bpf
177 
178 typedef struct jme_softc jme_softc_t;
179 typedef u_long ioctl_cmd_t;
180 
181 static int jme_pci_match(device_t, cfdata_t, void *);
182 static void jme_pci_attach(device_t, device_t, void *);
183 static void jme_intr_rx(jme_softc_t *);
184 static int jme_intr(void *);
185 
186 static int jme_ifioctl(struct ifnet *, ioctl_cmd_t, void *);
187 static int jme_mediachange(struct ifnet *);
188 static void jme_ifwatchdog(struct ifnet *);
189 static bool jme_shutdown(device_t, int);
190 
191 static void jme_txeof(struct jme_softc *);
192 static void jme_ifstart(struct ifnet *);
193 static void jme_reset(jme_softc_t *);
194 static int  jme_ifinit(struct ifnet *);
195 static int  jme_init(struct ifnet *, int);
196 static void jme_stop(struct ifnet *, int);
197 // static void jme_restart(void *);
198 static void jme_ticks(void *);
199 static void jme_mac_config(jme_softc_t *);
200 static void jme_set_filter(jme_softc_t *);
201 
202 static int jme_mii_read(device_t, int, int, uint16_t *);
203 static int jme_mii_write(device_t, int, int, uint16_t);
204 static void jme_statchg(struct ifnet *);
205 
206 static int jme_eeprom_read_byte(struct jme_softc *, uint8_t, uint8_t *);
207 static int jme_eeprom_macaddr(struct jme_softc *);
208 static int jme_reg_macaddr(struct jme_softc *);
209 
210 #define JME_TIMEOUT		1000
211 #define JME_PHY_TIMEOUT		1000
212 #define JME_EEPROM_TIMEOUT	1000
213 
214 static int jme_sysctl_intrxto(SYSCTLFN_PROTO);
215 static int jme_sysctl_intrxct(SYSCTLFN_PROTO);
216 static int jme_sysctl_inttxto(SYSCTLFN_PROTO);
217 static int jme_sysctl_inttxct(SYSCTLFN_PROTO);
218 static int jme_root_num;
219 
220 
221 CFATTACH_DECL_NEW(jme, sizeof(jme_softc_t),
222     jme_pci_match, jme_pci_attach, NULL, NULL);
223 
224 static const struct device_compatible_entry compat_data[] = {
225 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
226 		PCI_PRODUCT_JMICRON_JMC250),
227 	  .data = "JMicron JMC250 Gigabit Ethernet Controller" },
228 
229 	{ .id = PCI_ID_CODE(PCI_VENDOR_JMICRON,
230 		PCI_PRODUCT_JMICRON_JMC260),
231 	  .data = "JMicron JMC260 Gigabit Ethernet Controller" },
232 
233 	PCI_COMPAT_EOL
234 };
235 
236 static int
jme_pci_match(device_t parent,cfdata_t cf,void * aux)237 jme_pci_match(device_t parent, cfdata_t cf, void *aux)
238 {
239 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
240 
241 	return pci_compatible_match(pa, compat_data);
242 }
243 
244 static void
jme_pci_attach(device_t parent,device_t self,void * aux)245 jme_pci_attach(device_t parent, device_t self, void *aux)
246 {
247 	jme_softc_t *sc = device_private(self);
248 	struct pci_attach_args * const pa = (struct pci_attach_args *)aux;
249 	const struct device_compatible_entry *dce;
250 	struct ifnet * const ifp = &sc->jme_if;
251 	struct mii_data * const mii = &sc->jme_mii;
252 	bus_space_tag_t iot1, iot2, memt;
253 	bus_space_handle_t ioh1, ioh2, memh;
254 	bus_size_t size, size2;
255 	pci_intr_handle_t intrhandle;
256 	const char *intrstr;
257 	pcireg_t csr;
258 	int nsegs, i;
259 	const struct sysctlnode *node;
260 	int jme_nodenum;
261 	char intrbuf[PCI_INTRSTR_LEN];
262 
263 	sc->jme_dev = self;
264 	aprint_normal("\n");
265 	callout_init(&sc->jme_tick_ch, 0);
266 	callout_setfunc(&sc->jme_tick_ch, jme_ticks, sc);
267 
268 	dce = pci_compatible_lookup(pa, compat_data);
269 	KASSERT(dce != NULL);
270 
271 	if (PCI_PRODUCT(dce->id) == PCI_PRODUCT_JMICRON_JMC250)
272 		sc->jme_flags = JME_FLAG_GIGA;
273 
274 	/*
275 	 * Map the card space. Try Mem first.
276 	 */
277 	if (pci_mapreg_map(pa, JME_PCI_BAR0,
278 	    PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT,
279 	    0, &memt, &memh, NULL, &size) == 0) {
280 		sc->jme_bt_mac = memt;
281 		sc->jme_bh_mac = memh;
282 		sc->jme_bt_phy = memt;
283 		if (bus_space_subregion(memt, memh, JME_PHY_EEPROM_BASE_MEMOFF,
284 		    JME_PHY_EEPROM_SIZE, &sc->jme_bh_phy) != 0) {
285 			aprint_error_dev(self, "can't subregion PHY space\n");
286 			bus_space_unmap(memt, memh, size);
287 			return;
288 		}
289 		sc->jme_bt_misc = memt;
290 		if (bus_space_subregion(memt, memh, JME_MISC_BASE_MEMOFF,
291 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
292 			aprint_error_dev(self, "can't subregion misc space\n");
293 			bus_space_unmap(memt, memh, size);
294 			return;
295 		}
296 	} else {
297 		if (pci_mapreg_map(pa, JME_PCI_BAR1, PCI_MAPREG_TYPE_IO,
298 		    0, &iot1, &ioh1, NULL, &size) != 0) {
299 			aprint_error_dev(self, "can't map I/O space 1\n");
300 			return;
301 		}
302 		sc->jme_bt_mac = iot1;
303 		sc->jme_bh_mac = ioh1;
304 		if (pci_mapreg_map(pa, JME_PCI_BAR2, PCI_MAPREG_TYPE_IO,
305 		    0, &iot2, &ioh2, NULL, &size2) != 0) {
306 			aprint_error_dev(self, "can't map I/O space 2\n");
307 			bus_space_unmap(iot1, ioh1, size);
308 			return;
309 		}
310 		sc->jme_bt_phy = iot2;
311 		sc->jme_bh_phy = ioh2;
312 		sc->jme_bt_misc = iot2;
313 		if (bus_space_subregion(iot2, ioh2, JME_MISC_BASE_IOOFF,
314 		    JME_MISC_SIZE, &sc->jme_bh_misc) != 0) {
315 			aprint_error_dev(self, "can't subregion misc space\n");
316 			bus_space_unmap(iot1, ioh1, size);
317 			bus_space_unmap(iot2, ioh2, size2);
318 			return;
319 		}
320 	}
321 
322 	if (pci_dma64_available(pa))
323 		sc->jme_dmatag = pa->pa_dmat64;
324 	else
325 		sc->jme_dmatag = pa->pa_dmat;
326 
327 	/* Enable the device. */
328 	csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
329 	pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
330 	    csr | PCI_COMMAND_MASTER_ENABLE);
331 
332 	aprint_normal_dev(self, "%s\n", (const char *)dce->data);
333 
334 	sc->jme_rev = PCI_REVISION(pa->pa_class);
335 
336 	csr = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_CHIPMODE);
337 	if (((csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT) !=
338 	    CHIPMODE_NOT_FPGA)
339 		sc->jme_flags |= JME_FLAG_FPGA;
340 	sc->jme_chip_rev = (csr & CHIPMODE_REV_MASK) >> CHIPMODE_REV_SHIFT;
341 	aprint_verbose_dev(self, "PCI device revision : 0x%x, Chip revision: "
342 	    "0x%x", sc->jme_rev, sc->jme_chip_rev);
343 	if (sc->jme_flags & JME_FLAG_FPGA)
344 		aprint_verbose(" FPGA revision: 0x%x",
345 		    (csr & CHIPMODE_FPGA_REV_MASK) >> CHIPMODE_FPGA_REV_SHIFT);
346 	aprint_verbose("\n");
347 
348 	/*
349 	 * Save PHY address.
350 	 * Integrated JR0211 has fixed PHY address whereas FPGA version
351 	 * requires PHY probing to get correct PHY address.
352 	 */
353 	if ((sc->jme_flags & JME_FLAG_FPGA) == 0) {
354 		sc->jme_phyaddr =
355 		    bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
356 				     JME_GPREG0) & GPREG0_PHY_ADDR_MASK;
357 	} else
358 		sc->jme_phyaddr = 0;
359 
360 
361 	jme_reset(sc);
362 
363 	/* read mac addr */
364 	if (jme_eeprom_macaddr(sc) && jme_reg_macaddr(sc)) {
365 		aprint_error_dev(self, "error reading Ethernet address\n");
366 		/* return; */
367 	}
368 	aprint_normal_dev(self, "Ethernet address %s\n",
369 	    ether_sprintf(sc->jme_enaddr));
370 
371 	/* Map and establish interrupts */
372 	if (pci_intr_map(pa, &intrhandle)) {
373 		aprint_error_dev(self, "couldn't map interrupt\n");
374 		return;
375 	}
376 	intrstr = pci_intr_string(pa->pa_pc, intrhandle, intrbuf, sizeof(intrbuf));
377 	sc->jme_if.if_softc = sc;
378 	sc->jme_ih = pci_intr_establish_xname(pa->pa_pc, intrhandle, IPL_NET,
379 	    jme_intr, sc, device_xname(self));
380 	if (sc->jme_ih == NULL) {
381 		aprint_error_dev(self, "couldn't establish interrupt");
382 		if (intrstr != NULL)
383 			aprint_error(" at %s", intrstr);
384 		aprint_error("\n");
385 		return;
386 	}
387 	aprint_normal_dev(self, "interrupting at %s\n", intrstr);
388 
389 	/* allocate and map DMA-safe memory for transmit ring */
390 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
391 	    &sc->jme_txseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
392 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_txseg,
393 	    nsegs, PAGE_SIZE, (void **)&sc->jme_txring,
394 	    BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
395 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
396 	    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_txmap) != 0 ||
397 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_txmap, sc->jme_txring,
398 	    PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
399 		aprint_error_dev(self, "can't allocate DMA memory TX ring\n");
400 		return;
401 	}
402 	/* allocate and map DMA-safe memory for receive ring */
403 	if (bus_dmamem_alloc(sc->jme_dmatag, PAGE_SIZE, 0, PAGE_SIZE,
404 	      &sc->jme_rxseg, 1, &nsegs, BUS_DMA_NOWAIT) != 0 ||
405 	    bus_dmamem_map(sc->jme_dmatag, &sc->jme_rxseg,
406 	      nsegs, PAGE_SIZE, (void **)&sc->jme_rxring,
407 	      BUS_DMA_NOWAIT | BUS_DMA_COHERENT) != 0 ||
408 	    bus_dmamap_create(sc->jme_dmatag, PAGE_SIZE, 1, PAGE_SIZE, 0,
409 	      BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &sc->jme_rxmap) != 0 ||
410 	    bus_dmamap_load(sc->jme_dmatag, sc->jme_rxmap, sc->jme_rxring,
411 	      PAGE_SIZE, NULL, BUS_DMA_NOWAIT) != 0) {
412 		aprint_error_dev(self, "can't allocate DMA memory RX ring\n");
413 		return;
414 	}
415 	for (i = 0; i < JME_NBUFS; i++) {
416 		sc->jme_txmbuf[i] = sc->jme_rxmbuf[i] = NULL;
417 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_TX_LEN,
418 		    JME_NBUFS, JME_MAX_TX_LEN, 0,
419 		    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
420 		    &sc->jme_txmbufm[i]) != 0) {
421 			aprint_error_dev(self, "can't allocate DMA TX map\n");
422 			return;
423 		}
424 		if (bus_dmamap_create(sc->jme_dmatag, JME_MAX_RX_LEN,
425 		    1, JME_MAX_RX_LEN, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
426 		    &sc->jme_rxmbufm[i]) != 0) {
427 			aprint_error_dev(self, "can't allocate DMA RX map\n");
428 			return;
429 		}
430 	}
431 	/*
432 	 * Initialize our media structures and probe the MII.
433 	 *
434 	 * Note that we don't care about the media instance.  We
435 	 * are expecting to have multiple PHYs on the 10/100 cards,
436 	 * and on those cards we exclude the internal PHY from providing
437 	 * 10baseT.  By ignoring the instance, it allows us to not have
438 	 * to specify it on the command line when switching media.
439 	 */
440 	mii->mii_ifp = ifp;
441 	mii->mii_readreg = jme_mii_read;
442 	mii->mii_writereg = jme_mii_write;
443 	mii->mii_statchg = jme_statchg;
444 	sc->jme_ec.ec_mii = mii;
445 	ifmedia_init(&mii->mii_media, IFM_IMASK, jme_mediachange,
446 	    ether_mediastatus);
447 	mii_attach(self, mii, 0xffffffff, MII_PHY_ANY, MII_OFFSET_ANY, 0);
448 	if (LIST_FIRST(&mii->mii_phys) == NULL) {
449 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE, 0, NULL);
450 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
451 	} else
452 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
453 
454 	/*
455 	 * We can support 802.1Q VLAN-sized frames.
456 	 */
457 	sc->jme_ec.ec_capabilities |=
458 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
459 	sc->jme_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
460 
461 	if (sc->jme_flags & JME_FLAG_GIGA)
462 		sc->jme_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU;
463 
464 
465 	strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
466 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
467 	ifp->if_ioctl = jme_ifioctl;
468 	ifp->if_start = jme_ifstart;
469 	ifp->if_watchdog = jme_ifwatchdog;
470 	ifp->if_init = jme_ifinit;
471 	ifp->if_stop = jme_stop;
472 	ifp->if_timer = 0;
473 	ifp->if_capabilities |=
474 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
475 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
476 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
477 	    IFCAP_CSUM_TCPv6_Tx | /* IFCAP_CSUM_TCPv6_Rx | hardware bug */
478 	    IFCAP_CSUM_UDPv6_Tx | /* IFCAP_CSUM_UDPv6_Rx | hardware bug */
479 	    IFCAP_TSOv4 | IFCAP_TSOv6;
480 	IFQ_SET_READY(&ifp->if_snd);
481 	if_attach(ifp);
482 	ether_ifattach(&(sc)->jme_if, (sc)->jme_enaddr);
483 
484 	/*
485 	 * Add shutdown hook so that DMA is disabled prior to reboot.
486 	 */
487 	if (pmf_device_register1(self, NULL, NULL, jme_shutdown))
488 		pmf_class_network_register(self, ifp);
489 	else
490 		aprint_error_dev(self, "couldn't establish power handler\n");
491 
492 	rnd_attach_source(&sc->rnd_source, device_xname(self),
493 	    RND_TYPE_NET, RND_FLAG_DEFAULT);
494 
495 	sc->jme_intrxto = PCCRX_COAL_TO_DEFAULT;
496 	sc->jme_intrxct = PCCRX_COAL_PKT_DEFAULT;
497 	sc->jme_inttxto = PCCTX_COAL_TO_DEFAULT;
498 	sc->jme_inttxct = PCCTX_COAL_PKT_DEFAULT;
499 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
500 	    0, CTLTYPE_NODE, device_xname(sc->jme_dev),
501 	    SYSCTL_DESCR("jme per-controller controls"),
502 	    NULL, 0, NULL, 0, CTL_HW, jme_root_num, CTL_CREATE,
503 	    CTL_EOL) != 0) {
504 		aprint_normal_dev(sc->jme_dev, "couldn't create sysctl node\n");
505 		return;
506 	}
507 	jme_nodenum = node->sysctl_num;
508 
509 	/* interrupt moderation sysctls */
510 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
511 	    CTLFLAG_READWRITE,
512 	    CTLTYPE_INT, "int_rxto",
513 	    SYSCTL_DESCR("jme RX interrupt moderation timer"),
514 	    jme_sysctl_intrxto, 0, (void *)sc,
515 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
516 	    CTL_EOL) != 0) {
517 		aprint_normal_dev(sc->jme_dev,
518 		    "couldn't create int_rxto sysctl node\n");
519 	}
520 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
521 	    CTLFLAG_READWRITE,
522 	    CTLTYPE_INT, "int_rxct",
523 	    SYSCTL_DESCR("jme RX interrupt moderation packet counter"),
524 	    jme_sysctl_intrxct, 0, (void *)sc,
525 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
526 	    CTL_EOL) != 0) {
527 		aprint_normal_dev(sc->jme_dev,
528 		    "couldn't create int_rxct sysctl node\n");
529 	}
530 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
531 	    CTLFLAG_READWRITE,
532 	    CTLTYPE_INT, "int_txto",
533 	    SYSCTL_DESCR("jme TX interrupt moderation timer"),
534 	    jme_sysctl_inttxto, 0, (void *)sc,
535 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
536 	    CTL_EOL) != 0) {
537 		aprint_normal_dev(sc->jme_dev,
538 		    "couldn't create int_txto sysctl node\n");
539 	}
540 	if (sysctl_createv(&sc->jme_clog, 0, NULL, &node,
541 	    CTLFLAG_READWRITE,
542 	    CTLTYPE_INT, "int_txct",
543 	    SYSCTL_DESCR("jme TX interrupt moderation packet counter"),
544 	    jme_sysctl_inttxct, 0, (void *)sc,
545 	    0, CTL_HW, jme_root_num, jme_nodenum, CTL_CREATE,
546 	    CTL_EOL) != 0) {
547 		aprint_normal_dev(sc->jme_dev,
548 		    "couldn't create int_txct sysctl node\n");
549 	}
550 }
551 
552 static void
jme_stop_rx(jme_softc_t * sc)553 jme_stop_rx(jme_softc_t *sc)
554 {
555 	uint32_t reg;
556 	int i;
557 
558 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR);
559 	if ((reg & RXCSR_RX_ENB) == 0)
560 		return;
561 	reg &= ~RXCSR_RX_ENB;
562 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR, reg);
563 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
564 		DELAY(10);
565 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
566 		    JME_RXCSR) & RXCSR_RX_ENB) == 0)
567 			break;
568 	}
569 	if (i == 0)
570 		aprint_error_dev(sc->jme_dev, "stopping receiver timeout!\n");
571 
572 }
573 
574 static void
jme_stop_tx(jme_softc_t * sc)575 jme_stop_tx(jme_softc_t *sc)
576 {
577 	uint32_t reg;
578 	int i;
579 
580 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR);
581 	if ((reg & TXCSR_TX_ENB) == 0)
582 		return;
583 	reg &= ~TXCSR_TX_ENB;
584 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR, reg);
585 	for (i = JME_TIMEOUT / 10; i > 0; i--) {
586 		DELAY(10);
587 		if ((bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
588 		    JME_TXCSR) & TXCSR_TX_ENB) == 0)
589 			break;
590 	}
591 	if (i == 0)
592 		aprint_error_dev(sc->jme_dev,
593 		    "stopping transmitter timeout!\n");
594 }
595 
596 static void
jme_reset(jme_softc_t * sc)597 jme_reset(jme_softc_t *sc)
598 {
599 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, GHC_RESET);
600 	DELAY(10);
601 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, 0);
602 }
603 
604 static bool
jme_shutdown(device_t self,int howto)605 jme_shutdown(device_t self, int howto)
606 {
607 	jme_softc_t *sc;
608 	struct ifnet *ifp;
609 
610 	sc = device_private(self);
611 	ifp = &sc->jme_if;
612 	jme_stop(ifp, 1);
613 
614 	return true;
615 }
616 
617 static void
jme_stop(struct ifnet * ifp,int disable)618 jme_stop(struct ifnet *ifp, int disable)
619 {
620 	jme_softc_t *sc = ifp->if_softc;
621 	int i;
622 	/* Stop receiver, transmitter. */
623 	jme_stop_rx(sc);
624 	jme_stop_tx(sc);
625 	/* free receive mbufs */
626 	for (i = 0; i < JME_NBUFS; i++) {
627 		if (sc->jme_rxmbuf[i]) {
628 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_rxmbufm[i]);
629 			m_freem(sc->jme_rxmbuf[i]);
630 		}
631 		sc->jme_rxmbuf[i] = NULL;
632 	}
633 	/* process completed transmits */
634 	jme_txeof(sc);
635 	/* free abort pending transmits */
636 	for (i = 0; i < JME_NBUFS; i++) {
637 		if (sc->jme_txmbuf[i]) {
638 			bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[i]);
639 			m_freem(sc->jme_txmbuf[i]);
640 			sc->jme_txmbuf[i] = NULL;
641 		}
642 	}
643 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
644 	ifp->if_timer = 0;
645 }
646 
647 #if 0
648 static void
649 jme_restart(void *v)
650 {
651 
652 	jme_init(v);
653 }
654 #endif
655 
656 static int
jme_add_rxbuf(jme_softc_t * sc,struct mbuf * m)657 jme_add_rxbuf(jme_softc_t *sc, struct mbuf *m)
658 {
659 	int error;
660 	bus_dmamap_t map;
661 	int i = sc->jme_rx_prod;
662 
663 	if (sc->jme_rxmbuf[i] != NULL) {
664 		aprint_error_dev(sc->jme_dev,
665 		    "mbuf already here: rxprod %d rxcons %d\n",
666 		    sc->jme_rx_prod, sc->jme_rx_cons);
667 		if (m)
668 			m_freem(m);
669 		return EINVAL;
670 	}
671 
672 	if (m == NULL) {
673 		sc->jme_rxmbuf[i] = NULL;
674 		MGETHDR(m, M_DONTWAIT, MT_DATA);
675 		if (m == NULL)
676 			return (ENOBUFS);
677 		MCLGET(m, M_DONTWAIT);
678 		if ((m->m_flags & M_EXT) == 0) {
679 			m_freem(m);
680 			return (ENOBUFS);
681 		}
682 	}
683 	map = sc->jme_rxmbufm[i];
684 	m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
685 	KASSERT(m->m_len == MCLBYTES);
686 
687 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, map, m,
688 	    BUS_DMA_READ | BUS_DMA_NOWAIT);
689 	if (error) {
690 		sc->jme_rxmbuf[i] = NULL;
691 		aprint_error_dev(sc->jme_dev,
692 		    "unable to load rx DMA map %d, error = %d\n",
693 		    i, error);
694 		m_freem(m);
695 		return (error);
696 	}
697 	bus_dmamap_sync(sc->jme_dmatag, map, 0, map->dm_mapsize,
698 	    BUS_DMASYNC_PREREAD);
699 
700 	sc->jme_rxmbuf[i] = m;
701 
702 	sc->jme_rxring[i].buflen = htole32(map->dm_segs[0].ds_len);
703 	sc->jme_rxring[i].addr_lo =
704 	    htole32(JME_ADDR_LO(map->dm_segs[0].ds_addr));
705 	sc->jme_rxring[i].addr_hi =
706 	    htole32(JME_ADDR_HI(map->dm_segs[0].ds_addr));
707 	sc->jme_rxring[i].flags =
708 	    htole32(JME_RD_OWN | JME_RD_INTR | JME_RD_64BIT);
709 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap,
710 	    i * sizeof(struct jme_desc), sizeof(struct jme_desc),
711 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
712 	JME_DESC_INC(sc->jme_rx_prod, JME_NBUFS);
713 	return (0);
714 }
715 
716 static int
jme_ifinit(struct ifnet * ifp)717 jme_ifinit(struct ifnet *ifp)
718 {
719 	return jme_init(ifp, 1);
720 }
721 
722 static int
jme_init(struct ifnet * ifp,int do_ifinit)723 jme_init(struct ifnet *ifp, int do_ifinit)
724 {
725 	jme_softc_t *sc = ifp->if_softc;
726 	int i, s;
727 	uint8_t eaddr[ETHER_ADDR_LEN];
728 	uint32_t reg;
729 
730 	s = splnet();
731 	/* cancel any pending IO */
732 	jme_stop(ifp, 1);
733 	jme_reset(sc);
734 	if ((sc->jme_if.if_flags & IFF_UP) == 0) {
735 		splx(s);
736 		return 0;
737 	}
738 	/* allocate receive ring */
739 	sc->jme_rx_prod = 0;
740 	for (i = 0; i < JME_NBUFS; i++) {
741 		if (jme_add_rxbuf(sc, NULL) < 0) {
742 			aprint_error_dev(sc->jme_dev,
743 			    "can't allocate rx mbuf\n");
744 			for (i--; i >= 0; i--) {
745 				bus_dmamap_unload(sc->jme_dmatag,
746 				    sc->jme_rxmbufm[i]);
747 				m_freem(sc->jme_rxmbuf[i]);
748 				sc->jme_rxmbuf[i] = NULL;
749 			}
750 			splx(s);
751 			return ENOMEM;
752 		}
753 	}
754 	/* init TX ring */
755 	memset(sc->jme_txring, 0, JME_NBUFS * sizeof(struct jme_desc));
756 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
757 	    0, JME_NBUFS * sizeof(struct jme_desc),
758 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
759 	for (i = 0; i < JME_NBUFS; i++)
760 		sc->jme_txmbuf[i] = NULL;
761 	sc->jme_tx_cons = sc->jme_tx_prod = sc->jme_tx_cnt = 0;
762 
763 	/* Reprogram the station address. */
764 	memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
765 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0,
766 	    eaddr[3] << 24 | eaddr[2] << 16 | eaddr[1] << 8 | eaddr[0]);
767 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
768 	    JME_PAR1, eaddr[5] << 8 | eaddr[4]);
769 
770 	/*
771 	 * Configure Tx queue.
772 	 *  Tx priority queue weight value : 0
773 	 *  Tx FIFO threshold for processing next packet : 16QW
774 	 *  Maximum Tx DMA length : 512
775 	 *  Allow Tx DMA burst.
776 	 */
777 	sc->jme_txcsr = TXCSR_TXQ_N_SEL(TXCSR_TXQ0);
778 	sc->jme_txcsr |= TXCSR_TXQ_WEIGHT(TXCSR_TXQ_WEIGHT_MIN);
779 	sc->jme_txcsr |= TXCSR_FIFO_THRESH_16QW;
780 	sc->jme_txcsr |= TXCSR_DMA_SIZE_512;
781 	sc->jme_txcsr |= TXCSR_DMA_BURST;
782 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
783 	     JME_TXCSR, sc->jme_txcsr);
784 
785 	/* Set Tx descriptor counter. */
786 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
787 	     JME_TXQDC, JME_NBUFS);
788 
789 	/* Set Tx ring address to the hardware. */
790 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI,
791 	    JME_ADDR_HI(sc->jme_txmap->dm_segs[0].ds_addr));
792 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO,
793 	    JME_ADDR_LO(sc->jme_txmap->dm_segs[0].ds_addr));
794 
795 	/* Configure TxMAC parameters. */
796 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC,
797 	    TXMAC_IFG1_DEFAULT | TXMAC_IFG2_DEFAULT | TXMAC_IFG_ENB |
798 	    TXMAC_THRESH_1_PKT | TXMAC_CRC_ENB | TXMAC_PAD_ENB);
799 
800 	/*
801 	 * Configure Rx queue.
802 	 *  FIFO full threshold for transmitting Tx pause packet : 128T
803 	 *  FIFO threshold for processing next packet : 128QW
804 	 *  Rx queue 0 select
805 	 *  Max Rx DMA length : 128
806 	 *  Rx descriptor retry : 32
807 	 *  Rx descriptor retry time gap : 256ns
808 	 *  Don't receive runt/bad frame.
809 	 */
810 	sc->jme_rxcsr = RXCSR_FIFO_FTHRESH_128T;
811 	/*
812 	 * Since Rx FIFO size is 4K bytes, receiving frames larger
813 	 * than 4K bytes will suffer from Rx FIFO overruns. So
814 	 * decrease FIFO threshold to reduce the FIFO overruns for
815 	 * frames larger than 4000 bytes.
816 	 * For best performance of standard MTU sized frames use
817 	 * maximum allowable FIFO threshold, 128QW.
818 	 */
819 	if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
820 	    ETHER_CRC_LEN) > JME_RX_FIFO_SIZE)
821 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_16QW;
822 	else
823 		sc->jme_rxcsr |= RXCSR_FIFO_THRESH_128QW;
824 	sc->jme_rxcsr |= RXCSR_DMA_SIZE_128 | RXCSR_RXQ_N_SEL(RXCSR_RXQ0);
825 	sc->jme_rxcsr |= RXCSR_DESC_RT_CNT(RXCSR_DESC_RT_CNT_DEFAULT);
826 	sc->jme_rxcsr |= RXCSR_DESC_RT_GAP_256 & RXCSR_DESC_RT_GAP_MASK;
827 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
828 	     JME_RXCSR, sc->jme_rxcsr);
829 
830 	/* Set Rx descriptor counter. */
831 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
832 	     JME_RXQDC, JME_NBUFS);
833 
834 	/* Set Rx ring address to the hardware. */
835 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI,
836 	    JME_ADDR_HI(sc->jme_rxmap->dm_segs[0].ds_addr));
837 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO,
838 	    JME_ADDR_LO(sc->jme_rxmap->dm_segs[0].ds_addr));
839 
840 	/* Clear receive filter. */
841 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, 0);
842 	/* Set up the receive filter. */
843 	jme_set_filter(sc);
844 
845 	/*
846 	 * Disable all WOL bits as WOL can interfere normal Rx
847 	 * operation. Also clear WOL detection status bits.
848 	 */
849 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS);
850 	reg &= ~PMCS_WOL_ENB_MASK;
851 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PMCS, reg);
852 
853 	reg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
854 	/*
855 	 * Pad 10bytes right before received frame. This will greatly
856 	 * help Rx performance on strict-alignment architectures as
857 	 * it does not need to copy the frame to align the payload.
858 	 */
859 	reg |= RXMAC_PAD_10BYTES;
860 	if ((ifp->if_capenable &
861 	    (IFCAP_CSUM_IPv4_Rx | IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
862 	     IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) != 0)
863 		reg |= RXMAC_CSUM_ENB;
864 	reg |= RXMAC_VLAN_ENB; /* enable hardware vlan */
865 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, reg);
866 
867 	/* Configure general purpose reg0 */
868 	reg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0);
869 	reg &= ~GPREG0_PCC_UNIT_MASK;
870 	/* Set PCC timer resolution to micro-seconds unit. */
871 	reg |= GPREG0_PCC_UNIT_US;
872 	/*
873 	 * Disable all shadow register posting as we have to read
874 	 * JME_INTR_STATUS register in jme_int_task. Also it seems
875 	 * that it's hard to synchronize interrupt status between
876 	 * hardware and software with shadow posting due to
877 	 * requirements of bus_dmamap_sync(9).
878 	 */
879 	reg |= GPREG0_SH_POST_DW7_DIS | GPREG0_SH_POST_DW6_DIS |
880 	    GPREG0_SH_POST_DW5_DIS | GPREG0_SH_POST_DW4_DIS |
881 	    GPREG0_SH_POST_DW3_DIS | GPREG0_SH_POST_DW2_DIS |
882 	    GPREG0_SH_POST_DW1_DIS | GPREG0_SH_POST_DW0_DIS;
883 	/* Disable posting of DW0. */
884 	reg &= ~GPREG0_POST_DW0_ENB;
885 	/* Clear PME message. */
886 	reg &= ~GPREG0_PME_ENB;
887 	/* Set PHY address. */
888 	reg &= ~GPREG0_PHY_ADDR_MASK;
889 	reg |= sc->jme_phyaddr;
890 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_GPREG0, reg);
891 
892 	/* Configure Tx queue 0 packet completion coalescing. */
893 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
894 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
895 	reg |= PCCTX_COAL_TXQ0;
896 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
897 
898 	/* Configure Rx queue 0 packet completion coalescing. */
899 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
900 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
901 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
902 
903 	/* Disable Timers */
904 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TMCSR, 0);
905 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER1, 0);
906 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_TIMER2, 0);
907 
908 	/* Configure retry transmit period, retry limit value. */
909 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
910 	    ((TXTRHD_RT_PERIOD_DEFAULT << TXTRHD_RT_PERIOD_SHIFT) &
911 	    TXTRHD_RT_PERIOD_MASK) |
912 	    ((TXTRHD_RT_LIMIT_DEFAULT << TXTRHD_RT_LIMIT_SHIFT) &
913 	    TXTRHD_RT_LIMIT_SHIFT));
914 
915 	/* Disable RSS. */
916 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
917 	    JME_RSSC, RSSC_DIS_RSS);
918 
919 	/* Initialize the interrupt mask. */
920 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
921 	     JME_INTR_MASK_SET, JME_INTRS_ENABLE);
922 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
923 	     JME_INTR_STATUS, 0xFFFFFFFF);
924 
925 	/* set media, if not already handling a media change */
926 	if (do_ifinit) {
927 		int error;
928 		if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
929 			error = 0;
930 		else if (error != 0) {
931 			aprint_error_dev(sc->jme_dev, "could not set media\n");
932 			splx(s);
933 			return error;
934 		}
935 	}
936 
937 	/* Program MAC with resolved speed/duplex/flow-control. */
938 	jme_mac_config(sc);
939 
940 	/* Start receiver/transmitter. */
941 	sc->jme_rx_cons = 0;
942 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR,
943 	    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
944 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
945 	    sc->jme_txcsr | TXCSR_TX_ENB);
946 
947 	/* start ticks calls */
948 	callout_schedule(&sc->jme_tick_ch, hz);
949 	sc->jme_if.if_flags |= IFF_RUNNING;
950 	sc->jme_if.if_flags &= ~IFF_OACTIVE;
951 	splx(s);
952 	return 0;
953 }
954 
955 static int
jme_mii_read(device_t self,int phy,int reg,uint16_t * val)956 jme_mii_read(device_t self, int phy, int reg, uint16_t *val)
957 {
958 	struct jme_softc *sc = device_private(self);
959 	int data, i;
960 
961 	/* For FPGA version, PHY address 0 should be ignored. */
962 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
963 		if (phy == 0)
964 			return -1;
965 	} else {
966 		if (sc->jme_phyaddr != phy)
967 			return -1;
968 	}
969 
970 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
971 	    SMI_OP_READ | SMI_OP_EXECUTE |
972 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
973 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
974 		delay(10);
975 		if (((data = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
976 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
977 			break;
978 	}
979 
980 	if (i == 0) {
981 		aprint_error_dev(sc->jme_dev, "phy read timeout : %d\n", reg);
982 		return ETIMEDOUT;
983 	}
984 
985 	*val = (data & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
986 	return 0;
987 }
988 
989 static int
jme_mii_write(device_t self,int phy,int reg,uint16_t val)990 jme_mii_write(device_t self, int phy, int reg, uint16_t val)
991 {
992 	struct jme_softc *sc = device_private(self);
993 	int i;
994 
995 	/* For FPGA version, PHY address 0 should be ignored. */
996 	if ((sc->jme_flags & JME_FLAG_FPGA) != 0) {
997 		if (phy == 0)
998 			return -1;
999 	} else {
1000 		if (sc->jme_phyaddr != phy)
1001 			return -1;
1002 	}
1003 
1004 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_SMI,
1005 	    SMI_OP_WRITE | SMI_OP_EXECUTE |
1006 	    (((uint32_t)val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
1007 	    SMI_PHY_ADDR(phy) | SMI_REG_ADDR(reg));
1008 	for (i = JME_PHY_TIMEOUT / 10; i > 0; i--) {
1009 		delay(10);
1010 		if (((val = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac,
1011 		    JME_SMI)) & SMI_OP_EXECUTE) == 0)
1012 			break;
1013 	}
1014 
1015 	if (i == 0) {
1016 		aprint_error_dev(sc->jme_dev, "phy write timeout : %d\n", reg);
1017 		return ETIMEDOUT;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 static void
jme_statchg(struct ifnet * ifp)1024 jme_statchg(struct ifnet *ifp)
1025 {
1026 	if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
1027 		jme_init(ifp, 0);
1028 }
1029 
1030 static void
jme_intr_rx(jme_softc_t * sc)1031 jme_intr_rx(jme_softc_t *sc) {
1032 	struct mbuf *m, *mhead;
1033 	bus_dmamap_t mmap;
1034 	struct ifnet *ifp = &sc->jme_if;
1035 	uint32_t flags,	 buflen;
1036 	int i, ipackets, nsegs, seg, error;
1037 	struct jme_desc *desc;
1038 
1039 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_rxmap, 0,
1040 	    sizeof(struct jme_desc) * JME_NBUFS,
1041 	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1042 #ifdef JMEDEBUG_RX
1043 	printf("rxintr sc->jme_rx_cons %d flags 0x%x\n",
1044 	    sc->jme_rx_cons, le32toh(sc->jme_rxring[sc->jme_rx_cons].flags));
1045 #endif
1046 	ipackets = 0;
1047 	while ((le32toh(sc->jme_rxring[sc->jme_rx_cons].flags) & JME_RD_OWN)
1048 	    == 0) {
1049 		i = sc->jme_rx_cons;
1050 		desc = &sc->jme_rxring[i];
1051 #ifdef JMEDEBUG_RX
1052 		printf("rxintr i %d flags 0x%x buflen 0x%x\n",
1053 		    i, le32toh(desc->flags), le32toh(desc->buflen));
1054 #endif
1055 		if (sc->jme_rxmbuf[i] == NULL) {
1056 			if ((error = jme_add_rxbuf(sc, NULL)) != 0) {
1057 				aprint_error_dev(sc->jme_dev,
1058 				    "can't add new mbuf to empty slot: %d\n",
1059 				    error);
1060 				break;
1061 			}
1062 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1063 			i = sc->jme_rx_cons;
1064 			continue;
1065 		}
1066 		if ((le32toh(desc->buflen) & JME_RD_VALID) == 0)
1067 			break;
1068 
1069 		buflen = le32toh(desc->buflen);
1070 		nsegs = JME_RX_NSEGS(buflen);
1071 		flags = le32toh(desc->flags);
1072 		if ((buflen & JME_RX_ERR_STAT) != 0 ||
1073 		    JME_RX_BYTES(buflen) < sizeof(struct ether_header) ||
1074 		    JME_RX_BYTES(buflen) >
1075 		    (ifp->if_mtu + ETHER_HDR_LEN + JME_RX_PAD_BYTES)) {
1076 #ifdef JMEDEBUG_RX
1077 			printf("rx error flags 0x%x buflen 0x%x\n",
1078 			    flags, buflen);
1079 #endif
1080 			if_statinc(ifp, if_ierrors);
1081 			/* reuse the mbufs */
1082 			for (seg = 0; seg < nsegs; seg++) {
1083 				m = sc->jme_rxmbuf[i];
1084 				sc->jme_rxmbuf[i] = NULL;
1085 				mmap = sc->jme_rxmbufm[i];
1086 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1087 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1088 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1089 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1090 					aprint_error_dev(sc->jme_dev,
1091 					    "can't reuse mbuf: %d\n", error);
1092 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1093 				i = sc->jme_rx_cons;
1094 			}
1095 			continue;
1096 		}
1097 		/* receive this packet */
1098 		mhead = m = sc->jme_rxmbuf[i];
1099 		sc->jme_rxmbuf[i] = NULL;
1100 		mmap = sc->jme_rxmbufm[i];
1101 		bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1102 		    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1103 		bus_dmamap_unload(sc->jme_dmatag, mmap);
1104 		/* add a new buffer to chain */
1105 		if (jme_add_rxbuf(sc, NULL) != 0) {
1106 			if ((error = jme_add_rxbuf(sc, m)) != 0)
1107 				aprint_error_dev(sc->jme_dev,
1108 				    "can't reuse mbuf: %d\n", error);
1109 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1110 			i = sc->jme_rx_cons;
1111 			for (seg = 1; seg < nsegs; seg++) {
1112 				m = sc->jme_rxmbuf[i];
1113 				sc->jme_rxmbuf[i] = NULL;
1114 				mmap = sc->jme_rxmbufm[i];
1115 				bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1116 				    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1117 				bus_dmamap_unload(sc->jme_dmatag, mmap);
1118 				if ((error = jme_add_rxbuf(sc, m)) != 0)
1119 					aprint_error_dev(sc->jme_dev,
1120 					    "can't reuse mbuf: %d\n", error);
1121 				JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1122 				i = sc->jme_rx_cons;
1123 			}
1124 			if_statinc(ifp, if_ierrors);
1125 			continue;
1126 		}
1127 
1128 		/* build mbuf chain: head, then remaining segments */
1129 		m_set_rcvif(m, ifp);
1130 		m->m_pkthdr.len = JME_RX_BYTES(buflen) - JME_RX_PAD_BYTES;
1131 		m->m_len = (nsegs > 1) ? (MCLBYTES - JME_RX_PAD_BYTES) :
1132 		    m->m_pkthdr.len;
1133 		m->m_data = m->m_ext.ext_buf + JME_RX_PAD_BYTES;
1134 		JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1135 		for (seg = 1; seg < nsegs; seg++) {
1136 			i = sc->jme_rx_cons;
1137 			m = sc->jme_rxmbuf[i];
1138 			sc->jme_rxmbuf[i] = NULL;
1139 			mmap = sc->jme_rxmbufm[i];
1140 			bus_dmamap_sync(sc->jme_dmatag, mmap, 0,
1141 			    mmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
1142 			bus_dmamap_unload(sc->jme_dmatag, mmap);
1143 			if ((error = jme_add_rxbuf(sc, NULL)) != 0)
1144 				aprint_error_dev(sc->jme_dev,
1145 				    "can't add new mbuf: %d\n", error);
1146 			m->m_flags &= ~M_PKTHDR;
1147 			m_cat(mhead, m);
1148 			JME_DESC_INC(sc->jme_rx_cons, JME_NBUFS);
1149 		}
1150 		/* and adjust last mbuf's size */
1151 		if (nsegs > 1) {
1152 			m->m_len =
1153 			    JME_RX_BYTES(buflen) - (MCLBYTES * (nsegs - 1));
1154 		}
1155 		ipackets++;
1156 
1157 		if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) &&
1158 		    (flags & JME_RD_IPV4)) {
1159 			mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4;
1160 			if (!(flags & JME_RD_IPCSUM))
1161 				mhead->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
1162 		}
1163 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv4_Rx) &&
1164 		    (flags & JME_RD_TCPV4) == JME_RD_TCPV4) {
1165 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
1166 			if (!(flags & JME_RD_TCPCSUM))
1167 				mhead->m_pkthdr.csum_flags |=
1168 				    M_CSUM_TCP_UDP_BAD;
1169 		}
1170 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv4_Rx) &&
1171 		    (flags & JME_RD_UDPV4) == JME_RD_UDPV4) {
1172 			mhead->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
1173 			if (!(flags & JME_RD_UDPCSUM))
1174 				mhead->m_pkthdr.csum_flags |=
1175 				    M_CSUM_TCP_UDP_BAD;
1176 		}
1177 		if ((ifp->if_capenable & IFCAP_CSUM_TCPv6_Rx) &&
1178 		    (flags & JME_RD_TCPV6) == JME_RD_TCPV6) {
1179 			mhead->m_pkthdr.csum_flags |= M_CSUM_TCPv6;
1180 			if (!(flags & JME_RD_TCPCSUM))
1181 				mhead->m_pkthdr.csum_flags |=
1182 				    M_CSUM_TCP_UDP_BAD;
1183 		}
1184 		if ((ifp->if_capenable & IFCAP_CSUM_UDPv6_Rx) &&
1185 		    (flags & JME_RD_UDPV6) == JME_RD_UDPV6) {
1186 			m->m_pkthdr.csum_flags |= M_CSUM_UDPv6;
1187 			if (!(flags & JME_RD_UDPCSUM))
1188 				mhead->m_pkthdr.csum_flags |=
1189 				    M_CSUM_TCP_UDP_BAD;
1190 		}
1191 		if (flags & JME_RD_VLAN_TAG) {
1192 			/* pass to vlan_input() */
1193 			vlan_set_tag(mhead, (flags & JME_RD_VLAN_MASK));
1194 		}
1195 		if_percpuq_enqueue(ifp->if_percpuq, mhead);
1196 	}
1197 	if (ipackets)
1198 		rnd_add_uint32(&sc->rnd_source, ipackets);
1199 }
1200 
1201 static int
jme_intr(void * v)1202 jme_intr(void *v)
1203 {
1204 	jme_softc_t *sc = v;
1205 	uint32_t istatus;
1206 
1207 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1208 	     JME_INTR_STATUS);
1209 	if (istatus == 0 || istatus == 0xFFFFFFFF)
1210 		return 0;
1211 	/* Disable interrupts. */
1212 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1213 	    JME_INTR_MASK_CLR, 0xFFFFFFFF);
1214 again:
1215 	/* and update istatus */
1216 	istatus = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1217 	     JME_INTR_STATUS);
1218 	if ((istatus & JME_INTRS_CHECK) == 0)
1219 		goto done;
1220 	/* Reset PCC counter/timer and Ack interrupts. */
1221 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1222 		istatus |= INTR_TXQ_COAL | INTR_TXQ_COAL_TO | INTR_TXQ_COMP;
1223 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1224 		istatus |= INTR_RXQ_COAL | INTR_RXQ_COAL_TO | INTR_RXQ_COMP;
1225 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1226 	     JME_INTR_STATUS, istatus);
1227 
1228 	if ((sc->jme_if.if_flags & IFF_RUNNING) == 0)
1229 		goto done;
1230 #ifdef JMEDEBUG_RX
1231 	printf("jme_intr 0x%x RXCS 0x%x RXDBA 0x%x  0x%x RXQDC 0x%x RXNDA 0x%x RXMCS 0x%x\n", istatus,
1232 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXCSR),
1233 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_LO),
1234 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXDBA_HI),
1235 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXQDC),
1236 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXNDA),
1237 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC));
1238 	printf("jme_intr RXUMA 0x%x 0x%x RXMCHT 0x%x 0x%x GHC 0x%x\n",
1239 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0),
1240 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1),
1241 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0),
1242 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1),
1243 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC));
1244 #endif
1245 	if ((istatus & (INTR_RXQ_COMP | INTR_RXQ_COAL | INTR_RXQ_COAL_TO)) != 0)
1246 		jme_intr_rx(sc);
1247 	if ((istatus & INTR_RXQ_DESC_EMPTY) != 0) {
1248 		/*
1249 		 * Notify hardware availability of new Rx
1250 		 * buffers.
1251 		 * Reading RXCSR takes very long time under
1252 		 * heavy load so cache RXCSR value and writes
1253 		 * the ORed value with the kick command to
1254 		 * the RXCSR. This saves one register access
1255 		 * cycle.
1256 		 */
1257 		sc->jme_rx_cons = 0;
1258 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1259 		    JME_RXCSR,
1260 		    sc->jme_rxcsr | RXCSR_RX_ENB | RXCSR_RXQ_START);
1261 	}
1262 	if ((istatus & (INTR_TXQ_COMP | INTR_TXQ_COAL | INTR_TXQ_COAL_TO)) != 0)
1263 		jme_ifstart(&sc->jme_if);
1264 
1265 	goto again;
1266 
1267 done:
1268 	/* enable interrupts. */
1269 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1270 	    JME_INTR_MASK_SET, JME_INTRS_ENABLE);
1271 	return 1;
1272 }
1273 
1274 
1275 static int
jme_ifioctl(struct ifnet * ifp,unsigned long cmd,void * data)1276 jme_ifioctl(struct ifnet *ifp, unsigned long cmd, void *data)
1277 {
1278 	struct jme_softc *sc = ifp->if_softc;
1279 	int s, error;
1280 	struct ifreq *ifr;
1281 	struct ifcapreq *ifcr;
1282 
1283 	s = splnet();
1284 	/*
1285 	 * we can't support at the same time jumbo frames and
1286 	 * TX checksums offload/TSO
1287 	 */
1288 	switch (cmd) {
1289 	case SIOCSIFMTU:
1290 		ifr = data;
1291 		if (ifr->ifr_mtu > JME_TX_FIFO_SIZE &&
1292 		    (ifp->if_capenable & (
1293 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1294 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1295 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1296 			splx(s);
1297 			return EINVAL;
1298 		}
1299 		break;
1300 	case SIOCSIFCAP:
1301 		ifcr = data;
1302 		if (ifp->if_mtu > JME_TX_FIFO_SIZE &&
1303 		    (ifcr->ifcr_capenable & (
1304 		    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_TCPv4_Tx |
1305 		    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv6_Tx |
1306 		    IFCAP_CSUM_UDPv6_Tx | IFCAP_TSOv4 | IFCAP_TSOv6)) != 0) {
1307 			splx(s);
1308 			return EINVAL;
1309 		}
1310 		break;
1311 	}
1312 
1313 	error = ether_ioctl(ifp, cmd, data);
1314 	if (error == ENETRESET && (ifp->if_flags & IFF_RUNNING)) {
1315 		if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
1316 			jme_set_filter(sc);
1317 			error = 0;
1318 		} else {
1319 			error = jme_init(ifp, 0);
1320 		}
1321 	}
1322 	splx(s);
1323 	return error;
1324 }
1325 
1326 static int
jme_encap(struct jme_softc * sc,struct mbuf * const m)1327 jme_encap(struct jme_softc *sc, struct mbuf * const m)
1328 {
1329 	struct jme_desc *desc;
1330 	int error, i, prod, headdsc, nsegs;
1331 	uint32_t cflags, tso_segsz;
1332 
1333 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1334 		/*
1335 		 * Due to the adherence to NDIS specification JMC250
1336 		 * assumes upper stack computed TCP pseudo checksum
1337 		 * without including payload length. This breaks
1338 		 * checksum offload for TSO case so recompute TCP
1339 		 * pseudo checksum for JMC250. Hopefully this wouldn't
1340 		 * be much burden on modern CPUs.
1341 		 */
1342 		bool v4 = (m->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
1343 		int iphl = v4 ?
1344 		    M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data) :
1345 		    M_CSUM_DATA_IPv6_IPHL(m->m_pkthdr.csum_data);
1346 		/*
1347 		 * note: we support vlan offloading, so we should never have
1348 		 * a ETHERTYPE_VLAN packet here - so ETHER_HDR_LEN is always
1349 		 * right.
1350 		 */
1351 		int hlen = ETHER_HDR_LEN + iphl;
1352 
1353 		if (__predict_false(m->m_len <
1354 		    (hlen + sizeof(struct tcphdr)))) {
1355 			/*
1356 			 *
1357 			 * TCP/IP headers are not in the first mbuf; we need
1358 			 * to do this the slow and painful way.  Let's just
1359 			 * hope this doesn't happen very often.
1360 			 */
1361 			struct tcphdr th;
1362 
1363 			m_copydata(m, hlen, sizeof(th), &th);
1364 			if (v4) {
1365 				struct ip ip;
1366 
1367 				m_copydata(m, ETHER_HDR_LEN, sizeof(ip), &ip);
1368 				ip.ip_len = 0;
1369 				m_copyback(m,
1370 				    ETHER_HDR_LEN + offsetof(struct ip, ip_len),
1371 				    sizeof(ip.ip_len), &ip.ip_len);
1372 				th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
1373 				    ip.ip_dst.s_addr, htons(IPPROTO_TCP));
1374 			} else {
1375 #if INET6
1376 				struct ip6_hdr ip6;
1377 
1378 				m_copydata(m, ETHER_HDR_LEN,
1379 				    sizeof(ip6), &ip6);
1380 				ip6.ip6_plen = 0;
1381 				m_copyback(m, ETHER_HDR_LEN +
1382 				    offsetof(struct ip6_hdr, ip6_plen),
1383 				    sizeof(ip6.ip6_plen), &ip6.ip6_plen);
1384 				th.th_sum = in6_cksum_phdr(&ip6.ip6_src,
1385 				    &ip6.ip6_dst, 0, htonl(IPPROTO_TCP));
1386 #endif /* INET6 */
1387 			}
1388 			m_copyback(m, hlen + offsetof(struct tcphdr, th_sum),
1389 			    sizeof(th.th_sum), &th.th_sum);
1390 
1391 			hlen += th.th_off << 2;
1392 		} else {
1393 			/*
1394 			 * TCP/IP headers are in the first mbuf; we can do
1395 			 * this the easy way.
1396 			 */
1397 			struct tcphdr *th;
1398 
1399 			if (v4) {
1400 				struct ip *ip =
1401 				    (void *)(mtod(m, char *) +
1402 				    ETHER_HDR_LEN);
1403 				th = (void *)(mtod(m, char *) + hlen);
1404 
1405 				ip->ip_len = 0;
1406 				th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
1407 				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1408 			} else {
1409 #if INET6
1410 				struct ip6_hdr *ip6 =
1411 				    (void *)(mtod(m, char *) +
1412 				    ETHER_HDR_LEN);
1413 				th = (void *)(mtod(m, char *) + hlen);
1414 
1415 				ip6->ip6_plen = 0;
1416 				th->th_sum = in6_cksum_phdr(&ip6->ip6_src,
1417 				    &ip6->ip6_dst, 0, htonl(IPPROTO_TCP));
1418 #endif /* INET6 */
1419 			}
1420 			hlen += th->th_off << 2;
1421 		}
1422 	}
1423 
1424 	prod = sc->jme_tx_prod;
1425 
1426 	error = bus_dmamap_load_mbuf(sc->jme_dmatag, sc->jme_txmbufm[prod],
1427 	    m, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1428 	if (error) {
1429 		if (error == EFBIG) {
1430 			log(LOG_ERR, "%s: Tx packet consumes too many "
1431 			    "DMA segments, dropping...\n",
1432 			    device_xname(sc->jme_dev));
1433 			/* Caller will free the packet. */
1434 		}
1435 		return (error);
1436 	}
1437 	/*
1438 	 * Check descriptor overrun. Leave one free descriptor.
1439 	 * Since we always use 64bit address mode for transmitting,
1440 	 * each Tx request requires one more dummy descriptor.
1441 	 */
1442 	nsegs = sc->jme_txmbufm[prod]->dm_nsegs;
1443 #ifdef JMEDEBUG_TX
1444 	printf("jme_encap prod %d nsegs %d jme_tx_cnt %d\n", prod, nsegs, sc->jme_tx_cnt);
1445 #endif
1446 	if (sc->jme_tx_cnt + nsegs + 1 > JME_NBUFS - 1) {
1447 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[prod]);
1448 		return (ENOBUFS);
1449 	}
1450 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[prod],
1451 	    0, sc->jme_txmbufm[prod]->dm_mapsize, BUS_DMASYNC_PREWRITE);
1452 
1453 	cflags = 0;
1454 	tso_segsz = 0;
1455 	/* Configure checksum offload and TSO. */
1456 	if ((m->m_pkthdr.csum_flags & (M_CSUM_TSOv4 | M_CSUM_TSOv6)) != 0) {
1457 		tso_segsz = (uint32_t)m->m_pkthdr.segsz << JME_TD_MSS_SHIFT;
1458 		cflags |= JME_TD_TSO;
1459 	} else {
1460 		if ((m->m_pkthdr.csum_flags & M_CSUM_IPv4) != 0)
1461 			cflags |= JME_TD_IPCSUM;
1462 		if ((m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_TCPv6))
1463 		    != 0)
1464 			cflags |= JME_TD_TCPCSUM;
1465 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv4 | M_CSUM_UDPv6))
1466 		    != 0)
1467 			cflags |= JME_TD_UDPCSUM;
1468 	}
1469 	/* Configure VLAN. */
1470 	if (vlan_has_tag(m)) {
1471 		cflags |= (vlan_get_tag(m) & JME_TD_VLAN_MASK);
1472 		cflags |= JME_TD_VLAN_TAG;
1473 	}
1474 
1475 	desc = &sc->jme_txring[prod];
1476 	desc->flags = htole32(cflags);
1477 	desc->buflen = htole32(tso_segsz);
1478 	desc->addr_hi = htole32(m->m_pkthdr.len);
1479 	desc->addr_lo = 0;
1480 	headdsc = prod;
1481 	sc->jme_tx_cnt++;
1482 	JME_DESC_INC(prod, JME_NBUFS);
1483 	for (i = 0; i < nsegs; i++) {
1484 		desc = &sc->jme_txring[prod];
1485 		desc->flags = htole32(JME_TD_OWN | JME_TD_64BIT);
1486 		desc->buflen =
1487 		    htole32(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_len);
1488 		desc->addr_hi = htole32(
1489 		    JME_ADDR_HI(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1490 		desc->addr_lo = htole32(
1491 		    JME_ADDR_LO(sc->jme_txmbufm[headdsc]->dm_segs[i].ds_addr));
1492 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1493 		    prod * sizeof(struct jme_desc), sizeof(struct jme_desc),
1494 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1495 		sc->jme_txmbuf[prod] = NULL;
1496 		sc->jme_tx_cnt++;
1497 		JME_DESC_INC(prod, JME_NBUFS);
1498 	}
1499 
1500 	/* Update producer index. */
1501 	sc->jme_tx_prod = prod;
1502 #ifdef JMEDEBUG_TX
1503 	printf("jme_encap prod now %d\n", sc->jme_tx_prod);
1504 #endif
1505 	/*
1506 	 * Finally request interrupt and give the first descriptor
1507 	 * ownership to hardware.
1508 	 */
1509 	desc = &sc->jme_txring[headdsc];
1510 	desc->flags |= htole32(JME_TD_OWN | JME_TD_INTR);
1511 	bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1512 	    headdsc * sizeof(struct jme_desc), sizeof(struct jme_desc),
1513 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1514 
1515 	sc->jme_txmbuf[headdsc] = m;
1516 	return (0);
1517 }
1518 
1519 static void
jme_txeof(struct jme_softc * sc)1520 jme_txeof(struct jme_softc *sc)
1521 {
1522 	struct ifnet *ifp;
1523 	struct jme_desc *desc;
1524 	uint32_t status;
1525 	int cons, cons0, nsegs, seg;
1526 
1527 	ifp = &sc->jme_if;
1528 
1529 #ifdef JMEDEBUG_TX
1530 	printf("jme_txeof cons %d prod %d\n",
1531 	    sc->jme_tx_cons, sc->jme_tx_prod);
1532 	printf("jme_txeof JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1533 	    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1534 	    "JME_TXTRHD 0x%x\n",
1535 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1536 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1537 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1538 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1539 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1540 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1541 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1542 	    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1543 	for (cons = sc->jme_tx_cons; cons != sc->jme_tx_prod; ) {
1544 		desc = &sc->jme_txring[cons];
1545 		printf("ring[%d] 0x%x 0x%x 0x%x 0x%x\n", cons,
1546 		    desc->flags, desc->buflen, desc->addr_hi, desc->addr_lo);
1547 		JME_DESC_INC(cons, JME_NBUFS);
1548 	}
1549 #endif
1550 
1551 	cons = sc->jme_tx_cons;
1552 	if (cons == sc->jme_tx_prod)
1553 		return;
1554 
1555 	/*
1556 	 * Go through our Tx list and free mbufs for those
1557 	 * frames which have been transmitted.
1558 	 */
1559 	for (; cons != sc->jme_tx_prod;) {
1560 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1561 		    cons * sizeof(struct jme_desc), sizeof(struct jme_desc),
1562 		    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1563 
1564 		desc = &sc->jme_txring[cons];
1565 		status = le32toh(desc->flags);
1566 #ifdef JMEDEBUG_TX
1567 		printf("jme_txeof %i status 0x%x nsegs %d\n", cons, status,
1568 		    sc->jme_txmbufm[cons]->dm_nsegs);
1569 #endif
1570 		if (status & JME_TD_OWN)
1571 			break;
1572 
1573 		if ((status & (JME_TD_TMOUT | JME_TD_RETRY_EXP)) != 0)
1574 			if_statinc(ifp, if_oerrors);
1575 		else {
1576 			if_statinc(ifp, if_opackets);
1577 			if ((status & JME_TD_COLLISION) != 0) {
1578 				if_statadd(ifp, if_collisions,
1579 				    le32toh(desc->buflen) &
1580 				    JME_TD_BUF_LEN_MASK);
1581 			}
1582 		}
1583 		/*
1584 		 * Only the first descriptor of multi-descriptor
1585 		 * transmission is updated so driver have to skip entire
1586 		 * chained buffers for the transmitted frame. In other
1587 		 * words, JME_TD_OWN bit is valid only at the first
1588 		 * descriptor of a multi-descriptor transmission.
1589 		 */
1590 		nsegs = sc->jme_txmbufm[cons]->dm_nsegs;
1591 		cons0 = cons;
1592 		JME_DESC_INC(cons, JME_NBUFS);
1593 		for (seg = 1; seg < nsegs + 1; seg++) {
1594 			bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmap,
1595 			    cons * sizeof(struct jme_desc),
1596 			    sizeof(struct jme_desc),
1597 			    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
1598 			sc->jme_txring[cons].flags = 0;
1599 			JME_DESC_INC(cons, JME_NBUFS);
1600 		}
1601 		/* Reclaim transferred mbufs. */
1602 		bus_dmamap_sync(sc->jme_dmatag, sc->jme_txmbufm[cons0],
1603 		    0, sc->jme_txmbufm[cons0]->dm_mapsize,
1604 		    BUS_DMASYNC_POSTWRITE);
1605 		bus_dmamap_unload(sc->jme_dmatag, sc->jme_txmbufm[cons0]);
1606 
1607 		KASSERT(sc->jme_txmbuf[cons0] != NULL);
1608 		m_freem(sc->jme_txmbuf[cons0]);
1609 		sc->jme_txmbuf[cons0] = NULL;
1610 		sc->jme_tx_cnt -= nsegs + 1;
1611 		KASSERT(sc->jme_tx_cnt >= 0);
1612 		sc->jme_if.if_flags &= ~IFF_OACTIVE;
1613 	}
1614 	sc->jme_tx_cons = cons;
1615 	/* Unarm watchdog timer when there are no pending descriptors in queue. */
1616 	if (sc->jme_tx_cnt == 0)
1617 		ifp->if_timer = 0;
1618 #ifdef JMEDEBUG_TX
1619 	printf("jme_txeof jme_tx_cnt %d\n", sc->jme_tx_cnt);
1620 #endif
1621 }
1622 
1623 static void
jme_ifstart(struct ifnet * ifp)1624 jme_ifstart(struct ifnet *ifp)
1625 {
1626 	jme_softc_t *sc = ifp->if_softc;
1627 	struct mbuf *mb_head;
1628 	int enq, error;
1629 
1630 	/*
1631 	 * check if we can free some desc.
1632 	 * Clear TX interrupt status to reset TX coalescing counters.
1633 	 */
1634 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1635 	     JME_INTR_STATUS, INTR_TXQ_COMP);
1636 	jme_txeof(sc);
1637 
1638 	if ((sc->jme_if.if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
1639 		return;
1640 	for (enq = 0;; enq++) {
1641 nexttx:
1642 		/* Grab a paquet for output */
1643 		IFQ_POLL(&ifp->if_snd, mb_head);
1644 		if (mb_head == NULL) {
1645 #ifdef JMEDEBUG_TX
1646 			printf("%s: nothing to send\n", __func__);
1647 #endif
1648 			break;
1649 		}
1650 		/* try to add this mbuf to the TX ring */
1651 		if ((error = jme_encap(sc, mb_head)) != 0) {
1652 			if (error == EFBIG) {
1653 				/* This error is fatal to the packet. */
1654 				IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1655 				m_freem(mb_head);
1656 				if_statinc(ifp, if_oerrors);
1657 				goto nexttx;
1658 			}
1659 			/* resource shortage, try again later */
1660 			ifp->if_flags |= IFF_OACTIVE;
1661 			break;
1662 		}
1663 		IFQ_DEQUEUE(&ifp->if_snd, mb_head);
1664 
1665 		/* Pass packet to bpf if there is a listener */
1666 		bpf_mtap(ifp, mb_head, BPF_D_OUT);
1667 	}
1668 #ifdef JMEDEBUG_TX
1669 	printf("jme_ifstart enq %d\n", enq);
1670 #endif
1671 	if (enq) {
1672 		/*
1673 		 * Set a 5 second timer just in case we don't hear from
1674 		 * the card again.
1675 		 */
1676 		ifp->if_timer = 5;
1677 		/*
1678 		 * Reading TXCSR takes very long time under heavy load
1679 		 * so cache TXCSR value and writes the ORed value with
1680 		 * the kick command to the TXCSR. This saves one register
1681 		 * access cycle.
1682 		 */
1683 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR,
1684 		  sc->jme_txcsr | TXCSR_TX_ENB | TXCSR_TXQ_N_START(TXCSR_TXQ0));
1685 #ifdef JMEDEBUG_TX
1686 		printf("jme_ifstart JME_TXCSR 0x%x JME_TXDBA_LO 0x%x JME_TXDBA_HI 0x%x "
1687 		    "JME_TXQDC 0x%x JME_TXNDA 0x%x JME_TXMAC 0x%x JME_TXPFC 0x%x "
1688 		    "JME_TXTRHD 0x%x\n",
1689 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXCSR),
1690 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_LO),
1691 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXDBA_HI),
1692 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXQDC),
1693 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXNDA),
1694 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC),
1695 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC),
1696 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD));
1697 #endif
1698 	}
1699 }
1700 
1701 static void
jme_ifwatchdog(struct ifnet * ifp)1702 jme_ifwatchdog(struct ifnet *ifp)
1703 {
1704 	jme_softc_t *sc = ifp->if_softc;
1705 
1706 	if ((ifp->if_flags & IFF_RUNNING) == 0)
1707 		return;
1708 	printf("%s: device timeout\n", device_xname(sc->jme_dev));
1709 	if_statinc(ifp, if_oerrors);
1710 	jme_init(ifp, 0);
1711 }
1712 
1713 static int
jme_mediachange(struct ifnet * ifp)1714 jme_mediachange(struct ifnet *ifp)
1715 {
1716 	int error;
1717 	jme_softc_t *sc = ifp->if_softc;
1718 
1719 	if ((error = mii_mediachg(&sc->jme_mii)) == ENXIO)
1720 		error = 0;
1721 	else if (error != 0) {
1722 		aprint_error_dev(sc->jme_dev, "could not set media\n");
1723 		return error;
1724 	}
1725 	return 0;
1726 }
1727 
1728 static void
jme_ticks(void * v)1729 jme_ticks(void *v)
1730 {
1731 	jme_softc_t *sc = v;
1732 	int s = splnet();
1733 
1734 	/* Tick the MII. */
1735 	mii_tick(&sc->jme_mii);
1736 
1737 	/* every seconds */
1738 	callout_schedule(&sc->jme_tick_ch, hz);
1739 	splx(s);
1740 }
1741 
1742 static void
jme_mac_config(jme_softc_t * sc)1743 jme_mac_config(jme_softc_t *sc)
1744 {
1745 	uint32_t ghc, gpreg, rxmac, txmac, txpause;
1746 	struct mii_data *mii = &sc->jme_mii;
1747 
1748 	ghc = 0;
1749 	rxmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1750 	rxmac &= ~RXMAC_FC_ENB;
1751 	txmac = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC);
1752 	txmac &= ~(TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST);
1753 	txpause = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC);
1754 	txpause &= ~TXPFC_PAUSE_ENB;
1755 
1756 	if (mii->mii_media_active & IFM_FDX) {
1757 		ghc |= GHC_FULL_DUPLEX;
1758 		rxmac &= ~RXMAC_COLL_DET_ENB;
1759 		txmac &= ~(TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE |
1760 		    TXMAC_BACKOFF | TXMAC_CARRIER_EXT |
1761 		    TXMAC_FRAME_BURST);
1762 		/* Disable retry transmit timer/retry limit. */
1763 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1764 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)
1765 		    & ~(TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB));
1766 	} else {
1767 		rxmac |= RXMAC_COLL_DET_ENB;
1768 		txmac |= TXMAC_COLL_ENB | TXMAC_CARRIER_SENSE | TXMAC_BACKOFF;
1769 		/* Enable retry transmit timer/retry limit. */
1770 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD,
1771 		    bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXTRHD)		    | TXTRHD_RT_PERIOD_ENB | TXTRHD_RT_LIMIT_ENB);
1772 	}
1773 	/* Reprogram Tx/Rx MACs with resolved speed/duplex. */
1774 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1775 	case IFM_10_T:
1776 		ghc |= GHC_SPEED_10 | GHC_CLKSRC_10_100;
1777 		break;
1778 	case IFM_100_TX:
1779 		ghc |= GHC_SPEED_100 | GHC_CLKSRC_10_100;
1780 		break;
1781 	case IFM_1000_T:
1782 		ghc |= GHC_SPEED_1000 | GHC_CLKSRC_1000;
1783 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) == 0)
1784 			txmac |= TXMAC_CARRIER_EXT | TXMAC_FRAME_BURST;
1785 		break;
1786 	default:
1787 		break;
1788 	}
1789 	if ((sc->jme_flags & JME_FLAG_GIGA) &&
1790 	    sc->jme_chip_rev == DEVICEREVID_JMC250_A2) {
1791 		/*
1792 		 * Workaround occasional packet loss issue of JMC250 A2
1793 		 * when it runs on half-duplex media.
1794 		 */
1795 #ifdef JMEDEBUG
1796 		printf("JME250 A2 workaround\n");
1797 #endif
1798 		gpreg = bus_space_read_4(sc->jme_bt_misc, sc->jme_bh_misc,
1799 		    JME_GPREG1);
1800 		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0)
1801 			gpreg &= ~GPREG1_HDPX_FIX;
1802 		else
1803 			gpreg |= GPREG1_HDPX_FIX;
1804 		bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc,
1805 		    JME_GPREG1, gpreg);
1806 		/* Workaround CRC errors at 100Mbps on JMC250 A2. */
1807 		if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX) {
1808 			/* Extend interface FIFO depth. */
1809 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1810 			    0x1B, 0x0000);
1811 		} else {
1812 			/* Select default interface FIFO depth. */
1813 			jme_mii_write(sc->jme_dev, sc->jme_phyaddr,
1814 			    0x1B, 0x0004);
1815 		}
1816 	}
1817 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_GHC, ghc);
1818 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxmac);
1819 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXMAC, txmac);
1820 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_TXPFC, txpause);
1821 }
1822 
1823 static void
jme_set_filter(jme_softc_t * sc)1824 jme_set_filter(jme_softc_t *sc)
1825 {
1826 	struct ethercom *ec = &sc->jme_ec;
1827 	struct ifnet *ifp = &sc->jme_if;
1828 	struct ether_multistep step;
1829 	struct ether_multi *enm;
1830 	uint32_t hash[2] = {0, 0};
1831 	int i;
1832 	uint32_t rxcfg;
1833 
1834 	rxcfg = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC);
1835 	rxcfg &= ~ (RXMAC_BROADCAST | RXMAC_PROMISC | RXMAC_MULTICAST |
1836 	    RXMAC_ALLMULTI);
1837 	/* Always accept frames destined to our station address. */
1838 	rxcfg |= RXMAC_UNICAST;
1839 	if ((ifp->if_flags & IFF_BROADCAST) != 0)
1840 		rxcfg |= RXMAC_BROADCAST;
1841 	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
1842 		if ((ifp->if_flags & IFF_PROMISC) != 0)
1843 			rxcfg |= RXMAC_PROMISC;
1844 		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
1845 			rxcfg |= RXMAC_ALLMULTI;
1846 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1847 		     JME_MAR0, 0xFFFFFFFF);
1848 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1849 		     JME_MAR1, 0xFFFFFFFF);
1850 		bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac,
1851 		     JME_RXMAC, rxcfg);
1852 		return;
1853 	}
1854 	/*
1855 	 * Set up the multicast address filter by passing all multicast
1856 	 * addresses through a CRC generator, and then using the low-order
1857 	 * 6 bits as an index into the 64 bit multicast hash table.  The
1858 	 * high order bits select the register, while the rest of the bits
1859 	 * select the bit within the register.
1860 	 */
1861 	rxcfg |= RXMAC_MULTICAST;
1862 	memset(hash, 0, sizeof(hash));
1863 
1864 	ETHER_LOCK(ec);
1865 	ETHER_FIRST_MULTI(step, ec, enm);
1866 	while (enm != NULL) {
1867 #ifdef JEMDBUG
1868 		printf("%s: addrs %s %s\n", __func__,
1869 		   ether_sprintf(enm->enm_addrlo),
1870 		   ether_sprintf(enm->enm_addrhi));
1871 #endif
1872 		if (memcmp(enm->enm_addrlo, enm->enm_addrhi, 6) == 0) {
1873 			i = ether_crc32_be(enm->enm_addrlo, 6);
1874 			/* Just want the 6 least significant bits. */
1875 			i &= 0x3f;
1876 			hash[i / 32] |= 1 << (i%32);
1877 		} else {
1878 			hash[0] = hash[1] = 0xffffffff;
1879 			sc->jme_if.if_flags |= IFF_ALLMULTI;
1880 			break;
1881 		}
1882 		ETHER_NEXT_MULTI(step, enm);
1883 	}
1884 	ETHER_UNLOCK(ec);
1885 #ifdef JMEDEBUG
1886 	printf("%s: hash1 %x has2 %x\n", __func__, hash[0], hash[1]);
1887 #endif
1888 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR0, hash[0]);
1889 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_MAR1, hash[1]);
1890 	bus_space_write_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_RXMAC, rxcfg);
1891 }
1892 
1893 #if 0
1894 static int
1895 jme_multicast_hash(uint8_t *a)
1896 {
1897 	int hash;
1898 
1899 #define DA(addr, bit) (addr[5 - (bit / 8)] & (1 << (bit % 8)))
1900 #define xor8(a,b,c,d,e,f,g,h)						\
1901 	(((a != 0) + (b != 0) + (c != 0) + (d != 0) +			\
1902 	  (e != 0) + (f != 0) + (g != 0) + (h != 0)) & 1)
1903 
1904 	hash  = xor8(DA(a,0), DA(a, 6), DA(a,12), DA(a,18), DA(a,24), DA(a,30),
1905 	    DA(a,36), DA(a,42));
1906 	hash |= xor8(DA(a,1), DA(a, 7), DA(a,13), DA(a,19), DA(a,25), DA(a,31),
1907 	    DA(a,37), DA(a,43)) << 1;
1908 	hash |= xor8(DA(a,2), DA(a, 8), DA(a,14), DA(a,20), DA(a,26), DA(a,32),
1909 	    DA(a,38), DA(a,44)) << 2;
1910 	hash |= xor8(DA(a,3), DA(a, 9), DA(a,15), DA(a,21), DA(a,27), DA(a,33),
1911 	    DA(a,39), DA(a,45)) << 3;
1912 	hash |= xor8(DA(a,4), DA(a,10), DA(a,16), DA(a,22), DA(a,28), DA(a,34),
1913 	    DA(a,40), DA(a,46)) << 4;
1914 	hash |= xor8(DA(a,5), DA(a,11), DA(a,17), DA(a,23), DA(a,29), DA(a,35),
1915 	    DA(a,41), DA(a,47)) << 5;
1916 
1917 	return hash;
1918 }
1919 #endif
1920 
1921 static int
jme_eeprom_read_byte(struct jme_softc * sc,uint8_t addr,uint8_t * val)1922 jme_eeprom_read_byte(struct jme_softc *sc, uint8_t addr, uint8_t *val)
1923 {
1924 	 uint32_t reg;
1925 	 int i;
1926 
1927 	 *val = 0;
1928 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1929 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1930 		      JME_SMBCSR);
1931 		  if ((reg & SMBCSR_HW_BUSY_MASK) == SMBCSR_HW_IDLE)
1932 			   break;
1933 		  delay(10);
1934 	 }
1935 
1936 	 if (i == 0) {
1937 		  aprint_error_dev(sc->jme_dev, "EEPROM idle timeout!\n");
1938 		  return (ETIMEDOUT);
1939 	 }
1940 
1941 	 reg = ((uint32_t)addr << SMBINTF_ADDR_SHIFT) & SMBINTF_ADDR_MASK;
1942 	 bus_space_write_4(sc->jme_bt_phy, sc->jme_bh_phy,
1943 	     JME_SMBINTF, reg | SMBINTF_RD | SMBINTF_CMD_TRIGGER);
1944 	 for (i = JME_EEPROM_TIMEOUT / 10; i > 0; i--) {
1945 		  delay(10);
1946 		  reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy,
1947 		      JME_SMBINTF);
1948 		  if ((reg & SMBINTF_CMD_TRIGGER) == 0)
1949 			   break;
1950 	 }
1951 
1952 	 if (i == 0) {
1953 		  aprint_error_dev(sc->jme_dev, "EEPROM read timeout!\n");
1954 		  return (ETIMEDOUT);
1955 	 }
1956 
1957 	 reg = bus_space_read_4(sc->jme_bt_phy, sc->jme_bh_phy, JME_SMBINTF);
1958 	 *val = (reg & SMBINTF_RD_DATA_MASK) >> SMBINTF_RD_DATA_SHIFT;
1959 	 return (0);
1960 }
1961 
1962 
1963 static int
jme_eeprom_macaddr(struct jme_softc * sc)1964 jme_eeprom_macaddr(struct jme_softc *sc)
1965 {
1966 	uint8_t eaddr[ETHER_ADDR_LEN];
1967 	uint8_t fup, reg, val;
1968 	uint32_t offset;
1969 	int match;
1970 
1971 	offset = 0;
1972 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1973 	    fup != JME_EEPROM_SIG0)
1974 		return (ENOENT);
1975 	if (jme_eeprom_read_byte(sc, offset++, &fup) != 0 ||
1976 	    fup != JME_EEPROM_SIG1)
1977 		return (ENOENT);
1978 	match = 0;
1979 	do {
1980 		if (jme_eeprom_read_byte(sc, offset, &fup) != 0)
1981 			break;
1982 		if (JME_EEPROM_MKDESC(JME_EEPROM_FUNC0, JME_EEPROM_PAGE_BAR1)
1983 		    == (fup & (JME_EEPROM_FUNC_MASK | JME_EEPROM_PAGE_MASK))) {
1984 			if (jme_eeprom_read_byte(sc, offset + 1, &reg) != 0)
1985 				break;
1986 			if (reg >= JME_PAR0 &&
1987 			    reg < JME_PAR0 + ETHER_ADDR_LEN) {
1988 				if (jme_eeprom_read_byte(sc, offset + 2,
1989 				    &val) != 0)
1990 					break;
1991 				eaddr[reg - JME_PAR0] = val;
1992 				match++;
1993 			}
1994 		}
1995 		if (fup & JME_EEPROM_DESC_END)
1996 			break;
1997 
1998 		/* Try next eeprom descriptor. */
1999 		offset += JME_EEPROM_DESC_BYTES;
2000 	} while (match != ETHER_ADDR_LEN && offset < JME_EEPROM_END);
2001 
2002 	if (match == ETHER_ADDR_LEN) {
2003 		memcpy(sc->jme_enaddr, eaddr, ETHER_ADDR_LEN);
2004 		return (0);
2005 	}
2006 
2007 	return (ENOENT);
2008 }
2009 
2010 static int
jme_reg_macaddr(struct jme_softc * sc)2011 jme_reg_macaddr(struct jme_softc *sc)
2012 {
2013 	uint32_t par0, par1;
2014 
2015 	par0 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR0);
2016 	par1 = bus_space_read_4(sc->jme_bt_mac, sc->jme_bh_mac, JME_PAR1);
2017 	par1 &= 0xffff;
2018 	if ((par0 == 0 && par1 == 0) ||
2019 	    (par0 == 0xffffffff && par1 == 0xffff)) {
2020 		return (ENOENT);
2021 	} else {
2022 		sc->jme_enaddr[0] = (par0 >> 0) & 0xff;
2023 		sc->jme_enaddr[1] = (par0 >> 8) & 0xff;
2024 		sc->jme_enaddr[2] = (par0 >> 16) & 0xff;
2025 		sc->jme_enaddr[3] = (par0 >> 24) & 0xff;
2026 		sc->jme_enaddr[4] = (par1 >> 0) & 0xff;
2027 		sc->jme_enaddr[5] = (par1 >> 8) & 0xff;
2028 	}
2029 	return (0);
2030 }
2031 
2032 /*
2033  * Set up sysctl(3) MIB, hw.jme.* - Individual controllers will be
2034  * set up in jme_pci_attach()
2035  */
2036 SYSCTL_SETUP(sysctl_jme, "sysctl jme subtree setup")
2037 {
2038 	int rc;
2039 	const struct sysctlnode *node;
2040 
2041 	if ((rc = sysctl_createv(clog, 0, NULL, &node,
2042 	    0, CTLTYPE_NODE, "jme",
2043 	    SYSCTL_DESCR("jme interface controls"),
2044 	    NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
2045 		goto err;
2046 	}
2047 
2048 	jme_root_num = node->sysctl_num;
2049 	return;
2050 
2051 err:
2052 	aprint_error("%s: syctl_createv failed (rc = %d)\n", __func__, rc);
2053 }
2054 
2055 static int
jme_sysctl_intrxto(SYSCTLFN_ARGS)2056 jme_sysctl_intrxto(SYSCTLFN_ARGS)
2057 {
2058 	int error, t;
2059 	struct sysctlnode node;
2060 	struct jme_softc *sc;
2061 	uint32_t reg;
2062 
2063 	node = *rnode;
2064 	sc = node.sysctl_data;
2065 	t = sc->jme_intrxto;
2066 	node.sysctl_data = &t;
2067 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2068 	if (error || newp == NULL)
2069 		return error;
2070 
2071 	if (t < PCCRX_COAL_TO_MIN || t > PCCRX_COAL_TO_MAX)
2072 		return EINVAL;
2073 
2074 	/*
2075 	 * update the softc with sysctl-changed value, and mark
2076 	 * for hardware update
2077 	 */
2078 	sc->jme_intrxto = t;
2079 	/* Configure Rx queue 0 packet completion coalescing. */
2080 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2081 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2082 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2083 	return 0;
2084 }
2085 
2086 static int
jme_sysctl_intrxct(SYSCTLFN_ARGS)2087 jme_sysctl_intrxct(SYSCTLFN_ARGS)
2088 {
2089 	int error, t;
2090 	struct sysctlnode node;
2091 	struct jme_softc *sc;
2092 	uint32_t reg;
2093 
2094 	node = *rnode;
2095 	sc = node.sysctl_data;
2096 	t = sc->jme_intrxct;
2097 	node.sysctl_data = &t;
2098 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2099 	if (error || newp == NULL)
2100 		return error;
2101 
2102 	if (t < PCCRX_COAL_PKT_MIN || t > PCCRX_COAL_PKT_MAX)
2103 		return EINVAL;
2104 
2105 	/*
2106 	 * update the softc with sysctl-changed value, and mark
2107 	 * for hardware update
2108 	 */
2109 	sc->jme_intrxct = t;
2110 	/* Configure Rx queue 0 packet completion coalescing. */
2111 	reg = (sc->jme_intrxto << PCCRX_COAL_TO_SHIFT) & PCCRX_COAL_TO_MASK;
2112 	reg |= (sc->jme_intrxct << PCCRX_COAL_PKT_SHIFT) & PCCRX_COAL_PKT_MASK;
2113 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCRX0, reg);
2114 	return 0;
2115 }
2116 
2117 static int
jme_sysctl_inttxto(SYSCTLFN_ARGS)2118 jme_sysctl_inttxto(SYSCTLFN_ARGS)
2119 {
2120 	int error, t;
2121 	struct sysctlnode node;
2122 	struct jme_softc *sc;
2123 	uint32_t reg;
2124 
2125 	node = *rnode;
2126 	sc = node.sysctl_data;
2127 	t = sc->jme_inttxto;
2128 	node.sysctl_data = &t;
2129 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2130 	if (error || newp == NULL)
2131 		return error;
2132 
2133 	if (t < PCCTX_COAL_TO_MIN || t > PCCTX_COAL_TO_MAX)
2134 		return EINVAL;
2135 
2136 	/*
2137 	 * update the softc with sysctl-changed value, and mark
2138 	 * for hardware update
2139 	 */
2140 	sc->jme_inttxto = t;
2141 	/* Configure Tx queue 0 packet completion coalescing. */
2142 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2143 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2144 	reg |= PCCTX_COAL_TXQ0;
2145 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2146 	return 0;
2147 }
2148 
2149 static int
jme_sysctl_inttxct(SYSCTLFN_ARGS)2150 jme_sysctl_inttxct(SYSCTLFN_ARGS)
2151 {
2152 	int error, t;
2153 	struct sysctlnode node;
2154 	struct jme_softc *sc;
2155 	uint32_t reg;
2156 
2157 	node = *rnode;
2158 	sc = node.sysctl_data;
2159 	t = sc->jme_inttxct;
2160 	node.sysctl_data = &t;
2161 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
2162 	if (error || newp == NULL)
2163 		return error;
2164 
2165 	if (t < PCCTX_COAL_PKT_MIN || t > PCCTX_COAL_PKT_MAX)
2166 		return EINVAL;
2167 
2168 	/*
2169 	 * update the softc with sysctl-changed value, and mark
2170 	 * for hardware update
2171 	 */
2172 	sc->jme_inttxct = t;
2173 	/* Configure Tx queue 0 packet completion coalescing. */
2174 	reg = (sc->jme_inttxto << PCCTX_COAL_TO_SHIFT) & PCCTX_COAL_TO_MASK;
2175 	reg |= (sc->jme_inttxct << PCCTX_COAL_PKT_SHIFT) & PCCTX_COAL_PKT_MASK;
2176 	reg |= PCCTX_COAL_TXQ0;
2177 	bus_space_write_4(sc->jme_bt_misc, sc->jme_bh_misc, JME_PCCTX, reg);
2178 	return 0;
2179 }
2180