xref: /openbsd/sys/dev/pci/drm/i915/gt/intel_workarounds.c (revision 3a253a7f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_regs.h"
16 #include "intel_ring.h"
17 #include "intel_workarounds.h"
18 
19 /**
20  * DOC: Hardware workarounds
21  *
22  * Hardware workarounds are register programming documented to be executed in
23  * the driver that fall outside of the normal programming sequences for a
24  * platform. There are some basic categories of workarounds, depending on
25  * how/when they are applied:
26  *
27  * - Context workarounds: workarounds that touch registers that are
28  *   saved/restored to/from the HW context image. The list is emitted (via Load
29  *   Register Immediate commands) once when initializing the device and saved in
30  *   the default context. That default context is then used on every context
31  *   creation to have a "primed golden context", i.e. a context image that
32  *   already contains the changes needed to all the registers.
33  *
34  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
35  *   variants respective to the targeted platforms.
36  *
37  * - Engine workarounds: the list of these WAs is applied whenever the specific
38  *   engine is reset. It's also possible that a set of engine classes share a
39  *   common power domain and they are reset together. This happens on some
40  *   platforms with render and compute engines. In this case (at least) one of
41  *   them need to keeep the workaround programming: the approach taken in the
42  *   driver is to tie those workarounds to the first compute/render engine that
43  *   is registered.  When executing with GuC submission, engine resets are
44  *   outside of kernel driver control, hence the list of registers involved in
45  *   written once, on engine initialization, and then passed to GuC, that
46  *   saves/restores their values before/after the reset takes place. See
47  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
48  *
49  *   Workarounds for registers specific to RCS and CCS should be implemented in
50  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
51  *   registers belonging to BCS, VCS or VECS should be implemented in
52  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
53  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
54  *   should be implemented in general_render_compute_wa_init(). The settings
55  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
56  *
57  * - GT workarounds: the list of these WAs is applied whenever these registers
58  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
59  *
60  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
61  *   variants respective to the targeted platforms.
62  *
63  * - Register whitelist: some workarounds need to be implemented in userspace,
64  *   but need to touch privileged registers. The whitelist in the kernel
65  *   instructs the hardware to allow the access to happen. From the kernel side,
66  *   this is just a special case of a MMIO workaround (as we write the list of
67  *   these to/be-whitelisted registers to some special HW registers).
68  *
69  *   Register whitelisting should be done in the \*_whitelist_build() variants
70  *   respective to the targeted platforms.
71  *
72  * - Workaround batchbuffers: buffers that get executed automatically by the
73  *   hardware on every HW context restore. These buffers are created and
74  *   programmed in the default context so the hardware always go through those
75  *   programming sequences when switching contexts. The support for workaround
76  *   batchbuffers is enabled these hardware mechanisms:
77  *
78  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
79  *      context, pointing the hardware to jump to that location when that offset
80  *      is reached in the context restore. Workaround batchbuffer in the driver
81  *      currently uses this mechanism for all platforms.
82  *
83  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
84  *      pointing the hardware to a buffer to continue executing after the
85  *      engine registers are restored in a context restore sequence. This is
86  *      currently not used in the driver.
87  *
88  * - Other:  There are WAs that, due to their nature, cannot be applied from a
89  *   central place. Those are peppered around the rest of the code, as needed.
90  *   Workarounds related to the display IP are the main example.
91  *
92  * .. [1] Technically, some registers are powercontext saved & restored, so they
93  *    survive a suspend/resume. In practice, writing them again is not too
94  *    costly and simplifies things, so it's the approach taken in the driver.
95  */
96 
wa_init_start(struct i915_wa_list * wal,struct intel_gt * gt,const char * name,const char * engine_name)97 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
98 			  const char *name, const char *engine_name)
99 {
100 	wal->gt = gt;
101 	wal->name = name;
102 	wal->engine_name = engine_name;
103 }
104 
105 #define WA_LIST_CHUNK (1 << 4)
106 
wa_init_finish(struct i915_wa_list * wal)107 static void wa_init_finish(struct i915_wa_list *wal)
108 {
109 	/* Trim unused entries. */
110 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
111 		struct i915_wa *list = kmemdup(wal->list,
112 					       wal->count * sizeof(*list),
113 					       GFP_KERNEL);
114 
115 		if (list) {
116 			kfree(wal->list);
117 			wal->list = list;
118 		}
119 	}
120 
121 	if (!wal->count)
122 		return;
123 
124 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
125 		wal->wa_count, wal->name, wal->engine_name);
126 }
127 
128 static enum forcewake_domains
wal_get_fw_for_rmw(struct intel_uncore * uncore,const struct i915_wa_list * wal)129 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
130 {
131 	enum forcewake_domains fw = 0;
132 	struct i915_wa *wa;
133 	unsigned int i;
134 
135 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
136 		fw |= intel_uncore_forcewake_for_reg(uncore,
137 						     wa->reg,
138 						     FW_REG_READ |
139 						     FW_REG_WRITE);
140 
141 	return fw;
142 }
143 
_wa_add(struct i915_wa_list * wal,const struct i915_wa * wa)144 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
145 {
146 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
147 	struct drm_i915_private *i915 = wal->gt->i915;
148 	unsigned int start = 0, end = wal->count;
149 	const unsigned int grow = WA_LIST_CHUNK;
150 	struct i915_wa *wa_;
151 
152 	GEM_BUG_ON(!is_power_of_2(grow));
153 
154 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
155 		struct i915_wa *list;
156 
157 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
158 				     GFP_KERNEL);
159 		if (!list) {
160 			drm_err(&i915->drm, "No space for workaround init!\n");
161 			return;
162 		}
163 
164 		if (wal->list) {
165 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
166 			kfree(wal->list);
167 		}
168 
169 		wal->list = list;
170 	}
171 
172 	while (start < end) {
173 		unsigned int mid = start + (end - start) / 2;
174 
175 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
176 			start = mid + 1;
177 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
178 			end = mid;
179 		} else {
180 			wa_ = &wal->list[mid];
181 
182 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
183 				drm_err(&i915->drm,
184 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
185 					i915_mmio_reg_offset(wa_->reg),
186 					wa_->clr, wa_->set);
187 
188 				wa_->set &= ~wa->clr;
189 			}
190 
191 			wal->wa_count++;
192 			wa_->set |= wa->set;
193 			wa_->clr |= wa->clr;
194 			wa_->read |= wa->read;
195 			return;
196 		}
197 	}
198 
199 	wal->wa_count++;
200 	wa_ = &wal->list[wal->count++];
201 	*wa_ = *wa;
202 
203 	while (wa_-- > wal->list) {
204 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
205 			   i915_mmio_reg_offset(wa_[1].reg));
206 		if (i915_mmio_reg_offset(wa_[1].reg) >
207 		    i915_mmio_reg_offset(wa_[0].reg))
208 			break;
209 
210 		swap(wa_[1], wa_[0]);
211 	}
212 }
213 
wa_add(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)214 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
215 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
216 {
217 	struct i915_wa wa = {
218 		.reg  = reg,
219 		.clr  = clear,
220 		.set  = set,
221 		.read = read_mask,
222 		.masked_reg = masked_reg,
223 	};
224 
225 	_wa_add(wal, &wa);
226 }
227 
wa_mcr_add(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set,u32 read_mask,bool masked_reg)228 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
229 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
230 {
231 	struct i915_wa wa = {
232 		.mcr_reg = reg,
233 		.clr  = clear,
234 		.set  = set,
235 		.read = read_mask,
236 		.masked_reg = masked_reg,
237 		.is_mcr = 1,
238 	};
239 
240 	_wa_add(wal, &wa);
241 }
242 
243 static void
wa_write_clr_set(struct i915_wa_list * wal,i915_reg_t reg,u32 clear,u32 set)244 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
245 {
246 	wa_add(wal, reg, clear, set, clear | set, false);
247 }
248 
249 static void
wa_mcr_write_clr_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clear,u32 set)250 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
251 {
252 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
253 }
254 
255 static void
wa_write(struct i915_wa_list * wal,i915_reg_t reg,u32 set)256 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
257 {
258 	wa_write_clr_set(wal, reg, ~0, set);
259 }
260 
261 static void
wa_mcr_write(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)262 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
263 {
264 	wa_mcr_write_clr_set(wal, reg, ~0, set);
265 }
266 
267 static void
wa_write_or(struct i915_wa_list * wal,i915_reg_t reg,u32 set)268 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
269 {
270 	wa_write_clr_set(wal, reg, set, set);
271 }
272 
273 static void
wa_mcr_write_or(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 set)274 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
275 {
276 	wa_mcr_write_clr_set(wal, reg, set, set);
277 }
278 
279 static void
wa_write_clr(struct i915_wa_list * wal,i915_reg_t reg,u32 clr)280 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
281 {
282 	wa_write_clr_set(wal, reg, clr, 0);
283 }
284 
285 static void
wa_mcr_write_clr(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 clr)286 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
287 {
288 	wa_mcr_write_clr_set(wal, reg, clr, 0);
289 }
290 
291 /*
292  * WA operations on "masked register". A masked register has the upper 16 bits
293  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
294  * portion of the register without a rmw: you simply write in the upper 16 bits
295  * the mask of bits you are going to modify.
296  *
297  * The wa_masked_* family of functions already does the necessary operations to
298  * calculate the mask based on the parameters passed, so user only has to
299  * provide the lower 16 bits of that register.
300  */
301 
302 static void
wa_masked_en(struct i915_wa_list * wal,i915_reg_t reg,u32 val)303 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
304 {
305 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
306 }
307 
308 static void
wa_mcr_masked_en(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)309 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
310 {
311 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
312 }
313 
314 static void
wa_masked_dis(struct i915_wa_list * wal,i915_reg_t reg,u32 val)315 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
316 {
317 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
318 }
319 
320 static void
wa_mcr_masked_dis(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 val)321 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
322 {
323 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
324 }
325 
326 static void
wa_masked_field_set(struct i915_wa_list * wal,i915_reg_t reg,u32 mask,u32 val)327 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
328 		    u32 mask, u32 val)
329 {
330 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
331 }
332 
333 static void
wa_mcr_masked_field_set(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 mask,u32 val)334 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
335 			u32 mask, u32 val)
336 {
337 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
338 }
339 
gen6_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)340 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
341 				      struct i915_wa_list *wal)
342 {
343 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
344 }
345 
gen7_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)346 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
347 				      struct i915_wa_list *wal)
348 {
349 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
350 }
351 
gen8_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)352 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
353 				      struct i915_wa_list *wal)
354 {
355 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
356 
357 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
358 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
359 
360 	/* WaDisablePartialInstShootdown:bdw,chv */
361 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
362 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
363 
364 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
365 	 * workaround for a possible hang in the unlikely event a TLB
366 	 * invalidation occurs during a PSD flush.
367 	 */
368 	/* WaForceEnableNonCoherent:bdw,chv */
369 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
370 	wa_masked_en(wal, HDC_CHICKEN0,
371 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
372 		     HDC_FORCE_NON_COHERENT);
373 
374 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
375 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
376 	 *  polygons in the same 8x4 pixel/sample area to be processed without
377 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
378 	 *  buffer."
379 	 *
380 	 * This optimization is off by default for BDW and CHV; turn it on.
381 	 */
382 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
383 
384 	/* Wa4x4STCOptimizationDisable:bdw,chv */
385 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
386 
387 	/*
388 	 * BSpec recommends 8x4 when MSAA is used,
389 	 * however in practice 16x4 seems fastest.
390 	 *
391 	 * Note that PS/WM thread counts depend on the WIZ hashing
392 	 * disable bit, which we don't touch here, but it's good
393 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
394 	 */
395 	wa_masked_field_set(wal, GEN7_GT_MODE,
396 			    GEN6_WIZ_HASHING_MASK,
397 			    GEN6_WIZ_HASHING_16x4);
398 }
399 
bdw_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)400 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
401 				     struct i915_wa_list *wal)
402 {
403 	struct drm_i915_private *i915 = engine->i915;
404 
405 	gen8_ctx_workarounds_init(engine, wal);
406 
407 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
408 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
409 
410 	/* WaDisableDopClockGating:bdw
411 	 *
412 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
413 	 * to disable EUTC clock gating.
414 	 */
415 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
416 			 DOP_CLOCK_GATING_DISABLE);
417 
418 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
419 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
420 
421 	wa_masked_en(wal, HDC_CHICKEN0,
422 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
423 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
424 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
425 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
426 }
427 
chv_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)428 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
429 				     struct i915_wa_list *wal)
430 {
431 	gen8_ctx_workarounds_init(engine, wal);
432 
433 	/* WaDisableThreadStallDopClockGating:chv */
434 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
435 
436 	/* Improve HiZ throughput on CHV. */
437 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
438 }
439 
gen9_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)440 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
441 				      struct i915_wa_list *wal)
442 {
443 	struct drm_i915_private *i915 = engine->i915;
444 
445 	if (HAS_LLC(i915)) {
446 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
447 		 *
448 		 * Must match Display Engine. See
449 		 * WaCompressedResourceDisplayNewHashMode.
450 		 */
451 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
452 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
453 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
454 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
455 	}
456 
457 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
458 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
459 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
460 			 FLOW_CONTROL_ENABLE |
461 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
462 
463 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
464 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
465 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
466 			 GEN9_ENABLE_YV12_BUGFIX |
467 			 GEN9_ENABLE_GPGPU_PREEMPTION);
468 
469 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
470 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
471 	wa_masked_en(wal, CACHE_MODE_1,
472 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
473 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
474 
475 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
476 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
477 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
478 
479 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
480 	wa_masked_en(wal, HDC_CHICKEN0,
481 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
482 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
483 
484 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
485 	 * both tied to WaForceContextSaveRestoreNonCoherent
486 	 * in some hsds for skl. We keep the tie for all gen9. The
487 	 * documentation is a bit hazy and so we want to get common behaviour,
488 	 * even though there is no clear evidence we would need both on kbl/bxt.
489 	 * This area has been source of system hangs so we play it safe
490 	 * and mimic the skl regardless of what bspec says.
491 	 *
492 	 * Use Force Non-Coherent whenever executing a 3D context. This
493 	 * is a workaround for a possible hang in the unlikely event
494 	 * a TLB invalidation occurs during a PSD flush.
495 	 */
496 
497 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
498 	wa_masked_en(wal, HDC_CHICKEN0,
499 		     HDC_FORCE_NON_COHERENT);
500 
501 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
502 	if (IS_SKYLAKE(i915) ||
503 	    IS_KABYLAKE(i915) ||
504 	    IS_COFFEELAKE(i915) ||
505 	    IS_COMETLAKE(i915))
506 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
507 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
508 
509 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
510 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
511 
512 	/*
513 	 * Supporting preemption with fine-granularity requires changes in the
514 	 * batch buffer programming. Since we can't break old userspace, we
515 	 * need to set our default preemption level to safe value. Userspace is
516 	 * still able to use more fine-grained preemption levels, since in
517 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
518 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
519 	 * not real HW workarounds, but merely a way to start using preemption
520 	 * while maintaining old contract with userspace.
521 	 */
522 
523 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
524 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
525 
526 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
527 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
528 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
529 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
530 
531 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
532 	if (IS_GEN9_LP(i915))
533 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
534 }
535 
skl_tune_iz_hashing(struct intel_engine_cs * engine,struct i915_wa_list * wal)536 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
537 				struct i915_wa_list *wal)
538 {
539 	struct intel_gt *gt = engine->gt;
540 	u8 vals[3] = { 0, 0, 0 };
541 	unsigned int i;
542 
543 	for (i = 0; i < 3; i++) {
544 		u8 ss;
545 
546 		/*
547 		 * Only consider slices where one, and only one, subslice has 7
548 		 * EUs
549 		 */
550 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
551 			continue;
552 
553 		/*
554 		 * subslice_7eu[i] != 0 (because of the check above) and
555 		 * ss_max == 4 (maximum number of subslices possible per slice)
556 		 *
557 		 * ->    0 <= ss <= 3;
558 		 */
559 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
560 		vals[i] = 3 - ss;
561 	}
562 
563 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
564 		return;
565 
566 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
567 	wa_masked_field_set(wal, GEN7_GT_MODE,
568 			    GEN9_IZ_HASHING_MASK(2) |
569 			    GEN9_IZ_HASHING_MASK(1) |
570 			    GEN9_IZ_HASHING_MASK(0),
571 			    GEN9_IZ_HASHING(2, vals[2]) |
572 			    GEN9_IZ_HASHING(1, vals[1]) |
573 			    GEN9_IZ_HASHING(0, vals[0]));
574 }
575 
skl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)576 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
577 				     struct i915_wa_list *wal)
578 {
579 	gen9_ctx_workarounds_init(engine, wal);
580 	skl_tune_iz_hashing(engine, wal);
581 }
582 
bxt_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)583 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
584 				     struct i915_wa_list *wal)
585 {
586 	gen9_ctx_workarounds_init(engine, wal);
587 
588 	/* WaDisableThreadStallDopClockGating:bxt */
589 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
590 			 STALL_DOP_GATING_DISABLE);
591 
592 	/* WaToEnableHwFixForPushConstHWBug:bxt */
593 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
594 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
595 }
596 
kbl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)597 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
598 				     struct i915_wa_list *wal)
599 {
600 	struct drm_i915_private *i915 = engine->i915;
601 
602 	gen9_ctx_workarounds_init(engine, wal);
603 
604 	/* WaToEnableHwFixForPushConstHWBug:kbl */
605 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
606 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
607 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
608 
609 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
610 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
611 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
612 }
613 
glk_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)614 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
615 				     struct i915_wa_list *wal)
616 {
617 	gen9_ctx_workarounds_init(engine, wal);
618 
619 	/* WaToEnableHwFixForPushConstHWBug:glk */
620 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
621 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
622 }
623 
cfl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)624 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
625 				     struct i915_wa_list *wal)
626 {
627 	gen9_ctx_workarounds_init(engine, wal);
628 
629 	/* WaToEnableHwFixForPushConstHWBug:cfl */
630 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
631 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
632 
633 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
634 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
635 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
636 }
637 
icl_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)638 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
639 				     struct i915_wa_list *wal)
640 {
641 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
642 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
643 
644 	/* WaForceEnableNonCoherent:icl
645 	 * This is not the same workaround as in early Gen9 platforms, where
646 	 * lacking this could cause system hangs, but coherency performance
647 	 * overhead is high and only a few compute workloads really need it
648 	 * (the register is whitelisted in hardware now, so UMDs can opt in
649 	 * for coherency if they have a good reason).
650 	 */
651 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
652 
653 	/* WaEnableFloatBlendOptimization:icl */
654 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
655 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
656 		   0 /* write-only, so skip validation */,
657 		   true);
658 
659 	/* WaDisableGPGPUMidThreadPreemption:icl */
660 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
661 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
662 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
663 
664 	/* allow headerless messages for preemptible GPGPU context */
665 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
666 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
667 
668 	/* Wa_1604278689:icl,ehl */
669 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
670 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
671 			 0,
672 			 0xFFFFFFFF);
673 
674 	/* Wa_1406306137:icl,ehl */
675 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
676 }
677 
678 /*
679  * These settings aren't actually workarounds, but general tuning settings that
680  * need to be programmed on dg2 platform.
681  */
dg2_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)682 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
683 				   struct i915_wa_list *wal)
684 {
685 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
686 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
687 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
688 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
689 			     FF_MODE2_TDS_TIMER_128);
690 }
691 
gen12_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)692 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
693 				       struct i915_wa_list *wal)
694 {
695 	struct drm_i915_private *i915 = engine->i915;
696 
697 	/*
698 	 * Wa_1409142259:tgl,dg1,adl-p
699 	 * Wa_1409347922:tgl,dg1,adl-p
700 	 * Wa_1409252684:tgl,dg1,adl-p
701 	 * Wa_1409217633:tgl,dg1,adl-p
702 	 * Wa_1409207793:tgl,dg1,adl-p
703 	 * Wa_1409178076:tgl,dg1,adl-p
704 	 * Wa_1408979724:tgl,dg1,adl-p
705 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
706 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
707 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
708 	 */
709 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
710 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
711 
712 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
713 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
714 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
715 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
716 
717 	/*
718 	 * Wa_16011163337 - GS_TIMER
719 	 *
720 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
721 	 * need to program it even on those that don't explicitly list that
722 	 * workaround.
723 	 *
724 	 * Note that the programming of GEN12_FF_MODE2 is further modified
725 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
726 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
727 	 * value when read from the CPU.
728 	 *
729 	 * The default value for this register is zero for all fields.
730 	 * So instead of doing a RMW we should just write the desired values
731 	 * for TDS and GS timers. Note that since the readback can't be trusted,
732 	 * the clear mask is just set to ~0 to make sure other bits are not
733 	 * inadvertently set. For the same reason read verification is ignored.
734 	 */
735 	wa_add(wal,
736 	       GEN12_FF_MODE2,
737 	       ~0,
738 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
739 	       0, false);
740 
741 	if (!IS_DG1(i915)) {
742 		/* Wa_1806527549 */
743 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
744 
745 		/* Wa_1606376872 */
746 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
747 	}
748 }
749 
dg1_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)750 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
751 				     struct i915_wa_list *wal)
752 {
753 	gen12_ctx_workarounds_init(engine, wal);
754 
755 	/* Wa_1409044764 */
756 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
757 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
758 
759 	/* Wa_22010493298 */
760 	wa_masked_en(wal, HIZ_CHICKEN,
761 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
762 }
763 
dg2_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)764 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
765 				     struct i915_wa_list *wal)
766 {
767 	dg2_ctx_gt_tuning_init(engine, wal);
768 
769 	/* Wa_16013271637:dg2 */
770 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
771 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
772 
773 	/* Wa_14014947963:dg2 */
774 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
775 
776 	/* Wa_18018764978:dg2 */
777 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
778 
779 	/* Wa_15010599737:dg2 */
780 	wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
781 
782 	/* Wa_18019271663:dg2 */
783 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
784 
785 	/* Wa_14019877138:dg2 */
786 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
787 }
788 
xelpg_ctx_gt_tuning_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)789 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
790 				     struct i915_wa_list *wal)
791 {
792 	struct intel_gt *gt = engine->gt;
793 
794 	dg2_ctx_gt_tuning_init(engine, wal);
795 
796 	/*
797 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
798 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
799 	 * steppings.
800 	 */
801 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
802 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
803 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
804 }
805 
xelpg_ctx_workarounds_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)806 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
807 				       struct i915_wa_list *wal)
808 {
809 	struct intel_gt *gt = engine->gt;
810 
811 	xelpg_ctx_gt_tuning_init(engine, wal);
812 
813 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
814 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
815 		/* Wa_14014947963 */
816 		wa_masked_field_set(wal, VF_PREEMPTION,
817 				    PREEMPTION_VERTEX_COUNT, 0x4000);
818 
819 		/* Wa_16013271637 */
820 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
821 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
822 
823 		/* Wa_18019627453 */
824 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
825 
826 		/* Wa_18018764978 */
827 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
828 	}
829 
830 	/* Wa_18019271663 */
831 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
832 
833 	/* Wa_14019877138 */
834 	wa_mcr_masked_en(wal, XEHP_PSS_CHICKEN, FD_END_COLLECT);
835 }
836 
fakewa_disable_nestedbb_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)837 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
838 					 struct i915_wa_list *wal)
839 {
840 	/*
841 	 * This is a "fake" workaround defined by software to ensure we
842 	 * maintain reliable, backward-compatible behavior for userspace with
843 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
844 	 *
845 	 * The per-context setting of MI_MODE[12] determines whether the bits
846 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
847 	 * in the traditional manner or whether they should instead use a new
848 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
849 	 * into 3rd-level batchbuffers.  When this new capability was first
850 	 * added in TGL, it remained off by default unless a context
851 	 * intentionally opted in to the new behavior.  However Xe_HPG now
852 	 * flips this on by default and requires that we explicitly opt out if
853 	 * we don't want the new behavior.
854 	 *
855 	 * From a SW perspective, we want to maintain the backward-compatible
856 	 * behavior for userspace, so we'll apply a fake workaround to set it
857 	 * back to the legacy behavior on platforms where the hardware default
858 	 * is to break compatibility.  At the moment there is no Linux
859 	 * userspace that utilizes third-level batchbuffers, so this will avoid
860 	 * userspace from needing to make any changes.  using the legacy
861 	 * meaning is the correct thing to do.  If/when we have userspace
862 	 * consumers that want to utilize third-level batch nesting, we can
863 	 * provide a context parameter to allow them to opt-in.
864 	 */
865 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
866 }
867 
gen12_ctx_gt_mocs_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)868 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
869 				   struct i915_wa_list *wal)
870 {
871 	u8 mocs;
872 
873 	/*
874 	 * Some blitter commands do not have a field for MOCS, those
875 	 * commands will use MOCS index pointed by BLIT_CCTL.
876 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
877 	 */
878 	if (engine->class == COPY_ENGINE_CLASS) {
879 		mocs = engine->gt->mocs.uc_index;
880 		wa_write_clr_set(wal,
881 				 BLIT_CCTL(engine->mmio_base),
882 				 BLIT_CCTL_MASK,
883 				 BLIT_CCTL_MOCS(mocs, mocs));
884 	}
885 }
886 
887 /*
888  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
889  * defined by the hardware team, but it programming general context registers.
890  * Adding those context register programming in context workaround
891  * allow us to use the wa framework for proper application and validation.
892  */
893 static void
gen12_ctx_gt_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)894 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
895 			  struct i915_wa_list *wal)
896 {
897 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
898 		fakewa_disable_nestedbb_mode(engine, wal);
899 
900 	gen12_ctx_gt_mocs_init(engine, wal);
901 }
902 
903 static void
__intel_engine_init_ctx_wa(struct intel_engine_cs * engine,struct i915_wa_list * wal,const char * name)904 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
905 			   struct i915_wa_list *wal,
906 			   const char *name)
907 {
908 	struct drm_i915_private *i915 = engine->i915;
909 
910 	wa_init_start(wal, engine->gt, name, engine->name);
911 
912 	/* Applies to all engines */
913 	/*
914 	 * Fake workarounds are not the actual workaround but
915 	 * programming of context registers using workaround framework.
916 	 */
917 	if (GRAPHICS_VER(i915) >= 12)
918 		gen12_ctx_gt_fake_wa_init(engine, wal);
919 
920 	if (engine->class != RENDER_CLASS)
921 		goto done;
922 
923 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
924 		xelpg_ctx_workarounds_init(engine, wal);
925 	else if (IS_PONTEVECCHIO(i915))
926 		; /* noop; none at this time */
927 	else if (IS_DG2(i915))
928 		dg2_ctx_workarounds_init(engine, wal);
929 	else if (IS_XEHPSDV(i915))
930 		; /* noop; none at this time */
931 	else if (IS_DG1(i915))
932 		dg1_ctx_workarounds_init(engine, wal);
933 	else if (GRAPHICS_VER(i915) == 12)
934 		gen12_ctx_workarounds_init(engine, wal);
935 	else if (GRAPHICS_VER(i915) == 11)
936 		icl_ctx_workarounds_init(engine, wal);
937 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
938 		cfl_ctx_workarounds_init(engine, wal);
939 	else if (IS_GEMINILAKE(i915))
940 		glk_ctx_workarounds_init(engine, wal);
941 	else if (IS_KABYLAKE(i915))
942 		kbl_ctx_workarounds_init(engine, wal);
943 	else if (IS_BROXTON(i915))
944 		bxt_ctx_workarounds_init(engine, wal);
945 	else if (IS_SKYLAKE(i915))
946 		skl_ctx_workarounds_init(engine, wal);
947 	else if (IS_CHERRYVIEW(i915))
948 		chv_ctx_workarounds_init(engine, wal);
949 	else if (IS_BROADWELL(i915))
950 		bdw_ctx_workarounds_init(engine, wal);
951 	else if (GRAPHICS_VER(i915) == 7)
952 		gen7_ctx_workarounds_init(engine, wal);
953 	else if (GRAPHICS_VER(i915) == 6)
954 		gen6_ctx_workarounds_init(engine, wal);
955 	else if (GRAPHICS_VER(i915) < 8)
956 		;
957 	else
958 		MISSING_CASE(GRAPHICS_VER(i915));
959 
960 done:
961 	wa_init_finish(wal);
962 }
963 
intel_engine_init_ctx_wa(struct intel_engine_cs * engine)964 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
965 {
966 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
967 }
968 
intel_engine_emit_ctx_wa(struct i915_request * rq)969 int intel_engine_emit_ctx_wa(struct i915_request *rq)
970 {
971 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
972 	struct intel_uncore *uncore = rq->engine->uncore;
973 	enum forcewake_domains fw;
974 	unsigned long flags;
975 	struct i915_wa *wa;
976 	unsigned int i;
977 	u32 *cs;
978 	int ret;
979 
980 	if (wal->count == 0)
981 		return 0;
982 
983 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
984 	if (ret)
985 		return ret;
986 
987 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
988 	if (IS_ERR(cs))
989 		return PTR_ERR(cs);
990 
991 	fw = wal_get_fw_for_rmw(uncore, wal);
992 
993 	intel_gt_mcr_lock(wal->gt, &flags);
994 	spin_lock(&uncore->lock);
995 	intel_uncore_forcewake_get__locked(uncore, fw);
996 
997 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
998 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
999 		u32 val;
1000 
1001 		/* Skip reading the register if it's not really needed */
1002 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
1003 			val = wa->set;
1004 		} else {
1005 			val = wa->is_mcr ?
1006 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1007 				intel_uncore_read_fw(uncore, wa->reg);
1008 			val &= ~wa->clr;
1009 			val |= wa->set;
1010 		}
1011 
1012 		*cs++ = i915_mmio_reg_offset(wa->reg);
1013 		*cs++ = val;
1014 	}
1015 	*cs++ = MI_NOOP;
1016 
1017 	intel_uncore_forcewake_put__locked(uncore, fw);
1018 	spin_unlock(&uncore->lock);
1019 	intel_gt_mcr_unlock(wal->gt, flags);
1020 
1021 	intel_ring_advance(rq, cs);
1022 
1023 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1024 	if (ret)
1025 		return ret;
1026 
1027 	return 0;
1028 }
1029 
1030 static void
gen4_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1031 gen4_gt_workarounds_init(struct intel_gt *gt,
1032 			 struct i915_wa_list *wal)
1033 {
1034 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1035 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1036 }
1037 
1038 static void
g4x_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1039 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1040 {
1041 	gen4_gt_workarounds_init(gt, wal);
1042 
1043 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1044 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1045 }
1046 
1047 static void
ilk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1048 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1049 {
1050 	g4x_gt_workarounds_init(gt, wal);
1051 
1052 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1053 }
1054 
1055 static void
snb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1056 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1057 {
1058 }
1059 
1060 static void
ivb_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1061 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1062 {
1063 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1064 	wa_masked_dis(wal,
1065 		      GEN7_COMMON_SLICE_CHICKEN1,
1066 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1067 
1068 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1069 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1070 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1071 
1072 	/* WaForceL3Serialization:ivb */
1073 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1074 }
1075 
1076 static void
vlv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1077 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1078 {
1079 	/* WaForceL3Serialization:vlv */
1080 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1081 
1082 	/*
1083 	 * WaIncreaseL3CreditsForVLVB0:vlv
1084 	 * This is the hardware default actually.
1085 	 */
1086 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1087 }
1088 
1089 static void
hsw_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1090 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1091 {
1092 	/* L3 caching of data atomics doesn't work -- disable it. */
1093 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1094 
1095 	wa_add(wal,
1096 	       HSW_ROW_CHICKEN3, 0,
1097 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1098 	       0 /* XXX does this reg exist? */, true);
1099 
1100 	/* WaVSRefCountFullforceMissDisable:hsw */
1101 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1102 }
1103 
1104 static void
gen9_wa_init_mcr(struct drm_i915_private * i915,struct i915_wa_list * wal)1105 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1106 {
1107 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1108 	unsigned int slice, subslice;
1109 	u32 mcr, mcr_mask;
1110 
1111 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1112 
1113 	/*
1114 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1115 	 * Before any MMIO read into slice/subslice specific registers, MCR
1116 	 * packet control register needs to be programmed to point to any
1117 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1118 	 * This means each subsequent MMIO read will be forwarded to an
1119 	 * specific s/ss combination, but this is OK since these registers
1120 	 * are consistent across s/ss in almost all cases. In the rare
1121 	 * occasions, such as INSTDONE, where this value is dependent
1122 	 * on s/ss combo, the read should be done with read_subslice_reg.
1123 	 */
1124 	slice = ffs(sseu->slice_mask) - 1;
1125 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1126 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1127 	GEM_BUG_ON(!subslice);
1128 	subslice--;
1129 
1130 	/*
1131 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1132 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1133 	 */
1134 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1135 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1136 
1137 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1138 
1139 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1140 }
1141 
1142 static void
gen9_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1143 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1144 {
1145 	struct drm_i915_private *i915 = gt->i915;
1146 
1147 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1148 	gen9_wa_init_mcr(i915, wal);
1149 
1150 	/* WaDisableKillLogic:bxt,skl,kbl */
1151 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1152 		wa_write_or(wal,
1153 			    GAM_ECOCHK,
1154 			    ECOCHK_DIS_TLB);
1155 
1156 	if (HAS_LLC(i915)) {
1157 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1158 		 *
1159 		 * Must match Display Engine. See
1160 		 * WaCompressedResourceDisplayNewHashMode.
1161 		 */
1162 		wa_write_or(wal,
1163 			    MMCD_MISC_CTRL,
1164 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1165 	}
1166 
1167 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1168 	wa_write_or(wal,
1169 		    GAM_ECOCHK,
1170 		    BDW_DISABLE_HDC_INVALIDATION);
1171 }
1172 
1173 static void
skl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1174 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1175 {
1176 	gen9_gt_workarounds_init(gt, wal);
1177 
1178 	/* WaDisableGafsUnitClkGating:skl */
1179 	wa_write_or(wal,
1180 		    GEN7_UCGCTL4,
1181 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1182 
1183 	/* WaInPlaceDecompressionHang:skl */
1184 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1185 		wa_write_or(wal,
1186 			    GEN9_GAMT_ECO_REG_RW_IA,
1187 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1188 }
1189 
1190 static void
kbl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1191 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1192 {
1193 	gen9_gt_workarounds_init(gt, wal);
1194 
1195 	/* WaDisableDynamicCreditSharing:kbl */
1196 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1197 		wa_write_or(wal,
1198 			    GAMT_CHKN_BIT_REG,
1199 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1200 
1201 	/* WaDisableGafsUnitClkGating:kbl */
1202 	wa_write_or(wal,
1203 		    GEN7_UCGCTL4,
1204 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1205 
1206 	/* WaInPlaceDecompressionHang:kbl */
1207 	wa_write_or(wal,
1208 		    GEN9_GAMT_ECO_REG_RW_IA,
1209 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1210 }
1211 
1212 static void
glk_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1213 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1214 {
1215 	gen9_gt_workarounds_init(gt, wal);
1216 }
1217 
1218 static void
cfl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1219 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1220 {
1221 	gen9_gt_workarounds_init(gt, wal);
1222 
1223 	/* WaDisableGafsUnitClkGating:cfl */
1224 	wa_write_or(wal,
1225 		    GEN7_UCGCTL4,
1226 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1227 
1228 	/* WaInPlaceDecompressionHang:cfl */
1229 	wa_write_or(wal,
1230 		    GEN9_GAMT_ECO_REG_RW_IA,
1231 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1232 }
1233 
__set_mcr_steering(struct i915_wa_list * wal,i915_reg_t steering_reg,unsigned int slice,unsigned int subslice)1234 static void __set_mcr_steering(struct i915_wa_list *wal,
1235 			       i915_reg_t steering_reg,
1236 			       unsigned int slice, unsigned int subslice)
1237 {
1238 	u32 mcr, mcr_mask;
1239 
1240 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1241 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1242 
1243 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1244 }
1245 
debug_dump_steering(struct intel_gt * gt)1246 static void debug_dump_steering(struct intel_gt *gt)
1247 {
1248 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1249 
1250 	if (drm_debug_enabled(DRM_UT_DRIVER))
1251 		intel_gt_mcr_report_steering(&p, gt, false);
1252 }
1253 
__add_mcr_wa(struct intel_gt * gt,struct i915_wa_list * wal,unsigned int slice,unsigned int subslice)1254 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1255 			 unsigned int slice, unsigned int subslice)
1256 {
1257 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1258 
1259 	gt->default_steering.groupid = slice;
1260 	gt->default_steering.instanceid = subslice;
1261 
1262 	debug_dump_steering(gt);
1263 }
1264 
1265 static void
icl_wa_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1266 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1267 {
1268 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1269 	unsigned int subslice;
1270 
1271 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1272 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1273 
1274 	/*
1275 	 * Although a platform may have subslices, we need to always steer
1276 	 * reads to the lowest instance that isn't fused off.  When Render
1277 	 * Power Gating is enabled, grabbing forcewake will only power up a
1278 	 * single subslice (the "minconfig") if there isn't a real workload
1279 	 * that needs to be run; this means that if we steer register reads to
1280 	 * one of the higher subslices, we run the risk of reading back 0's or
1281 	 * random garbage.
1282 	 */
1283 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1284 
1285 	/*
1286 	 * If the subslice we picked above also steers us to a valid L3 bank,
1287 	 * then we can just rely on the default steering and won't need to
1288 	 * worry about explicitly re-steering L3BANK reads later.
1289 	 */
1290 	if (gt->info.l3bank_mask & BIT(subslice))
1291 		gt->steering_table[L3BANK] = NULL;
1292 
1293 	__add_mcr_wa(gt, wal, 0, subslice);
1294 }
1295 
1296 static void
xehp_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1297 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1298 {
1299 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1300 	unsigned long slice, subslice = 0, slice_mask = 0;
1301 	u32 lncf_mask = 0;
1302 	int i;
1303 
1304 	/*
1305 	 * On Xe_HP the steering increases in complexity. There are now several
1306 	 * more units that require steering and we're not guaranteed to be able
1307 	 * to find a common setting for all of them. These are:
1308 	 * - GSLICE (fusable)
1309 	 * - DSS (sub-unit within gslice; fusable)
1310 	 * - L3 Bank (fusable)
1311 	 * - MSLICE (fusable)
1312 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1313 	 *
1314 	 * We'll do our default/implicit steering based on GSLICE (in the
1315 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1316 	 * find overlap between the valid MSLICE and/or LNCF values with
1317 	 * a suitable GSLICE, then we can just re-use the default value and
1318 	 * skip and explicit steering at runtime.
1319 	 *
1320 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1321 	 * a valid sliceid value.  DSS steering is the only type of steering
1322 	 * that utilizes the 'subsliceid' bits.
1323 	 *
1324 	 * Also note that, even though the steering domain is called "GSlice"
1325 	 * and it is encoded in the register using the gslice format, the spec
1326 	 * says that the combined (geometry | compute) fuse should be used to
1327 	 * select the steering.
1328 	 */
1329 
1330 	/* Find the potential gslice candidates */
1331 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1332 						       GEN_DSS_PER_GSLICE);
1333 
1334 	/*
1335 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1336 	 * mslice is fine.
1337 	 */
1338 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1339 		lncf_mask |= (0x3 << (i * 2));
1340 
1341 	/*
1342 	 * Are there any sliceid values that work for both GSLICE and LNCF
1343 	 * steering?
1344 	 */
1345 	if (slice_mask & lncf_mask) {
1346 		slice_mask &= lncf_mask;
1347 		gt->steering_table[LNCF] = NULL;
1348 	}
1349 
1350 	/* How about sliceid values that also work for MSLICE steering? */
1351 	if (slice_mask & gt->info.mslice_mask) {
1352 		slice_mask &= gt->info.mslice_mask;
1353 		gt->steering_table[MSLICE] = NULL;
1354 	}
1355 
1356 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1357 		gt->steering_table[GAM] = NULL;
1358 
1359 	slice = __ffs(slice_mask);
1360 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1361 		GEN_DSS_PER_GSLICE;
1362 
1363 	__add_mcr_wa(gt, wal, slice, subslice);
1364 
1365 	/*
1366 	 * SQIDI ranges are special because they use different steering
1367 	 * registers than everything else we work with.  On XeHP SDV and
1368 	 * DG2-G10, any value in the steering registers will work fine since
1369 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1370 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1371 	 * we'll just steer to a hardcoded "2" since that value will work
1372 	 * everywhere.
1373 	 */
1374 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1375 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1376 
1377 	/*
1378 	 * On DG2, GAM registers have a dedicated steering control register
1379 	 * and must always be programmed to a hardcoded groupid of "1."
1380 	 */
1381 	if (IS_DG2(gt->i915))
1382 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1383 }
1384 
1385 static void
pvc_init_mcr(struct intel_gt * gt,struct i915_wa_list * wal)1386 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1387 {
1388 	unsigned int dss;
1389 
1390 	/*
1391 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1392 	 * non-fused-off DSS.  All other types of MCR registers will be
1393 	 * explicitly steered.
1394 	 */
1395 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1396 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1397 }
1398 
1399 static void
icl_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1400 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1401 {
1402 	struct drm_i915_private *i915 = gt->i915;
1403 
1404 	icl_wa_init_mcr(gt, wal);
1405 
1406 	/* WaModifyGamTlbPartitioning:icl */
1407 	wa_write_clr_set(wal,
1408 			 GEN11_GACB_PERF_CTRL,
1409 			 GEN11_HASH_CTRL_MASK,
1410 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1411 
1412 	/* Wa_1405766107:icl
1413 	 * Formerly known as WaCL2SFHalfMaxAlloc
1414 	 */
1415 	wa_write_or(wal,
1416 		    GEN11_LSN_UNSLCVC,
1417 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1418 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1419 
1420 	/* Wa_220166154:icl
1421 	 * Formerly known as WaDisCtxReload
1422 	 */
1423 	wa_write_or(wal,
1424 		    GEN8_GAMW_ECO_DEV_RW_IA,
1425 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1426 
1427 	/* Wa_1406463099:icl
1428 	 * Formerly known as WaGamTlbPendError
1429 	 */
1430 	wa_write_or(wal,
1431 		    GAMT_CHKN_BIT_REG,
1432 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1433 
1434 	/*
1435 	 * Wa_1408615072:icl,ehl  (vsunit)
1436 	 * Wa_1407596294:icl,ehl  (hsunit)
1437 	 */
1438 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1439 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1440 
1441 	/* Wa_1407352427:icl,ehl */
1442 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1443 		    PSDUNIT_CLKGATE_DIS);
1444 
1445 	/* Wa_1406680159:icl,ehl */
1446 	wa_mcr_write_or(wal,
1447 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1448 			GWUNIT_CLKGATE_DIS);
1449 
1450 	/* Wa_1607087056:icl,ehl,jsl */
1451 	if (IS_ICELAKE(i915) ||
1452 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1453 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1454 		wa_write_or(wal,
1455 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1456 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1457 
1458 	/*
1459 	 * This is not a documented workaround, but rather an optimization
1460 	 * to reduce sampler power.
1461 	 */
1462 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1463 }
1464 
1465 /*
1466  * Though there are per-engine instances of these registers,
1467  * they retain their value through engine resets and should
1468  * only be provided on the GT workaround list rather than
1469  * the engine-specific workaround list.
1470  */
1471 static void
wa_14011060649(struct intel_gt * gt,struct i915_wa_list * wal)1472 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1473 {
1474 	struct intel_engine_cs *engine;
1475 	int id;
1476 
1477 	for_each_engine(engine, gt, id) {
1478 		if (engine->class != VIDEO_DECODE_CLASS ||
1479 		    (engine->instance % 2))
1480 			continue;
1481 
1482 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1483 			    IECPUNIT_CLKGATE_DIS);
1484 	}
1485 }
1486 
1487 static void
gen12_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1488 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1489 {
1490 	icl_wa_init_mcr(gt, wal);
1491 
1492 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1493 	wa_14011060649(gt, wal);
1494 
1495 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1496 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1497 
1498 	/*
1499 	 * Wa_14015795083
1500 	 *
1501 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1502 	 * preventing i915 from modifying it for this workaround.  Skip the
1503 	 * readback verification for this workaround on debug builds; if the
1504 	 * workaround doesn't stick due to firmware behavior, it's not an error
1505 	 * that we want CI to flag.
1506 	 */
1507 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1508 	       0, 0, false);
1509 }
1510 
1511 static void
dg1_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1512 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1513 {
1514 	gen12_gt_workarounds_init(gt, wal);
1515 
1516 	/* Wa_1409420604:dg1 */
1517 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1518 			CPSSUNIT_CLKGATE_DIS);
1519 
1520 	/* Wa_1408615072:dg1 */
1521 	/* Empirical testing shows this register is unaffected by engine reset. */
1522 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1523 }
1524 
1525 static void
xehpsdv_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1526 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1527 {
1528 	struct drm_i915_private *i915 = gt->i915;
1529 
1530 	xehp_init_mcr(gt, wal);
1531 
1532 	/* Wa_1409757795:xehpsdv */
1533 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1534 
1535 	/* Wa_18011725039:xehpsdv */
1536 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1537 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1538 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1539 	}
1540 
1541 	/* Wa_16011155590:xehpsdv */
1542 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1543 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1544 			    TSGUNIT_CLKGATE_DIS);
1545 
1546 	/* Wa_14011780169:xehpsdv */
1547 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1548 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1549 			    GAMTLBVDBOX7_CLKGATE_DIS |
1550 			    GAMTLBVDBOX6_CLKGATE_DIS |
1551 			    GAMTLBVDBOX5_CLKGATE_DIS |
1552 			    GAMTLBVDBOX4_CLKGATE_DIS |
1553 			    GAMTLBVDBOX3_CLKGATE_DIS |
1554 			    GAMTLBVDBOX2_CLKGATE_DIS |
1555 			    GAMTLBVDBOX1_CLKGATE_DIS |
1556 			    GAMTLBVDBOX0_CLKGATE_DIS |
1557 			    GAMTLBKCR_CLKGATE_DIS |
1558 			    GAMTLBGUC_CLKGATE_DIS |
1559 			    GAMTLBBLT_CLKGATE_DIS);
1560 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1561 			    GAMTLBGFXA1_CLKGATE_DIS |
1562 			    GAMTLBCOMPA0_CLKGATE_DIS |
1563 			    GAMTLBCOMPA1_CLKGATE_DIS |
1564 			    GAMTLBCOMPB0_CLKGATE_DIS |
1565 			    GAMTLBCOMPB1_CLKGATE_DIS |
1566 			    GAMTLBCOMPC0_CLKGATE_DIS |
1567 			    GAMTLBCOMPC1_CLKGATE_DIS |
1568 			    GAMTLBCOMPD0_CLKGATE_DIS |
1569 			    GAMTLBCOMPD1_CLKGATE_DIS |
1570 			    GAMTLBMERT_CLKGATE_DIS   |
1571 			    GAMTLBVEBOX3_CLKGATE_DIS |
1572 			    GAMTLBVEBOX2_CLKGATE_DIS |
1573 			    GAMTLBVEBOX1_CLKGATE_DIS |
1574 			    GAMTLBVEBOX0_CLKGATE_DIS);
1575 	}
1576 
1577 	/* Wa_16012725990:xehpsdv */
1578 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1579 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1580 
1581 	/* Wa_14011060649:xehpsdv */
1582 	wa_14011060649(gt, wal);
1583 
1584 	/* Wa_14012362059:xehpsdv */
1585 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1586 
1587 	/* Wa_14014368820:xehpsdv */
1588 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1589 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1590 
1591 	/* Wa_14010670810:xehpsdv */
1592 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1593 }
1594 
1595 static void
dg2_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1596 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1597 {
1598 	xehp_init_mcr(gt, wal);
1599 
1600 	/* Wa_14011060649:dg2 */
1601 	wa_14011060649(gt, wal);
1602 
1603 	if (IS_DG2_G10(gt->i915)) {
1604 		/* Wa_22010523718:dg2 */
1605 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1606 			    CG3DDISCFEG_CLKGATE_DIS);
1607 
1608 		/* Wa_14011006942:dg2 */
1609 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1610 				DSS_ROUTER_CLKGATE_DIS);
1611 	}
1612 
1613 	/* Wa_14014830051:dg2 */
1614 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1615 
1616 	/* Wa_14015795083 */
1617 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1618 
1619 	/* Wa_18018781329 */
1620 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1621 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1622 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1623 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1624 
1625 	/* Wa_1509235366:dg2 */
1626 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1627 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1628 
1629 	/* Wa_14010648519:dg2 */
1630 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1631 }
1632 
1633 static void
pvc_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1634 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1635 {
1636 	pvc_init_mcr(gt, wal);
1637 
1638 	/* Wa_14015795083 */
1639 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1640 
1641 	/* Wa_18018781329 */
1642 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1643 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1644 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1645 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1646 
1647 	/* Wa_16016694945 */
1648 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1649 }
1650 
1651 static void
xelpg_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1652 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1653 {
1654 	/* Wa_14018575942 / Wa_18018781329 */
1655 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1656 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1657 
1658 	/* Wa_22016670082 */
1659 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1660 
1661 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1662 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1663 		/* Wa_14014830051 */
1664 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1665 
1666 		/* Wa_14015795083 */
1667 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1668 	}
1669 
1670 	/*
1671 	 * Unlike older platforms, we no longer setup implicit steering here;
1672 	 * all MCR accesses are explicitly steered.
1673 	 */
1674 	debug_dump_steering(gt);
1675 }
1676 
1677 static void
xelpmp_gt_workarounds_init(struct intel_gt * gt,struct i915_wa_list * wal)1678 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1679 {
1680 	/*
1681 	 * Wa_14018778641
1682 	 * Wa_18018781329
1683 	 *
1684 	 * Note that although these registers are MCR on the primary
1685 	 * GT, the media GT's versions are regular singleton registers.
1686 	 */
1687 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1688 
1689 	debug_dump_steering(gt);
1690 }
1691 
1692 /*
1693  * The bspec performance guide has recommended MMIO tuning settings.  These
1694  * aren't truly "workarounds" but we want to program them through the
1695  * workaround infrastructure to make sure they're (re)applied at the proper
1696  * times.
1697  *
1698  * The programming in this function is for settings that persist through
1699  * engine resets and also are not part of any engine's register state context.
1700  * I.e., settings that only need to be re-applied in the event of a full GT
1701  * reset.
1702  */
gt_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)1703 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1704 {
1705 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1706 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1707 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1708 	}
1709 
1710 	if (IS_PONTEVECCHIO(gt->i915)) {
1711 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1712 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1713 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1714 	}
1715 
1716 	if (IS_DG2(gt->i915)) {
1717 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1718 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1719 	}
1720 }
1721 
1722 static void
gt_init_workarounds(struct intel_gt * gt,struct i915_wa_list * wal)1723 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1724 {
1725 	struct drm_i915_private *i915 = gt->i915;
1726 
1727 	gt_tuning_settings(gt, wal);
1728 
1729 	if (gt->type == GT_MEDIA) {
1730 		if (MEDIA_VER(i915) >= 13)
1731 			xelpmp_gt_workarounds_init(gt, wal);
1732 		else
1733 			MISSING_CASE(MEDIA_VER(i915));
1734 
1735 		return;
1736 	}
1737 
1738 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1739 		xelpg_gt_workarounds_init(gt, wal);
1740 	else if (IS_PONTEVECCHIO(i915))
1741 		pvc_gt_workarounds_init(gt, wal);
1742 	else if (IS_DG2(i915))
1743 		dg2_gt_workarounds_init(gt, wal);
1744 	else if (IS_XEHPSDV(i915))
1745 		xehpsdv_gt_workarounds_init(gt, wal);
1746 	else if (IS_DG1(i915))
1747 		dg1_gt_workarounds_init(gt, wal);
1748 	else if (GRAPHICS_VER(i915) == 12)
1749 		gen12_gt_workarounds_init(gt, wal);
1750 	else if (GRAPHICS_VER(i915) == 11)
1751 		icl_gt_workarounds_init(gt, wal);
1752 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1753 		cfl_gt_workarounds_init(gt, wal);
1754 	else if (IS_GEMINILAKE(i915))
1755 		glk_gt_workarounds_init(gt, wal);
1756 	else if (IS_KABYLAKE(i915))
1757 		kbl_gt_workarounds_init(gt, wal);
1758 	else if (IS_BROXTON(i915))
1759 		gen9_gt_workarounds_init(gt, wal);
1760 	else if (IS_SKYLAKE(i915))
1761 		skl_gt_workarounds_init(gt, wal);
1762 	else if (IS_HASWELL(i915))
1763 		hsw_gt_workarounds_init(gt, wal);
1764 	else if (IS_VALLEYVIEW(i915))
1765 		vlv_gt_workarounds_init(gt, wal);
1766 	else if (IS_IVYBRIDGE(i915))
1767 		ivb_gt_workarounds_init(gt, wal);
1768 	else if (GRAPHICS_VER(i915) == 6)
1769 		snb_gt_workarounds_init(gt, wal);
1770 	else if (GRAPHICS_VER(i915) == 5)
1771 		ilk_gt_workarounds_init(gt, wal);
1772 	else if (IS_G4X(i915))
1773 		g4x_gt_workarounds_init(gt, wal);
1774 	else if (GRAPHICS_VER(i915) == 4)
1775 		gen4_gt_workarounds_init(gt, wal);
1776 	else if (GRAPHICS_VER(i915) <= 8)
1777 		;
1778 	else
1779 		MISSING_CASE(GRAPHICS_VER(i915));
1780 }
1781 
intel_gt_init_workarounds(struct intel_gt * gt)1782 void intel_gt_init_workarounds(struct intel_gt *gt)
1783 {
1784 	struct i915_wa_list *wal = &gt->wa_list;
1785 
1786 	wa_init_start(wal, gt, "GT", "global");
1787 	gt_init_workarounds(gt, wal);
1788 	wa_init_finish(wal);
1789 }
1790 
1791 static bool
wa_verify(struct intel_gt * gt,const struct i915_wa * wa,u32 cur,const char * name,const char * from)1792 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1793 	  const char *name, const char *from)
1794 {
1795 	if ((cur ^ wa->set) & wa->read) {
1796 		drm_err(&gt->i915->drm,
1797 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1798 			name, from, i915_mmio_reg_offset(wa->reg),
1799 			cur, cur & wa->read, wa->set & wa->read);
1800 
1801 		return false;
1802 	}
1803 
1804 	return true;
1805 }
1806 
wa_list_apply(const struct i915_wa_list * wal)1807 static void wa_list_apply(const struct i915_wa_list *wal)
1808 {
1809 	struct intel_gt *gt = wal->gt;
1810 	struct intel_uncore *uncore = gt->uncore;
1811 	enum forcewake_domains fw;
1812 	unsigned long flags;
1813 	struct i915_wa *wa;
1814 	unsigned int i;
1815 
1816 	if (!wal->count)
1817 		return;
1818 
1819 	fw = wal_get_fw_for_rmw(uncore, wal);
1820 
1821 	intel_gt_mcr_lock(gt, &flags);
1822 	spin_lock(&uncore->lock);
1823 	intel_uncore_forcewake_get__locked(uncore, fw);
1824 
1825 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1826 		u32 val, old = 0;
1827 
1828 		/* open-coded rmw due to steering */
1829 		if (wa->clr)
1830 			old = wa->is_mcr ?
1831 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1832 				intel_uncore_read_fw(uncore, wa->reg);
1833 		val = (old & ~wa->clr) | wa->set;
1834 		if (val != old || !wa->clr) {
1835 			if (wa->is_mcr)
1836 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1837 			else
1838 				intel_uncore_write_fw(uncore, wa->reg, val);
1839 		}
1840 
1841 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1842 			u32 val = wa->is_mcr ?
1843 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1844 				intel_uncore_read_fw(uncore, wa->reg);
1845 
1846 			wa_verify(gt, wa, val, wal->name, "application");
1847 		}
1848 	}
1849 
1850 	intel_uncore_forcewake_put__locked(uncore, fw);
1851 	spin_unlock(&uncore->lock);
1852 	intel_gt_mcr_unlock(gt, flags);
1853 }
1854 
intel_gt_apply_workarounds(struct intel_gt * gt)1855 void intel_gt_apply_workarounds(struct intel_gt *gt)
1856 {
1857 	wa_list_apply(&gt->wa_list);
1858 }
1859 
wa_list_verify(struct intel_gt * gt,const struct i915_wa_list * wal,const char * from)1860 static bool wa_list_verify(struct intel_gt *gt,
1861 			   const struct i915_wa_list *wal,
1862 			   const char *from)
1863 {
1864 	struct intel_uncore *uncore = gt->uncore;
1865 	struct i915_wa *wa;
1866 	enum forcewake_domains fw;
1867 	unsigned long flags;
1868 	unsigned int i;
1869 	bool ok = true;
1870 
1871 	fw = wal_get_fw_for_rmw(uncore, wal);
1872 
1873 	intel_gt_mcr_lock(gt, &flags);
1874 	spin_lock(&uncore->lock);
1875 	intel_uncore_forcewake_get__locked(uncore, fw);
1876 
1877 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1878 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1879 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1880 				intel_uncore_read_fw(uncore, wa->reg),
1881 				wal->name, from);
1882 
1883 	intel_uncore_forcewake_put__locked(uncore, fw);
1884 	spin_unlock(&uncore->lock);
1885 	intel_gt_mcr_unlock(gt, flags);
1886 
1887 	return ok;
1888 }
1889 
intel_gt_verify_workarounds(struct intel_gt * gt,const char * from)1890 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1891 {
1892 	return wa_list_verify(gt, &gt->wa_list, from);
1893 }
1894 
1895 __maybe_unused
is_nonpriv_flags_valid(u32 flags)1896 static bool is_nonpriv_flags_valid(u32 flags)
1897 {
1898 	/* Check only valid flag bits are set */
1899 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1900 		return false;
1901 
1902 	/* NB: Only 3 out of 4 enum values are valid for access field */
1903 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1904 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1905 		return false;
1906 
1907 	return true;
1908 }
1909 
1910 static void
whitelist_reg_ext(struct i915_wa_list * wal,i915_reg_t reg,u32 flags)1911 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1912 {
1913 	struct i915_wa wa = {
1914 		.reg = reg
1915 	};
1916 
1917 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1918 		return;
1919 
1920 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1921 		return;
1922 
1923 	wa.reg.reg |= flags;
1924 	_wa_add(wal, &wa);
1925 }
1926 
1927 static void
whitelist_mcr_reg_ext(struct i915_wa_list * wal,i915_mcr_reg_t reg,u32 flags)1928 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1929 {
1930 	struct i915_wa wa = {
1931 		.mcr_reg = reg,
1932 		.is_mcr = 1,
1933 	};
1934 
1935 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1936 		return;
1937 
1938 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1939 		return;
1940 
1941 	wa.mcr_reg.reg |= flags;
1942 	_wa_add(wal, &wa);
1943 }
1944 
1945 static void
whitelist_reg(struct i915_wa_list * wal,i915_reg_t reg)1946 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1947 {
1948 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1949 }
1950 
1951 static void
whitelist_mcr_reg(struct i915_wa_list * wal,i915_mcr_reg_t reg)1952 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1953 {
1954 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1955 }
1956 
gen9_whitelist_build(struct i915_wa_list * w)1957 static void gen9_whitelist_build(struct i915_wa_list *w)
1958 {
1959 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1960 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1961 
1962 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1963 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1964 
1965 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1966 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1967 
1968 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1969 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1970 }
1971 
skl_whitelist_build(struct intel_engine_cs * engine)1972 static void skl_whitelist_build(struct intel_engine_cs *engine)
1973 {
1974 	struct i915_wa_list *w = &engine->whitelist;
1975 
1976 	if (engine->class != RENDER_CLASS)
1977 		return;
1978 
1979 	gen9_whitelist_build(w);
1980 
1981 	/* WaDisableLSQCROPERFforOCL:skl */
1982 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1983 }
1984 
bxt_whitelist_build(struct intel_engine_cs * engine)1985 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1986 {
1987 	if (engine->class != RENDER_CLASS)
1988 		return;
1989 
1990 	gen9_whitelist_build(&engine->whitelist);
1991 }
1992 
kbl_whitelist_build(struct intel_engine_cs * engine)1993 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1994 {
1995 	struct i915_wa_list *w = &engine->whitelist;
1996 
1997 	if (engine->class != RENDER_CLASS)
1998 		return;
1999 
2000 	gen9_whitelist_build(w);
2001 
2002 	/* WaDisableLSQCROPERFforOCL:kbl */
2003 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2004 }
2005 
glk_whitelist_build(struct intel_engine_cs * engine)2006 static void glk_whitelist_build(struct intel_engine_cs *engine)
2007 {
2008 	struct i915_wa_list *w = &engine->whitelist;
2009 
2010 	if (engine->class != RENDER_CLASS)
2011 		return;
2012 
2013 	gen9_whitelist_build(w);
2014 
2015 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2016 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2017 }
2018 
cfl_whitelist_build(struct intel_engine_cs * engine)2019 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2020 {
2021 	struct i915_wa_list *w = &engine->whitelist;
2022 
2023 	if (engine->class != RENDER_CLASS)
2024 		return;
2025 
2026 	gen9_whitelist_build(w);
2027 
2028 	/*
2029 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2030 	 *
2031 	 * This covers 4 register which are next to one another :
2032 	 *   - PS_INVOCATION_COUNT
2033 	 *   - PS_INVOCATION_COUNT_UDW
2034 	 *   - PS_DEPTH_COUNT
2035 	 *   - PS_DEPTH_COUNT_UDW
2036 	 */
2037 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2038 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2039 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2040 }
2041 
allow_read_ctx_timestamp(struct intel_engine_cs * engine)2042 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2043 {
2044 	struct i915_wa_list *w = &engine->whitelist;
2045 
2046 	if (engine->class != RENDER_CLASS)
2047 		whitelist_reg_ext(w,
2048 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2049 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2050 }
2051 
cml_whitelist_build(struct intel_engine_cs * engine)2052 static void cml_whitelist_build(struct intel_engine_cs *engine)
2053 {
2054 	allow_read_ctx_timestamp(engine);
2055 
2056 	cfl_whitelist_build(engine);
2057 }
2058 
icl_whitelist_build(struct intel_engine_cs * engine)2059 static void icl_whitelist_build(struct intel_engine_cs *engine)
2060 {
2061 	struct i915_wa_list *w = &engine->whitelist;
2062 
2063 	allow_read_ctx_timestamp(engine);
2064 
2065 	switch (engine->class) {
2066 	case RENDER_CLASS:
2067 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2068 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2069 
2070 		/* WaAllowUMDToModifySamplerMode:icl */
2071 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2072 
2073 		/* WaEnableStateCacheRedirectToCS:icl */
2074 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2075 
2076 		/*
2077 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2078 		 *
2079 		 * This covers 4 register which are next to one another :
2080 		 *   - PS_INVOCATION_COUNT
2081 		 *   - PS_INVOCATION_COUNT_UDW
2082 		 *   - PS_DEPTH_COUNT
2083 		 *   - PS_DEPTH_COUNT_UDW
2084 		 */
2085 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2086 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2087 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2088 		break;
2089 
2090 	case VIDEO_DECODE_CLASS:
2091 		/* hucStatusRegOffset */
2092 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2093 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2094 		/* hucUKernelHdrInfoRegOffset */
2095 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2096 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2097 		/* hucStatus2RegOffset */
2098 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2099 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2100 		break;
2101 
2102 	default:
2103 		break;
2104 	}
2105 }
2106 
tgl_whitelist_build(struct intel_engine_cs * engine)2107 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2108 {
2109 	struct i915_wa_list *w = &engine->whitelist;
2110 
2111 	allow_read_ctx_timestamp(engine);
2112 
2113 	switch (engine->class) {
2114 	case RENDER_CLASS:
2115 		/*
2116 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2117 		 * Wa_1408556865:tgl
2118 		 *
2119 		 * This covers 4 registers which are next to one another :
2120 		 *   - PS_INVOCATION_COUNT
2121 		 *   - PS_INVOCATION_COUNT_UDW
2122 		 *   - PS_DEPTH_COUNT
2123 		 *   - PS_DEPTH_COUNT_UDW
2124 		 */
2125 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2126 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2127 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2128 
2129 		/*
2130 		 * Wa_1808121037:tgl
2131 		 * Wa_14012131227:dg1
2132 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2133 		 */
2134 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2135 
2136 		/* Wa_1806527549:tgl */
2137 		whitelist_reg(w, HIZ_CHICKEN);
2138 
2139 		/* Required by recommended tuning setting (not a workaround) */
2140 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2141 
2142 		break;
2143 	default:
2144 		break;
2145 	}
2146 }
2147 
dg2_whitelist_build(struct intel_engine_cs * engine)2148 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2149 {
2150 	struct i915_wa_list *w = &engine->whitelist;
2151 
2152 	switch (engine->class) {
2153 	case RENDER_CLASS:
2154 		/* Required by recommended tuning setting (not a workaround) */
2155 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2156 
2157 		break;
2158 	default:
2159 		break;
2160 	}
2161 }
2162 
blacklist_trtt(struct intel_engine_cs * engine)2163 static void blacklist_trtt(struct intel_engine_cs *engine)
2164 {
2165 	struct i915_wa_list *w = &engine->whitelist;
2166 
2167 	/*
2168 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2169 	 * the TRTT range across all engines. Note that normally userspace
2170 	 * cannot access the other engines' trtt control, but for simplicity
2171 	 * we cover the entire range on each engine.
2172 	 */
2173 	whitelist_reg_ext(w, _MMIO(0x4400),
2174 			  RING_FORCE_TO_NONPRIV_DENY |
2175 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2176 	whitelist_reg_ext(w, _MMIO(0x4500),
2177 			  RING_FORCE_TO_NONPRIV_DENY |
2178 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2179 }
2180 
pvc_whitelist_build(struct intel_engine_cs * engine)2181 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2182 {
2183 	/* Wa_16014440446:pvc */
2184 	blacklist_trtt(engine);
2185 }
2186 
xelpg_whitelist_build(struct intel_engine_cs * engine)2187 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2188 {
2189 	struct i915_wa_list *w = &engine->whitelist;
2190 
2191 	switch (engine->class) {
2192 	case RENDER_CLASS:
2193 		/* Required by recommended tuning setting (not a workaround) */
2194 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2195 
2196 		break;
2197 	default:
2198 		break;
2199 	}
2200 }
2201 
intel_engine_init_whitelist(struct intel_engine_cs * engine)2202 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2203 {
2204 	struct drm_i915_private *i915 = engine->i915;
2205 	struct i915_wa_list *w = &engine->whitelist;
2206 
2207 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2208 
2209 	if (engine->gt->type == GT_MEDIA)
2210 		; /* none yet */
2211 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2212 		xelpg_whitelist_build(engine);
2213 	else if (IS_PONTEVECCHIO(i915))
2214 		pvc_whitelist_build(engine);
2215 	else if (IS_DG2(i915))
2216 		dg2_whitelist_build(engine);
2217 	else if (IS_XEHPSDV(i915))
2218 		; /* none needed */
2219 	else if (GRAPHICS_VER(i915) == 12)
2220 		tgl_whitelist_build(engine);
2221 	else if (GRAPHICS_VER(i915) == 11)
2222 		icl_whitelist_build(engine);
2223 	else if (IS_COMETLAKE(i915))
2224 		cml_whitelist_build(engine);
2225 	else if (IS_COFFEELAKE(i915))
2226 		cfl_whitelist_build(engine);
2227 	else if (IS_GEMINILAKE(i915))
2228 		glk_whitelist_build(engine);
2229 	else if (IS_KABYLAKE(i915))
2230 		kbl_whitelist_build(engine);
2231 	else if (IS_BROXTON(i915))
2232 		bxt_whitelist_build(engine);
2233 	else if (IS_SKYLAKE(i915))
2234 		skl_whitelist_build(engine);
2235 	else if (GRAPHICS_VER(i915) <= 8)
2236 		;
2237 	else
2238 		MISSING_CASE(GRAPHICS_VER(i915));
2239 
2240 	wa_init_finish(w);
2241 }
2242 
intel_engine_apply_whitelist(struct intel_engine_cs * engine)2243 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2244 {
2245 	const struct i915_wa_list *wal = &engine->whitelist;
2246 	struct intel_uncore *uncore = engine->uncore;
2247 	const u32 base = engine->mmio_base;
2248 	struct i915_wa *wa;
2249 	unsigned int i;
2250 
2251 	if (!wal->count)
2252 		return;
2253 
2254 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2255 		intel_uncore_write(uncore,
2256 				   RING_FORCE_TO_NONPRIV(base, i),
2257 				   i915_mmio_reg_offset(wa->reg));
2258 
2259 	/* And clear the rest just in case of garbage */
2260 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2261 		intel_uncore_write(uncore,
2262 				   RING_FORCE_TO_NONPRIV(base, i),
2263 				   i915_mmio_reg_offset(RING_NOPID(base)));
2264 }
2265 
2266 /*
2267  * engine_fake_wa_init(), a place holder to program the registers
2268  * which are not part of an official workaround defined by the
2269  * hardware team.
2270  * Adding programming of those register inside workaround will
2271  * allow utilizing wa framework to proper application and verification.
2272  */
2273 static void
engine_fake_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2274 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2275 {
2276 	u8 mocs_w, mocs_r;
2277 
2278 	/*
2279 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2280 	 * by the command streamer when executing commands that don't have
2281 	 * a way to explicitly specify a MOCS setting.  The default should
2282 	 * usually reference whichever MOCS entry corresponds to uncached
2283 	 * behavior, although use of a WB cached entry is recommended by the
2284 	 * spec in certain circumstances on specific platforms.
2285 	 */
2286 	if (GRAPHICS_VER(engine->i915) >= 12) {
2287 		mocs_r = engine->gt->mocs.uc_index;
2288 		mocs_w = engine->gt->mocs.uc_index;
2289 
2290 		if (HAS_L3_CCS_READ(engine->i915) &&
2291 		    engine->class == COMPUTE_CLASS) {
2292 			mocs_r = engine->gt->mocs.wb_index;
2293 
2294 			/*
2295 			 * Even on the few platforms where MOCS 0 is a
2296 			 * legitimate table entry, it's never the correct
2297 			 * setting to use here; we can assume the MOCS init
2298 			 * just forgot to initialize wb_index.
2299 			 */
2300 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2301 		}
2302 
2303 		wa_masked_field_set(wal,
2304 				    RING_CMD_CCTL(engine->mmio_base),
2305 				    CMD_CCTL_MOCS_MASK,
2306 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2307 	}
2308 }
2309 
2310 static void
rcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2311 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2312 {
2313 	struct drm_i915_private *i915 = engine->i915;
2314 	struct intel_gt *gt = engine->gt;
2315 
2316 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2317 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2318 		/* Wa_22014600077 */
2319 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2320 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2321 	}
2322 
2323 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2324 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2325 	    IS_DG2(i915)) {
2326 		/* Wa_1509727124 */
2327 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2328 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2329 	}
2330 
2331 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2332 	    IS_DG2(i915)) {
2333 		/* Wa_22012856258 */
2334 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2335 				 GEN12_DISABLE_READ_SUPPRESSION);
2336 	}
2337 
2338 	if (IS_DG2(i915)) {
2339 		/*
2340 		 * Wa_22010960976:dg2
2341 		 * Wa_14013347512:dg2
2342 		 */
2343 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2344 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2345 	}
2346 
2347 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 71)) ||
2348 	    IS_DG2(i915)) {
2349 		/* Wa_14015150844 */
2350 		wa_mcr_add(wal, XEHP_HDC_CHICKEN0, 0,
2351 			   _MASKED_BIT_ENABLE(DIS_ATOMIC_CHAINING_TYPED_WRITES),
2352 			   0, true);
2353 	}
2354 
2355 	if (IS_DG2_G11(i915) || IS_DG2_G10(i915)) {
2356 		/* Wa_22014600077:dg2 */
2357 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2358 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2359 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2360 			   true);
2361 	}
2362 
2363 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2364 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2365 		/*
2366 		 * Wa_1606700617:tgl,dg1,adl-p
2367 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2368 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2369 		 * Wa_18019627453:dg2
2370 		 */
2371 		wa_masked_en(wal,
2372 			     GEN9_CS_DEBUG_MODE1,
2373 			     FF_DOP_CLOCK_GATE_DISABLE);
2374 	}
2375 
2376 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2377 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2378 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2379 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2380 
2381 		/*
2382 		 * Wa_1407928979:tgl A*
2383 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2384 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2385 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2386 		 */
2387 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2388 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2389 
2390 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2391 		wa_mcr_masked_en(wal,
2392 				 GEN10_SAMPLER_MODE,
2393 				 ENABLE_SMALLPL);
2394 	}
2395 
2396 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2397 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2398 		/* Wa_1409804808 */
2399 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2400 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2401 
2402 		/* Wa_14010229206 */
2403 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2404 	}
2405 
2406 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2407 		/*
2408 		 * Wa_1607297627
2409 		 *
2410 		 * On TGL and RKL there are multiple entries for this WA in the
2411 		 * BSpec; some indicate this is an A0-only WA, others indicate
2412 		 * it applies to all steppings so we trust the "all steppings."
2413 		 */
2414 		wa_masked_en(wal,
2415 			     RING_PSMI_CTL(RENDER_RING_BASE),
2416 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2417 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2418 	}
2419 
2420 	if (GRAPHICS_VER(i915) == 11) {
2421 		/* This is not an Wa. Enable for better image quality */
2422 		wa_masked_en(wal,
2423 			     _3D_CHICKEN3,
2424 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2425 
2426 		/*
2427 		 * Wa_1405543622:icl
2428 		 * Formerly known as WaGAPZPriorityScheme
2429 		 */
2430 		wa_write_or(wal,
2431 			    GEN8_GARBCNTL,
2432 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2433 
2434 		/*
2435 		 * Wa_1604223664:icl
2436 		 * Formerly known as WaL3BankAddressHashing
2437 		 */
2438 		wa_write_clr_set(wal,
2439 				 GEN8_GARBCNTL,
2440 				 GEN11_HASH_CTRL_EXCL_MASK,
2441 				 GEN11_HASH_CTRL_EXCL_BIT0);
2442 		wa_write_clr_set(wal,
2443 				 GEN11_GLBLINVL,
2444 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2445 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2446 
2447 		/*
2448 		 * Wa_1405733216:icl
2449 		 * Formerly known as WaDisableCleanEvicts
2450 		 */
2451 		wa_mcr_write_or(wal,
2452 				GEN8_L3SQCREG4,
2453 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2454 
2455 		/* Wa_1606682166:icl */
2456 		wa_write_or(wal,
2457 			    GEN7_SARCHKMD,
2458 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2459 
2460 		/* Wa_1409178092:icl */
2461 		wa_mcr_write_clr_set(wal,
2462 				     GEN11_SCRATCH2,
2463 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2464 				     0);
2465 
2466 		/* WaEnable32PlaneMode:icl */
2467 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2468 			     GEN11_ENABLE_32_PLANE_MODE);
2469 
2470 		/*
2471 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2472 		 * Wa_1605460711:icl[a0..c0]
2473 		 */
2474 		wa_write_or(wal,
2475 			    GEN7_FF_THREAD_MODE,
2476 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2477 
2478 		/* Wa_22010271021 */
2479 		wa_masked_en(wal,
2480 			     GEN9_CS_DEBUG_MODE1,
2481 			     FF_DOP_CLOCK_GATE_DISABLE);
2482 	}
2483 
2484 	/*
2485 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2486 	 * beyond) allow the kernel-mode driver to choose between two different
2487 	 * options for controlling preemption granularity and behavior.
2488 	 *
2489 	 * Option 1 (hardware default):
2490 	 *   Preemption settings are controlled in a global manner via
2491 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2492 	 *   and settings chosen by the kernel-mode driver will apply to all
2493 	 *   userspace clients.
2494 	 *
2495 	 * Option 2:
2496 	 *   Preemption settings are controlled on a per-context basis via
2497 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2498 	 *   context switch and is writable by userspace (e.g., via
2499 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2500 	 *   which allows different userspace drivers/clients to select
2501 	 *   different settings, or to change those settings on the fly in
2502 	 *   response to runtime needs.  This option was known by name
2503 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2504 	 *   that name is somewhat misleading as other non-granularity
2505 	 *   preemption settings are also impacted by this decision.
2506 	 *
2507 	 * On Linux, our policy has always been to let userspace drivers
2508 	 * control preemption granularity/settings (Option 2).  This was
2509 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2510 	 * userspace developed before object-level preemption was enabled would
2511 	 * not behave well if i915 were to go with Option 1 and enable that
2512 	 * preemption in a global manner).  On gen9 each context would have
2513 	 * object-level preemption disabled by default (see
2514 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2515 	 * userspace drivers could opt-in to object-level preemption as they
2516 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2517 	 * even though it is no longer necessary for ABI compatibility when
2518 	 * enabling a new platform, it does ensure that userspace will be able
2519 	 * to implement any workarounds that show up requiring temporary
2520 	 * adjustments to preemption behavior at runtime.
2521 	 *
2522 	 * Notes/Workarounds:
2523 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2524 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2525 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2526 	 *      using Option 1).  Effectively this means userspace is unable
2527 	 *      to disable object-level preemption on these platforms/steppings
2528 	 *      despite the setting here.
2529 	 *
2530 	 *  - Wa_16013994831:  May require that userspace program
2531 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2532 	 *      Userspace requires Option 2 to be in effect for their update of
2533 	 *      CS_CHICKEN1[10] to be effective.
2534 	 *
2535 	 * Other workarounds may appear in the future that will also require
2536 	 * Option 2 behavior to allow proper userspace implementation.
2537 	 */
2538 	if (GRAPHICS_VER(i915) >= 9)
2539 		wa_masked_en(wal,
2540 			     GEN7_FF_SLICE_CS_CHICKEN1,
2541 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2542 
2543 	if (IS_SKYLAKE(i915) ||
2544 	    IS_KABYLAKE(i915) ||
2545 	    IS_COFFEELAKE(i915) ||
2546 	    IS_COMETLAKE(i915)) {
2547 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2548 		wa_write_or(wal,
2549 			    GEN8_GARBCNTL,
2550 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2551 	}
2552 
2553 	if (IS_BROXTON(i915)) {
2554 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2555 		wa_masked_en(wal,
2556 			     FF_SLICE_CS_CHICKEN2,
2557 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2558 	}
2559 
2560 	if (GRAPHICS_VER(i915) == 9) {
2561 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2562 		wa_masked_en(wal,
2563 			     GEN9_CSFE_CHICKEN1_RCS,
2564 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2565 
2566 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2567 		wa_mcr_write_or(wal,
2568 				BDW_SCRATCH1,
2569 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2570 
2571 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2572 		if (IS_GEN9_LP(i915))
2573 			wa_mcr_write_clr_set(wal,
2574 					     GEN8_L3SQCREG1,
2575 					     L3_PRIO_CREDITS_MASK,
2576 					     L3_GENERAL_PRIO_CREDITS(62) |
2577 					     L3_HIGH_PRIO_CREDITS(2));
2578 
2579 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2580 		wa_mcr_write_or(wal,
2581 				GEN8_L3SQCREG4,
2582 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2583 
2584 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2585 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2586 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2587 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2588 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2589 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2590 				     EVICTION_PERF_FIX_ENABLE, 0);
2591 	}
2592 
2593 	if (IS_HASWELL(i915)) {
2594 		/* WaSampleCChickenBitEnable:hsw */
2595 		wa_masked_en(wal,
2596 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2597 
2598 		wa_masked_dis(wal,
2599 			      CACHE_MODE_0_GEN7,
2600 			      /* enable HiZ Raw Stall Optimization */
2601 			      HIZ_RAW_STALL_OPT_DISABLE);
2602 	}
2603 
2604 	if (IS_VALLEYVIEW(i915)) {
2605 		/* WaDisableEarlyCull:vlv */
2606 		wa_masked_en(wal,
2607 			     _3D_CHICKEN3,
2608 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2609 
2610 		/*
2611 		 * WaVSThreadDispatchOverride:ivb,vlv
2612 		 *
2613 		 * This actually overrides the dispatch
2614 		 * mode for all thread types.
2615 		 */
2616 		wa_write_clr_set(wal,
2617 				 GEN7_FF_THREAD_MODE,
2618 				 GEN7_FF_SCHED_MASK,
2619 				 GEN7_FF_TS_SCHED_HW |
2620 				 GEN7_FF_VS_SCHED_HW |
2621 				 GEN7_FF_DS_SCHED_HW);
2622 
2623 		/* WaPsdDispatchEnable:vlv */
2624 		/* WaDisablePSDDualDispatchEnable:vlv */
2625 		wa_masked_en(wal,
2626 			     GEN7_HALF_SLICE_CHICKEN1,
2627 			     GEN7_MAX_PS_THREAD_DEP |
2628 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2629 	}
2630 
2631 	if (IS_IVYBRIDGE(i915)) {
2632 		/* WaDisableEarlyCull:ivb */
2633 		wa_masked_en(wal,
2634 			     _3D_CHICKEN3,
2635 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2636 
2637 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2638 			/* enable HiZ Raw Stall Optimization */
2639 			wa_masked_dis(wal,
2640 				      CACHE_MODE_0_GEN7,
2641 				      HIZ_RAW_STALL_OPT_DISABLE);
2642 		}
2643 
2644 		/*
2645 		 * WaVSThreadDispatchOverride:ivb,vlv
2646 		 *
2647 		 * This actually overrides the dispatch
2648 		 * mode for all thread types.
2649 		 */
2650 		wa_write_clr_set(wal,
2651 				 GEN7_FF_THREAD_MODE,
2652 				 GEN7_FF_SCHED_MASK,
2653 				 GEN7_FF_TS_SCHED_HW |
2654 				 GEN7_FF_VS_SCHED_HW |
2655 				 GEN7_FF_DS_SCHED_HW);
2656 
2657 		/* WaDisablePSDDualDispatchEnable:ivb */
2658 		if (IS_IVB_GT1(i915))
2659 			wa_masked_en(wal,
2660 				     GEN7_HALF_SLICE_CHICKEN1,
2661 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2662 	}
2663 
2664 	if (GRAPHICS_VER(i915) == 7) {
2665 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2666 		wa_masked_en(wal,
2667 			     RING_MODE_GEN7(RENDER_RING_BASE),
2668 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2669 
2670 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2671 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2672 
2673 		/*
2674 		 * BSpec says this must be set, even though
2675 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2676 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2677 		 */
2678 		wa_masked_en(wal,
2679 			     CACHE_MODE_1,
2680 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2681 
2682 		/*
2683 		 * BSpec recommends 8x4 when MSAA is used,
2684 		 * however in practice 16x4 seems fastest.
2685 		 *
2686 		 * Note that PS/WM thread counts depend on the WIZ hashing
2687 		 * disable bit, which we don't touch here, but it's good
2688 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2689 		 */
2690 		wa_masked_field_set(wal,
2691 				    GEN7_GT_MODE,
2692 				    GEN6_WIZ_HASHING_MASK,
2693 				    GEN6_WIZ_HASHING_16x4);
2694 	}
2695 
2696 	if (IS_GRAPHICS_VER(i915, 6, 7))
2697 		/*
2698 		 * We need to disable the AsyncFlip performance optimisations in
2699 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2700 		 * already be programmed to '1' on all products.
2701 		 *
2702 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2703 		 */
2704 		wa_masked_en(wal,
2705 			     RING_MI_MODE(RENDER_RING_BASE),
2706 			     ASYNC_FLIP_PERF_DISABLE);
2707 
2708 	if (GRAPHICS_VER(i915) == 6) {
2709 		/*
2710 		 * Required for the hardware to program scanline values for
2711 		 * waiting
2712 		 * WaEnableFlushTlbInvalidationMode:snb
2713 		 */
2714 		wa_masked_en(wal,
2715 			     GFX_MODE,
2716 			     GFX_TLB_INVALIDATE_EXPLICIT);
2717 
2718 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2719 		wa_masked_en(wal,
2720 			     _3D_CHICKEN,
2721 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2722 
2723 		wa_masked_en(wal,
2724 			     _3D_CHICKEN3,
2725 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2726 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2727 			     /*
2728 			      * Bspec says:
2729 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2730 			      * to normal and 3DSTATE_SF number of SF output attributes
2731 			      * is more than 16."
2732 			      */
2733 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2734 
2735 		/*
2736 		 * BSpec recommends 8x4 when MSAA is used,
2737 		 * however in practice 16x4 seems fastest.
2738 		 *
2739 		 * Note that PS/WM thread counts depend on the WIZ hashing
2740 		 * disable bit, which we don't touch here, but it's good
2741 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2742 		 */
2743 		wa_masked_field_set(wal,
2744 				    GEN6_GT_MODE,
2745 				    GEN6_WIZ_HASHING_MASK,
2746 				    GEN6_WIZ_HASHING_16x4);
2747 
2748 		/* WaDisable_RenderCache_OperationalFlush:snb */
2749 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2750 
2751 		/*
2752 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2753 		 * "If this bit is set, STCunit will have LRA as replacement
2754 		 *  policy. [...] This bit must be reset. LRA replacement
2755 		 *  policy is not supported."
2756 		 */
2757 		wa_masked_dis(wal,
2758 			      CACHE_MODE_0,
2759 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2760 	}
2761 
2762 	if (IS_GRAPHICS_VER(i915, 4, 6))
2763 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2764 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2765 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2766 		       /* XXX bit doesn't stick on Broadwater */
2767 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2768 
2769 	if (GRAPHICS_VER(i915) == 4)
2770 		/*
2771 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2772 		 * image. For as it is loaded, it is executed and the stored
2773 		 * address may no longer be valid, leading to a GPU hang.
2774 		 *
2775 		 * This imposes the requirement that userspace reload their
2776 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2777 		 * they are already accustomed to from before contexts were
2778 		 * enabled.
2779 		 */
2780 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2781 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2782 		       0 /* XXX bit doesn't stick on Broadwater */,
2783 		       true);
2784 }
2785 
2786 static void
xcs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2787 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2788 {
2789 	struct drm_i915_private *i915 = engine->i915;
2790 
2791 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2792 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2793 		wa_write(wal,
2794 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2795 			 1);
2796 	}
2797 }
2798 
2799 static void
ccs_engine_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2800 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2801 {
2802 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2803 		/* Wa_14014999345:pvc */
2804 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2805 	}
2806 }
2807 
2808 /*
2809  * The bspec performance guide has recommended MMIO tuning settings.  These
2810  * aren't truly "workarounds" but we want to program them with the same
2811  * workaround infrastructure to ensure that they're automatically added to
2812  * the GuC save/restore lists, re-applied at the right times, and checked for
2813  * any conflicting programming requested by real workarounds.
2814  *
2815  * Programming settings should be added here only if their registers are not
2816  * part of an engine's register state context.  If a register is part of a
2817  * context, then any tuning settings should be programmed in an appropriate
2818  * function invoked by __intel_engine_init_ctx_wa().
2819  */
2820 static void
add_render_compute_tuning_settings(struct intel_gt * gt,struct i915_wa_list * wal)2821 add_render_compute_tuning_settings(struct intel_gt *gt,
2822 				   struct i915_wa_list *wal)
2823 {
2824 	struct drm_i915_private *i915 = gt->i915;
2825 
2826 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2827 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2828 
2829 	/*
2830 	 * This tuning setting proves beneficial only on ATS-M designs; the
2831 	 * default "age based" setting is optimal on regular DG2 and other
2832 	 * platforms.
2833 	 */
2834 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2835 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2836 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2837 
2838 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2839 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2840 }
2841 
ccs_engine_wa_mode(struct intel_engine_cs * engine,struct i915_wa_list * wal)2842 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2843 {
2844 	struct intel_gt *gt = engine->gt;
2845 	u32 mode;
2846 
2847 	if (!IS_DG2(gt->i915))
2848 		return;
2849 
2850 	/*
2851 	 * Wa_14019159160: This workaround, along with others, leads to
2852 	 * significant challenges in utilizing load balancing among the
2853 	 * CCS slices. Consequently, an architectural decision has been
2854 	 * made to completely disable automatic CCS load balancing.
2855 	 */
2856 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2857 
2858 	/*
2859 	 * After having disabled automatic load balancing we need to
2860 	 * assign all slices to a single CCS. We will call it CCS mode 1
2861 	 */
2862 	mode = intel_gt_apply_ccs_mode(gt);
2863 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2864 }
2865 
2866 /*
2867  * The workarounds in this function apply to shared registers in
2868  * the general render reset domain that aren't tied to a
2869  * specific engine.  Since all render+compute engines get reset
2870  * together, and the contents of these registers are lost during
2871  * the shared render domain reset, we'll define such workarounds
2872  * here and then add them to just a single RCS or CCS engine's
2873  * workaround list (whichever engine has the XXXX flag).
2874  */
2875 static void
general_render_compute_wa_init(struct intel_engine_cs * engine,struct i915_wa_list * wal)2876 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2877 {
2878 	struct drm_i915_private *i915 = engine->i915;
2879 	struct intel_gt *gt = engine->gt;
2880 
2881 	add_render_compute_tuning_settings(gt, wal);
2882 
2883 	if (GRAPHICS_VER(i915) >= 11) {
2884 		/* This is not a Wa (although referred to as
2885 		 * WaSetInidrectStateOverride in places), this allows
2886 		 * applications that reference sampler states through
2887 		 * the BindlessSamplerStateBaseAddress to have their
2888 		 * border color relative to DynamicStateBaseAddress
2889 		 * rather than BindlessSamplerStateBaseAddress.
2890 		 *
2891 		 * Otherwise SAMPLER_STATE border colors have to be
2892 		 * copied in multiple heaps (DynamicStateBaseAddress &
2893 		 * BindlessSamplerStateBaseAddress)
2894 		 *
2895 		 * BSpec: 46052
2896 		 */
2897 		wa_mcr_masked_en(wal,
2898 				 GEN10_SAMPLER_MODE,
2899 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2900 	}
2901 
2902 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2903 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2904 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) {
2905 		/* Wa_14017856879 */
2906 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2907 
2908 		/* Wa_14020495402 */
2909 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, XELPG_DISABLE_TDL_SVHS_GATING);
2910 	}
2911 
2912 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2913 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2914 		/*
2915 		 * Wa_14017066071
2916 		 * Wa_14017654203
2917 		 */
2918 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2919 				 MTL_DISABLE_SAMPLER_SC_OOO);
2920 
2921 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2922 		/* Wa_22015279794 */
2923 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2924 				 DISABLE_PREFETCH_INTO_IC);
2925 
2926 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2927 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2928 	    IS_DG2(i915)) {
2929 		/* Wa_22013037850 */
2930 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2931 				DISABLE_128B_EVICTION_COMMAND_UDW);
2932 
2933 		/* Wa_18017747507 */
2934 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2935 	}
2936 
2937 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2938 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2939 	    IS_PONTEVECCHIO(i915) ||
2940 	    IS_DG2(i915)) {
2941 		/* Wa_22014226127 */
2942 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2943 	}
2944 
2945 	if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2946 		/* Wa_14015227452:dg2,pvc */
2947 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2948 
2949 		/* Wa_16015675438:dg2,pvc */
2950 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2951 	}
2952 
2953 	if (IS_DG2(i915)) {
2954 		/*
2955 		 * Wa_16011620976:dg2_g11
2956 		 * Wa_22015475538:dg2
2957 		 */
2958 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2959 	}
2960 
2961 	if (IS_DG2_G11(i915)) {
2962 		/*
2963 		 * Wa_22012826095:dg2
2964 		 * Wa_22013059131:dg2
2965 		 */
2966 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2967 				     MAXREQS_PER_BANK,
2968 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2969 
2970 		/* Wa_22013059131:dg2 */
2971 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2972 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2973 
2974 		/*
2975 		 * Wa_22012654132
2976 		 *
2977 		 * Note that register 0xE420 is write-only and cannot be read
2978 		 * back for verification on DG2 (due to Wa_14012342262), so
2979 		 * we need to explicitly skip the readback.
2980 		 */
2981 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2982 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2983 			   0 /* write-only, so skip validation */,
2984 			   true);
2985 	}
2986 
2987 	if (IS_XEHPSDV(i915)) {
2988 		/* Wa_1409954639 */
2989 		wa_mcr_masked_en(wal,
2990 				 GEN8_ROW_CHICKEN,
2991 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
2992 
2993 		/* Wa_1607196519 */
2994 		wa_mcr_masked_en(wal,
2995 				 GEN9_ROW_CHICKEN4,
2996 				 GEN12_DISABLE_GRF_CLEAR);
2997 
2998 		/* Wa_14010449647:xehpsdv */
2999 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3000 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3001 	}
3002 }
3003 
3004 static void
engine_init_workarounds(struct intel_engine_cs * engine,struct i915_wa_list * wal)3005 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3006 {
3007 	if (GRAPHICS_VER(engine->i915) < 4)
3008 		return;
3009 
3010 	engine_fake_wa_init(engine, wal);
3011 
3012 	/*
3013 	 * These are common workarounds that just need to applied
3014 	 * to a single RCS/CCS engine's workaround list since
3015 	 * they're reset as part of the general render domain reset.
3016 	 */
3017 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
3018 		general_render_compute_wa_init(engine, wal);
3019 		ccs_engine_wa_mode(engine, wal);
3020 	}
3021 
3022 	if (engine->class == COMPUTE_CLASS)
3023 		ccs_engine_wa_init(engine, wal);
3024 	else if (engine->class == RENDER_CLASS)
3025 		rcs_engine_wa_init(engine, wal);
3026 	else
3027 		xcs_engine_wa_init(engine, wal);
3028 }
3029 
intel_engine_init_workarounds(struct intel_engine_cs * engine)3030 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3031 {
3032 	struct i915_wa_list *wal = &engine->wa_list;
3033 
3034 	wa_init_start(wal, engine->gt, "engine", engine->name);
3035 	engine_init_workarounds(engine, wal);
3036 	wa_init_finish(wal);
3037 }
3038 
intel_engine_apply_workarounds(struct intel_engine_cs * engine)3039 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3040 {
3041 	wa_list_apply(&engine->wa_list);
3042 }
3043 
3044 static const struct i915_range mcr_ranges_gen8[] = {
3045 	{ .start = 0x5500, .end = 0x55ff },
3046 	{ .start = 0x7000, .end = 0x7fff },
3047 	{ .start = 0x9400, .end = 0x97ff },
3048 	{ .start = 0xb000, .end = 0xb3ff },
3049 	{ .start = 0xe000, .end = 0xe7ff },
3050 	{},
3051 };
3052 
3053 static const struct i915_range mcr_ranges_gen12[] = {
3054 	{ .start =  0x8150, .end =  0x815f },
3055 	{ .start =  0x9520, .end =  0x955f },
3056 	{ .start =  0xb100, .end =  0xb3ff },
3057 	{ .start =  0xde80, .end =  0xe8ff },
3058 	{ .start = 0x24a00, .end = 0x24a7f },
3059 	{},
3060 };
3061 
3062 static const struct i915_range mcr_ranges_xehp[] = {
3063 	{ .start =  0x4000, .end =  0x4aff },
3064 	{ .start =  0x5200, .end =  0x52ff },
3065 	{ .start =  0x5400, .end =  0x7fff },
3066 	{ .start =  0x8140, .end =  0x815f },
3067 	{ .start =  0x8c80, .end =  0x8dff },
3068 	{ .start =  0x94d0, .end =  0x955f },
3069 	{ .start =  0x9680, .end =  0x96ff },
3070 	{ .start =  0xb000, .end =  0xb3ff },
3071 	{ .start =  0xc800, .end =  0xcfff },
3072 	{ .start =  0xd800, .end =  0xd8ff },
3073 	{ .start =  0xdc00, .end =  0xffff },
3074 	{ .start = 0x17000, .end = 0x17fff },
3075 	{ .start = 0x24a00, .end = 0x24a7f },
3076 	{},
3077 };
3078 
mcr_range(struct drm_i915_private * i915,u32 offset)3079 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3080 {
3081 	const struct i915_range *mcr_ranges;
3082 	int i;
3083 
3084 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3085 		mcr_ranges = mcr_ranges_xehp;
3086 	else if (GRAPHICS_VER(i915) >= 12)
3087 		mcr_ranges = mcr_ranges_gen12;
3088 	else if (GRAPHICS_VER(i915) >= 8)
3089 		mcr_ranges = mcr_ranges_gen8;
3090 	else
3091 		return false;
3092 
3093 	/*
3094 	 * Registers in these ranges are affected by the MCR selector
3095 	 * which only controls CPU initiated MMIO. Routing does not
3096 	 * work for CS access so we cannot verify them on this path.
3097 	 */
3098 	for (i = 0; mcr_ranges[i].start; i++)
3099 		if (offset >= mcr_ranges[i].start &&
3100 		    offset <= mcr_ranges[i].end)
3101 			return true;
3102 
3103 	return false;
3104 }
3105 
3106 static int
wa_list_srm(struct i915_request * rq,const struct i915_wa_list * wal,struct i915_vma * vma)3107 wa_list_srm(struct i915_request *rq,
3108 	    const struct i915_wa_list *wal,
3109 	    struct i915_vma *vma)
3110 {
3111 	struct drm_i915_private *i915 = rq->i915;
3112 	unsigned int i, count = 0;
3113 	const struct i915_wa *wa;
3114 	u32 srm, *cs;
3115 
3116 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3117 	if (GRAPHICS_VER(i915) >= 8)
3118 		srm++;
3119 
3120 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3121 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3122 			count++;
3123 	}
3124 
3125 	cs = intel_ring_begin(rq, 4 * count);
3126 	if (IS_ERR(cs))
3127 		return PTR_ERR(cs);
3128 
3129 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3130 		u32 offset = i915_mmio_reg_offset(wa->reg);
3131 
3132 		if (mcr_range(i915, offset))
3133 			continue;
3134 
3135 		*cs++ = srm;
3136 		*cs++ = offset;
3137 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3138 		*cs++ = 0;
3139 	}
3140 	intel_ring_advance(rq, cs);
3141 
3142 	return 0;
3143 }
3144 
engine_wa_list_verify(struct intel_context * ce,const struct i915_wa_list * const wal,const char * from)3145 static int engine_wa_list_verify(struct intel_context *ce,
3146 				 const struct i915_wa_list * const wal,
3147 				 const char *from)
3148 {
3149 	const struct i915_wa *wa;
3150 	struct i915_request *rq;
3151 	struct i915_vma *vma;
3152 	struct i915_gem_ww_ctx ww;
3153 	unsigned int i;
3154 	u32 *results;
3155 	int err;
3156 
3157 	if (!wal->count)
3158 		return 0;
3159 
3160 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3161 					   wal->count * sizeof(u32));
3162 	if (IS_ERR(vma))
3163 		return PTR_ERR(vma);
3164 
3165 	intel_engine_pm_get(ce->engine);
3166 	i915_gem_ww_ctx_init(&ww, false);
3167 retry:
3168 	err = i915_gem_object_lock(vma->obj, &ww);
3169 	if (err == 0)
3170 		err = intel_context_pin_ww(ce, &ww);
3171 	if (err)
3172 		goto err_pm;
3173 
3174 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3175 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3176 	if (err)
3177 		goto err_unpin;
3178 
3179 	rq = i915_request_create(ce);
3180 	if (IS_ERR(rq)) {
3181 		err = PTR_ERR(rq);
3182 		goto err_vma;
3183 	}
3184 
3185 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3186 	if (err == 0)
3187 		err = wa_list_srm(rq, wal, vma);
3188 
3189 	i915_request_get(rq);
3190 	if (err)
3191 		i915_request_set_error_once(rq, err);
3192 	i915_request_add(rq);
3193 
3194 	if (err)
3195 		goto err_rq;
3196 
3197 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3198 		err = -ETIME;
3199 		goto err_rq;
3200 	}
3201 
3202 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3203 	if (IS_ERR(results)) {
3204 		err = PTR_ERR(results);
3205 		goto err_rq;
3206 	}
3207 
3208 	err = 0;
3209 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3210 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3211 			continue;
3212 
3213 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3214 			err = -ENXIO;
3215 	}
3216 
3217 	i915_gem_object_unpin_map(vma->obj);
3218 
3219 err_rq:
3220 	i915_request_put(rq);
3221 err_vma:
3222 	i915_vma_unpin(vma);
3223 err_unpin:
3224 	intel_context_unpin(ce);
3225 err_pm:
3226 	if (err == -EDEADLK) {
3227 		err = i915_gem_ww_ctx_backoff(&ww);
3228 		if (!err)
3229 			goto retry;
3230 	}
3231 	i915_gem_ww_ctx_fini(&ww);
3232 	intel_engine_pm_put(ce->engine);
3233 	i915_vma_put(vma);
3234 	return err;
3235 }
3236 
intel_engine_verify_workarounds(struct intel_engine_cs * engine,const char * from)3237 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3238 				    const char *from)
3239 {
3240 	return engine_wa_list_verify(engine->kernel_context,
3241 				     &engine->wa_list,
3242 				     from);
3243 }
3244 
3245 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3246 #include "selftest_workarounds.c"
3247 #endif
3248