xref: /linux/drivers/gpu/drm/amd/amdkfd/kfd_device.c (revision dd2b75fd)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /*
3  * Copyright 2014-2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  */
23 
24 #include <linux/bsearch.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include "kfd_priv.h"
28 #include "kfd_device_queue_manager.h"
29 #include "kfd_pm4_headers_vi.h"
30 #include "kfd_pm4_headers_aldebaran.h"
31 #include "cwsr_trap_handler.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_svm.h"
35 #include "kfd_migrate.h"
36 #include "amdgpu.h"
37 #include "amdgpu_xcp.h"
38 
39 #define MQD_SIZE_ALIGNED 768
40 
41 /*
42  * kfd_locked is used to lock the kfd driver during suspend or reset
43  * once locked, kfd driver will stop any further GPU execution.
44  * create process (open) will return -EAGAIN.
45  */
46 static int kfd_locked;
47 
48 #ifdef CONFIG_DRM_AMDGPU_CIK
49 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
50 #endif
51 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
53 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
54 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
55 extern const struct kfd2kgd_calls gc_9_4_3_kfd2kgd;
56 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
57 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
58 extern const struct kfd2kgd_calls gfx_v11_kfd2kgd;
59 
60 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
61 				unsigned int chunk_size);
62 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
63 
64 static int kfd_resume(struct kfd_node *kfd);
65 
kfd_device_info_set_sdma_info(struct kfd_dev * kfd)66 static void kfd_device_info_set_sdma_info(struct kfd_dev *kfd)
67 {
68 	uint32_t sdma_version = amdgpu_ip_version(kfd->adev, SDMA0_HWIP, 0);
69 
70 	switch (sdma_version) {
71 	case IP_VERSION(4, 0, 0):/* VEGA10 */
72 	case IP_VERSION(4, 0, 1):/* VEGA12 */
73 	case IP_VERSION(4, 1, 0):/* RAVEN */
74 	case IP_VERSION(4, 1, 1):/* RAVEN */
75 	case IP_VERSION(4, 1, 2):/* RENOIR */
76 	case IP_VERSION(5, 2, 1):/* VANGOGH */
77 	case IP_VERSION(5, 2, 3):/* YELLOW_CARP */
78 	case IP_VERSION(5, 2, 6):/* GC 10.3.6 */
79 	case IP_VERSION(5, 2, 7):/* GC 10.3.7 */
80 		kfd->device_info.num_sdma_queues_per_engine = 2;
81 		break;
82 	case IP_VERSION(4, 2, 0):/* VEGA20 */
83 	case IP_VERSION(4, 2, 2):/* ARCTURUS */
84 	case IP_VERSION(4, 4, 0):/* ALDEBARAN */
85 	case IP_VERSION(4, 4, 2):
86 	case IP_VERSION(5, 0, 0):/* NAVI10 */
87 	case IP_VERSION(5, 0, 1):/* CYAN_SKILLFISH */
88 	case IP_VERSION(5, 0, 2):/* NAVI14 */
89 	case IP_VERSION(5, 0, 5):/* NAVI12 */
90 	case IP_VERSION(5, 2, 0):/* SIENNA_CICHLID */
91 	case IP_VERSION(5, 2, 2):/* NAVY_FLOUNDER */
92 	case IP_VERSION(5, 2, 4):/* DIMGREY_CAVEFISH */
93 	case IP_VERSION(5, 2, 5):/* BEIGE_GOBY */
94 	case IP_VERSION(6, 0, 0):
95 	case IP_VERSION(6, 0, 1):
96 	case IP_VERSION(6, 0, 2):
97 	case IP_VERSION(6, 0, 3):
98 	case IP_VERSION(6, 1, 0):
99 	case IP_VERSION(6, 1, 1):
100 		kfd->device_info.num_sdma_queues_per_engine = 8;
101 		break;
102 	default:
103 		dev_warn(kfd_device,
104 			"Default sdma queue per engine(8) is set due to mismatch of sdma ip block(SDMA_HWIP:0x%x).\n",
105 			sdma_version);
106 		kfd->device_info.num_sdma_queues_per_engine = 8;
107 	}
108 
109 	bitmap_zero(kfd->device_info.reserved_sdma_queues_bitmap, KFD_MAX_SDMA_QUEUES);
110 
111 	switch (sdma_version) {
112 	case IP_VERSION(6, 0, 0):
113 	case IP_VERSION(6, 0, 1):
114 	case IP_VERSION(6, 0, 2):
115 	case IP_VERSION(6, 0, 3):
116 	case IP_VERSION(6, 1, 0):
117 	case IP_VERSION(6, 1, 1):
118 		/* Reserve 1 for paging and 1 for gfx */
119 		kfd->device_info.num_reserved_sdma_queues_per_engine = 2;
120 		/* BIT(0)=engine-0 queue-0; BIT(1)=engine-1 queue-0; BIT(2)=engine-0 queue-1; ... */
121 		bitmap_set(kfd->device_info.reserved_sdma_queues_bitmap, 0,
122 			   kfd->adev->sdma.num_instances *
123 			   kfd->device_info.num_reserved_sdma_queues_per_engine);
124 		break;
125 	default:
126 		break;
127 	}
128 }
129 
kfd_device_info_set_event_interrupt_class(struct kfd_dev * kfd)130 static void kfd_device_info_set_event_interrupt_class(struct kfd_dev *kfd)
131 {
132 	uint32_t gc_version = KFD_GC_VERSION(kfd);
133 
134 	switch (gc_version) {
135 	case IP_VERSION(9, 0, 1): /* VEGA10 */
136 	case IP_VERSION(9, 1, 0): /* RAVEN */
137 	case IP_VERSION(9, 2, 1): /* VEGA12 */
138 	case IP_VERSION(9, 2, 2): /* RAVEN */
139 	case IP_VERSION(9, 3, 0): /* RENOIR */
140 	case IP_VERSION(9, 4, 0): /* VEGA20 */
141 	case IP_VERSION(9, 4, 1): /* ARCTURUS */
142 	case IP_VERSION(9, 4, 2): /* ALDEBARAN */
143 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
144 		break;
145 	case IP_VERSION(9, 4, 3): /* GC 9.4.3 */
146 		kfd->device_info.event_interrupt_class =
147 						&event_interrupt_class_v9_4_3;
148 		break;
149 	case IP_VERSION(10, 3, 1): /* VANGOGH */
150 	case IP_VERSION(10, 3, 3): /* YELLOW_CARP */
151 	case IP_VERSION(10, 3, 6): /* GC 10.3.6 */
152 	case IP_VERSION(10, 3, 7): /* GC 10.3.7 */
153 	case IP_VERSION(10, 1, 3): /* CYAN_SKILLFISH */
154 	case IP_VERSION(10, 1, 4):
155 	case IP_VERSION(10, 1, 10): /* NAVI10 */
156 	case IP_VERSION(10, 1, 2): /* NAVI12 */
157 	case IP_VERSION(10, 1, 1): /* NAVI14 */
158 	case IP_VERSION(10, 3, 0): /* SIENNA_CICHLID */
159 	case IP_VERSION(10, 3, 2): /* NAVY_FLOUNDER */
160 	case IP_VERSION(10, 3, 4): /* DIMGREY_CAVEFISH */
161 	case IP_VERSION(10, 3, 5): /* BEIGE_GOBY */
162 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v10;
163 		break;
164 	case IP_VERSION(11, 0, 0):
165 	case IP_VERSION(11, 0, 1):
166 	case IP_VERSION(11, 0, 2):
167 	case IP_VERSION(11, 0, 3):
168 	case IP_VERSION(11, 0, 4):
169 	case IP_VERSION(11, 5, 0):
170 	case IP_VERSION(11, 5, 1):
171 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v11;
172 		break;
173 	default:
174 		dev_warn(kfd_device, "v9 event interrupt handler is set due to "
175 			"mismatch of gc ip block(GC_HWIP:0x%x).\n", gc_version);
176 		kfd->device_info.event_interrupt_class = &event_interrupt_class_v9;
177 	}
178 }
179 
kfd_device_info_init(struct kfd_dev * kfd,bool vf,uint32_t gfx_target_version)180 static void kfd_device_info_init(struct kfd_dev *kfd,
181 				 bool vf, uint32_t gfx_target_version)
182 {
183 	uint32_t gc_version = KFD_GC_VERSION(kfd);
184 	uint32_t asic_type = kfd->adev->asic_type;
185 
186 	kfd->device_info.max_pasid_bits = 16;
187 	kfd->device_info.max_no_of_hqd = 24;
188 	kfd->device_info.num_of_watch_points = 4;
189 	kfd->device_info.mqd_size_aligned = MQD_SIZE_ALIGNED;
190 	kfd->device_info.gfx_target_version = gfx_target_version;
191 
192 	if (KFD_IS_SOC15(kfd)) {
193 		kfd->device_info.doorbell_size = 8;
194 		kfd->device_info.ih_ring_entry_size = 8 * sizeof(uint32_t);
195 		kfd->device_info.supports_cwsr = true;
196 
197 		kfd_device_info_set_sdma_info(kfd);
198 
199 		kfd_device_info_set_event_interrupt_class(kfd);
200 
201 		if (gc_version < IP_VERSION(11, 0, 0)) {
202 			/* Navi2x+, Navi1x+ */
203 			if (gc_version == IP_VERSION(10, 3, 6))
204 				kfd->device_info.no_atomic_fw_version = 14;
205 			else if (gc_version == IP_VERSION(10, 3, 7))
206 				kfd->device_info.no_atomic_fw_version = 3;
207 			else if (gc_version >= IP_VERSION(10, 3, 0))
208 				kfd->device_info.no_atomic_fw_version = 92;
209 			else if (gc_version >= IP_VERSION(10, 1, 1))
210 				kfd->device_info.no_atomic_fw_version = 145;
211 
212 			/* Navi1x+ */
213 			if (gc_version >= IP_VERSION(10, 1, 1))
214 				kfd->device_info.needs_pci_atomics = true;
215 		} else if (gc_version < IP_VERSION(12, 0, 0)) {
216 			/*
217 			 * PCIe atomics support acknowledgment in GFX11 RS64 CPFW requires
218 			 * MEC version >= 509. Prior RS64 CPFW versions (and all F32) require
219 			 * PCIe atomics support.
220 			 */
221 			kfd->device_info.needs_pci_atomics = true;
222 			kfd->device_info.no_atomic_fw_version = kfd->adev->gfx.rs64_enable ? 509 : 0;
223 		}
224 	} else {
225 		kfd->device_info.doorbell_size = 4;
226 		kfd->device_info.ih_ring_entry_size = 4 * sizeof(uint32_t);
227 		kfd->device_info.event_interrupt_class = &event_interrupt_class_cik;
228 		kfd->device_info.num_sdma_queues_per_engine = 2;
229 
230 		if (asic_type != CHIP_KAVERI &&
231 		    asic_type != CHIP_HAWAII &&
232 		    asic_type != CHIP_TONGA)
233 			kfd->device_info.supports_cwsr = true;
234 
235 		if (asic_type != CHIP_HAWAII && !vf)
236 			kfd->device_info.needs_pci_atomics = true;
237 	}
238 }
239 
kgd2kfd_probe(struct amdgpu_device * adev,bool vf)240 struct kfd_dev *kgd2kfd_probe(struct amdgpu_device *adev, bool vf)
241 {
242 	struct kfd_dev *kfd = NULL;
243 	const struct kfd2kgd_calls *f2g = NULL;
244 	uint32_t gfx_target_version = 0;
245 
246 	switch (adev->asic_type) {
247 #ifdef CONFIG_DRM_AMDGPU_CIK
248 	case CHIP_KAVERI:
249 		gfx_target_version = 70000;
250 		if (!vf)
251 			f2g = &gfx_v7_kfd2kgd;
252 		break;
253 #endif
254 	case CHIP_CARRIZO:
255 		gfx_target_version = 80001;
256 		if (!vf)
257 			f2g = &gfx_v8_kfd2kgd;
258 		break;
259 #ifdef CONFIG_DRM_AMDGPU_CIK
260 	case CHIP_HAWAII:
261 		gfx_target_version = 70001;
262 		if (!amdgpu_exp_hw_support)
263 			pr_info(
264 	"KFD support on Hawaii is experimental. See modparam exp_hw_support\n"
265 				);
266 		else if (!vf)
267 			f2g = &gfx_v7_kfd2kgd;
268 		break;
269 #endif
270 	case CHIP_TONGA:
271 		gfx_target_version = 80002;
272 		if (!vf)
273 			f2g = &gfx_v8_kfd2kgd;
274 		break;
275 	case CHIP_FIJI:
276 	case CHIP_POLARIS10:
277 		gfx_target_version = 80003;
278 		f2g = &gfx_v8_kfd2kgd;
279 		break;
280 	case CHIP_POLARIS11:
281 	case CHIP_POLARIS12:
282 	case CHIP_VEGAM:
283 		gfx_target_version = 80003;
284 		if (!vf)
285 			f2g = &gfx_v8_kfd2kgd;
286 		break;
287 	default:
288 		switch (amdgpu_ip_version(adev, GC_HWIP, 0)) {
289 		/* Vega 10 */
290 		case IP_VERSION(9, 0, 1):
291 			gfx_target_version = 90000;
292 			f2g = &gfx_v9_kfd2kgd;
293 			break;
294 		/* Raven */
295 		case IP_VERSION(9, 1, 0):
296 		case IP_VERSION(9, 2, 2):
297 			gfx_target_version = 90002;
298 			if (!vf)
299 				f2g = &gfx_v9_kfd2kgd;
300 			break;
301 		/* Vega12 */
302 		case IP_VERSION(9, 2, 1):
303 			gfx_target_version = 90004;
304 			if (!vf)
305 				f2g = &gfx_v9_kfd2kgd;
306 			break;
307 		/* Renoir */
308 		case IP_VERSION(9, 3, 0):
309 			gfx_target_version = 90012;
310 			if (!vf)
311 				f2g = &gfx_v9_kfd2kgd;
312 			break;
313 		/* Vega20 */
314 		case IP_VERSION(9, 4, 0):
315 			gfx_target_version = 90006;
316 			if (!vf)
317 				f2g = &gfx_v9_kfd2kgd;
318 			break;
319 		/* Arcturus */
320 		case IP_VERSION(9, 4, 1):
321 			gfx_target_version = 90008;
322 			f2g = &arcturus_kfd2kgd;
323 			break;
324 		/* Aldebaran */
325 		case IP_VERSION(9, 4, 2):
326 			gfx_target_version = 90010;
327 			f2g = &aldebaran_kfd2kgd;
328 			break;
329 		case IP_VERSION(9, 4, 3):
330 			gfx_target_version = adev->rev_id >= 1 ? 90402
331 					   : adev->flags & AMD_IS_APU ? 90400
332 					   : 90401;
333 			f2g = &gc_9_4_3_kfd2kgd;
334 			break;
335 		/* Navi10 */
336 		case IP_VERSION(10, 1, 10):
337 			gfx_target_version = 100100;
338 			if (!vf)
339 				f2g = &gfx_v10_kfd2kgd;
340 			break;
341 		/* Navi12 */
342 		case IP_VERSION(10, 1, 2):
343 			gfx_target_version = 100101;
344 			f2g = &gfx_v10_kfd2kgd;
345 			break;
346 		/* Navi14 */
347 		case IP_VERSION(10, 1, 1):
348 			gfx_target_version = 100102;
349 			if (!vf)
350 				f2g = &gfx_v10_kfd2kgd;
351 			break;
352 		/* Cyan Skillfish */
353 		case IP_VERSION(10, 1, 3):
354 		case IP_VERSION(10, 1, 4):
355 			gfx_target_version = 100103;
356 			if (!vf)
357 				f2g = &gfx_v10_kfd2kgd;
358 			break;
359 		/* Sienna Cichlid */
360 		case IP_VERSION(10, 3, 0):
361 			gfx_target_version = 100300;
362 			f2g = &gfx_v10_3_kfd2kgd;
363 			break;
364 		/* Navy Flounder */
365 		case IP_VERSION(10, 3, 2):
366 			gfx_target_version = 100301;
367 			f2g = &gfx_v10_3_kfd2kgd;
368 			break;
369 		/* Van Gogh */
370 		case IP_VERSION(10, 3, 1):
371 			gfx_target_version = 100303;
372 			if (!vf)
373 				f2g = &gfx_v10_3_kfd2kgd;
374 			break;
375 		/* Dimgrey Cavefish */
376 		case IP_VERSION(10, 3, 4):
377 			gfx_target_version = 100302;
378 			f2g = &gfx_v10_3_kfd2kgd;
379 			break;
380 		/* Beige Goby */
381 		case IP_VERSION(10, 3, 5):
382 			gfx_target_version = 100304;
383 			f2g = &gfx_v10_3_kfd2kgd;
384 			break;
385 		/* Yellow Carp */
386 		case IP_VERSION(10, 3, 3):
387 			gfx_target_version = 100305;
388 			if (!vf)
389 				f2g = &gfx_v10_3_kfd2kgd;
390 			break;
391 		case IP_VERSION(10, 3, 6):
392 		case IP_VERSION(10, 3, 7):
393 			gfx_target_version = 100306;
394 			if (!vf)
395 				f2g = &gfx_v10_3_kfd2kgd;
396 			break;
397 		case IP_VERSION(11, 0, 0):
398 			gfx_target_version = 110000;
399 			f2g = &gfx_v11_kfd2kgd;
400 			break;
401 		case IP_VERSION(11, 0, 1):
402 		case IP_VERSION(11, 0, 4):
403 			gfx_target_version = 110003;
404 			f2g = &gfx_v11_kfd2kgd;
405 			break;
406 		case IP_VERSION(11, 0, 2):
407 			gfx_target_version = 110002;
408 			f2g = &gfx_v11_kfd2kgd;
409 			break;
410 		case IP_VERSION(11, 0, 3):
411 			/* Note: Compiler version is 11.0.1 while HW version is 11.0.3 */
412 			gfx_target_version = 110001;
413 			f2g = &gfx_v11_kfd2kgd;
414 			break;
415 		case IP_VERSION(11, 5, 0):
416 			gfx_target_version = 110500;
417 			f2g = &gfx_v11_kfd2kgd;
418 			break;
419 		case IP_VERSION(11, 5, 1):
420 			gfx_target_version = 110501;
421 			f2g = &gfx_v11_kfd2kgd;
422 			break;
423 		default:
424 			break;
425 		}
426 		break;
427 	}
428 
429 	if (!f2g) {
430 		if (amdgpu_ip_version(adev, GC_HWIP, 0))
431 			dev_info(kfd_device,
432 				"GC IP %06x %s not supported in kfd\n",
433 				amdgpu_ip_version(adev, GC_HWIP, 0),
434 				vf ? "VF" : "");
435 		else
436 			dev_info(kfd_device, "%s %s not supported in kfd\n",
437 				amdgpu_asic_name[adev->asic_type], vf ? "VF" : "");
438 		return NULL;
439 	}
440 
441 	kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
442 	if (!kfd)
443 		return NULL;
444 
445 	kfd->adev = adev;
446 	kfd_device_info_init(kfd, vf, gfx_target_version);
447 	kfd->init_complete = false;
448 	kfd->kfd2kgd = f2g;
449 	atomic_set(&kfd->compute_profile, 0);
450 
451 	mutex_init(&kfd->doorbell_mutex);
452 
453 	ida_init(&kfd->doorbell_ida);
454 
455 	return kfd;
456 }
457 
kfd_cwsr_init(struct kfd_dev * kfd)458 static void kfd_cwsr_init(struct kfd_dev *kfd)
459 {
460 	if (cwsr_enable && kfd->device_info.supports_cwsr) {
461 		if (KFD_GC_VERSION(kfd) < IP_VERSION(9, 0, 1)) {
462 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex)
463 					     > KFD_CWSR_TMA_OFFSET);
464 			kfd->cwsr_isa = cwsr_trap_gfx8_hex;
465 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
466 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 1)) {
467 			BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex)
468 					     > KFD_CWSR_TMA_OFFSET);
469 			kfd->cwsr_isa = cwsr_trap_arcturus_hex;
470 			kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
471 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2)) {
472 			BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex)
473 					     > KFD_CWSR_TMA_OFFSET);
474 			kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
475 			kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
476 		} else if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) {
477 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_4_3_hex)
478 					     > KFD_CWSR_TMA_OFFSET);
479 			kfd->cwsr_isa = cwsr_trap_gfx9_4_3_hex;
480 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_4_3_hex);
481 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 1, 1)) {
482 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex)
483 					     > KFD_CWSR_TMA_OFFSET);
484 			kfd->cwsr_isa = cwsr_trap_gfx9_hex;
485 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
486 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(10, 3, 0)) {
487 			BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex)
488 					     > KFD_CWSR_TMA_OFFSET);
489 			kfd->cwsr_isa = cwsr_trap_nv1x_hex;
490 			kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
491 		} else if (KFD_GC_VERSION(kfd) < IP_VERSION(11, 0, 0)) {
492 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex)
493 					     > KFD_CWSR_TMA_OFFSET);
494 			kfd->cwsr_isa = cwsr_trap_gfx10_hex;
495 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
496 		} else {
497 			/* The gfx11 cwsr trap handler must fit inside a single
498 			   page. */
499 			BUILD_BUG_ON(sizeof(cwsr_trap_gfx11_hex) > PAGE_SIZE);
500 			kfd->cwsr_isa = cwsr_trap_gfx11_hex;
501 			kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx11_hex);
502 		}
503 
504 		kfd->cwsr_enabled = true;
505 	}
506 }
507 
kfd_gws_init(struct kfd_node * node)508 static int kfd_gws_init(struct kfd_node *node)
509 {
510 	int ret = 0;
511 	struct kfd_dev *kfd = node->kfd;
512 	uint32_t mes_rev = node->adev->mes.sched_version & AMDGPU_MES_VERSION_MASK;
513 
514 	if (node->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
515 		return 0;
516 
517 	if (hws_gws_support || (KFD_IS_SOC15(node) &&
518 		((KFD_GC_VERSION(node) == IP_VERSION(9, 0, 1)
519 			&& kfd->mec2_fw_version >= 0x81b3) ||
520 		(KFD_GC_VERSION(node) <= IP_VERSION(9, 4, 0)
521 			&& kfd->mec2_fw_version >= 0x1b3)  ||
522 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 1)
523 			&& kfd->mec2_fw_version >= 0x30)   ||
524 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 2)
525 			&& kfd->mec2_fw_version >= 0x28) ||
526 		(KFD_GC_VERSION(node) == IP_VERSION(9, 4, 3)) ||
527 		(KFD_GC_VERSION(node) >= IP_VERSION(10, 3, 0)
528 			&& KFD_GC_VERSION(node) < IP_VERSION(11, 0, 0)
529 			&& kfd->mec2_fw_version >= 0x6b) ||
530 		(KFD_GC_VERSION(node) >= IP_VERSION(11, 0, 0)
531 			&& KFD_GC_VERSION(node) < IP_VERSION(12, 0, 0)
532 			&& mes_rev >= 68))))
533 		ret = amdgpu_amdkfd_alloc_gws(node->adev,
534 				node->adev->gds.gws_size, &node->gws);
535 
536 	return ret;
537 }
538 
kfd_smi_init(struct kfd_node * dev)539 static void kfd_smi_init(struct kfd_node *dev)
540 {
541 	INIT_LIST_HEAD(&dev->smi_clients);
542 	spin_lock_init(&dev->smi_lock);
543 }
544 
kfd_init_node(struct kfd_node * node)545 static int kfd_init_node(struct kfd_node *node)
546 {
547 	int err = -1;
548 
549 	if (kfd_interrupt_init(node)) {
550 		dev_err(kfd_device, "Error initializing interrupts\n");
551 		goto kfd_interrupt_error;
552 	}
553 
554 	node->dqm = device_queue_manager_init(node);
555 	if (!node->dqm) {
556 		dev_err(kfd_device, "Error initializing queue manager\n");
557 		goto device_queue_manager_error;
558 	}
559 
560 	if (kfd_gws_init(node)) {
561 		dev_err(kfd_device, "Could not allocate %d gws\n",
562 			node->adev->gds.gws_size);
563 		goto gws_error;
564 	}
565 
566 	if (kfd_resume(node))
567 		goto kfd_resume_error;
568 
569 	if (kfd_topology_add_device(node)) {
570 		dev_err(kfd_device, "Error adding device to topology\n");
571 		goto kfd_topology_add_device_error;
572 	}
573 
574 	kfd_smi_init(node);
575 
576 	return 0;
577 
578 kfd_topology_add_device_error:
579 kfd_resume_error:
580 gws_error:
581 	device_queue_manager_uninit(node->dqm);
582 device_queue_manager_error:
583 	kfd_interrupt_exit(node);
584 kfd_interrupt_error:
585 	if (node->gws)
586 		amdgpu_amdkfd_free_gws(node->adev, node->gws);
587 
588 	/* Cleanup the node memory here */
589 	kfree(node);
590 	return err;
591 }
592 
kfd_cleanup_nodes(struct kfd_dev * kfd,unsigned int num_nodes)593 static void kfd_cleanup_nodes(struct kfd_dev *kfd, unsigned int num_nodes)
594 {
595 	struct kfd_node *knode;
596 	unsigned int i;
597 
598 	for (i = 0; i < num_nodes; i++) {
599 		knode = kfd->nodes[i];
600 		device_queue_manager_uninit(knode->dqm);
601 		kfd_interrupt_exit(knode);
602 		kfd_topology_remove_device(knode);
603 		if (knode->gws)
604 			amdgpu_amdkfd_free_gws(knode->adev, knode->gws);
605 		kfree(knode);
606 		kfd->nodes[i] = NULL;
607 	}
608 }
609 
kfd_setup_interrupt_bitmap(struct kfd_node * node,unsigned int kfd_node_idx)610 static void kfd_setup_interrupt_bitmap(struct kfd_node *node,
611 				       unsigned int kfd_node_idx)
612 {
613 	struct amdgpu_device *adev = node->adev;
614 	uint32_t xcc_mask = node->xcc_mask;
615 	uint32_t xcc, mapped_xcc;
616 	/*
617 	 * Interrupt bitmap is setup for processing interrupts from
618 	 * different XCDs and AIDs.
619 	 * Interrupt bitmap is defined as follows:
620 	 * 1. Bits 0-15 - correspond to the NodeId field.
621 	 *    Each bit corresponds to NodeId number. For example, if
622 	 *    a KFD node has interrupt bitmap set to 0x7, then this
623 	 *    KFD node will process interrupts with NodeId = 0, 1 and 2
624 	 *    in the IH cookie.
625 	 * 2. Bits 16-31 - unused.
626 	 *
627 	 * Please note that the kfd_node_idx argument passed to this
628 	 * function is not related to NodeId field received in the
629 	 * IH cookie.
630 	 *
631 	 * In CPX mode, a KFD node will process an interrupt if:
632 	 * - the Node Id matches the corresponding bit set in
633 	 *   Bits 0-15.
634 	 * - AND VMID reported in the interrupt lies within the
635 	 *   VMID range of the node.
636 	 */
637 	for_each_inst(xcc, xcc_mask) {
638 		mapped_xcc = GET_INST(GC, xcc);
639 		node->interrupt_bitmap |= (mapped_xcc % 2 ? 5 : 3) << (4 * (mapped_xcc / 2));
640 	}
641 	dev_info(kfd_device, "Node: %d, interrupt_bitmap: %x\n", kfd_node_idx,
642 							node->interrupt_bitmap);
643 }
644 
kgd2kfd_device_init(struct kfd_dev * kfd,const struct kgd2kfd_shared_resources * gpu_resources)645 bool kgd2kfd_device_init(struct kfd_dev *kfd,
646 			 const struct kgd2kfd_shared_resources *gpu_resources)
647 {
648 	unsigned int size, map_process_packet_size, i;
649 	struct kfd_node *node;
650 	uint32_t first_vmid_kfd, last_vmid_kfd, vmid_num_kfd;
651 	unsigned int max_proc_per_quantum;
652 	int partition_mode;
653 	int xcp_idx;
654 
655 	kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
656 			KGD_ENGINE_MEC1);
657 	kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
658 			KGD_ENGINE_MEC2);
659 	kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->adev,
660 			KGD_ENGINE_SDMA1);
661 	kfd->shared_resources = *gpu_resources;
662 
663 	kfd->num_nodes = amdgpu_xcp_get_num_xcp(kfd->adev->xcp_mgr);
664 
665 	if (kfd->num_nodes == 0) {
666 		dev_err(kfd_device,
667 			"KFD num nodes cannot be 0, num_xcc_in_node: %d\n",
668 			kfd->adev->gfx.num_xcc_per_xcp);
669 		goto out;
670 	}
671 
672 	/* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
673 	 * 32 and 64-bit requests are possible and must be
674 	 * supported.
675 	 */
676 	kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->adev);
677 	if (!kfd->pci_atomic_requested &&
678 	    kfd->device_info.needs_pci_atomics &&
679 	    (!kfd->device_info.no_atomic_fw_version ||
680 	     kfd->mec_fw_version < kfd->device_info.no_atomic_fw_version)) {
681 		dev_info(kfd_device,
682 			 "skipped device %x:%x, PCI rejects atomics %d<%d\n",
683 			 kfd->adev->pdev->vendor, kfd->adev->pdev->device,
684 			 kfd->mec_fw_version,
685 			 kfd->device_info.no_atomic_fw_version);
686 		return false;
687 	}
688 
689 	first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
690 	last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
691 	vmid_num_kfd = last_vmid_kfd - first_vmid_kfd + 1;
692 
693 	/* For GFX9.4.3, we need special handling for VMIDs depending on
694 	 * partition mode.
695 	 * In CPX mode, the VMID range needs to be shared between XCDs.
696 	 * Additionally, there are 13 VMIDs (3-15) available for KFD. To
697 	 * divide them equally, we change starting VMID to 4 and not use
698 	 * VMID 3.
699 	 * If the VMID range changes for GFX9.4.3, then this code MUST be
700 	 * revisited.
701 	 */
702 	if (kfd->adev->xcp_mgr) {
703 		partition_mode = amdgpu_xcp_query_partition_mode(kfd->adev->xcp_mgr,
704 								 AMDGPU_XCP_FL_LOCKED);
705 		if (partition_mode == AMDGPU_CPX_PARTITION_MODE &&
706 		    kfd->num_nodes != 1) {
707 			vmid_num_kfd /= 2;
708 			first_vmid_kfd = last_vmid_kfd + 1 - vmid_num_kfd*2;
709 		}
710 	}
711 
712 	/* Verify module parameters regarding mapped process number*/
713 	if (hws_max_conc_proc >= 0)
714 		max_proc_per_quantum = min((u32)hws_max_conc_proc, vmid_num_kfd);
715 	else
716 		max_proc_per_quantum = vmid_num_kfd;
717 
718 	/* calculate max size of mqds needed for queues */
719 	size = max_num_of_queues_per_device *
720 			kfd->device_info.mqd_size_aligned;
721 
722 	/*
723 	 * calculate max size of runlist packet.
724 	 * There can be only 2 packets at once
725 	 */
726 	map_process_packet_size = KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 2) ?
727 				sizeof(struct pm4_mes_map_process_aldebaran) :
728 				sizeof(struct pm4_mes_map_process);
729 	size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
730 		max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
731 		+ sizeof(struct pm4_mes_runlist)) * 2;
732 
733 	/* Add size of HIQ & DIQ */
734 	size += KFD_KERNEL_QUEUE_SIZE * 2;
735 
736 	/* add another 512KB for all other allocations on gart (HPD, fences) */
737 	size += 512 * 1024;
738 
739 	if (amdgpu_amdkfd_alloc_gtt_mem(
740 			kfd->adev, size, &kfd->gtt_mem,
741 			&kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
742 			false)) {
743 		dev_err(kfd_device, "Could not allocate %d bytes\n", size);
744 		goto alloc_gtt_mem_failure;
745 	}
746 
747 	dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
748 
749 	/* Initialize GTT sa with 512 byte chunk size */
750 	if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
751 		dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
752 		goto kfd_gtt_sa_init_error;
753 	}
754 
755 	if (kfd_doorbell_init(kfd)) {
756 		dev_err(kfd_device,
757 			"Error initializing doorbell aperture\n");
758 		goto kfd_doorbell_error;
759 	}
760 
761 	if (amdgpu_use_xgmi_p2p)
762 		kfd->hive_id = kfd->adev->gmc.xgmi.hive_id;
763 
764 	/*
765 	 * For GFX9.4.3, the KFD abstracts all partitions within a socket as
766 	 * xGMI connected in the topology so assign a unique hive id per
767 	 * device based on the pci device location if device is in PCIe mode.
768 	 */
769 	if (!kfd->hive_id && (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3)) && kfd->num_nodes > 1)
770 		kfd->hive_id = pci_dev_id(kfd->adev->pdev);
771 
772 	kfd->noretry = kfd->adev->gmc.noretry;
773 
774 	kfd_cwsr_init(kfd);
775 
776 	dev_info(kfd_device, "Total number of KFD nodes to be created: %d\n",
777 				kfd->num_nodes);
778 
779 	/* Allocate the KFD nodes */
780 	for (i = 0, xcp_idx = 0; i < kfd->num_nodes; i++) {
781 		node = kzalloc(sizeof(struct kfd_node), GFP_KERNEL);
782 		if (!node)
783 			goto node_alloc_error;
784 
785 		node->node_id = i;
786 		node->adev = kfd->adev;
787 		node->kfd = kfd;
788 		node->kfd2kgd = kfd->kfd2kgd;
789 		node->vm_info.vmid_num_kfd = vmid_num_kfd;
790 		node->xcp = amdgpu_get_next_xcp(kfd->adev->xcp_mgr, &xcp_idx);
791 		/* TODO : Check if error handling is needed */
792 		if (node->xcp) {
793 			amdgpu_xcp_get_inst_details(node->xcp, AMDGPU_XCP_GFX,
794 						    &node->xcc_mask);
795 			++xcp_idx;
796 		} else {
797 			node->xcc_mask =
798 				(1U << NUM_XCC(kfd->adev->gfx.xcc_mask)) - 1;
799 		}
800 
801 		if (node->xcp) {
802 			dev_info(kfd_device, "KFD node %d partition %d size %lldM\n",
803 				node->node_id, node->xcp->mem_id,
804 				KFD_XCP_MEMORY_SIZE(node->adev, node->node_id) >> 20);
805 		}
806 
807 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3) &&
808 		    partition_mode == AMDGPU_CPX_PARTITION_MODE &&
809 		    kfd->num_nodes != 1) {
810 			/* For GFX9.4.3 and CPX mode, first XCD gets VMID range
811 			 * 4-9 and second XCD gets VMID range 10-15.
812 			 */
813 
814 			node->vm_info.first_vmid_kfd = (i%2 == 0) ?
815 						first_vmid_kfd :
816 						first_vmid_kfd+vmid_num_kfd;
817 			node->vm_info.last_vmid_kfd = (i%2 == 0) ?
818 						last_vmid_kfd-vmid_num_kfd :
819 						last_vmid_kfd;
820 			node->compute_vmid_bitmap =
821 				((0x1 << (node->vm_info.last_vmid_kfd + 1)) - 1) -
822 				((0x1 << (node->vm_info.first_vmid_kfd)) - 1);
823 		} else {
824 			node->vm_info.first_vmid_kfd = first_vmid_kfd;
825 			node->vm_info.last_vmid_kfd = last_vmid_kfd;
826 			node->compute_vmid_bitmap =
827 				gpu_resources->compute_vmid_bitmap;
828 		}
829 		node->max_proc_per_quantum = max_proc_per_quantum;
830 		atomic_set(&node->sram_ecc_flag, 0);
831 
832 		amdgpu_amdkfd_get_local_mem_info(kfd->adev,
833 					&node->local_mem_info, node->xcp);
834 
835 		if (KFD_GC_VERSION(kfd) == IP_VERSION(9, 4, 3))
836 			kfd_setup_interrupt_bitmap(node, i);
837 
838 		/* Initialize the KFD node */
839 		if (kfd_init_node(node)) {
840 			dev_err(kfd_device, "Error initializing KFD node\n");
841 			goto node_init_error;
842 		}
843 		kfd->nodes[i] = node;
844 	}
845 
846 	svm_range_set_max_pages(kfd->adev);
847 
848 	spin_lock_init(&kfd->watch_points_lock);
849 
850 	kfd->init_complete = true;
851 	dev_info(kfd_device, "added device %x:%x\n", kfd->adev->pdev->vendor,
852 		 kfd->adev->pdev->device);
853 
854 	pr_debug("Starting kfd with the following scheduling policy %d\n",
855 		node->dqm->sched_policy);
856 
857 	goto out;
858 
859 node_init_error:
860 node_alloc_error:
861 	kfd_cleanup_nodes(kfd, i);
862 	kfd_doorbell_fini(kfd);
863 kfd_doorbell_error:
864 	kfd_gtt_sa_fini(kfd);
865 kfd_gtt_sa_init_error:
866 	amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
867 alloc_gtt_mem_failure:
868 	dev_err(kfd_device,
869 		"device %x:%x NOT added due to errors\n",
870 		kfd->adev->pdev->vendor, kfd->adev->pdev->device);
871 out:
872 	return kfd->init_complete;
873 }
874 
kgd2kfd_device_exit(struct kfd_dev * kfd)875 void kgd2kfd_device_exit(struct kfd_dev *kfd)
876 {
877 	if (kfd->init_complete) {
878 		/* Cleanup KFD nodes */
879 		kfd_cleanup_nodes(kfd, kfd->num_nodes);
880 		/* Cleanup common/shared resources */
881 		kfd_doorbell_fini(kfd);
882 		ida_destroy(&kfd->doorbell_ida);
883 		kfd_gtt_sa_fini(kfd);
884 		amdgpu_amdkfd_free_gtt_mem(kfd->adev, kfd->gtt_mem);
885 	}
886 
887 	kfree(kfd);
888 }
889 
kgd2kfd_pre_reset(struct kfd_dev * kfd)890 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
891 {
892 	struct kfd_node *node;
893 	int i;
894 
895 	if (!kfd->init_complete)
896 		return 0;
897 
898 	for (i = 0; i < kfd->num_nodes; i++) {
899 		node = kfd->nodes[i];
900 		kfd_smi_event_update_gpu_reset(node, false);
901 		node->dqm->ops.pre_reset(node->dqm);
902 	}
903 
904 	kgd2kfd_suspend(kfd, false);
905 
906 	for (i = 0; i < kfd->num_nodes; i++)
907 		kfd_signal_reset_event(kfd->nodes[i]);
908 
909 	return 0;
910 }
911 
912 /*
913  * Fix me. KFD won't be able to resume existing process for now.
914  * We will keep all existing process in a evicted state and
915  * wait the process to be terminated.
916  */
917 
kgd2kfd_post_reset(struct kfd_dev * kfd)918 int kgd2kfd_post_reset(struct kfd_dev *kfd)
919 {
920 	int ret;
921 	struct kfd_node *node;
922 	int i;
923 
924 	if (!kfd->init_complete)
925 		return 0;
926 
927 	for (i = 0; i < kfd->num_nodes; i++) {
928 		ret = kfd_resume(kfd->nodes[i]);
929 		if (ret)
930 			return ret;
931 	}
932 
933 	mutex_lock(&kfd_processes_mutex);
934 	--kfd_locked;
935 	mutex_unlock(&kfd_processes_mutex);
936 
937 	for (i = 0; i < kfd->num_nodes; i++) {
938 		node = kfd->nodes[i];
939 		atomic_set(&node->sram_ecc_flag, 0);
940 		kfd_smi_event_update_gpu_reset(node, true);
941 	}
942 
943 	return 0;
944 }
945 
kfd_is_locked(void)946 bool kfd_is_locked(void)
947 {
948 	lockdep_assert_held(&kfd_processes_mutex);
949 	return  (kfd_locked > 0);
950 }
951 
kgd2kfd_suspend(struct kfd_dev * kfd,bool run_pm)952 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
953 {
954 	struct kfd_node *node;
955 	int i;
956 
957 	if (!kfd->init_complete)
958 		return;
959 
960 	/* for runtime suspend, skip locking kfd */
961 	if (!run_pm) {
962 		mutex_lock(&kfd_processes_mutex);
963 		/* For first KFD device suspend all the KFD processes */
964 		if (++kfd_locked == 1)
965 			kfd_suspend_all_processes();
966 		mutex_unlock(&kfd_processes_mutex);
967 	}
968 
969 	for (i = 0; i < kfd->num_nodes; i++) {
970 		node = kfd->nodes[i];
971 		node->dqm->ops.stop(node->dqm);
972 	}
973 }
974 
kgd2kfd_resume(struct kfd_dev * kfd,bool run_pm)975 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
976 {
977 	int ret, i;
978 
979 	if (!kfd->init_complete)
980 		return 0;
981 
982 	for (i = 0; i < kfd->num_nodes; i++) {
983 		ret = kfd_resume(kfd->nodes[i]);
984 		if (ret)
985 			return ret;
986 	}
987 
988 	/* for runtime resume, skip unlocking kfd */
989 	if (!run_pm) {
990 		mutex_lock(&kfd_processes_mutex);
991 		if (--kfd_locked == 0)
992 			ret = kfd_resume_all_processes();
993 		WARN_ONCE(kfd_locked < 0, "KFD suspend / resume ref. error");
994 		mutex_unlock(&kfd_processes_mutex);
995 	}
996 
997 	return ret;
998 }
999 
kfd_resume(struct kfd_node * node)1000 static int kfd_resume(struct kfd_node *node)
1001 {
1002 	int err = 0;
1003 
1004 	err = node->dqm->ops.start(node->dqm);
1005 	if (err)
1006 		dev_err(kfd_device,
1007 			"Error starting queue manager for device %x:%x\n",
1008 			node->adev->pdev->vendor, node->adev->pdev->device);
1009 
1010 	return err;
1011 }
1012 
kfd_queue_work(struct workqueue_struct * wq,struct work_struct * work)1013 static inline void kfd_queue_work(struct workqueue_struct *wq,
1014 				  struct work_struct *work)
1015 {
1016 	int cpu, new_cpu;
1017 
1018 	cpu = new_cpu = smp_processor_id();
1019 	do {
1020 		new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1021 		if (cpu_to_node(new_cpu) == numa_node_id())
1022 			break;
1023 	} while (cpu != new_cpu);
1024 
1025 	queue_work_on(new_cpu, wq, work);
1026 }
1027 
1028 /* This is called directly from KGD at ISR. */
kgd2kfd_interrupt(struct kfd_dev * kfd,const void * ih_ring_entry)1029 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1030 {
1031 	uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE], i;
1032 	bool is_patched = false;
1033 	unsigned long flags;
1034 	struct kfd_node *node;
1035 
1036 	if (!kfd->init_complete)
1037 		return;
1038 
1039 	if (kfd->device_info.ih_ring_entry_size > sizeof(patched_ihre)) {
1040 		dev_err_once(kfd_device, "Ring entry too small\n");
1041 		return;
1042 	}
1043 
1044 	for (i = 0; i < kfd->num_nodes; i++) {
1045 		node = kfd->nodes[i];
1046 		spin_lock_irqsave(&node->interrupt_lock, flags);
1047 
1048 		if (node->interrupts_active
1049 		    && interrupt_is_wanted(node, ih_ring_entry,
1050 			    	patched_ihre, &is_patched)
1051 		    && enqueue_ih_ring_entry(node,
1052 			    	is_patched ? patched_ihre : ih_ring_entry)) {
1053 			kfd_queue_work(node->ih_wq, &node->interrupt_work);
1054 			spin_unlock_irqrestore(&node->interrupt_lock, flags);
1055 			return;
1056 		}
1057 		spin_unlock_irqrestore(&node->interrupt_lock, flags);
1058 	}
1059 
1060 }
1061 
kgd2kfd_quiesce_mm(struct mm_struct * mm,uint32_t trigger)1062 int kgd2kfd_quiesce_mm(struct mm_struct *mm, uint32_t trigger)
1063 {
1064 	struct kfd_process *p;
1065 	int r;
1066 
1067 	/* Because we are called from arbitrary context (workqueue) as opposed
1068 	 * to process context, kfd_process could attempt to exit while we are
1069 	 * running so the lookup function increments the process ref count.
1070 	 */
1071 	p = kfd_lookup_process_by_mm(mm);
1072 	if (!p)
1073 		return -ESRCH;
1074 
1075 	WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1076 	r = kfd_process_evict_queues(p, trigger);
1077 
1078 	kfd_unref_process(p);
1079 	return r;
1080 }
1081 
kgd2kfd_resume_mm(struct mm_struct * mm)1082 int kgd2kfd_resume_mm(struct mm_struct *mm)
1083 {
1084 	struct kfd_process *p;
1085 	int r;
1086 
1087 	/* Because we are called from arbitrary context (workqueue) as opposed
1088 	 * to process context, kfd_process could attempt to exit while we are
1089 	 * running so the lookup function increments the process ref count.
1090 	 */
1091 	p = kfd_lookup_process_by_mm(mm);
1092 	if (!p)
1093 		return -ESRCH;
1094 
1095 	r = kfd_process_restore_queues(p);
1096 
1097 	kfd_unref_process(p);
1098 	return r;
1099 }
1100 
1101 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1102  *   prepare for safe eviction of KFD BOs that belong to the specified
1103  *   process.
1104  *
1105  * @mm: mm_struct that identifies the specified KFD process
1106  * @fence: eviction fence attached to KFD process BOs
1107  *
1108  */
kgd2kfd_schedule_evict_and_restore_process(struct mm_struct * mm,struct dma_fence * fence)1109 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1110 					       struct dma_fence *fence)
1111 {
1112 	struct kfd_process *p;
1113 	unsigned long active_time;
1114 	unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1115 
1116 	if (!fence)
1117 		return -EINVAL;
1118 
1119 	if (dma_fence_is_signaled(fence))
1120 		return 0;
1121 
1122 	p = kfd_lookup_process_by_mm(mm);
1123 	if (!p)
1124 		return -ENODEV;
1125 
1126 	if (fence->seqno == p->last_eviction_seqno)
1127 		goto out;
1128 
1129 	p->last_eviction_seqno = fence->seqno;
1130 
1131 	/* Avoid KFD process starvation. Wait for at least
1132 	 * PROCESS_ACTIVE_TIME_MS before evicting the process again
1133 	 */
1134 	active_time = get_jiffies_64() - p->last_restore_timestamp;
1135 	if (delay_jiffies > active_time)
1136 		delay_jiffies -= active_time;
1137 	else
1138 		delay_jiffies = 0;
1139 
1140 	/* During process initialization eviction_work.dwork is initialized
1141 	 * to kfd_evict_bo_worker
1142 	 */
1143 	WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1144 	     p->lead_thread->pid, delay_jiffies);
1145 	schedule_delayed_work(&p->eviction_work, delay_jiffies);
1146 out:
1147 	kfd_unref_process(p);
1148 	return 0;
1149 }
1150 
kfd_gtt_sa_init(struct kfd_dev * kfd,unsigned int buf_size,unsigned int chunk_size)1151 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1152 				unsigned int chunk_size)
1153 {
1154 	if (WARN_ON(buf_size < chunk_size))
1155 		return -EINVAL;
1156 	if (WARN_ON(buf_size == 0))
1157 		return -EINVAL;
1158 	if (WARN_ON(chunk_size == 0))
1159 		return -EINVAL;
1160 
1161 	kfd->gtt_sa_chunk_size = chunk_size;
1162 	kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1163 
1164 	kfd->gtt_sa_bitmap = bitmap_zalloc(kfd->gtt_sa_num_of_chunks,
1165 					   GFP_KERNEL);
1166 	if (!kfd->gtt_sa_bitmap)
1167 		return -ENOMEM;
1168 
1169 	pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1170 			kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1171 
1172 	mutex_init(&kfd->gtt_sa_lock);
1173 
1174 	return 0;
1175 }
1176 
kfd_gtt_sa_fini(struct kfd_dev * kfd)1177 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1178 {
1179 	mutex_destroy(&kfd->gtt_sa_lock);
1180 	bitmap_free(kfd->gtt_sa_bitmap);
1181 }
1182 
kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,unsigned int bit_num,unsigned int chunk_size)1183 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1184 						unsigned int bit_num,
1185 						unsigned int chunk_size)
1186 {
1187 	return start_addr + bit_num * chunk_size;
1188 }
1189 
kfd_gtt_sa_calc_cpu_addr(void * start_addr,unsigned int bit_num,unsigned int chunk_size)1190 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1191 						unsigned int bit_num,
1192 						unsigned int chunk_size)
1193 {
1194 	return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1195 }
1196 
kfd_gtt_sa_allocate(struct kfd_node * node,unsigned int size,struct kfd_mem_obj ** mem_obj)1197 int kfd_gtt_sa_allocate(struct kfd_node *node, unsigned int size,
1198 			struct kfd_mem_obj **mem_obj)
1199 {
1200 	unsigned int found, start_search, cur_size;
1201 	struct kfd_dev *kfd = node->kfd;
1202 
1203 	if (size == 0)
1204 		return -EINVAL;
1205 
1206 	if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1207 		return -ENOMEM;
1208 
1209 	*mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1210 	if (!(*mem_obj))
1211 		return -ENOMEM;
1212 
1213 	pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1214 
1215 	start_search = 0;
1216 
1217 	mutex_lock(&kfd->gtt_sa_lock);
1218 
1219 kfd_gtt_restart_search:
1220 	/* Find the first chunk that is free */
1221 	found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1222 					kfd->gtt_sa_num_of_chunks,
1223 					start_search);
1224 
1225 	pr_debug("Found = %d\n", found);
1226 
1227 	/* If there wasn't any free chunk, bail out */
1228 	if (found == kfd->gtt_sa_num_of_chunks)
1229 		goto kfd_gtt_no_free_chunk;
1230 
1231 	/* Update fields of mem_obj */
1232 	(*mem_obj)->range_start = found;
1233 	(*mem_obj)->range_end = found;
1234 	(*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1235 					kfd->gtt_start_gpu_addr,
1236 					found,
1237 					kfd->gtt_sa_chunk_size);
1238 	(*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1239 					kfd->gtt_start_cpu_ptr,
1240 					found,
1241 					kfd->gtt_sa_chunk_size);
1242 
1243 	pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1244 			(uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1245 
1246 	/* If we need only one chunk, mark it as allocated and get out */
1247 	if (size <= kfd->gtt_sa_chunk_size) {
1248 		pr_debug("Single bit\n");
1249 		__set_bit(found, kfd->gtt_sa_bitmap);
1250 		goto kfd_gtt_out;
1251 	}
1252 
1253 	/* Otherwise, try to see if we have enough contiguous chunks */
1254 	cur_size = size - kfd->gtt_sa_chunk_size;
1255 	do {
1256 		(*mem_obj)->range_end =
1257 			find_next_zero_bit(kfd->gtt_sa_bitmap,
1258 					kfd->gtt_sa_num_of_chunks, ++found);
1259 		/*
1260 		 * If next free chunk is not contiguous than we need to
1261 		 * restart our search from the last free chunk we found (which
1262 		 * wasn't contiguous to the previous ones
1263 		 */
1264 		if ((*mem_obj)->range_end != found) {
1265 			start_search = found;
1266 			goto kfd_gtt_restart_search;
1267 		}
1268 
1269 		/*
1270 		 * If we reached end of buffer, bail out with error
1271 		 */
1272 		if (found == kfd->gtt_sa_num_of_chunks)
1273 			goto kfd_gtt_no_free_chunk;
1274 
1275 		/* Check if we don't need another chunk */
1276 		if (cur_size <= kfd->gtt_sa_chunk_size)
1277 			cur_size = 0;
1278 		else
1279 			cur_size -= kfd->gtt_sa_chunk_size;
1280 
1281 	} while (cur_size > 0);
1282 
1283 	pr_debug("range_start = %d, range_end = %d\n",
1284 		(*mem_obj)->range_start, (*mem_obj)->range_end);
1285 
1286 	/* Mark the chunks as allocated */
1287 	bitmap_set(kfd->gtt_sa_bitmap, (*mem_obj)->range_start,
1288 		   (*mem_obj)->range_end - (*mem_obj)->range_start + 1);
1289 
1290 kfd_gtt_out:
1291 	mutex_unlock(&kfd->gtt_sa_lock);
1292 	return 0;
1293 
1294 kfd_gtt_no_free_chunk:
1295 	pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1296 	mutex_unlock(&kfd->gtt_sa_lock);
1297 	kfree(*mem_obj);
1298 	return -ENOMEM;
1299 }
1300 
kfd_gtt_sa_free(struct kfd_node * node,struct kfd_mem_obj * mem_obj)1301 int kfd_gtt_sa_free(struct kfd_node *node, struct kfd_mem_obj *mem_obj)
1302 {
1303 	struct kfd_dev *kfd = node->kfd;
1304 
1305 	/* Act like kfree when trying to free a NULL object */
1306 	if (!mem_obj)
1307 		return 0;
1308 
1309 	pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1310 			mem_obj, mem_obj->range_start, mem_obj->range_end);
1311 
1312 	mutex_lock(&kfd->gtt_sa_lock);
1313 
1314 	/* Mark the chunks as free */
1315 	bitmap_clear(kfd->gtt_sa_bitmap, mem_obj->range_start,
1316 		     mem_obj->range_end - mem_obj->range_start + 1);
1317 
1318 	mutex_unlock(&kfd->gtt_sa_lock);
1319 
1320 	kfree(mem_obj);
1321 	return 0;
1322 }
1323 
kgd2kfd_set_sram_ecc_flag(struct kfd_dev * kfd)1324 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1325 {
1326 	/*
1327 	 * TODO: Currently update SRAM ECC flag for first node.
1328 	 * This needs to be updated later when we can
1329 	 * identify SRAM ECC error on other nodes also.
1330 	 */
1331 	if (kfd)
1332 		atomic_inc(&kfd->nodes[0]->sram_ecc_flag);
1333 }
1334 
kfd_inc_compute_active(struct kfd_node * node)1335 void kfd_inc_compute_active(struct kfd_node *node)
1336 {
1337 	if (atomic_inc_return(&node->kfd->compute_profile) == 1)
1338 		amdgpu_amdkfd_set_compute_idle(node->adev, false);
1339 }
1340 
kfd_dec_compute_active(struct kfd_node * node)1341 void kfd_dec_compute_active(struct kfd_node *node)
1342 {
1343 	int count = atomic_dec_return(&node->kfd->compute_profile);
1344 
1345 	if (count == 0)
1346 		amdgpu_amdkfd_set_compute_idle(node->adev, true);
1347 	WARN_ONCE(count < 0, "Compute profile ref. count error");
1348 }
1349 
kgd2kfd_smi_event_throttle(struct kfd_dev * kfd,uint64_t throttle_bitmask)1350 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1351 {
1352 	/*
1353 	 * TODO: For now, raise the throttling event only on first node.
1354 	 * This will need to change after we are able to determine
1355 	 * which node raised the throttling event.
1356 	 */
1357 	if (kfd && kfd->init_complete)
1358 		kfd_smi_event_update_thermal_throttling(kfd->nodes[0],
1359 							throttle_bitmask);
1360 }
1361 
1362 /* kfd_get_num_sdma_engines returns the number of PCIe optimized SDMA and
1363  * kfd_get_num_xgmi_sdma_engines returns the number of XGMI SDMA.
1364  * When the device has more than two engines, we reserve two for PCIe to enable
1365  * full-duplex and the rest are used as XGMI.
1366  */
kfd_get_num_sdma_engines(struct kfd_node * node)1367 unsigned int kfd_get_num_sdma_engines(struct kfd_node *node)
1368 {
1369 	/* If XGMI is not supported, all SDMA engines are PCIe */
1370 	if (!node->adev->gmc.xgmi.supported)
1371 		return node->adev->sdma.num_instances/(int)node->kfd->num_nodes;
1372 
1373 	return min(node->adev->sdma.num_instances/(int)node->kfd->num_nodes, 2);
1374 }
1375 
kfd_get_num_xgmi_sdma_engines(struct kfd_node * node)1376 unsigned int kfd_get_num_xgmi_sdma_engines(struct kfd_node *node)
1377 {
1378 	/* After reserved for PCIe, the rest of engines are XGMI */
1379 	return node->adev->sdma.num_instances/(int)node->kfd->num_nodes -
1380 		kfd_get_num_sdma_engines(node);
1381 }
1382 
kgd2kfd_check_and_lock_kfd(void)1383 int kgd2kfd_check_and_lock_kfd(void)
1384 {
1385 	mutex_lock(&kfd_processes_mutex);
1386 	if (!hash_empty(kfd_processes_table) || kfd_is_locked()) {
1387 		mutex_unlock(&kfd_processes_mutex);
1388 		return -EBUSY;
1389 	}
1390 
1391 	++kfd_locked;
1392 	mutex_unlock(&kfd_processes_mutex);
1393 
1394 	return 0;
1395 }
1396 
kgd2kfd_unlock_kfd(void)1397 void kgd2kfd_unlock_kfd(void)
1398 {
1399 	mutex_lock(&kfd_processes_mutex);
1400 	--kfd_locked;
1401 	mutex_unlock(&kfd_processes_mutex);
1402 }
1403 
1404 #if defined(CONFIG_DEBUG_FS)
1405 
1406 /* This function will send a package to HIQ to hang the HWS
1407  * which will trigger a GPU reset and bring the HWS back to normal state
1408  */
kfd_debugfs_hang_hws(struct kfd_node * dev)1409 int kfd_debugfs_hang_hws(struct kfd_node *dev)
1410 {
1411 	if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1412 		pr_err("HWS is not enabled");
1413 		return -EINVAL;
1414 	}
1415 
1416 	return dqm_debugfs_hang_hws(dev->dqm);
1417 }
1418 
1419 #endif
1420