xref: /freebsd/sys/dev/cxgbe/t4_main.c (revision a1b84451)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright (c) 2011 Chelsio Communications, Inc.
5  * All rights reserved.
6  * Written by: Navdeep Parhar <np@FreeBSD.org>
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  */
29 
30 #include <sys/cdefs.h>
31 #include "opt_ddb.h"
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_kern_tls.h"
35 #include "opt_ratelimit.h"
36 #include "opt_rss.h"
37 
38 #include <sys/param.h>
39 #include <sys/conf.h>
40 #include <sys/priv.h>
41 #include <sys/kernel.h>
42 #include <sys/bus.h>
43 #include <sys/eventhandler.h>
44 #include <sys/module.h>
45 #include <sys/malloc.h>
46 #include <sys/queue.h>
47 #include <sys/taskqueue.h>
48 #include <sys/pciio.h>
49 #include <dev/pci/pcireg.h>
50 #include <dev/pci/pcivar.h>
51 #include <dev/pci/pci_private.h>
52 #include <sys/firmware.h>
53 #include <sys/sbuf.h>
54 #include <sys/smp.h>
55 #include <sys/socket.h>
56 #include <sys/sockio.h>
57 #include <sys/sysctl.h>
58 #include <net/ethernet.h>
59 #include <net/if.h>
60 #include <net/if_types.h>
61 #include <net/if_dl.h>
62 #include <net/if_vlan_var.h>
63 #ifdef RSS
64 #include <net/rss_config.h>
65 #endif
66 #include <netinet/in.h>
67 #include <netinet/ip.h>
68 #ifdef KERN_TLS
69 #include <netinet/tcp_seq.h>
70 #endif
71 #if defined(__i386__) || defined(__amd64__)
72 #include <machine/md_var.h>
73 #include <machine/cputypes.h>
74 #include <vm/vm.h>
75 #include <vm/pmap.h>
76 #endif
77 #ifdef DDB
78 #include <ddb/ddb.h>
79 #include <ddb/db_lex.h>
80 #endif
81 
82 #include "common/common.h"
83 #include "common/t4_msg.h"
84 #include "common/t4_regs.h"
85 #include "common/t4_regs_values.h"
86 #include "cudbg/cudbg.h"
87 #include "t4_clip.h"
88 #include "t4_ioctl.h"
89 #include "t4_l2t.h"
90 #include "t4_mp_ring.h"
91 #include "t4_if.h"
92 #include "t4_smt.h"
93 
94 /* T4 bus driver interface */
95 static int t4_probe(device_t);
96 static int t4_attach(device_t);
97 static int t4_detach(device_t);
98 static int t4_child_location(device_t, device_t, struct sbuf *);
99 static int t4_ready(device_t);
100 static int t4_read_port_device(device_t, int, device_t *);
101 static int t4_suspend(device_t);
102 static int t4_resume(device_t);
103 static int t4_reset_prepare(device_t, device_t);
104 static int t4_reset_post(device_t, device_t);
105 static device_method_t t4_methods[] = {
106 	DEVMETHOD(device_probe,		t4_probe),
107 	DEVMETHOD(device_attach,	t4_attach),
108 	DEVMETHOD(device_detach,	t4_detach),
109 	DEVMETHOD(device_suspend,	t4_suspend),
110 	DEVMETHOD(device_resume,	t4_resume),
111 
112 	DEVMETHOD(bus_child_location,	t4_child_location),
113 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
114 	DEVMETHOD(bus_reset_post,	t4_reset_post),
115 
116 	DEVMETHOD(t4_is_main_ready,	t4_ready),
117 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
118 
119 	DEVMETHOD_END
120 };
121 static driver_t t4_driver = {
122 	"t4nex",
123 	t4_methods,
124 	sizeof(struct adapter)
125 };
126 
127 
128 /* T4 port (cxgbe) interface */
129 static int cxgbe_probe(device_t);
130 static int cxgbe_attach(device_t);
131 static int cxgbe_detach(device_t);
132 device_method_t cxgbe_methods[] = {
133 	DEVMETHOD(device_probe,		cxgbe_probe),
134 	DEVMETHOD(device_attach,	cxgbe_attach),
135 	DEVMETHOD(device_detach,	cxgbe_detach),
136 	{ 0, 0 }
137 };
138 static driver_t cxgbe_driver = {
139 	"cxgbe",
140 	cxgbe_methods,
141 	sizeof(struct port_info)
142 };
143 
144 /* T4 VI (vcxgbe) interface */
145 static int vcxgbe_probe(device_t);
146 static int vcxgbe_attach(device_t);
147 static int vcxgbe_detach(device_t);
148 static device_method_t vcxgbe_methods[] = {
149 	DEVMETHOD(device_probe,		vcxgbe_probe),
150 	DEVMETHOD(device_attach,	vcxgbe_attach),
151 	DEVMETHOD(device_detach,	vcxgbe_detach),
152 	{ 0, 0 }
153 };
154 static driver_t vcxgbe_driver = {
155 	"vcxgbe",
156 	vcxgbe_methods,
157 	sizeof(struct vi_info)
158 };
159 
160 static d_ioctl_t t4_ioctl;
161 
162 static struct cdevsw t4_cdevsw = {
163        .d_version = D_VERSION,
164        .d_ioctl = t4_ioctl,
165        .d_name = "t4nex",
166 };
167 
168 /* T5 bus driver interface */
169 static int t5_probe(device_t);
170 static device_method_t t5_methods[] = {
171 	DEVMETHOD(device_probe,		t5_probe),
172 	DEVMETHOD(device_attach,	t4_attach),
173 	DEVMETHOD(device_detach,	t4_detach),
174 	DEVMETHOD(device_suspend,	t4_suspend),
175 	DEVMETHOD(device_resume,	t4_resume),
176 
177 	DEVMETHOD(bus_child_location,	t4_child_location),
178 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
179 	DEVMETHOD(bus_reset_post,	t4_reset_post),
180 
181 	DEVMETHOD(t4_is_main_ready,	t4_ready),
182 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
183 
184 	DEVMETHOD_END
185 };
186 static driver_t t5_driver = {
187 	"t5nex",
188 	t5_methods,
189 	sizeof(struct adapter)
190 };
191 
192 
193 /* T5 port (cxl) interface */
194 static driver_t cxl_driver = {
195 	"cxl",
196 	cxgbe_methods,
197 	sizeof(struct port_info)
198 };
199 
200 /* T5 VI (vcxl) interface */
201 static driver_t vcxl_driver = {
202 	"vcxl",
203 	vcxgbe_methods,
204 	sizeof(struct vi_info)
205 };
206 
207 /* T6 bus driver interface */
208 static int t6_probe(device_t);
209 static device_method_t t6_methods[] = {
210 	DEVMETHOD(device_probe,		t6_probe),
211 	DEVMETHOD(device_attach,	t4_attach),
212 	DEVMETHOD(device_detach,	t4_detach),
213 	DEVMETHOD(device_suspend,	t4_suspend),
214 	DEVMETHOD(device_resume,	t4_resume),
215 
216 	DEVMETHOD(bus_child_location,	t4_child_location),
217 	DEVMETHOD(bus_reset_prepare,	t4_reset_prepare),
218 	DEVMETHOD(bus_reset_post,	t4_reset_post),
219 
220 	DEVMETHOD(t4_is_main_ready,	t4_ready),
221 	DEVMETHOD(t4_read_port_device,	t4_read_port_device),
222 
223 	DEVMETHOD_END
224 };
225 static driver_t t6_driver = {
226 	"t6nex",
227 	t6_methods,
228 	sizeof(struct adapter)
229 };
230 
231 
232 /* T6 port (cc) interface */
233 static driver_t cc_driver = {
234 	"cc",
235 	cxgbe_methods,
236 	sizeof(struct port_info)
237 };
238 
239 /* T6 VI (vcc) interface */
240 static driver_t vcc_driver = {
241 	"vcc",
242 	vcxgbe_methods,
243 	sizeof(struct vi_info)
244 };
245 
246 /* ifnet interface */
247 static void cxgbe_init(void *);
248 static int cxgbe_ioctl(if_t, unsigned long, caddr_t);
249 static int cxgbe_transmit(if_t, struct mbuf *);
250 static void cxgbe_qflush(if_t);
251 #if defined(KERN_TLS) || defined(RATELIMIT)
252 static int cxgbe_snd_tag_alloc(if_t, union if_snd_tag_alloc_params *,
253     struct m_snd_tag **);
254 #endif
255 
256 MALLOC_DEFINE(M_CXGBE, "cxgbe", "Chelsio T4/T5 Ethernet driver and services");
257 
258 /*
259  * Correct lock order when you need to acquire multiple locks is t4_list_lock,
260  * then ADAPTER_LOCK, then t4_uld_list_lock.
261  */
262 static struct sx t4_list_lock;
263 SLIST_HEAD(, adapter) t4_list;
264 #ifdef TCP_OFFLOAD
265 static struct sx t4_uld_list_lock;
266 SLIST_HEAD(, uld_info) t4_uld_list;
267 #endif
268 
269 /*
270  * Tunables.  See tweak_tunables() too.
271  *
272  * Each tunable is set to a default value here if it's known at compile-time.
273  * Otherwise it is set to -n as an indication to tweak_tunables() that it should
274  * provide a reasonable default (upto n) when the driver is loaded.
275  *
276  * Tunables applicable to both T4 and T5 are under hw.cxgbe.  Those specific to
277  * T5 are under hw.cxl.
278  */
279 SYSCTL_NODE(_hw, OID_AUTO, cxgbe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
280     "cxgbe(4) parameters");
281 SYSCTL_NODE(_hw, OID_AUTO, cxl, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
282     "cxgbe(4) T5+ parameters");
283 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, toe, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
284     "cxgbe(4) TOE parameters");
285 
286 /*
287  * Number of queues for tx and rx, NIC and offload.
288  */
289 #define NTXQ 16
290 int t4_ntxq = -NTXQ;
291 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq, CTLFLAG_RDTUN, &t4_ntxq, 0,
292     "Number of TX queues per port");
293 TUNABLE_INT("hw.cxgbe.ntxq10g", &t4_ntxq);	/* Old name, undocumented */
294 
295 #define NRXQ 8
296 int t4_nrxq = -NRXQ;
297 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq, CTLFLAG_RDTUN, &t4_nrxq, 0,
298     "Number of RX queues per port");
299 TUNABLE_INT("hw.cxgbe.nrxq10g", &t4_nrxq);	/* Old name, undocumented */
300 
301 #define NTXQ_VI 1
302 static int t4_ntxq_vi = -NTXQ_VI;
303 SYSCTL_INT(_hw_cxgbe, OID_AUTO, ntxq_vi, CTLFLAG_RDTUN, &t4_ntxq_vi, 0,
304     "Number of TX queues per VI");
305 
306 #define NRXQ_VI 1
307 static int t4_nrxq_vi = -NRXQ_VI;
308 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nrxq_vi, CTLFLAG_RDTUN, &t4_nrxq_vi, 0,
309     "Number of RX queues per VI");
310 
311 static int t4_rsrv_noflowq = 0;
312 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rsrv_noflowq, CTLFLAG_RDTUN, &t4_rsrv_noflowq,
313     0, "Reserve TX queue 0 of each VI for non-flowid packets");
314 
315 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
316 #define NOFLDTXQ 8
317 static int t4_nofldtxq = -NOFLDTXQ;
318 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq, CTLFLAG_RDTUN, &t4_nofldtxq, 0,
319     "Number of offload TX queues per port");
320 
321 #define NOFLDRXQ 2
322 static int t4_nofldrxq = -NOFLDRXQ;
323 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq, CTLFLAG_RDTUN, &t4_nofldrxq, 0,
324     "Number of offload RX queues per port");
325 
326 #define NOFLDTXQ_VI 1
327 static int t4_nofldtxq_vi = -NOFLDTXQ_VI;
328 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldtxq_vi, CTLFLAG_RDTUN, &t4_nofldtxq_vi, 0,
329     "Number of offload TX queues per VI");
330 
331 #define NOFLDRXQ_VI 1
332 static int t4_nofldrxq_vi = -NOFLDRXQ_VI;
333 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nofldrxq_vi, CTLFLAG_RDTUN, &t4_nofldrxq_vi, 0,
334     "Number of offload RX queues per VI");
335 
336 #define TMR_IDX_OFLD 1
337 int t4_tmr_idx_ofld = TMR_IDX_OFLD;
338 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx_ofld, CTLFLAG_RDTUN,
339     &t4_tmr_idx_ofld, 0, "Holdoff timer index for offload queues");
340 
341 #define PKTC_IDX_OFLD (-1)
342 int t4_pktc_idx_ofld = PKTC_IDX_OFLD;
343 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx_ofld, CTLFLAG_RDTUN,
344     &t4_pktc_idx_ofld, 0, "holdoff packet counter index for offload queues");
345 
346 /* 0 means chip/fw default, non-zero number is value in microseconds */
347 static u_long t4_toe_keepalive_idle = 0;
348 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_idle, CTLFLAG_RDTUN,
349     &t4_toe_keepalive_idle, 0, "TOE keepalive idle timer (us)");
350 
351 /* 0 means chip/fw default, non-zero number is value in microseconds */
352 static u_long t4_toe_keepalive_interval = 0;
353 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, keepalive_interval, CTLFLAG_RDTUN,
354     &t4_toe_keepalive_interval, 0, "TOE keepalive interval timer (us)");
355 
356 /* 0 means chip/fw default, non-zero number is # of keepalives before abort */
357 static int t4_toe_keepalive_count = 0;
358 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, keepalive_count, CTLFLAG_RDTUN,
359     &t4_toe_keepalive_count, 0, "Number of TOE keepalive probes before abort");
360 
361 /* 0 means chip/fw default, non-zero number is value in microseconds */
362 static u_long t4_toe_rexmt_min = 0;
363 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_min, CTLFLAG_RDTUN,
364     &t4_toe_rexmt_min, 0, "Minimum TOE retransmit interval (us)");
365 
366 /* 0 means chip/fw default, non-zero number is value in microseconds */
367 static u_long t4_toe_rexmt_max = 0;
368 SYSCTL_ULONG(_hw_cxgbe_toe, OID_AUTO, rexmt_max, CTLFLAG_RDTUN,
369     &t4_toe_rexmt_max, 0, "Maximum TOE retransmit interval (us)");
370 
371 /* 0 means chip/fw default, non-zero number is # of rexmt before abort */
372 static int t4_toe_rexmt_count = 0;
373 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, rexmt_count, CTLFLAG_RDTUN,
374     &t4_toe_rexmt_count, 0, "Number of TOE retransmissions before abort");
375 
376 /* -1 means chip/fw default, other values are raw backoff values to use */
377 static int t4_toe_rexmt_backoff[16] = {
378 	-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
379 };
380 SYSCTL_NODE(_hw_cxgbe_toe, OID_AUTO, rexmt_backoff,
381     CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
382     "cxgbe(4) TOE retransmit backoff values");
383 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 0, CTLFLAG_RDTUN,
384     &t4_toe_rexmt_backoff[0], 0, "");
385 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 1, CTLFLAG_RDTUN,
386     &t4_toe_rexmt_backoff[1], 0, "");
387 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 2, CTLFLAG_RDTUN,
388     &t4_toe_rexmt_backoff[2], 0, "");
389 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 3, CTLFLAG_RDTUN,
390     &t4_toe_rexmt_backoff[3], 0, "");
391 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 4, CTLFLAG_RDTUN,
392     &t4_toe_rexmt_backoff[4], 0, "");
393 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 5, CTLFLAG_RDTUN,
394     &t4_toe_rexmt_backoff[5], 0, "");
395 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 6, CTLFLAG_RDTUN,
396     &t4_toe_rexmt_backoff[6], 0, "");
397 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 7, CTLFLAG_RDTUN,
398     &t4_toe_rexmt_backoff[7], 0, "");
399 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 8, CTLFLAG_RDTUN,
400     &t4_toe_rexmt_backoff[8], 0, "");
401 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 9, CTLFLAG_RDTUN,
402     &t4_toe_rexmt_backoff[9], 0, "");
403 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 10, CTLFLAG_RDTUN,
404     &t4_toe_rexmt_backoff[10], 0, "");
405 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 11, CTLFLAG_RDTUN,
406     &t4_toe_rexmt_backoff[11], 0, "");
407 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 12, CTLFLAG_RDTUN,
408     &t4_toe_rexmt_backoff[12], 0, "");
409 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 13, CTLFLAG_RDTUN,
410     &t4_toe_rexmt_backoff[13], 0, "");
411 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 14, CTLFLAG_RDTUN,
412     &t4_toe_rexmt_backoff[14], 0, "");
413 SYSCTL_INT(_hw_cxgbe_toe_rexmt_backoff, OID_AUTO, 15, CTLFLAG_RDTUN,
414     &t4_toe_rexmt_backoff[15], 0, "");
415 
416 int t4_ddp_rcvbuf_len = 256 * 1024;
417 SYSCTL_INT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_len, CTLFLAG_RWTUN,
418     &t4_ddp_rcvbuf_len, 0, "length of each DDP RX buffer");
419 
420 unsigned int t4_ddp_rcvbuf_cache = 4;
421 SYSCTL_UINT(_hw_cxgbe_toe, OID_AUTO, ddp_rcvbuf_cache, CTLFLAG_RWTUN,
422     &t4_ddp_rcvbuf_cache, 0,
423     "maximum number of free DDP RX buffers to cache per connection");
424 #endif
425 
426 #ifdef DEV_NETMAP
427 #define NN_MAIN_VI	(1 << 0)	/* Native netmap on the main VI */
428 #define NN_EXTRA_VI	(1 << 1)	/* Native netmap on the extra VI(s) */
429 static int t4_native_netmap = NN_EXTRA_VI;
430 SYSCTL_INT(_hw_cxgbe, OID_AUTO, native_netmap, CTLFLAG_RDTUN, &t4_native_netmap,
431     0, "Native netmap support.  bit 0 = main VI, bit 1 = extra VIs");
432 
433 #define NNMTXQ 8
434 static int t4_nnmtxq = -NNMTXQ;
435 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq, CTLFLAG_RDTUN, &t4_nnmtxq, 0,
436     "Number of netmap TX queues");
437 
438 #define NNMRXQ 8
439 static int t4_nnmrxq = -NNMRXQ;
440 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq, CTLFLAG_RDTUN, &t4_nnmrxq, 0,
441     "Number of netmap RX queues");
442 
443 #define NNMTXQ_VI 2
444 static int t4_nnmtxq_vi = -NNMTXQ_VI;
445 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmtxq_vi, CTLFLAG_RDTUN, &t4_nnmtxq_vi, 0,
446     "Number of netmap TX queues per VI");
447 
448 #define NNMRXQ_VI 2
449 static int t4_nnmrxq_vi = -NNMRXQ_VI;
450 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nnmrxq_vi, CTLFLAG_RDTUN, &t4_nnmrxq_vi, 0,
451     "Number of netmap RX queues per VI");
452 #endif
453 
454 /*
455  * Holdoff parameters for ports.
456  */
457 #define TMR_IDX 1
458 int t4_tmr_idx = TMR_IDX;
459 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_timer_idx, CTLFLAG_RDTUN, &t4_tmr_idx,
460     0, "Holdoff timer index");
461 TUNABLE_INT("hw.cxgbe.holdoff_timer_idx_10G", &t4_tmr_idx);	/* Old name */
462 
463 #define PKTC_IDX (-1)
464 int t4_pktc_idx = PKTC_IDX;
465 SYSCTL_INT(_hw_cxgbe, OID_AUTO, holdoff_pktc_idx, CTLFLAG_RDTUN, &t4_pktc_idx,
466     0, "Holdoff packet counter index");
467 TUNABLE_INT("hw.cxgbe.holdoff_pktc_idx_10G", &t4_pktc_idx);	/* Old name */
468 
469 /*
470  * Size (# of entries) of each tx and rx queue.
471  */
472 unsigned int t4_qsize_txq = TX_EQ_QSIZE;
473 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_txq, CTLFLAG_RDTUN, &t4_qsize_txq, 0,
474     "Number of descriptors in each TX queue");
475 
476 unsigned int t4_qsize_rxq = RX_IQ_QSIZE;
477 SYSCTL_INT(_hw_cxgbe, OID_AUTO, qsize_rxq, CTLFLAG_RDTUN, &t4_qsize_rxq, 0,
478     "Number of descriptors in each RX queue");
479 
480 /*
481  * Interrupt types allowed (bits 0, 1, 2 = INTx, MSI, MSI-X respectively).
482  */
483 int t4_intr_types = INTR_MSIX | INTR_MSI | INTR_INTX;
484 SYSCTL_INT(_hw_cxgbe, OID_AUTO, interrupt_types, CTLFLAG_RDTUN, &t4_intr_types,
485     0, "Interrupt types allowed (bit 0 = INTx, 1 = MSI, 2 = MSI-X)");
486 
487 /*
488  * Configuration file.  All the _CF names here are special.
489  */
490 #define DEFAULT_CF	"default"
491 #define BUILTIN_CF	"built-in"
492 #define FLASH_CF	"flash"
493 #define UWIRE_CF	"uwire"
494 #define FPGA_CF		"fpga"
495 static char t4_cfg_file[32] = DEFAULT_CF;
496 SYSCTL_STRING(_hw_cxgbe, OID_AUTO, config_file, CTLFLAG_RDTUN, t4_cfg_file,
497     sizeof(t4_cfg_file), "Firmware configuration file");
498 
499 /*
500  * PAUSE settings (bit 0, 1, 2 = rx_pause, tx_pause, pause_autoneg respectively).
501  * rx_pause = 1 to heed incoming PAUSE frames, 0 to ignore them.
502  * tx_pause = 1 to emit PAUSE frames when the rx FIFO reaches its high water
503  *            mark or when signalled to do so, 0 to never emit PAUSE.
504  * pause_autoneg = 1 means PAUSE will be negotiated if possible and the
505  *                 negotiated settings will override rx_pause/tx_pause.
506  *                 Otherwise rx_pause/tx_pause are applied forcibly.
507  */
508 static int t4_pause_settings = PAUSE_RX | PAUSE_TX | PAUSE_AUTONEG;
509 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pause_settings, CTLFLAG_RDTUN,
510     &t4_pause_settings, 0,
511     "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
512 
513 /*
514  * Forward Error Correction settings (bit 0, 1 = RS, BASER respectively).
515  * -1 to run with the firmware default.  Same as FEC_AUTO (bit 5)
516  *  0 to disable FEC.
517  */
518 static int t4_fec = -1;
519 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fec, CTLFLAG_RDTUN, &t4_fec, 0,
520     "Forward Error Correction (bit 0 = RS, bit 1 = BASER_RS)");
521 
522 /*
523  * Controls when the driver sets the FORCE_FEC bit in the L1_CFG32 that it
524  * issues to the firmware.  If the firmware doesn't support FORCE_FEC then the
525  * driver runs as if this is set to 0.
526  * -1 to set FORCE_FEC iff requested_fec != AUTO. Multiple FEC bits are okay.
527  *  0 to never set FORCE_FEC. requested_fec = AUTO means use the hint from the
528  *    transceiver. Multiple FEC bits may not be okay but will be passed on to
529  *    the firmware anyway (may result in l1cfg errors with old firmwares).
530  *  1 to always set FORCE_FEC. Multiple FEC bits are okay. requested_fec = AUTO
531  *    means set all FEC bits that are valid for the speed.
532  */
533 static int t4_force_fec = -1;
534 SYSCTL_INT(_hw_cxgbe, OID_AUTO, force_fec, CTLFLAG_RDTUN, &t4_force_fec, 0,
535     "Controls the use of FORCE_FEC bit in L1 configuration.");
536 
537 /*
538  * Link autonegotiation.
539  * -1 to run with the firmware default.
540  *  0 to disable.
541  *  1 to enable.
542  */
543 static int t4_autoneg = -1;
544 SYSCTL_INT(_hw_cxgbe, OID_AUTO, autoneg, CTLFLAG_RDTUN, &t4_autoneg, 0,
545     "Link autonegotiation");
546 
547 /*
548  * Firmware auto-install by driver during attach (0, 1, 2 = prohibited, allowed,
549  * encouraged respectively).  '-n' is the same as 'n' except the firmware
550  * version used in the checks is read from the firmware bundled with the driver.
551  */
552 static int t4_fw_install = 1;
553 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fw_install, CTLFLAG_RDTUN, &t4_fw_install, 0,
554     "Firmware auto-install (0 = prohibited, 1 = allowed, 2 = encouraged)");
555 
556 /*
557  * ASIC features that will be used.  Disable the ones you don't want so that the
558  * chip resources aren't wasted on features that will not be used.
559  */
560 static int t4_nbmcaps_allowed = 0;
561 SYSCTL_INT(_hw_cxgbe, OID_AUTO, nbmcaps_allowed, CTLFLAG_RDTUN,
562     &t4_nbmcaps_allowed, 0, "Default NBM capabilities");
563 
564 static int t4_linkcaps_allowed = 0;	/* No DCBX, PPP, etc. by default */
565 SYSCTL_INT(_hw_cxgbe, OID_AUTO, linkcaps_allowed, CTLFLAG_RDTUN,
566     &t4_linkcaps_allowed, 0, "Default link capabilities");
567 
568 static int t4_switchcaps_allowed = FW_CAPS_CONFIG_SWITCH_INGRESS |
569     FW_CAPS_CONFIG_SWITCH_EGRESS;
570 SYSCTL_INT(_hw_cxgbe, OID_AUTO, switchcaps_allowed, CTLFLAG_RDTUN,
571     &t4_switchcaps_allowed, 0, "Default switch capabilities");
572 
573 #ifdef RATELIMIT
574 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
575 	FW_CAPS_CONFIG_NIC_HASHFILTER | FW_CAPS_CONFIG_NIC_ETHOFLD;
576 #else
577 static int t4_niccaps_allowed = FW_CAPS_CONFIG_NIC |
578 	FW_CAPS_CONFIG_NIC_HASHFILTER;
579 #endif
580 SYSCTL_INT(_hw_cxgbe, OID_AUTO, niccaps_allowed, CTLFLAG_RDTUN,
581     &t4_niccaps_allowed, 0, "Default NIC capabilities");
582 
583 static int t4_toecaps_allowed = -1;
584 SYSCTL_INT(_hw_cxgbe, OID_AUTO, toecaps_allowed, CTLFLAG_RDTUN,
585     &t4_toecaps_allowed, 0, "Default TCP offload capabilities");
586 
587 static int t4_rdmacaps_allowed = -1;
588 SYSCTL_INT(_hw_cxgbe, OID_AUTO, rdmacaps_allowed, CTLFLAG_RDTUN,
589     &t4_rdmacaps_allowed, 0, "Default RDMA capabilities");
590 
591 static int t4_cryptocaps_allowed = -1;
592 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cryptocaps_allowed, CTLFLAG_RDTUN,
593     &t4_cryptocaps_allowed, 0, "Default crypto capabilities");
594 
595 static int t4_iscsicaps_allowed = -1;
596 SYSCTL_INT(_hw_cxgbe, OID_AUTO, iscsicaps_allowed, CTLFLAG_RDTUN,
597     &t4_iscsicaps_allowed, 0, "Default iSCSI capabilities");
598 
599 static int t4_fcoecaps_allowed = 0;
600 SYSCTL_INT(_hw_cxgbe, OID_AUTO, fcoecaps_allowed, CTLFLAG_RDTUN,
601     &t4_fcoecaps_allowed, 0, "Default FCoE capabilities");
602 
603 static int t5_write_combine = 0;
604 SYSCTL_INT(_hw_cxl, OID_AUTO, write_combine, CTLFLAG_RDTUN, &t5_write_combine,
605     0, "Use WC instead of UC for BAR2");
606 
607 static int t4_num_vis = 1;
608 SYSCTL_INT(_hw_cxgbe, OID_AUTO, num_vis, CTLFLAG_RDTUN, &t4_num_vis, 0,
609     "Number of VIs per port");
610 
611 /*
612  * PCIe Relaxed Ordering.
613  * -1: driver should figure out a good value.
614  * 0: disable RO.
615  * 1: enable RO.
616  * 2: leave RO alone.
617  */
618 static int pcie_relaxed_ordering = -1;
619 SYSCTL_INT(_hw_cxgbe, OID_AUTO, pcie_relaxed_ordering, CTLFLAG_RDTUN,
620     &pcie_relaxed_ordering, 0,
621     "PCIe Relaxed Ordering: 0 = disable, 1 = enable, 2 = leave alone");
622 
623 static int t4_panic_on_fatal_err = 0;
624 SYSCTL_INT(_hw_cxgbe, OID_AUTO, panic_on_fatal_err, CTLFLAG_RWTUN,
625     &t4_panic_on_fatal_err, 0, "panic on fatal errors");
626 
627 static int t4_reset_on_fatal_err = 0;
628 SYSCTL_INT(_hw_cxgbe, OID_AUTO, reset_on_fatal_err, CTLFLAG_RWTUN,
629     &t4_reset_on_fatal_err, 0, "reset adapter on fatal errors");
630 
631 static int t4_clock_gate_on_suspend = 0;
632 SYSCTL_INT(_hw_cxgbe, OID_AUTO, clock_gate_on_suspend, CTLFLAG_RWTUN,
633     &t4_clock_gate_on_suspend, 0, "gate the clock on suspend");
634 
635 static int t4_tx_vm_wr = 0;
636 SYSCTL_INT(_hw_cxgbe, OID_AUTO, tx_vm_wr, CTLFLAG_RWTUN, &t4_tx_vm_wr, 0,
637     "Use VM work requests to transmit packets.");
638 
639 /*
640  * Set to non-zero to enable the attack filter.  A packet that matches any of
641  * these conditions will get dropped on ingress:
642  * 1) IP && source address == destination address.
643  * 2) TCP/IP && source address is not a unicast address.
644  * 3) TCP/IP && destination address is not a unicast address.
645  * 4) IP && source address is loopback (127.x.y.z).
646  * 5) IP && destination address is loopback (127.x.y.z).
647  * 6) IPv6 && source address == destination address.
648  * 7) IPv6 && source address is not a unicast address.
649  * 8) IPv6 && source address is loopback (::1/128).
650  * 9) IPv6 && destination address is loopback (::1/128).
651  * 10) IPv6 && source address is unspecified (::/128).
652  * 11) IPv6 && destination address is unspecified (::/128).
653  * 12) TCP/IPv6 && source address is multicast (ff00::/8).
654  * 13) TCP/IPv6 && destination address is multicast (ff00::/8).
655  */
656 static int t4_attack_filter = 0;
657 SYSCTL_INT(_hw_cxgbe, OID_AUTO, attack_filter, CTLFLAG_RDTUN,
658     &t4_attack_filter, 0, "Drop suspicious traffic");
659 
660 static int t4_drop_ip_fragments = 0;
661 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_ip_fragments, CTLFLAG_RDTUN,
662     &t4_drop_ip_fragments, 0, "Drop IP fragments");
663 
664 static int t4_drop_pkts_with_l2_errors = 1;
665 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l2_errors, CTLFLAG_RDTUN,
666     &t4_drop_pkts_with_l2_errors, 0,
667     "Drop all frames with Layer 2 length or checksum errors");
668 
669 static int t4_drop_pkts_with_l3_errors = 0;
670 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l3_errors, CTLFLAG_RDTUN,
671     &t4_drop_pkts_with_l3_errors, 0,
672     "Drop all frames with IP version, length, or checksum errors");
673 
674 static int t4_drop_pkts_with_l4_errors = 0;
675 SYSCTL_INT(_hw_cxgbe, OID_AUTO, drop_pkts_with_l4_errors, CTLFLAG_RDTUN,
676     &t4_drop_pkts_with_l4_errors, 0,
677     "Drop all frames with Layer 4 length, checksum, or other errors");
678 
679 #ifdef TCP_OFFLOAD
680 /*
681  * TOE tunables.
682  */
683 static int t4_cop_managed_offloading = 0;
684 SYSCTL_INT(_hw_cxgbe, OID_AUTO, cop_managed_offloading, CTLFLAG_RDTUN,
685     &t4_cop_managed_offloading, 0,
686     "COP (Connection Offload Policy) controls all TOE offload");
687 #endif
688 
689 #ifdef KERN_TLS
690 /*
691  * This enables KERN_TLS for all adapters if set.
692  */
693 static int t4_kern_tls = 0;
694 SYSCTL_INT(_hw_cxgbe, OID_AUTO, kern_tls, CTLFLAG_RDTUN, &t4_kern_tls, 0,
695     "Enable KERN_TLS mode for T6 adapters");
696 
697 SYSCTL_NODE(_hw_cxgbe, OID_AUTO, tls, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
698     "cxgbe(4) KERN_TLS parameters");
699 
700 static int t4_tls_inline_keys = 0;
701 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, inline_keys, CTLFLAG_RDTUN,
702     &t4_tls_inline_keys, 0,
703     "Always pass TLS keys in work requests (1) or attempt to store TLS keys "
704     "in card memory.");
705 
706 static int t4_tls_combo_wrs = 0;
707 SYSCTL_INT(_hw_cxgbe_tls, OID_AUTO, combo_wrs, CTLFLAG_RDTUN, &t4_tls_combo_wrs,
708     0, "Attempt to combine TCB field updates with TLS record work requests.");
709 #endif
710 
711 /* Functions used by VIs to obtain unique MAC addresses for each VI. */
712 static int vi_mac_funcs[] = {
713 	FW_VI_FUNC_ETH,
714 	FW_VI_FUNC_OFLD,
715 	FW_VI_FUNC_IWARP,
716 	FW_VI_FUNC_OPENISCSI,
717 	FW_VI_FUNC_OPENFCOE,
718 	FW_VI_FUNC_FOISCSI,
719 	FW_VI_FUNC_FOFCOE,
720 };
721 
722 struct intrs_and_queues {
723 	uint16_t intr_type;	/* INTx, MSI, or MSI-X */
724 	uint16_t num_vis;	/* number of VIs for each port */
725 	uint16_t nirq;		/* Total # of vectors */
726 	uint16_t ntxq;		/* # of NIC txq's for each port */
727 	uint16_t nrxq;		/* # of NIC rxq's for each port */
728 	uint16_t nofldtxq;	/* # of TOE/ETHOFLD txq's for each port */
729 	uint16_t nofldrxq;	/* # of TOE rxq's for each port */
730 	uint16_t nnmtxq;	/* # of netmap txq's */
731 	uint16_t nnmrxq;	/* # of netmap rxq's */
732 
733 	/* The vcxgbe/vcxl interfaces use these and not the ones above. */
734 	uint16_t ntxq_vi;	/* # of NIC txq's */
735 	uint16_t nrxq_vi;	/* # of NIC rxq's */
736 	uint16_t nofldtxq_vi;	/* # of TOE txq's */
737 	uint16_t nofldrxq_vi;	/* # of TOE rxq's */
738 	uint16_t nnmtxq_vi;	/* # of netmap txq's */
739 	uint16_t nnmrxq_vi;	/* # of netmap rxq's */
740 };
741 
742 static void setup_memwin(struct adapter *);
743 static void position_memwin(struct adapter *, int, uint32_t);
744 static int validate_mem_range(struct adapter *, uint32_t, uint32_t);
745 static int fwmtype_to_hwmtype(int);
746 static int validate_mt_off_len(struct adapter *, int, uint32_t, uint32_t,
747     uint32_t *);
748 static int fixup_devlog_params(struct adapter *);
749 static int cfg_itype_and_nqueues(struct adapter *, struct intrs_and_queues *);
750 static int contact_firmware(struct adapter *);
751 static int partition_resources(struct adapter *);
752 static int get_params__pre_init(struct adapter *);
753 static int set_params__pre_init(struct adapter *);
754 static int get_params__post_init(struct adapter *);
755 static int set_params__post_init(struct adapter *);
756 static void t4_set_desc(struct adapter *);
757 static bool fixed_ifmedia(struct port_info *);
758 static void build_medialist(struct port_info *);
759 static void init_link_config(struct port_info *);
760 static int fixup_link_config(struct port_info *);
761 static int apply_link_config(struct port_info *);
762 static int cxgbe_init_synchronized(struct vi_info *);
763 static int cxgbe_uninit_synchronized(struct vi_info *);
764 static int adapter_full_init(struct adapter *);
765 static void adapter_full_uninit(struct adapter *);
766 static int vi_full_init(struct vi_info *);
767 static void vi_full_uninit(struct vi_info *);
768 static int alloc_extra_vi(struct adapter *, struct port_info *, struct vi_info *);
769 static void quiesce_txq(struct sge_txq *);
770 static void quiesce_wrq(struct sge_wrq *);
771 static void quiesce_iq_fl(struct adapter *, struct sge_iq *, struct sge_fl *);
772 static void quiesce_vi(struct vi_info *);
773 static int t4_alloc_irq(struct adapter *, struct irq *, int rid,
774     driver_intr_t *, void *, char *);
775 static int t4_free_irq(struct adapter *, struct irq *);
776 static void t4_init_atid_table(struct adapter *);
777 static void t4_free_atid_table(struct adapter *);
778 static void get_regs(struct adapter *, struct t4_regdump *, uint8_t *);
779 static void vi_refresh_stats(struct vi_info *);
780 static void cxgbe_refresh_stats(struct vi_info *);
781 static void cxgbe_tick(void *);
782 static void vi_tick(void *);
783 static void cxgbe_sysctls(struct port_info *);
784 static int sysctl_int_array(SYSCTL_HANDLER_ARGS);
785 static int sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS);
786 static int sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS);
787 static int sysctl_btphy(SYSCTL_HANDLER_ARGS);
788 static int sysctl_noflowq(SYSCTL_HANDLER_ARGS);
789 static int sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS);
790 static int sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS);
791 static int sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS);
792 static int sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS);
793 static int sysctl_qsize_txq(SYSCTL_HANDLER_ARGS);
794 static int sysctl_pause_settings(SYSCTL_HANDLER_ARGS);
795 static int sysctl_link_fec(SYSCTL_HANDLER_ARGS);
796 static int sysctl_requested_fec(SYSCTL_HANDLER_ARGS);
797 static int sysctl_module_fec(SYSCTL_HANDLER_ARGS);
798 static int sysctl_autoneg(SYSCTL_HANDLER_ARGS);
799 static int sysctl_force_fec(SYSCTL_HANDLER_ARGS);
800 static int sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS);
801 static int sysctl_temperature(SYSCTL_HANDLER_ARGS);
802 static int sysctl_vdd(SYSCTL_HANDLER_ARGS);
803 static int sysctl_reset_sensor(SYSCTL_HANDLER_ARGS);
804 static int sysctl_loadavg(SYSCTL_HANDLER_ARGS);
805 static int sysctl_cctrl(SYSCTL_HANDLER_ARGS);
806 static int sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS);
807 static int sysctl_cim_la(SYSCTL_HANDLER_ARGS);
808 static int sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS);
809 static int sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS);
810 static int sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS);
811 static int sysctl_cpl_stats(SYSCTL_HANDLER_ARGS);
812 static int sysctl_ddp_stats(SYSCTL_HANDLER_ARGS);
813 static int sysctl_tid_stats(SYSCTL_HANDLER_ARGS);
814 static int sysctl_devlog(SYSCTL_HANDLER_ARGS);
815 static int sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS);
816 static int sysctl_hw_sched(SYSCTL_HANDLER_ARGS);
817 static int sysctl_lb_stats(SYSCTL_HANDLER_ARGS);
818 static int sysctl_linkdnrc(SYSCTL_HANDLER_ARGS);
819 static int sysctl_meminfo(SYSCTL_HANDLER_ARGS);
820 static int sysctl_mps_tcam(SYSCTL_HANDLER_ARGS);
821 static int sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS);
822 static int sysctl_path_mtus(SYSCTL_HANDLER_ARGS);
823 static int sysctl_pm_stats(SYSCTL_HANDLER_ARGS);
824 static int sysctl_rdma_stats(SYSCTL_HANDLER_ARGS);
825 static int sysctl_tcp_stats(SYSCTL_HANDLER_ARGS);
826 static int sysctl_tids(SYSCTL_HANDLER_ARGS);
827 static int sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS);
828 static int sysctl_tnl_stats(SYSCTL_HANDLER_ARGS);
829 static int sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS);
830 static int sysctl_tp_la(SYSCTL_HANDLER_ARGS);
831 static int sysctl_tx_rate(SYSCTL_HANDLER_ARGS);
832 static int sysctl_ulprx_la(SYSCTL_HANDLER_ARGS);
833 static int sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS);
834 static int sysctl_cpus(SYSCTL_HANDLER_ARGS);
835 static int sysctl_reset(SYSCTL_HANDLER_ARGS);
836 #ifdef TCP_OFFLOAD
837 static int sysctl_tls(SYSCTL_HANDLER_ARGS);
838 static int sysctl_tp_tick(SYSCTL_HANDLER_ARGS);
839 static int sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS);
840 static int sysctl_tp_timer(SYSCTL_HANDLER_ARGS);
841 static int sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS);
842 static int sysctl_tp_backoff(SYSCTL_HANDLER_ARGS);
843 static int sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS);
844 static int sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS);
845 #endif
846 static int get_sge_context(struct adapter *, struct t4_sge_context *);
847 static int load_fw(struct adapter *, struct t4_data *);
848 static int load_cfg(struct adapter *, struct t4_data *);
849 static int load_boot(struct adapter *, struct t4_bootrom *);
850 static int load_bootcfg(struct adapter *, struct t4_data *);
851 static int cudbg_dump(struct adapter *, struct t4_cudbg_dump *);
852 static void free_offload_policy(struct t4_offload_policy *);
853 static int set_offload_policy(struct adapter *, struct t4_offload_policy *);
854 static int read_card_mem(struct adapter *, int, struct t4_mem_range *);
855 static int read_i2c(struct adapter *, struct t4_i2c_data *);
856 static int clear_stats(struct adapter *, u_int);
857 static int hold_clip_addr(struct adapter *, struct t4_clip_addr *);
858 static int release_clip_addr(struct adapter *, struct t4_clip_addr *);
859 #ifdef TCP_OFFLOAD
860 static int toe_capability(struct vi_info *, bool);
861 static int t4_deactivate_all_uld(struct adapter *);
862 static void t4_async_event(struct adapter *);
863 #endif
864 #ifdef KERN_TLS
865 static int ktls_capability(struct adapter *, bool);
866 #endif
867 static int mod_event(module_t, int, void *);
868 static int notify_siblings(device_t, int);
869 static uint64_t vi_get_counter(if_t, ift_counter);
870 static uint64_t cxgbe_get_counter(if_t, ift_counter);
871 static void enable_vxlan_rx(struct adapter *);
872 static void reset_adapter_task(void *, int);
873 static void fatal_error_task(void *, int);
874 static void dump_devlog(struct adapter *);
875 static void dump_cim_regs(struct adapter *);
876 static void dump_cimla(struct adapter *);
877 
878 struct {
879 	uint16_t device;
880 	char *desc;
881 } t4_pciids[] = {
882 	{0xa000, "Chelsio Terminator 4 FPGA"},
883 	{0x4400, "Chelsio T440-dbg"},
884 	{0x4401, "Chelsio T420-CR"},
885 	{0x4402, "Chelsio T422-CR"},
886 	{0x4403, "Chelsio T440-CR"},
887 	{0x4404, "Chelsio T420-BCH"},
888 	{0x4405, "Chelsio T440-BCH"},
889 	{0x4406, "Chelsio T440-CH"},
890 	{0x4407, "Chelsio T420-SO"},
891 	{0x4408, "Chelsio T420-CX"},
892 	{0x4409, "Chelsio T420-BT"},
893 	{0x440a, "Chelsio T404-BT"},
894 	{0x440e, "Chelsio T440-LP-CR"},
895 }, t5_pciids[] = {
896 	{0xb000, "Chelsio Terminator 5 FPGA"},
897 	{0x5400, "Chelsio T580-dbg"},
898 	{0x5401,  "Chelsio T520-CR"},		/* 2 x 10G */
899 	{0x5402,  "Chelsio T522-CR"},		/* 2 x 10G, 2 X 1G */
900 	{0x5403,  "Chelsio T540-CR"},		/* 4 x 10G */
901 	{0x5407,  "Chelsio T520-SO"},		/* 2 x 10G, nomem */
902 	{0x5409,  "Chelsio T520-BT"},		/* 2 x 10GBaseT */
903 	{0x540a,  "Chelsio T504-BT"},		/* 4 x 1G */
904 	{0x540d,  "Chelsio T580-CR"},		/* 2 x 40G */
905 	{0x540e,  "Chelsio T540-LP-CR"},	/* 4 x 10G */
906 	{0x5410,  "Chelsio T580-LP-CR"},	/* 2 x 40G */
907 	{0x5411,  "Chelsio T520-LL-CR"},	/* 2 x 10G */
908 	{0x5412,  "Chelsio T560-CR"},		/* 1 x 40G, 2 x 10G */
909 	{0x5414,  "Chelsio T580-LP-SO-CR"},	/* 2 x 40G, nomem */
910 	{0x5415,  "Chelsio T502-BT"},		/* 2 x 1G */
911 	{0x5418,  "Chelsio T540-BT"},		/* 4 x 10GBaseT */
912 	{0x5419,  "Chelsio T540-LP-BT"},	/* 4 x 10GBaseT */
913 	{0x541a,  "Chelsio T540-SO-BT"},	/* 4 x 10GBaseT, nomem */
914 	{0x541b,  "Chelsio T540-SO-CR"},	/* 4 x 10G, nomem */
915 
916 	/* Custom */
917 	{0x5483, "Custom T540-CR"},
918 	{0x5484, "Custom T540-BT"},
919 }, t6_pciids[] = {
920 	{0xc006, "Chelsio Terminator 6 FPGA"},	/* T6 PE10K6 FPGA (PF0) */
921 	{0x6400, "Chelsio T6-DBG-25"},		/* 2 x 10/25G, debug */
922 	{0x6401, "Chelsio T6225-CR"},		/* 2 x 10/25G */
923 	{0x6402, "Chelsio T6225-SO-CR"},	/* 2 x 10/25G, nomem */
924 	{0x6403, "Chelsio T6425-CR"},		/* 4 x 10/25G */
925 	{0x6404, "Chelsio T6425-SO-CR"},	/* 4 x 10/25G, nomem */
926 	{0x6405, "Chelsio T6225-OCP-SO"},	/* 2 x 10/25G, nomem */
927 	{0x6406, "Chelsio T62100-OCP-SO"},	/* 2 x 40/50/100G, nomem */
928 	{0x6407, "Chelsio T62100-LP-CR"},	/* 2 x 40/50/100G */
929 	{0x6408, "Chelsio T62100-SO-CR"},	/* 2 x 40/50/100G, nomem */
930 	{0x6409, "Chelsio T6210-BT"},		/* 2 x 10GBASE-T */
931 	{0x640d, "Chelsio T62100-CR"},		/* 2 x 40/50/100G */
932 	{0x6410, "Chelsio T6-DBG-100"},		/* 2 x 40/50/100G, debug */
933 	{0x6411, "Chelsio T6225-LL-CR"},	/* 2 x 10/25G */
934 	{0x6414, "Chelsio T61100-OCP-SO"},	/* 1 x 40/50/100G, nomem */
935 	{0x6415, "Chelsio T6201-BT"},		/* 2 x 1000BASE-T */
936 
937 	/* Custom */
938 	{0x6480, "Custom T6225-CR"},
939 	{0x6481, "Custom T62100-CR"},
940 	{0x6482, "Custom T6225-CR"},
941 	{0x6483, "Custom T62100-CR"},
942 	{0x6484, "Custom T64100-CR"},
943 	{0x6485, "Custom T6240-SO"},
944 	{0x6486, "Custom T6225-SO-CR"},
945 	{0x6487, "Custom T6225-CR"},
946 };
947 
948 #ifdef TCP_OFFLOAD
949 /*
950  * service_iq_fl() has an iq and needs the fl.  Offset of fl from the iq should
951  * be exactly the same for both rxq and ofld_rxq.
952  */
953 CTASSERT(offsetof(struct sge_ofld_rxq, iq) == offsetof(struct sge_rxq, iq));
954 CTASSERT(offsetof(struct sge_ofld_rxq, fl) == offsetof(struct sge_rxq, fl));
955 #endif
956 CTASSERT(sizeof(struct cluster_metadata) <= CL_METADATA_SIZE);
957 
958 static int
t4_probe(device_t dev)959 t4_probe(device_t dev)
960 {
961 	int i;
962 	uint16_t v = pci_get_vendor(dev);
963 	uint16_t d = pci_get_device(dev);
964 	uint8_t f = pci_get_function(dev);
965 
966 	if (v != PCI_VENDOR_ID_CHELSIO)
967 		return (ENXIO);
968 
969 	/* Attach only to PF0 of the FPGA */
970 	if (d == 0xa000 && f != 0)
971 		return (ENXIO);
972 
973 	for (i = 0; i < nitems(t4_pciids); i++) {
974 		if (d == t4_pciids[i].device) {
975 			device_set_desc(dev, t4_pciids[i].desc);
976 			return (BUS_PROBE_DEFAULT);
977 		}
978 	}
979 
980 	return (ENXIO);
981 }
982 
983 static int
t5_probe(device_t dev)984 t5_probe(device_t dev)
985 {
986 	int i;
987 	uint16_t v = pci_get_vendor(dev);
988 	uint16_t d = pci_get_device(dev);
989 	uint8_t f = pci_get_function(dev);
990 
991 	if (v != PCI_VENDOR_ID_CHELSIO)
992 		return (ENXIO);
993 
994 	/* Attach only to PF0 of the FPGA */
995 	if (d == 0xb000 && f != 0)
996 		return (ENXIO);
997 
998 	for (i = 0; i < nitems(t5_pciids); i++) {
999 		if (d == t5_pciids[i].device) {
1000 			device_set_desc(dev, t5_pciids[i].desc);
1001 			return (BUS_PROBE_DEFAULT);
1002 		}
1003 	}
1004 
1005 	return (ENXIO);
1006 }
1007 
1008 static int
t6_probe(device_t dev)1009 t6_probe(device_t dev)
1010 {
1011 	int i;
1012 	uint16_t v = pci_get_vendor(dev);
1013 	uint16_t d = pci_get_device(dev);
1014 
1015 	if (v != PCI_VENDOR_ID_CHELSIO)
1016 		return (ENXIO);
1017 
1018 	for (i = 0; i < nitems(t6_pciids); i++) {
1019 		if (d == t6_pciids[i].device) {
1020 			device_set_desc(dev, t6_pciids[i].desc);
1021 			return (BUS_PROBE_DEFAULT);
1022 		}
1023 	}
1024 
1025 	return (ENXIO);
1026 }
1027 
1028 static void
t5_attribute_workaround(device_t dev)1029 t5_attribute_workaround(device_t dev)
1030 {
1031 	device_t root_port;
1032 	uint32_t v;
1033 
1034 	/*
1035 	 * The T5 chips do not properly echo the No Snoop and Relaxed
1036 	 * Ordering attributes when replying to a TLP from a Root
1037 	 * Port.  As a workaround, find the parent Root Port and
1038 	 * disable No Snoop and Relaxed Ordering.  Note that this
1039 	 * affects all devices under this root port.
1040 	 */
1041 	root_port = pci_find_pcie_root_port(dev);
1042 	if (root_port == NULL) {
1043 		device_printf(dev, "Unable to find parent root port\n");
1044 		return;
1045 	}
1046 
1047 	v = pcie_adjust_config(root_port, PCIER_DEVICE_CTL,
1048 	    PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE, 0, 2);
1049 	if ((v & (PCIEM_CTL_RELAXED_ORD_ENABLE | PCIEM_CTL_NOSNOOP_ENABLE)) !=
1050 	    0)
1051 		device_printf(dev, "Disabled No Snoop/Relaxed Ordering on %s\n",
1052 		    device_get_nameunit(root_port));
1053 }
1054 
1055 static const struct devnames devnames[] = {
1056 	{
1057 		.nexus_name = "t4nex",
1058 		.ifnet_name = "cxgbe",
1059 		.vi_ifnet_name = "vcxgbe",
1060 		.pf03_drv_name = "t4iov",
1061 		.vf_nexus_name = "t4vf",
1062 		.vf_ifnet_name = "cxgbev"
1063 	}, {
1064 		.nexus_name = "t5nex",
1065 		.ifnet_name = "cxl",
1066 		.vi_ifnet_name = "vcxl",
1067 		.pf03_drv_name = "t5iov",
1068 		.vf_nexus_name = "t5vf",
1069 		.vf_ifnet_name = "cxlv"
1070 	}, {
1071 		.nexus_name = "t6nex",
1072 		.ifnet_name = "cc",
1073 		.vi_ifnet_name = "vcc",
1074 		.pf03_drv_name = "t6iov",
1075 		.vf_nexus_name = "t6vf",
1076 		.vf_ifnet_name = "ccv"
1077 	}
1078 };
1079 
1080 void
t4_init_devnames(struct adapter * sc)1081 t4_init_devnames(struct adapter *sc)
1082 {
1083 	int id;
1084 
1085 	id = chip_id(sc);
1086 	if (id >= CHELSIO_T4 && id - CHELSIO_T4 < nitems(devnames))
1087 		sc->names = &devnames[id - CHELSIO_T4];
1088 	else {
1089 		device_printf(sc->dev, "chip id %d is not supported.\n", id);
1090 		sc->names = NULL;
1091 	}
1092 }
1093 
1094 static int
t4_ifnet_unit(struct adapter * sc,struct port_info * pi)1095 t4_ifnet_unit(struct adapter *sc, struct port_info *pi)
1096 {
1097 	const char *parent, *name;
1098 	long value;
1099 	int line, unit;
1100 
1101 	line = 0;
1102 	parent = device_get_nameunit(sc->dev);
1103 	name = sc->names->ifnet_name;
1104 	while (resource_find_dev(&line, name, &unit, "at", parent) == 0) {
1105 		if (resource_long_value(name, unit, "port", &value) == 0 &&
1106 		    value == pi->port_id)
1107 			return (unit);
1108 	}
1109 	return (-1);
1110 }
1111 
1112 static void
t4_calibration(void * arg)1113 t4_calibration(void *arg)
1114 {
1115 	struct adapter *sc;
1116 	struct clock_sync *cur, *nex;
1117 	uint64_t hw;
1118 	sbintime_t sbt;
1119 	int next_up;
1120 
1121 	sc = (struct adapter *)arg;
1122 
1123 	KASSERT((hw_off_limits(sc) == 0), ("hw_off_limits at t4_calibration"));
1124 	hw = t4_read_reg64(sc, A_SGE_TIMESTAMP_LO);
1125 	sbt = sbinuptime();
1126 
1127 	cur = &sc->cal_info[sc->cal_current];
1128 	next_up = (sc->cal_current + 1) % CNT_CAL_INFO;
1129 	nex = &sc->cal_info[next_up];
1130 	if (__predict_false(sc->cal_count == 0)) {
1131 		/* First time in, just get the values in */
1132 		cur->hw_cur = hw;
1133 		cur->sbt_cur = sbt;
1134 		sc->cal_count++;
1135 		goto done;
1136 	}
1137 
1138 	if (cur->hw_cur == hw) {
1139 		/* The clock is not advancing? */
1140 		sc->cal_count = 0;
1141 		atomic_store_rel_int(&cur->gen, 0);
1142 		goto done;
1143 	}
1144 
1145 	seqc_write_begin(&nex->gen);
1146 	nex->hw_prev = cur->hw_cur;
1147 	nex->sbt_prev = cur->sbt_cur;
1148 	nex->hw_cur = hw;
1149 	nex->sbt_cur = sbt;
1150 	seqc_write_end(&nex->gen);
1151 	sc->cal_current = next_up;
1152 done:
1153 	callout_reset_sbt_curcpu(&sc->cal_callout, SBT_1S, 0, t4_calibration,
1154 	    sc, C_DIRECT_EXEC);
1155 }
1156 
1157 static void
t4_calibration_start(struct adapter * sc)1158 t4_calibration_start(struct adapter *sc)
1159 {
1160 	/*
1161 	 * Here if we have not done a calibration
1162 	 * then do so otherwise start the appropriate
1163 	 * timer.
1164 	 */
1165 	int i;
1166 
1167 	for (i = 0; i < CNT_CAL_INFO; i++) {
1168 		sc->cal_info[i].gen = 0;
1169 	}
1170 	sc->cal_current = 0;
1171 	sc->cal_count = 0;
1172 	sc->cal_gen = 0;
1173 	t4_calibration(sc);
1174 }
1175 
1176 static int
t4_attach(device_t dev)1177 t4_attach(device_t dev)
1178 {
1179 	struct adapter *sc;
1180 	int rc = 0, i, j, rqidx, tqidx, nports;
1181 	struct make_dev_args mda;
1182 	struct intrs_and_queues iaq;
1183 	struct sge *s;
1184 	uint32_t *buf;
1185 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1186 	int ofld_tqidx;
1187 #endif
1188 #ifdef TCP_OFFLOAD
1189 	int ofld_rqidx;
1190 #endif
1191 #ifdef DEV_NETMAP
1192 	int nm_rqidx, nm_tqidx;
1193 #endif
1194 	int num_vis;
1195 
1196 	sc = device_get_softc(dev);
1197 	sc->dev = dev;
1198 	sysctl_ctx_init(&sc->ctx);
1199 	TUNABLE_INT_FETCH("hw.cxgbe.dflags", &sc->debug_flags);
1200 
1201 	if ((pci_get_device(dev) & 0xff00) == 0x5400)
1202 		t5_attribute_workaround(dev);
1203 	pci_enable_busmaster(dev);
1204 	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
1205 		uint32_t v;
1206 
1207 		pci_set_max_read_req(dev, 4096);
1208 		v = pci_read_config(dev, i + PCIER_DEVICE_CTL, 2);
1209 		sc->params.pci.mps = 128 << ((v & PCIEM_CTL_MAX_PAYLOAD) >> 5);
1210 		if (pcie_relaxed_ordering == 0 &&
1211 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) != 0) {
1212 			v &= ~PCIEM_CTL_RELAXED_ORD_ENABLE;
1213 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1214 		} else if (pcie_relaxed_ordering == 1 &&
1215 		    (v & PCIEM_CTL_RELAXED_ORD_ENABLE) == 0) {
1216 			v |= PCIEM_CTL_RELAXED_ORD_ENABLE;
1217 			pci_write_config(dev, i + PCIER_DEVICE_CTL, v, 2);
1218 		}
1219 	}
1220 
1221 	sc->sge_gts_reg = MYPF_REG(A_SGE_PF_GTS);
1222 	sc->sge_kdoorbell_reg = MYPF_REG(A_SGE_PF_KDOORBELL);
1223 	sc->traceq = -1;
1224 	mtx_init(&sc->ifp_lock, sc->ifp_lockname, 0, MTX_DEF);
1225 	snprintf(sc->ifp_lockname, sizeof(sc->ifp_lockname), "%s tracer",
1226 	    device_get_nameunit(dev));
1227 
1228 	snprintf(sc->lockname, sizeof(sc->lockname), "%s",
1229 	    device_get_nameunit(dev));
1230 	mtx_init(&sc->sc_lock, sc->lockname, 0, MTX_DEF);
1231 	t4_add_adapter(sc);
1232 
1233 	mtx_init(&sc->sfl_lock, "starving freelists", 0, MTX_DEF);
1234 	TAILQ_INIT(&sc->sfl);
1235 	callout_init_mtx(&sc->sfl_callout, &sc->sfl_lock, 0);
1236 
1237 	mtx_init(&sc->reg_lock, "indirect register access", 0, MTX_DEF);
1238 
1239 	sc->policy = NULL;
1240 	rw_init(&sc->policy_lock, "connection offload policy");
1241 
1242 	callout_init(&sc->ktls_tick, 1);
1243 
1244 	callout_init(&sc->cal_callout, 1);
1245 
1246 	refcount_init(&sc->vxlan_refcount, 0);
1247 
1248 	TASK_INIT(&sc->reset_task, 0, reset_adapter_task, sc);
1249 	TASK_INIT(&sc->fatal_error_task, 0, fatal_error_task, sc);
1250 
1251 	sc->ctrlq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1252 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "ctrlq",
1253 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "control queues");
1254 	sc->fwq_oid = SYSCTL_ADD_NODE(&sc->ctx,
1255 	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->dev)), OID_AUTO, "fwq",
1256 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "firmware event queue");
1257 
1258 	rc = t4_map_bars_0_and_4(sc);
1259 	if (rc != 0)
1260 		goto done; /* error message displayed already */
1261 
1262 	memset(sc->chan_map, 0xff, sizeof(sc->chan_map));
1263 
1264 	/* Prepare the adapter for operation. */
1265 	buf = malloc(PAGE_SIZE, M_CXGBE, M_ZERO | M_WAITOK);
1266 	rc = -t4_prep_adapter(sc, buf);
1267 	free(buf, M_CXGBE);
1268 	if (rc != 0) {
1269 		device_printf(dev, "failed to prepare adapter: %d.\n", rc);
1270 		goto done;
1271 	}
1272 
1273 	/*
1274 	 * This is the real PF# to which we're attaching.  Works from within PCI
1275 	 * passthrough environments too, where pci_get_function() could return a
1276 	 * different PF# depending on the passthrough configuration.  We need to
1277 	 * use the real PF# in all our communication with the firmware.
1278 	 */
1279 	j = t4_read_reg(sc, A_PL_WHOAMI);
1280 	sc->pf = chip_id(sc) <= CHELSIO_T5 ? G_SOURCEPF(j) : G_T6_SOURCEPF(j);
1281 	sc->mbox = sc->pf;
1282 
1283 	t4_init_devnames(sc);
1284 	if (sc->names == NULL) {
1285 		rc = ENOTSUP;
1286 		goto done; /* error message displayed already */
1287 	}
1288 
1289 	/*
1290 	 * Do this really early, with the memory windows set up even before the
1291 	 * character device.  The userland tool's register i/o and mem read
1292 	 * will work even in "recovery mode".
1293 	 */
1294 	setup_memwin(sc);
1295 	if (t4_init_devlog_params(sc, 0) == 0)
1296 		fixup_devlog_params(sc);
1297 	make_dev_args_init(&mda);
1298 	mda.mda_devsw = &t4_cdevsw;
1299 	mda.mda_uid = UID_ROOT;
1300 	mda.mda_gid = GID_WHEEL;
1301 	mda.mda_mode = 0600;
1302 	mda.mda_si_drv1 = sc;
1303 	rc = make_dev_s(&mda, &sc->cdev, "%s", device_get_nameunit(dev));
1304 	if (rc != 0)
1305 		device_printf(dev, "failed to create nexus char device: %d.\n",
1306 		    rc);
1307 
1308 	/* Go no further if recovery mode has been requested. */
1309 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
1310 		device_printf(dev, "recovery mode.\n");
1311 		goto done;
1312 	}
1313 
1314 #if defined(__i386__)
1315 	if ((cpu_feature & CPUID_CX8) == 0) {
1316 		device_printf(dev, "64 bit atomics not available.\n");
1317 		rc = ENOTSUP;
1318 		goto done;
1319 	}
1320 #endif
1321 
1322 	/* Contact the firmware and try to become the master driver. */
1323 	rc = contact_firmware(sc);
1324 	if (rc != 0)
1325 		goto done; /* error message displayed already */
1326 	MPASS(sc->flags & FW_OK);
1327 
1328 	rc = get_params__pre_init(sc);
1329 	if (rc != 0)
1330 		goto done; /* error message displayed already */
1331 
1332 	if (sc->flags & MASTER_PF) {
1333 		rc = partition_resources(sc);
1334 		if (rc != 0)
1335 			goto done; /* error message displayed already */
1336 	}
1337 
1338 	rc = get_params__post_init(sc);
1339 	if (rc != 0)
1340 		goto done; /* error message displayed already */
1341 
1342 	rc = set_params__post_init(sc);
1343 	if (rc != 0)
1344 		goto done; /* error message displayed already */
1345 
1346 	rc = t4_map_bar_2(sc);
1347 	if (rc != 0)
1348 		goto done; /* error message displayed already */
1349 
1350 	rc = t4_create_dma_tag(sc);
1351 	if (rc != 0)
1352 		goto done; /* error message displayed already */
1353 
1354 	/*
1355 	 * First pass over all the ports - allocate VIs and initialize some
1356 	 * basic parameters like mac address, port type, etc.
1357 	 */
1358 	for_each_port(sc, i) {
1359 		struct port_info *pi;
1360 
1361 		pi = malloc(sizeof(*pi), M_CXGBE, M_ZERO | M_WAITOK);
1362 		sc->port[i] = pi;
1363 
1364 		/* These must be set before t4_port_init */
1365 		pi->adapter = sc;
1366 		pi->port_id = i;
1367 		/*
1368 		 * XXX: vi[0] is special so we can't delay this allocation until
1369 		 * pi->nvi's final value is known.
1370 		 */
1371 		pi->vi = malloc(sizeof(struct vi_info) * t4_num_vis, M_CXGBE,
1372 		    M_ZERO | M_WAITOK);
1373 
1374 		/*
1375 		 * Allocate the "main" VI and initialize parameters
1376 		 * like mac addr.
1377 		 */
1378 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
1379 		if (rc != 0) {
1380 			device_printf(dev, "unable to initialize port %d: %d\n",
1381 			    i, rc);
1382 			free(pi->vi, M_CXGBE);
1383 			free(pi, M_CXGBE);
1384 			sc->port[i] = NULL;
1385 			goto done;
1386 		}
1387 
1388 		if (is_bt(pi->port_type))
1389 			setbit(&sc->bt_map, pi->tx_chan);
1390 		else
1391 			MPASS(!isset(&sc->bt_map, pi->tx_chan));
1392 
1393 		snprintf(pi->lockname, sizeof(pi->lockname), "%sp%d",
1394 		    device_get_nameunit(dev), i);
1395 		mtx_init(&pi->pi_lock, pi->lockname, 0, MTX_DEF);
1396 		sc->chan_map[pi->tx_chan] = i;
1397 
1398 		/*
1399 		 * The MPS counter for FCS errors doesn't work correctly on the
1400 		 * T6 so we use the MAC counter here.  Which MAC is in use
1401 		 * depends on the link settings which will be known when the
1402 		 * link comes up.
1403 		 */
1404 		if (is_t6(sc))
1405 			pi->fcs_reg = -1;
1406 		else {
1407 			pi->fcs_reg = t4_port_reg(sc, pi->tx_chan,
1408 			    A_MPS_PORT_STAT_RX_PORT_CRC_ERROR_L);
1409 		}
1410 		pi->fcs_base = 0;
1411 
1412 		/* All VIs on this port share this media. */
1413 		ifmedia_init(&pi->media, IFM_IMASK, cxgbe_media_change,
1414 		    cxgbe_media_status);
1415 
1416 		PORT_LOCK(pi);
1417 		init_link_config(pi);
1418 		fixup_link_config(pi);
1419 		build_medialist(pi);
1420 		if (fixed_ifmedia(pi))
1421 			pi->flags |= FIXED_IFMEDIA;
1422 		PORT_UNLOCK(pi);
1423 
1424 		pi->dev = device_add_child(dev, sc->names->ifnet_name,
1425 		    t4_ifnet_unit(sc, pi));
1426 		if (pi->dev == NULL) {
1427 			device_printf(dev,
1428 			    "failed to add device for port %d.\n", i);
1429 			rc = ENXIO;
1430 			goto done;
1431 		}
1432 		pi->vi[0].dev = pi->dev;
1433 		device_set_softc(pi->dev, pi);
1434 	}
1435 
1436 	/*
1437 	 * Interrupt type, # of interrupts, # of rx/tx queues, etc.
1438 	 */
1439 	nports = sc->params.nports;
1440 	rc = cfg_itype_and_nqueues(sc, &iaq);
1441 	if (rc != 0)
1442 		goto done; /* error message displayed already */
1443 
1444 	num_vis = iaq.num_vis;
1445 	sc->intr_type = iaq.intr_type;
1446 	sc->intr_count = iaq.nirq;
1447 
1448 	s = &sc->sge;
1449 	s->nrxq = nports * iaq.nrxq;
1450 	s->ntxq = nports * iaq.ntxq;
1451 	if (num_vis > 1) {
1452 		s->nrxq += nports * (num_vis - 1) * iaq.nrxq_vi;
1453 		s->ntxq += nports * (num_vis - 1) * iaq.ntxq_vi;
1454 	}
1455 	s->neq = s->ntxq + s->nrxq;	/* the free list in an rxq is an eq */
1456 	s->neq += nports;		/* ctrl queues: 1 per port */
1457 	s->niq = s->nrxq + 1;		/* 1 extra for firmware event queue */
1458 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1459 	if (is_offload(sc) || is_ethoffload(sc)) {
1460 		s->nofldtxq = nports * iaq.nofldtxq;
1461 		if (num_vis > 1)
1462 			s->nofldtxq += nports * (num_vis - 1) * iaq.nofldtxq_vi;
1463 		s->neq += s->nofldtxq;
1464 
1465 		s->ofld_txq = malloc(s->nofldtxq * sizeof(struct sge_ofld_txq),
1466 		    M_CXGBE, M_ZERO | M_WAITOK);
1467 	}
1468 #endif
1469 #ifdef TCP_OFFLOAD
1470 	if (is_offload(sc)) {
1471 		s->nofldrxq = nports * iaq.nofldrxq;
1472 		if (num_vis > 1)
1473 			s->nofldrxq += nports * (num_vis - 1) * iaq.nofldrxq_vi;
1474 		s->neq += s->nofldrxq;	/* free list */
1475 		s->niq += s->nofldrxq;
1476 
1477 		s->ofld_rxq = malloc(s->nofldrxq * sizeof(struct sge_ofld_rxq),
1478 		    M_CXGBE, M_ZERO | M_WAITOK);
1479 	}
1480 #endif
1481 #ifdef DEV_NETMAP
1482 	s->nnmrxq = 0;
1483 	s->nnmtxq = 0;
1484 	if (t4_native_netmap & NN_MAIN_VI) {
1485 		s->nnmrxq += nports * iaq.nnmrxq;
1486 		s->nnmtxq += nports * iaq.nnmtxq;
1487 	}
1488 	if (num_vis > 1 && t4_native_netmap & NN_EXTRA_VI) {
1489 		s->nnmrxq += nports * (num_vis - 1) * iaq.nnmrxq_vi;
1490 		s->nnmtxq += nports * (num_vis - 1) * iaq.nnmtxq_vi;
1491 	}
1492 	s->neq += s->nnmtxq + s->nnmrxq;
1493 	s->niq += s->nnmrxq;
1494 
1495 	s->nm_rxq = malloc(s->nnmrxq * sizeof(struct sge_nm_rxq),
1496 	    M_CXGBE, M_ZERO | M_WAITOK);
1497 	s->nm_txq = malloc(s->nnmtxq * sizeof(struct sge_nm_txq),
1498 	    M_CXGBE, M_ZERO | M_WAITOK);
1499 #endif
1500 	MPASS(s->niq <= s->iqmap_sz);
1501 	MPASS(s->neq <= s->eqmap_sz);
1502 
1503 	s->ctrlq = malloc(nports * sizeof(struct sge_wrq), M_CXGBE,
1504 	    M_ZERO | M_WAITOK);
1505 	s->rxq = malloc(s->nrxq * sizeof(struct sge_rxq), M_CXGBE,
1506 	    M_ZERO | M_WAITOK);
1507 	s->txq = malloc(s->ntxq * sizeof(struct sge_txq), M_CXGBE,
1508 	    M_ZERO | M_WAITOK);
1509 	s->iqmap = malloc(s->iqmap_sz * sizeof(struct sge_iq *), M_CXGBE,
1510 	    M_ZERO | M_WAITOK);
1511 	s->eqmap = malloc(s->eqmap_sz * sizeof(struct sge_eq *), M_CXGBE,
1512 	    M_ZERO | M_WAITOK);
1513 
1514 	sc->irq = malloc(sc->intr_count * sizeof(struct irq), M_CXGBE,
1515 	    M_ZERO | M_WAITOK);
1516 
1517 	t4_init_l2t(sc, M_WAITOK);
1518 	t4_init_smt(sc, M_WAITOK);
1519 	t4_init_tx_sched(sc);
1520 	t4_init_atid_table(sc);
1521 #ifdef RATELIMIT
1522 	t4_init_etid_table(sc);
1523 #endif
1524 #ifdef INET6
1525 	t4_init_clip_table(sc);
1526 #endif
1527 	if (sc->vres.key.size != 0)
1528 		sc->key_map = vmem_create("T4TLS key map", sc->vres.key.start,
1529 		    sc->vres.key.size, 32, 0, M_FIRSTFIT | M_WAITOK);
1530 
1531 	/*
1532 	 * Second pass over the ports.  This time we know the number of rx and
1533 	 * tx queues that each port should get.
1534 	 */
1535 	rqidx = tqidx = 0;
1536 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1537 	ofld_tqidx = 0;
1538 #endif
1539 #ifdef TCP_OFFLOAD
1540 	ofld_rqidx = 0;
1541 #endif
1542 #ifdef DEV_NETMAP
1543 	nm_rqidx = nm_tqidx = 0;
1544 #endif
1545 	for_each_port(sc, i) {
1546 		struct port_info *pi = sc->port[i];
1547 		struct vi_info *vi;
1548 
1549 		if (pi == NULL)
1550 			continue;
1551 
1552 		pi->nvi = num_vis;
1553 		for_each_vi(pi, j, vi) {
1554 			vi->pi = pi;
1555 			vi->adapter = sc;
1556 			vi->first_intr = -1;
1557 			vi->qsize_rxq = t4_qsize_rxq;
1558 			vi->qsize_txq = t4_qsize_txq;
1559 
1560 			vi->first_rxq = rqidx;
1561 			vi->first_txq = tqidx;
1562 			vi->tmr_idx = t4_tmr_idx;
1563 			vi->pktc_idx = t4_pktc_idx;
1564 			vi->nrxq = j == 0 ? iaq.nrxq : iaq.nrxq_vi;
1565 			vi->ntxq = j == 0 ? iaq.ntxq : iaq.ntxq_vi;
1566 
1567 			rqidx += vi->nrxq;
1568 			tqidx += vi->ntxq;
1569 
1570 			if (j == 0 && vi->ntxq > 1)
1571 				vi->rsrv_noflowq = t4_rsrv_noflowq ? 1 : 0;
1572 			else
1573 				vi->rsrv_noflowq = 0;
1574 
1575 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1576 			vi->first_ofld_txq = ofld_tqidx;
1577 			vi->nofldtxq = j == 0 ? iaq.nofldtxq : iaq.nofldtxq_vi;
1578 			ofld_tqidx += vi->nofldtxq;
1579 #endif
1580 #ifdef TCP_OFFLOAD
1581 			vi->ofld_tmr_idx = t4_tmr_idx_ofld;
1582 			vi->ofld_pktc_idx = t4_pktc_idx_ofld;
1583 			vi->first_ofld_rxq = ofld_rqidx;
1584 			vi->nofldrxq = j == 0 ? iaq.nofldrxq : iaq.nofldrxq_vi;
1585 
1586 			ofld_rqidx += vi->nofldrxq;
1587 #endif
1588 #ifdef DEV_NETMAP
1589 			vi->first_nm_rxq = nm_rqidx;
1590 			vi->first_nm_txq = nm_tqidx;
1591 			if (j == 0) {
1592 				vi->nnmrxq = iaq.nnmrxq;
1593 				vi->nnmtxq = iaq.nnmtxq;
1594 			} else {
1595 				vi->nnmrxq = iaq.nnmrxq_vi;
1596 				vi->nnmtxq = iaq.nnmtxq_vi;
1597 			}
1598 			nm_rqidx += vi->nnmrxq;
1599 			nm_tqidx += vi->nnmtxq;
1600 #endif
1601 		}
1602 	}
1603 
1604 	rc = t4_setup_intr_handlers(sc);
1605 	if (rc != 0) {
1606 		device_printf(dev,
1607 		    "failed to setup interrupt handlers: %d\n", rc);
1608 		goto done;
1609 	}
1610 
1611 	rc = bus_generic_probe(dev);
1612 	if (rc != 0) {
1613 		device_printf(dev, "failed to probe child drivers: %d\n", rc);
1614 		goto done;
1615 	}
1616 
1617 	/*
1618 	 * Ensure thread-safe mailbox access (in debug builds).
1619 	 *
1620 	 * So far this was the only thread accessing the mailbox but various
1621 	 * ifnets and sysctls are about to be created and their handlers/ioctls
1622 	 * will access the mailbox from different threads.
1623 	 */
1624 	sc->flags |= CHK_MBOX_ACCESS;
1625 
1626 	rc = bus_generic_attach(dev);
1627 	if (rc != 0) {
1628 		device_printf(dev,
1629 		    "failed to attach all child ports: %d\n", rc);
1630 		goto done;
1631 	}
1632 	t4_calibration_start(sc);
1633 
1634 	device_printf(dev,
1635 	    "PCIe gen%d x%d, %d ports, %d %s interrupt%s, %d eq, %d iq\n",
1636 	    sc->params.pci.speed, sc->params.pci.width, sc->params.nports,
1637 	    sc->intr_count, sc->intr_type == INTR_MSIX ? "MSI-X" :
1638 	    (sc->intr_type == INTR_MSI ? "MSI" : "INTx"),
1639 	    sc->intr_count > 1 ? "s" : "", sc->sge.neq, sc->sge.niq);
1640 
1641 	t4_set_desc(sc);
1642 
1643 	notify_siblings(dev, 0);
1644 
1645 done:
1646 	if (rc != 0 && sc->cdev) {
1647 		/* cdev was created and so cxgbetool works; recover that way. */
1648 		device_printf(dev,
1649 		    "error during attach, adapter is now in recovery mode.\n");
1650 		rc = 0;
1651 	}
1652 
1653 	if (rc != 0)
1654 		t4_detach_common(dev);
1655 	else
1656 		t4_sysctls(sc);
1657 
1658 	return (rc);
1659 }
1660 
1661 static int
t4_child_location(device_t bus,device_t dev,struct sbuf * sb)1662 t4_child_location(device_t bus, device_t dev, struct sbuf *sb)
1663 {
1664 	struct adapter *sc;
1665 	struct port_info *pi;
1666 	int i;
1667 
1668 	sc = device_get_softc(bus);
1669 	for_each_port(sc, i) {
1670 		pi = sc->port[i];
1671 		if (pi != NULL && pi->dev == dev) {
1672 			sbuf_printf(sb, "port=%d", pi->port_id);
1673 			break;
1674 		}
1675 	}
1676 	return (0);
1677 }
1678 
1679 static int
t4_ready(device_t dev)1680 t4_ready(device_t dev)
1681 {
1682 	struct adapter *sc;
1683 
1684 	sc = device_get_softc(dev);
1685 	if (sc->flags & FW_OK)
1686 		return (0);
1687 	return (ENXIO);
1688 }
1689 
1690 static int
t4_read_port_device(device_t dev,int port,device_t * child)1691 t4_read_port_device(device_t dev, int port, device_t *child)
1692 {
1693 	struct adapter *sc;
1694 	struct port_info *pi;
1695 
1696 	sc = device_get_softc(dev);
1697 	if (port < 0 || port >= MAX_NPORTS)
1698 		return (EINVAL);
1699 	pi = sc->port[port];
1700 	if (pi == NULL || pi->dev == NULL)
1701 		return (ENXIO);
1702 	*child = pi->dev;
1703 	return (0);
1704 }
1705 
1706 static int
notify_siblings(device_t dev,int detaching)1707 notify_siblings(device_t dev, int detaching)
1708 {
1709 	device_t sibling;
1710 	int error, i;
1711 
1712 	error = 0;
1713 	for (i = 0; i < PCI_FUNCMAX; i++) {
1714 		if (i == pci_get_function(dev))
1715 			continue;
1716 		sibling = pci_find_dbsf(pci_get_domain(dev), pci_get_bus(dev),
1717 		    pci_get_slot(dev), i);
1718 		if (sibling == NULL || !device_is_attached(sibling))
1719 			continue;
1720 		if (detaching)
1721 			error = T4_DETACH_CHILD(sibling);
1722 		else
1723 			(void)T4_ATTACH_CHILD(sibling);
1724 		if (error)
1725 			break;
1726 	}
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Idempotent
1732  */
1733 static int
t4_detach(device_t dev)1734 t4_detach(device_t dev)
1735 {
1736 	int rc;
1737 
1738 	rc = notify_siblings(dev, 1);
1739 	if (rc) {
1740 		device_printf(dev,
1741 		    "failed to detach sibling devices: %d\n", rc);
1742 		return (rc);
1743 	}
1744 
1745 	return (t4_detach_common(dev));
1746 }
1747 
1748 int
t4_detach_common(device_t dev)1749 t4_detach_common(device_t dev)
1750 {
1751 	struct adapter *sc;
1752 	struct port_info *pi;
1753 	int i, rc;
1754 
1755 	sc = device_get_softc(dev);
1756 
1757 #ifdef TCP_OFFLOAD
1758 	rc = t4_deactivate_all_uld(sc);
1759 	if (rc) {
1760 		device_printf(dev,
1761 		    "failed to detach upper layer drivers: %d\n", rc);
1762 		return (rc);
1763 	}
1764 #endif
1765 
1766 	if (sc->cdev) {
1767 		destroy_dev(sc->cdev);
1768 		sc->cdev = NULL;
1769 	}
1770 
1771 	sx_xlock(&t4_list_lock);
1772 	SLIST_REMOVE(&t4_list, sc, adapter, link);
1773 	sx_xunlock(&t4_list_lock);
1774 
1775 	sc->flags &= ~CHK_MBOX_ACCESS;
1776 	if (sc->flags & FULL_INIT_DONE) {
1777 		if (!(sc->flags & IS_VF))
1778 			t4_intr_disable(sc);
1779 	}
1780 
1781 	if (device_is_attached(dev)) {
1782 		rc = bus_generic_detach(dev);
1783 		if (rc) {
1784 			device_printf(dev,
1785 			    "failed to detach child devices: %d\n", rc);
1786 			return (rc);
1787 		}
1788 	}
1789 
1790 	for (i = 0; i < sc->intr_count; i++)
1791 		t4_free_irq(sc, &sc->irq[i]);
1792 
1793 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1794 		t4_free_tx_sched(sc);
1795 
1796 	for (i = 0; i < MAX_NPORTS; i++) {
1797 		pi = sc->port[i];
1798 		if (pi) {
1799 			t4_free_vi(sc, sc->mbox, sc->pf, 0, pi->vi[0].viid);
1800 			if (pi->dev)
1801 				device_delete_child(dev, pi->dev);
1802 
1803 			mtx_destroy(&pi->pi_lock);
1804 			free(pi->vi, M_CXGBE);
1805 			free(pi, M_CXGBE);
1806 		}
1807 	}
1808 	callout_stop(&sc->cal_callout);
1809 	callout_drain(&sc->cal_callout);
1810 	device_delete_children(dev);
1811 	sysctl_ctx_free(&sc->ctx);
1812 	adapter_full_uninit(sc);
1813 
1814 	if ((sc->flags & (IS_VF | FW_OK)) == FW_OK)
1815 		t4_fw_bye(sc, sc->mbox);
1816 
1817 	if (sc->intr_type == INTR_MSI || sc->intr_type == INTR_MSIX)
1818 		pci_release_msi(dev);
1819 
1820 	if (sc->regs_res)
1821 		bus_release_resource(dev, SYS_RES_MEMORY, sc->regs_rid,
1822 		    sc->regs_res);
1823 
1824 	if (sc->udbs_res)
1825 		bus_release_resource(dev, SYS_RES_MEMORY, sc->udbs_rid,
1826 		    sc->udbs_res);
1827 
1828 	if (sc->msix_res)
1829 		bus_release_resource(dev, SYS_RES_MEMORY, sc->msix_rid,
1830 		    sc->msix_res);
1831 
1832 	if (sc->l2t)
1833 		t4_free_l2t(sc->l2t);
1834 	if (sc->smt)
1835 		t4_free_smt(sc->smt);
1836 	t4_free_atid_table(sc);
1837 #ifdef RATELIMIT
1838 	t4_free_etid_table(sc);
1839 #endif
1840 	if (sc->key_map)
1841 		vmem_destroy(sc->key_map);
1842 #ifdef INET6
1843 	t4_destroy_clip_table(sc);
1844 #endif
1845 
1846 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1847 	free(sc->sge.ofld_txq, M_CXGBE);
1848 #endif
1849 #ifdef TCP_OFFLOAD
1850 	free(sc->sge.ofld_rxq, M_CXGBE);
1851 #endif
1852 #ifdef DEV_NETMAP
1853 	free(sc->sge.nm_rxq, M_CXGBE);
1854 	free(sc->sge.nm_txq, M_CXGBE);
1855 #endif
1856 	free(sc->irq, M_CXGBE);
1857 	free(sc->sge.rxq, M_CXGBE);
1858 	free(sc->sge.txq, M_CXGBE);
1859 	free(sc->sge.ctrlq, M_CXGBE);
1860 	free(sc->sge.iqmap, M_CXGBE);
1861 	free(sc->sge.eqmap, M_CXGBE);
1862 	free(sc->tids.ftid_tab, M_CXGBE);
1863 	free(sc->tids.hpftid_tab, M_CXGBE);
1864 	free_hftid_hash(&sc->tids);
1865 	free(sc->tids.tid_tab, M_CXGBE);
1866 	t4_destroy_dma_tag(sc);
1867 
1868 	callout_drain(&sc->ktls_tick);
1869 	callout_drain(&sc->sfl_callout);
1870 	if (mtx_initialized(&sc->tids.ftid_lock)) {
1871 		mtx_destroy(&sc->tids.ftid_lock);
1872 		cv_destroy(&sc->tids.ftid_cv);
1873 	}
1874 	if (mtx_initialized(&sc->tids.atid_lock))
1875 		mtx_destroy(&sc->tids.atid_lock);
1876 	if (mtx_initialized(&sc->ifp_lock))
1877 		mtx_destroy(&sc->ifp_lock);
1878 
1879 	if (rw_initialized(&sc->policy_lock)) {
1880 		rw_destroy(&sc->policy_lock);
1881 #ifdef TCP_OFFLOAD
1882 		if (sc->policy != NULL)
1883 			free_offload_policy(sc->policy);
1884 #endif
1885 	}
1886 
1887 	for (i = 0; i < NUM_MEMWIN; i++) {
1888 		struct memwin *mw = &sc->memwin[i];
1889 
1890 		if (rw_initialized(&mw->mw_lock))
1891 			rw_destroy(&mw->mw_lock);
1892 	}
1893 
1894 	mtx_destroy(&sc->sfl_lock);
1895 	mtx_destroy(&sc->reg_lock);
1896 	mtx_destroy(&sc->sc_lock);
1897 
1898 	bzero(sc, sizeof(*sc));
1899 
1900 	return (0);
1901 }
1902 
1903 static inline bool
ok_to_reset(struct adapter * sc)1904 ok_to_reset(struct adapter *sc)
1905 {
1906 	struct tid_info *t = &sc->tids;
1907 	struct port_info *pi;
1908 	struct vi_info *vi;
1909 	int i, j;
1910 	int caps = IFCAP_TOE | IFCAP_NETMAP | IFCAP_TXRTLMT;
1911 
1912 	if (is_t6(sc))
1913 		caps |= IFCAP_TXTLS;
1914 
1915 	ASSERT_SYNCHRONIZED_OP(sc);
1916 	MPASS(!(sc->flags & IS_VF));
1917 
1918 	for_each_port(sc, i) {
1919 		pi = sc->port[i];
1920 		for_each_vi(pi, j, vi) {
1921 			if (if_getcapenable(vi->ifp) & caps)
1922 				return (false);
1923 		}
1924 	}
1925 
1926 	if (atomic_load_int(&t->tids_in_use) > 0)
1927 		return (false);
1928 	if (atomic_load_int(&t->stids_in_use) > 0)
1929 		return (false);
1930 	if (atomic_load_int(&t->atids_in_use) > 0)
1931 		return (false);
1932 	if (atomic_load_int(&t->ftids_in_use) > 0)
1933 		return (false);
1934 	if (atomic_load_int(&t->hpftids_in_use) > 0)
1935 		return (false);
1936 	if (atomic_load_int(&t->etids_in_use) > 0)
1937 		return (false);
1938 
1939 	return (true);
1940 }
1941 
1942 static inline int
stop_adapter(struct adapter * sc)1943 stop_adapter(struct adapter *sc)
1944 {
1945 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_STOPPED)))
1946 		return (1);		/* Already stopped. */
1947 	return (t4_shutdown_adapter(sc));
1948 }
1949 
1950 static int
t4_suspend(device_t dev)1951 t4_suspend(device_t dev)
1952 {
1953 	struct adapter *sc = device_get_softc(dev);
1954 	struct port_info *pi;
1955 	struct vi_info *vi;
1956 	if_t ifp;
1957 	struct sge_rxq *rxq;
1958 	struct sge_txq *txq;
1959 	struct sge_wrq *wrq;
1960 #ifdef TCP_OFFLOAD
1961 	struct sge_ofld_rxq *ofld_rxq;
1962 #endif
1963 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1964 	struct sge_ofld_txq *ofld_txq;
1965 #endif
1966 	int rc, i, j, k;
1967 
1968 	CH_ALERT(sc, "suspend requested\n");
1969 
1970 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4sus");
1971 	if (rc != 0)
1972 		return (ENXIO);
1973 
1974 	/* XXX: Can the kernel call suspend repeatedly without resume? */
1975 	MPASS(!hw_off_limits(sc));
1976 
1977 	if (!ok_to_reset(sc)) {
1978 		/* XXX: should list what resource is preventing suspend. */
1979 		CH_ERR(sc, "not safe to suspend.\n");
1980 		rc = EBUSY;
1981 		goto done;
1982 	}
1983 
1984 	/* No more DMA or interrupts. */
1985 	stop_adapter(sc);
1986 
1987 	/* Quiesce all activity. */
1988 	for_each_port(sc, i) {
1989 		pi = sc->port[i];
1990 		pi->vxlan_tcam_entry = false;
1991 
1992 		PORT_LOCK(pi);
1993 		if (pi->up_vis > 0) {
1994 			/*
1995 			 * t4_shutdown_adapter has already shut down all the
1996 			 * PHYs but it also disables interrupts and DMA so there
1997 			 * won't be a link interrupt.  So we update the state
1998 			 * manually and inform the kernel.
1999 			 */
2000 			pi->link_cfg.link_ok = false;
2001 			t4_os_link_changed(pi);
2002 		}
2003 		PORT_UNLOCK(pi);
2004 
2005 		for_each_vi(pi, j, vi) {
2006 			vi->xact_addr_filt = -1;
2007 			mtx_lock(&vi->tick_mtx);
2008 			vi->flags |= VI_SKIP_STATS;
2009 			mtx_unlock(&vi->tick_mtx);
2010 			if (!(vi->flags & VI_INIT_DONE))
2011 				continue;
2012 
2013 			ifp = vi->ifp;
2014 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2015 				mtx_lock(&vi->tick_mtx);
2016 				callout_stop(&vi->tick);
2017 				mtx_unlock(&vi->tick_mtx);
2018 				callout_drain(&vi->tick);
2019 			}
2020 
2021 			/*
2022 			 * Note that the HW is not available.
2023 			 */
2024 			for_each_txq(vi, k, txq) {
2025 				TXQ_LOCK(txq);
2026 				txq->eq.flags &= ~(EQ_ENABLED | EQ_HW_ALLOCATED);
2027 				TXQ_UNLOCK(txq);
2028 			}
2029 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2030 			for_each_ofld_txq(vi, k, ofld_txq) {
2031 				ofld_txq->wrq.eq.flags &= ~EQ_HW_ALLOCATED;
2032 			}
2033 #endif
2034 			for_each_rxq(vi, k, rxq) {
2035 				rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2036 			}
2037 #if defined(TCP_OFFLOAD)
2038 			for_each_ofld_rxq(vi, k, ofld_rxq) {
2039 				ofld_rxq->iq.flags &= ~IQ_HW_ALLOCATED;
2040 			}
2041 #endif
2042 
2043 			quiesce_vi(vi);
2044 		}
2045 
2046 		if (sc->flags & FULL_INIT_DONE) {
2047 			/* Control queue */
2048 			wrq = &sc->sge.ctrlq[i];
2049 			wrq->eq.flags &= ~EQ_HW_ALLOCATED;
2050 			quiesce_wrq(wrq);
2051 		}
2052 	}
2053 	if (sc->flags & FULL_INIT_DONE) {
2054 		/* Firmware event queue */
2055 		sc->sge.fwq.flags &= ~IQ_HW_ALLOCATED;
2056 		quiesce_iq_fl(sc, &sc->sge.fwq, NULL);
2057 	}
2058 
2059 	/* Stop calibration */
2060 	callout_stop(&sc->cal_callout);
2061 	callout_drain(&sc->cal_callout);
2062 
2063 	/* Mark the adapter totally off limits. */
2064 	mtx_lock(&sc->reg_lock);
2065 	atomic_set_int(&sc->error_flags, HW_OFF_LIMITS);
2066 	sc->flags &= ~(FW_OK | MASTER_PF);
2067 	sc->reset_thread = NULL;
2068 	mtx_unlock(&sc->reg_lock);
2069 
2070 	if (t4_clock_gate_on_suspend) {
2071 		t4_set_reg_field(sc, A_PMU_PART_CG_PWRMODE, F_MA_PART_CGEN |
2072 		    F_LE_PART_CGEN | F_EDC1_PART_CGEN | F_EDC0_PART_CGEN |
2073 		    F_TP_PART_CGEN | F_PDP_PART_CGEN | F_SGE_PART_CGEN, 0);
2074 	}
2075 
2076 	CH_ALERT(sc, "suspend completed.\n");
2077 done:
2078 	end_synchronized_op(sc, 0);
2079 	return (rc);
2080 }
2081 
2082 struct adapter_pre_reset_state {
2083 	u_int flags;
2084 	uint16_t nbmcaps;
2085 	uint16_t linkcaps;
2086 	uint16_t switchcaps;
2087 	uint16_t niccaps;
2088 	uint16_t toecaps;
2089 	uint16_t rdmacaps;
2090 	uint16_t cryptocaps;
2091 	uint16_t iscsicaps;
2092 	uint16_t fcoecaps;
2093 
2094 	u_int cfcsum;
2095 	char cfg_file[32];
2096 
2097 	struct adapter_params params;
2098 	struct t4_virt_res vres;
2099 	struct tid_info tids;
2100 	struct sge sge;
2101 
2102 	int rawf_base;
2103 	int nrawf;
2104 
2105 };
2106 
2107 static void
save_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2108 save_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2109 {
2110 
2111 	ASSERT_SYNCHRONIZED_OP(sc);
2112 
2113 	o->flags = sc->flags;
2114 
2115 	o->nbmcaps =  sc->nbmcaps;
2116 	o->linkcaps = sc->linkcaps;
2117 	o->switchcaps = sc->switchcaps;
2118 	o->niccaps = sc->niccaps;
2119 	o->toecaps = sc->toecaps;
2120 	o->rdmacaps = sc->rdmacaps;
2121 	o->cryptocaps = sc->cryptocaps;
2122 	o->iscsicaps = sc->iscsicaps;
2123 	o->fcoecaps = sc->fcoecaps;
2124 
2125 	o->cfcsum = sc->cfcsum;
2126 	MPASS(sizeof(o->cfg_file) == sizeof(sc->cfg_file));
2127 	memcpy(o->cfg_file, sc->cfg_file, sizeof(o->cfg_file));
2128 
2129 	o->params = sc->params;
2130 	o->vres = sc->vres;
2131 	o->tids = sc->tids;
2132 	o->sge = sc->sge;
2133 
2134 	o->rawf_base = sc->rawf_base;
2135 	o->nrawf = sc->nrawf;
2136 }
2137 
2138 static int
compare_caps_and_params(struct adapter * sc,struct adapter_pre_reset_state * o)2139 compare_caps_and_params(struct adapter *sc, struct adapter_pre_reset_state *o)
2140 {
2141 	int rc = 0;
2142 
2143 	ASSERT_SYNCHRONIZED_OP(sc);
2144 
2145 	/* Capabilities */
2146 #define COMPARE_CAPS(c) do { \
2147 	if (o->c##caps != sc->c##caps) { \
2148 		CH_ERR(sc, "%scaps 0x%04x -> 0x%04x.\n", #c, o->c##caps, \
2149 		    sc->c##caps); \
2150 		rc = EINVAL; \
2151 	} \
2152 } while (0)
2153 	COMPARE_CAPS(nbm);
2154 	COMPARE_CAPS(link);
2155 	COMPARE_CAPS(switch);
2156 	COMPARE_CAPS(nic);
2157 	COMPARE_CAPS(toe);
2158 	COMPARE_CAPS(rdma);
2159 	COMPARE_CAPS(crypto);
2160 	COMPARE_CAPS(iscsi);
2161 	COMPARE_CAPS(fcoe);
2162 #undef COMPARE_CAPS
2163 
2164 	/* Firmware config file */
2165 	if (o->cfcsum != sc->cfcsum) {
2166 		CH_ERR(sc, "config file %s (0x%x) -> %s (0x%x)\n", o->cfg_file,
2167 		    o->cfcsum, sc->cfg_file, sc->cfcsum);
2168 		rc = EINVAL;
2169 	}
2170 
2171 #define COMPARE_PARAM(p, name) do { \
2172 	if (o->p != sc->p) { \
2173 		CH_ERR(sc, #name " %d -> %d\n", o->p, sc->p); \
2174 		rc = EINVAL; \
2175 	} \
2176 } while (0)
2177 	COMPARE_PARAM(sge.iq_start, iq_start);
2178 	COMPARE_PARAM(sge.eq_start, eq_start);
2179 	COMPARE_PARAM(tids.ftid_base, ftid_base);
2180 	COMPARE_PARAM(tids.ftid_end, ftid_end);
2181 	COMPARE_PARAM(tids.nftids, nftids);
2182 	COMPARE_PARAM(vres.l2t.start, l2t_start);
2183 	COMPARE_PARAM(vres.l2t.size, l2t_size);
2184 	COMPARE_PARAM(sge.iqmap_sz, iqmap_sz);
2185 	COMPARE_PARAM(sge.eqmap_sz, eqmap_sz);
2186 	COMPARE_PARAM(tids.tid_base, tid_base);
2187 	COMPARE_PARAM(tids.hpftid_base, hpftid_base);
2188 	COMPARE_PARAM(tids.hpftid_end, hpftid_end);
2189 	COMPARE_PARAM(tids.nhpftids, nhpftids);
2190 	COMPARE_PARAM(rawf_base, rawf_base);
2191 	COMPARE_PARAM(nrawf, nrawf);
2192 	COMPARE_PARAM(params.mps_bg_map, mps_bg_map);
2193 	COMPARE_PARAM(params.filter2_wr_support, filter2_wr_support);
2194 	COMPARE_PARAM(params.ulptx_memwrite_dsgl, ulptx_memwrite_dsgl);
2195 	COMPARE_PARAM(params.fr_nsmr_tpte_wr_support, fr_nsmr_tpte_wr_support);
2196 	COMPARE_PARAM(params.max_pkts_per_eth_tx_pkts_wr, max_pkts_per_eth_tx_pkts_wr);
2197 	COMPARE_PARAM(tids.ntids, ntids);
2198 	COMPARE_PARAM(tids.etid_base, etid_base);
2199 	COMPARE_PARAM(tids.etid_end, etid_end);
2200 	COMPARE_PARAM(tids.netids, netids);
2201 	COMPARE_PARAM(params.eo_wr_cred, eo_wr_cred);
2202 	COMPARE_PARAM(params.ethoffload, ethoffload);
2203 	COMPARE_PARAM(tids.natids, natids);
2204 	COMPARE_PARAM(tids.stid_base, stid_base);
2205 	COMPARE_PARAM(vres.ddp.start, ddp_start);
2206 	COMPARE_PARAM(vres.ddp.size, ddp_size);
2207 	COMPARE_PARAM(params.ofldq_wr_cred, ofldq_wr_cred);
2208 	COMPARE_PARAM(vres.stag.start, stag_start);
2209 	COMPARE_PARAM(vres.stag.size, stag_size);
2210 	COMPARE_PARAM(vres.rq.start, rq_start);
2211 	COMPARE_PARAM(vres.rq.size, rq_size);
2212 	COMPARE_PARAM(vres.pbl.start, pbl_start);
2213 	COMPARE_PARAM(vres.pbl.size, pbl_size);
2214 	COMPARE_PARAM(vres.qp.start, qp_start);
2215 	COMPARE_PARAM(vres.qp.size, qp_size);
2216 	COMPARE_PARAM(vres.cq.start, cq_start);
2217 	COMPARE_PARAM(vres.cq.size, cq_size);
2218 	COMPARE_PARAM(vres.ocq.start, ocq_start);
2219 	COMPARE_PARAM(vres.ocq.size, ocq_size);
2220 	COMPARE_PARAM(vres.srq.start, srq_start);
2221 	COMPARE_PARAM(vres.srq.size, srq_size);
2222 	COMPARE_PARAM(params.max_ordird_qp, max_ordird_qp);
2223 	COMPARE_PARAM(params.max_ird_adapter, max_ird_adapter);
2224 	COMPARE_PARAM(vres.iscsi.start, iscsi_start);
2225 	COMPARE_PARAM(vres.iscsi.size, iscsi_size);
2226 	COMPARE_PARAM(vres.key.start, key_start);
2227 	COMPARE_PARAM(vres.key.size, key_size);
2228 #undef COMPARE_PARAM
2229 
2230 	return (rc);
2231 }
2232 
2233 static int
t4_resume(device_t dev)2234 t4_resume(device_t dev)
2235 {
2236 	struct adapter *sc = device_get_softc(dev);
2237 	struct adapter_pre_reset_state *old_state = NULL;
2238 	struct port_info *pi;
2239 	struct vi_info *vi;
2240 	if_t ifp;
2241 	struct sge_txq *txq;
2242 	int rc, i, j, k;
2243 
2244 	CH_ALERT(sc, "resume requested.\n");
2245 
2246 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4res");
2247 	if (rc != 0)
2248 		return (ENXIO);
2249 	MPASS(hw_off_limits(sc));
2250 	MPASS((sc->flags & FW_OK) == 0);
2251 	MPASS((sc->flags & MASTER_PF) == 0);
2252 	MPASS(sc->reset_thread == NULL);
2253 	sc->reset_thread = curthread;
2254 
2255 	/* Register access is expected to work by the time we're here. */
2256 	if (t4_read_reg(sc, A_PL_WHOAMI) == 0xffffffff) {
2257 		CH_ERR(sc, "%s: can't read device registers\n", __func__);
2258 		rc = ENXIO;
2259 		goto done;
2260 	}
2261 
2262 	/* Note that HW_OFF_LIMITS is cleared a bit later. */
2263 	atomic_clear_int(&sc->error_flags, ADAP_FATAL_ERR | ADAP_STOPPED);
2264 
2265 	/* Restore memory window. */
2266 	setup_memwin(sc);
2267 
2268 	/* Go no further if recovery mode has been requested. */
2269 	if (TUNABLE_INT_FETCH("hw.cxgbe.sos", &i) && i != 0) {
2270 		CH_ALERT(sc, "recovery mode on resume.\n");
2271 		rc = 0;
2272 		mtx_lock(&sc->reg_lock);
2273 		atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2274 		mtx_unlock(&sc->reg_lock);
2275 		goto done;
2276 	}
2277 
2278 	old_state = malloc(sizeof(*old_state), M_CXGBE, M_ZERO | M_WAITOK);
2279 	save_caps_and_params(sc, old_state);
2280 
2281 	/* Reestablish contact with firmware and become the primary PF. */
2282 	rc = contact_firmware(sc);
2283 	if (rc != 0)
2284 		goto done; /* error message displayed already */
2285 	MPASS(sc->flags & FW_OK);
2286 
2287 	if (sc->flags & MASTER_PF) {
2288 		rc = partition_resources(sc);
2289 		if (rc != 0)
2290 			goto done; /* error message displayed already */
2291 	}
2292 
2293 	rc = get_params__post_init(sc);
2294 	if (rc != 0)
2295 		goto done; /* error message displayed already */
2296 
2297 	rc = set_params__post_init(sc);
2298 	if (rc != 0)
2299 		goto done; /* error message displayed already */
2300 
2301 	rc = compare_caps_and_params(sc, old_state);
2302 	if (rc != 0)
2303 		goto done; /* error message displayed already */
2304 
2305 	for_each_port(sc, i) {
2306 		pi = sc->port[i];
2307 		MPASS(pi != NULL);
2308 		MPASS(pi->vi != NULL);
2309 		MPASS(pi->vi[0].dev == pi->dev);
2310 
2311 		rc = -t4_port_init(sc, sc->mbox, sc->pf, 0, i);
2312 		if (rc != 0) {
2313 			CH_ERR(sc,
2314 			    "failed to re-initialize port %d: %d\n", i, rc);
2315 			goto done;
2316 		}
2317 		MPASS(sc->chan_map[pi->tx_chan] == i);
2318 
2319 		PORT_LOCK(pi);
2320 		fixup_link_config(pi);
2321 		build_medialist(pi);
2322 		PORT_UNLOCK(pi);
2323 		for_each_vi(pi, j, vi) {
2324 			if (IS_MAIN_VI(vi))
2325 				continue;
2326 			rc = alloc_extra_vi(sc, pi, vi);
2327 			if (rc != 0) {
2328 				CH_ERR(vi,
2329 				    "failed to re-allocate extra VI: %d\n", rc);
2330 				goto done;
2331 			}
2332 		}
2333 	}
2334 
2335 	/*
2336 	 * Interrupts and queues are about to be enabled and other threads will
2337 	 * want to access the hardware too.  It is safe to do so.  Note that
2338 	 * this thread is still in the middle of a synchronized_op.
2339 	 */
2340 	mtx_lock(&sc->reg_lock);
2341 	atomic_clear_int(&sc->error_flags, HW_OFF_LIMITS);
2342 	mtx_unlock(&sc->reg_lock);
2343 
2344 	if (sc->flags & FULL_INIT_DONE) {
2345 		rc = adapter_full_init(sc);
2346 		if (rc != 0) {
2347 			CH_ERR(sc, "failed to re-initialize adapter: %d\n", rc);
2348 			goto done;
2349 		}
2350 
2351 		if (sc->vxlan_refcount > 0)
2352 			enable_vxlan_rx(sc);
2353 
2354 		for_each_port(sc, i) {
2355 			pi = sc->port[i];
2356 			for_each_vi(pi, j, vi) {
2357 				mtx_lock(&vi->tick_mtx);
2358 				vi->flags &= ~VI_SKIP_STATS;
2359 				mtx_unlock(&vi->tick_mtx);
2360 				if (!(vi->flags & VI_INIT_DONE))
2361 					continue;
2362 				rc = vi_full_init(vi);
2363 				if (rc != 0) {
2364 					CH_ERR(vi, "failed to re-initialize "
2365 					    "interface: %d\n", rc);
2366 					goto done;
2367 				}
2368 
2369 				ifp = vi->ifp;
2370 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2371 					continue;
2372 				/*
2373 				 * Note that we do not setup multicast addresses
2374 				 * in the first pass.  This ensures that the
2375 				 * unicast DMACs for all VIs on all ports get an
2376 				 * MPS TCAM entry.
2377 				 */
2378 				rc = update_mac_settings(ifp, XGMAC_ALL &
2379 				    ~XGMAC_MCADDRS);
2380 				if (rc != 0) {
2381 					CH_ERR(vi, "failed to re-configure MAC: %d\n", rc);
2382 					goto done;
2383 				}
2384 				rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true,
2385 				    true);
2386 				if (rc != 0) {
2387 					CH_ERR(vi, "failed to re-enable VI: %d\n", rc);
2388 					goto done;
2389 				}
2390 				for_each_txq(vi, k, txq) {
2391 					TXQ_LOCK(txq);
2392 					txq->eq.flags |= EQ_ENABLED;
2393 					TXQ_UNLOCK(txq);
2394 				}
2395 				mtx_lock(&vi->tick_mtx);
2396 				callout_schedule(&vi->tick, hz);
2397 				mtx_unlock(&vi->tick_mtx);
2398 			}
2399 			PORT_LOCK(pi);
2400 			if (pi->up_vis > 0) {
2401 				t4_update_port_info(pi);
2402 				fixup_link_config(pi);
2403 				build_medialist(pi);
2404 				apply_link_config(pi);
2405 				if (pi->link_cfg.link_ok)
2406 					t4_os_link_changed(pi);
2407 			}
2408 			PORT_UNLOCK(pi);
2409 		}
2410 
2411 		/* Now reprogram the L2 multicast addresses. */
2412 		for_each_port(sc, i) {
2413 			pi = sc->port[i];
2414 			for_each_vi(pi, j, vi) {
2415 				if (!(vi->flags & VI_INIT_DONE))
2416 					continue;
2417 				ifp = vi->ifp;
2418 				if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING))
2419 					continue;
2420 				rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2421 				if (rc != 0) {
2422 					CH_ERR(vi, "failed to re-configure MCAST MACs: %d\n", rc);
2423 					rc = 0;	/* carry on */
2424 				}
2425 			}
2426 		}
2427 	}
2428 
2429 	/* Reset all calibration */
2430 	t4_calibration_start(sc);
2431 
2432 done:
2433 	if (rc == 0) {
2434 		sc->incarnation++;
2435 		CH_ALERT(sc, "resume completed.\n");
2436 	}
2437 	end_synchronized_op(sc, 0);
2438 	free(old_state, M_CXGBE);
2439 	return (rc);
2440 }
2441 
2442 static int
t4_reset_prepare(device_t dev,device_t child)2443 t4_reset_prepare(device_t dev, device_t child)
2444 {
2445 	struct adapter *sc = device_get_softc(dev);
2446 
2447 	CH_ALERT(sc, "reset_prepare.\n");
2448 	return (0);
2449 }
2450 
2451 static int
t4_reset_post(device_t dev,device_t child)2452 t4_reset_post(device_t dev, device_t child)
2453 {
2454 	struct adapter *sc = device_get_softc(dev);
2455 
2456 	CH_ALERT(sc, "reset_post.\n");
2457 	return (0);
2458 }
2459 
2460 static int
reset_adapter(struct adapter * sc)2461 reset_adapter(struct adapter *sc)
2462 {
2463 	int rc, oldinc, error_flags;
2464 
2465 	CH_ALERT(sc, "reset requested.\n");
2466 
2467 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst1");
2468 	if (rc != 0)
2469 		return (EBUSY);
2470 
2471 	if (hw_off_limits(sc)) {
2472 		CH_ERR(sc, "adapter is suspended, use resume (not reset).\n");
2473 		rc = ENXIO;
2474 		goto done;
2475 	}
2476 
2477 	if (!ok_to_reset(sc)) {
2478 		/* XXX: should list what resource is preventing reset. */
2479 		CH_ERR(sc, "not safe to reset.\n");
2480 		rc = EBUSY;
2481 		goto done;
2482 	}
2483 
2484 done:
2485 	oldinc = sc->incarnation;
2486 	end_synchronized_op(sc, 0);
2487 	if (rc != 0)
2488 		return (rc);	/* Error logged already. */
2489 
2490 	atomic_add_int(&sc->num_resets, 1);
2491 	mtx_lock(&Giant);
2492 	rc = BUS_RESET_CHILD(device_get_parent(sc->dev), sc->dev, 0);
2493 	mtx_unlock(&Giant);
2494 	if (rc != 0)
2495 		CH_ERR(sc, "bus_reset_child failed: %d.\n", rc);
2496 	else {
2497 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4rst2");
2498 		if (rc != 0)
2499 			return (EBUSY);
2500 		error_flags = atomic_load_int(&sc->error_flags);
2501 		if (sc->incarnation > oldinc && error_flags == 0) {
2502 			CH_ALERT(sc, "bus_reset_child succeeded.\n");
2503 		} else {
2504 			CH_ERR(sc, "adapter did not reset properly, flags "
2505 			    "0x%08x, error_flags 0x%08x.\n", sc->flags,
2506 			    error_flags);
2507 			rc = ENXIO;
2508 		}
2509 		end_synchronized_op(sc, 0);
2510 	}
2511 
2512 	return (rc);
2513 }
2514 
2515 static void
reset_adapter_task(void * arg,int pending)2516 reset_adapter_task(void *arg, int pending)
2517 {
2518 	/* XXX: t4_async_event here? */
2519 	reset_adapter(arg);
2520 }
2521 
2522 static int
cxgbe_probe(device_t dev)2523 cxgbe_probe(device_t dev)
2524 {
2525 	struct port_info *pi = device_get_softc(dev);
2526 
2527 	device_set_descf(dev, "port %d", pi->port_id);
2528 
2529 	return (BUS_PROBE_DEFAULT);
2530 }
2531 
2532 #define T4_CAP (IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_MTU | IFCAP_HWCSUM | \
2533     IFCAP_VLAN_HWCSUM | IFCAP_TSO | IFCAP_JUMBO_MTU | IFCAP_LRO | \
2534     IFCAP_VLAN_HWTSO | IFCAP_LINKSTATE | IFCAP_HWCSUM_IPV6 | IFCAP_HWSTATS | \
2535     IFCAP_HWRXTSTMP | IFCAP_MEXTPG)
2536 #define T4_CAP_ENABLE (T4_CAP)
2537 
2538 static int
cxgbe_vi_attach(device_t dev,struct vi_info * vi)2539 cxgbe_vi_attach(device_t dev, struct vi_info *vi)
2540 {
2541 	if_t ifp;
2542 	struct sbuf *sb;
2543 	struct sysctl_ctx_list *ctx = &vi->ctx;
2544 	struct sysctl_oid_list *children;
2545 	struct pfil_head_args pa;
2546 	struct adapter *sc = vi->adapter;
2547 
2548 	sysctl_ctx_init(ctx);
2549 	children = SYSCTL_CHILDREN(device_get_sysctl_tree(vi->dev));
2550 	vi->rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rxq",
2551 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC rx queues");
2552 	vi->txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "txq",
2553 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "NIC tx queues");
2554 #ifdef DEV_NETMAP
2555 	vi->nm_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_rxq",
2556 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap rx queues");
2557 	vi->nm_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "nm_txq",
2558 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "netmap tx queues");
2559 #endif
2560 #ifdef TCP_OFFLOAD
2561 	vi->ofld_rxq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_rxq",
2562 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE rx queues");
2563 #endif
2564 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2565 	vi->ofld_txq_oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "ofld_txq",
2566 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE/ETHOFLD tx queues");
2567 #endif
2568 
2569 	vi->xact_addr_filt = -1;
2570 	mtx_init(&vi->tick_mtx, "vi tick", NULL, MTX_DEF);
2571 	callout_init_mtx(&vi->tick, &vi->tick_mtx, 0);
2572 	if (sc->flags & IS_VF || t4_tx_vm_wr != 0)
2573 		vi->flags |= TX_USES_VM_WR;
2574 
2575 	/* Allocate an ifnet and set it up */
2576 	ifp = if_alloc_dev(IFT_ETHER, dev);
2577 	if (ifp == NULL) {
2578 		device_printf(dev, "Cannot allocate ifnet\n");
2579 		return (ENOMEM);
2580 	}
2581 	vi->ifp = ifp;
2582 	if_setsoftc(ifp, vi);
2583 
2584 	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
2585 	if_setflags(ifp, IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
2586 
2587 	if_setinitfn(ifp, cxgbe_init);
2588 	if_setioctlfn(ifp, cxgbe_ioctl);
2589 	if_settransmitfn(ifp, cxgbe_transmit);
2590 	if_setqflushfn(ifp, cxgbe_qflush);
2591 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
2592 		if_setgetcounterfn(ifp, vi_get_counter);
2593 	else
2594 		if_setgetcounterfn(ifp, cxgbe_get_counter);
2595 #if defined(KERN_TLS) || defined(RATELIMIT)
2596 	if_setsndtagallocfn(ifp, cxgbe_snd_tag_alloc);
2597 #endif
2598 #ifdef RATELIMIT
2599 	if_setratelimitqueryfn(ifp, cxgbe_ratelimit_query);
2600 #endif
2601 
2602 	if_setcapabilities(ifp, T4_CAP);
2603 	if_setcapenable(ifp, T4_CAP_ENABLE);
2604 	if_sethwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP | CSUM_TSO |
2605 	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2606 	if (chip_id(sc) >= CHELSIO_T6) {
2607 		if_setcapabilitiesbit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2608 		if_setcapenablebit(ifp, IFCAP_VXLAN_HWCSUM | IFCAP_VXLAN_HWTSO, 0);
2609 		if_sethwassistbits(ifp, CSUM_INNER_IP6_UDP | CSUM_INNER_IP6_TCP |
2610 		    CSUM_INNER_IP6_TSO | CSUM_INNER_IP | CSUM_INNER_IP_UDP |
2611 		    CSUM_INNER_IP_TCP | CSUM_INNER_IP_TSO | CSUM_ENCAP_VXLAN, 0);
2612 	}
2613 
2614 #ifdef TCP_OFFLOAD
2615 	if (vi->nofldrxq != 0)
2616 		if_setcapabilitiesbit(ifp, IFCAP_TOE, 0);
2617 #endif
2618 #ifdef RATELIMIT
2619 	if (is_ethoffload(sc) && vi->nofldtxq != 0) {
2620 		if_setcapabilitiesbit(ifp, IFCAP_TXRTLMT, 0);
2621 		if_setcapenablebit(ifp, IFCAP_TXRTLMT, 0);
2622 	}
2623 #endif
2624 
2625 	if_sethwtsomax(ifp, IP_MAXPACKET);
2626 	if (vi->flags & TX_USES_VM_WR)
2627 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_VM_TSO);
2628 	else
2629 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_TSO);
2630 #ifdef RATELIMIT
2631 	if (is_ethoffload(sc) && vi->nofldtxq != 0)
2632 		if_sethwtsomaxsegcount(ifp, TX_SGL_SEGS_EO_TSO);
2633 #endif
2634 	if_sethwtsomaxsegsize(ifp, 65536);
2635 #ifdef KERN_TLS
2636 	if (is_ktls(sc)) {
2637 		if_setcapabilitiesbit(ifp, IFCAP_TXTLS, 0);
2638 		if (sc->flags & KERN_TLS_ON || !is_t6(sc))
2639 			if_setcapenablebit(ifp, IFCAP_TXTLS, 0);
2640 	}
2641 #endif
2642 
2643 	ether_ifattach(ifp, vi->hw_addr);
2644 #ifdef DEV_NETMAP
2645 	if (vi->nnmrxq != 0)
2646 		cxgbe_nm_attach(vi);
2647 #endif
2648 	sb = sbuf_new_auto();
2649 	sbuf_printf(sb, "%d txq, %d rxq (NIC)", vi->ntxq, vi->nrxq);
2650 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
2651 	switch (if_getcapabilities(ifp) & (IFCAP_TOE | IFCAP_TXRTLMT)) {
2652 	case IFCAP_TOE:
2653 		sbuf_printf(sb, "; %d txq (TOE)", vi->nofldtxq);
2654 		break;
2655 	case IFCAP_TOE | IFCAP_TXRTLMT:
2656 		sbuf_printf(sb, "; %d txq (TOE/ETHOFLD)", vi->nofldtxq);
2657 		break;
2658 	case IFCAP_TXRTLMT:
2659 		sbuf_printf(sb, "; %d txq (ETHOFLD)", vi->nofldtxq);
2660 		break;
2661 	}
2662 #endif
2663 #ifdef TCP_OFFLOAD
2664 	if (if_getcapabilities(ifp) & IFCAP_TOE)
2665 		sbuf_printf(sb, ", %d rxq (TOE)", vi->nofldrxq);
2666 #endif
2667 #ifdef DEV_NETMAP
2668 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2669 		sbuf_printf(sb, "; %d txq, %d rxq (netmap)",
2670 		    vi->nnmtxq, vi->nnmrxq);
2671 #endif
2672 	sbuf_finish(sb);
2673 	device_printf(dev, "%s\n", sbuf_data(sb));
2674 	sbuf_delete(sb);
2675 
2676 	vi_sysctls(vi);
2677 
2678 	pa.pa_version = PFIL_VERSION;
2679 	pa.pa_flags = PFIL_IN;
2680 	pa.pa_type = PFIL_TYPE_ETHERNET;
2681 	pa.pa_headname = if_name(ifp);
2682 	vi->pfil = pfil_head_register(&pa);
2683 
2684 	return (0);
2685 }
2686 
2687 static int
cxgbe_attach(device_t dev)2688 cxgbe_attach(device_t dev)
2689 {
2690 	struct port_info *pi = device_get_softc(dev);
2691 	struct adapter *sc = pi->adapter;
2692 	struct vi_info *vi;
2693 	int i, rc;
2694 
2695 	sysctl_ctx_init(&pi->ctx);
2696 
2697 	rc = cxgbe_vi_attach(dev, &pi->vi[0]);
2698 	if (rc)
2699 		return (rc);
2700 
2701 	for_each_vi(pi, i, vi) {
2702 		if (i == 0)
2703 			continue;
2704 		vi->dev = device_add_child(dev, sc->names->vi_ifnet_name, -1);
2705 		if (vi->dev == NULL) {
2706 			device_printf(dev, "failed to add VI %d\n", i);
2707 			continue;
2708 		}
2709 		device_set_softc(vi->dev, vi);
2710 	}
2711 
2712 	cxgbe_sysctls(pi);
2713 
2714 	bus_generic_attach(dev);
2715 
2716 	return (0);
2717 }
2718 
2719 static void
cxgbe_vi_detach(struct vi_info * vi)2720 cxgbe_vi_detach(struct vi_info *vi)
2721 {
2722 	if_t ifp = vi->ifp;
2723 
2724 	if (vi->pfil != NULL) {
2725 		pfil_head_unregister(vi->pfil);
2726 		vi->pfil = NULL;
2727 	}
2728 
2729 	ether_ifdetach(ifp);
2730 
2731 	/* Let detach proceed even if these fail. */
2732 #ifdef DEV_NETMAP
2733 	if (if_getcapabilities(ifp) & IFCAP_NETMAP)
2734 		cxgbe_nm_detach(vi);
2735 #endif
2736 	cxgbe_uninit_synchronized(vi);
2737 	callout_drain(&vi->tick);
2738 	mtx_destroy(&vi->tick_mtx);
2739 	sysctl_ctx_free(&vi->ctx);
2740 	vi_full_uninit(vi);
2741 
2742 	if_free(vi->ifp);
2743 	vi->ifp = NULL;
2744 }
2745 
2746 static int
cxgbe_detach(device_t dev)2747 cxgbe_detach(device_t dev)
2748 {
2749 	struct port_info *pi = device_get_softc(dev);
2750 	struct adapter *sc = pi->adapter;
2751 	int rc;
2752 
2753 	/* Detach the extra VIs first. */
2754 	rc = bus_generic_detach(dev);
2755 	if (rc)
2756 		return (rc);
2757 	device_delete_children(dev);
2758 
2759 	sysctl_ctx_free(&pi->ctx);
2760 	begin_vi_detach(sc, &pi->vi[0]);
2761 	if (pi->flags & HAS_TRACEQ) {
2762 		sc->traceq = -1;	/* cloner should not create ifnet */
2763 		t4_tracer_port_detach(sc);
2764 	}
2765 	cxgbe_vi_detach(&pi->vi[0]);
2766 	ifmedia_removeall(&pi->media);
2767 	end_vi_detach(sc, &pi->vi[0]);
2768 
2769 	return (0);
2770 }
2771 
2772 static void
cxgbe_init(void * arg)2773 cxgbe_init(void *arg)
2774 {
2775 	struct vi_info *vi = arg;
2776 	struct adapter *sc = vi->adapter;
2777 
2778 	if (begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4init") != 0)
2779 		return;
2780 	cxgbe_init_synchronized(vi);
2781 	end_synchronized_op(sc, 0);
2782 }
2783 
2784 static int
cxgbe_ioctl(if_t ifp,unsigned long cmd,caddr_t data)2785 cxgbe_ioctl(if_t ifp, unsigned long cmd, caddr_t data)
2786 {
2787 	int rc = 0, mtu, flags;
2788 	struct vi_info *vi = if_getsoftc(ifp);
2789 	struct port_info *pi = vi->pi;
2790 	struct adapter *sc = pi->adapter;
2791 	struct ifreq *ifr = (struct ifreq *)data;
2792 	uint32_t mask;
2793 
2794 	switch (cmd) {
2795 	case SIOCSIFMTU:
2796 		mtu = ifr->ifr_mtu;
2797 		if (mtu < ETHERMIN || mtu > MAX_MTU)
2798 			return (EINVAL);
2799 
2800 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4mtu");
2801 		if (rc)
2802 			return (rc);
2803 		if_setmtu(ifp, mtu);
2804 		if (vi->flags & VI_INIT_DONE) {
2805 			t4_update_fl_bufsize(ifp);
2806 			if (!hw_off_limits(sc) &&
2807 			    if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2808 				rc = update_mac_settings(ifp, XGMAC_MTU);
2809 		}
2810 		end_synchronized_op(sc, 0);
2811 		break;
2812 
2813 	case SIOCSIFFLAGS:
2814 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4flg");
2815 		if (rc)
2816 			return (rc);
2817 
2818 		if (hw_off_limits(sc)) {
2819 			rc = ENXIO;
2820 			goto fail;
2821 		}
2822 
2823 		if (if_getflags(ifp) & IFF_UP) {
2824 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2825 				flags = vi->if_flags;
2826 				if ((if_getflags(ifp) ^ flags) &
2827 				    (IFF_PROMISC | IFF_ALLMULTI)) {
2828 					rc = update_mac_settings(ifp,
2829 					    XGMAC_PROMISC | XGMAC_ALLMULTI);
2830 				}
2831 			} else {
2832 				rc = cxgbe_init_synchronized(vi);
2833 			}
2834 			vi->if_flags = if_getflags(ifp);
2835 		} else if (if_getdrvflags(ifp) & IFF_DRV_RUNNING) {
2836 			rc = cxgbe_uninit_synchronized(vi);
2837 		}
2838 		end_synchronized_op(sc, 0);
2839 		break;
2840 
2841 	case SIOCADDMULTI:
2842 	case SIOCDELMULTI:
2843 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4multi");
2844 		if (rc)
2845 			return (rc);
2846 		if (!hw_off_limits(sc) && if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2847 			rc = update_mac_settings(ifp, XGMAC_MCADDRS);
2848 		end_synchronized_op(sc, 0);
2849 		break;
2850 
2851 	case SIOCSIFCAP:
2852 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4cap");
2853 		if (rc)
2854 			return (rc);
2855 
2856 		mask = ifr->ifr_reqcap ^ if_getcapenable(ifp);
2857 		if (mask & IFCAP_TXCSUM) {
2858 			if_togglecapenable(ifp, IFCAP_TXCSUM);
2859 			if_togglehwassist(ifp, CSUM_TCP | CSUM_UDP | CSUM_IP);
2860 
2861 			if (IFCAP_TSO4 & if_getcapenable(ifp) &&
2862 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2863 				mask &= ~IFCAP_TSO4;
2864 				if_setcapenablebit(ifp, 0, IFCAP_TSO4);
2865 				if_printf(ifp,
2866 				    "tso4 disabled due to -txcsum.\n");
2867 			}
2868 		}
2869 		if (mask & IFCAP_TXCSUM_IPV6) {
2870 			if_togglecapenable(ifp, IFCAP_TXCSUM_IPV6);
2871 			if_togglehwassist(ifp, CSUM_UDP_IPV6 | CSUM_TCP_IPV6);
2872 
2873 			if (IFCAP_TSO6 & if_getcapenable(ifp) &&
2874 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2875 				mask &= ~IFCAP_TSO6;
2876 				if_setcapenablebit(ifp, 0, IFCAP_TSO6);
2877 				if_printf(ifp,
2878 				    "tso6 disabled due to -txcsum6.\n");
2879 			}
2880 		}
2881 		if (mask & IFCAP_RXCSUM)
2882 			if_togglecapenable(ifp, IFCAP_RXCSUM);
2883 		if (mask & IFCAP_RXCSUM_IPV6)
2884 			if_togglecapenable(ifp, IFCAP_RXCSUM_IPV6);
2885 
2886 		/*
2887 		 * Note that we leave CSUM_TSO alone (it is always set).  The
2888 		 * kernel takes both IFCAP_TSOx and CSUM_TSO into account before
2889 		 * sending a TSO request our way, so it's sufficient to toggle
2890 		 * IFCAP_TSOx only.
2891 		 */
2892 		if (mask & IFCAP_TSO4) {
2893 			if (!(IFCAP_TSO4 & if_getcapenable(ifp)) &&
2894 			    !(IFCAP_TXCSUM & if_getcapenable(ifp))) {
2895 				if_printf(ifp, "enable txcsum first.\n");
2896 				rc = EAGAIN;
2897 				goto fail;
2898 			}
2899 			if_togglecapenable(ifp, IFCAP_TSO4);
2900 		}
2901 		if (mask & IFCAP_TSO6) {
2902 			if (!(IFCAP_TSO6 & if_getcapenable(ifp)) &&
2903 			    !(IFCAP_TXCSUM_IPV6 & if_getcapenable(ifp))) {
2904 				if_printf(ifp, "enable txcsum6 first.\n");
2905 				rc = EAGAIN;
2906 				goto fail;
2907 			}
2908 			if_togglecapenable(ifp, IFCAP_TSO6);
2909 		}
2910 		if (mask & IFCAP_LRO) {
2911 #if defined(INET) || defined(INET6)
2912 			int i;
2913 			struct sge_rxq *rxq;
2914 
2915 			if_togglecapenable(ifp, IFCAP_LRO);
2916 			for_each_rxq(vi, i, rxq) {
2917 				if (if_getcapenable(ifp) & IFCAP_LRO)
2918 					rxq->iq.flags |= IQ_LRO_ENABLED;
2919 				else
2920 					rxq->iq.flags &= ~IQ_LRO_ENABLED;
2921 			}
2922 #endif
2923 		}
2924 #ifdef TCP_OFFLOAD
2925 		if (mask & IFCAP_TOE) {
2926 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TOE;
2927 
2928 			rc = toe_capability(vi, enable);
2929 			if (rc != 0)
2930 				goto fail;
2931 
2932 			if_togglecapenable(ifp, mask);
2933 		}
2934 #endif
2935 		if (mask & IFCAP_VLAN_HWTAGGING) {
2936 			if_togglecapenable(ifp, IFCAP_VLAN_HWTAGGING);
2937 			if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
2938 				rc = update_mac_settings(ifp, XGMAC_VLANEX);
2939 		}
2940 		if (mask & IFCAP_VLAN_MTU) {
2941 			if_togglecapenable(ifp, IFCAP_VLAN_MTU);
2942 
2943 			/* Need to find out how to disable auto-mtu-inflation */
2944 		}
2945 		if (mask & IFCAP_VLAN_HWTSO)
2946 			if_togglecapenable(ifp, IFCAP_VLAN_HWTSO);
2947 		if (mask & IFCAP_VLAN_HWCSUM)
2948 			if_togglecapenable(ifp, IFCAP_VLAN_HWCSUM);
2949 #ifdef RATELIMIT
2950 		if (mask & IFCAP_TXRTLMT)
2951 			if_togglecapenable(ifp, IFCAP_TXRTLMT);
2952 #endif
2953 		if (mask & IFCAP_HWRXTSTMP) {
2954 			int i;
2955 			struct sge_rxq *rxq;
2956 
2957 			if_togglecapenable(ifp, IFCAP_HWRXTSTMP);
2958 			for_each_rxq(vi, i, rxq) {
2959 				if (if_getcapenable(ifp) & IFCAP_HWRXTSTMP)
2960 					rxq->iq.flags |= IQ_RX_TIMESTAMP;
2961 				else
2962 					rxq->iq.flags &= ~IQ_RX_TIMESTAMP;
2963 			}
2964 		}
2965 		if (mask & IFCAP_MEXTPG)
2966 			if_togglecapenable(ifp, IFCAP_MEXTPG);
2967 
2968 #ifdef KERN_TLS
2969 		if (mask & IFCAP_TXTLS) {
2970 			int enable = (if_getcapenable(ifp) ^ mask) & IFCAP_TXTLS;
2971 
2972 			rc = ktls_capability(sc, enable);
2973 			if (rc != 0)
2974 				goto fail;
2975 
2976 			if_togglecapenable(ifp, mask & IFCAP_TXTLS);
2977 		}
2978 #endif
2979 		if (mask & IFCAP_VXLAN_HWCSUM) {
2980 			if_togglecapenable(ifp, IFCAP_VXLAN_HWCSUM);
2981 			if_togglehwassist(ifp, CSUM_INNER_IP6_UDP |
2982 			    CSUM_INNER_IP6_TCP | CSUM_INNER_IP |
2983 			    CSUM_INNER_IP_UDP | CSUM_INNER_IP_TCP);
2984 		}
2985 		if (mask & IFCAP_VXLAN_HWTSO) {
2986 			if_togglecapenable(ifp, IFCAP_VXLAN_HWTSO);
2987 			if_togglehwassist(ifp, CSUM_INNER_IP6_TSO |
2988 			    CSUM_INNER_IP_TSO);
2989 		}
2990 
2991 #ifdef VLAN_CAPABILITIES
2992 		VLAN_CAPABILITIES(ifp);
2993 #endif
2994 fail:
2995 		end_synchronized_op(sc, 0);
2996 		break;
2997 
2998 	case SIOCSIFMEDIA:
2999 	case SIOCGIFMEDIA:
3000 	case SIOCGIFXMEDIA:
3001 		rc = ifmedia_ioctl(ifp, ifr, &pi->media, cmd);
3002 		break;
3003 
3004 	case SIOCGI2C: {
3005 		struct ifi2creq i2c;
3006 
3007 		rc = copyin(ifr_data_get_ptr(ifr), &i2c, sizeof(i2c));
3008 		if (rc != 0)
3009 			break;
3010 		if (i2c.dev_addr != 0xA0 && i2c.dev_addr != 0xA2) {
3011 			rc = EPERM;
3012 			break;
3013 		}
3014 		if (i2c.len > sizeof(i2c.data)) {
3015 			rc = EINVAL;
3016 			break;
3017 		}
3018 		rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4i2c");
3019 		if (rc)
3020 			return (rc);
3021 		if (hw_off_limits(sc))
3022 			rc = ENXIO;
3023 		else
3024 			rc = -t4_i2c_rd(sc, sc->mbox, pi->port_id, i2c.dev_addr,
3025 			    i2c.offset, i2c.len, &i2c.data[0]);
3026 		end_synchronized_op(sc, 0);
3027 		if (rc == 0)
3028 			rc = copyout(&i2c, ifr_data_get_ptr(ifr), sizeof(i2c));
3029 		break;
3030 	}
3031 
3032 	default:
3033 		rc = ether_ioctl(ifp, cmd, data);
3034 	}
3035 
3036 	return (rc);
3037 }
3038 
3039 static int
cxgbe_transmit(if_t ifp,struct mbuf * m)3040 cxgbe_transmit(if_t ifp, struct mbuf *m)
3041 {
3042 	struct vi_info *vi = if_getsoftc(ifp);
3043 	struct port_info *pi = vi->pi;
3044 	struct adapter *sc;
3045 	struct sge_txq *txq;
3046 	void *items[1];
3047 	int rc;
3048 
3049 	M_ASSERTPKTHDR(m);
3050 	MPASS(m->m_nextpkt == NULL);	/* not quite ready for this yet */
3051 #if defined(KERN_TLS) || defined(RATELIMIT)
3052 	if (m->m_pkthdr.csum_flags & CSUM_SND_TAG)
3053 		MPASS(m->m_pkthdr.snd_tag->ifp == ifp);
3054 #endif
3055 
3056 	if (__predict_false(pi->link_cfg.link_ok == false)) {
3057 		m_freem(m);
3058 		return (ENETDOWN);
3059 	}
3060 
3061 	rc = parse_pkt(&m, vi->flags & TX_USES_VM_WR);
3062 	if (__predict_false(rc != 0)) {
3063 		if (__predict_true(rc == EINPROGRESS)) {
3064 			/* queued by parse_pkt */
3065 			MPASS(m != NULL);
3066 			return (0);
3067 		}
3068 
3069 		MPASS(m == NULL);			/* was freed already */
3070 		atomic_add_int(&pi->tx_parse_error, 1);	/* rare, atomic is ok */
3071 		return (rc);
3072 	}
3073 
3074 	/* Select a txq. */
3075 	sc = vi->adapter;
3076 	txq = &sc->sge.txq[vi->first_txq];
3077 	if (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
3078 		txq += ((m->m_pkthdr.flowid % (vi->ntxq - vi->rsrv_noflowq)) +
3079 		    vi->rsrv_noflowq);
3080 
3081 	items[0] = m;
3082 	rc = mp_ring_enqueue(txq->r, items, 1, 256);
3083 	if (__predict_false(rc != 0))
3084 		m_freem(m);
3085 
3086 	return (rc);
3087 }
3088 
3089 static void
cxgbe_qflush(if_t ifp)3090 cxgbe_qflush(if_t ifp)
3091 {
3092 	struct vi_info *vi = if_getsoftc(ifp);
3093 	struct sge_txq *txq;
3094 	int i;
3095 
3096 	/* queues do not exist if !VI_INIT_DONE. */
3097 	if (vi->flags & VI_INIT_DONE) {
3098 		for_each_txq(vi, i, txq) {
3099 			TXQ_LOCK(txq);
3100 			txq->eq.flags |= EQ_QFLUSH;
3101 			TXQ_UNLOCK(txq);
3102 			while (!mp_ring_is_idle(txq->r)) {
3103 				mp_ring_check_drainage(txq->r, 4096);
3104 				pause("qflush", 1);
3105 			}
3106 			TXQ_LOCK(txq);
3107 			txq->eq.flags &= ~EQ_QFLUSH;
3108 			TXQ_UNLOCK(txq);
3109 		}
3110 	}
3111 	if_qflush(ifp);
3112 }
3113 
3114 static uint64_t
vi_get_counter(if_t ifp,ift_counter c)3115 vi_get_counter(if_t ifp, ift_counter c)
3116 {
3117 	struct vi_info *vi = if_getsoftc(ifp);
3118 	struct fw_vi_stats_vf *s = &vi->stats;
3119 
3120 	mtx_lock(&vi->tick_mtx);
3121 	vi_refresh_stats(vi);
3122 	mtx_unlock(&vi->tick_mtx);
3123 
3124 	switch (c) {
3125 	case IFCOUNTER_IPACKETS:
3126 		return (s->rx_bcast_frames + s->rx_mcast_frames +
3127 		    s->rx_ucast_frames);
3128 	case IFCOUNTER_IERRORS:
3129 		return (s->rx_err_frames);
3130 	case IFCOUNTER_OPACKETS:
3131 		return (s->tx_bcast_frames + s->tx_mcast_frames +
3132 		    s->tx_ucast_frames + s->tx_offload_frames);
3133 	case IFCOUNTER_OERRORS:
3134 		return (s->tx_drop_frames);
3135 	case IFCOUNTER_IBYTES:
3136 		return (s->rx_bcast_bytes + s->rx_mcast_bytes +
3137 		    s->rx_ucast_bytes);
3138 	case IFCOUNTER_OBYTES:
3139 		return (s->tx_bcast_bytes + s->tx_mcast_bytes +
3140 		    s->tx_ucast_bytes + s->tx_offload_bytes);
3141 	case IFCOUNTER_IMCASTS:
3142 		return (s->rx_mcast_frames);
3143 	case IFCOUNTER_OMCASTS:
3144 		return (s->tx_mcast_frames);
3145 	case IFCOUNTER_OQDROPS: {
3146 		uint64_t drops;
3147 
3148 		drops = 0;
3149 		if (vi->flags & VI_INIT_DONE) {
3150 			int i;
3151 			struct sge_txq *txq;
3152 
3153 			for_each_txq(vi, i, txq)
3154 				drops += counter_u64_fetch(txq->r->dropped);
3155 		}
3156 
3157 		return (drops);
3158 
3159 	}
3160 
3161 	default:
3162 		return (if_get_counter_default(ifp, c));
3163 	}
3164 }
3165 
3166 static uint64_t
cxgbe_get_counter(if_t ifp,ift_counter c)3167 cxgbe_get_counter(if_t ifp, ift_counter c)
3168 {
3169 	struct vi_info *vi = if_getsoftc(ifp);
3170 	struct port_info *pi = vi->pi;
3171 	struct port_stats *s = &pi->stats;
3172 
3173 	mtx_lock(&vi->tick_mtx);
3174 	cxgbe_refresh_stats(vi);
3175 	mtx_unlock(&vi->tick_mtx);
3176 
3177 	switch (c) {
3178 	case IFCOUNTER_IPACKETS:
3179 		return (s->rx_frames);
3180 
3181 	case IFCOUNTER_IERRORS:
3182 		return (s->rx_jabber + s->rx_runt + s->rx_too_long +
3183 		    s->rx_fcs_err + s->rx_len_err);
3184 
3185 	case IFCOUNTER_OPACKETS:
3186 		return (s->tx_frames);
3187 
3188 	case IFCOUNTER_OERRORS:
3189 		return (s->tx_error_frames);
3190 
3191 	case IFCOUNTER_IBYTES:
3192 		return (s->rx_octets);
3193 
3194 	case IFCOUNTER_OBYTES:
3195 		return (s->tx_octets);
3196 
3197 	case IFCOUNTER_IMCASTS:
3198 		return (s->rx_mcast_frames);
3199 
3200 	case IFCOUNTER_OMCASTS:
3201 		return (s->tx_mcast_frames);
3202 
3203 	case IFCOUNTER_IQDROPS:
3204 		return (s->rx_ovflow0 + s->rx_ovflow1 + s->rx_ovflow2 +
3205 		    s->rx_ovflow3 + s->rx_trunc0 + s->rx_trunc1 + s->rx_trunc2 +
3206 		    s->rx_trunc3 + pi->tnl_cong_drops);
3207 
3208 	case IFCOUNTER_OQDROPS: {
3209 		uint64_t drops;
3210 
3211 		drops = s->tx_drop;
3212 		if (vi->flags & VI_INIT_DONE) {
3213 			int i;
3214 			struct sge_txq *txq;
3215 
3216 			for_each_txq(vi, i, txq)
3217 				drops += counter_u64_fetch(txq->r->dropped);
3218 		}
3219 
3220 		return (drops);
3221 
3222 	}
3223 
3224 	default:
3225 		return (if_get_counter_default(ifp, c));
3226 	}
3227 }
3228 
3229 #if defined(KERN_TLS) || defined(RATELIMIT)
3230 static int
cxgbe_snd_tag_alloc(if_t ifp,union if_snd_tag_alloc_params * params,struct m_snd_tag ** pt)3231 cxgbe_snd_tag_alloc(if_t ifp, union if_snd_tag_alloc_params *params,
3232     struct m_snd_tag **pt)
3233 {
3234 	int error;
3235 
3236 	switch (params->hdr.type) {
3237 #ifdef RATELIMIT
3238 	case IF_SND_TAG_TYPE_RATE_LIMIT:
3239 		error = cxgbe_rate_tag_alloc(ifp, params, pt);
3240 		break;
3241 #endif
3242 #ifdef KERN_TLS
3243 	case IF_SND_TAG_TYPE_TLS:
3244 	{
3245 		struct vi_info *vi = if_getsoftc(ifp);
3246 
3247 		if (is_t6(vi->pi->adapter))
3248 			error = t6_tls_tag_alloc(ifp, params, pt);
3249 		else
3250 			error = EOPNOTSUPP;
3251 		break;
3252 	}
3253 #endif
3254 	default:
3255 		error = EOPNOTSUPP;
3256 	}
3257 	return (error);
3258 }
3259 #endif
3260 
3261 /*
3262  * The kernel picks a media from the list we had provided but we still validate
3263  * the requeste.
3264  */
3265 int
cxgbe_media_change(if_t ifp)3266 cxgbe_media_change(if_t ifp)
3267 {
3268 	struct vi_info *vi = if_getsoftc(ifp);
3269 	struct port_info *pi = vi->pi;
3270 	struct ifmedia *ifm = &pi->media;
3271 	struct link_config *lc = &pi->link_cfg;
3272 	struct adapter *sc = pi->adapter;
3273 	int rc;
3274 
3275 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mec");
3276 	if (rc != 0)
3277 		return (rc);
3278 	PORT_LOCK(pi);
3279 	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
3280 		/* ifconfig .. media autoselect */
3281 		if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
3282 			rc = ENOTSUP; /* AN not supported by transceiver */
3283 			goto done;
3284 		}
3285 		lc->requested_aneg = AUTONEG_ENABLE;
3286 		lc->requested_speed = 0;
3287 		lc->requested_fc |= PAUSE_AUTONEG;
3288 	} else {
3289 		lc->requested_aneg = AUTONEG_DISABLE;
3290 		lc->requested_speed =
3291 		    ifmedia_baudrate(ifm->ifm_media) / 1000000;
3292 		lc->requested_fc = 0;
3293 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_RXPAUSE)
3294 			lc->requested_fc |= PAUSE_RX;
3295 		if (IFM_OPTIONS(ifm->ifm_media) & IFM_ETH_TXPAUSE)
3296 			lc->requested_fc |= PAUSE_TX;
3297 	}
3298 	if (pi->up_vis > 0 && !hw_off_limits(sc)) {
3299 		fixup_link_config(pi);
3300 		rc = apply_link_config(pi);
3301 	}
3302 done:
3303 	PORT_UNLOCK(pi);
3304 	end_synchronized_op(sc, 0);
3305 	return (rc);
3306 }
3307 
3308 /*
3309  * Base media word (without ETHER, pause, link active, etc.) for the port at the
3310  * given speed.
3311  */
3312 static int
port_mword(struct port_info * pi,uint32_t speed)3313 port_mword(struct port_info *pi, uint32_t speed)
3314 {
3315 
3316 	MPASS(speed & M_FW_PORT_CAP32_SPEED);
3317 	MPASS(powerof2(speed));
3318 
3319 	switch(pi->port_type) {
3320 	case FW_PORT_TYPE_BT_SGMII:
3321 	case FW_PORT_TYPE_BT_XFI:
3322 	case FW_PORT_TYPE_BT_XAUI:
3323 		/* BaseT */
3324 		switch (speed) {
3325 		case FW_PORT_CAP32_SPEED_100M:
3326 			return (IFM_100_T);
3327 		case FW_PORT_CAP32_SPEED_1G:
3328 			return (IFM_1000_T);
3329 		case FW_PORT_CAP32_SPEED_10G:
3330 			return (IFM_10G_T);
3331 		}
3332 		break;
3333 	case FW_PORT_TYPE_KX4:
3334 		if (speed == FW_PORT_CAP32_SPEED_10G)
3335 			return (IFM_10G_KX4);
3336 		break;
3337 	case FW_PORT_TYPE_CX4:
3338 		if (speed == FW_PORT_CAP32_SPEED_10G)
3339 			return (IFM_10G_CX4);
3340 		break;
3341 	case FW_PORT_TYPE_KX:
3342 		if (speed == FW_PORT_CAP32_SPEED_1G)
3343 			return (IFM_1000_KX);
3344 		break;
3345 	case FW_PORT_TYPE_KR:
3346 	case FW_PORT_TYPE_BP_AP:
3347 	case FW_PORT_TYPE_BP4_AP:
3348 	case FW_PORT_TYPE_BP40_BA:
3349 	case FW_PORT_TYPE_KR4_100G:
3350 	case FW_PORT_TYPE_KR_SFP28:
3351 	case FW_PORT_TYPE_KR_XLAUI:
3352 		switch (speed) {
3353 		case FW_PORT_CAP32_SPEED_1G:
3354 			return (IFM_1000_KX);
3355 		case FW_PORT_CAP32_SPEED_10G:
3356 			return (IFM_10G_KR);
3357 		case FW_PORT_CAP32_SPEED_25G:
3358 			return (IFM_25G_KR);
3359 		case FW_PORT_CAP32_SPEED_40G:
3360 			return (IFM_40G_KR4);
3361 		case FW_PORT_CAP32_SPEED_50G:
3362 			return (IFM_50G_KR2);
3363 		case FW_PORT_CAP32_SPEED_100G:
3364 			return (IFM_100G_KR4);
3365 		}
3366 		break;
3367 	case FW_PORT_TYPE_FIBER_XFI:
3368 	case FW_PORT_TYPE_FIBER_XAUI:
3369 	case FW_PORT_TYPE_SFP:
3370 	case FW_PORT_TYPE_QSFP_10G:
3371 	case FW_PORT_TYPE_QSA:
3372 	case FW_PORT_TYPE_QSFP:
3373 	case FW_PORT_TYPE_CR4_QSFP:
3374 	case FW_PORT_TYPE_CR_QSFP:
3375 	case FW_PORT_TYPE_CR2_QSFP:
3376 	case FW_PORT_TYPE_SFP28:
3377 		/* Pluggable transceiver */
3378 		switch (pi->mod_type) {
3379 		case FW_PORT_MOD_TYPE_LR:
3380 			switch (speed) {
3381 			case FW_PORT_CAP32_SPEED_1G:
3382 				return (IFM_1000_LX);
3383 			case FW_PORT_CAP32_SPEED_10G:
3384 				return (IFM_10G_LR);
3385 			case FW_PORT_CAP32_SPEED_25G:
3386 				return (IFM_25G_LR);
3387 			case FW_PORT_CAP32_SPEED_40G:
3388 				return (IFM_40G_LR4);
3389 			case FW_PORT_CAP32_SPEED_50G:
3390 				return (IFM_50G_LR2);
3391 			case FW_PORT_CAP32_SPEED_100G:
3392 				return (IFM_100G_LR4);
3393 			}
3394 			break;
3395 		case FW_PORT_MOD_TYPE_SR:
3396 			switch (speed) {
3397 			case FW_PORT_CAP32_SPEED_1G:
3398 				return (IFM_1000_SX);
3399 			case FW_PORT_CAP32_SPEED_10G:
3400 				return (IFM_10G_SR);
3401 			case FW_PORT_CAP32_SPEED_25G:
3402 				return (IFM_25G_SR);
3403 			case FW_PORT_CAP32_SPEED_40G:
3404 				return (IFM_40G_SR4);
3405 			case FW_PORT_CAP32_SPEED_50G:
3406 				return (IFM_50G_SR2);
3407 			case FW_PORT_CAP32_SPEED_100G:
3408 				return (IFM_100G_SR4);
3409 			}
3410 			break;
3411 		case FW_PORT_MOD_TYPE_ER:
3412 			if (speed == FW_PORT_CAP32_SPEED_10G)
3413 				return (IFM_10G_ER);
3414 			break;
3415 		case FW_PORT_MOD_TYPE_TWINAX_PASSIVE:
3416 		case FW_PORT_MOD_TYPE_TWINAX_ACTIVE:
3417 			switch (speed) {
3418 			case FW_PORT_CAP32_SPEED_1G:
3419 				return (IFM_1000_CX);
3420 			case FW_PORT_CAP32_SPEED_10G:
3421 				return (IFM_10G_TWINAX);
3422 			case FW_PORT_CAP32_SPEED_25G:
3423 				return (IFM_25G_CR);
3424 			case FW_PORT_CAP32_SPEED_40G:
3425 				return (IFM_40G_CR4);
3426 			case FW_PORT_CAP32_SPEED_50G:
3427 				return (IFM_50G_CR2);
3428 			case FW_PORT_CAP32_SPEED_100G:
3429 				return (IFM_100G_CR4);
3430 			}
3431 			break;
3432 		case FW_PORT_MOD_TYPE_LRM:
3433 			if (speed == FW_PORT_CAP32_SPEED_10G)
3434 				return (IFM_10G_LRM);
3435 			break;
3436 		case FW_PORT_MOD_TYPE_NA:
3437 			MPASS(0);	/* Not pluggable? */
3438 			/* fall throough */
3439 		case FW_PORT_MOD_TYPE_ERROR:
3440 		case FW_PORT_MOD_TYPE_UNKNOWN:
3441 		case FW_PORT_MOD_TYPE_NOTSUPPORTED:
3442 			break;
3443 		case FW_PORT_MOD_TYPE_NONE:
3444 			return (IFM_NONE);
3445 		}
3446 		break;
3447 	case FW_PORT_TYPE_NONE:
3448 		return (IFM_NONE);
3449 	}
3450 
3451 	return (IFM_UNKNOWN);
3452 }
3453 
3454 void
cxgbe_media_status(if_t ifp,struct ifmediareq * ifmr)3455 cxgbe_media_status(if_t ifp, struct ifmediareq *ifmr)
3456 {
3457 	struct vi_info *vi = if_getsoftc(ifp);
3458 	struct port_info *pi = vi->pi;
3459 	struct adapter *sc = pi->adapter;
3460 	struct link_config *lc = &pi->link_cfg;
3461 
3462 	if (begin_synchronized_op(sc, vi , SLEEP_OK | INTR_OK, "t4med") != 0)
3463 		return;
3464 	PORT_LOCK(pi);
3465 
3466 	if (pi->up_vis == 0 && !hw_off_limits(sc)) {
3467 		/*
3468 		 * If all the interfaces are administratively down the firmware
3469 		 * does not report transceiver changes.  Refresh port info here
3470 		 * so that ifconfig displays accurate ifmedia at all times.
3471 		 * This is the only reason we have a synchronized op in this
3472 		 * function.  Just PORT_LOCK would have been enough otherwise.
3473 		 */
3474 		t4_update_port_info(pi);
3475 		build_medialist(pi);
3476 	}
3477 
3478 	/* ifm_status */
3479 	ifmr->ifm_status = IFM_AVALID;
3480 	if (lc->link_ok == false)
3481 		goto done;
3482 	ifmr->ifm_status |= IFM_ACTIVE;
3483 
3484 	/* ifm_active */
3485 	ifmr->ifm_active = IFM_ETHER | IFM_FDX;
3486 	ifmr->ifm_active &= ~(IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE);
3487 	if (lc->fc & PAUSE_RX)
3488 		ifmr->ifm_active |= IFM_ETH_RXPAUSE;
3489 	if (lc->fc & PAUSE_TX)
3490 		ifmr->ifm_active |= IFM_ETH_TXPAUSE;
3491 	ifmr->ifm_active |= port_mword(pi, speed_to_fwcap(lc->speed));
3492 done:
3493 	PORT_UNLOCK(pi);
3494 	end_synchronized_op(sc, 0);
3495 }
3496 
3497 static int
vcxgbe_probe(device_t dev)3498 vcxgbe_probe(device_t dev)
3499 {
3500 	struct vi_info *vi = device_get_softc(dev);
3501 
3502 	device_set_descf(dev, "port %d vi %td", vi->pi->port_id,
3503 	    vi - vi->pi->vi);
3504 
3505 	return (BUS_PROBE_DEFAULT);
3506 }
3507 
3508 static int
alloc_extra_vi(struct adapter * sc,struct port_info * pi,struct vi_info * vi)3509 alloc_extra_vi(struct adapter *sc, struct port_info *pi, struct vi_info *vi)
3510 {
3511 	int func, index, rc;
3512 	uint32_t param, val;
3513 
3514 	ASSERT_SYNCHRONIZED_OP(sc);
3515 
3516 	index = vi - pi->vi;
3517 	MPASS(index > 0);	/* This function deals with _extra_ VIs only */
3518 	KASSERT(index < nitems(vi_mac_funcs),
3519 	    ("%s: VI %s doesn't have a MAC func", __func__,
3520 	    device_get_nameunit(vi->dev)));
3521 	func = vi_mac_funcs[index];
3522 	rc = t4_alloc_vi_func(sc, sc->mbox, pi->tx_chan, sc->pf, 0, 1,
3523 	    vi->hw_addr, &vi->rss_size, &vi->vfvld, &vi->vin, func, 0);
3524 	if (rc < 0) {
3525 		CH_ERR(vi, "failed to allocate virtual interface %d"
3526 		    "for port %d: %d\n", index, pi->port_id, -rc);
3527 		return (-rc);
3528 	}
3529 	vi->viid = rc;
3530 
3531 	if (vi->rss_size == 1) {
3532 		/*
3533 		 * This VI didn't get a slice of the RSS table.  Reduce the
3534 		 * number of VIs being created (hw.cxgbe.num_vis) or modify the
3535 		 * configuration file (nvi, rssnvi for this PF) if this is a
3536 		 * problem.
3537 		 */
3538 		device_printf(vi->dev, "RSS table not available.\n");
3539 		vi->rss_base = 0xffff;
3540 
3541 		return (0);
3542 	}
3543 
3544 	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3545 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
3546 	    V_FW_PARAMS_PARAM_YZ(vi->viid);
3547 	rc = t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
3548 	if (rc)
3549 		vi->rss_base = 0xffff;
3550 	else {
3551 		MPASS((val >> 16) == vi->rss_size);
3552 		vi->rss_base = val & 0xffff;
3553 	}
3554 
3555 	return (0);
3556 }
3557 
3558 static int
vcxgbe_attach(device_t dev)3559 vcxgbe_attach(device_t dev)
3560 {
3561 	struct vi_info *vi;
3562 	struct port_info *pi;
3563 	struct adapter *sc;
3564 	int rc;
3565 
3566 	vi = device_get_softc(dev);
3567 	pi = vi->pi;
3568 	sc = pi->adapter;
3569 
3570 	rc = begin_synchronized_op(sc, vi, SLEEP_OK | INTR_OK, "t4via");
3571 	if (rc)
3572 		return (rc);
3573 	rc = alloc_extra_vi(sc, pi, vi);
3574 	end_synchronized_op(sc, 0);
3575 	if (rc)
3576 		return (rc);
3577 
3578 	rc = cxgbe_vi_attach(dev, vi);
3579 	if (rc) {
3580 		t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3581 		return (rc);
3582 	}
3583 	return (0);
3584 }
3585 
3586 static int
vcxgbe_detach(device_t dev)3587 vcxgbe_detach(device_t dev)
3588 {
3589 	struct vi_info *vi;
3590 	struct adapter *sc;
3591 
3592 	vi = device_get_softc(dev);
3593 	sc = vi->adapter;
3594 
3595 	begin_vi_detach(sc, vi);
3596 	cxgbe_vi_detach(vi);
3597 	t4_free_vi(sc, sc->mbox, sc->pf, 0, vi->viid);
3598 	end_vi_detach(sc, vi);
3599 
3600 	return (0);
3601 }
3602 
3603 static struct callout fatal_callout;
3604 static struct taskqueue *reset_tq;
3605 
3606 static void
delayed_panic(void * arg)3607 delayed_panic(void *arg)
3608 {
3609 	struct adapter *sc = arg;
3610 
3611 	panic("%s: panic on fatal error", device_get_nameunit(sc->dev));
3612 }
3613 
3614 static void
fatal_error_task(void * arg,int pending)3615 fatal_error_task(void *arg, int pending)
3616 {
3617 	struct adapter *sc = arg;
3618 	int rc;
3619 
3620 #ifdef TCP_OFFLOAD
3621 	t4_async_event(sc);
3622 #endif
3623 	if (atomic_testandclear_int(&sc->error_flags, ilog2(ADAP_CIM_ERR))) {
3624 		dump_cim_regs(sc);
3625 		dump_cimla(sc);
3626 		dump_devlog(sc);
3627 	}
3628 
3629 	if (t4_reset_on_fatal_err) {
3630 		CH_ALERT(sc, "resetting on fatal error.\n");
3631 		rc = reset_adapter(sc);
3632 		if (rc == 0 && t4_panic_on_fatal_err) {
3633 			CH_ALERT(sc, "reset was successful, "
3634 			    "system will NOT panic.\n");
3635 			return;
3636 		}
3637 	}
3638 
3639 	if (t4_panic_on_fatal_err) {
3640 		CH_ALERT(sc, "panicking on fatal error (after 30s).\n");
3641 		callout_reset(&fatal_callout, hz * 30, delayed_panic, sc);
3642 	}
3643 }
3644 
3645 void
t4_fatal_err(struct adapter * sc,bool fw_error)3646 t4_fatal_err(struct adapter *sc, bool fw_error)
3647 {
3648 	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
3649 
3650 	stop_adapter(sc);
3651 	if (atomic_testandset_int(&sc->error_flags, ilog2(ADAP_FATAL_ERR)))
3652 		return;
3653 	if (fw_error) {
3654 		/*
3655 		 * We are here because of a firmware error/timeout and not
3656 		 * because of a hardware interrupt.  It is possible (although
3657 		 * not very likely) that an error interrupt was also raised but
3658 		 * this thread ran first and inhibited t4_intr_err.  We walk the
3659 		 * main INT_CAUSE registers here to make sure we haven't missed
3660 		 * anything interesting.
3661 		 */
3662 		t4_slow_intr_handler(sc, verbose);
3663 		atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
3664 	}
3665 	t4_report_fw_error(sc);
3666 	log(LOG_ALERT, "%s: encountered fatal error, adapter stopped (%d).\n",
3667 	    device_get_nameunit(sc->dev), fw_error);
3668 	taskqueue_enqueue(reset_tq, &sc->fatal_error_task);
3669 }
3670 
3671 void
t4_add_adapter(struct adapter * sc)3672 t4_add_adapter(struct adapter *sc)
3673 {
3674 	sx_xlock(&t4_list_lock);
3675 	SLIST_INSERT_HEAD(&t4_list, sc, link);
3676 	sx_xunlock(&t4_list_lock);
3677 }
3678 
3679 int
t4_map_bars_0_and_4(struct adapter * sc)3680 t4_map_bars_0_and_4(struct adapter *sc)
3681 {
3682 	sc->regs_rid = PCIR_BAR(0);
3683 	sc->regs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3684 	    &sc->regs_rid, RF_ACTIVE);
3685 	if (sc->regs_res == NULL) {
3686 		device_printf(sc->dev, "cannot map registers.\n");
3687 		return (ENXIO);
3688 	}
3689 	sc->bt = rman_get_bustag(sc->regs_res);
3690 	sc->bh = rman_get_bushandle(sc->regs_res);
3691 	sc->mmio_len = rman_get_size(sc->regs_res);
3692 	setbit(&sc->doorbells, DOORBELL_KDB);
3693 
3694 	sc->msix_rid = PCIR_BAR(4);
3695 	sc->msix_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3696 	    &sc->msix_rid, RF_ACTIVE);
3697 	if (sc->msix_res == NULL) {
3698 		device_printf(sc->dev, "cannot map MSI-X BAR.\n");
3699 		return (ENXIO);
3700 	}
3701 
3702 	return (0);
3703 }
3704 
3705 int
t4_map_bar_2(struct adapter * sc)3706 t4_map_bar_2(struct adapter *sc)
3707 {
3708 
3709 	/*
3710 	 * T4: only iWARP driver uses the userspace doorbells.  There is no need
3711 	 * to map it if RDMA is disabled.
3712 	 */
3713 	if (is_t4(sc) && sc->rdmacaps == 0)
3714 		return (0);
3715 
3716 	sc->udbs_rid = PCIR_BAR(2);
3717 	sc->udbs_res = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY,
3718 	    &sc->udbs_rid, RF_ACTIVE);
3719 	if (sc->udbs_res == NULL) {
3720 		device_printf(sc->dev, "cannot map doorbell BAR.\n");
3721 		return (ENXIO);
3722 	}
3723 	sc->udbs_base = rman_get_virtual(sc->udbs_res);
3724 
3725 	if (chip_id(sc) >= CHELSIO_T5) {
3726 		setbit(&sc->doorbells, DOORBELL_UDB);
3727 #if defined(__i386__) || defined(__amd64__)
3728 		if (t5_write_combine) {
3729 			int rc, mode;
3730 
3731 			/*
3732 			 * Enable write combining on BAR2.  This is the
3733 			 * userspace doorbell BAR and is split into 128B
3734 			 * (UDBS_SEG_SIZE) doorbell regions, each associated
3735 			 * with an egress queue.  The first 64B has the doorbell
3736 			 * and the second 64B can be used to submit a tx work
3737 			 * request with an implicit doorbell.
3738 			 */
3739 
3740 			rc = pmap_change_attr((vm_offset_t)sc->udbs_base,
3741 			    rman_get_size(sc->udbs_res), PAT_WRITE_COMBINING);
3742 			if (rc == 0) {
3743 				clrbit(&sc->doorbells, DOORBELL_UDB);
3744 				setbit(&sc->doorbells, DOORBELL_WCWR);
3745 				setbit(&sc->doorbells, DOORBELL_UDBWC);
3746 			} else {
3747 				device_printf(sc->dev,
3748 				    "couldn't enable write combining: %d\n",
3749 				    rc);
3750 			}
3751 
3752 			mode = is_t5(sc) ? V_STATMODE(0) : V_T6_STATMODE(0);
3753 			t4_write_reg(sc, A_SGE_STAT_CFG,
3754 			    V_STATSOURCE_T5(7) | mode);
3755 		}
3756 #endif
3757 	}
3758 	sc->iwt.wc_en = isset(&sc->doorbells, DOORBELL_UDBWC) ? 1 : 0;
3759 
3760 	return (0);
3761 }
3762 
3763 struct memwin_init {
3764 	uint32_t base;
3765 	uint32_t aperture;
3766 };
3767 
3768 static const struct memwin_init t4_memwin[NUM_MEMWIN] = {
3769 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3770 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3771 	{ MEMWIN2_BASE_T4, MEMWIN2_APERTURE_T4 }
3772 };
3773 
3774 static const struct memwin_init t5_memwin[NUM_MEMWIN] = {
3775 	{ MEMWIN0_BASE, MEMWIN0_APERTURE },
3776 	{ MEMWIN1_BASE, MEMWIN1_APERTURE },
3777 	{ MEMWIN2_BASE_T5, MEMWIN2_APERTURE_T5 },
3778 };
3779 
3780 static void
setup_memwin(struct adapter * sc)3781 setup_memwin(struct adapter *sc)
3782 {
3783 	const struct memwin_init *mw_init;
3784 	struct memwin *mw;
3785 	int i;
3786 	uint32_t bar0;
3787 
3788 	if (is_t4(sc)) {
3789 		/*
3790 		 * Read low 32b of bar0 indirectly via the hardware backdoor
3791 		 * mechanism.  Works from within PCI passthrough environments
3792 		 * too, where rman_get_start() can return a different value.  We
3793 		 * need to program the T4 memory window decoders with the actual
3794 		 * addresses that will be coming across the PCIe link.
3795 		 */
3796 		bar0 = t4_hw_pci_read_cfg4(sc, PCIR_BAR(0));
3797 		bar0 &= (uint32_t) PCIM_BAR_MEM_BASE;
3798 
3799 		mw_init = &t4_memwin[0];
3800 	} else {
3801 		/* T5+ use the relative offset inside the PCIe BAR */
3802 		bar0 = 0;
3803 
3804 		mw_init = &t5_memwin[0];
3805 	}
3806 
3807 	for (i = 0, mw = &sc->memwin[0]; i < NUM_MEMWIN; i++, mw_init++, mw++) {
3808 		if (!rw_initialized(&mw->mw_lock)) {
3809 			rw_init(&mw->mw_lock, "memory window access");
3810 			mw->mw_base = mw_init->base;
3811 			mw->mw_aperture = mw_init->aperture;
3812 			mw->mw_curpos = 0;
3813 		}
3814 		t4_write_reg(sc,
3815 		    PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, i),
3816 		    (mw->mw_base + bar0) | V_BIR(0) |
3817 		    V_WINDOW(ilog2(mw->mw_aperture) - 10));
3818 		rw_wlock(&mw->mw_lock);
3819 		position_memwin(sc, i, mw->mw_curpos);
3820 		rw_wunlock(&mw->mw_lock);
3821 	}
3822 
3823 	/* flush */
3824 	t4_read_reg(sc, PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_BASE_WIN, 2));
3825 }
3826 
3827 /*
3828  * Positions the memory window at the given address in the card's address space.
3829  * There are some alignment requirements and the actual position may be at an
3830  * address prior to the requested address.  mw->mw_curpos always has the actual
3831  * position of the window.
3832  */
3833 static void
position_memwin(struct adapter * sc,int idx,uint32_t addr)3834 position_memwin(struct adapter *sc, int idx, uint32_t addr)
3835 {
3836 	struct memwin *mw;
3837 	uint32_t pf;
3838 	uint32_t reg;
3839 
3840 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3841 	mw = &sc->memwin[idx];
3842 	rw_assert(&mw->mw_lock, RA_WLOCKED);
3843 
3844 	if (is_t4(sc)) {
3845 		pf = 0;
3846 		mw->mw_curpos = addr & ~0xf;	/* start must be 16B aligned */
3847 	} else {
3848 		pf = V_PFNUM(sc->pf);
3849 		mw->mw_curpos = addr & ~0x7f;	/* start must be 128B aligned */
3850 	}
3851 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, idx);
3852 	t4_write_reg(sc, reg, mw->mw_curpos | pf);
3853 	t4_read_reg(sc, reg);	/* flush */
3854 }
3855 
3856 int
rw_via_memwin(struct adapter * sc,int idx,uint32_t addr,uint32_t * val,int len,int rw)3857 rw_via_memwin(struct adapter *sc, int idx, uint32_t addr, uint32_t *val,
3858     int len, int rw)
3859 {
3860 	struct memwin *mw;
3861 	uint32_t mw_end, v;
3862 
3863 	MPASS(idx >= 0 && idx < NUM_MEMWIN);
3864 
3865 	/* Memory can only be accessed in naturally aligned 4 byte units */
3866 	if (addr & 3 || len & 3 || len <= 0)
3867 		return (EINVAL);
3868 
3869 	mw = &sc->memwin[idx];
3870 	while (len > 0) {
3871 		rw_rlock(&mw->mw_lock);
3872 		mw_end = mw->mw_curpos + mw->mw_aperture;
3873 		if (addr >= mw_end || addr < mw->mw_curpos) {
3874 			/* Will need to reposition the window */
3875 			if (!rw_try_upgrade(&mw->mw_lock)) {
3876 				rw_runlock(&mw->mw_lock);
3877 				rw_wlock(&mw->mw_lock);
3878 			}
3879 			rw_assert(&mw->mw_lock, RA_WLOCKED);
3880 			position_memwin(sc, idx, addr);
3881 			rw_downgrade(&mw->mw_lock);
3882 			mw_end = mw->mw_curpos + mw->mw_aperture;
3883 		}
3884 		rw_assert(&mw->mw_lock, RA_RLOCKED);
3885 		while (addr < mw_end && len > 0) {
3886 			if (rw == 0) {
3887 				v = t4_read_reg(sc, mw->mw_base + addr -
3888 				    mw->mw_curpos);
3889 				*val++ = le32toh(v);
3890 			} else {
3891 				v = *val++;
3892 				t4_write_reg(sc, mw->mw_base + addr -
3893 				    mw->mw_curpos, htole32(v));
3894 			}
3895 			addr += 4;
3896 			len -= 4;
3897 		}
3898 		rw_runlock(&mw->mw_lock);
3899 	}
3900 
3901 	return (0);
3902 }
3903 
3904 CTASSERT(M_TID_COOKIE == M_COOKIE);
3905 CTASSERT(MAX_ATIDS <= (M_TID_TID + 1));
3906 
3907 static void
t4_init_atid_table(struct adapter * sc)3908 t4_init_atid_table(struct adapter *sc)
3909 {
3910 	struct tid_info *t;
3911 	int i;
3912 
3913 	t = &sc->tids;
3914 	if (t->natids == 0)
3915 		return;
3916 
3917 	MPASS(t->atid_tab == NULL);
3918 
3919 	t->atid_tab = malloc(t->natids * sizeof(*t->atid_tab), M_CXGBE,
3920 	    M_ZERO | M_WAITOK);
3921 	mtx_init(&t->atid_lock, "atid lock", NULL, MTX_DEF);
3922 	t->afree = t->atid_tab;
3923 	t->atids_in_use = 0;
3924 	for (i = 1; i < t->natids; i++)
3925 		t->atid_tab[i - 1].next = &t->atid_tab[i];
3926 	t->atid_tab[t->natids - 1].next = NULL;
3927 }
3928 
3929 static void
t4_free_atid_table(struct adapter * sc)3930 t4_free_atid_table(struct adapter *sc)
3931 {
3932 	struct tid_info *t;
3933 
3934 	t = &sc->tids;
3935 
3936 	KASSERT(t->atids_in_use == 0,
3937 	    ("%s: %d atids still in use.", __func__, t->atids_in_use));
3938 
3939 	if (mtx_initialized(&t->atid_lock))
3940 		mtx_destroy(&t->atid_lock);
3941 	free(t->atid_tab, M_CXGBE);
3942 	t->atid_tab = NULL;
3943 }
3944 
3945 int
alloc_atid(struct adapter * sc,void * ctx)3946 alloc_atid(struct adapter *sc, void *ctx)
3947 {
3948 	struct tid_info *t = &sc->tids;
3949 	int atid = -1;
3950 
3951 	mtx_lock(&t->atid_lock);
3952 	if (t->afree) {
3953 		union aopen_entry *p = t->afree;
3954 
3955 		atid = p - t->atid_tab;
3956 		MPASS(atid <= M_TID_TID);
3957 		t->afree = p->next;
3958 		p->data = ctx;
3959 		t->atids_in_use++;
3960 	}
3961 	mtx_unlock(&t->atid_lock);
3962 	return (atid);
3963 }
3964 
3965 void *
lookup_atid(struct adapter * sc,int atid)3966 lookup_atid(struct adapter *sc, int atid)
3967 {
3968 	struct tid_info *t = &sc->tids;
3969 
3970 	return (t->atid_tab[atid].data);
3971 }
3972 
3973 void
free_atid(struct adapter * sc,int atid)3974 free_atid(struct adapter *sc, int atid)
3975 {
3976 	struct tid_info *t = &sc->tids;
3977 	union aopen_entry *p = &t->atid_tab[atid];
3978 
3979 	mtx_lock(&t->atid_lock);
3980 	p->next = t->afree;
3981 	t->afree = p;
3982 	t->atids_in_use--;
3983 	mtx_unlock(&t->atid_lock);
3984 }
3985 
3986 static void
queue_tid_release(struct adapter * sc,int tid)3987 queue_tid_release(struct adapter *sc, int tid)
3988 {
3989 
3990 	CXGBE_UNIMPLEMENTED("deferred tid release");
3991 }
3992 
3993 void
release_tid(struct adapter * sc,int tid,struct sge_wrq * ctrlq)3994 release_tid(struct adapter *sc, int tid, struct sge_wrq *ctrlq)
3995 {
3996 	struct wrqe *wr;
3997 	struct cpl_tid_release *req;
3998 
3999 	wr = alloc_wrqe(sizeof(*req), ctrlq);
4000 	if (wr == NULL) {
4001 		queue_tid_release(sc, tid);	/* defer */
4002 		return;
4003 	}
4004 	req = wrtod(wr);
4005 
4006 	INIT_TP_WR_MIT_CPL(req, CPL_TID_RELEASE, tid);
4007 
4008 	t4_wrq_tx(sc, wr);
4009 }
4010 
4011 static int
t4_range_cmp(const void * a,const void * b)4012 t4_range_cmp(const void *a, const void *b)
4013 {
4014 	return ((const struct t4_range *)a)->start -
4015 	       ((const struct t4_range *)b)->start;
4016 }
4017 
4018 /*
4019  * Verify that the memory range specified by the addr/len pair is valid within
4020  * the card's address space.
4021  */
4022 static int
validate_mem_range(struct adapter * sc,uint32_t addr,uint32_t len)4023 validate_mem_range(struct adapter *sc, uint32_t addr, uint32_t len)
4024 {
4025 	struct t4_range mem_ranges[4], *r, *next;
4026 	uint32_t em, addr_len;
4027 	int i, n, remaining;
4028 
4029 	/* Memory can only be accessed in naturally aligned 4 byte units */
4030 	if (addr & 3 || len & 3 || len == 0)
4031 		return (EINVAL);
4032 
4033 	/* Enabled memories */
4034 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4035 
4036 	r = &mem_ranges[0];
4037 	n = 0;
4038 	bzero(r, sizeof(mem_ranges));
4039 	if (em & F_EDRAM0_ENABLE) {
4040 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4041 		r->size = G_EDRAM0_SIZE(addr_len) << 20;
4042 		if (r->size > 0) {
4043 			r->start = G_EDRAM0_BASE(addr_len) << 20;
4044 			if (addr >= r->start &&
4045 			    addr + len <= r->start + r->size)
4046 				return (0);
4047 			r++;
4048 			n++;
4049 		}
4050 	}
4051 	if (em & F_EDRAM1_ENABLE) {
4052 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4053 		r->size = G_EDRAM1_SIZE(addr_len) << 20;
4054 		if (r->size > 0) {
4055 			r->start = G_EDRAM1_BASE(addr_len) << 20;
4056 			if (addr >= r->start &&
4057 			    addr + len <= r->start + r->size)
4058 				return (0);
4059 			r++;
4060 			n++;
4061 		}
4062 	}
4063 	if (em & F_EXT_MEM_ENABLE) {
4064 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4065 		r->size = G_EXT_MEM_SIZE(addr_len) << 20;
4066 		if (r->size > 0) {
4067 			r->start = G_EXT_MEM_BASE(addr_len) << 20;
4068 			if (addr >= r->start &&
4069 			    addr + len <= r->start + r->size)
4070 				return (0);
4071 			r++;
4072 			n++;
4073 		}
4074 	}
4075 	if (is_t5(sc) && em & F_EXT_MEM1_ENABLE) {
4076 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4077 		r->size = G_EXT_MEM1_SIZE(addr_len) << 20;
4078 		if (r->size > 0) {
4079 			r->start = G_EXT_MEM1_BASE(addr_len) << 20;
4080 			if (addr >= r->start &&
4081 			    addr + len <= r->start + r->size)
4082 				return (0);
4083 			r++;
4084 			n++;
4085 		}
4086 	}
4087 	MPASS(n <= nitems(mem_ranges));
4088 
4089 	if (n > 1) {
4090 		/* Sort and merge the ranges. */
4091 		qsort(mem_ranges, n, sizeof(struct t4_range), t4_range_cmp);
4092 
4093 		/* Start from index 0 and examine the next n - 1 entries. */
4094 		r = &mem_ranges[0];
4095 		for (remaining = n - 1; remaining > 0; remaining--, r++) {
4096 
4097 			MPASS(r->size > 0);	/* r is a valid entry. */
4098 			next = r + 1;
4099 			MPASS(next->size > 0);	/* and so is the next one. */
4100 
4101 			while (r->start + r->size >= next->start) {
4102 				/* Merge the next one into the current entry. */
4103 				r->size = max(r->start + r->size,
4104 				    next->start + next->size) - r->start;
4105 				n--;	/* One fewer entry in total. */
4106 				if (--remaining == 0)
4107 					goto done;	/* short circuit */
4108 				next++;
4109 			}
4110 			if (next != r + 1) {
4111 				/*
4112 				 * Some entries were merged into r and next
4113 				 * points to the first valid entry that couldn't
4114 				 * be merged.
4115 				 */
4116 				MPASS(next->size > 0);	/* must be valid */
4117 				memcpy(r + 1, next, remaining * sizeof(*r));
4118 #ifdef INVARIANTS
4119 				/*
4120 				 * This so that the foo->size assertion in the
4121 				 * next iteration of the loop do the right
4122 				 * thing for entries that were pulled up and are
4123 				 * no longer valid.
4124 				 */
4125 				MPASS(n < nitems(mem_ranges));
4126 				bzero(&mem_ranges[n], (nitems(mem_ranges) - n) *
4127 				    sizeof(struct t4_range));
4128 #endif
4129 			}
4130 		}
4131 done:
4132 		/* Done merging the ranges. */
4133 		MPASS(n > 0);
4134 		r = &mem_ranges[0];
4135 		for (i = 0; i < n; i++, r++) {
4136 			if (addr >= r->start &&
4137 			    addr + len <= r->start + r->size)
4138 				return (0);
4139 		}
4140 	}
4141 
4142 	return (EFAULT);
4143 }
4144 
4145 static int
fwmtype_to_hwmtype(int mtype)4146 fwmtype_to_hwmtype(int mtype)
4147 {
4148 
4149 	switch (mtype) {
4150 	case FW_MEMTYPE_EDC0:
4151 		return (MEM_EDC0);
4152 	case FW_MEMTYPE_EDC1:
4153 		return (MEM_EDC1);
4154 	case FW_MEMTYPE_EXTMEM:
4155 		return (MEM_MC0);
4156 	case FW_MEMTYPE_EXTMEM1:
4157 		return (MEM_MC1);
4158 	default:
4159 		panic("%s: cannot translate fw mtype %d.", __func__, mtype);
4160 	}
4161 }
4162 
4163 /*
4164  * Verify that the memory range specified by the memtype/offset/len pair is
4165  * valid and lies entirely within the memtype specified.  The global address of
4166  * the start of the range is returned in addr.
4167  */
4168 static int
validate_mt_off_len(struct adapter * sc,int mtype,uint32_t off,uint32_t len,uint32_t * addr)4169 validate_mt_off_len(struct adapter *sc, int mtype, uint32_t off, uint32_t len,
4170     uint32_t *addr)
4171 {
4172 	uint32_t em, addr_len, maddr;
4173 
4174 	/* Memory can only be accessed in naturally aligned 4 byte units */
4175 	if (off & 3 || len & 3 || len == 0)
4176 		return (EINVAL);
4177 
4178 	em = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
4179 	switch (fwmtype_to_hwmtype(mtype)) {
4180 	case MEM_EDC0:
4181 		if (!(em & F_EDRAM0_ENABLE))
4182 			return (EINVAL);
4183 		addr_len = t4_read_reg(sc, A_MA_EDRAM0_BAR);
4184 		maddr = G_EDRAM0_BASE(addr_len) << 20;
4185 		break;
4186 	case MEM_EDC1:
4187 		if (!(em & F_EDRAM1_ENABLE))
4188 			return (EINVAL);
4189 		addr_len = t4_read_reg(sc, A_MA_EDRAM1_BAR);
4190 		maddr = G_EDRAM1_BASE(addr_len) << 20;
4191 		break;
4192 	case MEM_MC:
4193 		if (!(em & F_EXT_MEM_ENABLE))
4194 			return (EINVAL);
4195 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
4196 		maddr = G_EXT_MEM_BASE(addr_len) << 20;
4197 		break;
4198 	case MEM_MC1:
4199 		if (!is_t5(sc) || !(em & F_EXT_MEM1_ENABLE))
4200 			return (EINVAL);
4201 		addr_len = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
4202 		maddr = G_EXT_MEM1_BASE(addr_len) << 20;
4203 		break;
4204 	default:
4205 		return (EINVAL);
4206 	}
4207 
4208 	*addr = maddr + off;	/* global address */
4209 	return (validate_mem_range(sc, *addr, len));
4210 }
4211 
4212 static int
fixup_devlog_params(struct adapter * sc)4213 fixup_devlog_params(struct adapter *sc)
4214 {
4215 	struct devlog_params *dparams = &sc->params.devlog;
4216 	int rc;
4217 
4218 	rc = validate_mt_off_len(sc, dparams->memtype, dparams->start,
4219 	    dparams->size, &dparams->addr);
4220 
4221 	return (rc);
4222 }
4223 
4224 static void
update_nirq(struct intrs_and_queues * iaq,int nports)4225 update_nirq(struct intrs_and_queues *iaq, int nports)
4226 {
4227 
4228 	iaq->nirq = T4_EXTRA_INTR;
4229 	iaq->nirq += nports * max(iaq->nrxq, iaq->nnmrxq);
4230 	iaq->nirq += nports * iaq->nofldrxq;
4231 	iaq->nirq += nports * (iaq->num_vis - 1) *
4232 	    max(iaq->nrxq_vi, iaq->nnmrxq_vi);
4233 	iaq->nirq += nports * (iaq->num_vis - 1) * iaq->nofldrxq_vi;
4234 }
4235 
4236 /*
4237  * Adjust requirements to fit the number of interrupts available.
4238  */
4239 static void
calculate_iaq(struct adapter * sc,struct intrs_and_queues * iaq,int itype,int navail)4240 calculate_iaq(struct adapter *sc, struct intrs_and_queues *iaq, int itype,
4241     int navail)
4242 {
4243 	int old_nirq;
4244 	const int nports = sc->params.nports;
4245 
4246 	MPASS(nports > 0);
4247 	MPASS(navail > 0);
4248 
4249 	bzero(iaq, sizeof(*iaq));
4250 	iaq->intr_type = itype;
4251 	iaq->num_vis = t4_num_vis;
4252 	iaq->ntxq = t4_ntxq;
4253 	iaq->ntxq_vi = t4_ntxq_vi;
4254 	iaq->nrxq = t4_nrxq;
4255 	iaq->nrxq_vi = t4_nrxq_vi;
4256 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
4257 	if (is_offload(sc) || is_ethoffload(sc)) {
4258 		iaq->nofldtxq = t4_nofldtxq;
4259 		iaq->nofldtxq_vi = t4_nofldtxq_vi;
4260 	}
4261 #endif
4262 #ifdef TCP_OFFLOAD
4263 	if (is_offload(sc)) {
4264 		iaq->nofldrxq = t4_nofldrxq;
4265 		iaq->nofldrxq_vi = t4_nofldrxq_vi;
4266 	}
4267 #endif
4268 #ifdef DEV_NETMAP
4269 	if (t4_native_netmap & NN_MAIN_VI) {
4270 		iaq->nnmtxq = t4_nnmtxq;
4271 		iaq->nnmrxq = t4_nnmrxq;
4272 	}
4273 	if (t4_native_netmap & NN_EXTRA_VI) {
4274 		iaq->nnmtxq_vi = t4_nnmtxq_vi;
4275 		iaq->nnmrxq_vi = t4_nnmrxq_vi;
4276 	}
4277 #endif
4278 
4279 	update_nirq(iaq, nports);
4280 	if (iaq->nirq <= navail &&
4281 	    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4282 		/*
4283 		 * This is the normal case -- there are enough interrupts for
4284 		 * everything.
4285 		 */
4286 		goto done;
4287 	}
4288 
4289 	/*
4290 	 * If extra VIs have been configured try reducing their count and see if
4291 	 * that works.
4292 	 */
4293 	while (iaq->num_vis > 1) {
4294 		iaq->num_vis--;
4295 		update_nirq(iaq, nports);
4296 		if (iaq->nirq <= navail &&
4297 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4298 			device_printf(sc->dev, "virtual interfaces per port "
4299 			    "reduced to %d from %d.  nrxq=%u, nofldrxq=%u, "
4300 			    "nrxq_vi=%u nofldrxq_vi=%u, nnmrxq_vi=%u.  "
4301 			    "itype %d, navail %u, nirq %d.\n",
4302 			    iaq->num_vis, t4_num_vis, iaq->nrxq, iaq->nofldrxq,
4303 			    iaq->nrxq_vi, iaq->nofldrxq_vi, iaq->nnmrxq_vi,
4304 			    itype, navail, iaq->nirq);
4305 			goto done;
4306 		}
4307 	}
4308 
4309 	/*
4310 	 * Extra VIs will not be created.  Log a message if they were requested.
4311 	 */
4312 	MPASS(iaq->num_vis == 1);
4313 	iaq->ntxq_vi = iaq->nrxq_vi = 0;
4314 	iaq->nofldtxq_vi = iaq->nofldrxq_vi = 0;
4315 	iaq->nnmtxq_vi = iaq->nnmrxq_vi = 0;
4316 	if (iaq->num_vis != t4_num_vis) {
4317 		device_printf(sc->dev, "extra virtual interfaces disabled.  "
4318 		    "nrxq=%u, nofldrxq=%u, nrxq_vi=%u nofldrxq_vi=%u, "
4319 		    "nnmrxq_vi=%u.  itype %d, navail %u, nirq %d.\n",
4320 		    iaq->nrxq, iaq->nofldrxq, iaq->nrxq_vi, iaq->nofldrxq_vi,
4321 		    iaq->nnmrxq_vi, itype, navail, iaq->nirq);
4322 	}
4323 
4324 	/*
4325 	 * Keep reducing the number of NIC rx queues to the next lower power of
4326 	 * 2 (for even RSS distribution) and halving the TOE rx queues and see
4327 	 * if that works.
4328 	 */
4329 	do {
4330 		if (iaq->nrxq > 1) {
4331 			do {
4332 				iaq->nrxq--;
4333 			} while (!powerof2(iaq->nrxq));
4334 			if (iaq->nnmrxq > iaq->nrxq)
4335 				iaq->nnmrxq = iaq->nrxq;
4336 		}
4337 		if (iaq->nofldrxq > 1)
4338 			iaq->nofldrxq >>= 1;
4339 
4340 		old_nirq = iaq->nirq;
4341 		update_nirq(iaq, nports);
4342 		if (iaq->nirq <= navail &&
4343 		    (itype != INTR_MSI || powerof2(iaq->nirq))) {
4344 			device_printf(sc->dev, "running with reduced number of "
4345 			    "rx queues because of shortage of interrupts.  "
4346 			    "nrxq=%u, nofldrxq=%u.  "
4347 			    "itype %d, navail %u, nirq %d.\n", iaq->nrxq,
4348 			    iaq->nofldrxq, itype, navail, iaq->nirq);
4349 			goto done;
4350 		}
4351 	} while (old_nirq != iaq->nirq);
4352 
4353 	/* One interrupt for everything.  Ugh. */
4354 	device_printf(sc->dev, "running with minimal number of queues.  "
4355 	    "itype %d, navail %u.\n", itype, navail);
4356 	iaq->nirq = 1;
4357 	iaq->nrxq = 1;
4358 	iaq->ntxq = 1;
4359 	if (iaq->nofldrxq > 0) {
4360 		iaq->nofldrxq = 1;
4361 		iaq->nofldtxq = 1;
4362 	}
4363 	iaq->nnmtxq = 0;
4364 	iaq->nnmrxq = 0;
4365 done:
4366 	MPASS(iaq->num_vis > 0);
4367 	if (iaq->num_vis > 1) {
4368 		MPASS(iaq->nrxq_vi > 0);
4369 		MPASS(iaq->ntxq_vi > 0);
4370 	}
4371 	MPASS(iaq->nirq > 0);
4372 	MPASS(iaq->nrxq > 0);
4373 	MPASS(iaq->ntxq > 0);
4374 	if (itype == INTR_MSI) {
4375 		MPASS(powerof2(iaq->nirq));
4376 	}
4377 }
4378 
4379 static int
cfg_itype_and_nqueues(struct adapter * sc,struct intrs_and_queues * iaq)4380 cfg_itype_and_nqueues(struct adapter *sc, struct intrs_and_queues *iaq)
4381 {
4382 	int rc, itype, navail, nalloc;
4383 
4384 	for (itype = INTR_MSIX; itype; itype >>= 1) {
4385 
4386 		if ((itype & t4_intr_types) == 0)
4387 			continue;	/* not allowed */
4388 
4389 		if (itype == INTR_MSIX)
4390 			navail = pci_msix_count(sc->dev);
4391 		else if (itype == INTR_MSI)
4392 			navail = pci_msi_count(sc->dev);
4393 		else
4394 			navail = 1;
4395 restart:
4396 		if (navail == 0)
4397 			continue;
4398 
4399 		calculate_iaq(sc, iaq, itype, navail);
4400 		nalloc = iaq->nirq;
4401 		rc = 0;
4402 		if (itype == INTR_MSIX)
4403 			rc = pci_alloc_msix(sc->dev, &nalloc);
4404 		else if (itype == INTR_MSI)
4405 			rc = pci_alloc_msi(sc->dev, &nalloc);
4406 
4407 		if (rc == 0 && nalloc > 0) {
4408 			if (nalloc == iaq->nirq)
4409 				return (0);
4410 
4411 			/*
4412 			 * Didn't get the number requested.  Use whatever number
4413 			 * the kernel is willing to allocate.
4414 			 */
4415 			device_printf(sc->dev, "fewer vectors than requested, "
4416 			    "type=%d, req=%d, rcvd=%d; will downshift req.\n",
4417 			    itype, iaq->nirq, nalloc);
4418 			pci_release_msi(sc->dev);
4419 			navail = nalloc;
4420 			goto restart;
4421 		}
4422 
4423 		device_printf(sc->dev,
4424 		    "failed to allocate vectors:%d, type=%d, req=%d, rcvd=%d\n",
4425 		    itype, rc, iaq->nirq, nalloc);
4426 	}
4427 
4428 	device_printf(sc->dev,
4429 	    "failed to find a usable interrupt type.  "
4430 	    "allowed=%d, msi-x=%d, msi=%d, intx=1", t4_intr_types,
4431 	    pci_msix_count(sc->dev), pci_msi_count(sc->dev));
4432 
4433 	return (ENXIO);
4434 }
4435 
4436 #define FW_VERSION(chip) ( \
4437     V_FW_HDR_FW_VER_MAJOR(chip##FW_VERSION_MAJOR) | \
4438     V_FW_HDR_FW_VER_MINOR(chip##FW_VERSION_MINOR) | \
4439     V_FW_HDR_FW_VER_MICRO(chip##FW_VERSION_MICRO) | \
4440     V_FW_HDR_FW_VER_BUILD(chip##FW_VERSION_BUILD))
4441 #define FW_INTFVER(chip, intf) (chip##FW_HDR_INTFVER_##intf)
4442 
4443 /* Just enough of fw_hdr to cover all version info. */
4444 struct fw_h {
4445 	__u8	ver;
4446 	__u8	chip;
4447 	__be16	len512;
4448 	__be32	fw_ver;
4449 	__be32	tp_microcode_ver;
4450 	__u8	intfver_nic;
4451 	__u8	intfver_vnic;
4452 	__u8	intfver_ofld;
4453 	__u8	intfver_ri;
4454 	__u8	intfver_iscsipdu;
4455 	__u8	intfver_iscsi;
4456 	__u8	intfver_fcoepdu;
4457 	__u8	intfver_fcoe;
4458 };
4459 /* Spot check a couple of fields. */
4460 CTASSERT(offsetof(struct fw_h, fw_ver) == offsetof(struct fw_hdr, fw_ver));
4461 CTASSERT(offsetof(struct fw_h, intfver_nic) == offsetof(struct fw_hdr, intfver_nic));
4462 CTASSERT(offsetof(struct fw_h, intfver_fcoe) == offsetof(struct fw_hdr, intfver_fcoe));
4463 
4464 struct fw_info {
4465 	uint8_t chip;
4466 	char *kld_name;
4467 	char *fw_mod_name;
4468 	struct fw_h fw_h;
4469 } fw_info[] = {
4470 	{
4471 		.chip = CHELSIO_T4,
4472 		.kld_name = "t4fw_cfg",
4473 		.fw_mod_name = "t4fw",
4474 		.fw_h = {
4475 			.chip = FW_HDR_CHIP_T4,
4476 			.fw_ver = htobe32(FW_VERSION(T4)),
4477 			.intfver_nic = FW_INTFVER(T4, NIC),
4478 			.intfver_vnic = FW_INTFVER(T4, VNIC),
4479 			.intfver_ofld = FW_INTFVER(T4, OFLD),
4480 			.intfver_ri = FW_INTFVER(T4, RI),
4481 			.intfver_iscsipdu = FW_INTFVER(T4, ISCSIPDU),
4482 			.intfver_iscsi = FW_INTFVER(T4, ISCSI),
4483 			.intfver_fcoepdu = FW_INTFVER(T4, FCOEPDU),
4484 			.intfver_fcoe = FW_INTFVER(T4, FCOE),
4485 		},
4486 	}, {
4487 		.chip = CHELSIO_T5,
4488 		.kld_name = "t5fw_cfg",
4489 		.fw_mod_name = "t5fw",
4490 		.fw_h = {
4491 			.chip = FW_HDR_CHIP_T5,
4492 			.fw_ver = htobe32(FW_VERSION(T5)),
4493 			.intfver_nic = FW_INTFVER(T5, NIC),
4494 			.intfver_vnic = FW_INTFVER(T5, VNIC),
4495 			.intfver_ofld = FW_INTFVER(T5, OFLD),
4496 			.intfver_ri = FW_INTFVER(T5, RI),
4497 			.intfver_iscsipdu = FW_INTFVER(T5, ISCSIPDU),
4498 			.intfver_iscsi = FW_INTFVER(T5, ISCSI),
4499 			.intfver_fcoepdu = FW_INTFVER(T5, FCOEPDU),
4500 			.intfver_fcoe = FW_INTFVER(T5, FCOE),
4501 		},
4502 	}, {
4503 		.chip = CHELSIO_T6,
4504 		.kld_name = "t6fw_cfg",
4505 		.fw_mod_name = "t6fw",
4506 		.fw_h = {
4507 			.chip = FW_HDR_CHIP_T6,
4508 			.fw_ver = htobe32(FW_VERSION(T6)),
4509 			.intfver_nic = FW_INTFVER(T6, NIC),
4510 			.intfver_vnic = FW_INTFVER(T6, VNIC),
4511 			.intfver_ofld = FW_INTFVER(T6, OFLD),
4512 			.intfver_ri = FW_INTFVER(T6, RI),
4513 			.intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4514 			.intfver_iscsi = FW_INTFVER(T6, ISCSI),
4515 			.intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4516 			.intfver_fcoe = FW_INTFVER(T6, FCOE),
4517 		},
4518 	}
4519 };
4520 
4521 static struct fw_info *
find_fw_info(int chip)4522 find_fw_info(int chip)
4523 {
4524 	int i;
4525 
4526 	for (i = 0; i < nitems(fw_info); i++) {
4527 		if (fw_info[i].chip == chip)
4528 			return (&fw_info[i]);
4529 	}
4530 	return (NULL);
4531 }
4532 
4533 /*
4534  * Is the given firmware API compatible with the one the driver was compiled
4535  * with?
4536  */
4537 static int
fw_compatible(const struct fw_h * hdr1,const struct fw_h * hdr2)4538 fw_compatible(const struct fw_h *hdr1, const struct fw_h *hdr2)
4539 {
4540 
4541 	/* short circuit if it's the exact same firmware version */
4542 	if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
4543 		return (1);
4544 
4545 	/*
4546 	 * XXX: Is this too conservative?  Perhaps I should limit this to the
4547 	 * features that are supported in the driver.
4548 	 */
4549 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
4550 	if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
4551 	    SAME_INTF(ofld) && SAME_INTF(ri) && SAME_INTF(iscsipdu) &&
4552 	    SAME_INTF(iscsi) && SAME_INTF(fcoepdu) && SAME_INTF(fcoe))
4553 		return (1);
4554 #undef SAME_INTF
4555 
4556 	return (0);
4557 }
4558 
4559 static int
load_fw_module(struct adapter * sc,const struct firmware ** dcfg,const struct firmware ** fw)4560 load_fw_module(struct adapter *sc, const struct firmware **dcfg,
4561     const struct firmware **fw)
4562 {
4563 	struct fw_info *fw_info;
4564 
4565 	*dcfg = NULL;
4566 	if (fw != NULL)
4567 		*fw = NULL;
4568 
4569 	fw_info = find_fw_info(chip_id(sc));
4570 	if (fw_info == NULL) {
4571 		device_printf(sc->dev,
4572 		    "unable to look up firmware information for chip %d.\n",
4573 		    chip_id(sc));
4574 		return (EINVAL);
4575 	}
4576 
4577 	*dcfg = firmware_get(fw_info->kld_name);
4578 	if (*dcfg != NULL) {
4579 		if (fw != NULL)
4580 			*fw = firmware_get(fw_info->fw_mod_name);
4581 		return (0);
4582 	}
4583 
4584 	return (ENOENT);
4585 }
4586 
4587 static void
unload_fw_module(struct adapter * sc,const struct firmware * dcfg,const struct firmware * fw)4588 unload_fw_module(struct adapter *sc, const struct firmware *dcfg,
4589     const struct firmware *fw)
4590 {
4591 
4592 	if (fw != NULL)
4593 		firmware_put(fw, FIRMWARE_UNLOAD);
4594 	if (dcfg != NULL)
4595 		firmware_put(dcfg, FIRMWARE_UNLOAD);
4596 }
4597 
4598 /*
4599  * Return values:
4600  * 0 means no firmware install attempted.
4601  * ERESTART means a firmware install was attempted and was successful.
4602  * +ve errno means a firmware install was attempted but failed.
4603  */
4604 static int
install_kld_firmware(struct adapter * sc,struct fw_h * card_fw,const struct fw_h * drv_fw,const char * reason,int * already)4605 install_kld_firmware(struct adapter *sc, struct fw_h *card_fw,
4606     const struct fw_h *drv_fw, const char *reason, int *already)
4607 {
4608 	const struct firmware *cfg, *fw;
4609 	const uint32_t c = be32toh(card_fw->fw_ver);
4610 	uint32_t d, k;
4611 	int rc, fw_install;
4612 	struct fw_h bundled_fw;
4613 	bool load_attempted;
4614 
4615 	cfg = fw = NULL;
4616 	load_attempted = false;
4617 	fw_install = t4_fw_install < 0 ? -t4_fw_install : t4_fw_install;
4618 
4619 	memcpy(&bundled_fw, drv_fw, sizeof(bundled_fw));
4620 	if (t4_fw_install < 0) {
4621 		rc = load_fw_module(sc, &cfg, &fw);
4622 		if (rc != 0 || fw == NULL) {
4623 			device_printf(sc->dev,
4624 			    "failed to load firmware module: %d. cfg %p, fw %p;"
4625 			    " will use compiled-in firmware version for"
4626 			    "hw.cxgbe.fw_install checks.\n",
4627 			    rc, cfg, fw);
4628 		} else {
4629 			memcpy(&bundled_fw, fw->data, sizeof(bundled_fw));
4630 		}
4631 		load_attempted = true;
4632 	}
4633 	d = be32toh(bundled_fw.fw_ver);
4634 
4635 	if (reason != NULL)
4636 		goto install;
4637 
4638 	if ((sc->flags & FW_OK) == 0) {
4639 
4640 		if (c == 0xffffffff) {
4641 			reason = "missing";
4642 			goto install;
4643 		}
4644 
4645 		rc = 0;
4646 		goto done;
4647 	}
4648 
4649 	if (!fw_compatible(card_fw, &bundled_fw)) {
4650 		reason = "incompatible or unusable";
4651 		goto install;
4652 	}
4653 
4654 	if (d > c) {
4655 		reason = "older than the version bundled with this driver";
4656 		goto install;
4657 	}
4658 
4659 	if (fw_install == 2 && d != c) {
4660 		reason = "different than the version bundled with this driver";
4661 		goto install;
4662 	}
4663 
4664 	/* No reason to do anything to the firmware already on the card. */
4665 	rc = 0;
4666 	goto done;
4667 
4668 install:
4669 	rc = 0;
4670 	if ((*already)++)
4671 		goto done;
4672 
4673 	if (fw_install == 0) {
4674 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4675 		    "but the driver is prohibited from installing a firmware "
4676 		    "on the card.\n",
4677 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4678 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4679 
4680 		goto done;
4681 	}
4682 
4683 	/*
4684 	 * We'll attempt to install a firmware.  Load the module first (if it
4685 	 * hasn't been loaded already).
4686 	 */
4687 	if (!load_attempted) {
4688 		rc = load_fw_module(sc, &cfg, &fw);
4689 		if (rc != 0 || fw == NULL) {
4690 			device_printf(sc->dev,
4691 			    "failed to load firmware module: %d. cfg %p, fw %p\n",
4692 			    rc, cfg, fw);
4693 			/* carry on */
4694 		}
4695 	}
4696 	if (fw == NULL) {
4697 		device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4698 		    "but the driver cannot take corrective action because it "
4699 		    "is unable to load the firmware module.\n",
4700 		    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4701 		    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason);
4702 		rc = sc->flags & FW_OK ? 0 : ENOENT;
4703 		goto done;
4704 	}
4705 	k = be32toh(((const struct fw_hdr *)fw->data)->fw_ver);
4706 	if (k != d) {
4707 		MPASS(t4_fw_install > 0);
4708 		device_printf(sc->dev,
4709 		    "firmware in KLD (%u.%u.%u.%u) is not what the driver was "
4710 		    "expecting (%u.%u.%u.%u) and will not be used.\n",
4711 		    G_FW_HDR_FW_VER_MAJOR(k), G_FW_HDR_FW_VER_MINOR(k),
4712 		    G_FW_HDR_FW_VER_MICRO(k), G_FW_HDR_FW_VER_BUILD(k),
4713 		    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4714 		    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4715 		rc = sc->flags & FW_OK ? 0 : EINVAL;
4716 		goto done;
4717 	}
4718 
4719 	device_printf(sc->dev, "firmware on card (%u.%u.%u.%u) is %s, "
4720 	    "installing firmware %u.%u.%u.%u on card.\n",
4721 	    G_FW_HDR_FW_VER_MAJOR(c), G_FW_HDR_FW_VER_MINOR(c),
4722 	    G_FW_HDR_FW_VER_MICRO(c), G_FW_HDR_FW_VER_BUILD(c), reason,
4723 	    G_FW_HDR_FW_VER_MAJOR(d), G_FW_HDR_FW_VER_MINOR(d),
4724 	    G_FW_HDR_FW_VER_MICRO(d), G_FW_HDR_FW_VER_BUILD(d));
4725 
4726 	rc = -t4_fw_upgrade(sc, sc->mbox, fw->data, fw->datasize, 0);
4727 	if (rc != 0) {
4728 		device_printf(sc->dev, "failed to install firmware: %d\n", rc);
4729 	} else {
4730 		/* Installed successfully, update the cached header too. */
4731 		rc = ERESTART;
4732 		memcpy(card_fw, fw->data, sizeof(*card_fw));
4733 	}
4734 done:
4735 	unload_fw_module(sc, cfg, fw);
4736 
4737 	return (rc);
4738 }
4739 
4740 /*
4741  * Establish contact with the firmware and attempt to become the master driver.
4742  *
4743  * A firmware will be installed to the card if needed (if the driver is allowed
4744  * to do so).
4745  */
4746 static int
contact_firmware(struct adapter * sc)4747 contact_firmware(struct adapter *sc)
4748 {
4749 	int rc, already = 0;
4750 	enum dev_state state;
4751 	struct fw_info *fw_info;
4752 	struct fw_hdr *card_fw;		/* fw on the card */
4753 	const struct fw_h *drv_fw;
4754 
4755 	fw_info = find_fw_info(chip_id(sc));
4756 	if (fw_info == NULL) {
4757 		device_printf(sc->dev,
4758 		    "unable to look up firmware information for chip %d.\n",
4759 		    chip_id(sc));
4760 		return (EINVAL);
4761 	}
4762 	drv_fw = &fw_info->fw_h;
4763 
4764 	/* Read the header of the firmware on the card */
4765 	card_fw = malloc(sizeof(*card_fw), M_CXGBE, M_ZERO | M_WAITOK);
4766 restart:
4767 	rc = -t4_get_fw_hdr(sc, card_fw);
4768 	if (rc != 0) {
4769 		device_printf(sc->dev,
4770 		    "unable to read firmware header from card's flash: %d\n",
4771 		    rc);
4772 		goto done;
4773 	}
4774 
4775 	rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw, NULL,
4776 	    &already);
4777 	if (rc == ERESTART)
4778 		goto restart;
4779 	if (rc != 0)
4780 		goto done;
4781 
4782 	rc = t4_fw_hello(sc, sc->mbox, sc->mbox, MASTER_MAY, &state);
4783 	if (rc < 0 || state == DEV_STATE_ERR) {
4784 		rc = -rc;
4785 		device_printf(sc->dev,
4786 		    "failed to connect to the firmware: %d, %d.  "
4787 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4788 #if 0
4789 		if (install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4790 		    "not responding properly to HELLO", &already) == ERESTART)
4791 			goto restart;
4792 #endif
4793 		goto done;
4794 	}
4795 	MPASS(be32toh(card_fw->flags) & FW_HDR_FLAGS_RESET_HALT);
4796 	sc->flags |= FW_OK;	/* The firmware responded to the FW_HELLO. */
4797 
4798 	if (rc == sc->pf) {
4799 		sc->flags |= MASTER_PF;
4800 		rc = install_kld_firmware(sc, (struct fw_h *)card_fw, drv_fw,
4801 		    NULL, &already);
4802 		if (rc == ERESTART)
4803 			rc = 0;
4804 		else if (rc != 0)
4805 			goto done;
4806 	} else if (state == DEV_STATE_UNINIT) {
4807 		/*
4808 		 * We didn't get to be the master so we definitely won't be
4809 		 * configuring the chip.  It's a bug if someone else hasn't
4810 		 * configured it already.
4811 		 */
4812 		device_printf(sc->dev, "couldn't be master(%d), "
4813 		    "device not already initialized either(%d).  "
4814 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4815 		rc = EPROTO;
4816 		goto done;
4817 	} else {
4818 		/*
4819 		 * Some other PF is the master and has configured the chip.
4820 		 * This is allowed but untested.
4821 		 */
4822 		device_printf(sc->dev, "PF%d is master, device state %d.  "
4823 		    "PCIE_FW 0x%08x\n", rc, state, t4_read_reg(sc, A_PCIE_FW));
4824 		snprintf(sc->cfg_file, sizeof(sc->cfg_file), "pf%d", rc);
4825 		sc->cfcsum = 0;
4826 		rc = 0;
4827 	}
4828 done:
4829 	if (rc != 0 && sc->flags & FW_OK) {
4830 		t4_fw_bye(sc, sc->mbox);
4831 		sc->flags &= ~FW_OK;
4832 	}
4833 	free(card_fw, M_CXGBE);
4834 	return (rc);
4835 }
4836 
4837 static int
copy_cfg_file_to_card(struct adapter * sc,char * cfg_file,uint32_t mtype,uint32_t moff)4838 copy_cfg_file_to_card(struct adapter *sc, char *cfg_file,
4839     uint32_t mtype, uint32_t moff)
4840 {
4841 	struct fw_info *fw_info;
4842 	const struct firmware *dcfg, *rcfg = NULL;
4843 	const uint32_t *cfdata;
4844 	uint32_t cflen, addr;
4845 	int rc;
4846 
4847 	load_fw_module(sc, &dcfg, NULL);
4848 
4849 	/* Card specific interpretation of "default". */
4850 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4851 		if (pci_get_device(sc->dev) == 0x440a)
4852 			snprintf(cfg_file, sizeof(t4_cfg_file), UWIRE_CF);
4853 		if (is_fpga(sc))
4854 			snprintf(cfg_file, sizeof(t4_cfg_file), FPGA_CF);
4855 	}
4856 
4857 	if (strncmp(cfg_file, DEFAULT_CF, sizeof(t4_cfg_file)) == 0) {
4858 		if (dcfg == NULL) {
4859 			device_printf(sc->dev,
4860 			    "KLD with default config is not available.\n");
4861 			rc = ENOENT;
4862 			goto done;
4863 		}
4864 		cfdata = dcfg->data;
4865 		cflen = dcfg->datasize & ~3;
4866 	} else {
4867 		char s[32];
4868 
4869 		fw_info = find_fw_info(chip_id(sc));
4870 		if (fw_info == NULL) {
4871 			device_printf(sc->dev,
4872 			    "unable to look up firmware information for chip %d.\n",
4873 			    chip_id(sc));
4874 			rc = EINVAL;
4875 			goto done;
4876 		}
4877 		snprintf(s, sizeof(s), "%s_%s", fw_info->kld_name, cfg_file);
4878 
4879 		rcfg = firmware_get(s);
4880 		if (rcfg == NULL) {
4881 			device_printf(sc->dev,
4882 			    "unable to load module \"%s\" for configuration "
4883 			    "profile \"%s\".\n", s, cfg_file);
4884 			rc = ENOENT;
4885 			goto done;
4886 		}
4887 		cfdata = rcfg->data;
4888 		cflen = rcfg->datasize & ~3;
4889 	}
4890 
4891 	if (cflen > FLASH_CFG_MAX_SIZE) {
4892 		device_printf(sc->dev,
4893 		    "config file too long (%d, max allowed is %d).\n",
4894 		    cflen, FLASH_CFG_MAX_SIZE);
4895 		rc = EINVAL;
4896 		goto done;
4897 	}
4898 
4899 	rc = validate_mt_off_len(sc, mtype, moff, cflen, &addr);
4900 	if (rc != 0) {
4901 		device_printf(sc->dev,
4902 		    "%s: addr (%d/0x%x) or len %d is not valid: %d.\n",
4903 		    __func__, mtype, moff, cflen, rc);
4904 		rc = EINVAL;
4905 		goto done;
4906 	}
4907 	write_via_memwin(sc, 2, addr, cfdata, cflen);
4908 done:
4909 	if (rcfg != NULL)
4910 		firmware_put(rcfg, FIRMWARE_UNLOAD);
4911 	unload_fw_module(sc, dcfg, NULL);
4912 	return (rc);
4913 }
4914 
4915 struct caps_allowed {
4916 	uint16_t nbmcaps;
4917 	uint16_t linkcaps;
4918 	uint16_t switchcaps;
4919 	uint16_t niccaps;
4920 	uint16_t toecaps;
4921 	uint16_t rdmacaps;
4922 	uint16_t cryptocaps;
4923 	uint16_t iscsicaps;
4924 	uint16_t fcoecaps;
4925 };
4926 
4927 #define FW_PARAM_DEV(param) \
4928 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) | \
4929 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_##param))
4930 #define FW_PARAM_PFVF(param) \
4931 	(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_PFVF) | \
4932 	 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_PFVF_##param))
4933 
4934 /*
4935  * Provide a configuration profile to the firmware and have it initialize the
4936  * chip accordingly.  This may involve uploading a configuration file to the
4937  * card.
4938  */
4939 static int
apply_cfg_and_initialize(struct adapter * sc,char * cfg_file,const struct caps_allowed * caps_allowed)4940 apply_cfg_and_initialize(struct adapter *sc, char *cfg_file,
4941     const struct caps_allowed *caps_allowed)
4942 {
4943 	int rc;
4944 	struct fw_caps_config_cmd caps;
4945 	uint32_t mtype, moff, finicsum, cfcsum, param, val;
4946 
4947 	rc = -t4_fw_reset(sc, sc->mbox, F_PIORSTMODE | F_PIORST);
4948 	if (rc != 0) {
4949 		device_printf(sc->dev, "firmware reset failed: %d.\n", rc);
4950 		return (rc);
4951 	}
4952 
4953 	bzero(&caps, sizeof(caps));
4954 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
4955 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
4956 	if (strncmp(cfg_file, BUILTIN_CF, sizeof(t4_cfg_file)) == 0) {
4957 		mtype = 0;
4958 		moff = 0;
4959 		caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
4960 	} else if (strncmp(cfg_file, FLASH_CF, sizeof(t4_cfg_file)) == 0) {
4961 		mtype = FW_MEMTYPE_FLASH;
4962 		moff = t4_flash_cfg_addr(sc);
4963 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4964 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4965 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4966 		    FW_LEN16(caps));
4967 	} else {
4968 		/*
4969 		 * Ask the firmware where it wants us to upload the config file.
4970 		 */
4971 		param = FW_PARAM_DEV(CF);
4972 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
4973 		if (rc != 0) {
4974 			/* No support for config file?  Shouldn't happen. */
4975 			device_printf(sc->dev,
4976 			    "failed to query config file location: %d.\n", rc);
4977 			goto done;
4978 		}
4979 		mtype = G_FW_PARAMS_PARAM_Y(val);
4980 		moff = G_FW_PARAMS_PARAM_Z(val) << 16;
4981 		caps.cfvalid_to_len16 = htobe32(F_FW_CAPS_CONFIG_CMD_CFVALID |
4982 		    V_FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
4983 		    V_FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(moff >> 16) |
4984 		    FW_LEN16(caps));
4985 
4986 		rc = copy_cfg_file_to_card(sc, cfg_file, mtype, moff);
4987 		if (rc != 0) {
4988 			device_printf(sc->dev,
4989 			    "failed to upload config file to card: %d.\n", rc);
4990 			goto done;
4991 		}
4992 	}
4993 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
4994 	if (rc != 0) {
4995 		device_printf(sc->dev, "failed to pre-process config file: %d "
4996 		    "(mtype %d, moff 0x%x).\n", rc, mtype, moff);
4997 		goto done;
4998 	}
4999 
5000 	finicsum = be32toh(caps.finicsum);
5001 	cfcsum = be32toh(caps.cfcsum);	/* actual */
5002 	if (finicsum != cfcsum) {
5003 		device_printf(sc->dev,
5004 		    "WARNING: config file checksum mismatch: %08x %08x\n",
5005 		    finicsum, cfcsum);
5006 	}
5007 	sc->cfcsum = cfcsum;
5008 	snprintf(sc->cfg_file, sizeof(sc->cfg_file), "%s", cfg_file);
5009 
5010 	/*
5011 	 * Let the firmware know what features will (not) be used so it can tune
5012 	 * things accordingly.
5013 	 */
5014 #define LIMIT_CAPS(x) do { \
5015 	caps.x##caps &= htobe16(caps_allowed->x##caps); \
5016 } while (0)
5017 	LIMIT_CAPS(nbm);
5018 	LIMIT_CAPS(link);
5019 	LIMIT_CAPS(switch);
5020 	LIMIT_CAPS(nic);
5021 	LIMIT_CAPS(toe);
5022 	LIMIT_CAPS(rdma);
5023 	LIMIT_CAPS(crypto);
5024 	LIMIT_CAPS(iscsi);
5025 	LIMIT_CAPS(fcoe);
5026 #undef LIMIT_CAPS
5027 	if (caps.niccaps & htobe16(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
5028 		/*
5029 		 * TOE and hashfilters are mutually exclusive.  It is a config
5030 		 * file or firmware bug if both are reported as available.  Try
5031 		 * to cope with the situation in non-debug builds by disabling
5032 		 * TOE.
5033 		 */
5034 		MPASS(caps.toecaps == 0);
5035 
5036 		caps.toecaps = 0;
5037 		caps.rdmacaps = 0;
5038 		caps.iscsicaps = 0;
5039 	}
5040 
5041 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5042 	    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5043 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5044 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), NULL);
5045 	if (rc != 0) {
5046 		device_printf(sc->dev,
5047 		    "failed to process config file: %d.\n", rc);
5048 		goto done;
5049 	}
5050 
5051 	t4_tweak_chip_settings(sc);
5052 	set_params__pre_init(sc);
5053 
5054 	/* get basic stuff going */
5055 	rc = -t4_fw_initialize(sc, sc->mbox);
5056 	if (rc != 0) {
5057 		device_printf(sc->dev, "fw_initialize failed: %d.\n", rc);
5058 		goto done;
5059 	}
5060 done:
5061 	return (rc);
5062 }
5063 
5064 /*
5065  * Partition chip resources for use between various PFs, VFs, etc.
5066  */
5067 static int
partition_resources(struct adapter * sc)5068 partition_resources(struct adapter *sc)
5069 {
5070 	char cfg_file[sizeof(t4_cfg_file)];
5071 	struct caps_allowed caps_allowed;
5072 	int rc;
5073 	bool fallback;
5074 
5075 	/* Only the master driver gets to configure the chip resources. */
5076 	MPASS(sc->flags & MASTER_PF);
5077 
5078 #define COPY_CAPS(x) do { \
5079 	caps_allowed.x##caps = t4_##x##caps_allowed; \
5080 } while (0)
5081 	bzero(&caps_allowed, sizeof(caps_allowed));
5082 	COPY_CAPS(nbm);
5083 	COPY_CAPS(link);
5084 	COPY_CAPS(switch);
5085 	COPY_CAPS(nic);
5086 	COPY_CAPS(toe);
5087 	COPY_CAPS(rdma);
5088 	COPY_CAPS(crypto);
5089 	COPY_CAPS(iscsi);
5090 	COPY_CAPS(fcoe);
5091 	fallback = sc->debug_flags & DF_DISABLE_CFG_RETRY ? false : true;
5092 	snprintf(cfg_file, sizeof(cfg_file), "%s", t4_cfg_file);
5093 retry:
5094 	rc = apply_cfg_and_initialize(sc, cfg_file, &caps_allowed);
5095 	if (rc != 0 && fallback) {
5096 		dump_devlog(sc);
5097 		device_printf(sc->dev,
5098 		    "failed (%d) to configure card with \"%s\" profile, "
5099 		    "will fall back to a basic configuration and retry.\n",
5100 		    rc, cfg_file);
5101 		snprintf(cfg_file, sizeof(cfg_file), "%s", BUILTIN_CF);
5102 		bzero(&caps_allowed, sizeof(caps_allowed));
5103 		COPY_CAPS(switch);
5104 		caps_allowed.niccaps = FW_CAPS_CONFIG_NIC;
5105 		fallback = false;
5106 		goto retry;
5107 	}
5108 #undef COPY_CAPS
5109 	return (rc);
5110 }
5111 
5112 /*
5113  * Retrieve parameters that are needed (or nice to have) very early.
5114  */
5115 static int
get_params__pre_init(struct adapter * sc)5116 get_params__pre_init(struct adapter *sc)
5117 {
5118 	int rc;
5119 	uint32_t param[2], val[2];
5120 
5121 	t4_get_version_info(sc);
5122 
5123 	snprintf(sc->fw_version, sizeof(sc->fw_version), "%u.%u.%u.%u",
5124 	    G_FW_HDR_FW_VER_MAJOR(sc->params.fw_vers),
5125 	    G_FW_HDR_FW_VER_MINOR(sc->params.fw_vers),
5126 	    G_FW_HDR_FW_VER_MICRO(sc->params.fw_vers),
5127 	    G_FW_HDR_FW_VER_BUILD(sc->params.fw_vers));
5128 
5129 	snprintf(sc->bs_version, sizeof(sc->bs_version), "%u.%u.%u.%u",
5130 	    G_FW_HDR_FW_VER_MAJOR(sc->params.bs_vers),
5131 	    G_FW_HDR_FW_VER_MINOR(sc->params.bs_vers),
5132 	    G_FW_HDR_FW_VER_MICRO(sc->params.bs_vers),
5133 	    G_FW_HDR_FW_VER_BUILD(sc->params.bs_vers));
5134 
5135 	snprintf(sc->tp_version, sizeof(sc->tp_version), "%u.%u.%u.%u",
5136 	    G_FW_HDR_FW_VER_MAJOR(sc->params.tp_vers),
5137 	    G_FW_HDR_FW_VER_MINOR(sc->params.tp_vers),
5138 	    G_FW_HDR_FW_VER_MICRO(sc->params.tp_vers),
5139 	    G_FW_HDR_FW_VER_BUILD(sc->params.tp_vers));
5140 
5141 	snprintf(sc->er_version, sizeof(sc->er_version), "%u.%u.%u.%u",
5142 	    G_FW_HDR_FW_VER_MAJOR(sc->params.er_vers),
5143 	    G_FW_HDR_FW_VER_MINOR(sc->params.er_vers),
5144 	    G_FW_HDR_FW_VER_MICRO(sc->params.er_vers),
5145 	    G_FW_HDR_FW_VER_BUILD(sc->params.er_vers));
5146 
5147 	param[0] = FW_PARAM_DEV(PORTVEC);
5148 	param[1] = FW_PARAM_DEV(CCLK);
5149 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5150 	if (rc != 0) {
5151 		device_printf(sc->dev,
5152 		    "failed to query parameters (pre_init): %d.\n", rc);
5153 		return (rc);
5154 	}
5155 
5156 	sc->params.portvec = val[0];
5157 	sc->params.nports = bitcount32(val[0]);
5158 	sc->params.vpd.cclk = val[1];
5159 
5160 	/* Read device log parameters. */
5161 	rc = -t4_init_devlog_params(sc, 1);
5162 	if (rc == 0)
5163 		fixup_devlog_params(sc);
5164 	else {
5165 		device_printf(sc->dev,
5166 		    "failed to get devlog parameters: %d.\n", rc);
5167 		rc = 0;	/* devlog isn't critical for device operation */
5168 	}
5169 
5170 	return (rc);
5171 }
5172 
5173 /*
5174  * Any params that need to be set before FW_INITIALIZE.
5175  */
5176 static int
set_params__pre_init(struct adapter * sc)5177 set_params__pre_init(struct adapter *sc)
5178 {
5179 	int rc = 0;
5180 	uint32_t param, val;
5181 
5182 	if (chip_id(sc) >= CHELSIO_T6) {
5183 		param = FW_PARAM_DEV(HPFILTER_REGION_SUPPORT);
5184 		val = 1;
5185 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5186 		/* firmwares < 1.20.1.0 do not have this param. */
5187 		if (rc == FW_EINVAL &&
5188 		    sc->params.fw_vers < FW_VERSION32(1, 20, 1, 0)) {
5189 			rc = 0;
5190 		}
5191 		if (rc != 0) {
5192 			device_printf(sc->dev,
5193 			    "failed to enable high priority filters :%d.\n",
5194 			    rc);
5195 		}
5196 
5197 		param = FW_PARAM_DEV(PPOD_EDRAM);
5198 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5199 		if (rc == 0 && val == 1) {
5200 			rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param,
5201 			    &val);
5202 			if (rc != 0) {
5203 				device_printf(sc->dev,
5204 				    "failed to set PPOD_EDRAM: %d.\n", rc);
5205 			}
5206 		}
5207 	}
5208 
5209 	/* Enable opaque VIIDs with firmwares that support it. */
5210 	param = FW_PARAM_DEV(OPAQUE_VIID_SMT_EXTN);
5211 	val = 1;
5212 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5213 	if (rc == 0 && val == 1)
5214 		sc->params.viid_smt_extn_support = true;
5215 	else
5216 		sc->params.viid_smt_extn_support = false;
5217 
5218 	return (rc);
5219 }
5220 
5221 /*
5222  * Retrieve various parameters that are of interest to the driver.  The device
5223  * has been initialized by the firmware at this point.
5224  */
5225 static int
get_params__post_init(struct adapter * sc)5226 get_params__post_init(struct adapter *sc)
5227 {
5228 	int rc;
5229 	uint32_t param[7], val[7];
5230 	struct fw_caps_config_cmd caps;
5231 
5232 	param[0] = FW_PARAM_PFVF(IQFLINT_START);
5233 	param[1] = FW_PARAM_PFVF(EQ_START);
5234 	param[2] = FW_PARAM_PFVF(FILTER_START);
5235 	param[3] = FW_PARAM_PFVF(FILTER_END);
5236 	param[4] = FW_PARAM_PFVF(L2T_START);
5237 	param[5] = FW_PARAM_PFVF(L2T_END);
5238 	param[6] = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5239 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
5240 	    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
5241 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 7, param, val);
5242 	if (rc != 0) {
5243 		device_printf(sc->dev,
5244 		    "failed to query parameters (post_init): %d.\n", rc);
5245 		return (rc);
5246 	}
5247 
5248 	sc->sge.iq_start = val[0];
5249 	sc->sge.eq_start = val[1];
5250 	if ((int)val[3] > (int)val[2]) {
5251 		sc->tids.ftid_base = val[2];
5252 		sc->tids.ftid_end = val[3];
5253 		sc->tids.nftids = val[3] - val[2] + 1;
5254 	}
5255 	sc->vres.l2t.start = val[4];
5256 	sc->vres.l2t.size = val[5] - val[4] + 1;
5257 	KASSERT(sc->vres.l2t.size <= L2T_SIZE,
5258 	    ("%s: L2 table size (%u) larger than expected (%u)",
5259 	    __func__, sc->vres.l2t.size, L2T_SIZE));
5260 	sc->params.core_vdd = val[6];
5261 
5262 	param[0] = FW_PARAM_PFVF(IQFLINT_END);
5263 	param[1] = FW_PARAM_PFVF(EQ_END);
5264 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5265 	if (rc != 0) {
5266 		device_printf(sc->dev,
5267 		    "failed to query parameters (post_init2): %d.\n", rc);
5268 		return (rc);
5269 	}
5270 	MPASS((int)val[0] >= sc->sge.iq_start);
5271 	sc->sge.iqmap_sz = val[0] - sc->sge.iq_start + 1;
5272 	MPASS((int)val[1] >= sc->sge.eq_start);
5273 	sc->sge.eqmap_sz = val[1] - sc->sge.eq_start + 1;
5274 
5275 	if (chip_id(sc) >= CHELSIO_T6) {
5276 
5277 		sc->tids.tid_base = t4_read_reg(sc,
5278 		    A_LE_DB_ACTIVE_TABLE_START_INDEX);
5279 
5280 		param[0] = FW_PARAM_PFVF(HPFILTER_START);
5281 		param[1] = FW_PARAM_PFVF(HPFILTER_END);
5282 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5283 		if (rc != 0) {
5284 			device_printf(sc->dev,
5285 			   "failed to query hpfilter parameters: %d.\n", rc);
5286 			return (rc);
5287 		}
5288 		if ((int)val[1] > (int)val[0]) {
5289 			sc->tids.hpftid_base = val[0];
5290 			sc->tids.hpftid_end = val[1];
5291 			sc->tids.nhpftids = val[1] - val[0] + 1;
5292 
5293 			/*
5294 			 * These should go off if the layout changes and the
5295 			 * driver needs to catch up.
5296 			 */
5297 			MPASS(sc->tids.hpftid_base == 0);
5298 			MPASS(sc->tids.tid_base == sc->tids.nhpftids);
5299 		}
5300 
5301 		param[0] = FW_PARAM_PFVF(RAWF_START);
5302 		param[1] = FW_PARAM_PFVF(RAWF_END);
5303 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5304 		if (rc != 0) {
5305 			device_printf(sc->dev,
5306 			   "failed to query rawf parameters: %d.\n", rc);
5307 			return (rc);
5308 		}
5309 		if ((int)val[1] > (int)val[0]) {
5310 			sc->rawf_base = val[0];
5311 			sc->nrawf = val[1] - val[0] + 1;
5312 		}
5313 	}
5314 
5315 	/*
5316 	 * The parameters that follow may not be available on all firmwares.  We
5317 	 * query them individually rather than in a compound query because old
5318 	 * firmwares fail the entire query if an unknown parameter is queried.
5319 	 */
5320 
5321 	/*
5322 	 * MPS buffer group configuration.
5323 	 */
5324 	param[0] = FW_PARAM_DEV(MPSBGMAP);
5325 	val[0] = 0;
5326 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5327 	if (rc == 0)
5328 		sc->params.mps_bg_map = val[0];
5329 	else
5330 		sc->params.mps_bg_map = UINT32_MAX;	/* Not a legal value. */
5331 
5332 	param[0] = FW_PARAM_DEV(TPCHMAP);
5333 	val[0] = 0;
5334 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5335 	if (rc == 0)
5336 		sc->params.tp_ch_map = val[0];
5337 	else
5338 		sc->params.tp_ch_map = UINT32_MAX;	/* Not a legal value. */
5339 
5340 	/*
5341 	 * Determine whether the firmware supports the filter2 work request.
5342 	 */
5343 	param[0] = FW_PARAM_DEV(FILTER2_WR);
5344 	val[0] = 0;
5345 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5346 	if (rc == 0)
5347 		sc->params.filter2_wr_support = val[0] != 0;
5348 	else
5349 		sc->params.filter2_wr_support = 0;
5350 
5351 	/*
5352 	 * Find out whether we're allowed to use the ULPTX MEMWRITE DSGL.
5353 	 */
5354 	param[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
5355 	val[0] = 0;
5356 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5357 	if (rc == 0)
5358 		sc->params.ulptx_memwrite_dsgl = val[0] != 0;
5359 	else
5360 		sc->params.ulptx_memwrite_dsgl = false;
5361 
5362 	/* FW_RI_FR_NSMR_TPTE_WR support */
5363 	param[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
5364 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5365 	if (rc == 0)
5366 		sc->params.fr_nsmr_tpte_wr_support = val[0] != 0;
5367 	else
5368 		sc->params.fr_nsmr_tpte_wr_support = false;
5369 
5370 	/* Support for 512 SGL entries per FR MR. */
5371 	param[0] = FW_PARAM_DEV(DEV_512SGL_MR);
5372 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5373 	if (rc == 0)
5374 		sc->params.dev_512sgl_mr = val[0] != 0;
5375 	else
5376 		sc->params.dev_512sgl_mr = false;
5377 
5378 	param[0] = FW_PARAM_PFVF(MAX_PKTS_PER_ETH_TX_PKTS_WR);
5379 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5380 	if (rc == 0)
5381 		sc->params.max_pkts_per_eth_tx_pkts_wr = val[0];
5382 	else
5383 		sc->params.max_pkts_per_eth_tx_pkts_wr = 15;
5384 
5385 	param[0] = FW_PARAM_DEV(NUM_TM_CLASS);
5386 	rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5387 	if (rc == 0) {
5388 		MPASS(val[0] > 0 && val[0] < 256);	/* nsched_cls is 8b */
5389 		sc->params.nsched_cls = val[0];
5390 	} else
5391 		sc->params.nsched_cls = sc->chip_params->nsched_cls;
5392 
5393 	/* get capabilites */
5394 	bzero(&caps, sizeof(caps));
5395 	caps.op_to_write = htobe32(V_FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
5396 	    F_FW_CMD_REQUEST | F_FW_CMD_READ);
5397 	caps.cfvalid_to_len16 = htobe32(FW_LEN16(caps));
5398 	rc = -t4_wr_mbox(sc, sc->mbox, &caps, sizeof(caps), &caps);
5399 	if (rc != 0) {
5400 		device_printf(sc->dev,
5401 		    "failed to get card capabilities: %d.\n", rc);
5402 		return (rc);
5403 	}
5404 
5405 #define READ_CAPS(x) do { \
5406 	sc->x = htobe16(caps.x); \
5407 } while (0)
5408 	READ_CAPS(nbmcaps);
5409 	READ_CAPS(linkcaps);
5410 	READ_CAPS(switchcaps);
5411 	READ_CAPS(niccaps);
5412 	READ_CAPS(toecaps);
5413 	READ_CAPS(rdmacaps);
5414 	READ_CAPS(cryptocaps);
5415 	READ_CAPS(iscsicaps);
5416 	READ_CAPS(fcoecaps);
5417 
5418 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_HASHFILTER) {
5419 		MPASS(chip_id(sc) > CHELSIO_T4);
5420 		MPASS(sc->toecaps == 0);
5421 		sc->toecaps = 0;
5422 
5423 		param[0] = FW_PARAM_DEV(NTID);
5424 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, param, val);
5425 		if (rc != 0) {
5426 			device_printf(sc->dev,
5427 			    "failed to query HASHFILTER parameters: %d.\n", rc);
5428 			return (rc);
5429 		}
5430 		sc->tids.ntids = val[0];
5431 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5432 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5433 			sc->tids.ntids -= sc->tids.nhpftids;
5434 		}
5435 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5436 		sc->params.hash_filter = 1;
5437 	}
5438 	if (sc->niccaps & FW_CAPS_CONFIG_NIC_ETHOFLD) {
5439 		param[0] = FW_PARAM_PFVF(ETHOFLD_START);
5440 		param[1] = FW_PARAM_PFVF(ETHOFLD_END);
5441 		param[2] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5442 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 3, param, val);
5443 		if (rc != 0) {
5444 			device_printf(sc->dev,
5445 			    "failed to query NIC parameters: %d.\n", rc);
5446 			return (rc);
5447 		}
5448 		if ((int)val[1] > (int)val[0]) {
5449 			sc->tids.etid_base = val[0];
5450 			sc->tids.etid_end = val[1];
5451 			sc->tids.netids = val[1] - val[0] + 1;
5452 			sc->params.eo_wr_cred = val[2];
5453 			sc->params.ethoffload = 1;
5454 		}
5455 	}
5456 	if (sc->toecaps) {
5457 		/* query offload-related parameters */
5458 		param[0] = FW_PARAM_DEV(NTID);
5459 		param[1] = FW_PARAM_PFVF(SERVER_START);
5460 		param[2] = FW_PARAM_PFVF(SERVER_END);
5461 		param[3] = FW_PARAM_PFVF(TDDP_START);
5462 		param[4] = FW_PARAM_PFVF(TDDP_END);
5463 		param[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
5464 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5465 		if (rc != 0) {
5466 			device_printf(sc->dev,
5467 			    "failed to query TOE parameters: %d.\n", rc);
5468 			return (rc);
5469 		}
5470 		sc->tids.ntids = val[0];
5471 		if (sc->params.fw_vers < FW_VERSION32(1, 20, 5, 0)) {
5472 			MPASS(sc->tids.ntids >= sc->tids.nhpftids);
5473 			sc->tids.ntids -= sc->tids.nhpftids;
5474 		}
5475 		sc->tids.natids = min(sc->tids.ntids / 2, MAX_ATIDS);
5476 		if ((int)val[2] > (int)val[1]) {
5477 			sc->tids.stid_base = val[1];
5478 			sc->tids.nstids = val[2] - val[1] + 1;
5479 		}
5480 		sc->vres.ddp.start = val[3];
5481 		sc->vres.ddp.size = val[4] - val[3] + 1;
5482 		sc->params.ofldq_wr_cred = val[5];
5483 		sc->params.offload = 1;
5484 	} else {
5485 		/*
5486 		 * The firmware attempts memfree TOE configuration for -SO cards
5487 		 * and will report toecaps=0 if it runs out of resources (this
5488 		 * depends on the config file).  It may not report 0 for other
5489 		 * capabilities dependent on the TOE in this case.  Set them to
5490 		 * 0 here so that the driver doesn't bother tracking resources
5491 		 * that will never be used.
5492 		 */
5493 		sc->iscsicaps = 0;
5494 		sc->rdmacaps = 0;
5495 	}
5496 	if (sc->rdmacaps) {
5497 		param[0] = FW_PARAM_PFVF(STAG_START);
5498 		param[1] = FW_PARAM_PFVF(STAG_END);
5499 		param[2] = FW_PARAM_PFVF(RQ_START);
5500 		param[3] = FW_PARAM_PFVF(RQ_END);
5501 		param[4] = FW_PARAM_PFVF(PBL_START);
5502 		param[5] = FW_PARAM_PFVF(PBL_END);
5503 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5504 		if (rc != 0) {
5505 			device_printf(sc->dev,
5506 			    "failed to query RDMA parameters(1): %d.\n", rc);
5507 			return (rc);
5508 		}
5509 		sc->vres.stag.start = val[0];
5510 		sc->vres.stag.size = val[1] - val[0] + 1;
5511 		sc->vres.rq.start = val[2];
5512 		sc->vres.rq.size = val[3] - val[2] + 1;
5513 		sc->vres.pbl.start = val[4];
5514 		sc->vres.pbl.size = val[5] - val[4] + 1;
5515 
5516 		param[0] = FW_PARAM_PFVF(SQRQ_START);
5517 		param[1] = FW_PARAM_PFVF(SQRQ_END);
5518 		param[2] = FW_PARAM_PFVF(CQ_START);
5519 		param[3] = FW_PARAM_PFVF(CQ_END);
5520 		param[4] = FW_PARAM_PFVF(OCQ_START);
5521 		param[5] = FW_PARAM_PFVF(OCQ_END);
5522 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 6, param, val);
5523 		if (rc != 0) {
5524 			device_printf(sc->dev,
5525 			    "failed to query RDMA parameters(2): %d.\n", rc);
5526 			return (rc);
5527 		}
5528 		sc->vres.qp.start = val[0];
5529 		sc->vres.qp.size = val[1] - val[0] + 1;
5530 		sc->vres.cq.start = val[2];
5531 		sc->vres.cq.size = val[3] - val[2] + 1;
5532 		sc->vres.ocq.start = val[4];
5533 		sc->vres.ocq.size = val[5] - val[4] + 1;
5534 
5535 		param[0] = FW_PARAM_PFVF(SRQ_START);
5536 		param[1] = FW_PARAM_PFVF(SRQ_END);
5537 		param[2] = FW_PARAM_DEV(MAXORDIRD_QP);
5538 		param[3] = FW_PARAM_DEV(MAXIRD_ADAPTER);
5539 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 4, param, val);
5540 		if (rc != 0) {
5541 			device_printf(sc->dev,
5542 			    "failed to query RDMA parameters(3): %d.\n", rc);
5543 			return (rc);
5544 		}
5545 		sc->vres.srq.start = val[0];
5546 		sc->vres.srq.size = val[1] - val[0] + 1;
5547 		sc->params.max_ordird_qp = val[2];
5548 		sc->params.max_ird_adapter = val[3];
5549 	}
5550 	if (sc->iscsicaps) {
5551 		param[0] = FW_PARAM_PFVF(ISCSI_START);
5552 		param[1] = FW_PARAM_PFVF(ISCSI_END);
5553 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5554 		if (rc != 0) {
5555 			device_printf(sc->dev,
5556 			    "failed to query iSCSI parameters: %d.\n", rc);
5557 			return (rc);
5558 		}
5559 		sc->vres.iscsi.start = val[0];
5560 		sc->vres.iscsi.size = val[1] - val[0] + 1;
5561 	}
5562 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
5563 		param[0] = FW_PARAM_PFVF(TLS_START);
5564 		param[1] = FW_PARAM_PFVF(TLS_END);
5565 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 2, param, val);
5566 		if (rc != 0) {
5567 			device_printf(sc->dev,
5568 			    "failed to query TLS parameters: %d.\n", rc);
5569 			return (rc);
5570 		}
5571 		sc->vres.key.start = val[0];
5572 		sc->vres.key.size = val[1] - val[0] + 1;
5573 	}
5574 
5575 	/*
5576 	 * We've got the params we wanted to query directly from the firmware.
5577 	 * Grab some others via other means.
5578 	 */
5579 	t4_init_sge_params(sc);
5580 	t4_init_tp_params(sc);
5581 	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
5582 	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
5583 
5584 	rc = t4_verify_chip_settings(sc);
5585 	if (rc != 0)
5586 		return (rc);
5587 	t4_init_rx_buf_info(sc);
5588 
5589 	return (rc);
5590 }
5591 
5592 #ifdef KERN_TLS
5593 static void
ktls_tick(void * arg)5594 ktls_tick(void *arg)
5595 {
5596 	struct adapter *sc;
5597 	uint32_t tstamp;
5598 
5599 	sc = arg;
5600 	tstamp = tcp_ts_getticks();
5601 	t4_write_reg(sc, A_TP_SYNC_TIME_HI, tstamp >> 1);
5602 	t4_write_reg(sc, A_TP_SYNC_TIME_LO, tstamp << 31);
5603 	callout_schedule_sbt(&sc->ktls_tick, SBT_1MS, 0, C_HARDCLOCK);
5604 }
5605 
5606 static int
t6_config_kern_tls(struct adapter * sc,bool enable)5607 t6_config_kern_tls(struct adapter *sc, bool enable)
5608 {
5609 	int rc;
5610 	uint32_t param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
5611 	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_KTLS_HW) |
5612 	    V_FW_PARAMS_PARAM_Y(enable ? 1 : 0) |
5613 	    V_FW_PARAMS_PARAM_Z(FW_PARAMS_PARAM_DEV_KTLS_HW_USER_ENABLE);
5614 
5615 	rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &param);
5616 	if (rc != 0) {
5617 		CH_ERR(sc, "failed to %s NIC TLS: %d\n",
5618 		    enable ?  "enable" : "disable", rc);
5619 		return (rc);
5620 	}
5621 
5622 	if (enable) {
5623 		sc->flags |= KERN_TLS_ON;
5624 		callout_reset_sbt(&sc->ktls_tick, SBT_1MS, 0, ktls_tick, sc,
5625 		    C_HARDCLOCK);
5626 	} else {
5627 		sc->flags &= ~KERN_TLS_ON;
5628 		callout_stop(&sc->ktls_tick);
5629 	}
5630 
5631 	return (rc);
5632 }
5633 #endif
5634 
5635 static int
set_params__post_init(struct adapter * sc)5636 set_params__post_init(struct adapter *sc)
5637 {
5638 	uint32_t mask, param, val;
5639 #ifdef TCP_OFFLOAD
5640 	int i, v, shift;
5641 #endif
5642 
5643 	/* ask for encapsulated CPLs */
5644 	param = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
5645 	val = 1;
5646 	(void)t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
5647 
5648 	/* Enable 32b port caps if the firmware supports it. */
5649 	param = FW_PARAM_PFVF(PORT_CAPS32);
5650 	val = 1;
5651 	if (t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val) == 0)
5652 		sc->params.port_caps32 = 1;
5653 
5654 	/* Let filter + maskhash steer to a part of the VI's RSS region. */
5655 	val = 1 << (G_MASKSIZE(t4_read_reg(sc, A_TP_RSS_CONFIG_TNL)) - 1);
5656 	t4_set_reg_field(sc, A_TP_RSS_CONFIG_TNL, V_MASKFILTER(M_MASKFILTER),
5657 	    V_MASKFILTER(val - 1));
5658 
5659 	mask = F_DROPERRORANY | F_DROPERRORMAC | F_DROPERRORIPVER |
5660 	    F_DROPERRORFRAG | F_DROPERRORATTACK | F_DROPERRORETHHDRLEN |
5661 	    F_DROPERRORIPHDRLEN | F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5662 	    F_DROPERRORTCPOPT | F_DROPERRORCSUMIP | F_DROPERRORCSUM;
5663 	val = 0;
5664 	if (chip_id(sc) < CHELSIO_T6 && t4_attack_filter != 0) {
5665 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_ATTACKFILTERENABLE,
5666 		    F_ATTACKFILTERENABLE);
5667 		val |= F_DROPERRORATTACK;
5668 	}
5669 	if (t4_drop_ip_fragments != 0) {
5670 		t4_set_reg_field(sc, A_TP_GLOBAL_CONFIG, F_FRAGMENTDROP,
5671 		    F_FRAGMENTDROP);
5672 		val |= F_DROPERRORFRAG;
5673 	}
5674 	if (t4_drop_pkts_with_l2_errors != 0)
5675 		val |= F_DROPERRORMAC | F_DROPERRORETHHDRLEN;
5676 	if (t4_drop_pkts_with_l3_errors != 0) {
5677 		val |= F_DROPERRORIPVER | F_DROPERRORIPHDRLEN |
5678 		    F_DROPERRORCSUMIP;
5679 	}
5680 	if (t4_drop_pkts_with_l4_errors != 0) {
5681 		val |= F_DROPERRORTCPHDRLEN | F_DROPERRORPKTLEN |
5682 		    F_DROPERRORTCPOPT | F_DROPERRORCSUM;
5683 	}
5684 	t4_set_reg_field(sc, A_TP_ERR_CONFIG, mask, val);
5685 
5686 #ifdef TCP_OFFLOAD
5687 	/*
5688 	 * Override the TOE timers with user provided tunables.  This is not the
5689 	 * recommended way to change the timers (the firmware config file is) so
5690 	 * these tunables are not documented.
5691 	 *
5692 	 * All the timer tunables are in microseconds.
5693 	 */
5694 	if (t4_toe_keepalive_idle != 0) {
5695 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_idle);
5696 		v &= M_KEEPALIVEIDLE;
5697 		t4_set_reg_field(sc, A_TP_KEEP_IDLE,
5698 		    V_KEEPALIVEIDLE(M_KEEPALIVEIDLE), V_KEEPALIVEIDLE(v));
5699 	}
5700 	if (t4_toe_keepalive_interval != 0) {
5701 		v = us_to_tcp_ticks(sc, t4_toe_keepalive_interval);
5702 		v &= M_KEEPALIVEINTVL;
5703 		t4_set_reg_field(sc, A_TP_KEEP_INTVL,
5704 		    V_KEEPALIVEINTVL(M_KEEPALIVEINTVL), V_KEEPALIVEINTVL(v));
5705 	}
5706 	if (t4_toe_keepalive_count != 0) {
5707 		v = t4_toe_keepalive_count & M_KEEPALIVEMAXR2;
5708 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5709 		    V_KEEPALIVEMAXR1(M_KEEPALIVEMAXR1) |
5710 		    V_KEEPALIVEMAXR2(M_KEEPALIVEMAXR2),
5711 		    V_KEEPALIVEMAXR1(1) | V_KEEPALIVEMAXR2(v));
5712 	}
5713 	if (t4_toe_rexmt_min != 0) {
5714 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_min);
5715 		v &= M_RXTMIN;
5716 		t4_set_reg_field(sc, A_TP_RXT_MIN,
5717 		    V_RXTMIN(M_RXTMIN), V_RXTMIN(v));
5718 	}
5719 	if (t4_toe_rexmt_max != 0) {
5720 		v = us_to_tcp_ticks(sc, t4_toe_rexmt_max);
5721 		v &= M_RXTMAX;
5722 		t4_set_reg_field(sc, A_TP_RXT_MAX,
5723 		    V_RXTMAX(M_RXTMAX), V_RXTMAX(v));
5724 	}
5725 	if (t4_toe_rexmt_count != 0) {
5726 		v = t4_toe_rexmt_count & M_RXTSHIFTMAXR2;
5727 		t4_set_reg_field(sc, A_TP_SHIFT_CNT,
5728 		    V_RXTSHIFTMAXR1(M_RXTSHIFTMAXR1) |
5729 		    V_RXTSHIFTMAXR2(M_RXTSHIFTMAXR2),
5730 		    V_RXTSHIFTMAXR1(1) | V_RXTSHIFTMAXR2(v));
5731 	}
5732 	for (i = 0; i < nitems(t4_toe_rexmt_backoff); i++) {
5733 		if (t4_toe_rexmt_backoff[i] != -1) {
5734 			v = t4_toe_rexmt_backoff[i] & M_TIMERBACKOFFINDEX0;
5735 			shift = (i & 3) << 3;
5736 			t4_set_reg_field(sc, A_TP_TCP_BACKOFF_REG0 + (i & ~3),
5737 			    M_TIMERBACKOFFINDEX0 << shift, v << shift);
5738 		}
5739 	}
5740 #endif
5741 
5742 	/*
5743 	 * Limit TOE connections to 2 reassembly "islands".  This is
5744 	 * required to permit migrating TOE connections to either
5745 	 * ULP_MODE_TCPDDP or UPL_MODE_TLS.
5746 	 */
5747 	t4_tp_wr_bits_indirect(sc, A_TP_FRAG_CONFIG, V_PASSMODE(M_PASSMODE),
5748 	    V_PASSMODE(2));
5749 
5750 #ifdef KERN_TLS
5751 	if (is_ktls(sc)) {
5752 		sc->tlst.inline_keys = t4_tls_inline_keys;
5753 		sc->tlst.combo_wrs = t4_tls_combo_wrs;
5754 		if (t4_kern_tls != 0 && is_t6(sc))
5755 			t6_config_kern_tls(sc, true);
5756 	}
5757 #endif
5758 	return (0);
5759 }
5760 
5761 #undef FW_PARAM_PFVF
5762 #undef FW_PARAM_DEV
5763 
5764 static void
t4_set_desc(struct adapter * sc)5765 t4_set_desc(struct adapter *sc)
5766 {
5767 	struct adapter_params *p = &sc->params;
5768 
5769 	device_set_descf(sc->dev, "Chelsio %s", p->vpd.id);
5770 }
5771 
5772 static inline void
ifmedia_add4(struct ifmedia * ifm,int m)5773 ifmedia_add4(struct ifmedia *ifm, int m)
5774 {
5775 
5776 	ifmedia_add(ifm, m, 0, NULL);
5777 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE, 0, NULL);
5778 	ifmedia_add(ifm, m | IFM_ETH_RXPAUSE, 0, NULL);
5779 	ifmedia_add(ifm, m | IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE, 0, NULL);
5780 }
5781 
5782 /*
5783  * This is the selected media, which is not quite the same as the active media.
5784  * The media line in ifconfig is "media: Ethernet selected (active)" if selected
5785  * and active are not the same, and "media: Ethernet selected" otherwise.
5786  */
5787 static void
set_current_media(struct port_info * pi)5788 set_current_media(struct port_info *pi)
5789 {
5790 	struct link_config *lc;
5791 	struct ifmedia *ifm;
5792 	int mword;
5793 	u_int speed;
5794 
5795 	PORT_LOCK_ASSERT_OWNED(pi);
5796 
5797 	/* Leave current media alone if it's already set to IFM_NONE. */
5798 	ifm = &pi->media;
5799 	if (ifm->ifm_cur != NULL &&
5800 	    IFM_SUBTYPE(ifm->ifm_cur->ifm_media) == IFM_NONE)
5801 		return;
5802 
5803 	lc = &pi->link_cfg;
5804 	if (lc->requested_aneg != AUTONEG_DISABLE &&
5805 	    lc->pcaps & FW_PORT_CAP32_ANEG) {
5806 		ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
5807 		return;
5808 	}
5809 	mword = IFM_ETHER | IFM_FDX;
5810 	if (lc->requested_fc & PAUSE_TX)
5811 		mword |= IFM_ETH_TXPAUSE;
5812 	if (lc->requested_fc & PAUSE_RX)
5813 		mword |= IFM_ETH_RXPAUSE;
5814 	if (lc->requested_speed == 0)
5815 		speed = port_top_speed(pi) * 1000;	/* Gbps -> Mbps */
5816 	else
5817 		speed = lc->requested_speed;
5818 	mword |= port_mword(pi, speed_to_fwcap(speed));
5819 	ifmedia_set(ifm, mword);
5820 }
5821 
5822 /*
5823  * Returns true if the ifmedia list for the port cannot change.
5824  */
5825 static bool
fixed_ifmedia(struct port_info * pi)5826 fixed_ifmedia(struct port_info *pi)
5827 {
5828 
5829 	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
5830 	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
5831 	    pi->port_type == FW_PORT_TYPE_BT_XAUI ||
5832 	    pi->port_type == FW_PORT_TYPE_KX4 ||
5833 	    pi->port_type == FW_PORT_TYPE_KX ||
5834 	    pi->port_type == FW_PORT_TYPE_KR ||
5835 	    pi->port_type == FW_PORT_TYPE_BP_AP ||
5836 	    pi->port_type == FW_PORT_TYPE_BP4_AP ||
5837 	    pi->port_type == FW_PORT_TYPE_BP40_BA ||
5838 	    pi->port_type == FW_PORT_TYPE_KR4_100G ||
5839 	    pi->port_type == FW_PORT_TYPE_KR_SFP28 ||
5840 	    pi->port_type == FW_PORT_TYPE_KR_XLAUI);
5841 }
5842 
5843 static void
build_medialist(struct port_info * pi)5844 build_medialist(struct port_info *pi)
5845 {
5846 	uint32_t ss, speed;
5847 	int unknown, mword, bit;
5848 	struct link_config *lc;
5849 	struct ifmedia *ifm;
5850 
5851 	PORT_LOCK_ASSERT_OWNED(pi);
5852 
5853 	if (pi->flags & FIXED_IFMEDIA)
5854 		return;
5855 
5856 	/*
5857 	 * Rebuild the ifmedia list.
5858 	 */
5859 	ifm = &pi->media;
5860 	ifmedia_removeall(ifm);
5861 	lc = &pi->link_cfg;
5862 	ss = G_FW_PORT_CAP32_SPEED(lc->pcaps); /* Supported Speeds */
5863 	if (__predict_false(ss == 0)) {	/* not supposed to happen. */
5864 		MPASS(ss != 0);
5865 no_media:
5866 		MPASS(LIST_EMPTY(&ifm->ifm_list));
5867 		ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
5868 		ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
5869 		return;
5870 	}
5871 
5872 	unknown = 0;
5873 	for (bit = S_FW_PORT_CAP32_SPEED; bit < fls(ss); bit++) {
5874 		speed = 1 << bit;
5875 		MPASS(speed & M_FW_PORT_CAP32_SPEED);
5876 		if (ss & speed) {
5877 			mword = port_mword(pi, speed);
5878 			if (mword == IFM_NONE) {
5879 				goto no_media;
5880 			} else if (mword == IFM_UNKNOWN)
5881 				unknown++;
5882 			else
5883 				ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | mword);
5884 		}
5885 	}
5886 	if (unknown > 0) /* Add one unknown for all unknown media types. */
5887 		ifmedia_add4(ifm, IFM_ETHER | IFM_FDX | IFM_UNKNOWN);
5888 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
5889 		ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
5890 
5891 	set_current_media(pi);
5892 }
5893 
5894 /*
5895  * Initialize the requested fields in the link config based on driver tunables.
5896  */
5897 static void
init_link_config(struct port_info * pi)5898 init_link_config(struct port_info *pi)
5899 {
5900 	struct link_config *lc = &pi->link_cfg;
5901 
5902 	PORT_LOCK_ASSERT_OWNED(pi);
5903 
5904 	lc->requested_caps = 0;
5905 	lc->requested_speed = 0;
5906 
5907 	if (t4_autoneg == 0)
5908 		lc->requested_aneg = AUTONEG_DISABLE;
5909 	else if (t4_autoneg == 1)
5910 		lc->requested_aneg = AUTONEG_ENABLE;
5911 	else
5912 		lc->requested_aneg = AUTONEG_AUTO;
5913 
5914 	lc->requested_fc = t4_pause_settings & (PAUSE_TX | PAUSE_RX |
5915 	    PAUSE_AUTONEG);
5916 
5917 	if (t4_fec & FEC_AUTO)
5918 		lc->requested_fec = FEC_AUTO;
5919 	else if (t4_fec == 0)
5920 		lc->requested_fec = FEC_NONE;
5921 	else {
5922 		/* -1 is handled by the FEC_AUTO block above and not here. */
5923 		lc->requested_fec = t4_fec &
5924 		    (FEC_RS | FEC_BASER_RS | FEC_NONE | FEC_MODULE);
5925 		if (lc->requested_fec == 0)
5926 			lc->requested_fec = FEC_AUTO;
5927 	}
5928 	if (t4_force_fec < 0)
5929 		lc->force_fec = -1;
5930 	else if (t4_force_fec > 0)
5931 		lc->force_fec = 1;
5932 	else
5933 		lc->force_fec = 0;
5934 }
5935 
5936 /*
5937  * Makes sure that all requested settings comply with what's supported by the
5938  * port.  Returns the number of settings that were invalid and had to be fixed.
5939  */
5940 static int
fixup_link_config(struct port_info * pi)5941 fixup_link_config(struct port_info *pi)
5942 {
5943 	int n = 0;
5944 	struct link_config *lc = &pi->link_cfg;
5945 	uint32_t fwspeed;
5946 
5947 	PORT_LOCK_ASSERT_OWNED(pi);
5948 
5949 	/* Speed (when not autonegotiating) */
5950 	if (lc->requested_speed != 0) {
5951 		fwspeed = speed_to_fwcap(lc->requested_speed);
5952 		if ((fwspeed & lc->pcaps) == 0) {
5953 			n++;
5954 			lc->requested_speed = 0;
5955 		}
5956 	}
5957 
5958 	/* Link autonegotiation */
5959 	MPASS(lc->requested_aneg == AUTONEG_ENABLE ||
5960 	    lc->requested_aneg == AUTONEG_DISABLE ||
5961 	    lc->requested_aneg == AUTONEG_AUTO);
5962 	if (lc->requested_aneg == AUTONEG_ENABLE &&
5963 	    !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
5964 		n++;
5965 		lc->requested_aneg = AUTONEG_AUTO;
5966 	}
5967 
5968 	/* Flow control */
5969 	MPASS((lc->requested_fc & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG)) == 0);
5970 	if (lc->requested_fc & PAUSE_TX &&
5971 	    !(lc->pcaps & FW_PORT_CAP32_FC_TX)) {
5972 		n++;
5973 		lc->requested_fc &= ~PAUSE_TX;
5974 	}
5975 	if (lc->requested_fc & PAUSE_RX &&
5976 	    !(lc->pcaps & FW_PORT_CAP32_FC_RX)) {
5977 		n++;
5978 		lc->requested_fc &= ~PAUSE_RX;
5979 	}
5980 	if (!(lc->requested_fc & PAUSE_AUTONEG) &&
5981 	    !(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE)) {
5982 		n++;
5983 		lc->requested_fc |= PAUSE_AUTONEG;
5984 	}
5985 
5986 	/* FEC */
5987 	if ((lc->requested_fec & FEC_RS &&
5988 	    !(lc->pcaps & FW_PORT_CAP32_FEC_RS)) ||
5989 	    (lc->requested_fec & FEC_BASER_RS &&
5990 	    !(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS))) {
5991 		n++;
5992 		lc->requested_fec = FEC_AUTO;
5993 	}
5994 
5995 	return (n);
5996 }
5997 
5998 /*
5999  * Apply the requested L1 settings, which are expected to be valid, to the
6000  * hardware.
6001  */
6002 static int
apply_link_config(struct port_info * pi)6003 apply_link_config(struct port_info *pi)
6004 {
6005 	struct adapter *sc = pi->adapter;
6006 	struct link_config *lc = &pi->link_cfg;
6007 	int rc;
6008 
6009 #ifdef INVARIANTS
6010 	ASSERT_SYNCHRONIZED_OP(sc);
6011 	PORT_LOCK_ASSERT_OWNED(pi);
6012 
6013 	if (lc->requested_aneg == AUTONEG_ENABLE)
6014 		MPASS(lc->pcaps & FW_PORT_CAP32_ANEG);
6015 	if (!(lc->requested_fc & PAUSE_AUTONEG))
6016 		MPASS(lc->pcaps & FW_PORT_CAP32_FORCE_PAUSE);
6017 	if (lc->requested_fc & PAUSE_TX)
6018 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_TX);
6019 	if (lc->requested_fc & PAUSE_RX)
6020 		MPASS(lc->pcaps & FW_PORT_CAP32_FC_RX);
6021 	if (lc->requested_fec & FEC_RS)
6022 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_RS);
6023 	if (lc->requested_fec & FEC_BASER_RS)
6024 		MPASS(lc->pcaps & FW_PORT_CAP32_FEC_BASER_RS);
6025 #endif
6026 	rc = -t4_link_l1cfg(sc, sc->mbox, pi->tx_chan, lc);
6027 	if (rc != 0) {
6028 		/* Don't complain if the VF driver gets back an EPERM. */
6029 		if (!(sc->flags & IS_VF) || rc != FW_EPERM)
6030 			device_printf(pi->dev, "l1cfg failed: %d\n", rc);
6031 	} else {
6032 		/*
6033 		 * An L1_CFG will almost always result in a link-change event if
6034 		 * the link is up, and the driver will refresh the actual
6035 		 * fec/fc/etc. when the notification is processed.  If the link
6036 		 * is down then the actual settings are meaningless.
6037 		 *
6038 		 * This takes care of the case where a change in the L1 settings
6039 		 * may not result in a notification.
6040 		 */
6041 		if (lc->link_ok && !(lc->requested_fc & PAUSE_AUTONEG))
6042 			lc->fc = lc->requested_fc & (PAUSE_TX | PAUSE_RX);
6043 	}
6044 	return (rc);
6045 }
6046 
6047 #define FW_MAC_EXACT_CHUNK	7
6048 struct mcaddr_ctx {
6049 	if_t ifp;
6050 	const uint8_t *mcaddr[FW_MAC_EXACT_CHUNK];
6051 	uint64_t hash;
6052 	int i;
6053 	int del;
6054 	int rc;
6055 };
6056 
6057 static u_int
add_maddr(void * arg,struct sockaddr_dl * sdl,u_int cnt)6058 add_maddr(void *arg, struct sockaddr_dl *sdl, u_int cnt)
6059 {
6060 	struct mcaddr_ctx *ctx = arg;
6061 	struct vi_info *vi = if_getsoftc(ctx->ifp);
6062 	struct port_info *pi = vi->pi;
6063 	struct adapter *sc = pi->adapter;
6064 
6065 	if (ctx->rc < 0)
6066 		return (0);
6067 
6068 	ctx->mcaddr[ctx->i] = LLADDR(sdl);
6069 	MPASS(ETHER_IS_MULTICAST(ctx->mcaddr[ctx->i]));
6070 	ctx->i++;
6071 
6072 	if (ctx->i == FW_MAC_EXACT_CHUNK) {
6073 		ctx->rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid, ctx->del,
6074 		    ctx->i, ctx->mcaddr, NULL, &ctx->hash, 0);
6075 		if (ctx->rc < 0) {
6076 			int j;
6077 
6078 			for (j = 0; j < ctx->i; j++) {
6079 				if_printf(ctx->ifp,
6080 				    "failed to add mc address"
6081 				    " %02x:%02x:%02x:"
6082 				    "%02x:%02x:%02x rc=%d\n",
6083 				    ctx->mcaddr[j][0], ctx->mcaddr[j][1],
6084 				    ctx->mcaddr[j][2], ctx->mcaddr[j][3],
6085 				    ctx->mcaddr[j][4], ctx->mcaddr[j][5],
6086 				    -ctx->rc);
6087 			}
6088 			return (0);
6089 		}
6090 		ctx->del = 0;
6091 		ctx->i = 0;
6092 	}
6093 
6094 	return (1);
6095 }
6096 
6097 /*
6098  * Program the port's XGMAC based on parameters in ifnet.  The caller also
6099  * indicates which parameters should be programmed (the rest are left alone).
6100  */
6101 int
update_mac_settings(if_t ifp,int flags)6102 update_mac_settings(if_t ifp, int flags)
6103 {
6104 	int rc = 0;
6105 	struct vi_info *vi = if_getsoftc(ifp);
6106 	struct port_info *pi = vi->pi;
6107 	struct adapter *sc = pi->adapter;
6108 	int mtu = -1, promisc = -1, allmulti = -1, vlanex = -1;
6109 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
6110 
6111 	ASSERT_SYNCHRONIZED_OP(sc);
6112 	KASSERT(flags, ("%s: not told what to update.", __func__));
6113 
6114 	if (flags & XGMAC_MTU)
6115 		mtu = if_getmtu(ifp);
6116 
6117 	if (flags & XGMAC_PROMISC)
6118 		promisc = if_getflags(ifp) & IFF_PROMISC ? 1 : 0;
6119 
6120 	if (flags & XGMAC_ALLMULTI)
6121 		allmulti = if_getflags(ifp) & IFF_ALLMULTI ? 1 : 0;
6122 
6123 	if (flags & XGMAC_VLANEX)
6124 		vlanex = if_getcapenable(ifp) & IFCAP_VLAN_HWTAGGING ? 1 : 0;
6125 
6126 	if (flags & (XGMAC_MTU|XGMAC_PROMISC|XGMAC_ALLMULTI|XGMAC_VLANEX)) {
6127 		rc = -t4_set_rxmode(sc, sc->mbox, vi->viid, mtu, promisc,
6128 		    allmulti, 1, vlanex, false);
6129 		if (rc) {
6130 			if_printf(ifp, "set_rxmode (%x) failed: %d\n", flags,
6131 			    rc);
6132 			return (rc);
6133 		}
6134 	}
6135 
6136 	if (flags & XGMAC_UCADDR) {
6137 		uint8_t ucaddr[ETHER_ADDR_LEN];
6138 
6139 		bcopy(if_getlladdr(ifp), ucaddr, sizeof(ucaddr));
6140 		rc = t4_change_mac(sc, sc->mbox, vi->viid, vi->xact_addr_filt,
6141 		    ucaddr, true, &vi->smt_idx);
6142 		if (rc < 0) {
6143 			rc = -rc;
6144 			if_printf(ifp, "change_mac failed: %d\n", rc);
6145 			return (rc);
6146 		} else {
6147 			vi->xact_addr_filt = rc;
6148 			rc = 0;
6149 		}
6150 	}
6151 
6152 	if (flags & XGMAC_MCADDRS) {
6153 		struct epoch_tracker et;
6154 		struct mcaddr_ctx ctx;
6155 		int j;
6156 
6157 		ctx.ifp = ifp;
6158 		ctx.hash = 0;
6159 		ctx.i = 0;
6160 		ctx.del = 1;
6161 		ctx.rc = 0;
6162 		/*
6163 		 * Unlike other drivers, we accumulate list of pointers into
6164 		 * interface address lists and we need to keep it safe even
6165 		 * after if_foreach_llmaddr() returns, thus we must enter the
6166 		 * network epoch.
6167 		 */
6168 		NET_EPOCH_ENTER(et);
6169 		if_foreach_llmaddr(ifp, add_maddr, &ctx);
6170 		if (ctx.rc < 0) {
6171 			NET_EPOCH_EXIT(et);
6172 			rc = -ctx.rc;
6173 			return (rc);
6174 		}
6175 		if (ctx.i > 0) {
6176 			rc = t4_alloc_mac_filt(sc, sc->mbox, vi->viid,
6177 			    ctx.del, ctx.i, ctx.mcaddr, NULL, &ctx.hash, 0);
6178 			NET_EPOCH_EXIT(et);
6179 			if (rc < 0) {
6180 				rc = -rc;
6181 				for (j = 0; j < ctx.i; j++) {
6182 					if_printf(ifp,
6183 					    "failed to add mcast address"
6184 					    " %02x:%02x:%02x:"
6185 					    "%02x:%02x:%02x rc=%d\n",
6186 					    ctx.mcaddr[j][0], ctx.mcaddr[j][1],
6187 					    ctx.mcaddr[j][2], ctx.mcaddr[j][3],
6188 					    ctx.mcaddr[j][4], ctx.mcaddr[j][5],
6189 					    rc);
6190 				}
6191 				return (rc);
6192 			}
6193 			ctx.del = 0;
6194 		} else
6195 			NET_EPOCH_EXIT(et);
6196 
6197 		rc = -t4_set_addr_hash(sc, sc->mbox, vi->viid, 0, ctx.hash, 0);
6198 		if (rc != 0)
6199 			if_printf(ifp, "failed to set mcast address hash: %d\n",
6200 			    rc);
6201 		if (ctx.del == 0) {
6202 			/* We clobbered the VXLAN entry if there was one. */
6203 			pi->vxlan_tcam_entry = false;
6204 		}
6205 	}
6206 
6207 	if (IS_MAIN_VI(vi) && sc->vxlan_refcount > 0 &&
6208 	    pi->vxlan_tcam_entry == false) {
6209 		rc = t4_alloc_raw_mac_filt(sc, vi->viid, match_all_mac,
6210 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
6211 		    true);
6212 		if (rc < 0) {
6213 			rc = -rc;
6214 			if_printf(ifp, "failed to add VXLAN TCAM entry: %d.\n",
6215 			    rc);
6216 		} else {
6217 			MPASS(rc == sc->rawf_base + pi->port_id);
6218 			rc = 0;
6219 			pi->vxlan_tcam_entry = true;
6220 		}
6221 	}
6222 
6223 	return (rc);
6224 }
6225 
6226 /*
6227  * {begin|end}_synchronized_op must be called from the same thread.
6228  */
6229 int
begin_synchronized_op(struct adapter * sc,struct vi_info * vi,int flags,char * wmesg)6230 begin_synchronized_op(struct adapter *sc, struct vi_info *vi, int flags,
6231     char *wmesg)
6232 {
6233 	int rc, pri;
6234 
6235 #ifdef WITNESS
6236 	/* the caller thinks it's ok to sleep, but is it really? */
6237 	if (flags & SLEEP_OK)
6238 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
6239 		    "begin_synchronized_op");
6240 #endif
6241 
6242 	if (INTR_OK)
6243 		pri = PCATCH;
6244 	else
6245 		pri = 0;
6246 
6247 	ADAPTER_LOCK(sc);
6248 	for (;;) {
6249 
6250 		if (vi && IS_DETACHING(vi)) {
6251 			rc = ENXIO;
6252 			goto done;
6253 		}
6254 
6255 		if (!IS_BUSY(sc)) {
6256 			rc = 0;
6257 			break;
6258 		}
6259 
6260 		if (!(flags & SLEEP_OK)) {
6261 			rc = EBUSY;
6262 			goto done;
6263 		}
6264 
6265 		if (mtx_sleep(&sc->flags, &sc->sc_lock, pri, wmesg, 0)) {
6266 			rc = EINTR;
6267 			goto done;
6268 		}
6269 	}
6270 
6271 	KASSERT(!IS_BUSY(sc), ("%s: controller busy.", __func__));
6272 	SET_BUSY(sc);
6273 #ifdef INVARIANTS
6274 	sc->last_op = wmesg;
6275 	sc->last_op_thr = curthread;
6276 	sc->last_op_flags = flags;
6277 #endif
6278 
6279 done:
6280 	if (!(flags & HOLD_LOCK) || rc)
6281 		ADAPTER_UNLOCK(sc);
6282 
6283 	return (rc);
6284 }
6285 
6286 /*
6287  * Tell if_ioctl and if_init that the VI is going away.  This is
6288  * special variant of begin_synchronized_op and must be paired with a
6289  * call to end_vi_detach.
6290  */
6291 void
begin_vi_detach(struct adapter * sc,struct vi_info * vi)6292 begin_vi_detach(struct adapter *sc, struct vi_info *vi)
6293 {
6294 	ADAPTER_LOCK(sc);
6295 	SET_DETACHING(vi);
6296 	wakeup(&sc->flags);
6297 	while (IS_BUSY(sc))
6298 		mtx_sleep(&sc->flags, &sc->sc_lock, 0, "t4detach", 0);
6299 	SET_BUSY(sc);
6300 #ifdef INVARIANTS
6301 	sc->last_op = "t4detach";
6302 	sc->last_op_thr = curthread;
6303 	sc->last_op_flags = 0;
6304 #endif
6305 	ADAPTER_UNLOCK(sc);
6306 }
6307 
6308 void
end_vi_detach(struct adapter * sc,struct vi_info * vi)6309 end_vi_detach(struct adapter *sc, struct vi_info *vi)
6310 {
6311 	ADAPTER_LOCK(sc);
6312 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6313 	CLR_BUSY(sc);
6314 	CLR_DETACHING(vi);
6315 	wakeup(&sc->flags);
6316 	ADAPTER_UNLOCK(sc);
6317 }
6318 
6319 /*
6320  * {begin|end}_synchronized_op must be called from the same thread.
6321  */
6322 void
end_synchronized_op(struct adapter * sc,int flags)6323 end_synchronized_op(struct adapter *sc, int flags)
6324 {
6325 
6326 	if (flags & LOCK_HELD)
6327 		ADAPTER_LOCK_ASSERT_OWNED(sc);
6328 	else
6329 		ADAPTER_LOCK(sc);
6330 
6331 	KASSERT(IS_BUSY(sc), ("%s: controller not busy.", __func__));
6332 	CLR_BUSY(sc);
6333 	wakeup(&sc->flags);
6334 	ADAPTER_UNLOCK(sc);
6335 }
6336 
6337 static int
cxgbe_init_synchronized(struct vi_info * vi)6338 cxgbe_init_synchronized(struct vi_info *vi)
6339 {
6340 	struct port_info *pi = vi->pi;
6341 	struct adapter *sc = pi->adapter;
6342 	if_t ifp = vi->ifp;
6343 	int rc = 0, i;
6344 	struct sge_txq *txq;
6345 
6346 	ASSERT_SYNCHRONIZED_OP(sc);
6347 
6348 	if (if_getdrvflags(ifp) & IFF_DRV_RUNNING)
6349 		return (0);	/* already running */
6350 
6351 	if (!(sc->flags & FULL_INIT_DONE) && ((rc = adapter_init(sc)) != 0))
6352 		return (rc);	/* error message displayed already */
6353 
6354 	if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
6355 		return (rc); /* error message displayed already */
6356 
6357 	rc = update_mac_settings(ifp, XGMAC_ALL);
6358 	if (rc)
6359 		goto done;	/* error message displayed already */
6360 
6361 	PORT_LOCK(pi);
6362 	if (pi->up_vis == 0) {
6363 		t4_update_port_info(pi);
6364 		fixup_link_config(pi);
6365 		build_medialist(pi);
6366 		apply_link_config(pi);
6367 	}
6368 
6369 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, true, true);
6370 	if (rc != 0) {
6371 		if_printf(ifp, "enable_vi failed: %d\n", rc);
6372 		PORT_UNLOCK(pi);
6373 		goto done;
6374 	}
6375 
6376 	/*
6377 	 * Can't fail from this point onwards.  Review cxgbe_uninit_synchronized
6378 	 * if this changes.
6379 	 */
6380 
6381 	for_each_txq(vi, i, txq) {
6382 		TXQ_LOCK(txq);
6383 		txq->eq.flags |= EQ_ENABLED;
6384 		TXQ_UNLOCK(txq);
6385 	}
6386 
6387 	/*
6388 	 * The first iq of the first port to come up is used for tracing.
6389 	 */
6390 	if (sc->traceq < 0 && IS_MAIN_VI(vi)) {
6391 		sc->traceq = sc->sge.rxq[vi->first_rxq].iq.abs_id;
6392 		t4_write_reg(sc, is_t4(sc) ?  A_MPS_TRC_RSS_CONTROL :
6393 		    A_MPS_T5_TRC_RSS_CONTROL, V_RSSCONTROL(pi->tx_chan) |
6394 		    V_QUEUENUMBER(sc->traceq));
6395 		pi->flags |= HAS_TRACEQ;
6396 	}
6397 
6398 	/* all ok */
6399 	pi->up_vis++;
6400 	if_setdrvflagbits(ifp, IFF_DRV_RUNNING, 0);
6401 	if (pi->link_cfg.link_ok)
6402 		t4_os_link_changed(pi);
6403 	PORT_UNLOCK(pi);
6404 
6405 	mtx_lock(&vi->tick_mtx);
6406 	if (vi->pi->nvi > 1 || sc->flags & IS_VF)
6407 		callout_reset(&vi->tick, hz, vi_tick, vi);
6408 	else
6409 		callout_reset(&vi->tick, hz, cxgbe_tick, vi);
6410 	mtx_unlock(&vi->tick_mtx);
6411 done:
6412 	if (rc != 0)
6413 		cxgbe_uninit_synchronized(vi);
6414 
6415 	return (rc);
6416 }
6417 
6418 /*
6419  * Idempotent.
6420  */
6421 static int
cxgbe_uninit_synchronized(struct vi_info * vi)6422 cxgbe_uninit_synchronized(struct vi_info *vi)
6423 {
6424 	struct port_info *pi = vi->pi;
6425 	struct adapter *sc = pi->adapter;
6426 	if_t ifp = vi->ifp;
6427 	int rc, i;
6428 	struct sge_txq *txq;
6429 
6430 	ASSERT_SYNCHRONIZED_OP(sc);
6431 
6432 	if (!(vi->flags & VI_INIT_DONE)) {
6433 		if (__predict_false(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6434 			KASSERT(0, ("uninited VI is running"));
6435 			if_printf(ifp, "uninited VI with running ifnet.  "
6436 			    "vi->flags 0x%016lx, if_flags 0x%08x, "
6437 			    "if_drv_flags 0x%08x\n", vi->flags, if_getflags(ifp),
6438 			    if_getdrvflags(ifp));
6439 		}
6440 		return (0);
6441 	}
6442 
6443 	/*
6444 	 * Disable the VI so that all its data in either direction is discarded
6445 	 * by the MPS.  Leave everything else (the queues, interrupts, and 1Hz
6446 	 * tick) intact as the TP can deliver negative advice or data that it's
6447 	 * holding in its RAM (for an offloaded connection) even after the VI is
6448 	 * disabled.
6449 	 */
6450 	rc = -t4_enable_vi(sc, sc->mbox, vi->viid, false, false);
6451 	if (rc) {
6452 		if_printf(ifp, "disable_vi failed: %d\n", rc);
6453 		return (rc);
6454 	}
6455 
6456 	for_each_txq(vi, i, txq) {
6457 		TXQ_LOCK(txq);
6458 		txq->eq.flags &= ~EQ_ENABLED;
6459 		TXQ_UNLOCK(txq);
6460 	}
6461 
6462 	mtx_lock(&vi->tick_mtx);
6463 	callout_stop(&vi->tick);
6464 	mtx_unlock(&vi->tick_mtx);
6465 
6466 	PORT_LOCK(pi);
6467 	if (!(if_getdrvflags(ifp) & IFF_DRV_RUNNING)) {
6468 		PORT_UNLOCK(pi);
6469 		return (0);
6470 	}
6471 	if_setdrvflagbits(ifp, 0, IFF_DRV_RUNNING);
6472 	pi->up_vis--;
6473 	if (pi->up_vis > 0) {
6474 		PORT_UNLOCK(pi);
6475 		return (0);
6476 	}
6477 
6478 	pi->link_cfg.link_ok = false;
6479 	pi->link_cfg.speed = 0;
6480 	pi->link_cfg.link_down_rc = 255;
6481 	t4_os_link_changed(pi);
6482 	PORT_UNLOCK(pi);
6483 
6484 	return (0);
6485 }
6486 
6487 /*
6488  * It is ok for this function to fail midway and return right away.  t4_detach
6489  * will walk the entire sc->irq list and clean up whatever is valid.
6490  */
6491 int
t4_setup_intr_handlers(struct adapter * sc)6492 t4_setup_intr_handlers(struct adapter *sc)
6493 {
6494 	int rc, rid, p, q, v;
6495 	char s[8];
6496 	struct irq *irq;
6497 	struct port_info *pi;
6498 	struct vi_info *vi;
6499 	struct sge *sge = &sc->sge;
6500 	struct sge_rxq *rxq;
6501 #ifdef TCP_OFFLOAD
6502 	struct sge_ofld_rxq *ofld_rxq;
6503 #endif
6504 #ifdef DEV_NETMAP
6505 	struct sge_nm_rxq *nm_rxq;
6506 #endif
6507 #ifdef RSS
6508 	int nbuckets = rss_getnumbuckets();
6509 #endif
6510 
6511 	/*
6512 	 * Setup interrupts.
6513 	 */
6514 	irq = &sc->irq[0];
6515 	rid = sc->intr_type == INTR_INTX ? 0 : 1;
6516 	if (forwarding_intr_to_fwq(sc))
6517 		return (t4_alloc_irq(sc, irq, rid, t4_intr_all, sc, "all"));
6518 
6519 	/* Multiple interrupts. */
6520 	if (sc->flags & IS_VF)
6521 		KASSERT(sc->intr_count >= T4VF_EXTRA_INTR + sc->params.nports,
6522 		    ("%s: too few intr.", __func__));
6523 	else
6524 		KASSERT(sc->intr_count >= T4_EXTRA_INTR + sc->params.nports,
6525 		    ("%s: too few intr.", __func__));
6526 
6527 	/* The first one is always error intr on PFs */
6528 	if (!(sc->flags & IS_VF)) {
6529 		rc = t4_alloc_irq(sc, irq, rid, t4_intr_err, sc, "err");
6530 		if (rc != 0)
6531 			return (rc);
6532 		irq++;
6533 		rid++;
6534 	}
6535 
6536 	/* The second one is always the firmware event queue (first on VFs) */
6537 	rc = t4_alloc_irq(sc, irq, rid, t4_intr_evt, &sge->fwq, "evt");
6538 	if (rc != 0)
6539 		return (rc);
6540 	irq++;
6541 	rid++;
6542 
6543 	for_each_port(sc, p) {
6544 		pi = sc->port[p];
6545 		for_each_vi(pi, v, vi) {
6546 			vi->first_intr = rid - 1;
6547 
6548 			if (vi->nnmrxq > 0) {
6549 				int n = max(vi->nrxq, vi->nnmrxq);
6550 
6551 				rxq = &sge->rxq[vi->first_rxq];
6552 #ifdef DEV_NETMAP
6553 				nm_rxq = &sge->nm_rxq[vi->first_nm_rxq];
6554 #endif
6555 				for (q = 0; q < n; q++) {
6556 					snprintf(s, sizeof(s), "%x%c%x", p,
6557 					    'a' + v, q);
6558 					if (q < vi->nrxq)
6559 						irq->rxq = rxq++;
6560 #ifdef DEV_NETMAP
6561 					if (q < vi->nnmrxq)
6562 						irq->nm_rxq = nm_rxq++;
6563 
6564 					if (irq->nm_rxq != NULL &&
6565 					    irq->rxq == NULL) {
6566 						/* Netmap rx only */
6567 						rc = t4_alloc_irq(sc, irq, rid,
6568 						    t4_nm_intr, irq->nm_rxq, s);
6569 					}
6570 					if (irq->nm_rxq != NULL &&
6571 					    irq->rxq != NULL) {
6572 						/* NIC and Netmap rx */
6573 						rc = t4_alloc_irq(sc, irq, rid,
6574 						    t4_vi_intr, irq, s);
6575 					}
6576 #endif
6577 					if (irq->rxq != NULL &&
6578 					    irq->nm_rxq == NULL) {
6579 						/* NIC rx only */
6580 						rc = t4_alloc_irq(sc, irq, rid,
6581 						    t4_intr, irq->rxq, s);
6582 					}
6583 					if (rc != 0)
6584 						return (rc);
6585 #ifdef RSS
6586 					if (q < vi->nrxq) {
6587 						bus_bind_intr(sc->dev, irq->res,
6588 						    rss_getcpu(q % nbuckets));
6589 					}
6590 #endif
6591 					irq++;
6592 					rid++;
6593 					vi->nintr++;
6594 				}
6595 			} else {
6596 				for_each_rxq(vi, q, rxq) {
6597 					snprintf(s, sizeof(s), "%x%c%x", p,
6598 					    'a' + v, q);
6599 					rc = t4_alloc_irq(sc, irq, rid,
6600 					    t4_intr, rxq, s);
6601 					if (rc != 0)
6602 						return (rc);
6603 #ifdef RSS
6604 					bus_bind_intr(sc->dev, irq->res,
6605 					    rss_getcpu(q % nbuckets));
6606 #endif
6607 					irq++;
6608 					rid++;
6609 					vi->nintr++;
6610 				}
6611 			}
6612 #ifdef TCP_OFFLOAD
6613 			for_each_ofld_rxq(vi, q, ofld_rxq) {
6614 				snprintf(s, sizeof(s), "%x%c%x", p, 'A' + v, q);
6615 				rc = t4_alloc_irq(sc, irq, rid, t4_intr,
6616 				    ofld_rxq, s);
6617 				if (rc != 0)
6618 					return (rc);
6619 				irq++;
6620 				rid++;
6621 				vi->nintr++;
6622 			}
6623 #endif
6624 		}
6625 	}
6626 	MPASS(irq == &sc->irq[sc->intr_count]);
6627 
6628 	return (0);
6629 }
6630 
6631 static void
write_global_rss_key(struct adapter * sc)6632 write_global_rss_key(struct adapter *sc)
6633 {
6634 #ifdef RSS
6635 	int i;
6636 	uint32_t raw_rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6637 	uint32_t rss_key[RSS_KEYSIZE / sizeof(uint32_t)];
6638 
6639 	CTASSERT(RSS_KEYSIZE == 40);
6640 
6641 	rss_getkey((void *)&raw_rss_key[0]);
6642 	for (i = 0; i < nitems(rss_key); i++) {
6643 		rss_key[i] = htobe32(raw_rss_key[nitems(rss_key) - 1 - i]);
6644 	}
6645 	t4_write_rss_key(sc, &rss_key[0], -1, 1);
6646 #endif
6647 }
6648 
6649 /*
6650  * Idempotent.
6651  */
6652 static int
adapter_full_init(struct adapter * sc)6653 adapter_full_init(struct adapter *sc)
6654 {
6655 	int rc, i;
6656 
6657 	ASSERT_SYNCHRONIZED_OP(sc);
6658 
6659 	/*
6660 	 * queues that belong to the adapter (not any particular port).
6661 	 */
6662 	rc = t4_setup_adapter_queues(sc);
6663 	if (rc != 0)
6664 		return (rc);
6665 
6666 	MPASS(sc->params.nports <= nitems(sc->tq));
6667 	for (i = 0; i < sc->params.nports; i++) {
6668 		if (sc->tq[i] != NULL)
6669 			continue;
6670 		sc->tq[i] = taskqueue_create("t4 taskq", M_NOWAIT,
6671 		    taskqueue_thread_enqueue, &sc->tq[i]);
6672 		if (sc->tq[i] == NULL) {
6673 			CH_ERR(sc, "failed to allocate task queue %d\n", i);
6674 			return (ENOMEM);
6675 		}
6676 		taskqueue_start_threads(&sc->tq[i], 1, PI_NET, "%s tq%d",
6677 		    device_get_nameunit(sc->dev), i);
6678 	}
6679 
6680 	if (!(sc->flags & IS_VF)) {
6681 		write_global_rss_key(sc);
6682 		t4_intr_enable(sc);
6683 	}
6684 	return (0);
6685 }
6686 
6687 int
adapter_init(struct adapter * sc)6688 adapter_init(struct adapter *sc)
6689 {
6690 	int rc;
6691 
6692 	ASSERT_SYNCHRONIZED_OP(sc);
6693 	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
6694 	KASSERT((sc->flags & FULL_INIT_DONE) == 0,
6695 	    ("%s: FULL_INIT_DONE already", __func__));
6696 
6697 	rc = adapter_full_init(sc);
6698 	if (rc != 0)
6699 		adapter_full_uninit(sc);
6700 	else
6701 		sc->flags |= FULL_INIT_DONE;
6702 
6703 	return (rc);
6704 }
6705 
6706 /*
6707  * Idempotent.
6708  */
6709 static void
adapter_full_uninit(struct adapter * sc)6710 adapter_full_uninit(struct adapter *sc)
6711 {
6712 	int i;
6713 
6714 	t4_teardown_adapter_queues(sc);
6715 
6716 	for (i = 0; i < nitems(sc->tq); i++) {
6717 		if (sc->tq[i] == NULL)
6718 			continue;
6719 		taskqueue_free(sc->tq[i]);
6720 		sc->tq[i] = NULL;
6721 	}
6722 
6723 	sc->flags &= ~FULL_INIT_DONE;
6724 }
6725 
6726 #ifdef RSS
6727 #define SUPPORTED_RSS_HASHTYPES (RSS_HASHTYPE_RSS_IPV4 | \
6728     RSS_HASHTYPE_RSS_TCP_IPV4 | RSS_HASHTYPE_RSS_IPV6 | \
6729     RSS_HASHTYPE_RSS_TCP_IPV6 | RSS_HASHTYPE_RSS_UDP_IPV4 | \
6730     RSS_HASHTYPE_RSS_UDP_IPV6)
6731 
6732 /* Translates kernel hash types to hardware. */
6733 static int
hashconfig_to_hashen(int hashconfig)6734 hashconfig_to_hashen(int hashconfig)
6735 {
6736 	int hashen = 0;
6737 
6738 	if (hashconfig & RSS_HASHTYPE_RSS_IPV4)
6739 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN;
6740 	if (hashconfig & RSS_HASHTYPE_RSS_IPV6)
6741 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN;
6742 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV4) {
6743 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6744 		    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6745 	}
6746 	if (hashconfig & RSS_HASHTYPE_RSS_UDP_IPV6) {
6747 		hashen |= F_FW_RSS_VI_CONFIG_CMD_UDPEN |
6748 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6749 	}
6750 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV4)
6751 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN;
6752 	if (hashconfig & RSS_HASHTYPE_RSS_TCP_IPV6)
6753 		hashen |= F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN;
6754 
6755 	return (hashen);
6756 }
6757 
6758 /* Translates hardware hash types to kernel. */
6759 static int
hashen_to_hashconfig(int hashen)6760 hashen_to_hashconfig(int hashen)
6761 {
6762 	int hashconfig = 0;
6763 
6764 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_UDPEN) {
6765 		/*
6766 		 * If UDP hashing was enabled it must have been enabled for
6767 		 * either IPv4 or IPv6 (inclusive or).  Enabling UDP without
6768 		 * enabling any 4-tuple hash is nonsense configuration.
6769 		 */
6770 		MPASS(hashen & (F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6771 		    F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN));
6772 
6773 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6774 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV4;
6775 		if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6776 			hashconfig |= RSS_HASHTYPE_RSS_UDP_IPV6;
6777 	}
6778 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN)
6779 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV4;
6780 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN)
6781 		hashconfig |= RSS_HASHTYPE_RSS_TCP_IPV6;
6782 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN)
6783 		hashconfig |= RSS_HASHTYPE_RSS_IPV4;
6784 	if (hashen & F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN)
6785 		hashconfig |= RSS_HASHTYPE_RSS_IPV6;
6786 
6787 	return (hashconfig);
6788 }
6789 #endif
6790 
6791 /*
6792  * Idempotent.
6793  */
6794 static int
vi_full_init(struct vi_info * vi)6795 vi_full_init(struct vi_info *vi)
6796 {
6797 	struct adapter *sc = vi->adapter;
6798 	struct sge_rxq *rxq;
6799 	int rc, i, j;
6800 #ifdef RSS
6801 	int nbuckets = rss_getnumbuckets();
6802 	int hashconfig = rss_gethashconfig();
6803 	int extra;
6804 #endif
6805 
6806 	ASSERT_SYNCHRONIZED_OP(sc);
6807 
6808 	/*
6809 	 * Allocate tx/rx/fl queues for this VI.
6810 	 */
6811 	rc = t4_setup_vi_queues(vi);
6812 	if (rc != 0)
6813 		return (rc);
6814 
6815 	/*
6816 	 * Setup RSS for this VI.  Save a copy of the RSS table for later use.
6817 	 */
6818 	if (vi->nrxq > vi->rss_size) {
6819 		CH_ALERT(vi, "nrxq (%d) > hw RSS table size (%d); "
6820 		    "some queues will never receive traffic.\n", vi->nrxq,
6821 		    vi->rss_size);
6822 	} else if (vi->rss_size % vi->nrxq) {
6823 		CH_ALERT(vi, "nrxq (%d), hw RSS table size (%d); "
6824 		    "expect uneven traffic distribution.\n", vi->nrxq,
6825 		    vi->rss_size);
6826 	}
6827 #ifdef RSS
6828 	if (vi->nrxq != nbuckets) {
6829 		CH_ALERT(vi, "nrxq (%d) != kernel RSS buckets (%d);"
6830 		    "performance will be impacted.\n", vi->nrxq, nbuckets);
6831 	}
6832 #endif
6833 	if (vi->rss == NULL)
6834 		vi->rss = malloc(vi->rss_size * sizeof (*vi->rss), M_CXGBE,
6835 		    M_ZERO | M_WAITOK);
6836 	for (i = 0; i < vi->rss_size;) {
6837 #ifdef RSS
6838 		j = rss_get_indirection_to_bucket(i);
6839 		j %= vi->nrxq;
6840 		rxq = &sc->sge.rxq[vi->first_rxq + j];
6841 		vi->rss[i++] = rxq->iq.abs_id;
6842 #else
6843 		for_each_rxq(vi, j, rxq) {
6844 			vi->rss[i++] = rxq->iq.abs_id;
6845 			if (i == vi->rss_size)
6846 				break;
6847 		}
6848 #endif
6849 	}
6850 
6851 	rc = -t4_config_rss_range(sc, sc->mbox, vi->viid, 0, vi->rss_size,
6852 	    vi->rss, vi->rss_size);
6853 	if (rc != 0) {
6854 		CH_ERR(vi, "rss_config failed: %d\n", rc);
6855 		return (rc);
6856 	}
6857 
6858 #ifdef RSS
6859 	vi->hashen = hashconfig_to_hashen(hashconfig);
6860 
6861 	/*
6862 	 * We may have had to enable some hashes even though the global config
6863 	 * wants them disabled.  This is a potential problem that must be
6864 	 * reported to the user.
6865 	 */
6866 	extra = hashen_to_hashconfig(vi->hashen) ^ hashconfig;
6867 
6868 	/*
6869 	 * If we consider only the supported hash types, then the enabled hashes
6870 	 * are a superset of the requested hashes.  In other words, there cannot
6871 	 * be any supported hash that was requested but not enabled, but there
6872 	 * can be hashes that were not requested but had to be enabled.
6873 	 */
6874 	extra &= SUPPORTED_RSS_HASHTYPES;
6875 	MPASS((extra & hashconfig) == 0);
6876 
6877 	if (extra) {
6878 		CH_ALERT(vi,
6879 		    "global RSS config (0x%x) cannot be accommodated.\n",
6880 		    hashconfig);
6881 	}
6882 	if (extra & RSS_HASHTYPE_RSS_IPV4)
6883 		CH_ALERT(vi, "IPv4 2-tuple hashing forced on.\n");
6884 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV4)
6885 		CH_ALERT(vi, "TCP/IPv4 4-tuple hashing forced on.\n");
6886 	if (extra & RSS_HASHTYPE_RSS_IPV6)
6887 		CH_ALERT(vi, "IPv6 2-tuple hashing forced on.\n");
6888 	if (extra & RSS_HASHTYPE_RSS_TCP_IPV6)
6889 		CH_ALERT(vi, "TCP/IPv6 4-tuple hashing forced on.\n");
6890 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV4)
6891 		CH_ALERT(vi, "UDP/IPv4 4-tuple hashing forced on.\n");
6892 	if (extra & RSS_HASHTYPE_RSS_UDP_IPV6)
6893 		CH_ALERT(vi, "UDP/IPv6 4-tuple hashing forced on.\n");
6894 #else
6895 	vi->hashen = F_FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN |
6896 	    F_FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN |
6897 	    F_FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN |
6898 	    F_FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN | F_FW_RSS_VI_CONFIG_CMD_UDPEN;
6899 #endif
6900 	rc = -t4_config_vi_rss(sc, sc->mbox, vi->viid, vi->hashen, vi->rss[0],
6901 	    0, 0);
6902 	if (rc != 0) {
6903 		CH_ERR(vi, "rss hash/defaultq config failed: %d\n", rc);
6904 		return (rc);
6905 	}
6906 
6907 	return (0);
6908 }
6909 
6910 int
vi_init(struct vi_info * vi)6911 vi_init(struct vi_info *vi)
6912 {
6913 	int rc;
6914 
6915 	ASSERT_SYNCHRONIZED_OP(vi->adapter);
6916 	KASSERT((vi->flags & VI_INIT_DONE) == 0,
6917 	    ("%s: VI_INIT_DONE already", __func__));
6918 
6919 	rc = vi_full_init(vi);
6920 	if (rc != 0)
6921 		vi_full_uninit(vi);
6922 	else
6923 		vi->flags |= VI_INIT_DONE;
6924 
6925 	return (rc);
6926 }
6927 
6928 /*
6929  * Idempotent.
6930  */
6931 static void
vi_full_uninit(struct vi_info * vi)6932 vi_full_uninit(struct vi_info *vi)
6933 {
6934 
6935 	if (vi->flags & VI_INIT_DONE) {
6936 		quiesce_vi(vi);
6937 		free(vi->rss, M_CXGBE);
6938 		free(vi->nm_rss, M_CXGBE);
6939 	}
6940 
6941 	t4_teardown_vi_queues(vi);
6942 	vi->flags &= ~VI_INIT_DONE;
6943 }
6944 
6945 static void
quiesce_txq(struct sge_txq * txq)6946 quiesce_txq(struct sge_txq *txq)
6947 {
6948 	struct sge_eq *eq = &txq->eq;
6949 	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
6950 
6951 	MPASS(eq->flags & EQ_SW_ALLOCATED);
6952 	MPASS(!(eq->flags & EQ_ENABLED));
6953 
6954 	/* Wait for the mp_ring to empty. */
6955 	while (!mp_ring_is_idle(txq->r)) {
6956 		mp_ring_check_drainage(txq->r, 4096);
6957 		pause("rquiesce", 1);
6958 	}
6959 	MPASS(txq->txp.npkt == 0);
6960 
6961 	if (eq->flags & EQ_HW_ALLOCATED) {
6962 		/*
6963 		 * Hardware is alive and working normally.  Wait for it to
6964 		 * finish and then wait for the driver to catch up and reclaim
6965 		 * all descriptors.
6966 		 */
6967 		while (spg->cidx != htobe16(eq->pidx))
6968 			pause("equiesce", 1);
6969 		while (eq->cidx != eq->pidx)
6970 			pause("dquiesce", 1);
6971 	} else {
6972 		/*
6973 		 * Hardware is unavailable.  Discard all pending tx and reclaim
6974 		 * descriptors directly.
6975 		 */
6976 		TXQ_LOCK(txq);
6977 		while (eq->cidx != eq->pidx) {
6978 			struct mbuf *m, *nextpkt;
6979 			struct tx_sdesc *txsd;
6980 
6981 			txsd = &txq->sdesc[eq->cidx];
6982 			for (m = txsd->m; m != NULL; m = nextpkt) {
6983 				nextpkt = m->m_nextpkt;
6984 				m->m_nextpkt = NULL;
6985 				m_freem(m);
6986 			}
6987 			IDXINCR(eq->cidx, txsd->desc_used, eq->sidx);
6988 		}
6989 		spg->pidx = spg->cidx = htobe16(eq->cidx);
6990 		TXQ_UNLOCK(txq);
6991 	}
6992 }
6993 
6994 static void
quiesce_wrq(struct sge_wrq * wrq)6995 quiesce_wrq(struct sge_wrq *wrq)
6996 {
6997 
6998 	/* XXXTX */
6999 }
7000 
7001 static void
quiesce_iq_fl(struct adapter * sc,struct sge_iq * iq,struct sge_fl * fl)7002 quiesce_iq_fl(struct adapter *sc, struct sge_iq *iq, struct sge_fl *fl)
7003 {
7004 	/* Synchronize with the interrupt handler */
7005 	while (!atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_DISABLED))
7006 		pause("iqfree", 1);
7007 
7008 	if (fl != NULL) {
7009 		MPASS(iq->flags & IQ_HAS_FL);
7010 
7011 		mtx_lock(&sc->sfl_lock);
7012 		FL_LOCK(fl);
7013 		fl->flags |= FL_DOOMED;
7014 		FL_UNLOCK(fl);
7015 		callout_stop(&sc->sfl_callout);
7016 		mtx_unlock(&sc->sfl_lock);
7017 
7018 		KASSERT((fl->flags & FL_STARVING) == 0,
7019 		    ("%s: still starving", __func__));
7020 
7021 		/* Release all buffers if hardware is no longer available. */
7022 		if (!(iq->flags & IQ_HW_ALLOCATED))
7023 			free_fl_buffers(sc, fl);
7024 	}
7025 }
7026 
7027 /*
7028  * Wait for all activity on all the queues of the VI to complete.  It is assumed
7029  * that no new work is being enqueued by the hardware or the driver.  That part
7030  * should be arranged before calling this function.
7031  */
7032 static void
quiesce_vi(struct vi_info * vi)7033 quiesce_vi(struct vi_info *vi)
7034 {
7035 	int i;
7036 	struct adapter *sc = vi->adapter;
7037 	struct sge_rxq *rxq;
7038 	struct sge_txq *txq;
7039 #ifdef TCP_OFFLOAD
7040 	struct sge_ofld_rxq *ofld_rxq;
7041 #endif
7042 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7043 	struct sge_ofld_txq *ofld_txq;
7044 #endif
7045 
7046 	if (!(vi->flags & VI_INIT_DONE))
7047 		return;
7048 
7049 	for_each_txq(vi, i, txq) {
7050 		quiesce_txq(txq);
7051 	}
7052 
7053 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7054 	for_each_ofld_txq(vi, i, ofld_txq) {
7055 		quiesce_wrq(&ofld_txq->wrq);
7056 	}
7057 #endif
7058 
7059 	for_each_rxq(vi, i, rxq) {
7060 		quiesce_iq_fl(sc, &rxq->iq, &rxq->fl);
7061 	}
7062 
7063 #ifdef TCP_OFFLOAD
7064 	for_each_ofld_rxq(vi, i, ofld_rxq) {
7065 		quiesce_iq_fl(sc, &ofld_rxq->iq, &ofld_rxq->fl);
7066 	}
7067 #endif
7068 }
7069 
7070 static int
t4_alloc_irq(struct adapter * sc,struct irq * irq,int rid,driver_intr_t * handler,void * arg,char * name)7071 t4_alloc_irq(struct adapter *sc, struct irq *irq, int rid,
7072     driver_intr_t *handler, void *arg, char *name)
7073 {
7074 	int rc;
7075 
7076 	irq->rid = rid;
7077 	irq->res = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irq->rid,
7078 	    RF_SHAREABLE | RF_ACTIVE);
7079 	if (irq->res == NULL) {
7080 		device_printf(sc->dev,
7081 		    "failed to allocate IRQ for rid %d, name %s.\n", rid, name);
7082 		return (ENOMEM);
7083 	}
7084 
7085 	rc = bus_setup_intr(sc->dev, irq->res, INTR_MPSAFE | INTR_TYPE_NET,
7086 	    NULL, handler, arg, &irq->tag);
7087 	if (rc != 0) {
7088 		device_printf(sc->dev,
7089 		    "failed to setup interrupt for rid %d, name %s: %d\n",
7090 		    rid, name, rc);
7091 	} else if (name)
7092 		bus_describe_intr(sc->dev, irq->res, irq->tag, "%s", name);
7093 
7094 	return (rc);
7095 }
7096 
7097 static int
t4_free_irq(struct adapter * sc,struct irq * irq)7098 t4_free_irq(struct adapter *sc, struct irq *irq)
7099 {
7100 	if (irq->tag)
7101 		bus_teardown_intr(sc->dev, irq->res, irq->tag);
7102 	if (irq->res)
7103 		bus_release_resource(sc->dev, SYS_RES_IRQ, irq->rid, irq->res);
7104 
7105 	bzero(irq, sizeof(*irq));
7106 
7107 	return (0);
7108 }
7109 
7110 static void
get_regs(struct adapter * sc,struct t4_regdump * regs,uint8_t * buf)7111 get_regs(struct adapter *sc, struct t4_regdump *regs, uint8_t *buf)
7112 {
7113 
7114 	regs->version = chip_id(sc) | chip_rev(sc) << 10;
7115 	t4_get_regs(sc, buf, regs->len);
7116 }
7117 
7118 #define	A_PL_INDIR_CMD	0x1f8
7119 
7120 #define	S_PL_AUTOINC	31
7121 #define	M_PL_AUTOINC	0x1U
7122 #define	V_PL_AUTOINC(x)	((x) << S_PL_AUTOINC)
7123 #define	G_PL_AUTOINC(x)	(((x) >> S_PL_AUTOINC) & M_PL_AUTOINC)
7124 
7125 #define	S_PL_VFID	20
7126 #define	M_PL_VFID	0xffU
7127 #define	V_PL_VFID(x)	((x) << S_PL_VFID)
7128 #define	G_PL_VFID(x)	(((x) >> S_PL_VFID) & M_PL_VFID)
7129 
7130 #define	S_PL_ADDR	0
7131 #define	M_PL_ADDR	0xfffffU
7132 #define	V_PL_ADDR(x)	((x) << S_PL_ADDR)
7133 #define	G_PL_ADDR(x)	(((x) >> S_PL_ADDR) & M_PL_ADDR)
7134 
7135 #define	A_PL_INDIR_DATA	0x1fc
7136 
7137 static uint64_t
read_vf_stat(struct adapter * sc,u_int vin,int reg)7138 read_vf_stat(struct adapter *sc, u_int vin, int reg)
7139 {
7140 	u32 stats[2];
7141 
7142 	if (sc->flags & IS_VF) {
7143 		stats[0] = t4_read_reg(sc, VF_MPS_REG(reg));
7144 		stats[1] = t4_read_reg(sc, VF_MPS_REG(reg + 4));
7145 	} else {
7146 		mtx_assert(&sc->reg_lock, MA_OWNED);
7147 		t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) |
7148 		    V_PL_VFID(vin) | V_PL_ADDR(VF_MPS_REG(reg)));
7149 		stats[0] = t4_read_reg(sc, A_PL_INDIR_DATA);
7150 		stats[1] = t4_read_reg(sc, A_PL_INDIR_DATA);
7151 	}
7152 	return (((uint64_t)stats[1]) << 32 | stats[0]);
7153 }
7154 
7155 static void
t4_get_vi_stats(struct adapter * sc,u_int vin,struct fw_vi_stats_vf * stats)7156 t4_get_vi_stats(struct adapter *sc, u_int vin, struct fw_vi_stats_vf *stats)
7157 {
7158 
7159 #define GET_STAT(name) \
7160 	read_vf_stat(sc, vin, A_MPS_VF_STAT_##name##_L)
7161 
7162 	if (!(sc->flags & IS_VF))
7163 		mtx_lock(&sc->reg_lock);
7164 	stats->tx_bcast_bytes    = GET_STAT(TX_VF_BCAST_BYTES);
7165 	stats->tx_bcast_frames   = GET_STAT(TX_VF_BCAST_FRAMES);
7166 	stats->tx_mcast_bytes    = GET_STAT(TX_VF_MCAST_BYTES);
7167 	stats->tx_mcast_frames   = GET_STAT(TX_VF_MCAST_FRAMES);
7168 	stats->tx_ucast_bytes    = GET_STAT(TX_VF_UCAST_BYTES);
7169 	stats->tx_ucast_frames   = GET_STAT(TX_VF_UCAST_FRAMES);
7170 	stats->tx_drop_frames    = GET_STAT(TX_VF_DROP_FRAMES);
7171 	stats->tx_offload_bytes  = GET_STAT(TX_VF_OFFLOAD_BYTES);
7172 	stats->tx_offload_frames = GET_STAT(TX_VF_OFFLOAD_FRAMES);
7173 	stats->rx_bcast_bytes    = GET_STAT(RX_VF_BCAST_BYTES);
7174 	stats->rx_bcast_frames   = GET_STAT(RX_VF_BCAST_FRAMES);
7175 	stats->rx_mcast_bytes    = GET_STAT(RX_VF_MCAST_BYTES);
7176 	stats->rx_mcast_frames   = GET_STAT(RX_VF_MCAST_FRAMES);
7177 	stats->rx_ucast_bytes    = GET_STAT(RX_VF_UCAST_BYTES);
7178 	stats->rx_ucast_frames   = GET_STAT(RX_VF_UCAST_FRAMES);
7179 	stats->rx_err_frames     = GET_STAT(RX_VF_ERR_FRAMES);
7180 	if (!(sc->flags & IS_VF))
7181 		mtx_unlock(&sc->reg_lock);
7182 
7183 #undef GET_STAT
7184 }
7185 
7186 static void
t4_clr_vi_stats(struct adapter * sc,u_int vin)7187 t4_clr_vi_stats(struct adapter *sc, u_int vin)
7188 {
7189 	int reg;
7190 
7191 	t4_write_reg(sc, A_PL_INDIR_CMD, V_PL_AUTOINC(1) | V_PL_VFID(vin) |
7192 	    V_PL_ADDR(VF_MPS_REG(A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L)));
7193 	for (reg = A_MPS_VF_STAT_TX_VF_BCAST_BYTES_L;
7194 	     reg <= A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H; reg += 4)
7195 		t4_write_reg(sc, A_PL_INDIR_DATA, 0);
7196 }
7197 
7198 static void
vi_refresh_stats(struct vi_info * vi)7199 vi_refresh_stats(struct vi_info *vi)
7200 {
7201 	struct timeval tv;
7202 	const struct timeval interval = {0, 250000};	/* 250ms */
7203 
7204 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7205 
7206 	if (vi->flags & VI_SKIP_STATS)
7207 		return;
7208 
7209 	getmicrotime(&tv);
7210 	timevalsub(&tv, &interval);
7211 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7212 		return;
7213 
7214 	t4_get_vi_stats(vi->adapter, vi->vin, &vi->stats);
7215 	getmicrotime(&vi->last_refreshed);
7216 }
7217 
7218 static void
cxgbe_refresh_stats(struct vi_info * vi)7219 cxgbe_refresh_stats(struct vi_info *vi)
7220 {
7221 	u_int i, v, tnl_cong_drops, chan_map;
7222 	struct timeval tv;
7223 	const struct timeval interval = {0, 250000};	/* 250ms */
7224 	struct port_info *pi;
7225 	struct adapter *sc;
7226 
7227 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7228 
7229 	if (vi->flags & VI_SKIP_STATS)
7230 		return;
7231 
7232 	getmicrotime(&tv);
7233 	timevalsub(&tv, &interval);
7234 	if (timevalcmp(&tv, &vi->last_refreshed, <))
7235 		return;
7236 
7237 	pi = vi->pi;
7238 	sc = vi->adapter;
7239 	tnl_cong_drops = 0;
7240 	t4_get_port_stats(sc, pi->port_id, &pi->stats);
7241 	chan_map = pi->rx_e_chan_map;
7242 	while (chan_map) {
7243 		i = ffs(chan_map) - 1;
7244 		mtx_lock(&sc->reg_lock);
7245 		t4_read_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v, 1,
7246 		    A_TP_MIB_TNL_CNG_DROP_0 + i);
7247 		mtx_unlock(&sc->reg_lock);
7248 		tnl_cong_drops += v;
7249 		chan_map &= ~(1 << i);
7250 	}
7251 	pi->tnl_cong_drops = tnl_cong_drops;
7252 	getmicrotime(&vi->last_refreshed);
7253 }
7254 
7255 static void
cxgbe_tick(void * arg)7256 cxgbe_tick(void *arg)
7257 {
7258 	struct vi_info *vi = arg;
7259 
7260 	MPASS(IS_MAIN_VI(vi));
7261 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7262 
7263 	cxgbe_refresh_stats(vi);
7264 	callout_schedule(&vi->tick, hz);
7265 }
7266 
7267 static void
vi_tick(void * arg)7268 vi_tick(void *arg)
7269 {
7270 	struct vi_info *vi = arg;
7271 
7272 	mtx_assert(&vi->tick_mtx, MA_OWNED);
7273 
7274 	vi_refresh_stats(vi);
7275 	callout_schedule(&vi->tick, hz);
7276 }
7277 
7278 /*
7279  * Should match fw_caps_config_<foo> enums in t4fw_interface.h
7280  */
7281 static char *caps_decoder[] = {
7282 	"\20\001IPMI\002NCSI",				/* 0: NBM */
7283 	"\20\001PPP\002QFC\003DCBX",			/* 1: link */
7284 	"\20\001INGRESS\002EGRESS",			/* 2: switch */
7285 	"\20\001NIC\002VM\003IDS\004UM\005UM_ISGL"	/* 3: NIC */
7286 	    "\006HASHFILTER\007ETHOFLD",
7287 	"\20\001TOE",					/* 4: TOE */
7288 	"\20\001RDDP\002RDMAC",				/* 5: RDMA */
7289 	"\20\001INITIATOR_PDU\002TARGET_PDU"		/* 6: iSCSI */
7290 	    "\003INITIATOR_CNXOFLD\004TARGET_CNXOFLD"
7291 	    "\005INITIATOR_SSNOFLD\006TARGET_SSNOFLD"
7292 	    "\007T10DIF"
7293 	    "\010INITIATOR_CMDOFLD\011TARGET_CMDOFLD",
7294 	"\20\001LOOKASIDE\002TLSKEYS\003IPSEC_INLINE"	/* 7: Crypto */
7295 	    "\004TLS_HW",
7296 	"\20\001INITIATOR\002TARGET\003CTRL_OFLD"	/* 8: FCoE */
7297 		    "\004PO_INITIATOR\005PO_TARGET",
7298 };
7299 
7300 void
t4_sysctls(struct adapter * sc)7301 t4_sysctls(struct adapter *sc)
7302 {
7303 	struct sysctl_ctx_list *ctx = &sc->ctx;
7304 	struct sysctl_oid *oid;
7305 	struct sysctl_oid_list *children, *c0;
7306 	static char *doorbells = {"\20\1UDB\2WCWR\3UDBWC\4KDB"};
7307 
7308 	/*
7309 	 * dev.t4nex.X.
7310 	 */
7311 	oid = device_get_sysctl_tree(sc->dev);
7312 	c0 = children = SYSCTL_CHILDREN(oid);
7313 
7314 	sc->sc_do_rxcopy = 1;
7315 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "do_rx_copy", CTLFLAG_RW,
7316 	    &sc->sc_do_rxcopy, 1, "Do RX copy of small frames");
7317 
7318 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nports", CTLFLAG_RD, NULL,
7319 	    sc->params.nports, "# of ports");
7320 
7321 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "doorbells",
7322 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, doorbells,
7323 	    (uintptr_t)&sc->doorbells, sysctl_bitfield_8b, "A",
7324 	    "available doorbells");
7325 
7326 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "core_clock", CTLFLAG_RD, NULL,
7327 	    sc->params.vpd.cclk, "core clock frequency (in KHz)");
7328 
7329 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_timers",
7330 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7331 	    sc->params.sge.timer_val, sizeof(sc->params.sge.timer_val),
7332 	    sysctl_int_array, "A", "interrupt holdoff timer values (us)");
7333 
7334 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pkt_counts",
7335 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE,
7336 	    sc->params.sge.counter_val, sizeof(sc->params.sge.counter_val),
7337 	    sysctl_int_array, "A", "interrupt holdoff packet counter values");
7338 
7339 	t4_sge_sysctls(sc, ctx, children);
7340 
7341 	sc->lro_timeout = 100;
7342 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lro_timeout", CTLFLAG_RW,
7343 	    &sc->lro_timeout, 0, "lro inactive-flush timeout (in us)");
7344 
7345 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dflags", CTLFLAG_RW,
7346 	    &sc->debug_flags, 0, "flags to enable runtime debugging");
7347 
7348 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "tp_version",
7349 	    CTLFLAG_RD, sc->tp_version, 0, "TP microcode version");
7350 
7351 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "firmware_version",
7352 	    CTLFLAG_RD, sc->fw_version, 0, "firmware version");
7353 
7354 	if (sc->flags & IS_VF)
7355 		return;
7356 
7357 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "hw_revision", CTLFLAG_RD,
7358 	    NULL, chip_rev(sc), "chip hardware revision");
7359 
7360 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "sn",
7361 	    CTLFLAG_RD, sc->params.vpd.sn, 0, "serial number");
7362 
7363 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "pn",
7364 	    CTLFLAG_RD, sc->params.vpd.pn, 0, "part number");
7365 
7366 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "ec",
7367 	    CTLFLAG_RD, sc->params.vpd.ec, 0, "engineering change");
7368 
7369 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "md_version",
7370 	    CTLFLAG_RD, sc->params.vpd.md, 0, "manufacturing diags version");
7371 
7372 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "na",
7373 	    CTLFLAG_RD, sc->params.vpd.na, 0, "network address");
7374 
7375 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "er_version", CTLFLAG_RD,
7376 	    sc->er_version, 0, "expansion ROM version");
7377 
7378 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "bs_version", CTLFLAG_RD,
7379 	    sc->bs_version, 0, "bootstrap firmware version");
7380 
7381 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "scfg_version", CTLFLAG_RD,
7382 	    NULL, sc->params.scfg_vers, "serial config version");
7383 
7384 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "vpd_version", CTLFLAG_RD,
7385 	    NULL, sc->params.vpd_vers, "VPD version");
7386 
7387 	SYSCTL_ADD_STRING(ctx, children, OID_AUTO, "cf",
7388 	    CTLFLAG_RD, sc->cfg_file, 0, "configuration file");
7389 
7390 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cfcsum", CTLFLAG_RD, NULL,
7391 	    sc->cfcsum, "config file checksum");
7392 
7393 #define SYSCTL_CAP(name, n, text) \
7394 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, #name, \
7395 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, caps_decoder[n], \
7396 	    (uintptr_t)&sc->name, sysctl_bitfield_16b, "A", \
7397 	    "available " text " capabilities")
7398 
7399 	SYSCTL_CAP(nbmcaps, 0, "NBM");
7400 	SYSCTL_CAP(linkcaps, 1, "link");
7401 	SYSCTL_CAP(switchcaps, 2, "switch");
7402 	SYSCTL_CAP(niccaps, 3, "NIC");
7403 	SYSCTL_CAP(toecaps, 4, "TCP offload");
7404 	SYSCTL_CAP(rdmacaps, 5, "RDMA");
7405 	SYSCTL_CAP(iscsicaps, 6, "iSCSI");
7406 	SYSCTL_CAP(cryptocaps, 7, "crypto");
7407 	SYSCTL_CAP(fcoecaps, 8, "FCoE");
7408 #undef SYSCTL_CAP
7409 
7410 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nfilters", CTLFLAG_RD,
7411 	    NULL, sc->tids.nftids, "number of filters");
7412 
7413 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7414 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7415 	    sysctl_temperature, "I", "chip temperature (in Celsius)");
7416 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset_sensor",
7417 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7418 	    sysctl_reset_sensor, "I", "reset the chip's temperature sensor.");
7419 
7420 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "loadavg",
7421 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7422 	    sysctl_loadavg, "A",
7423 	    "microprocessor load averages (debug firmwares only)");
7424 
7425 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "core_vdd",
7426 	    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0, sysctl_vdd,
7427 	    "I", "core Vdd (in mV)");
7428 
7429 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "local_cpus",
7430 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, LOCAL_CPUS,
7431 	    sysctl_cpus, "A", "local CPUs");
7432 
7433 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "intr_cpus",
7434 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, INTR_CPUS,
7435 	    sysctl_cpus, "A", "preferred CPUs for interrupts");
7436 
7437 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "swintr", CTLFLAG_RW,
7438 	    &sc->swintr, 0, "software triggered interrupts");
7439 
7440 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "reset",
7441 	    CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_reset, "I",
7442 	    "1 = reset adapter, 0 = zero reset counter");
7443 
7444 	/*
7445 	 * dev.t4nex.X.misc.  Marked CTLFLAG_SKIP to avoid information overload.
7446 	 */
7447 	oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "misc",
7448 	    CTLFLAG_RD | CTLFLAG_SKIP | CTLFLAG_MPSAFE, NULL,
7449 	    "logs and miscellaneous information");
7450 	children = SYSCTL_CHILDREN(oid);
7451 
7452 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cctrl",
7453 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7454 	    sysctl_cctrl, "A", "congestion control");
7455 
7456 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp0",
7457 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7458 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 0 (TP0)");
7459 
7460 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_tp1",
7461 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7462 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 1 (TP1)");
7463 
7464 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ulp",
7465 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7466 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 2 (ULP)");
7467 
7468 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge0",
7469 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 3,
7470 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 3 (SGE0)");
7471 
7472 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_sge1",
7473 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 4,
7474 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 4 (SGE1)");
7475 
7476 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ibq_ncsi",
7477 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 5,
7478 	    sysctl_cim_ibq_obq, "A", "CIM IBQ 5 (NCSI)");
7479 
7480 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_la",
7481 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7482 	    sysctl_cim_la, "A", "CIM logic analyzer");
7483 
7484 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_ma_la",
7485 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7486 	    sysctl_cim_ma_la, "A", "CIM MA logic analyzer");
7487 
7488 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp0",
7489 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7490 	    0 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 0 (ULP0)");
7491 
7492 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp1",
7493 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7494 	    1 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 1 (ULP1)");
7495 
7496 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp2",
7497 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7498 	    2 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 2 (ULP2)");
7499 
7500 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ulp3",
7501 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7502 	    3 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 3 (ULP3)");
7503 
7504 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge",
7505 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7506 	    4 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 4 (SGE)");
7507 
7508 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_ncsi",
7509 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7510 	    5 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A", "CIM OBQ 5 (NCSI)");
7511 
7512 	if (chip_id(sc) > CHELSIO_T4) {
7513 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge0_rx",
7514 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7515 		    6 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7516 		    "CIM OBQ 6 (SGE0-RX)");
7517 
7518 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_obq_sge1_rx",
7519 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7520 		    7 + CIM_NUM_IBQ, sysctl_cim_ibq_obq, "A",
7521 		    "CIM OBQ 7 (SGE1-RX)");
7522 	}
7523 
7524 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_pif_la",
7525 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7526 	    sysctl_cim_pif_la, "A", "CIM PIF logic analyzer");
7527 
7528 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cim_qcfg",
7529 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7530 	    sysctl_cim_qcfg, "A", "CIM queue configuration");
7531 
7532 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cpl_stats",
7533 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7534 	    sysctl_cpl_stats, "A", "CPL statistics");
7535 
7536 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ddp_stats",
7537 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7538 	    sysctl_ddp_stats, "A", "non-TCP DDP statistics");
7539 
7540 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tid_stats",
7541 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7542 	    sysctl_tid_stats, "A", "tid stats");
7543 
7544 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "devlog",
7545 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7546 	    sysctl_devlog, "A", "firmware's device log");
7547 
7548 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fcoe_stats",
7549 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7550 	    sysctl_fcoe_stats, "A", "FCoE statistics");
7551 
7552 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "hw_sched",
7553 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7554 	    sysctl_hw_sched, "A", "hardware scheduler ");
7555 
7556 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "l2t",
7557 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7558 	    sysctl_l2t, "A", "hardware L2 table");
7559 
7560 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "smt",
7561 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7562 	    sysctl_smt, "A", "hardware source MAC table");
7563 
7564 #ifdef INET6
7565 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "clip",
7566 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7567 	    sysctl_clip, "A", "active CLIP table entries");
7568 #endif
7569 
7570 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "lb_stats",
7571 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7572 	    sysctl_lb_stats, "A", "loopback statistics");
7573 
7574 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "meminfo",
7575 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7576 	    sysctl_meminfo, "A", "memory regions");
7577 
7578 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "mps_tcam",
7579 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7580 	    chip_id(sc) <= CHELSIO_T5 ? sysctl_mps_tcam : sysctl_mps_tcam_t6,
7581 	    "A", "MPS TCAM entries");
7582 
7583 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "path_mtus",
7584 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7585 	    sysctl_path_mtus, "A", "path MTUs");
7586 
7587 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pm_stats",
7588 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7589 	    sysctl_pm_stats, "A", "PM statistics");
7590 
7591 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rdma_stats",
7592 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7593 	    sysctl_rdma_stats, "A", "RDMA statistics");
7594 
7595 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tcp_stats",
7596 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7597 	    sysctl_tcp_stats, "A", "TCP statistics");
7598 
7599 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tids",
7600 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7601 	    sysctl_tids, "A", "TID information");
7602 
7603 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_err_stats",
7604 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7605 	    sysctl_tp_err_stats, "A", "TP error statistics");
7606 
7607 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tnl_stats",
7608 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7609 	    sysctl_tnl_stats, "A", "TP tunnel statistics");
7610 
7611 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la_mask",
7612 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0,
7613 	    sysctl_tp_la_mask, "I", "TP logic analyzer event capture mask");
7614 
7615 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tp_la",
7616 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7617 	    sysctl_tp_la, "A", "TP logic analyzer");
7618 
7619 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_rate",
7620 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7621 	    sysctl_tx_rate, "A", "Tx rate");
7622 
7623 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "ulprx_la",
7624 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7625 	    sysctl_ulprx_la, "A", "ULPRX logic analyzer");
7626 
7627 	if (chip_id(sc) >= CHELSIO_T5) {
7628 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "wcwr_stats",
7629 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7630 		    sysctl_wcwr_stats, "A", "write combined work requests");
7631 	}
7632 
7633 #ifdef KERN_TLS
7634 	if (is_ktls(sc)) {
7635 		/*
7636 		 * dev.t4nex.0.tls.
7637 		 */
7638 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "tls",
7639 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "KERN_TLS parameters");
7640 		children = SYSCTL_CHILDREN(oid);
7641 
7642 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "inline_keys",
7643 		    CTLFLAG_RW, &sc->tlst.inline_keys, 0, "Always pass TLS "
7644 		    "keys in work requests (1) or attempt to store TLS keys "
7645 		    "in card memory.");
7646 
7647 		if (is_t6(sc))
7648 			SYSCTL_ADD_INT(ctx, children, OID_AUTO, "combo_wrs",
7649 			    CTLFLAG_RW, &sc->tlst.combo_wrs, 0, "Attempt to "
7650 			    "combine TCB field updates with TLS record work "
7651 			    "requests.");
7652 	}
7653 #endif
7654 
7655 #ifdef TCP_OFFLOAD
7656 	if (is_offload(sc)) {
7657 		int i;
7658 		char s[4];
7659 
7660 		/*
7661 		 * dev.t4nex.X.toe.
7662 		 */
7663 		oid = SYSCTL_ADD_NODE(ctx, c0, OID_AUTO, "toe",
7664 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "TOE parameters");
7665 		children = SYSCTL_CHILDREN(oid);
7666 
7667 		sc->tt.cong_algorithm = -1;
7668 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_algorithm",
7669 		    CTLFLAG_RW, &sc->tt.cong_algorithm, 0, "congestion control "
7670 		    "(-1 = default, 0 = reno, 1 = tahoe, 2 = newreno, "
7671 		    "3 = highspeed)");
7672 
7673 		sc->tt.sndbuf = -1;
7674 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sndbuf", CTLFLAG_RW,
7675 		    &sc->tt.sndbuf, 0, "hardware send buffer");
7676 
7677 		sc->tt.ddp = 0;
7678 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ddp",
7679 		    CTLFLAG_RW | CTLFLAG_SKIP, &sc->tt.ddp, 0, "");
7680 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_zcopy", CTLFLAG_RW,
7681 		    &sc->tt.ddp, 0, "Enable zero-copy aio_read(2)");
7682 
7683 		sc->tt.rx_coalesce = -1;
7684 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_coalesce",
7685 		    CTLFLAG_RW, &sc->tt.rx_coalesce, 0, "receive coalescing");
7686 
7687 		sc->tt.tls = 0;
7688 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tls", CTLTYPE_INT |
7689 		    CTLFLAG_RW | CTLFLAG_MPSAFE, sc, 0, sysctl_tls, "I",
7690 		    "Inline TLS allowed");
7691 
7692 		sc->tt.tx_align = -1;
7693 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_align",
7694 		    CTLFLAG_RW, &sc->tt.tx_align, 0, "chop and align payload");
7695 
7696 		sc->tt.tx_zcopy = 0;
7697 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_zcopy",
7698 		    CTLFLAG_RW, &sc->tt.tx_zcopy, 0,
7699 		    "Enable zero-copy aio_write(2)");
7700 
7701 		sc->tt.cop_managed_offloading = !!t4_cop_managed_offloading;
7702 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7703 		    "cop_managed_offloading", CTLFLAG_RW,
7704 		    &sc->tt.cop_managed_offloading, 0,
7705 		    "COP (Connection Offload Policy) controls all TOE offload");
7706 
7707 		sc->tt.autorcvbuf_inc = 16 * 1024;
7708 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "autorcvbuf_inc",
7709 		    CTLFLAG_RW, &sc->tt.autorcvbuf_inc, 0,
7710 		    "autorcvbuf increment");
7711 
7712 		sc->tt.update_hc_on_pmtu_change = 1;
7713 		SYSCTL_ADD_INT(ctx, children, OID_AUTO,
7714 		    "update_hc_on_pmtu_change", CTLFLAG_RW,
7715 		    &sc->tt.update_hc_on_pmtu_change, 0,
7716 		    "Update hostcache entry if the PMTU changes");
7717 
7718 		sc->tt.iso = 1;
7719 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "iso", CTLFLAG_RW,
7720 		    &sc->tt.iso, 0, "Enable iSCSI segmentation offload");
7721 
7722 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timer_tick",
7723 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7724 		    sysctl_tp_tick, "A", "TP timer tick (us)");
7725 
7726 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "timestamp_tick",
7727 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 1,
7728 		    sysctl_tp_tick, "A", "TCP timestamp tick (us)");
7729 
7730 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_tick",
7731 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 2,
7732 		    sysctl_tp_tick, "A", "DACK tick (us)");
7733 
7734 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "dack_timer",
7735 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, 0,
7736 		    sysctl_tp_dack_timer, "IU", "DACK timer (us)");
7737 
7738 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_min",
7739 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7740 		    A_TP_RXT_MIN, sysctl_tp_timer, "LU",
7741 		    "Minimum retransmit interval (us)");
7742 
7743 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_max",
7744 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7745 		    A_TP_RXT_MAX, sysctl_tp_timer, "LU",
7746 		    "Maximum retransmit interval (us)");
7747 
7748 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_min",
7749 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7750 		    A_TP_PERS_MIN, sysctl_tp_timer, "LU",
7751 		    "Persist timer min (us)");
7752 
7753 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "persist_max",
7754 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7755 		    A_TP_PERS_MAX, sysctl_tp_timer, "LU",
7756 		    "Persist timer max (us)");
7757 
7758 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_idle",
7759 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7760 		    A_TP_KEEP_IDLE, sysctl_tp_timer, "LU",
7761 		    "Keepalive idle timer (us)");
7762 
7763 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_interval",
7764 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7765 		    A_TP_KEEP_INTVL, sysctl_tp_timer, "LU",
7766 		    "Keepalive interval timer (us)");
7767 
7768 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "initial_srtt",
7769 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7770 		    A_TP_INIT_SRTT, sysctl_tp_timer, "LU", "Initial SRTT (us)");
7771 
7772 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "finwait2_timer",
7773 		    CTLTYPE_ULONG | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7774 		    A_TP_FINWAIT2_TIMER, sysctl_tp_timer, "LU",
7775 		    "FINWAIT2 timer (us)");
7776 
7777 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "syn_rexmt_count",
7778 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7779 		    S_SYNSHIFTMAX, sysctl_tp_shift_cnt, "IU",
7780 		    "Number of SYN retransmissions before abort");
7781 
7782 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rexmt_count",
7783 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7784 		    S_RXTSHIFTMAXR2, sysctl_tp_shift_cnt, "IU",
7785 		    "Number of retransmissions before abort");
7786 
7787 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "keepalive_count",
7788 		    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7789 		    S_KEEPALIVEMAXR2, sysctl_tp_shift_cnt, "IU",
7790 		    "Number of keepalive probes before abort");
7791 
7792 		oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "rexmt_backoff",
7793 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7794 		    "TOE retransmit backoffs");
7795 		children = SYSCTL_CHILDREN(oid);
7796 		for (i = 0; i < 16; i++) {
7797 			snprintf(s, sizeof(s), "%u", i);
7798 			SYSCTL_ADD_PROC(ctx, children, OID_AUTO, s,
7799 			    CTLTYPE_UINT | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
7800 			    i, sysctl_tp_backoff, "IU",
7801 			    "TOE retransmit backoff");
7802 		}
7803 	}
7804 #endif
7805 }
7806 
7807 void
vi_sysctls(struct vi_info * vi)7808 vi_sysctls(struct vi_info *vi)
7809 {
7810 	struct sysctl_ctx_list *ctx = &vi->ctx;
7811 	struct sysctl_oid *oid;
7812 	struct sysctl_oid_list *children;
7813 
7814 	/*
7815 	 * dev.v?(cxgbe|cxl).X.
7816 	 */
7817 	oid = device_get_sysctl_tree(vi->dev);
7818 	children = SYSCTL_CHILDREN(oid);
7819 
7820 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "viid", CTLFLAG_RD, NULL,
7821 	    vi->viid, "VI identifer");
7822 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nrxq", CTLFLAG_RD,
7823 	    &vi->nrxq, 0, "# of rx queues");
7824 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "ntxq", CTLFLAG_RD,
7825 	    &vi->ntxq, 0, "# of tx queues");
7826 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_rxq", CTLFLAG_RD,
7827 	    &vi->first_rxq, 0, "index of first rx queue");
7828 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_txq", CTLFLAG_RD,
7829 	    &vi->first_txq, 0, "index of first tx queue");
7830 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_base", CTLFLAG_RD, NULL,
7831 	    vi->rss_base, "start of RSS indirection table");
7832 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rss_size", CTLFLAG_RD, NULL,
7833 	    vi->rss_size, "size of RSS indirection table");
7834 
7835 	if (IS_MAIN_VI(vi)) {
7836 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "rsrv_noflowq",
7837 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7838 		    sysctl_noflowq, "IU",
7839 		    "Reserve queue 0 for non-flowid packets");
7840 	}
7841 
7842 	if (vi->adapter->flags & IS_VF) {
7843 		MPASS(vi->flags & TX_USES_VM_WR);
7844 		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_vm_wr", CTLFLAG_RD,
7845 		    NULL, 1, "use VM work requests for transmit");
7846 	} else {
7847 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "tx_vm_wr",
7848 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7849 		    sysctl_tx_vm_wr, "I", "use VM work requestes for transmit");
7850 	}
7851 
7852 #ifdef TCP_OFFLOAD
7853 	if (vi->nofldrxq != 0) {
7854 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldrxq", CTLFLAG_RD,
7855 		    &vi->nofldrxq, 0,
7856 		    "# of rx queues for offloaded TCP connections");
7857 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_rxq",
7858 		    CTLFLAG_RD, &vi->first_ofld_rxq, 0,
7859 		    "index of first TOE rx queue");
7860 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx_ofld",
7861 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7862 		    sysctl_holdoff_tmr_idx_ofld, "I",
7863 		    "holdoff timer index for TOE queues");
7864 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx_ofld",
7865 		    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7866 		    sysctl_holdoff_pktc_idx_ofld, "I",
7867 		    "holdoff packet counter index for TOE queues");
7868 	}
7869 #endif
7870 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
7871 	if (vi->nofldtxq != 0) {
7872 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nofldtxq", CTLFLAG_RD,
7873 		    &vi->nofldtxq, 0,
7874 		    "# of tx queues for TOE/ETHOFLD");
7875 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_ofld_txq",
7876 		    CTLFLAG_RD, &vi->first_ofld_txq, 0,
7877 		    "index of first TOE/ETHOFLD tx queue");
7878 	}
7879 #endif
7880 #ifdef DEV_NETMAP
7881 	if (vi->nnmrxq != 0) {
7882 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmrxq", CTLFLAG_RD,
7883 		    &vi->nnmrxq, 0, "# of netmap rx queues");
7884 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "nnmtxq", CTLFLAG_RD,
7885 		    &vi->nnmtxq, 0, "# of netmap tx queues");
7886 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_rxq",
7887 		    CTLFLAG_RD, &vi->first_nm_rxq, 0,
7888 		    "index of first netmap rx queue");
7889 		SYSCTL_ADD_INT(ctx, children, OID_AUTO, "first_nm_txq",
7890 		    CTLFLAG_RD, &vi->first_nm_txq, 0,
7891 		    "index of first netmap tx queue");
7892 	}
7893 #endif
7894 
7895 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_tmr_idx",
7896 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7897 	    sysctl_holdoff_tmr_idx, "I", "holdoff timer index");
7898 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "holdoff_pktc_idx",
7899 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7900 	    sysctl_holdoff_pktc_idx, "I", "holdoff packet counter index");
7901 
7902 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_rxq",
7903 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7904 	    sysctl_qsize_rxq, "I", "rx queue size");
7905 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "qsize_txq",
7906 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, vi, 0,
7907 	    sysctl_qsize_txq, "I", "tx queue size");
7908 }
7909 
7910 static void
cxgbe_sysctls(struct port_info * pi)7911 cxgbe_sysctls(struct port_info *pi)
7912 {
7913 	struct sysctl_ctx_list *ctx = &pi->ctx;
7914 	struct sysctl_oid *oid;
7915 	struct sysctl_oid_list *children, *children2;
7916 	struct adapter *sc = pi->adapter;
7917 	int i;
7918 	char name[16];
7919 	static char *tc_flags = {"\20\1USER"};
7920 
7921 	/*
7922 	 * dev.cxgbe.X.
7923 	 */
7924 	oid = device_get_sysctl_tree(pi->dev);
7925 	children = SYSCTL_CHILDREN(oid);
7926 
7927 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "linkdnrc",
7928 	    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7929 	    sysctl_linkdnrc, "A", "reason why link is down");
7930 	if (pi->port_type == FW_PORT_TYPE_BT_XAUI) {
7931 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "temperature",
7932 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 0,
7933 		    sysctl_btphy, "I", "PHY temperature (in Celsius)");
7934 		SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "fw_version",
7935 		    CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE, pi, 1,
7936 		    sysctl_btphy, "I", "PHY firmware version");
7937 	}
7938 
7939 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pause_settings",
7940 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7941 	    sysctl_pause_settings, "A",
7942 	    "PAUSE settings (bit 0 = rx_pause, 1 = tx_pause, 2 = pause_autoneg)");
7943 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "link_fec",
7944 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_link_fec, "A",
7945 	    "FEC in use on the link");
7946 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "requested_fec",
7947 	    CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7948 	    sysctl_requested_fec, "A",
7949 	    "FECs to use (bit 0 = RS, 1 = FC, 2 = none, 5 = auto, 6 = module)");
7950 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "module_fec",
7951 	    CTLTYPE_STRING | CTLFLAG_MPSAFE, pi, 0, sysctl_module_fec, "A",
7952 	    "FEC recommended by the cable/transceiver");
7953 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "autoneg",
7954 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7955 	    sysctl_autoneg, "I",
7956 	    "autonegotiation (-1 = not supported)");
7957 	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "force_fec",
7958 	    CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, pi, 0,
7959 	    sysctl_force_fec, "I", "when to use FORCE_FEC bit for link config");
7960 
7961 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rcaps", CTLFLAG_RD,
7962 	    &pi->link_cfg.requested_caps, 0, "L1 config requested by driver");
7963 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "pcaps", CTLFLAG_RD,
7964 	    &pi->link_cfg.pcaps, 0, "port capabilities");
7965 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "acaps", CTLFLAG_RD,
7966 	    &pi->link_cfg.acaps, 0, "advertised capabilities");
7967 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "lpacaps", CTLFLAG_RD,
7968 	    &pi->link_cfg.lpacaps, 0, "link partner advertised capabilities");
7969 
7970 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "max_speed", CTLFLAG_RD, NULL,
7971 	    port_top_speed(pi), "max speed (in Gbps)");
7972 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "mps_bg_map", CTLFLAG_RD, NULL,
7973 	    pi->mps_bg_map, "MPS buffer group map");
7974 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_e_chan_map", CTLFLAG_RD,
7975 	    NULL, pi->rx_e_chan_map, "TP rx e-channel map");
7976 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "tx_chan", CTLFLAG_RD, NULL,
7977 	    pi->tx_chan, "TP tx c-channel");
7978 	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "rx_chan", CTLFLAG_RD, NULL,
7979 	    pi->rx_chan, "TP rx c-channel");
7980 
7981 	if (sc->flags & IS_VF)
7982 		return;
7983 
7984 	/*
7985 	 * dev.(cxgbe|cxl).X.tc.
7986 	 */
7987 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "tc",
7988 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL,
7989 	    "Tx scheduler traffic classes (cl_rl)");
7990 	children2 = SYSCTL_CHILDREN(oid);
7991 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "pktsize",
7992 	    CTLFLAG_RW, &pi->sched_params->pktsize, 0,
7993 	    "pktsize for per-flow cl-rl (0 means up to the driver )");
7994 	SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "burstsize",
7995 	    CTLFLAG_RW, &pi->sched_params->burstsize, 0,
7996 	    "burstsize for per-flow cl-rl (0 means up to the driver)");
7997 	for (i = 0; i < sc->params.nsched_cls; i++) {
7998 		struct tx_cl_rl_params *tc = &pi->sched_params->cl_rl[i];
7999 
8000 		snprintf(name, sizeof(name), "%d", i);
8001 		children2 = SYSCTL_CHILDREN(SYSCTL_ADD_NODE(ctx,
8002 		    SYSCTL_CHILDREN(oid), OID_AUTO, name,
8003 		    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "traffic class"));
8004 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "state",
8005 		    CTLFLAG_RD, &tc->state, 0, "current state");
8006 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "flags",
8007 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, tc_flags,
8008 		    (uintptr_t)&tc->flags, sysctl_bitfield_8b, "A", "flags");
8009 		SYSCTL_ADD_UINT(ctx, children2, OID_AUTO, "refcount",
8010 		    CTLFLAG_RD, &tc->refcount, 0, "references to this class");
8011 		SYSCTL_ADD_PROC(ctx, children2, OID_AUTO, "params",
8012 		    CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, sc,
8013 		    (pi->port_id << 16) | i, sysctl_tc_params, "A",
8014 		    "traffic class parameters");
8015 	}
8016 
8017 	/*
8018 	 * dev.cxgbe.X.stats.
8019 	 */
8020 	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "stats",
8021 	    CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, "port statistics");
8022 	children = SYSCTL_CHILDREN(oid);
8023 	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "tx_parse_error", CTLFLAG_RD,
8024 	    &pi->tx_parse_error, 0,
8025 	    "# of tx packets with invalid length or # of segments");
8026 
8027 #define T4_REGSTAT(name, stat, desc) \
8028     SYSCTL_ADD_OID(ctx, children, OID_AUTO, #name, \
8029 	CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, sc, \
8030 	t4_port_reg(sc, pi->tx_chan, A_MPS_PORT_STAT_##stat##_L), \
8031         sysctl_handle_t4_reg64, "QU", desc)
8032 
8033 /* We get these from port_stats and they may be stale by up to 1s */
8034 #define T4_PORTSTAT(name, desc) \
8035 	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, #name, CTLFLAG_RD, \
8036 	    &pi->stats.name, desc)
8037 
8038 	T4_REGSTAT(tx_octets, TX_PORT_BYTES, "# of octets in good frames");
8039 	T4_REGSTAT(tx_frames, TX_PORT_FRAMES, "total # of good frames");
8040 	T4_REGSTAT(tx_bcast_frames, TX_PORT_BCAST, "# of broadcast frames");
8041 	T4_REGSTAT(tx_mcast_frames, TX_PORT_MCAST, "# of multicast frames");
8042 	T4_REGSTAT(tx_ucast_frames, TX_PORT_UCAST, "# of unicast frames");
8043 	T4_REGSTAT(tx_error_frames, TX_PORT_ERROR, "# of error frames");
8044 	T4_REGSTAT(tx_frames_64, TX_PORT_64B, "# of tx frames in this range");
8045 	T4_REGSTAT(tx_frames_65_127, TX_PORT_65B_127B, "# of tx frames in this range");
8046 	T4_REGSTAT(tx_frames_128_255, TX_PORT_128B_255B, "# of tx frames in this range");
8047 	T4_REGSTAT(tx_frames_256_511, TX_PORT_256B_511B, "# of tx frames in this range");
8048 	T4_REGSTAT(tx_frames_512_1023, TX_PORT_512B_1023B, "# of tx frames in this range");
8049 	T4_REGSTAT(tx_frames_1024_1518, TX_PORT_1024B_1518B, "# of tx frames in this range");
8050 	T4_REGSTAT(tx_frames_1519_max, TX_PORT_1519B_MAX, "# of tx frames in this range");
8051 	T4_REGSTAT(tx_drop, TX_PORT_DROP, "# of dropped tx frames");
8052 	T4_REGSTAT(tx_pause, TX_PORT_PAUSE, "# of pause frames transmitted");
8053 	T4_REGSTAT(tx_ppp0, TX_PORT_PPP0, "# of PPP prio 0 frames transmitted");
8054 	T4_REGSTAT(tx_ppp1, TX_PORT_PPP1, "# of PPP prio 1 frames transmitted");
8055 	T4_REGSTAT(tx_ppp2, TX_PORT_PPP2, "# of PPP prio 2 frames transmitted");
8056 	T4_REGSTAT(tx_ppp3, TX_PORT_PPP3, "# of PPP prio 3 frames transmitted");
8057 	T4_REGSTAT(tx_ppp4, TX_PORT_PPP4, "# of PPP prio 4 frames transmitted");
8058 	T4_REGSTAT(tx_ppp5, TX_PORT_PPP5, "# of PPP prio 5 frames transmitted");
8059 	T4_REGSTAT(tx_ppp6, TX_PORT_PPP6, "# of PPP prio 6 frames transmitted");
8060 	T4_REGSTAT(tx_ppp7, TX_PORT_PPP7, "# of PPP prio 7 frames transmitted");
8061 
8062 	T4_REGSTAT(rx_octets, RX_PORT_BYTES, "# of octets in good frames");
8063 	T4_REGSTAT(rx_frames, RX_PORT_FRAMES, "total # of good frames");
8064 	T4_REGSTAT(rx_bcast_frames, RX_PORT_BCAST, "# of broadcast frames");
8065 	T4_REGSTAT(rx_mcast_frames, RX_PORT_MCAST, "# of multicast frames");
8066 	T4_REGSTAT(rx_ucast_frames, RX_PORT_UCAST, "# of unicast frames");
8067 	T4_REGSTAT(rx_too_long, RX_PORT_MTU_ERROR, "# of frames exceeding MTU");
8068 	T4_REGSTAT(rx_jabber, RX_PORT_MTU_CRC_ERROR, "# of jabber frames");
8069 	if (is_t6(sc)) {
8070 		T4_PORTSTAT(rx_fcs_err,
8071 		    "# of frames received with bad FCS since last link up");
8072 	} else {
8073 		T4_REGSTAT(rx_fcs_err, RX_PORT_CRC_ERROR,
8074 		    "# of frames received with bad FCS");
8075 	}
8076 	T4_REGSTAT(rx_len_err, RX_PORT_LEN_ERROR, "# of frames received with length error");
8077 	T4_REGSTAT(rx_symbol_err, RX_PORT_SYM_ERROR, "symbol errors");
8078 	T4_REGSTAT(rx_runt, RX_PORT_LESS_64B, "# of short frames received");
8079 	T4_REGSTAT(rx_frames_64, RX_PORT_64B, "# of rx frames in this range");
8080 	T4_REGSTAT(rx_frames_65_127, RX_PORT_65B_127B, "# of rx frames in this range");
8081 	T4_REGSTAT(rx_frames_128_255, RX_PORT_128B_255B, "# of rx frames in this range");
8082 	T4_REGSTAT(rx_frames_256_511, RX_PORT_256B_511B, "# of rx frames in this range");
8083 	T4_REGSTAT(rx_frames_512_1023, RX_PORT_512B_1023B, "# of rx frames in this range");
8084 	T4_REGSTAT(rx_frames_1024_1518, RX_PORT_1024B_1518B, "# of rx frames in this range");
8085 	T4_REGSTAT(rx_frames_1519_max, RX_PORT_1519B_MAX, "# of rx frames in this range");
8086 	T4_REGSTAT(rx_pause, RX_PORT_PAUSE, "# of pause frames received");
8087 	T4_REGSTAT(rx_ppp0, RX_PORT_PPP0, "# of PPP prio 0 frames received");
8088 	T4_REGSTAT(rx_ppp1, RX_PORT_PPP1, "# of PPP prio 1 frames received");
8089 	T4_REGSTAT(rx_ppp2, RX_PORT_PPP2, "# of PPP prio 2 frames received");
8090 	T4_REGSTAT(rx_ppp3, RX_PORT_PPP3, "# of PPP prio 3 frames received");
8091 	T4_REGSTAT(rx_ppp4, RX_PORT_PPP4, "# of PPP prio 4 frames received");
8092 	T4_REGSTAT(rx_ppp5, RX_PORT_PPP5, "# of PPP prio 5 frames received");
8093 	T4_REGSTAT(rx_ppp6, RX_PORT_PPP6, "# of PPP prio 6 frames received");
8094 	T4_REGSTAT(rx_ppp7, RX_PORT_PPP7, "# of PPP prio 7 frames received");
8095 
8096 	T4_PORTSTAT(rx_ovflow0, "# drops due to buffer-group 0 overflows");
8097 	T4_PORTSTAT(rx_ovflow1, "# drops due to buffer-group 1 overflows");
8098 	T4_PORTSTAT(rx_ovflow2, "# drops due to buffer-group 2 overflows");
8099 	T4_PORTSTAT(rx_ovflow3, "# drops due to buffer-group 3 overflows");
8100 	T4_PORTSTAT(rx_trunc0, "# of buffer-group 0 truncated packets");
8101 	T4_PORTSTAT(rx_trunc1, "# of buffer-group 1 truncated packets");
8102 	T4_PORTSTAT(rx_trunc2, "# of buffer-group 2 truncated packets");
8103 	T4_PORTSTAT(rx_trunc3, "# of buffer-group 3 truncated packets");
8104 
8105 #undef T4_REGSTAT
8106 #undef T4_PORTSTAT
8107 }
8108 
8109 static int
sysctl_int_array(SYSCTL_HANDLER_ARGS)8110 sysctl_int_array(SYSCTL_HANDLER_ARGS)
8111 {
8112 	int rc, *i, space = 0;
8113 	struct sbuf sb;
8114 
8115 	sbuf_new_for_sysctl(&sb, NULL, 64, req);
8116 	for (i = arg1; arg2; arg2 -= sizeof(int), i++) {
8117 		if (space)
8118 			sbuf_printf(&sb, " ");
8119 		sbuf_printf(&sb, "%d", *i);
8120 		space = 1;
8121 	}
8122 	rc = sbuf_finish(&sb);
8123 	sbuf_delete(&sb);
8124 	return (rc);
8125 }
8126 
8127 static int
sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)8128 sysctl_bitfield_8b(SYSCTL_HANDLER_ARGS)
8129 {
8130 	int rc;
8131 	struct sbuf *sb;
8132 
8133 	rc = sysctl_wire_old_buffer(req, 0);
8134 	if (rc != 0)
8135 		return(rc);
8136 
8137 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8138 	if (sb == NULL)
8139 		return (ENOMEM);
8140 
8141 	sbuf_printf(sb, "%b", *(uint8_t *)(uintptr_t)arg2, (char *)arg1);
8142 	rc = sbuf_finish(sb);
8143 	sbuf_delete(sb);
8144 
8145 	return (rc);
8146 }
8147 
8148 static int
sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)8149 sysctl_bitfield_16b(SYSCTL_HANDLER_ARGS)
8150 {
8151 	int rc;
8152 	struct sbuf *sb;
8153 
8154 	rc = sysctl_wire_old_buffer(req, 0);
8155 	if (rc != 0)
8156 		return(rc);
8157 
8158 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8159 	if (sb == NULL)
8160 		return (ENOMEM);
8161 
8162 	sbuf_printf(sb, "%b", *(uint16_t *)(uintptr_t)arg2, (char *)arg1);
8163 	rc = sbuf_finish(sb);
8164 	sbuf_delete(sb);
8165 
8166 	return (rc);
8167 }
8168 
8169 static int
sysctl_btphy(SYSCTL_HANDLER_ARGS)8170 sysctl_btphy(SYSCTL_HANDLER_ARGS)
8171 {
8172 	struct port_info *pi = arg1;
8173 	int op = arg2;
8174 	struct adapter *sc = pi->adapter;
8175 	u_int v;
8176 	int rc;
8177 
8178 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4btt");
8179 	if (rc)
8180 		return (rc);
8181 	if (hw_off_limits(sc))
8182 		rc = ENXIO;
8183 	else {
8184 		/* XXX: magic numbers */
8185 		rc = -t4_mdio_rd(sc, sc->mbox, pi->mdio_addr, 0x1e,
8186 		    op ? 0x20 : 0xc820, &v);
8187 	}
8188 	end_synchronized_op(sc, 0);
8189 	if (rc)
8190 		return (rc);
8191 	if (op == 0)
8192 		v /= 256;
8193 
8194 	rc = sysctl_handle_int(oidp, &v, 0, req);
8195 	return (rc);
8196 }
8197 
8198 static int
sysctl_noflowq(SYSCTL_HANDLER_ARGS)8199 sysctl_noflowq(SYSCTL_HANDLER_ARGS)
8200 {
8201 	struct vi_info *vi = arg1;
8202 	int rc, val;
8203 
8204 	val = vi->rsrv_noflowq;
8205 	rc = sysctl_handle_int(oidp, &val, 0, req);
8206 	if (rc != 0 || req->newptr == NULL)
8207 		return (rc);
8208 
8209 	if ((val >= 1) && (vi->ntxq > 1))
8210 		vi->rsrv_noflowq = 1;
8211 	else
8212 		vi->rsrv_noflowq = 0;
8213 
8214 	return (rc);
8215 }
8216 
8217 static int
sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)8218 sysctl_tx_vm_wr(SYSCTL_HANDLER_ARGS)
8219 {
8220 	struct vi_info *vi = arg1;
8221 	struct adapter *sc = vi->adapter;
8222 	int rc, val, i;
8223 
8224 	MPASS(!(sc->flags & IS_VF));
8225 
8226 	val = vi->flags & TX_USES_VM_WR ? 1 : 0;
8227 	rc = sysctl_handle_int(oidp, &val, 0, req);
8228 	if (rc != 0 || req->newptr == NULL)
8229 		return (rc);
8230 
8231 	if (val != 0 && val != 1)
8232 		return (EINVAL);
8233 
8234 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8235 	    "t4txvm");
8236 	if (rc)
8237 		return (rc);
8238 	if (hw_off_limits(sc))
8239 		rc = ENXIO;
8240 	else if (if_getdrvflags(vi->ifp) & IFF_DRV_RUNNING) {
8241 		/*
8242 		 * We don't want parse_pkt to run with one setting (VF or PF)
8243 		 * and then eth_tx to see a different setting but still use
8244 		 * stale information calculated by parse_pkt.
8245 		 */
8246 		rc = EBUSY;
8247 	} else {
8248 		struct port_info *pi = vi->pi;
8249 		struct sge_txq *txq;
8250 		uint32_t ctrl0;
8251 		uint8_t npkt = sc->params.max_pkts_per_eth_tx_pkts_wr;
8252 
8253 		if (val) {
8254 			vi->flags |= TX_USES_VM_WR;
8255 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_VM_TSO);
8256 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8257 			    V_TXPKT_INTF(pi->tx_chan));
8258 			if (!(sc->flags & IS_VF))
8259 				npkt--;
8260 		} else {
8261 			vi->flags &= ~TX_USES_VM_WR;
8262 			if_sethwtsomaxsegcount(vi->ifp, TX_SGL_SEGS_TSO);
8263 			ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
8264 			    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
8265 			    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
8266 		}
8267 		for_each_txq(vi, i, txq) {
8268 			txq->cpl_ctrl0 = ctrl0;
8269 			txq->txp.max_npkt = npkt;
8270 		}
8271 	}
8272 	end_synchronized_op(sc, LOCK_HELD);
8273 	return (rc);
8274 }
8275 
8276 static int
sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)8277 sysctl_holdoff_tmr_idx(SYSCTL_HANDLER_ARGS)
8278 {
8279 	struct vi_info *vi = arg1;
8280 	struct adapter *sc = vi->adapter;
8281 	int idx, rc, i;
8282 	struct sge_rxq *rxq;
8283 	uint8_t v;
8284 
8285 	idx = vi->tmr_idx;
8286 
8287 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8288 	if (rc != 0 || req->newptr == NULL)
8289 		return (rc);
8290 
8291 	if (idx < 0 || idx >= SGE_NTIMERS)
8292 		return (EINVAL);
8293 
8294 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8295 	    "t4tmr");
8296 	if (rc)
8297 		return (rc);
8298 
8299 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->pktc_idx != -1);
8300 	for_each_rxq(vi, i, rxq) {
8301 #ifdef atomic_store_rel_8
8302 		atomic_store_rel_8(&rxq->iq.intr_params, v);
8303 #else
8304 		rxq->iq.intr_params = v;
8305 #endif
8306 	}
8307 	vi->tmr_idx = idx;
8308 
8309 	end_synchronized_op(sc, LOCK_HELD);
8310 	return (0);
8311 }
8312 
8313 static int
sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)8314 sysctl_holdoff_pktc_idx(SYSCTL_HANDLER_ARGS)
8315 {
8316 	struct vi_info *vi = arg1;
8317 	struct adapter *sc = vi->adapter;
8318 	int idx, rc;
8319 
8320 	idx = vi->pktc_idx;
8321 
8322 	rc = sysctl_handle_int(oidp, &idx, 0, req);
8323 	if (rc != 0 || req->newptr == NULL)
8324 		return (rc);
8325 
8326 	if (idx < -1 || idx >= SGE_NCOUNTERS)
8327 		return (EINVAL);
8328 
8329 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8330 	    "t4pktc");
8331 	if (rc)
8332 		return (rc);
8333 
8334 	if (vi->flags & VI_INIT_DONE)
8335 		rc = EBUSY; /* cannot be changed once the queues are created */
8336 	else
8337 		vi->pktc_idx = idx;
8338 
8339 	end_synchronized_op(sc, LOCK_HELD);
8340 	return (rc);
8341 }
8342 
8343 static int
sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)8344 sysctl_qsize_rxq(SYSCTL_HANDLER_ARGS)
8345 {
8346 	struct vi_info *vi = arg1;
8347 	struct adapter *sc = vi->adapter;
8348 	int qsize, rc;
8349 
8350 	qsize = vi->qsize_rxq;
8351 
8352 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8353 	if (rc != 0 || req->newptr == NULL)
8354 		return (rc);
8355 
8356 	if (qsize < 128 || (qsize & 7))
8357 		return (EINVAL);
8358 
8359 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8360 	    "t4rxqs");
8361 	if (rc)
8362 		return (rc);
8363 
8364 	if (vi->flags & VI_INIT_DONE)
8365 		rc = EBUSY; /* cannot be changed once the queues are created */
8366 	else
8367 		vi->qsize_rxq = qsize;
8368 
8369 	end_synchronized_op(sc, LOCK_HELD);
8370 	return (rc);
8371 }
8372 
8373 static int
sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)8374 sysctl_qsize_txq(SYSCTL_HANDLER_ARGS)
8375 {
8376 	struct vi_info *vi = arg1;
8377 	struct adapter *sc = vi->adapter;
8378 	int qsize, rc;
8379 
8380 	qsize = vi->qsize_txq;
8381 
8382 	rc = sysctl_handle_int(oidp, &qsize, 0, req);
8383 	if (rc != 0 || req->newptr == NULL)
8384 		return (rc);
8385 
8386 	if (qsize < 128 || qsize > 65536)
8387 		return (EINVAL);
8388 
8389 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
8390 	    "t4txqs");
8391 	if (rc)
8392 		return (rc);
8393 
8394 	if (vi->flags & VI_INIT_DONE)
8395 		rc = EBUSY; /* cannot be changed once the queues are created */
8396 	else
8397 		vi->qsize_txq = qsize;
8398 
8399 	end_synchronized_op(sc, LOCK_HELD);
8400 	return (rc);
8401 }
8402 
8403 static int
sysctl_pause_settings(SYSCTL_HANDLER_ARGS)8404 sysctl_pause_settings(SYSCTL_HANDLER_ARGS)
8405 {
8406 	struct port_info *pi = arg1;
8407 	struct adapter *sc = pi->adapter;
8408 	struct link_config *lc = &pi->link_cfg;
8409 	int rc;
8410 
8411 	if (req->newptr == NULL) {
8412 		struct sbuf *sb;
8413 		static char *bits = "\20\1RX\2TX\3AUTO";
8414 
8415 		rc = sysctl_wire_old_buffer(req, 0);
8416 		if (rc != 0)
8417 			return(rc);
8418 
8419 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8420 		if (sb == NULL)
8421 			return (ENOMEM);
8422 
8423 		if (lc->link_ok) {
8424 			sbuf_printf(sb, "%b", (lc->fc & (PAUSE_TX | PAUSE_RX)) |
8425 			    (lc->requested_fc & PAUSE_AUTONEG), bits);
8426 		} else {
8427 			sbuf_printf(sb, "%b", lc->requested_fc & (PAUSE_TX |
8428 			    PAUSE_RX | PAUSE_AUTONEG), bits);
8429 		}
8430 		rc = sbuf_finish(sb);
8431 		sbuf_delete(sb);
8432 	} else {
8433 		char s[2];
8434 		int n;
8435 
8436 		s[0] = '0' + (lc->requested_fc & (PAUSE_TX | PAUSE_RX |
8437 		    PAUSE_AUTONEG));
8438 		s[1] = 0;
8439 
8440 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8441 		if (rc != 0)
8442 			return(rc);
8443 
8444 		if (s[1] != 0)
8445 			return (EINVAL);
8446 		if (s[0] < '0' || s[0] > '9')
8447 			return (EINVAL);	/* not a number */
8448 		n = s[0] - '0';
8449 		if (n & ~(PAUSE_TX | PAUSE_RX | PAUSE_AUTONEG))
8450 			return (EINVAL);	/* some other bit is set too */
8451 
8452 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8453 		    "t4PAUSE");
8454 		if (rc)
8455 			return (rc);
8456 		if (!hw_off_limits(sc)) {
8457 			PORT_LOCK(pi);
8458 			lc->requested_fc = n;
8459 			fixup_link_config(pi);
8460 			if (pi->up_vis > 0)
8461 				rc = apply_link_config(pi);
8462 			set_current_media(pi);
8463 			PORT_UNLOCK(pi);
8464 		}
8465 		end_synchronized_op(sc, 0);
8466 	}
8467 
8468 	return (rc);
8469 }
8470 
8471 static int
sysctl_link_fec(SYSCTL_HANDLER_ARGS)8472 sysctl_link_fec(SYSCTL_HANDLER_ARGS)
8473 {
8474 	struct port_info *pi = arg1;
8475 	struct link_config *lc = &pi->link_cfg;
8476 	int rc;
8477 	struct sbuf *sb;
8478 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD1\5RSVD2";
8479 
8480 	rc = sysctl_wire_old_buffer(req, 0);
8481 	if (rc != 0)
8482 		return(rc);
8483 
8484 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8485 	if (sb == NULL)
8486 		return (ENOMEM);
8487 	if (lc->link_ok)
8488 		sbuf_printf(sb, "%b", lc->fec, bits);
8489 	else
8490 		sbuf_printf(sb, "no link");
8491 	rc = sbuf_finish(sb);
8492 	sbuf_delete(sb);
8493 
8494 	return (rc);
8495 }
8496 
8497 static int
sysctl_requested_fec(SYSCTL_HANDLER_ARGS)8498 sysctl_requested_fec(SYSCTL_HANDLER_ARGS)
8499 {
8500 	struct port_info *pi = arg1;
8501 	struct adapter *sc = pi->adapter;
8502 	struct link_config *lc = &pi->link_cfg;
8503 	int rc;
8504 	int8_t old;
8505 
8506 	if (req->newptr == NULL) {
8507 		struct sbuf *sb;
8508 		static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2"
8509 		    "\5RSVD3\6auto\7module";
8510 
8511 		rc = sysctl_wire_old_buffer(req, 0);
8512 		if (rc != 0)
8513 			return(rc);
8514 
8515 		sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8516 		if (sb == NULL)
8517 			return (ENOMEM);
8518 
8519 		sbuf_printf(sb, "%b", lc->requested_fec, bits);
8520 		rc = sbuf_finish(sb);
8521 		sbuf_delete(sb);
8522 	} else {
8523 		char s[8];
8524 		int n;
8525 
8526 		snprintf(s, sizeof(s), "%d",
8527 		    lc->requested_fec == FEC_AUTO ? -1 :
8528 		    lc->requested_fec & (M_FW_PORT_CAP32_FEC | FEC_MODULE));
8529 
8530 		rc = sysctl_handle_string(oidp, s, sizeof(s), req);
8531 		if (rc != 0)
8532 			return(rc);
8533 
8534 		n = strtol(&s[0], NULL, 0);
8535 		if (n < 0 || n & FEC_AUTO)
8536 			n = FEC_AUTO;
8537 		else if (n & ~(M_FW_PORT_CAP32_FEC | FEC_MODULE))
8538 			return (EINVAL);/* some other bit is set too */
8539 
8540 		rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8541 		    "t4reqf");
8542 		if (rc)
8543 			return (rc);
8544 		PORT_LOCK(pi);
8545 		old = lc->requested_fec;
8546 		if (n == FEC_AUTO)
8547 			lc->requested_fec = FEC_AUTO;
8548 		else if (n == 0 || n == FEC_NONE)
8549 			lc->requested_fec = FEC_NONE;
8550 		else {
8551 			if ((lc->pcaps |
8552 			    V_FW_PORT_CAP32_FEC(n & M_FW_PORT_CAP32_FEC)) !=
8553 			    lc->pcaps) {
8554 				rc = ENOTSUP;
8555 				goto done;
8556 			}
8557 			lc->requested_fec = n & (M_FW_PORT_CAP32_FEC |
8558 			    FEC_MODULE);
8559 		}
8560 		if (!hw_off_limits(sc)) {
8561 			fixup_link_config(pi);
8562 			if (pi->up_vis > 0) {
8563 				rc = apply_link_config(pi);
8564 				if (rc != 0) {
8565 					lc->requested_fec = old;
8566 					if (rc == FW_EPROTO)
8567 						rc = ENOTSUP;
8568 				}
8569 			}
8570 		}
8571 done:
8572 		PORT_UNLOCK(pi);
8573 		end_synchronized_op(sc, 0);
8574 	}
8575 
8576 	return (rc);
8577 }
8578 
8579 static int
sysctl_module_fec(SYSCTL_HANDLER_ARGS)8580 sysctl_module_fec(SYSCTL_HANDLER_ARGS)
8581 {
8582 	struct port_info *pi = arg1;
8583 	struct adapter *sc = pi->adapter;
8584 	struct link_config *lc = &pi->link_cfg;
8585 	int rc;
8586 	int8_t fec;
8587 	struct sbuf *sb;
8588 	static char *bits = "\20\1RS-FEC\2FC-FEC\3NO-FEC\4RSVD2\5RSVD3";
8589 
8590 	rc = sysctl_wire_old_buffer(req, 0);
8591 	if (rc != 0)
8592 		return (rc);
8593 
8594 	sb = sbuf_new_for_sysctl(NULL, NULL, 128, req);
8595 	if (sb == NULL)
8596 		return (ENOMEM);
8597 
8598 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4mfec") != 0) {
8599 		rc = EBUSY;
8600 		goto done;
8601 	}
8602 	if (hw_off_limits(sc)) {
8603 		rc = ENXIO;
8604 		goto done;
8605 	}
8606 	PORT_LOCK(pi);
8607 	if (pi->up_vis == 0) {
8608 		/*
8609 		 * If all the interfaces are administratively down the firmware
8610 		 * does not report transceiver changes.  Refresh port info here.
8611 		 * This is the only reason we have a synchronized op in this
8612 		 * function.  Just PORT_LOCK would have been enough otherwise.
8613 		 */
8614 		t4_update_port_info(pi);
8615 	}
8616 
8617 	fec = lc->fec_hint;
8618 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE ||
8619 	    !fec_supported(lc->pcaps)) {
8620 		sbuf_printf(sb, "n/a");
8621 	} else {
8622 		if (fec == 0)
8623 			fec = FEC_NONE;
8624 		sbuf_printf(sb, "%b", fec & M_FW_PORT_CAP32_FEC, bits);
8625 	}
8626 	rc = sbuf_finish(sb);
8627 	PORT_UNLOCK(pi);
8628 done:
8629 	sbuf_delete(sb);
8630 	end_synchronized_op(sc, 0);
8631 
8632 	return (rc);
8633 }
8634 
8635 static int
sysctl_autoneg(SYSCTL_HANDLER_ARGS)8636 sysctl_autoneg(SYSCTL_HANDLER_ARGS)
8637 {
8638 	struct port_info *pi = arg1;
8639 	struct adapter *sc = pi->adapter;
8640 	struct link_config *lc = &pi->link_cfg;
8641 	int rc, val;
8642 
8643 	if (lc->pcaps & FW_PORT_CAP32_ANEG)
8644 		val = lc->requested_aneg == AUTONEG_DISABLE ? 0 : 1;
8645 	else
8646 		val = -1;
8647 	rc = sysctl_handle_int(oidp, &val, 0, req);
8648 	if (rc != 0 || req->newptr == NULL)
8649 		return (rc);
8650 	if (val == 0)
8651 		val = AUTONEG_DISABLE;
8652 	else if (val == 1)
8653 		val = AUTONEG_ENABLE;
8654 	else
8655 		val = AUTONEG_AUTO;
8656 
8657 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK,
8658 	    "t4aneg");
8659 	if (rc)
8660 		return (rc);
8661 	PORT_LOCK(pi);
8662 	if (val == AUTONEG_ENABLE && !(lc->pcaps & FW_PORT_CAP32_ANEG)) {
8663 		rc = ENOTSUP;
8664 		goto done;
8665 	}
8666 	lc->requested_aneg = val;
8667 	if (!hw_off_limits(sc)) {
8668 		fixup_link_config(pi);
8669 		if (pi->up_vis > 0)
8670 			rc = apply_link_config(pi);
8671 		set_current_media(pi);
8672 	}
8673 done:
8674 	PORT_UNLOCK(pi);
8675 	end_synchronized_op(sc, 0);
8676 	return (rc);
8677 }
8678 
8679 static int
sysctl_force_fec(SYSCTL_HANDLER_ARGS)8680 sysctl_force_fec(SYSCTL_HANDLER_ARGS)
8681 {
8682 	struct port_info *pi = arg1;
8683 	struct adapter *sc = pi->adapter;
8684 	struct link_config *lc = &pi->link_cfg;
8685 	int rc, val;
8686 
8687 	val = lc->force_fec;
8688 	MPASS(val >= -1 && val <= 1);
8689 	rc = sysctl_handle_int(oidp, &val, 0, req);
8690 	if (rc != 0 || req->newptr == NULL)
8691 		return (rc);
8692 	if (!(lc->pcaps & FW_PORT_CAP32_FORCE_FEC))
8693 		return (ENOTSUP);
8694 	if (val < -1 || val > 1)
8695 		return (EINVAL);
8696 
8697 	rc = begin_synchronized_op(sc, &pi->vi[0], SLEEP_OK | INTR_OK, "t4ff");
8698 	if (rc)
8699 		return (rc);
8700 	PORT_LOCK(pi);
8701 	lc->force_fec = val;
8702 	if (!hw_off_limits(sc)) {
8703 		fixup_link_config(pi);
8704 		if (pi->up_vis > 0)
8705 			rc = apply_link_config(pi);
8706 	}
8707 	PORT_UNLOCK(pi);
8708 	end_synchronized_op(sc, 0);
8709 	return (rc);
8710 }
8711 
8712 static int
sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)8713 sysctl_handle_t4_reg64(SYSCTL_HANDLER_ARGS)
8714 {
8715 	struct adapter *sc = arg1;
8716 	int rc, reg = arg2;
8717 	uint64_t val;
8718 
8719 	mtx_lock(&sc->reg_lock);
8720 	if (hw_off_limits(sc))
8721 		rc = ENXIO;
8722 	else {
8723 		rc = 0;
8724 		val = t4_read_reg64(sc, reg);
8725 	}
8726 	mtx_unlock(&sc->reg_lock);
8727 	if (rc == 0)
8728 		rc = sysctl_handle_64(oidp, &val, 0, req);
8729 	return (rc);
8730 }
8731 
8732 static int
sysctl_temperature(SYSCTL_HANDLER_ARGS)8733 sysctl_temperature(SYSCTL_HANDLER_ARGS)
8734 {
8735 	struct adapter *sc = arg1;
8736 	int rc, t;
8737 	uint32_t param, val;
8738 
8739 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4temp");
8740 	if (rc)
8741 		return (rc);
8742 	if (hw_off_limits(sc))
8743 		rc = ENXIO;
8744 	else {
8745 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8746 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8747 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_TMP);
8748 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8749 	}
8750 	end_synchronized_op(sc, 0);
8751 	if (rc)
8752 		return (rc);
8753 
8754 	/* unknown is returned as 0 but we display -1 in that case */
8755 	t = val == 0 ? -1 : val;
8756 
8757 	rc = sysctl_handle_int(oidp, &t, 0, req);
8758 	return (rc);
8759 }
8760 
8761 static int
sysctl_vdd(SYSCTL_HANDLER_ARGS)8762 sysctl_vdd(SYSCTL_HANDLER_ARGS)
8763 {
8764 	struct adapter *sc = arg1;
8765 	int rc;
8766 	uint32_t param, val;
8767 
8768 	if (sc->params.core_vdd == 0) {
8769 		rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
8770 		    "t4vdd");
8771 		if (rc)
8772 			return (rc);
8773 		if (hw_off_limits(sc))
8774 			rc = ENXIO;
8775 		else {
8776 			param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8777 			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8778 			    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_VDD);
8779 			rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1,
8780 			    &param, &val);
8781 		}
8782 		end_synchronized_op(sc, 0);
8783 		if (rc)
8784 			return (rc);
8785 		sc->params.core_vdd = val;
8786 	}
8787 
8788 	return (sysctl_handle_int(oidp, &sc->params.core_vdd, 0, req));
8789 }
8790 
8791 static int
sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)8792 sysctl_reset_sensor(SYSCTL_HANDLER_ARGS)
8793 {
8794 	struct adapter *sc = arg1;
8795 	int rc, v;
8796 	uint32_t param, val;
8797 
8798 	v = sc->sensor_resets;
8799 	rc = sysctl_handle_int(oidp, &v, 0, req);
8800 	if (rc != 0 || req->newptr == NULL || v <= 0)
8801 		return (rc);
8802 
8803 	if (sc->params.fw_vers < FW_VERSION32(1, 24, 7, 0) ||
8804 	    chip_id(sc) < CHELSIO_T5)
8805 		return (ENOTSUP);
8806 
8807 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4srst");
8808 	if (rc)
8809 		return (rc);
8810 	if (hw_off_limits(sc))
8811 		rc = ENXIO;
8812 	else {
8813 		param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8814 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_DIAG) |
8815 		    V_FW_PARAMS_PARAM_Y(FW_PARAM_DEV_DIAG_RESET_TMP_SENSOR));
8816 		val = 1;
8817 		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8818 	}
8819 	end_synchronized_op(sc, 0);
8820 	if (rc == 0)
8821 		sc->sensor_resets++;
8822 	return (rc);
8823 }
8824 
8825 static int
sysctl_loadavg(SYSCTL_HANDLER_ARGS)8826 sysctl_loadavg(SYSCTL_HANDLER_ARGS)
8827 {
8828 	struct adapter *sc = arg1;
8829 	struct sbuf *sb;
8830 	int rc;
8831 	uint32_t param, val;
8832 
8833 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4lavg");
8834 	if (rc)
8835 		return (rc);
8836 	if (hw_off_limits(sc))
8837 		rc = ENXIO;
8838 	else {
8839 		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8840 		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_LOAD);
8841 		rc = -t4_query_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
8842 	}
8843 	end_synchronized_op(sc, 0);
8844 	if (rc)
8845 		return (rc);
8846 
8847 	rc = sysctl_wire_old_buffer(req, 0);
8848 	if (rc != 0)
8849 		return (rc);
8850 
8851 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8852 	if (sb == NULL)
8853 		return (ENOMEM);
8854 
8855 	if (val == 0xffffffff) {
8856 		/* Only debug and custom firmwares report load averages. */
8857 		sbuf_printf(sb, "not available");
8858 	} else {
8859 		sbuf_printf(sb, "%d %d %d", val & 0xff, (val >> 8) & 0xff,
8860 		    (val >> 16) & 0xff);
8861 	}
8862 	rc = sbuf_finish(sb);
8863 	sbuf_delete(sb);
8864 
8865 	return (rc);
8866 }
8867 
8868 static int
sysctl_cctrl(SYSCTL_HANDLER_ARGS)8869 sysctl_cctrl(SYSCTL_HANDLER_ARGS)
8870 {
8871 	struct adapter *sc = arg1;
8872 	struct sbuf *sb;
8873 	int rc, i;
8874 	uint16_t incr[NMTUS][NCCTRL_WIN];
8875 	static const char *dec_fac[] = {
8876 		"0.5", "0.5625", "0.625", "0.6875", "0.75", "0.8125", "0.875",
8877 		"0.9375"
8878 	};
8879 
8880 	rc = sysctl_wire_old_buffer(req, 0);
8881 	if (rc != 0)
8882 		return (rc);
8883 
8884 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
8885 	if (sb == NULL)
8886 		return (ENOMEM);
8887 
8888 	mtx_lock(&sc->reg_lock);
8889 	if (hw_off_limits(sc))
8890 		rc = ENXIO;
8891 	else
8892 		t4_read_cong_tbl(sc, incr);
8893 	mtx_unlock(&sc->reg_lock);
8894 	if (rc)
8895 		goto done;
8896 
8897 	for (i = 0; i < NCCTRL_WIN; ++i) {
8898 		sbuf_printf(sb, "%2d: %4u %4u %4u %4u %4u %4u %4u %4u\n", i,
8899 		    incr[0][i], incr[1][i], incr[2][i], incr[3][i], incr[4][i],
8900 		    incr[5][i], incr[6][i], incr[7][i]);
8901 		sbuf_printf(sb, "%8u %4u %4u %4u %4u %4u %4u %4u %5u %s\n",
8902 		    incr[8][i], incr[9][i], incr[10][i], incr[11][i],
8903 		    incr[12][i], incr[13][i], incr[14][i], incr[15][i],
8904 		    sc->params.a_wnd[i], dec_fac[sc->params.b_wnd[i]]);
8905 	}
8906 
8907 	rc = sbuf_finish(sb);
8908 done:
8909 	sbuf_delete(sb);
8910 	return (rc);
8911 }
8912 
8913 static const char *qname[CIM_NUM_IBQ + CIM_NUM_OBQ_T5] = {
8914 	"TP0", "TP1", "ULP", "SGE0", "SGE1", "NC-SI",	/* ibq's */
8915 	"ULP0", "ULP1", "ULP2", "ULP3", "SGE", "NC-SI",	/* obq's */
8916 	"SGE0-RX", "SGE1-RX"	/* additional obq's (T5 onwards) */
8917 };
8918 
8919 static int
sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)8920 sysctl_cim_ibq_obq(SYSCTL_HANDLER_ARGS)
8921 {
8922 	struct adapter *sc = arg1;
8923 	struct sbuf *sb;
8924 	int rc, i, n, qid = arg2;
8925 	uint32_t *buf, *p;
8926 	char *qtype;
8927 	u_int cim_num_obq = sc->chip_params->cim_num_obq;
8928 
8929 	KASSERT(qid >= 0 && qid < CIM_NUM_IBQ + cim_num_obq,
8930 	    ("%s: bad qid %d\n", __func__, qid));
8931 
8932 	if (qid < CIM_NUM_IBQ) {
8933 		/* inbound queue */
8934 		qtype = "IBQ";
8935 		n = 4 * CIM_IBQ_SIZE;
8936 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8937 		mtx_lock(&sc->reg_lock);
8938 		if (hw_off_limits(sc))
8939 			rc = -ENXIO;
8940 		else
8941 			rc = t4_read_cim_ibq(sc, qid, buf, n);
8942 		mtx_unlock(&sc->reg_lock);
8943 	} else {
8944 		/* outbound queue */
8945 		qtype = "OBQ";
8946 		qid -= CIM_NUM_IBQ;
8947 		n = 4 * cim_num_obq * CIM_OBQ_SIZE;
8948 		buf = malloc(n * sizeof(uint32_t), M_CXGBE, M_ZERO | M_WAITOK);
8949 		mtx_lock(&sc->reg_lock);
8950 		if (hw_off_limits(sc))
8951 			rc = -ENXIO;
8952 		else
8953 			rc = t4_read_cim_obq(sc, qid, buf, n);
8954 		mtx_unlock(&sc->reg_lock);
8955 	}
8956 
8957 	if (rc < 0) {
8958 		rc = -rc;
8959 		goto done;
8960 	}
8961 	n = rc * sizeof(uint32_t);	/* rc has # of words actually read */
8962 
8963 	rc = sysctl_wire_old_buffer(req, 0);
8964 	if (rc != 0)
8965 		goto done;
8966 
8967 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
8968 	if (sb == NULL) {
8969 		rc = ENOMEM;
8970 		goto done;
8971 	}
8972 
8973 	sbuf_printf(sb, "%s%d %s", qtype , qid, qname[arg2]);
8974 	for (i = 0, p = buf; i < n; i += 16, p += 4)
8975 		sbuf_printf(sb, "\n%#06x: %08x %08x %08x %08x", i, p[0], p[1],
8976 		    p[2], p[3]);
8977 
8978 	rc = sbuf_finish(sb);
8979 	sbuf_delete(sb);
8980 done:
8981 	free(buf, M_CXGBE);
8982 	return (rc);
8983 }
8984 
8985 static void
sbuf_cim_la4(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)8986 sbuf_cim_la4(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
8987 {
8988 	uint32_t *p;
8989 
8990 	sbuf_printf(sb, "Status   Data      PC%s",
8991 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
8992 	    "     LS0Stat  LS0Addr             LS0Data");
8993 
8994 	for (p = buf; p <= &buf[sc->params.cim_la_size - 8]; p += 8) {
8995 		if (cfg & F_UPDBGLACAPTPCONLY) {
8996 			sbuf_printf(sb, "\n  %02x   %08x %08x", p[5] & 0xff,
8997 			    p[6], p[7]);
8998 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x",
8999 			    (p[3] >> 8) & 0xff, p[3] & 0xff, p[4] >> 8,
9000 			    p[4] & 0xff, p[5] >> 8);
9001 			sbuf_printf(sb, "\n  %02x   %x%07x %x%07x",
9002 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9003 			    p[1] & 0xf, p[2] >> 4);
9004 		} else {
9005 			sbuf_printf(sb,
9006 			    "\n  %02x   %x%07x %x%07x %08x %08x "
9007 			    "%08x%08x%08x%08x",
9008 			    (p[0] >> 4) & 0xff, p[0] & 0xf, p[1] >> 4,
9009 			    p[1] & 0xf, p[2] >> 4, p[2] & 0xf, p[3], p[4], p[5],
9010 			    p[6], p[7]);
9011 		}
9012 	}
9013 }
9014 
9015 static void
sbuf_cim_la6(struct adapter * sc,struct sbuf * sb,uint32_t * buf,uint32_t cfg)9016 sbuf_cim_la6(struct adapter *sc, struct sbuf *sb, uint32_t *buf, uint32_t cfg)
9017 {
9018 	uint32_t *p;
9019 
9020 	sbuf_printf(sb, "Status   Inst    Data      PC%s",
9021 	    cfg & F_UPDBGLACAPTPCONLY ? "" :
9022 	    "     LS0Stat  LS0Addr  LS0Data  LS1Stat  LS1Addr  LS1Data");
9023 
9024 	for (p = buf; p <= &buf[sc->params.cim_la_size - 10]; p += 10) {
9025 		if (cfg & F_UPDBGLACAPTPCONLY) {
9026 			sbuf_printf(sb, "\n  %02x   %08x %08x %08x",
9027 			    p[3] & 0xff, p[2], p[1], p[0]);
9028 			sbuf_printf(sb, "\n  %02x   %02x%06x %02x%06x %02x%06x",
9029 			    (p[6] >> 8) & 0xff, p[6] & 0xff, p[5] >> 8,
9030 			    p[5] & 0xff, p[4] >> 8, p[4] & 0xff, p[3] >> 8);
9031 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x",
9032 			    (p[9] >> 16) & 0xff, p[9] & 0xffff, p[8] >> 16,
9033 			    p[8] & 0xffff, p[7] >> 16, p[7] & 0xffff,
9034 			    p[6] >> 16);
9035 		} else {
9036 			sbuf_printf(sb, "\n  %02x   %04x%04x %04x%04x %04x%04x "
9037 			    "%08x %08x %08x %08x %08x %08x",
9038 			    (p[9] >> 16) & 0xff,
9039 			    p[9] & 0xffff, p[8] >> 16,
9040 			    p[8] & 0xffff, p[7] >> 16,
9041 			    p[7] & 0xffff, p[6] >> 16,
9042 			    p[2], p[1], p[0], p[5], p[4], p[3]);
9043 		}
9044 	}
9045 }
9046 
9047 static int
sbuf_cim_la(struct adapter * sc,struct sbuf * sb,int flags)9048 sbuf_cim_la(struct adapter *sc, struct sbuf *sb, int flags)
9049 {
9050 	uint32_t cfg, *buf;
9051 	int rc;
9052 
9053 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9054 	buf = malloc(sc->params.cim_la_size * sizeof(uint32_t), M_CXGBE,
9055 	    M_ZERO | flags);
9056 	if (buf == NULL)
9057 		return (ENOMEM);
9058 
9059 	mtx_lock(&sc->reg_lock);
9060 	if (hw_off_limits(sc))
9061 		rc = ENXIO;
9062 	else {
9063 		rc = -t4_cim_read(sc, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9064 		if (rc == 0)
9065 			rc = -t4_cim_read_la(sc, buf, NULL);
9066 	}
9067 	mtx_unlock(&sc->reg_lock);
9068 	if (rc == 0) {
9069 		if (chip_id(sc) < CHELSIO_T6)
9070 			sbuf_cim_la4(sc, sb, buf, cfg);
9071 		else
9072 			sbuf_cim_la6(sc, sb, buf, cfg);
9073 	}
9074 	free(buf, M_CXGBE);
9075 	return (rc);
9076 }
9077 
9078 static int
sysctl_cim_la(SYSCTL_HANDLER_ARGS)9079 sysctl_cim_la(SYSCTL_HANDLER_ARGS)
9080 {
9081 	struct adapter *sc = arg1;
9082 	struct sbuf *sb;
9083 	int rc;
9084 
9085 	rc = sysctl_wire_old_buffer(req, 0);
9086 	if (rc != 0)
9087 		return (rc);
9088 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9089 	if (sb == NULL)
9090 		return (ENOMEM);
9091 
9092 	rc = sbuf_cim_la(sc, sb, M_WAITOK);
9093 	if (rc == 0)
9094 		rc = sbuf_finish(sb);
9095 	sbuf_delete(sb);
9096 	return (rc);
9097 }
9098 
9099 static void
dump_cim_regs(struct adapter * sc)9100 dump_cim_regs(struct adapter *sc)
9101 {
9102 	log(LOG_DEBUG, "%s: CIM debug regs1 %08x %08x %08x %08x %08x\n",
9103 	    device_get_nameunit(sc->dev),
9104 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9105 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9106 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA2),
9107 	    t4_read_reg(sc, A_EDC_H_BIST_DATA_PATTERN),
9108 	    t4_read_reg(sc, A_EDC_H_BIST_STATUS_RDATA));
9109 	log(LOG_DEBUG, "%s: CIM debug regs2 %08x %08x %08x %08x %08x\n",
9110 	    device_get_nameunit(sc->dev),
9111 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0),
9112 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1),
9113 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA0 + 0x800),
9114 	    t4_read_reg(sc, A_EDC_H_BIST_USER_WDATA1 + 0x800),
9115 	    t4_read_reg(sc, A_EDC_H_BIST_CMD_LEN));
9116 }
9117 
9118 static void
dump_cimla(struct adapter * sc)9119 dump_cimla(struct adapter *sc)
9120 {
9121 	struct sbuf sb;
9122 	int rc;
9123 
9124 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9125 		log(LOG_DEBUG, "%s: failed to generate CIM LA dump.\n",
9126 		    device_get_nameunit(sc->dev));
9127 		return;
9128 	}
9129 	rc = sbuf_cim_la(sc, &sb, M_WAITOK);
9130 	if (rc == 0) {
9131 		rc = sbuf_finish(&sb);
9132 		if (rc == 0) {
9133 			log(LOG_DEBUG, "%s: CIM LA dump follows.\n%s\n",
9134 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9135 		}
9136 	}
9137 	sbuf_delete(&sb);
9138 }
9139 
9140 void
t4_os_cim_err(struct adapter * sc)9141 t4_os_cim_err(struct adapter *sc)
9142 {
9143 	atomic_set_int(&sc->error_flags, ADAP_CIM_ERR);
9144 }
9145 
9146 static int
sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)9147 sysctl_cim_ma_la(SYSCTL_HANDLER_ARGS)
9148 {
9149 	struct adapter *sc = arg1;
9150 	u_int i;
9151 	struct sbuf *sb;
9152 	uint32_t *buf, *p;
9153 	int rc;
9154 
9155 	rc = sysctl_wire_old_buffer(req, 0);
9156 	if (rc != 0)
9157 		return (rc);
9158 
9159 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9160 	if (sb == NULL)
9161 		return (ENOMEM);
9162 
9163 	buf = malloc(2 * CIM_MALA_SIZE * 5 * sizeof(uint32_t), M_CXGBE,
9164 	    M_ZERO | M_WAITOK);
9165 
9166 	mtx_lock(&sc->reg_lock);
9167 	if (hw_off_limits(sc))
9168 		rc = ENXIO;
9169 	else
9170 		t4_cim_read_ma_la(sc, buf, buf + 5 * CIM_MALA_SIZE);
9171 	mtx_unlock(&sc->reg_lock);
9172 	if (rc)
9173 		goto done;
9174 
9175 	p = buf;
9176 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9177 		sbuf_printf(sb, "\n%02x%08x%08x%08x%08x", p[4], p[3], p[2],
9178 		    p[1], p[0]);
9179 	}
9180 
9181 	sbuf_printf(sb, "\n\nCnt ID Tag UE       Data       RDY VLD");
9182 	for (i = 0; i < CIM_MALA_SIZE; i++, p += 5) {
9183 		sbuf_printf(sb, "\n%3u %2u  %x   %u %08x%08x  %u   %u",
9184 		    (p[2] >> 10) & 0xff, (p[2] >> 7) & 7,
9185 		    (p[2] >> 3) & 0xf, (p[2] >> 2) & 1,
9186 		    (p[1] >> 2) | ((p[2] & 3) << 30),
9187 		    (p[0] >> 2) | ((p[1] & 3) << 30), (p[0] >> 1) & 1,
9188 		    p[0] & 1);
9189 	}
9190 	rc = sbuf_finish(sb);
9191 done:
9192 	sbuf_delete(sb);
9193 	free(buf, M_CXGBE);
9194 	return (rc);
9195 }
9196 
9197 static int
sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)9198 sysctl_cim_pif_la(SYSCTL_HANDLER_ARGS)
9199 {
9200 	struct adapter *sc = arg1;
9201 	u_int i;
9202 	struct sbuf *sb;
9203 	uint32_t *buf, *p;
9204 	int rc;
9205 
9206 	rc = sysctl_wire_old_buffer(req, 0);
9207 	if (rc != 0)
9208 		return (rc);
9209 
9210 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9211 	if (sb == NULL)
9212 		return (ENOMEM);
9213 
9214 	buf = malloc(2 * CIM_PIFLA_SIZE * 6 * sizeof(uint32_t), M_CXGBE,
9215 	    M_ZERO | M_WAITOK);
9216 
9217 	mtx_lock(&sc->reg_lock);
9218 	if (hw_off_limits(sc))
9219 		rc = ENXIO;
9220 	else
9221 		t4_cim_read_pif_la(sc, buf, buf + 6 * CIM_PIFLA_SIZE, NULL, NULL);
9222 	mtx_unlock(&sc->reg_lock);
9223 	if (rc)
9224 		goto done;
9225 
9226 	p = buf;
9227 	sbuf_printf(sb, "Cntl ID DataBE   Addr                 Data");
9228 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9229 		sbuf_printf(sb, "\n %02x  %02x  %04x  %08x %08x%08x%08x%08x",
9230 		    (p[5] >> 22) & 0xff, (p[5] >> 16) & 0x3f, p[5] & 0xffff,
9231 		    p[4], p[3], p[2], p[1], p[0]);
9232 	}
9233 
9234 	sbuf_printf(sb, "\n\nCntl ID               Data");
9235 	for (i = 0; i < CIM_PIFLA_SIZE; i++, p += 6) {
9236 		sbuf_printf(sb, "\n %02x  %02x %08x%08x%08x%08x",
9237 		    (p[4] >> 6) & 0xff, p[4] & 0x3f, p[3], p[2], p[1], p[0]);
9238 	}
9239 
9240 	rc = sbuf_finish(sb);
9241 done:
9242 	sbuf_delete(sb);
9243 	free(buf, M_CXGBE);
9244 	return (rc);
9245 }
9246 
9247 static int
sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)9248 sysctl_cim_qcfg(SYSCTL_HANDLER_ARGS)
9249 {
9250 	struct adapter *sc = arg1;
9251 	struct sbuf *sb;
9252 	int rc, i;
9253 	uint16_t base[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9254 	uint16_t size[CIM_NUM_IBQ + CIM_NUM_OBQ_T5];
9255 	uint16_t thres[CIM_NUM_IBQ];
9256 	uint32_t obq_wr[2 * CIM_NUM_OBQ_T5], *wr = obq_wr;
9257 	uint32_t stat[4 * (CIM_NUM_IBQ + CIM_NUM_OBQ_T5)], *p = stat;
9258 	u_int cim_num_obq, ibq_rdaddr, obq_rdaddr, nq;
9259 
9260 	cim_num_obq = sc->chip_params->cim_num_obq;
9261 	if (is_t4(sc)) {
9262 		ibq_rdaddr = A_UP_IBQ_0_RDADDR;
9263 		obq_rdaddr = A_UP_OBQ_0_REALADDR;
9264 	} else {
9265 		ibq_rdaddr = A_UP_IBQ_0_SHADOW_RDADDR;
9266 		obq_rdaddr = A_UP_OBQ_0_SHADOW_REALADDR;
9267 	}
9268 	nq = CIM_NUM_IBQ + cim_num_obq;
9269 
9270 	mtx_lock(&sc->reg_lock);
9271 	if (hw_off_limits(sc))
9272 		rc = ENXIO;
9273 	else {
9274 		rc = -t4_cim_read(sc, ibq_rdaddr, 4 * nq, stat);
9275 		if (rc == 0) {
9276 			rc = -t4_cim_read(sc, obq_rdaddr, 2 * cim_num_obq,
9277 			    obq_wr);
9278 			if (rc == 0)
9279 				t4_read_cimq_cfg(sc, base, size, thres);
9280 		}
9281 	}
9282 	mtx_unlock(&sc->reg_lock);
9283 	if (rc)
9284 		return (rc);
9285 
9286 	rc = sysctl_wire_old_buffer(req, 0);
9287 	if (rc != 0)
9288 		return (rc);
9289 
9290 	sb = sbuf_new_for_sysctl(NULL, NULL, PAGE_SIZE, req);
9291 	if (sb == NULL)
9292 		return (ENOMEM);
9293 
9294 	sbuf_printf(sb,
9295 	    "  Queue  Base  Size Thres  RdPtr WrPtr  SOP  EOP Avail");
9296 
9297 	for (i = 0; i < CIM_NUM_IBQ; i++, p += 4)
9298 		sbuf_printf(sb, "\n%7s %5x %5u %5u %6x  %4x %4u %4u %5u",
9299 		    qname[i], base[i], size[i], thres[i], G_IBQRDADDR(p[0]),
9300 		    G_IBQWRADDR(p[1]), G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9301 		    G_QUEREMFLITS(p[2]) * 16);
9302 	for ( ; i < nq; i++, p += 4, wr += 2)
9303 		sbuf_printf(sb, "\n%7s %5x %5u %12x  %4x %4u %4u %5u", qname[i],
9304 		    base[i], size[i], G_QUERDADDR(p[0]) & 0x3fff,
9305 		    wr[0] - base[i], G_QUESOPCNT(p[3]), G_QUEEOPCNT(p[3]),
9306 		    G_QUEREMFLITS(p[2]) * 16);
9307 
9308 	rc = sbuf_finish(sb);
9309 	sbuf_delete(sb);
9310 
9311 	return (rc);
9312 }
9313 
9314 static int
sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)9315 sysctl_cpl_stats(SYSCTL_HANDLER_ARGS)
9316 {
9317 	struct adapter *sc = arg1;
9318 	struct sbuf *sb;
9319 	int rc;
9320 	struct tp_cpl_stats stats;
9321 
9322 	rc = sysctl_wire_old_buffer(req, 0);
9323 	if (rc != 0)
9324 		return (rc);
9325 
9326 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9327 	if (sb == NULL)
9328 		return (ENOMEM);
9329 
9330 	mtx_lock(&sc->reg_lock);
9331 	if (hw_off_limits(sc))
9332 		rc = ENXIO;
9333 	else
9334 		t4_tp_get_cpl_stats(sc, &stats, 0);
9335 	mtx_unlock(&sc->reg_lock);
9336 	if (rc)
9337 		goto done;
9338 
9339 	if (sc->chip_params->nchan > 2) {
9340 		sbuf_printf(sb, "                 channel 0  channel 1"
9341 		    "  channel 2  channel 3");
9342 		sbuf_printf(sb, "\nCPL requests:   %10u %10u %10u %10u",
9343 		    stats.req[0], stats.req[1], stats.req[2], stats.req[3]);
9344 		sbuf_printf(sb, "\nCPL responses:  %10u %10u %10u %10u",
9345 		    stats.rsp[0], stats.rsp[1], stats.rsp[2], stats.rsp[3]);
9346 	} else {
9347 		sbuf_printf(sb, "                 channel 0  channel 1");
9348 		sbuf_printf(sb, "\nCPL requests:   %10u %10u",
9349 		    stats.req[0], stats.req[1]);
9350 		sbuf_printf(sb, "\nCPL responses:  %10u %10u",
9351 		    stats.rsp[0], stats.rsp[1]);
9352 	}
9353 
9354 	rc = sbuf_finish(sb);
9355 done:
9356 	sbuf_delete(sb);
9357 	return (rc);
9358 }
9359 
9360 static int
sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)9361 sysctl_ddp_stats(SYSCTL_HANDLER_ARGS)
9362 {
9363 	struct adapter *sc = arg1;
9364 	struct sbuf *sb;
9365 	int rc;
9366 	struct tp_usm_stats stats;
9367 
9368 	rc = sysctl_wire_old_buffer(req, 0);
9369 	if (rc != 0)
9370 		return(rc);
9371 
9372 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9373 	if (sb == NULL)
9374 		return (ENOMEM);
9375 
9376 	mtx_lock(&sc->reg_lock);
9377 	if (hw_off_limits(sc))
9378 		rc = ENXIO;
9379 	else
9380 		t4_get_usm_stats(sc, &stats, 1);
9381 	mtx_unlock(&sc->reg_lock);
9382 	if (rc == 0) {
9383 		sbuf_printf(sb, "Frames: %u\n", stats.frames);
9384 		sbuf_printf(sb, "Octets: %ju\n", stats.octets);
9385 		sbuf_printf(sb, "Drops:  %u", stats.drops);
9386 		rc = sbuf_finish(sb);
9387 	}
9388 	sbuf_delete(sb);
9389 
9390 	return (rc);
9391 }
9392 
9393 static int
sysctl_tid_stats(SYSCTL_HANDLER_ARGS)9394 sysctl_tid_stats(SYSCTL_HANDLER_ARGS)
9395 {
9396 	struct adapter *sc = arg1;
9397 	struct sbuf *sb;
9398 	int rc;
9399 	struct tp_tid_stats stats;
9400 
9401 	rc = sysctl_wire_old_buffer(req, 0);
9402 	if (rc != 0)
9403 		return(rc);
9404 
9405 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9406 	if (sb == NULL)
9407 		return (ENOMEM);
9408 
9409 	mtx_lock(&sc->reg_lock);
9410 	if (hw_off_limits(sc))
9411 		rc = ENXIO;
9412 	else
9413 		t4_tp_get_tid_stats(sc, &stats, 1);
9414 	mtx_unlock(&sc->reg_lock);
9415 	if (rc == 0) {
9416 		sbuf_printf(sb, "Delete:     %u\n", stats.del);
9417 		sbuf_printf(sb, "Invalidate: %u\n", stats.inv);
9418 		sbuf_printf(sb, "Active:     %u\n", stats.act);
9419 		sbuf_printf(sb, "Passive:    %u", stats.pas);
9420 		rc = sbuf_finish(sb);
9421 	}
9422 	sbuf_delete(sb);
9423 
9424 	return (rc);
9425 }
9426 
9427 static const char * const devlog_level_strings[] = {
9428 	[FW_DEVLOG_LEVEL_EMERG]		= "EMERG",
9429 	[FW_DEVLOG_LEVEL_CRIT]		= "CRIT",
9430 	[FW_DEVLOG_LEVEL_ERR]		= "ERR",
9431 	[FW_DEVLOG_LEVEL_NOTICE]	= "NOTICE",
9432 	[FW_DEVLOG_LEVEL_INFO]		= "INFO",
9433 	[FW_DEVLOG_LEVEL_DEBUG]		= "DEBUG"
9434 };
9435 
9436 static const char * const devlog_facility_strings[] = {
9437 	[FW_DEVLOG_FACILITY_CORE]	= "CORE",
9438 	[FW_DEVLOG_FACILITY_CF]		= "CF",
9439 	[FW_DEVLOG_FACILITY_SCHED]	= "SCHED",
9440 	[FW_DEVLOG_FACILITY_TIMER]	= "TIMER",
9441 	[FW_DEVLOG_FACILITY_RES]	= "RES",
9442 	[FW_DEVLOG_FACILITY_HW]		= "HW",
9443 	[FW_DEVLOG_FACILITY_FLR]	= "FLR",
9444 	[FW_DEVLOG_FACILITY_DMAQ]	= "DMAQ",
9445 	[FW_DEVLOG_FACILITY_PHY]	= "PHY",
9446 	[FW_DEVLOG_FACILITY_MAC]	= "MAC",
9447 	[FW_DEVLOG_FACILITY_PORT]	= "PORT",
9448 	[FW_DEVLOG_FACILITY_VI]		= "VI",
9449 	[FW_DEVLOG_FACILITY_FILTER]	= "FILTER",
9450 	[FW_DEVLOG_FACILITY_ACL]	= "ACL",
9451 	[FW_DEVLOG_FACILITY_TM]		= "TM",
9452 	[FW_DEVLOG_FACILITY_QFC]	= "QFC",
9453 	[FW_DEVLOG_FACILITY_DCB]	= "DCB",
9454 	[FW_DEVLOG_FACILITY_ETH]	= "ETH",
9455 	[FW_DEVLOG_FACILITY_OFLD]	= "OFLD",
9456 	[FW_DEVLOG_FACILITY_RI]		= "RI",
9457 	[FW_DEVLOG_FACILITY_ISCSI]	= "ISCSI",
9458 	[FW_DEVLOG_FACILITY_FCOE]	= "FCOE",
9459 	[FW_DEVLOG_FACILITY_FOISCSI]	= "FOISCSI",
9460 	[FW_DEVLOG_FACILITY_FOFCOE]	= "FOFCOE",
9461 	[FW_DEVLOG_FACILITY_CHNET]	= "CHNET",
9462 };
9463 
9464 static int
sbuf_devlog(struct adapter * sc,struct sbuf * sb,int flags)9465 sbuf_devlog(struct adapter *sc, struct sbuf *sb, int flags)
9466 {
9467 	int i, j, rc, nentries, first = 0;
9468 	struct devlog_params *dparams = &sc->params.devlog;
9469 	struct fw_devlog_e *buf, *e;
9470 	uint64_t ftstamp = UINT64_MAX;
9471 
9472 	if (dparams->addr == 0)
9473 		return (ENXIO);
9474 
9475 	MPASS(flags == M_WAITOK || flags == M_NOWAIT);
9476 	buf = malloc(dparams->size, M_CXGBE, M_ZERO | flags);
9477 	if (buf == NULL)
9478 		return (ENOMEM);
9479 
9480 	mtx_lock(&sc->reg_lock);
9481 	if (hw_off_limits(sc))
9482 		rc = ENXIO;
9483 	else
9484 		rc = read_via_memwin(sc, 1, dparams->addr, (void *)buf,
9485 		    dparams->size);
9486 	mtx_unlock(&sc->reg_lock);
9487 	if (rc != 0)
9488 		goto done;
9489 
9490 	nentries = dparams->size / sizeof(struct fw_devlog_e);
9491 	for (i = 0; i < nentries; i++) {
9492 		e = &buf[i];
9493 
9494 		if (e->timestamp == 0)
9495 			break;	/* end */
9496 
9497 		e->timestamp = be64toh(e->timestamp);
9498 		e->seqno = be32toh(e->seqno);
9499 		for (j = 0; j < 8; j++)
9500 			e->params[j] = be32toh(e->params[j]);
9501 
9502 		if (e->timestamp < ftstamp) {
9503 			ftstamp = e->timestamp;
9504 			first = i;
9505 		}
9506 	}
9507 
9508 	if (buf[first].timestamp == 0)
9509 		goto done;	/* nothing in the log */
9510 
9511 	sbuf_printf(sb, "%10s  %15s  %8s  %8s  %s\n",
9512 	    "Seq#", "Tstamp", "Level", "Facility", "Message");
9513 
9514 	i = first;
9515 	do {
9516 		e = &buf[i];
9517 		if (e->timestamp == 0)
9518 			break;	/* end */
9519 
9520 		sbuf_printf(sb, "%10d  %15ju  %8s  %8s  ",
9521 		    e->seqno, e->timestamp,
9522 		    (e->level < nitems(devlog_level_strings) ?
9523 			devlog_level_strings[e->level] : "UNKNOWN"),
9524 		    (e->facility < nitems(devlog_facility_strings) ?
9525 			devlog_facility_strings[e->facility] : "UNKNOWN"));
9526 		sbuf_printf(sb, e->fmt, e->params[0], e->params[1],
9527 		    e->params[2], e->params[3], e->params[4],
9528 		    e->params[5], e->params[6], e->params[7]);
9529 
9530 		if (++i == nentries)
9531 			i = 0;
9532 	} while (i != first);
9533 done:
9534 	free(buf, M_CXGBE);
9535 	return (rc);
9536 }
9537 
9538 static int
sysctl_devlog(SYSCTL_HANDLER_ARGS)9539 sysctl_devlog(SYSCTL_HANDLER_ARGS)
9540 {
9541 	struct adapter *sc = arg1;
9542 	int rc;
9543 	struct sbuf *sb;
9544 
9545 	rc = sysctl_wire_old_buffer(req, 0);
9546 	if (rc != 0)
9547 		return (rc);
9548 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9549 	if (sb == NULL)
9550 		return (ENOMEM);
9551 
9552 	rc = sbuf_devlog(sc, sb, M_WAITOK);
9553 	if (rc == 0)
9554 		rc = sbuf_finish(sb);
9555 	sbuf_delete(sb);
9556 	return (rc);
9557 }
9558 
9559 static void
dump_devlog(struct adapter * sc)9560 dump_devlog(struct adapter *sc)
9561 {
9562 	int rc;
9563 	struct sbuf sb;
9564 
9565 	if (sbuf_new(&sb, NULL, 4096, SBUF_AUTOEXTEND) != &sb) {
9566 		log(LOG_DEBUG, "%s: failed to generate devlog dump.\n",
9567 		    device_get_nameunit(sc->dev));
9568 		return;
9569 	}
9570 	rc = sbuf_devlog(sc, &sb, M_WAITOK);
9571 	if (rc == 0) {
9572 		rc = sbuf_finish(&sb);
9573 		if (rc == 0) {
9574 			log(LOG_DEBUG, "%s: device log follows.\n%s",
9575 			    device_get_nameunit(sc->dev), sbuf_data(&sb));
9576 		}
9577 	}
9578 	sbuf_delete(&sb);
9579 }
9580 
9581 static int
sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)9582 sysctl_fcoe_stats(SYSCTL_HANDLER_ARGS)
9583 {
9584 	struct adapter *sc = arg1;
9585 	struct sbuf *sb;
9586 	int rc;
9587 	struct tp_fcoe_stats stats[MAX_NCHAN];
9588 	int i, nchan = sc->chip_params->nchan;
9589 
9590 	rc = sysctl_wire_old_buffer(req, 0);
9591 	if (rc != 0)
9592 		return (rc);
9593 
9594 	mtx_lock(&sc->reg_lock);
9595 	if (hw_off_limits(sc))
9596 		rc = ENXIO;
9597 	else {
9598 		for (i = 0; i < nchan; i++)
9599 			t4_get_fcoe_stats(sc, i, &stats[i], 1);
9600 	}
9601 	mtx_unlock(&sc->reg_lock);
9602 	if (rc != 0)
9603 		return (rc);
9604 
9605 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
9606 	if (sb == NULL)
9607 		return (ENOMEM);
9608 
9609 	if (nchan > 2) {
9610 		sbuf_printf(sb, "                   channel 0        channel 1"
9611 		    "        channel 2        channel 3");
9612 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju %16ju %16ju",
9613 		    stats[0].octets_ddp, stats[1].octets_ddp,
9614 		    stats[2].octets_ddp, stats[3].octets_ddp);
9615 		sbuf_printf(sb, "\nframesDDP:  %16u %16u %16u %16u",
9616 		    stats[0].frames_ddp, stats[1].frames_ddp,
9617 		    stats[2].frames_ddp, stats[3].frames_ddp);
9618 		sbuf_printf(sb, "\nframesDrop: %16u %16u %16u %16u",
9619 		    stats[0].frames_drop, stats[1].frames_drop,
9620 		    stats[2].frames_drop, stats[3].frames_drop);
9621 	} else {
9622 		sbuf_printf(sb, "                   channel 0        channel 1");
9623 		sbuf_printf(sb, "\noctetsDDP:  %16ju %16ju",
9624 		    stats[0].octets_ddp, stats[1].octets_ddp);
9625 		sbuf_printf(sb, "\nframesDDP:  %16u %16u",
9626 		    stats[0].frames_ddp, stats[1].frames_ddp);
9627 		sbuf_printf(sb, "\nframesDrop: %16u %16u",
9628 		    stats[0].frames_drop, stats[1].frames_drop);
9629 	}
9630 
9631 	rc = sbuf_finish(sb);
9632 	sbuf_delete(sb);
9633 
9634 	return (rc);
9635 }
9636 
9637 static int
sysctl_hw_sched(SYSCTL_HANDLER_ARGS)9638 sysctl_hw_sched(SYSCTL_HANDLER_ARGS)
9639 {
9640 	struct adapter *sc = arg1;
9641 	struct sbuf *sb;
9642 	int rc, i;
9643 	unsigned int map, kbps, ipg, mode;
9644 	unsigned int pace_tab[NTX_SCHED];
9645 
9646 	rc = sysctl_wire_old_buffer(req, 0);
9647 	if (rc != 0)
9648 		return (rc);
9649 
9650 	sb = sbuf_new_for_sysctl(NULL, NULL, 512, req);
9651 	if (sb == NULL)
9652 		return (ENOMEM);
9653 
9654 	mtx_lock(&sc->reg_lock);
9655 	if (hw_off_limits(sc)) {
9656 		rc = ENXIO;
9657 		goto done;
9658 	}
9659 
9660 	map = t4_read_reg(sc, A_TP_TX_MOD_QUEUE_REQ_MAP);
9661 	mode = G_TIMERMODE(t4_read_reg(sc, A_TP_MOD_CONFIG));
9662 	t4_read_pace_tbl(sc, pace_tab);
9663 
9664 	sbuf_printf(sb, "Scheduler  Mode   Channel  Rate (Kbps)   "
9665 	    "Class IPG (0.1 ns)   Flow IPG (us)");
9666 
9667 	for (i = 0; i < NTX_SCHED; ++i, map >>= 2) {
9668 		t4_get_tx_sched(sc, i, &kbps, &ipg, 1);
9669 		sbuf_printf(sb, "\n    %u      %-5s     %u     ", i,
9670 		    (mode & (1 << i)) ? "flow" : "class", map & 3);
9671 		if (kbps)
9672 			sbuf_printf(sb, "%9u     ", kbps);
9673 		else
9674 			sbuf_printf(sb, " disabled     ");
9675 
9676 		if (ipg)
9677 			sbuf_printf(sb, "%13u        ", ipg);
9678 		else
9679 			sbuf_printf(sb, "     disabled        ");
9680 
9681 		if (pace_tab[i])
9682 			sbuf_printf(sb, "%10u", pace_tab[i]);
9683 		else
9684 			sbuf_printf(sb, "  disabled");
9685 	}
9686 	rc = sbuf_finish(sb);
9687 done:
9688 	mtx_unlock(&sc->reg_lock);
9689 	sbuf_delete(sb);
9690 	return (rc);
9691 }
9692 
9693 static int
sysctl_lb_stats(SYSCTL_HANDLER_ARGS)9694 sysctl_lb_stats(SYSCTL_HANDLER_ARGS)
9695 {
9696 	struct adapter *sc = arg1;
9697 	struct sbuf *sb;
9698 	int rc, i, j;
9699 	uint64_t *p0, *p1;
9700 	struct lb_port_stats s[2];
9701 	static const char *stat_name[] = {
9702 		"OctetsOK:", "FramesOK:", "BcastFrames:", "McastFrames:",
9703 		"UcastFrames:", "ErrorFrames:", "Frames64:", "Frames65To127:",
9704 		"Frames128To255:", "Frames256To511:", "Frames512To1023:",
9705 		"Frames1024To1518:", "Frames1519ToMax:", "FramesDropped:",
9706 		"BG0FramesDropped:", "BG1FramesDropped:", "BG2FramesDropped:",
9707 		"BG3FramesDropped:", "BG0FramesTrunc:", "BG1FramesTrunc:",
9708 		"BG2FramesTrunc:", "BG3FramesTrunc:"
9709 	};
9710 
9711 	rc = sysctl_wire_old_buffer(req, 0);
9712 	if (rc != 0)
9713 		return (rc);
9714 
9715 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9716 	if (sb == NULL)
9717 		return (ENOMEM);
9718 
9719 	memset(s, 0, sizeof(s));
9720 
9721 	for (i = 0; i < sc->chip_params->nchan; i += 2) {
9722 		mtx_lock(&sc->reg_lock);
9723 		if (hw_off_limits(sc))
9724 			rc = ENXIO;
9725 		else {
9726 			t4_get_lb_stats(sc, i, &s[0]);
9727 			t4_get_lb_stats(sc, i + 1, &s[1]);
9728 		}
9729 		mtx_unlock(&sc->reg_lock);
9730 		if (rc != 0)
9731 			break;
9732 
9733 		p0 = &s[0].octets;
9734 		p1 = &s[1].octets;
9735 		sbuf_printf(sb, "%s                       Loopback %u"
9736 		    "           Loopback %u", i == 0 ? "" : "\n", i, i + 1);
9737 
9738 		for (j = 0; j < nitems(stat_name); j++)
9739 			sbuf_printf(sb, "\n%-17s %20ju %20ju", stat_name[j],
9740 				   *p0++, *p1++);
9741 	}
9742 
9743 	rc = sbuf_finish(sb);
9744 	sbuf_delete(sb);
9745 
9746 	return (rc);
9747 }
9748 
9749 static int
sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)9750 sysctl_linkdnrc(SYSCTL_HANDLER_ARGS)
9751 {
9752 	int rc = 0;
9753 	struct port_info *pi = arg1;
9754 	struct link_config *lc = &pi->link_cfg;
9755 	struct sbuf *sb;
9756 
9757 	rc = sysctl_wire_old_buffer(req, 0);
9758 	if (rc != 0)
9759 		return(rc);
9760 	sb = sbuf_new_for_sysctl(NULL, NULL, 64, req);
9761 	if (sb == NULL)
9762 		return (ENOMEM);
9763 
9764 	if (lc->link_ok || lc->link_down_rc == 255)
9765 		sbuf_printf(sb, "n/a");
9766 	else
9767 		sbuf_printf(sb, "%s", t4_link_down_rc_str(lc->link_down_rc));
9768 
9769 	rc = sbuf_finish(sb);
9770 	sbuf_delete(sb);
9771 
9772 	return (rc);
9773 }
9774 
9775 struct mem_desc {
9776 	u_int base;
9777 	u_int limit;
9778 	u_int idx;
9779 };
9780 
9781 static int
mem_desc_cmp(const void * a,const void * b)9782 mem_desc_cmp(const void *a, const void *b)
9783 {
9784 	const u_int v1 = ((const struct mem_desc *)a)->base;
9785 	const u_int v2 = ((const struct mem_desc *)b)->base;
9786 
9787 	if (v1 < v2)
9788 		return (-1);
9789 	else if (v1 > v2)
9790 		return (1);
9791 
9792 	return (0);
9793 }
9794 
9795 static void
mem_region_show(struct sbuf * sb,const char * name,unsigned int from,unsigned int to)9796 mem_region_show(struct sbuf *sb, const char *name, unsigned int from,
9797     unsigned int to)
9798 {
9799 	unsigned int size;
9800 
9801 	if (from == to)
9802 		return;
9803 
9804 	size = to - from + 1;
9805 	if (size == 0)
9806 		return;
9807 
9808 	/* XXX: need humanize_number(3) in libkern for a more readable 'size' */
9809 	sbuf_printf(sb, "%-15s %#x-%#x [%u]\n", name, from, to, size);
9810 }
9811 
9812 static int
sysctl_meminfo(SYSCTL_HANDLER_ARGS)9813 sysctl_meminfo(SYSCTL_HANDLER_ARGS)
9814 {
9815 	struct adapter *sc = arg1;
9816 	struct sbuf *sb;
9817 	int rc, i, n;
9818 	uint32_t lo, hi, used, free, alloc;
9819 	static const char *memory[] = {
9820 		"EDC0:", "EDC1:", "MC:", "MC0:", "MC1:", "HMA:"
9821 	};
9822 	static const char *region[] = {
9823 		"DBQ contexts:", "IMSG contexts:", "FLM cache:", "TCBs:",
9824 		"Pstructs:", "Timers:", "Rx FL:", "Tx FL:", "Pstruct FL:",
9825 		"Tx payload:", "Rx payload:", "LE hash:", "iSCSI region:",
9826 		"TDDP region:", "TPT region:", "STAG region:", "RQ region:",
9827 		"RQUDP region:", "PBL region:", "TXPBL region:",
9828 		"TLSKey region:", "DBVFIFO region:", "ULPRX state:",
9829 		"ULPTX state:", "On-chip queues:",
9830 	};
9831 	struct mem_desc avail[4];
9832 	struct mem_desc mem[nitems(region) + 3];	/* up to 3 holes */
9833 	struct mem_desc *md = mem;
9834 
9835 	rc = sysctl_wire_old_buffer(req, 0);
9836 	if (rc != 0)
9837 		return (rc);
9838 
9839 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
9840 	if (sb == NULL)
9841 		return (ENOMEM);
9842 
9843 	for (i = 0; i < nitems(mem); i++) {
9844 		mem[i].limit = 0;
9845 		mem[i].idx = i;
9846 	}
9847 
9848 	mtx_lock(&sc->reg_lock);
9849 	if (hw_off_limits(sc)) {
9850 		rc = ENXIO;
9851 		goto done;
9852 	}
9853 
9854 	/* Find and sort the populated memory ranges */
9855 	i = 0;
9856 	lo = t4_read_reg(sc, A_MA_TARGET_MEM_ENABLE);
9857 	if (lo & F_EDRAM0_ENABLE) {
9858 		hi = t4_read_reg(sc, A_MA_EDRAM0_BAR);
9859 		avail[i].base = G_EDRAM0_BASE(hi) << 20;
9860 		avail[i].limit = avail[i].base + (G_EDRAM0_SIZE(hi) << 20);
9861 		avail[i].idx = 0;
9862 		i++;
9863 	}
9864 	if (lo & F_EDRAM1_ENABLE) {
9865 		hi = t4_read_reg(sc, A_MA_EDRAM1_BAR);
9866 		avail[i].base = G_EDRAM1_BASE(hi) << 20;
9867 		avail[i].limit = avail[i].base + (G_EDRAM1_SIZE(hi) << 20);
9868 		avail[i].idx = 1;
9869 		i++;
9870 	}
9871 	if (lo & F_EXT_MEM_ENABLE) {
9872 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY_BAR);
9873 		avail[i].base = G_EXT_MEM_BASE(hi) << 20;
9874 		avail[i].limit = avail[i].base + (G_EXT_MEM_SIZE(hi) << 20);
9875 		avail[i].idx = is_t5(sc) ? 3 : 2;	/* Call it MC0 for T5 */
9876 		i++;
9877 	}
9878 	if (is_t5(sc) && lo & F_EXT_MEM1_ENABLE) {
9879 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9880 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9881 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9882 		avail[i].idx = 4;
9883 		i++;
9884 	}
9885 	if (is_t6(sc) && lo & F_HMA_MUX) {
9886 		hi = t4_read_reg(sc, A_MA_EXT_MEMORY1_BAR);
9887 		avail[i].base = G_EXT_MEM1_BASE(hi) << 20;
9888 		avail[i].limit = avail[i].base + (G_EXT_MEM1_SIZE(hi) << 20);
9889 		avail[i].idx = 5;
9890 		i++;
9891 	}
9892 	MPASS(i <= nitems(avail));
9893 	if (!i)                                    /* no memory available */
9894 		goto done;
9895 	qsort(avail, i, sizeof(struct mem_desc), mem_desc_cmp);
9896 
9897 	(md++)->base = t4_read_reg(sc, A_SGE_DBQ_CTXT_BADDR);
9898 	(md++)->base = t4_read_reg(sc, A_SGE_IMSG_CTXT_BADDR);
9899 	(md++)->base = t4_read_reg(sc, A_SGE_FLM_CACHE_BADDR);
9900 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
9901 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_BASE);
9902 	(md++)->base = t4_read_reg(sc, A_TP_CMM_TIMER_BASE);
9903 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_RX_FLST_BASE);
9904 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_TX_FLST_BASE);
9905 	(md++)->base = t4_read_reg(sc, A_TP_CMM_MM_PS_FLST_BASE);
9906 
9907 	/* the next few have explicit upper bounds */
9908 	md->base = t4_read_reg(sc, A_TP_PMM_TX_BASE);
9909 	md->limit = md->base - 1 +
9910 		    t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE) *
9911 		    G_PMTXMAXPAGE(t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE));
9912 	md++;
9913 
9914 	md->base = t4_read_reg(sc, A_TP_PMM_RX_BASE);
9915 	md->limit = md->base - 1 +
9916 		    t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) *
9917 		    G_PMRXMAXPAGE(t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE));
9918 	md++;
9919 
9920 	if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
9921 		if (chip_id(sc) <= CHELSIO_T5)
9922 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TID_BASE);
9923 		else
9924 			md->base = t4_read_reg(sc, A_LE_DB_HASH_TBL_BASE_ADDR);
9925 		md->limit = 0;
9926 	} else {
9927 		md->base = 0;
9928 		md->idx = nitems(region);  /* hide it */
9929 	}
9930 	md++;
9931 
9932 #define ulp_region(reg) \
9933 	md->base = t4_read_reg(sc, A_ULP_ ## reg ## _LLIMIT);\
9934 	(md++)->limit = t4_read_reg(sc, A_ULP_ ## reg ## _ULIMIT)
9935 
9936 	ulp_region(RX_ISCSI);
9937 	ulp_region(RX_TDDP);
9938 	ulp_region(TX_TPT);
9939 	ulp_region(RX_STAG);
9940 	ulp_region(RX_RQ);
9941 	ulp_region(RX_RQUDP);
9942 	ulp_region(RX_PBL);
9943 	ulp_region(TX_PBL);
9944 	if (sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS) {
9945 		ulp_region(RX_TLS_KEY);
9946 	}
9947 #undef ulp_region
9948 
9949 	md->base = 0;
9950 	if (is_t4(sc))
9951 		md->idx = nitems(region);
9952 	else {
9953 		uint32_t size = 0;
9954 		uint32_t sge_ctrl = t4_read_reg(sc, A_SGE_CONTROL2);
9955 		uint32_t fifo_size = t4_read_reg(sc, A_SGE_DBVFIFO_SIZE);
9956 
9957 		if (is_t5(sc)) {
9958 			if (sge_ctrl & F_VFIFO_ENABLE)
9959 				size = fifo_size << 2;
9960 		} else
9961 			size = G_T6_DBVFIFO_SIZE(fifo_size) << 6;
9962 
9963 		if (size) {
9964 			md->base = t4_read_reg(sc, A_SGE_DBVFIFO_BADDR);
9965 			md->limit = md->base + size - 1;
9966 		} else
9967 			md->idx = nitems(region);
9968 	}
9969 	md++;
9970 
9971 	md->base = t4_read_reg(sc, A_ULP_RX_CTX_BASE);
9972 	md->limit = 0;
9973 	md++;
9974 	md->base = t4_read_reg(sc, A_ULP_TX_ERR_TABLE_BASE);
9975 	md->limit = 0;
9976 	md++;
9977 
9978 	md->base = sc->vres.ocq.start;
9979 	if (sc->vres.ocq.size)
9980 		md->limit = md->base + sc->vres.ocq.size - 1;
9981 	else
9982 		md->idx = nitems(region);  /* hide it */
9983 	md++;
9984 
9985 	/* add any address-space holes, there can be up to 3 */
9986 	for (n = 0; n < i - 1; n++)
9987 		if (avail[n].limit < avail[n + 1].base)
9988 			(md++)->base = avail[n].limit;
9989 	if (avail[n].limit)
9990 		(md++)->base = avail[n].limit;
9991 
9992 	n = md - mem;
9993 	MPASS(n <= nitems(mem));
9994 	qsort(mem, n, sizeof(struct mem_desc), mem_desc_cmp);
9995 
9996 	for (lo = 0; lo < i; lo++)
9997 		mem_region_show(sb, memory[avail[lo].idx], avail[lo].base,
9998 				avail[lo].limit - 1);
9999 
10000 	sbuf_printf(sb, "\n");
10001 	for (i = 0; i < n; i++) {
10002 		if (mem[i].idx >= nitems(region))
10003 			continue;                        /* skip holes */
10004 		if (!mem[i].limit)
10005 			mem[i].limit = i < n - 1 ? mem[i + 1].base - 1 : ~0;
10006 		mem_region_show(sb, region[mem[i].idx], mem[i].base,
10007 				mem[i].limit);
10008 	}
10009 
10010 	sbuf_printf(sb, "\n");
10011 	lo = t4_read_reg(sc, A_CIM_SDRAM_BASE_ADDR);
10012 	hi = t4_read_reg(sc, A_CIM_SDRAM_ADDR_SIZE) + lo - 1;
10013 	mem_region_show(sb, "uP RAM:", lo, hi);
10014 
10015 	lo = t4_read_reg(sc, A_CIM_EXTMEM2_BASE_ADDR);
10016 	hi = t4_read_reg(sc, A_CIM_EXTMEM2_ADDR_SIZE) + lo - 1;
10017 	mem_region_show(sb, "uP Extmem2:", lo, hi);
10018 
10019 	lo = t4_read_reg(sc, A_TP_PMM_RX_MAX_PAGE);
10020 	for (i = 0, free = 0; i < 2; i++)
10021 		free += G_FREERXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_RX_CNT));
10022 	sbuf_printf(sb, "\n%u Rx pages (%u free) of size %uKiB for %u channels\n",
10023 		   G_PMRXMAXPAGE(lo), free,
10024 		   t4_read_reg(sc, A_TP_PMM_RX_PAGE_SIZE) >> 10,
10025 		   (lo & F_PMRXNUMCHN) ? 2 : 1);
10026 
10027 	lo = t4_read_reg(sc, A_TP_PMM_TX_MAX_PAGE);
10028 	hi = t4_read_reg(sc, A_TP_PMM_TX_PAGE_SIZE);
10029 	for (i = 0, free = 0; i < 4; i++)
10030 		free += G_FREETXPAGECOUNT(t4_read_reg(sc, A_TP_FLM_FREE_TX_CNT));
10031 	sbuf_printf(sb, "%u Tx pages (%u free) of size %u%ciB for %u channels\n",
10032 		   G_PMTXMAXPAGE(lo), free,
10033 		   hi >= (1 << 20) ? (hi >> 20) : (hi >> 10),
10034 		   hi >= (1 << 20) ? 'M' : 'K', 1 << G_PMTXNUMCHN(lo));
10035 	sbuf_printf(sb, "%u p-structs (%u free)\n",
10036 		   t4_read_reg(sc, A_TP_CMM_MM_MAX_PSTRUCT),
10037 		   G_FREEPSTRUCTCOUNT(t4_read_reg(sc, A_TP_FLM_FREE_PS_CNT)));
10038 
10039 	for (i = 0; i < 4; i++) {
10040 		if (chip_id(sc) > CHELSIO_T5)
10041 			lo = t4_read_reg(sc, A_MPS_RX_MAC_BG_PG_CNT0 + i * 4);
10042 		else
10043 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV0 + i * 4);
10044 		if (is_t5(sc)) {
10045 			used = G_T5_USED(lo);
10046 			alloc = G_T5_ALLOC(lo);
10047 		} else {
10048 			used = G_USED(lo);
10049 			alloc = G_ALLOC(lo);
10050 		}
10051 		/* For T6 these are MAC buffer groups */
10052 		sbuf_printf(sb, "\nPort %d using %u pages out of %u allocated",
10053 		    i, used, alloc);
10054 	}
10055 	for (i = 0; i < sc->chip_params->nchan; i++) {
10056 		if (chip_id(sc) > CHELSIO_T5)
10057 			lo = t4_read_reg(sc, A_MPS_RX_LPBK_BG_PG_CNT0 + i * 4);
10058 		else
10059 			lo = t4_read_reg(sc, A_MPS_RX_PG_RSV4 + i * 4);
10060 		if (is_t5(sc)) {
10061 			used = G_T5_USED(lo);
10062 			alloc = G_T5_ALLOC(lo);
10063 		} else {
10064 			used = G_USED(lo);
10065 			alloc = G_ALLOC(lo);
10066 		}
10067 		/* For T6 these are MAC buffer groups */
10068 		sbuf_printf(sb,
10069 		    "\nLoopback %d using %u pages out of %u allocated",
10070 		    i, used, alloc);
10071 	}
10072 done:
10073 	mtx_unlock(&sc->reg_lock);
10074 	if (rc == 0)
10075 		rc = sbuf_finish(sb);
10076 	sbuf_delete(sb);
10077 	return (rc);
10078 }
10079 
10080 static inline void
tcamxy2valmask(uint64_t x,uint64_t y,uint8_t * addr,uint64_t * mask)10081 tcamxy2valmask(uint64_t x, uint64_t y, uint8_t *addr, uint64_t *mask)
10082 {
10083 	*mask = x | y;
10084 	y = htobe64(y);
10085 	memcpy(addr, (char *)&y + 2, ETHER_ADDR_LEN);
10086 }
10087 
10088 static int
sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)10089 sysctl_mps_tcam(SYSCTL_HANDLER_ARGS)
10090 {
10091 	struct adapter *sc = arg1;
10092 	struct sbuf *sb;
10093 	int rc, i;
10094 
10095 	MPASS(chip_id(sc) <= CHELSIO_T5);
10096 
10097 	rc = sysctl_wire_old_buffer(req, 0);
10098 	if (rc != 0)
10099 		return (rc);
10100 
10101 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10102 	if (sb == NULL)
10103 		return (ENOMEM);
10104 
10105 	sbuf_printf(sb,
10106 	    "Idx  Ethernet address     Mask     Vld Ports PF"
10107 	    "  VF              Replication             P0 P1 P2 P3  ML");
10108 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10109 		uint64_t tcamx, tcamy, mask;
10110 		uint32_t cls_lo, cls_hi;
10111 		uint8_t addr[ETHER_ADDR_LEN];
10112 
10113 		mtx_lock(&sc->reg_lock);
10114 		if (hw_off_limits(sc))
10115 			rc = ENXIO;
10116 		else {
10117 			tcamy = t4_read_reg64(sc, MPS_CLS_TCAM_Y_L(i));
10118 			tcamx = t4_read_reg64(sc, MPS_CLS_TCAM_X_L(i));
10119 		}
10120 		mtx_unlock(&sc->reg_lock);
10121 		if (rc != 0)
10122 			break;
10123 		if (tcamx & tcamy)
10124 			continue;
10125 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10126 		mtx_lock(&sc->reg_lock);
10127 		if (hw_off_limits(sc))
10128 			rc = ENXIO;
10129 		else {
10130 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10131 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10132 		}
10133 		mtx_unlock(&sc->reg_lock);
10134 		if (rc != 0)
10135 			break;
10136 		sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x %012jx"
10137 			   "  %c   %#x%4u%4d", i, addr[0], addr[1], addr[2],
10138 			   addr[3], addr[4], addr[5], (uintmax_t)mask,
10139 			   (cls_lo & F_SRAM_VLD) ? 'Y' : 'N',
10140 			   G_PORTMAP(cls_hi), G_PF(cls_lo),
10141 			   (cls_lo & F_VF_VALID) ? G_VF(cls_lo) : -1);
10142 
10143 		if (cls_lo & F_REPLICATE) {
10144 			struct fw_ldst_cmd ldst_cmd;
10145 
10146 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10147 			ldst_cmd.op_to_addrspace =
10148 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10149 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10150 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10151 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10152 			ldst_cmd.u.mps.rplc.fid_idx =
10153 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10154 				V_FW_LDST_CMD_IDX(i));
10155 
10156 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10157 			    "t4mps");
10158 			if (rc)
10159 				break;
10160 			if (hw_off_limits(sc))
10161 				rc = ENXIO;
10162 			else
10163 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10164 				    sizeof(ldst_cmd), &ldst_cmd);
10165 			end_synchronized_op(sc, 0);
10166 			if (rc != 0)
10167 				break;
10168 			else {
10169 				sbuf_printf(sb, " %08x %08x %08x %08x",
10170 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10171 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10172 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10173 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10174 			}
10175 		} else
10176 			sbuf_printf(sb, "%36s", "");
10177 
10178 		sbuf_printf(sb, "%4u%3u%3u%3u %#3x", G_SRAM_PRIO0(cls_lo),
10179 		    G_SRAM_PRIO1(cls_lo), G_SRAM_PRIO2(cls_lo),
10180 		    G_SRAM_PRIO3(cls_lo), (cls_lo >> S_MULTILISTEN0) & 0xf);
10181 	}
10182 
10183 	if (rc)
10184 		(void) sbuf_finish(sb);
10185 	else
10186 		rc = sbuf_finish(sb);
10187 	sbuf_delete(sb);
10188 
10189 	return (rc);
10190 }
10191 
10192 static int
sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)10193 sysctl_mps_tcam_t6(SYSCTL_HANDLER_ARGS)
10194 {
10195 	struct adapter *sc = arg1;
10196 	struct sbuf *sb;
10197 	int rc, i;
10198 
10199 	MPASS(chip_id(sc) > CHELSIO_T5);
10200 
10201 	rc = sysctl_wire_old_buffer(req, 0);
10202 	if (rc != 0)
10203 		return (rc);
10204 
10205 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
10206 	if (sb == NULL)
10207 		return (ENOMEM);
10208 
10209 	sbuf_printf(sb, "Idx  Ethernet address     Mask       VNI   Mask"
10210 	    "   IVLAN Vld DIP_Hit   Lookup  Port Vld Ports PF  VF"
10211 	    "                           Replication"
10212 	    "                                    P0 P1 P2 P3  ML\n");
10213 
10214 	for (i = 0; i < sc->chip_params->mps_tcam_size; i++) {
10215 		uint8_t dip_hit, vlan_vld, lookup_type, port_num;
10216 		uint16_t ivlan;
10217 		uint64_t tcamx, tcamy, val, mask;
10218 		uint32_t cls_lo, cls_hi, ctl, data2, vnix, vniy;
10219 		uint8_t addr[ETHER_ADDR_LEN];
10220 
10221 		ctl = V_CTLREQID(1) | V_CTLCMDTYPE(0) | V_CTLXYBITSEL(0);
10222 		if (i < 256)
10223 			ctl |= V_CTLTCAMINDEX(i) | V_CTLTCAMSEL(0);
10224 		else
10225 			ctl |= V_CTLTCAMINDEX(i - 256) | V_CTLTCAMSEL(1);
10226 		mtx_lock(&sc->reg_lock);
10227 		if (hw_off_limits(sc))
10228 			rc = ENXIO;
10229 		else {
10230 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10231 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10232 			tcamy = G_DMACH(val) << 32;
10233 			tcamy |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10234 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10235 		}
10236 		mtx_unlock(&sc->reg_lock);
10237 		if (rc != 0)
10238 			break;
10239 
10240 		lookup_type = G_DATALKPTYPE(data2);
10241 		port_num = G_DATAPORTNUM(data2);
10242 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10243 			/* Inner header VNI */
10244 			vniy = ((data2 & F_DATAVIDH2) << 23) |
10245 				       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10246 			dip_hit = data2 & F_DATADIPHIT;
10247 			vlan_vld = 0;
10248 		} else {
10249 			vniy = 0;
10250 			dip_hit = 0;
10251 			vlan_vld = data2 & F_DATAVIDH2;
10252 			ivlan = G_VIDL(val);
10253 		}
10254 
10255 		ctl |= V_CTLXYBITSEL(1);
10256 		mtx_lock(&sc->reg_lock);
10257 		if (hw_off_limits(sc))
10258 			rc = ENXIO;
10259 		else {
10260 			t4_write_reg(sc, A_MPS_CLS_TCAM_DATA2_CTL, ctl);
10261 			val = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA1_REQ_ID1);
10262 			tcamx = G_DMACH(val) << 32;
10263 			tcamx |= t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA0_REQ_ID1);
10264 			data2 = t4_read_reg(sc, A_MPS_CLS_TCAM_RDATA2_REQ_ID1);
10265 		}
10266 		mtx_unlock(&sc->reg_lock);
10267 		if (rc != 0)
10268 			break;
10269 
10270 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10271 			/* Inner header VNI mask */
10272 			vnix = ((data2 & F_DATAVIDH2) << 23) |
10273 			       (G_DATAVIDH1(data2) << 16) | G_VIDL(val);
10274 		} else
10275 			vnix = 0;
10276 
10277 		if (tcamx & tcamy)
10278 			continue;
10279 		tcamxy2valmask(tcamx, tcamy, addr, &mask);
10280 
10281 		mtx_lock(&sc->reg_lock);
10282 		if (hw_off_limits(sc))
10283 			rc = ENXIO;
10284 		else {
10285 			cls_lo = t4_read_reg(sc, MPS_CLS_SRAM_L(i));
10286 			cls_hi = t4_read_reg(sc, MPS_CLS_SRAM_H(i));
10287 		}
10288 		mtx_unlock(&sc->reg_lock);
10289 		if (rc != 0)
10290 			break;
10291 
10292 		if (lookup_type && lookup_type != M_DATALKPTYPE) {
10293 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10294 			    "%012jx %06x %06x    -    -   %3c"
10295 			    "        I  %4x   %3c   %#x%4u%4d", i, addr[0],
10296 			    addr[1], addr[2], addr[3], addr[4], addr[5],
10297 			    (uintmax_t)mask, vniy, vnix, dip_hit ? 'Y' : 'N',
10298 			    port_num, cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10299 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10300 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10301 		} else {
10302 			sbuf_printf(sb, "\n%3u %02x:%02x:%02x:%02x:%02x:%02x "
10303 			    "%012jx    -       -   ", i, addr[0], addr[1],
10304 			    addr[2], addr[3], addr[4], addr[5],
10305 			    (uintmax_t)mask);
10306 
10307 			if (vlan_vld)
10308 				sbuf_printf(sb, "%4u   Y     ", ivlan);
10309 			else
10310 				sbuf_printf(sb, "  -    N     ");
10311 
10312 			sbuf_printf(sb, "-      %3c  %4x   %3c   %#x%4u%4d",
10313 			    lookup_type ? 'I' : 'O', port_num,
10314 			    cls_lo & F_T6_SRAM_VLD ? 'Y' : 'N',
10315 			    G_PORTMAP(cls_hi), G_T6_PF(cls_lo),
10316 			    cls_lo & F_T6_VF_VALID ? G_T6_VF(cls_lo) : -1);
10317 		}
10318 
10319 
10320 		if (cls_lo & F_T6_REPLICATE) {
10321 			struct fw_ldst_cmd ldst_cmd;
10322 
10323 			memset(&ldst_cmd, 0, sizeof(ldst_cmd));
10324 			ldst_cmd.op_to_addrspace =
10325 			    htobe32(V_FW_CMD_OP(FW_LDST_CMD) |
10326 				F_FW_CMD_REQUEST | F_FW_CMD_READ |
10327 				V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MPS));
10328 			ldst_cmd.cycles_to_len16 = htobe32(FW_LEN16(ldst_cmd));
10329 			ldst_cmd.u.mps.rplc.fid_idx =
10330 			    htobe16(V_FW_LDST_CMD_FID(FW_LDST_MPS_RPLC) |
10331 				V_FW_LDST_CMD_IDX(i));
10332 
10333 			rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK,
10334 			    "t6mps");
10335 			if (rc)
10336 				break;
10337 			if (hw_off_limits(sc))
10338 				rc = ENXIO;
10339 			else
10340 				rc = -t4_wr_mbox(sc, sc->mbox, &ldst_cmd,
10341 				    sizeof(ldst_cmd), &ldst_cmd);
10342 			end_synchronized_op(sc, 0);
10343 			if (rc != 0)
10344 				break;
10345 			else {
10346 				sbuf_printf(sb, " %08x %08x %08x %08x"
10347 				    " %08x %08x %08x %08x",
10348 				    be32toh(ldst_cmd.u.mps.rplc.rplc255_224),
10349 				    be32toh(ldst_cmd.u.mps.rplc.rplc223_192),
10350 				    be32toh(ldst_cmd.u.mps.rplc.rplc191_160),
10351 				    be32toh(ldst_cmd.u.mps.rplc.rplc159_128),
10352 				    be32toh(ldst_cmd.u.mps.rplc.rplc127_96),
10353 				    be32toh(ldst_cmd.u.mps.rplc.rplc95_64),
10354 				    be32toh(ldst_cmd.u.mps.rplc.rplc63_32),
10355 				    be32toh(ldst_cmd.u.mps.rplc.rplc31_0));
10356 			}
10357 		} else
10358 			sbuf_printf(sb, "%72s", "");
10359 
10360 		sbuf_printf(sb, "%4u%3u%3u%3u %#x",
10361 		    G_T6_SRAM_PRIO0(cls_lo), G_T6_SRAM_PRIO1(cls_lo),
10362 		    G_T6_SRAM_PRIO2(cls_lo), G_T6_SRAM_PRIO3(cls_lo),
10363 		    (cls_lo >> S_T6_MULTILISTEN0) & 0xf);
10364 	}
10365 
10366 	if (rc)
10367 		(void) sbuf_finish(sb);
10368 	else
10369 		rc = sbuf_finish(sb);
10370 	sbuf_delete(sb);
10371 
10372 	return (rc);
10373 }
10374 
10375 static int
sysctl_path_mtus(SYSCTL_HANDLER_ARGS)10376 sysctl_path_mtus(SYSCTL_HANDLER_ARGS)
10377 {
10378 	struct adapter *sc = arg1;
10379 	struct sbuf *sb;
10380 	int rc;
10381 	uint16_t mtus[NMTUS];
10382 
10383 	rc = sysctl_wire_old_buffer(req, 0);
10384 	if (rc != 0)
10385 		return (rc);
10386 
10387 	mtx_lock(&sc->reg_lock);
10388 	if (hw_off_limits(sc))
10389 		rc = ENXIO;
10390 	else
10391 		t4_read_mtu_tbl(sc, mtus, NULL);
10392 	mtx_unlock(&sc->reg_lock);
10393 	if (rc != 0)
10394 		return (rc);
10395 
10396 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10397 	if (sb == NULL)
10398 		return (ENOMEM);
10399 
10400 	sbuf_printf(sb, "%u %u %u %u %u %u %u %u %u %u %u %u %u %u %u %u",
10401 	    mtus[0], mtus[1], mtus[2], mtus[3], mtus[4], mtus[5], mtus[6],
10402 	    mtus[7], mtus[8], mtus[9], mtus[10], mtus[11], mtus[12], mtus[13],
10403 	    mtus[14], mtus[15]);
10404 
10405 	rc = sbuf_finish(sb);
10406 	sbuf_delete(sb);
10407 
10408 	return (rc);
10409 }
10410 
10411 static int
sysctl_pm_stats(SYSCTL_HANDLER_ARGS)10412 sysctl_pm_stats(SYSCTL_HANDLER_ARGS)
10413 {
10414 	struct adapter *sc = arg1;
10415 	struct sbuf *sb;
10416 	int rc, i;
10417 	uint32_t tx_cnt[MAX_PM_NSTATS], rx_cnt[MAX_PM_NSTATS];
10418 	uint64_t tx_cyc[MAX_PM_NSTATS], rx_cyc[MAX_PM_NSTATS];
10419 	static const char *tx_stats[MAX_PM_NSTATS] = {
10420 		"Read:", "Write bypass:", "Write mem:", "Bypass + mem:",
10421 		"Tx FIFO wait", NULL, "Tx latency"
10422 	};
10423 	static const char *rx_stats[MAX_PM_NSTATS] = {
10424 		"Read:", "Write bypass:", "Write mem:", "Flush:",
10425 		"Rx FIFO wait", NULL, "Rx latency"
10426 	};
10427 
10428 	rc = sysctl_wire_old_buffer(req, 0);
10429 	if (rc != 0)
10430 		return (rc);
10431 
10432 	mtx_lock(&sc->reg_lock);
10433 	if (hw_off_limits(sc))
10434 		rc = ENXIO;
10435 	else {
10436 		t4_pmtx_get_stats(sc, tx_cnt, tx_cyc);
10437 		t4_pmrx_get_stats(sc, rx_cnt, rx_cyc);
10438 	}
10439 	mtx_unlock(&sc->reg_lock);
10440 	if (rc != 0)
10441 		return (rc);
10442 
10443 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10444 	if (sb == NULL)
10445 		return (ENOMEM);
10446 
10447 	sbuf_printf(sb, "                Tx pcmds             Tx bytes");
10448 	for (i = 0; i < 4; i++) {
10449 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10450 		    tx_cyc[i]);
10451 	}
10452 
10453 	sbuf_printf(sb, "\n                Rx pcmds             Rx bytes");
10454 	for (i = 0; i < 4; i++) {
10455 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10456 		    rx_cyc[i]);
10457 	}
10458 
10459 	if (chip_id(sc) > CHELSIO_T5) {
10460 		sbuf_printf(sb,
10461 		    "\n              Total wait      Total occupancy");
10462 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10463 		    tx_cyc[i]);
10464 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10465 		    rx_cyc[i]);
10466 
10467 		i += 2;
10468 		MPASS(i < nitems(tx_stats));
10469 
10470 		sbuf_printf(sb,
10471 		    "\n                   Reads           Total wait");
10472 		sbuf_printf(sb, "\n%-13s %10u %20ju", tx_stats[i], tx_cnt[i],
10473 		    tx_cyc[i]);
10474 		sbuf_printf(sb, "\n%-13s %10u %20ju", rx_stats[i], rx_cnt[i],
10475 		    rx_cyc[i]);
10476 	}
10477 
10478 	rc = sbuf_finish(sb);
10479 	sbuf_delete(sb);
10480 
10481 	return (rc);
10482 }
10483 
10484 static int
sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)10485 sysctl_rdma_stats(SYSCTL_HANDLER_ARGS)
10486 {
10487 	struct adapter *sc = arg1;
10488 	struct sbuf *sb;
10489 	int rc;
10490 	struct tp_rdma_stats stats;
10491 
10492 	rc = sysctl_wire_old_buffer(req, 0);
10493 	if (rc != 0)
10494 		return (rc);
10495 
10496 	mtx_lock(&sc->reg_lock);
10497 	if (hw_off_limits(sc))
10498 		rc = ENXIO;
10499 	else
10500 		t4_tp_get_rdma_stats(sc, &stats, 0);
10501 	mtx_unlock(&sc->reg_lock);
10502 	if (rc != 0)
10503 		return (rc);
10504 
10505 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10506 	if (sb == NULL)
10507 		return (ENOMEM);
10508 
10509 	sbuf_printf(sb, "NoRQEModDefferals: %u\n", stats.rqe_dfr_mod);
10510 	sbuf_printf(sb, "NoRQEPktDefferals: %u", stats.rqe_dfr_pkt);
10511 
10512 	rc = sbuf_finish(sb);
10513 	sbuf_delete(sb);
10514 
10515 	return (rc);
10516 }
10517 
10518 static int
sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)10519 sysctl_tcp_stats(SYSCTL_HANDLER_ARGS)
10520 {
10521 	struct adapter *sc = arg1;
10522 	struct sbuf *sb;
10523 	int rc;
10524 	struct tp_tcp_stats v4, v6;
10525 
10526 	rc = sysctl_wire_old_buffer(req, 0);
10527 	if (rc != 0)
10528 		return (rc);
10529 
10530 	mtx_lock(&sc->reg_lock);
10531 	if (hw_off_limits(sc))
10532 		rc = ENXIO;
10533 	else
10534 		t4_tp_get_tcp_stats(sc, &v4, &v6, 0);
10535 	mtx_unlock(&sc->reg_lock);
10536 	if (rc != 0)
10537 		return (rc);
10538 
10539 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10540 	if (sb == NULL)
10541 		return (ENOMEM);
10542 
10543 	sbuf_printf(sb,
10544 	    "                                IP                 IPv6\n");
10545 	sbuf_printf(sb, "OutRsts:      %20u %20u\n",
10546 	    v4.tcp_out_rsts, v6.tcp_out_rsts);
10547 	sbuf_printf(sb, "InSegs:       %20ju %20ju\n",
10548 	    v4.tcp_in_segs, v6.tcp_in_segs);
10549 	sbuf_printf(sb, "OutSegs:      %20ju %20ju\n",
10550 	    v4.tcp_out_segs, v6.tcp_out_segs);
10551 	sbuf_printf(sb, "RetransSegs:  %20ju %20ju",
10552 	    v4.tcp_retrans_segs, v6.tcp_retrans_segs);
10553 
10554 	rc = sbuf_finish(sb);
10555 	sbuf_delete(sb);
10556 
10557 	return (rc);
10558 }
10559 
10560 static int
sysctl_tids(SYSCTL_HANDLER_ARGS)10561 sysctl_tids(SYSCTL_HANDLER_ARGS)
10562 {
10563 	struct adapter *sc = arg1;
10564 	struct sbuf *sb;
10565 	int rc;
10566 	uint32_t x, y;
10567 	struct tid_info *t = &sc->tids;
10568 
10569 	rc = sysctl_wire_old_buffer(req, 0);
10570 	if (rc != 0)
10571 		return (rc);
10572 
10573 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10574 	if (sb == NULL)
10575 		return (ENOMEM);
10576 
10577 	if (t->natids) {
10578 		sbuf_printf(sb, "ATID range: 0-%u, in use: %u\n", t->natids - 1,
10579 		    t->atids_in_use);
10580 	}
10581 
10582 	if (t->nhpftids) {
10583 		sbuf_printf(sb, "HPFTID range: %u-%u, in use: %u\n",
10584 		    t->hpftid_base, t->hpftid_end, t->hpftids_in_use);
10585 	}
10586 
10587 	if (t->ntids) {
10588 		bool hashen = false;
10589 
10590 		mtx_lock(&sc->reg_lock);
10591 		if (hw_off_limits(sc))
10592 			rc = ENXIO;
10593 		else if (t4_read_reg(sc, A_LE_DB_CONFIG) & F_HASHEN) {
10594 			hashen = true;
10595 			if (chip_id(sc) <= CHELSIO_T5) {
10596 				x = t4_read_reg(sc, A_LE_DB_SERVER_INDEX) / 4;
10597 				y = t4_read_reg(sc, A_LE_DB_TID_HASHBASE) / 4;
10598 			} else {
10599 				x = t4_read_reg(sc, A_LE_DB_SRVR_START_INDEX);
10600 				y = t4_read_reg(sc, A_T6_LE_DB_HASH_TID_BASE);
10601 			}
10602 		}
10603 		mtx_unlock(&sc->reg_lock);
10604 		if (rc != 0)
10605 			goto done;
10606 
10607 		sbuf_printf(sb, "TID range: ");
10608 		if (hashen) {
10609 			if (x)
10610 				sbuf_printf(sb, "%u-%u, ", t->tid_base, x - 1);
10611 			sbuf_printf(sb, "%u-%u", y, t->ntids - 1);
10612 		} else {
10613 			sbuf_printf(sb, "%u-%u", t->tid_base, t->tid_base +
10614 			    t->ntids - 1);
10615 		}
10616 		sbuf_printf(sb, ", in use: %u\n",
10617 		    atomic_load_acq_int(&t->tids_in_use));
10618 	}
10619 
10620 	if (t->nstids) {
10621 		sbuf_printf(sb, "STID range: %u-%u, in use: %u\n", t->stid_base,
10622 		    t->stid_base + t->nstids - 1, t->stids_in_use);
10623 	}
10624 
10625 	if (t->nftids) {
10626 		sbuf_printf(sb, "FTID range: %u-%u, in use: %u\n", t->ftid_base,
10627 		    t->ftid_end, t->ftids_in_use);
10628 	}
10629 
10630 	if (t->netids) {
10631 		sbuf_printf(sb, "ETID range: %u-%u, in use: %u\n", t->etid_base,
10632 		    t->etid_base + t->netids - 1, t->etids_in_use);
10633 	}
10634 
10635 	mtx_lock(&sc->reg_lock);
10636 	if (hw_off_limits(sc))
10637 		rc = ENXIO;
10638 	else {
10639 		x = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV4);
10640 		y = t4_read_reg(sc, A_LE_DB_ACT_CNT_IPV6);
10641 	}
10642 	mtx_unlock(&sc->reg_lock);
10643 	if (rc != 0)
10644 		goto done;
10645 	sbuf_printf(sb, "HW TID usage: %u IP users, %u IPv6 users", x, y);
10646 done:
10647 	if (rc == 0)
10648 		rc = sbuf_finish(sb);
10649 	else
10650 		(void)sbuf_finish(sb);
10651 	sbuf_delete(sb);
10652 
10653 	return (rc);
10654 }
10655 
10656 static int
sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)10657 sysctl_tp_err_stats(SYSCTL_HANDLER_ARGS)
10658 {
10659 	struct adapter *sc = arg1;
10660 	struct sbuf *sb;
10661 	int rc;
10662 	struct tp_err_stats stats;
10663 
10664 	rc = sysctl_wire_old_buffer(req, 0);
10665 	if (rc != 0)
10666 		return (rc);
10667 
10668 	mtx_lock(&sc->reg_lock);
10669 	if (hw_off_limits(sc))
10670 		rc = ENXIO;
10671 	else
10672 		t4_tp_get_err_stats(sc, &stats, 0);
10673 	mtx_unlock(&sc->reg_lock);
10674 	if (rc != 0)
10675 		return (rc);
10676 
10677 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10678 	if (sb == NULL)
10679 		return (ENOMEM);
10680 
10681 	if (sc->chip_params->nchan > 2) {
10682 		sbuf_printf(sb, "                 channel 0  channel 1"
10683 		    "  channel 2  channel 3\n");
10684 		sbuf_printf(sb, "macInErrs:      %10u %10u %10u %10u\n",
10685 		    stats.mac_in_errs[0], stats.mac_in_errs[1],
10686 		    stats.mac_in_errs[2], stats.mac_in_errs[3]);
10687 		sbuf_printf(sb, "hdrInErrs:      %10u %10u %10u %10u\n",
10688 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1],
10689 		    stats.hdr_in_errs[2], stats.hdr_in_errs[3]);
10690 		sbuf_printf(sb, "tcpInErrs:      %10u %10u %10u %10u\n",
10691 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1],
10692 		    stats.tcp_in_errs[2], stats.tcp_in_errs[3]);
10693 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u %10u %10u\n",
10694 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1],
10695 		    stats.tcp6_in_errs[2], stats.tcp6_in_errs[3]);
10696 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u %10u %10u\n",
10697 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1],
10698 		    stats.tnl_cong_drops[2], stats.tnl_cong_drops[3]);
10699 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u %10u %10u\n",
10700 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1],
10701 		    stats.tnl_tx_drops[2], stats.tnl_tx_drops[3]);
10702 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u %10u %10u\n",
10703 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1],
10704 		    stats.ofld_vlan_drops[2], stats.ofld_vlan_drops[3]);
10705 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u %10u %10u\n\n",
10706 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1],
10707 		    stats.ofld_chan_drops[2], stats.ofld_chan_drops[3]);
10708 	} else {
10709 		sbuf_printf(sb, "                 channel 0  channel 1\n");
10710 		sbuf_printf(sb, "macInErrs:      %10u %10u\n",
10711 		    stats.mac_in_errs[0], stats.mac_in_errs[1]);
10712 		sbuf_printf(sb, "hdrInErrs:      %10u %10u\n",
10713 		    stats.hdr_in_errs[0], stats.hdr_in_errs[1]);
10714 		sbuf_printf(sb, "tcpInErrs:      %10u %10u\n",
10715 		    stats.tcp_in_errs[0], stats.tcp_in_errs[1]);
10716 		sbuf_printf(sb, "tcp6InErrs:     %10u %10u\n",
10717 		    stats.tcp6_in_errs[0], stats.tcp6_in_errs[1]);
10718 		sbuf_printf(sb, "tnlCongDrops:   %10u %10u\n",
10719 		    stats.tnl_cong_drops[0], stats.tnl_cong_drops[1]);
10720 		sbuf_printf(sb, "tnlTxDrops:     %10u %10u\n",
10721 		    stats.tnl_tx_drops[0], stats.tnl_tx_drops[1]);
10722 		sbuf_printf(sb, "ofldVlanDrops:  %10u %10u\n",
10723 		    stats.ofld_vlan_drops[0], stats.ofld_vlan_drops[1]);
10724 		sbuf_printf(sb, "ofldChanDrops:  %10u %10u\n\n",
10725 		    stats.ofld_chan_drops[0], stats.ofld_chan_drops[1]);
10726 	}
10727 
10728 	sbuf_printf(sb, "ofldNoNeigh:    %u\nofldCongDefer:  %u",
10729 	    stats.ofld_no_neigh, stats.ofld_cong_defer);
10730 
10731 	rc = sbuf_finish(sb);
10732 	sbuf_delete(sb);
10733 
10734 	return (rc);
10735 }
10736 
10737 static int
sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)10738 sysctl_tnl_stats(SYSCTL_HANDLER_ARGS)
10739 {
10740 	struct adapter *sc = arg1;
10741 	struct sbuf *sb;
10742 	int rc;
10743 	struct tp_tnl_stats stats;
10744 
10745 	rc = sysctl_wire_old_buffer(req, 0);
10746 	if (rc != 0)
10747 		return(rc);
10748 
10749 	mtx_lock(&sc->reg_lock);
10750 	if (hw_off_limits(sc))
10751 		rc = ENXIO;
10752 	else
10753 		t4_tp_get_tnl_stats(sc, &stats, 1);
10754 	mtx_unlock(&sc->reg_lock);
10755 	if (rc != 0)
10756 		return (rc);
10757 
10758 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
10759 	if (sb == NULL)
10760 		return (ENOMEM);
10761 
10762 	if (sc->chip_params->nchan > 2) {
10763 		sbuf_printf(sb, "           channel 0  channel 1"
10764 		    "  channel 2  channel 3\n");
10765 		sbuf_printf(sb, "OutPkts:  %10u %10u %10u %10u\n",
10766 		    stats.out_pkt[0], stats.out_pkt[1],
10767 		    stats.out_pkt[2], stats.out_pkt[3]);
10768 		sbuf_printf(sb, "InPkts:   %10u %10u %10u %10u",
10769 		    stats.in_pkt[0], stats.in_pkt[1],
10770 		    stats.in_pkt[2], stats.in_pkt[3]);
10771 	} else {
10772 		sbuf_printf(sb, "           channel 0  channel 1\n");
10773 		sbuf_printf(sb, "OutPkts:  %10u %10u\n",
10774 		    stats.out_pkt[0], stats.out_pkt[1]);
10775 		sbuf_printf(sb, "InPkts:   %10u %10u",
10776 		    stats.in_pkt[0], stats.in_pkt[1]);
10777 	}
10778 
10779 	rc = sbuf_finish(sb);
10780 	sbuf_delete(sb);
10781 
10782 	return (rc);
10783 }
10784 
10785 static int
sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)10786 sysctl_tp_la_mask(SYSCTL_HANDLER_ARGS)
10787 {
10788 	struct adapter *sc = arg1;
10789 	struct tp_params *tpp = &sc->params.tp;
10790 	u_int mask;
10791 	int rc;
10792 
10793 	mask = tpp->la_mask >> 16;
10794 	rc = sysctl_handle_int(oidp, &mask, 0, req);
10795 	if (rc != 0 || req->newptr == NULL)
10796 		return (rc);
10797 	if (mask > 0xffff)
10798 		return (EINVAL);
10799 	mtx_lock(&sc->reg_lock);
10800 	if (hw_off_limits(sc))
10801 		rc = ENXIO;
10802 	else {
10803 		tpp->la_mask = mask << 16;
10804 		t4_set_reg_field(sc, A_TP_DBG_LA_CONFIG, 0xffff0000U,
10805 		    tpp->la_mask);
10806 	}
10807 	mtx_unlock(&sc->reg_lock);
10808 
10809 	return (rc);
10810 }
10811 
10812 struct field_desc {
10813 	const char *name;
10814 	u_int start;
10815 	u_int width;
10816 };
10817 
10818 static void
field_desc_show(struct sbuf * sb,uint64_t v,const struct field_desc * f)10819 field_desc_show(struct sbuf *sb, uint64_t v, const struct field_desc *f)
10820 {
10821 	char buf[32];
10822 	int line_size = 0;
10823 
10824 	while (f->name) {
10825 		uint64_t mask = (1ULL << f->width) - 1;
10826 		int len = snprintf(buf, sizeof(buf), "%s: %ju", f->name,
10827 		    ((uintmax_t)v >> f->start) & mask);
10828 
10829 		if (line_size + len >= 79) {
10830 			line_size = 8;
10831 			sbuf_printf(sb, "\n        ");
10832 		}
10833 		sbuf_printf(sb, "%s ", buf);
10834 		line_size += len + 1;
10835 		f++;
10836 	}
10837 	sbuf_printf(sb, "\n");
10838 }
10839 
10840 static const struct field_desc tp_la0[] = {
10841 	{ "RcfOpCodeOut", 60, 4 },
10842 	{ "State", 56, 4 },
10843 	{ "WcfState", 52, 4 },
10844 	{ "RcfOpcSrcOut", 50, 2 },
10845 	{ "CRxError", 49, 1 },
10846 	{ "ERxError", 48, 1 },
10847 	{ "SanityFailed", 47, 1 },
10848 	{ "SpuriousMsg", 46, 1 },
10849 	{ "FlushInputMsg", 45, 1 },
10850 	{ "FlushInputCpl", 44, 1 },
10851 	{ "RssUpBit", 43, 1 },
10852 	{ "RssFilterHit", 42, 1 },
10853 	{ "Tid", 32, 10 },
10854 	{ "InitTcb", 31, 1 },
10855 	{ "LineNumber", 24, 7 },
10856 	{ "Emsg", 23, 1 },
10857 	{ "EdataOut", 22, 1 },
10858 	{ "Cmsg", 21, 1 },
10859 	{ "CdataOut", 20, 1 },
10860 	{ "EreadPdu", 19, 1 },
10861 	{ "CreadPdu", 18, 1 },
10862 	{ "TunnelPkt", 17, 1 },
10863 	{ "RcfPeerFin", 16, 1 },
10864 	{ "RcfReasonOut", 12, 4 },
10865 	{ "TxCchannel", 10, 2 },
10866 	{ "RcfTxChannel", 8, 2 },
10867 	{ "RxEchannel", 6, 2 },
10868 	{ "RcfRxChannel", 5, 1 },
10869 	{ "RcfDataOutSrdy", 4, 1 },
10870 	{ "RxDvld", 3, 1 },
10871 	{ "RxOoDvld", 2, 1 },
10872 	{ "RxCongestion", 1, 1 },
10873 	{ "TxCongestion", 0, 1 },
10874 	{ NULL }
10875 };
10876 
10877 static const struct field_desc tp_la1[] = {
10878 	{ "CplCmdIn", 56, 8 },
10879 	{ "CplCmdOut", 48, 8 },
10880 	{ "ESynOut", 47, 1 },
10881 	{ "EAckOut", 46, 1 },
10882 	{ "EFinOut", 45, 1 },
10883 	{ "ERstOut", 44, 1 },
10884 	{ "SynIn", 43, 1 },
10885 	{ "AckIn", 42, 1 },
10886 	{ "FinIn", 41, 1 },
10887 	{ "RstIn", 40, 1 },
10888 	{ "DataIn", 39, 1 },
10889 	{ "DataInVld", 38, 1 },
10890 	{ "PadIn", 37, 1 },
10891 	{ "RxBufEmpty", 36, 1 },
10892 	{ "RxDdp", 35, 1 },
10893 	{ "RxFbCongestion", 34, 1 },
10894 	{ "TxFbCongestion", 33, 1 },
10895 	{ "TxPktSumSrdy", 32, 1 },
10896 	{ "RcfUlpType", 28, 4 },
10897 	{ "Eread", 27, 1 },
10898 	{ "Ebypass", 26, 1 },
10899 	{ "Esave", 25, 1 },
10900 	{ "Static0", 24, 1 },
10901 	{ "Cread", 23, 1 },
10902 	{ "Cbypass", 22, 1 },
10903 	{ "Csave", 21, 1 },
10904 	{ "CPktOut", 20, 1 },
10905 	{ "RxPagePoolFull", 18, 2 },
10906 	{ "RxLpbkPkt", 17, 1 },
10907 	{ "TxLpbkPkt", 16, 1 },
10908 	{ "RxVfValid", 15, 1 },
10909 	{ "SynLearned", 14, 1 },
10910 	{ "SetDelEntry", 13, 1 },
10911 	{ "SetInvEntry", 12, 1 },
10912 	{ "CpcmdDvld", 11, 1 },
10913 	{ "CpcmdSave", 10, 1 },
10914 	{ "RxPstructsFull", 8, 2 },
10915 	{ "EpcmdDvld", 7, 1 },
10916 	{ "EpcmdFlush", 6, 1 },
10917 	{ "EpcmdTrimPrefix", 5, 1 },
10918 	{ "EpcmdTrimPostfix", 4, 1 },
10919 	{ "ERssIp4Pkt", 3, 1 },
10920 	{ "ERssIp6Pkt", 2, 1 },
10921 	{ "ERssTcpUdpPkt", 1, 1 },
10922 	{ "ERssFceFipPkt", 0, 1 },
10923 	{ NULL }
10924 };
10925 
10926 static const struct field_desc tp_la2[] = {
10927 	{ "CplCmdIn", 56, 8 },
10928 	{ "MpsVfVld", 55, 1 },
10929 	{ "MpsPf", 52, 3 },
10930 	{ "MpsVf", 44, 8 },
10931 	{ "SynIn", 43, 1 },
10932 	{ "AckIn", 42, 1 },
10933 	{ "FinIn", 41, 1 },
10934 	{ "RstIn", 40, 1 },
10935 	{ "DataIn", 39, 1 },
10936 	{ "DataInVld", 38, 1 },
10937 	{ "PadIn", 37, 1 },
10938 	{ "RxBufEmpty", 36, 1 },
10939 	{ "RxDdp", 35, 1 },
10940 	{ "RxFbCongestion", 34, 1 },
10941 	{ "TxFbCongestion", 33, 1 },
10942 	{ "TxPktSumSrdy", 32, 1 },
10943 	{ "RcfUlpType", 28, 4 },
10944 	{ "Eread", 27, 1 },
10945 	{ "Ebypass", 26, 1 },
10946 	{ "Esave", 25, 1 },
10947 	{ "Static0", 24, 1 },
10948 	{ "Cread", 23, 1 },
10949 	{ "Cbypass", 22, 1 },
10950 	{ "Csave", 21, 1 },
10951 	{ "CPktOut", 20, 1 },
10952 	{ "RxPagePoolFull", 18, 2 },
10953 	{ "RxLpbkPkt", 17, 1 },
10954 	{ "TxLpbkPkt", 16, 1 },
10955 	{ "RxVfValid", 15, 1 },
10956 	{ "SynLearned", 14, 1 },
10957 	{ "SetDelEntry", 13, 1 },
10958 	{ "SetInvEntry", 12, 1 },
10959 	{ "CpcmdDvld", 11, 1 },
10960 	{ "CpcmdSave", 10, 1 },
10961 	{ "RxPstructsFull", 8, 2 },
10962 	{ "EpcmdDvld", 7, 1 },
10963 	{ "EpcmdFlush", 6, 1 },
10964 	{ "EpcmdTrimPrefix", 5, 1 },
10965 	{ "EpcmdTrimPostfix", 4, 1 },
10966 	{ "ERssIp4Pkt", 3, 1 },
10967 	{ "ERssIp6Pkt", 2, 1 },
10968 	{ "ERssTcpUdpPkt", 1, 1 },
10969 	{ "ERssFceFipPkt", 0, 1 },
10970 	{ NULL }
10971 };
10972 
10973 static void
tp_la_show(struct sbuf * sb,uint64_t * p,int idx)10974 tp_la_show(struct sbuf *sb, uint64_t *p, int idx)
10975 {
10976 
10977 	field_desc_show(sb, *p, tp_la0);
10978 }
10979 
10980 static void
tp_la_show2(struct sbuf * sb,uint64_t * p,int idx)10981 tp_la_show2(struct sbuf *sb, uint64_t *p, int idx)
10982 {
10983 
10984 	if (idx)
10985 		sbuf_printf(sb, "\n");
10986 	field_desc_show(sb, p[0], tp_la0);
10987 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10988 		field_desc_show(sb, p[1], tp_la0);
10989 }
10990 
10991 static void
tp_la_show3(struct sbuf * sb,uint64_t * p,int idx)10992 tp_la_show3(struct sbuf *sb, uint64_t *p, int idx)
10993 {
10994 
10995 	if (idx)
10996 		sbuf_printf(sb, "\n");
10997 	field_desc_show(sb, p[0], tp_la0);
10998 	if (idx < (TPLA_SIZE / 2 - 1) || p[1] != ~0ULL)
10999 		field_desc_show(sb, p[1], (p[0] & (1 << 17)) ? tp_la2 : tp_la1);
11000 }
11001 
11002 static int
sysctl_tp_la(SYSCTL_HANDLER_ARGS)11003 sysctl_tp_la(SYSCTL_HANDLER_ARGS)
11004 {
11005 	struct adapter *sc = arg1;
11006 	struct sbuf *sb;
11007 	uint64_t *buf, *p;
11008 	int rc;
11009 	u_int i, inc;
11010 	void (*show_func)(struct sbuf *, uint64_t *, int);
11011 
11012 	rc = sysctl_wire_old_buffer(req, 0);
11013 	if (rc != 0)
11014 		return (rc);
11015 
11016 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11017 	if (sb == NULL)
11018 		return (ENOMEM);
11019 
11020 	buf = malloc(TPLA_SIZE * sizeof(uint64_t), M_CXGBE, M_ZERO | M_WAITOK);
11021 
11022 	mtx_lock(&sc->reg_lock);
11023 	if (hw_off_limits(sc))
11024 		rc = ENXIO;
11025 	else {
11026 		t4_tp_read_la(sc, buf, NULL);
11027 		switch (G_DBGLAMODE(t4_read_reg(sc, A_TP_DBG_LA_CONFIG))) {
11028 		case 2:
11029 			inc = 2;
11030 			show_func = tp_la_show2;
11031 			break;
11032 		case 3:
11033 			inc = 2;
11034 			show_func = tp_la_show3;
11035 			break;
11036 		default:
11037 			inc = 1;
11038 			show_func = tp_la_show;
11039 		}
11040 	}
11041 	mtx_unlock(&sc->reg_lock);
11042 	if (rc != 0)
11043 		goto done;
11044 
11045 	p = buf;
11046 	for (i = 0; i < TPLA_SIZE / inc; i++, p += inc)
11047 		(*show_func)(sb, p, i);
11048 	rc = sbuf_finish(sb);
11049 done:
11050 	sbuf_delete(sb);
11051 	free(buf, M_CXGBE);
11052 	return (rc);
11053 }
11054 
11055 static int
sysctl_tx_rate(SYSCTL_HANDLER_ARGS)11056 sysctl_tx_rate(SYSCTL_HANDLER_ARGS)
11057 {
11058 	struct adapter *sc = arg1;
11059 	struct sbuf *sb;
11060 	int rc;
11061 	u64 nrate[MAX_NCHAN], orate[MAX_NCHAN];
11062 
11063 	rc = sysctl_wire_old_buffer(req, 0);
11064 	if (rc != 0)
11065 		return (rc);
11066 
11067 	mtx_lock(&sc->reg_lock);
11068 	if (hw_off_limits(sc))
11069 		rc = ENXIO;
11070 	else
11071 		t4_get_chan_txrate(sc, nrate, orate);
11072 	mtx_unlock(&sc->reg_lock);
11073 	if (rc != 0)
11074 		return (rc);
11075 
11076 	sb = sbuf_new_for_sysctl(NULL, NULL, 256, req);
11077 	if (sb == NULL)
11078 		return (ENOMEM);
11079 
11080 	if (sc->chip_params->nchan > 2) {
11081 		sbuf_printf(sb, "              channel 0   channel 1"
11082 		    "   channel 2   channel 3\n");
11083 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju  %10ju  %10ju\n",
11084 		    nrate[0], nrate[1], nrate[2], nrate[3]);
11085 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju  %10ju  %10ju",
11086 		    orate[0], orate[1], orate[2], orate[3]);
11087 	} else {
11088 		sbuf_printf(sb, "              channel 0   channel 1\n");
11089 		sbuf_printf(sb, "NIC B/s:     %10ju  %10ju\n",
11090 		    nrate[0], nrate[1]);
11091 		sbuf_printf(sb, "Offload B/s: %10ju  %10ju",
11092 		    orate[0], orate[1]);
11093 	}
11094 
11095 	rc = sbuf_finish(sb);
11096 	sbuf_delete(sb);
11097 
11098 	return (rc);
11099 }
11100 
11101 static int
sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)11102 sysctl_ulprx_la(SYSCTL_HANDLER_ARGS)
11103 {
11104 	struct adapter *sc = arg1;
11105 	struct sbuf *sb;
11106 	uint32_t *buf, *p;
11107 	int rc, i;
11108 
11109 	rc = sysctl_wire_old_buffer(req, 0);
11110 	if (rc != 0)
11111 		return (rc);
11112 
11113 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11114 	if (sb == NULL)
11115 		return (ENOMEM);
11116 
11117 	buf = malloc(ULPRX_LA_SIZE * 8 * sizeof(uint32_t), M_CXGBE,
11118 	    M_ZERO | M_WAITOK);
11119 
11120 	mtx_lock(&sc->reg_lock);
11121 	if (hw_off_limits(sc))
11122 		rc = ENXIO;
11123 	else
11124 		t4_ulprx_read_la(sc, buf);
11125 	mtx_unlock(&sc->reg_lock);
11126 	if (rc != 0)
11127 		goto done;
11128 
11129 	p = buf;
11130 	sbuf_printf(sb, "      Pcmd        Type   Message"
11131 	    "                Data");
11132 	for (i = 0; i < ULPRX_LA_SIZE; i++, p += 8) {
11133 		sbuf_printf(sb, "\n%08x%08x  %4x  %08x  %08x%08x%08x%08x",
11134 		    p[1], p[0], p[2], p[3], p[7], p[6], p[5], p[4]);
11135 	}
11136 	rc = sbuf_finish(sb);
11137 done:
11138 	sbuf_delete(sb);
11139 	free(buf, M_CXGBE);
11140 	return (rc);
11141 }
11142 
11143 static int
sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)11144 sysctl_wcwr_stats(SYSCTL_HANDLER_ARGS)
11145 {
11146 	struct adapter *sc = arg1;
11147 	struct sbuf *sb;
11148 	int rc;
11149 	uint32_t cfg, s1, s2;
11150 
11151 	MPASS(chip_id(sc) >= CHELSIO_T5);
11152 
11153 	rc = sysctl_wire_old_buffer(req, 0);
11154 	if (rc != 0)
11155 		return (rc);
11156 
11157 	mtx_lock(&sc->reg_lock);
11158 	if (hw_off_limits(sc))
11159 		rc = ENXIO;
11160 	else {
11161 		cfg = t4_read_reg(sc, A_SGE_STAT_CFG);
11162 		s1 = t4_read_reg(sc, A_SGE_STAT_TOTAL);
11163 		s2 = t4_read_reg(sc, A_SGE_STAT_MATCH);
11164 	}
11165 	mtx_unlock(&sc->reg_lock);
11166 	if (rc != 0)
11167 		return (rc);
11168 
11169 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11170 	if (sb == NULL)
11171 		return (ENOMEM);
11172 
11173 	if (G_STATSOURCE_T5(cfg) == 7) {
11174 		int mode;
11175 
11176 		mode = is_t5(sc) ? G_STATMODE(cfg) : G_T6_STATMODE(cfg);
11177 		if (mode == 0)
11178 			sbuf_printf(sb, "total %d, incomplete %d", s1, s2);
11179 		else if (mode == 1)
11180 			sbuf_printf(sb, "total %d, data overflow %d", s1, s2);
11181 		else
11182 			sbuf_printf(sb, "unknown mode %d", mode);
11183 	}
11184 	rc = sbuf_finish(sb);
11185 	sbuf_delete(sb);
11186 
11187 	return (rc);
11188 }
11189 
11190 static int
sysctl_cpus(SYSCTL_HANDLER_ARGS)11191 sysctl_cpus(SYSCTL_HANDLER_ARGS)
11192 {
11193 	struct adapter *sc = arg1;
11194 	enum cpu_sets op = arg2;
11195 	cpuset_t cpuset;
11196 	struct sbuf *sb;
11197 	int i, rc;
11198 
11199 	MPASS(op == LOCAL_CPUS || op == INTR_CPUS);
11200 
11201 	CPU_ZERO(&cpuset);
11202 	rc = bus_get_cpus(sc->dev, op, sizeof(cpuset), &cpuset);
11203 	if (rc != 0)
11204 		return (rc);
11205 
11206 	rc = sysctl_wire_old_buffer(req, 0);
11207 	if (rc != 0)
11208 		return (rc);
11209 
11210 	sb = sbuf_new_for_sysctl(NULL, NULL, 4096, req);
11211 	if (sb == NULL)
11212 		return (ENOMEM);
11213 
11214 	CPU_FOREACH(i)
11215 		sbuf_printf(sb, "%d ", i);
11216 	rc = sbuf_finish(sb);
11217 	sbuf_delete(sb);
11218 
11219 	return (rc);
11220 }
11221 
11222 static int
sysctl_reset(SYSCTL_HANDLER_ARGS)11223 sysctl_reset(SYSCTL_HANDLER_ARGS)
11224 {
11225 	struct adapter *sc = arg1;
11226 	u_int val;
11227 	int rc;
11228 
11229 	val = atomic_load_int(&sc->num_resets);
11230 	rc = sysctl_handle_int(oidp, &val, 0, req);
11231 	if (rc != 0 || req->newptr == NULL)
11232 		return (rc);
11233 
11234 	if (val == 0) {
11235 		/* Zero out the counter that tracks reset. */
11236 		atomic_store_int(&sc->num_resets, 0);
11237 		return (0);
11238 	}
11239 
11240 	if (val != 1)
11241 		return (EINVAL);	/* 0 or 1 are the only legal values */
11242 
11243 	if (hw_off_limits(sc))		/* harmless race */
11244 		return (EALREADY);
11245 
11246 	taskqueue_enqueue(reset_tq, &sc->reset_task);
11247 	return (0);
11248 }
11249 
11250 #ifdef TCP_OFFLOAD
11251 static int
sysctl_tls(SYSCTL_HANDLER_ARGS)11252 sysctl_tls(SYSCTL_HANDLER_ARGS)
11253 {
11254 	struct adapter *sc = arg1;
11255 	int i, j, v, rc;
11256 	struct vi_info *vi;
11257 
11258 	v = sc->tt.tls;
11259 	rc = sysctl_handle_int(oidp, &v, 0, req);
11260 	if (rc != 0 || req->newptr == NULL)
11261 		return (rc);
11262 
11263 	if (v != 0 && !(sc->cryptocaps & FW_CAPS_CONFIG_TLSKEYS))
11264 		return (ENOTSUP);
11265 
11266 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4stls");
11267 	if (rc)
11268 		return (rc);
11269 	if (hw_off_limits(sc))
11270 		rc = ENXIO;
11271 	else {
11272 		sc->tt.tls = !!v;
11273 		for_each_port(sc, i) {
11274 			for_each_vi(sc->port[i], j, vi) {
11275 				if (vi->flags & VI_INIT_DONE)
11276 					t4_update_fl_bufsize(vi->ifp);
11277 			}
11278 		}
11279 	}
11280 	end_synchronized_op(sc, 0);
11281 
11282 	return (rc);
11283 
11284 }
11285 
11286 static void
unit_conv(char * buf,size_t len,u_int val,u_int factor)11287 unit_conv(char *buf, size_t len, u_int val, u_int factor)
11288 {
11289 	u_int rem = val % factor;
11290 
11291 	if (rem == 0)
11292 		snprintf(buf, len, "%u", val / factor);
11293 	else {
11294 		while (rem % 10 == 0)
11295 			rem /= 10;
11296 		snprintf(buf, len, "%u.%u", val / factor, rem);
11297 	}
11298 }
11299 
11300 static int
sysctl_tp_tick(SYSCTL_HANDLER_ARGS)11301 sysctl_tp_tick(SYSCTL_HANDLER_ARGS)
11302 {
11303 	struct adapter *sc = arg1;
11304 	char buf[16];
11305 	u_int res, re;
11306 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11307 
11308 	mtx_lock(&sc->reg_lock);
11309 	if (hw_off_limits(sc))
11310 		res = (u_int)-1;
11311 	else
11312 		res = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
11313 	mtx_unlock(&sc->reg_lock);
11314 	if (res == (u_int)-1)
11315 		return (ENXIO);
11316 
11317 	switch (arg2) {
11318 	case 0:
11319 		/* timer_tick */
11320 		re = G_TIMERRESOLUTION(res);
11321 		break;
11322 	case 1:
11323 		/* TCP timestamp tick */
11324 		re = G_TIMESTAMPRESOLUTION(res);
11325 		break;
11326 	case 2:
11327 		/* DACK tick */
11328 		re = G_DELAYEDACKRESOLUTION(res);
11329 		break;
11330 	default:
11331 		return (EDOOFUS);
11332 	}
11333 
11334 	unit_conv(buf, sizeof(buf), (cclk_ps << re), 1000000);
11335 
11336 	return (sysctl_handle_string(oidp, buf, sizeof(buf), req));
11337 }
11338 
11339 static int
sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)11340 sysctl_tp_dack_timer(SYSCTL_HANDLER_ARGS)
11341 {
11342 	struct adapter *sc = arg1;
11343 	int rc;
11344 	u_int dack_tmr, dack_re, v;
11345 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11346 
11347 	mtx_lock(&sc->reg_lock);
11348 	if (hw_off_limits(sc))
11349 		rc = ENXIO;
11350 	else {
11351 		rc = 0;
11352 		dack_re = G_DELAYEDACKRESOLUTION(t4_read_reg(sc,
11353 		    A_TP_TIMER_RESOLUTION));
11354 		dack_tmr = t4_read_reg(sc, A_TP_DACK_TIMER);
11355 	}
11356 	mtx_unlock(&sc->reg_lock);
11357 	if (rc != 0)
11358 		return (rc);
11359 
11360 	v = ((cclk_ps << dack_re) / 1000000) * dack_tmr;
11361 
11362 	return (sysctl_handle_int(oidp, &v, 0, req));
11363 }
11364 
11365 static int
sysctl_tp_timer(SYSCTL_HANDLER_ARGS)11366 sysctl_tp_timer(SYSCTL_HANDLER_ARGS)
11367 {
11368 	struct adapter *sc = arg1;
11369 	int rc, reg = arg2;
11370 	u_int tre;
11371 	u_long tp_tick_us, v;
11372 	u_int cclk_ps = 1000000000 / sc->params.vpd.cclk;
11373 
11374 	MPASS(reg == A_TP_RXT_MIN || reg == A_TP_RXT_MAX ||
11375 	    reg == A_TP_PERS_MIN  || reg == A_TP_PERS_MAX ||
11376 	    reg == A_TP_KEEP_IDLE || reg == A_TP_KEEP_INTVL ||
11377 	    reg == A_TP_INIT_SRTT || reg == A_TP_FINWAIT2_TIMER);
11378 
11379 	mtx_lock(&sc->reg_lock);
11380 	if (hw_off_limits(sc))
11381 		rc = ENXIO;
11382 	else {
11383 		rc = 0;
11384 		tre = G_TIMERRESOLUTION(t4_read_reg(sc, A_TP_TIMER_RESOLUTION));
11385 		tp_tick_us = (cclk_ps << tre) / 1000000;
11386 		if (reg == A_TP_INIT_SRTT)
11387 			v = tp_tick_us * G_INITSRTT(t4_read_reg(sc, reg));
11388 		else
11389 			v = tp_tick_us * t4_read_reg(sc, reg);
11390 	}
11391 	mtx_unlock(&sc->reg_lock);
11392 	if (rc != 0)
11393 		return (rc);
11394 	else
11395 		return (sysctl_handle_long(oidp, &v, 0, req));
11396 }
11397 
11398 /*
11399  * All fields in TP_SHIFT_CNT are 4b and the starting location of the field is
11400  * passed to this function.
11401  */
11402 static int
sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)11403 sysctl_tp_shift_cnt(SYSCTL_HANDLER_ARGS)
11404 {
11405 	struct adapter *sc = arg1;
11406 	int rc, idx = arg2;
11407 	u_int v;
11408 
11409 	MPASS(idx >= 0 && idx <= 24);
11410 
11411 	mtx_lock(&sc->reg_lock);
11412 	if (hw_off_limits(sc))
11413 		rc = ENXIO;
11414 	else {
11415 		rc = 0;
11416 		v = (t4_read_reg(sc, A_TP_SHIFT_CNT) >> idx) & 0xf;
11417 	}
11418 	mtx_unlock(&sc->reg_lock);
11419 	if (rc != 0)
11420 		return (rc);
11421 	else
11422 		return (sysctl_handle_int(oidp, &v, 0, req));
11423 }
11424 
11425 static int
sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)11426 sysctl_tp_backoff(SYSCTL_HANDLER_ARGS)
11427 {
11428 	struct adapter *sc = arg1;
11429 	int rc, idx = arg2;
11430 	u_int shift, v, r;
11431 
11432 	MPASS(idx >= 0 && idx < 16);
11433 
11434 	r = A_TP_TCP_BACKOFF_REG0 + (idx & ~3);
11435 	shift = (idx & 3) << 3;
11436 	mtx_lock(&sc->reg_lock);
11437 	if (hw_off_limits(sc))
11438 		rc = ENXIO;
11439 	else {
11440 		rc = 0;
11441 		v = (t4_read_reg(sc, r) >> shift) & M_TIMERBACKOFFINDEX0;
11442 	}
11443 	mtx_unlock(&sc->reg_lock);
11444 	if (rc != 0)
11445 		return (rc);
11446 	else
11447 		return (sysctl_handle_int(oidp, &v, 0, req));
11448 }
11449 
11450 static int
sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)11451 sysctl_holdoff_tmr_idx_ofld(SYSCTL_HANDLER_ARGS)
11452 {
11453 	struct vi_info *vi = arg1;
11454 	struct adapter *sc = vi->adapter;
11455 	int idx, rc, i;
11456 	struct sge_ofld_rxq *ofld_rxq;
11457 	uint8_t v;
11458 
11459 	idx = vi->ofld_tmr_idx;
11460 
11461 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11462 	if (rc != 0 || req->newptr == NULL)
11463 		return (rc);
11464 
11465 	if (idx < 0 || idx >= SGE_NTIMERS)
11466 		return (EINVAL);
11467 
11468 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11469 	    "t4otmr");
11470 	if (rc)
11471 		return (rc);
11472 
11473 	v = V_QINTR_TIMER_IDX(idx) | V_QINTR_CNT_EN(vi->ofld_pktc_idx != -1);
11474 	for_each_ofld_rxq(vi, i, ofld_rxq) {
11475 #ifdef atomic_store_rel_8
11476 		atomic_store_rel_8(&ofld_rxq->iq.intr_params, v);
11477 #else
11478 		ofld_rxq->iq.intr_params = v;
11479 #endif
11480 	}
11481 	vi->ofld_tmr_idx = idx;
11482 
11483 	end_synchronized_op(sc, LOCK_HELD);
11484 	return (0);
11485 }
11486 
11487 static int
sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)11488 sysctl_holdoff_pktc_idx_ofld(SYSCTL_HANDLER_ARGS)
11489 {
11490 	struct vi_info *vi = arg1;
11491 	struct adapter *sc = vi->adapter;
11492 	int idx, rc;
11493 
11494 	idx = vi->ofld_pktc_idx;
11495 
11496 	rc = sysctl_handle_int(oidp, &idx, 0, req);
11497 	if (rc != 0 || req->newptr == NULL)
11498 		return (rc);
11499 
11500 	if (idx < -1 || idx >= SGE_NCOUNTERS)
11501 		return (EINVAL);
11502 
11503 	rc = begin_synchronized_op(sc, vi, HOLD_LOCK | SLEEP_OK | INTR_OK,
11504 	    "t4opktc");
11505 	if (rc)
11506 		return (rc);
11507 
11508 	if (vi->flags & VI_INIT_DONE)
11509 		rc = EBUSY; /* cannot be changed once the queues are created */
11510 	else
11511 		vi->ofld_pktc_idx = idx;
11512 
11513 	end_synchronized_op(sc, LOCK_HELD);
11514 	return (rc);
11515 }
11516 #endif
11517 
11518 static int
get_sge_context(struct adapter * sc,struct t4_sge_context * cntxt)11519 get_sge_context(struct adapter *sc, struct t4_sge_context *cntxt)
11520 {
11521 	int rc;
11522 
11523 	if (cntxt->cid > M_CTXTQID)
11524 		return (EINVAL);
11525 
11526 	if (cntxt->mem_id != CTXT_EGRESS && cntxt->mem_id != CTXT_INGRESS &&
11527 	    cntxt->mem_id != CTXT_FLM && cntxt->mem_id != CTXT_CNM)
11528 		return (EINVAL);
11529 
11530 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ctxt");
11531 	if (rc)
11532 		return (rc);
11533 
11534 	if (hw_off_limits(sc)) {
11535 		rc = ENXIO;
11536 		goto done;
11537 	}
11538 
11539 	if (sc->flags & FW_OK) {
11540 		rc = -t4_sge_ctxt_rd(sc, sc->mbox, cntxt->cid, cntxt->mem_id,
11541 		    &cntxt->data[0]);
11542 		if (rc == 0)
11543 			goto done;
11544 	}
11545 
11546 	/*
11547 	 * Read via firmware failed or wasn't even attempted.  Read directly via
11548 	 * the backdoor.
11549 	 */
11550 	rc = -t4_sge_ctxt_rd_bd(sc, cntxt->cid, cntxt->mem_id, &cntxt->data[0]);
11551 done:
11552 	end_synchronized_op(sc, 0);
11553 	return (rc);
11554 }
11555 
11556 static int
load_fw(struct adapter * sc,struct t4_data * fw)11557 load_fw(struct adapter *sc, struct t4_data *fw)
11558 {
11559 	int rc;
11560 	uint8_t *fw_data;
11561 
11562 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldfw");
11563 	if (rc)
11564 		return (rc);
11565 
11566 	if (hw_off_limits(sc)) {
11567 		rc = ENXIO;
11568 		goto done;
11569 	}
11570 
11571 	/*
11572 	 * The firmware, with the sole exception of the memory parity error
11573 	 * handler, runs from memory and not flash.  It is almost always safe to
11574 	 * install a new firmware on a running system.  Just set bit 1 in
11575 	 * hw.cxgbe.dflags or dev.<nexus>.<n>.dflags first.
11576 	 */
11577 	if (sc->flags & FULL_INIT_DONE &&
11578 	    (sc->debug_flags & DF_LOAD_FW_ANYTIME) == 0) {
11579 		rc = EBUSY;
11580 		goto done;
11581 	}
11582 
11583 	fw_data = malloc(fw->len, M_CXGBE, M_WAITOK);
11584 
11585 	rc = copyin(fw->data, fw_data, fw->len);
11586 	if (rc == 0)
11587 		rc = -t4_load_fw(sc, fw_data, fw->len);
11588 
11589 	free(fw_data, M_CXGBE);
11590 done:
11591 	end_synchronized_op(sc, 0);
11592 	return (rc);
11593 }
11594 
11595 static int
load_cfg(struct adapter * sc,struct t4_data * cfg)11596 load_cfg(struct adapter *sc, struct t4_data *cfg)
11597 {
11598 	int rc;
11599 	uint8_t *cfg_data = NULL;
11600 
11601 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11602 	if (rc)
11603 		return (rc);
11604 
11605 	if (hw_off_limits(sc)) {
11606 		rc = ENXIO;
11607 		goto done;
11608 	}
11609 
11610 	if (cfg->len == 0) {
11611 		/* clear */
11612 		rc = -t4_load_cfg(sc, NULL, 0);
11613 		goto done;
11614 	}
11615 
11616 	cfg_data = malloc(cfg->len, M_CXGBE, M_WAITOK);
11617 
11618 	rc = copyin(cfg->data, cfg_data, cfg->len);
11619 	if (rc == 0)
11620 		rc = -t4_load_cfg(sc, cfg_data, cfg->len);
11621 
11622 	free(cfg_data, M_CXGBE);
11623 done:
11624 	end_synchronized_op(sc, 0);
11625 	return (rc);
11626 }
11627 
11628 static int
load_boot(struct adapter * sc,struct t4_bootrom * br)11629 load_boot(struct adapter *sc, struct t4_bootrom *br)
11630 {
11631 	int rc;
11632 	uint8_t *br_data = NULL;
11633 	u_int offset;
11634 
11635 	if (br->len > 1024 * 1024)
11636 		return (EFBIG);
11637 
11638 	if (br->pf_offset == 0) {
11639 		/* pfidx */
11640 		if (br->pfidx_addr > 7)
11641 			return (EINVAL);
11642 		offset = G_OFFSET(t4_read_reg(sc, PF_REG(br->pfidx_addr,
11643 		    A_PCIE_PF_EXPROM_OFST)));
11644 	} else if (br->pf_offset == 1) {
11645 		/* offset */
11646 		offset = G_OFFSET(br->pfidx_addr);
11647 	} else {
11648 		return (EINVAL);
11649 	}
11650 
11651 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldbr");
11652 	if (rc)
11653 		return (rc);
11654 
11655 	if (hw_off_limits(sc)) {
11656 		rc = ENXIO;
11657 		goto done;
11658 	}
11659 
11660 	if (br->len == 0) {
11661 		/* clear */
11662 		rc = -t4_load_boot(sc, NULL, offset, 0);
11663 		goto done;
11664 	}
11665 
11666 	br_data = malloc(br->len, M_CXGBE, M_WAITOK);
11667 
11668 	rc = copyin(br->data, br_data, br->len);
11669 	if (rc == 0)
11670 		rc = -t4_load_boot(sc, br_data, offset, br->len);
11671 
11672 	free(br_data, M_CXGBE);
11673 done:
11674 	end_synchronized_op(sc, 0);
11675 	return (rc);
11676 }
11677 
11678 static int
load_bootcfg(struct adapter * sc,struct t4_data * bc)11679 load_bootcfg(struct adapter *sc, struct t4_data *bc)
11680 {
11681 	int rc;
11682 	uint8_t *bc_data = NULL;
11683 
11684 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4ldcf");
11685 	if (rc)
11686 		return (rc);
11687 
11688 	if (hw_off_limits(sc)) {
11689 		rc = ENXIO;
11690 		goto done;
11691 	}
11692 
11693 	if (bc->len == 0) {
11694 		/* clear */
11695 		rc = -t4_load_bootcfg(sc, NULL, 0);
11696 		goto done;
11697 	}
11698 
11699 	bc_data = malloc(bc->len, M_CXGBE, M_WAITOK);
11700 
11701 	rc = copyin(bc->data, bc_data, bc->len);
11702 	if (rc == 0)
11703 		rc = -t4_load_bootcfg(sc, bc_data, bc->len);
11704 
11705 	free(bc_data, M_CXGBE);
11706 done:
11707 	end_synchronized_op(sc, 0);
11708 	return (rc);
11709 }
11710 
11711 static int
cudbg_dump(struct adapter * sc,struct t4_cudbg_dump * dump)11712 cudbg_dump(struct adapter *sc, struct t4_cudbg_dump *dump)
11713 {
11714 	int rc;
11715 	struct cudbg_init *cudbg;
11716 	void *handle, *buf;
11717 
11718 	/* buf is large, don't block if no memory is available */
11719 	buf = malloc(dump->len, M_CXGBE, M_NOWAIT | M_ZERO);
11720 	if (buf == NULL)
11721 		return (ENOMEM);
11722 
11723 	handle = cudbg_alloc_handle();
11724 	if (handle == NULL) {
11725 		rc = ENOMEM;
11726 		goto done;
11727 	}
11728 
11729 	cudbg = cudbg_get_init(handle);
11730 	cudbg->adap = sc;
11731 	cudbg->print = (cudbg_print_cb)printf;
11732 
11733 #ifndef notyet
11734 	device_printf(sc->dev, "%s: wr_flash %u, len %u, data %p.\n",
11735 	    __func__, dump->wr_flash, dump->len, dump->data);
11736 #endif
11737 
11738 	if (dump->wr_flash)
11739 		cudbg->use_flash = 1;
11740 	MPASS(sizeof(cudbg->dbg_bitmap) == sizeof(dump->bitmap));
11741 	memcpy(cudbg->dbg_bitmap, dump->bitmap, sizeof(cudbg->dbg_bitmap));
11742 
11743 	rc = cudbg_collect(handle, buf, &dump->len);
11744 	if (rc != 0)
11745 		goto done;
11746 
11747 	rc = copyout(buf, dump->data, dump->len);
11748 done:
11749 	cudbg_free_handle(handle);
11750 	free(buf, M_CXGBE);
11751 	return (rc);
11752 }
11753 
11754 static void
free_offload_policy(struct t4_offload_policy * op)11755 free_offload_policy(struct t4_offload_policy *op)
11756 {
11757 	struct offload_rule *r;
11758 	int i;
11759 
11760 	if (op == NULL)
11761 		return;
11762 
11763 	r = &op->rule[0];
11764 	for (i = 0; i < op->nrules; i++, r++) {
11765 		free(r->bpf_prog.bf_insns, M_CXGBE);
11766 	}
11767 	free(op->rule, M_CXGBE);
11768 	free(op, M_CXGBE);
11769 }
11770 
11771 static int
set_offload_policy(struct adapter * sc,struct t4_offload_policy * uop)11772 set_offload_policy(struct adapter *sc, struct t4_offload_policy *uop)
11773 {
11774 	int i, rc, len;
11775 	struct t4_offload_policy *op, *old;
11776 	struct bpf_program *bf;
11777 	const struct offload_settings *s;
11778 	struct offload_rule *r;
11779 	void *u;
11780 
11781 	if (!is_offload(sc))
11782 		return (ENODEV);
11783 
11784 	if (uop->nrules == 0) {
11785 		/* Delete installed policies. */
11786 		op = NULL;
11787 		goto set_policy;
11788 	} else if (uop->nrules > 256) { /* arbitrary */
11789 		return (E2BIG);
11790 	}
11791 
11792 	/* Copy userspace offload policy to kernel */
11793 	op = malloc(sizeof(*op), M_CXGBE, M_ZERO | M_WAITOK);
11794 	op->nrules = uop->nrules;
11795 	len = op->nrules * sizeof(struct offload_rule);
11796 	op->rule = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11797 	rc = copyin(uop->rule, op->rule, len);
11798 	if (rc) {
11799 		free(op->rule, M_CXGBE);
11800 		free(op, M_CXGBE);
11801 		return (rc);
11802 	}
11803 
11804 	r = &op->rule[0];
11805 	for (i = 0; i < op->nrules; i++, r++) {
11806 
11807 		/* Validate open_type */
11808 		if (r->open_type != OPEN_TYPE_LISTEN &&
11809 		    r->open_type != OPEN_TYPE_ACTIVE &&
11810 		    r->open_type != OPEN_TYPE_PASSIVE &&
11811 		    r->open_type != OPEN_TYPE_DONTCARE) {
11812 error:
11813 			/*
11814 			 * Rules 0 to i have malloc'd filters that need to be
11815 			 * freed.  Rules i+1 to nrules have userspace pointers
11816 			 * and should be left alone.
11817 			 */
11818 			op->nrules = i;
11819 			free_offload_policy(op);
11820 			return (rc);
11821 		}
11822 
11823 		/* Validate settings */
11824 		s = &r->settings;
11825 		if ((s->offload != 0 && s->offload != 1) ||
11826 		    s->cong_algo < -1 || s->cong_algo > CONG_ALG_HIGHSPEED ||
11827 		    s->sched_class < -1 ||
11828 		    s->sched_class >= sc->params.nsched_cls) {
11829 			rc = EINVAL;
11830 			goto error;
11831 		}
11832 
11833 		bf = &r->bpf_prog;
11834 		u = bf->bf_insns;	/* userspace ptr */
11835 		bf->bf_insns = NULL;
11836 		if (bf->bf_len == 0) {
11837 			/* legal, matches everything */
11838 			continue;
11839 		}
11840 		len = bf->bf_len * sizeof(*bf->bf_insns);
11841 		bf->bf_insns = malloc(len, M_CXGBE, M_ZERO | M_WAITOK);
11842 		rc = copyin(u, bf->bf_insns, len);
11843 		if (rc != 0)
11844 			goto error;
11845 
11846 		if (!bpf_validate(bf->bf_insns, bf->bf_len)) {
11847 			rc = EINVAL;
11848 			goto error;
11849 		}
11850 	}
11851 set_policy:
11852 	rw_wlock(&sc->policy_lock);
11853 	old = sc->policy;
11854 	sc->policy = op;
11855 	rw_wunlock(&sc->policy_lock);
11856 	free_offload_policy(old);
11857 
11858 	return (0);
11859 }
11860 
11861 #define MAX_READ_BUF_SIZE (128 * 1024)
11862 static int
read_card_mem(struct adapter * sc,int win,struct t4_mem_range * mr)11863 read_card_mem(struct adapter *sc, int win, struct t4_mem_range *mr)
11864 {
11865 	uint32_t addr, remaining, n;
11866 	uint32_t *buf;
11867 	int rc;
11868 	uint8_t *dst;
11869 
11870 	mtx_lock(&sc->reg_lock);
11871 	if (hw_off_limits(sc))
11872 		rc = ENXIO;
11873 	else
11874 		rc = validate_mem_range(sc, mr->addr, mr->len);
11875 	mtx_unlock(&sc->reg_lock);
11876 	if (rc != 0)
11877 		return (rc);
11878 
11879 	buf = malloc(min(mr->len, MAX_READ_BUF_SIZE), M_CXGBE, M_WAITOK);
11880 	addr = mr->addr;
11881 	remaining = mr->len;
11882 	dst = (void *)mr->data;
11883 
11884 	while (remaining) {
11885 		n = min(remaining, MAX_READ_BUF_SIZE);
11886 		mtx_lock(&sc->reg_lock);
11887 		if (hw_off_limits(sc))
11888 			rc = ENXIO;
11889 		else
11890 			read_via_memwin(sc, 2, addr, buf, n);
11891 		mtx_unlock(&sc->reg_lock);
11892 		if (rc != 0)
11893 			break;
11894 
11895 		rc = copyout(buf, dst, n);
11896 		if (rc != 0)
11897 			break;
11898 
11899 		dst += n;
11900 		remaining -= n;
11901 		addr += n;
11902 	}
11903 
11904 	free(buf, M_CXGBE);
11905 	return (rc);
11906 }
11907 #undef MAX_READ_BUF_SIZE
11908 
11909 static int
read_i2c(struct adapter * sc,struct t4_i2c_data * i2cd)11910 read_i2c(struct adapter *sc, struct t4_i2c_data *i2cd)
11911 {
11912 	int rc;
11913 
11914 	if (i2cd->len == 0 || i2cd->port_id >= sc->params.nports)
11915 		return (EINVAL);
11916 
11917 	if (i2cd->len > sizeof(i2cd->data))
11918 		return (EFBIG);
11919 
11920 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4i2crd");
11921 	if (rc)
11922 		return (rc);
11923 	if (hw_off_limits(sc))
11924 		rc = ENXIO;
11925 	else
11926 		rc = -t4_i2c_rd(sc, sc->mbox, i2cd->port_id, i2cd->dev_addr,
11927 		    i2cd->offset, i2cd->len, &i2cd->data[0]);
11928 	end_synchronized_op(sc, 0);
11929 
11930 	return (rc);
11931 }
11932 
11933 static int
clear_stats(struct adapter * sc,u_int port_id)11934 clear_stats(struct adapter *sc, u_int port_id)
11935 {
11936 	int i, v, chan_map;
11937 	struct port_info *pi;
11938 	struct vi_info *vi;
11939 	struct sge_rxq *rxq;
11940 	struct sge_txq *txq;
11941 	struct sge_wrq *wrq;
11942 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
11943 	struct sge_ofld_txq *ofld_txq;
11944 #endif
11945 #ifdef TCP_OFFLOAD
11946 	struct sge_ofld_rxq *ofld_rxq;
11947 #endif
11948 
11949 	if (port_id >= sc->params.nports)
11950 		return (EINVAL);
11951 	pi = sc->port[port_id];
11952 	if (pi == NULL)
11953 		return (EIO);
11954 
11955 	mtx_lock(&sc->reg_lock);
11956 	if (!hw_off_limits(sc)) {
11957 		/* MAC stats */
11958 		t4_clr_port_stats(sc, pi->tx_chan);
11959 		if (is_t6(sc)) {
11960 			if (pi->fcs_reg != -1)
11961 				pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
11962 			else
11963 				pi->stats.rx_fcs_err = 0;
11964 		}
11965 		for_each_vi(pi, v, vi) {
11966 			if (vi->flags & VI_INIT_DONE)
11967 				t4_clr_vi_stats(sc, vi->vin);
11968 		}
11969 		chan_map = pi->rx_e_chan_map;
11970 		v = 0;	/* reuse */
11971 		while (chan_map) {
11972 			i = ffs(chan_map) - 1;
11973 			t4_write_indirect(sc, A_TP_MIB_INDEX, A_TP_MIB_DATA, &v,
11974 			    1, A_TP_MIB_TNL_CNG_DROP_0 + i);
11975 			chan_map &= ~(1 << i);
11976 		}
11977 	}
11978 	mtx_unlock(&sc->reg_lock);
11979 	pi->tx_parse_error = 0;
11980 	pi->tnl_cong_drops = 0;
11981 
11982 	/*
11983 	 * Since this command accepts a port, clear stats for
11984 	 * all VIs on this port.
11985 	 */
11986 	for_each_vi(pi, v, vi) {
11987 		if (vi->flags & VI_INIT_DONE) {
11988 
11989 			for_each_rxq(vi, i, rxq) {
11990 #if defined(INET) || defined(INET6)
11991 				rxq->lro.lro_queued = 0;
11992 				rxq->lro.lro_flushed = 0;
11993 #endif
11994 				rxq->rxcsum = 0;
11995 				rxq->vlan_extraction = 0;
11996 				rxq->vxlan_rxcsum = 0;
11997 
11998 				rxq->fl.cl_allocated = 0;
11999 				rxq->fl.cl_recycled = 0;
12000 				rxq->fl.cl_fast_recycled = 0;
12001 			}
12002 
12003 			for_each_txq(vi, i, txq) {
12004 				txq->txcsum = 0;
12005 				txq->tso_wrs = 0;
12006 				txq->vlan_insertion = 0;
12007 				txq->imm_wrs = 0;
12008 				txq->sgl_wrs = 0;
12009 				txq->txpkt_wrs = 0;
12010 				txq->txpkts0_wrs = 0;
12011 				txq->txpkts1_wrs = 0;
12012 				txq->txpkts0_pkts = 0;
12013 				txq->txpkts1_pkts = 0;
12014 				txq->txpkts_flush = 0;
12015 				txq->raw_wrs = 0;
12016 				txq->vxlan_tso_wrs = 0;
12017 				txq->vxlan_txcsum = 0;
12018 				txq->kern_tls_records = 0;
12019 				txq->kern_tls_short = 0;
12020 				txq->kern_tls_partial = 0;
12021 				txq->kern_tls_full = 0;
12022 				txq->kern_tls_octets = 0;
12023 				txq->kern_tls_waste = 0;
12024 				txq->kern_tls_options = 0;
12025 				txq->kern_tls_header = 0;
12026 				txq->kern_tls_fin = 0;
12027 				txq->kern_tls_fin_short = 0;
12028 				txq->kern_tls_cbc = 0;
12029 				txq->kern_tls_gcm = 0;
12030 				mp_ring_reset_stats(txq->r);
12031 			}
12032 
12033 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12034 			for_each_ofld_txq(vi, i, ofld_txq) {
12035 				ofld_txq->wrq.tx_wrs_direct = 0;
12036 				ofld_txq->wrq.tx_wrs_copied = 0;
12037 				counter_u64_zero(ofld_txq->tx_iscsi_pdus);
12038 				counter_u64_zero(ofld_txq->tx_iscsi_octets);
12039 				counter_u64_zero(ofld_txq->tx_iscsi_iso_wrs);
12040 				counter_u64_zero(ofld_txq->tx_aio_jobs);
12041 				counter_u64_zero(ofld_txq->tx_aio_octets);
12042 				counter_u64_zero(ofld_txq->tx_toe_tls_records);
12043 				counter_u64_zero(ofld_txq->tx_toe_tls_octets);
12044 			}
12045 #endif
12046 #ifdef TCP_OFFLOAD
12047 			for_each_ofld_rxq(vi, i, ofld_rxq) {
12048 				ofld_rxq->fl.cl_allocated = 0;
12049 				ofld_rxq->fl.cl_recycled = 0;
12050 				ofld_rxq->fl.cl_fast_recycled = 0;
12051 				counter_u64_zero(
12052 				    ofld_rxq->rx_iscsi_ddp_setup_ok);
12053 				counter_u64_zero(
12054 				    ofld_rxq->rx_iscsi_ddp_setup_error);
12055 				ofld_rxq->rx_iscsi_ddp_pdus = 0;
12056 				ofld_rxq->rx_iscsi_ddp_octets = 0;
12057 				ofld_rxq->rx_iscsi_fl_pdus = 0;
12058 				ofld_rxq->rx_iscsi_fl_octets = 0;
12059 				ofld_rxq->rx_aio_ddp_jobs = 0;
12060 				ofld_rxq->rx_aio_ddp_octets = 0;
12061 				ofld_rxq->rx_toe_tls_records = 0;
12062 				ofld_rxq->rx_toe_tls_octets = 0;
12063 				ofld_rxq->rx_toe_ddp_octets = 0;
12064 				counter_u64_zero(ofld_rxq->ddp_buffer_alloc);
12065 				counter_u64_zero(ofld_rxq->ddp_buffer_reuse);
12066 				counter_u64_zero(ofld_rxq->ddp_buffer_free);
12067 			}
12068 #endif
12069 
12070 			if (IS_MAIN_VI(vi)) {
12071 				wrq = &sc->sge.ctrlq[pi->port_id];
12072 				wrq->tx_wrs_direct = 0;
12073 				wrq->tx_wrs_copied = 0;
12074 			}
12075 		}
12076 	}
12077 
12078 	return (0);
12079 }
12080 
12081 static int
hold_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12082 hold_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12083 {
12084 #ifdef INET6
12085 	struct in6_addr in6;
12086 
12087 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12088 	if (t4_get_clip_entry(sc, &in6, true) != NULL)
12089 		return (0);
12090 	else
12091 		return (EIO);
12092 #else
12093 	return (ENOTSUP);
12094 #endif
12095 }
12096 
12097 static int
release_clip_addr(struct adapter * sc,struct t4_clip_addr * ca)12098 release_clip_addr(struct adapter *sc, struct t4_clip_addr *ca)
12099 {
12100 #ifdef INET6
12101 	struct in6_addr in6;
12102 
12103 	bcopy(&ca->addr[0], &in6.s6_addr[0], sizeof(in6.s6_addr));
12104 	return (t4_release_clip_addr(sc, &in6));
12105 #else
12106 	return (ENOTSUP);
12107 #endif
12108 }
12109 
12110 int
t4_os_find_pci_capability(struct adapter * sc,int cap)12111 t4_os_find_pci_capability(struct adapter *sc, int cap)
12112 {
12113 	int i;
12114 
12115 	return (pci_find_cap(sc->dev, cap, &i) == 0 ? i : 0);
12116 }
12117 
12118 int
t4_os_pci_save_state(struct adapter * sc)12119 t4_os_pci_save_state(struct adapter *sc)
12120 {
12121 	device_t dev;
12122 	struct pci_devinfo *dinfo;
12123 
12124 	dev = sc->dev;
12125 	dinfo = device_get_ivars(dev);
12126 
12127 	pci_cfg_save(dev, dinfo, 0);
12128 	return (0);
12129 }
12130 
12131 int
t4_os_pci_restore_state(struct adapter * sc)12132 t4_os_pci_restore_state(struct adapter *sc)
12133 {
12134 	device_t dev;
12135 	struct pci_devinfo *dinfo;
12136 
12137 	dev = sc->dev;
12138 	dinfo = device_get_ivars(dev);
12139 
12140 	pci_cfg_restore(dev, dinfo);
12141 	return (0);
12142 }
12143 
12144 void
t4_os_portmod_changed(struct port_info * pi)12145 t4_os_portmod_changed(struct port_info *pi)
12146 {
12147 	struct adapter *sc = pi->adapter;
12148 	struct vi_info *vi;
12149 	if_t ifp;
12150 	static const char *mod_str[] = {
12151 		NULL, "LR", "SR", "ER", "TWINAX", "active TWINAX", "LRM"
12152 	};
12153 
12154 	KASSERT((pi->flags & FIXED_IFMEDIA) == 0,
12155 	    ("%s: port_type %u", __func__, pi->port_type));
12156 
12157 	vi = &pi->vi[0];
12158 	if (begin_synchronized_op(sc, vi, HOLD_LOCK, "t4mod") == 0) {
12159 		PORT_LOCK(pi);
12160 		build_medialist(pi);
12161 		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
12162 			fixup_link_config(pi);
12163 			apply_link_config(pi);
12164 		}
12165 		PORT_UNLOCK(pi);
12166 		end_synchronized_op(sc, LOCK_HELD);
12167 	}
12168 
12169 	ifp = vi->ifp;
12170 	if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
12171 		if_printf(ifp, "transceiver unplugged.\n");
12172 	else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
12173 		if_printf(ifp, "unknown transceiver inserted.\n");
12174 	else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
12175 		if_printf(ifp, "unsupported transceiver inserted.\n");
12176 	else if (pi->mod_type > 0 && pi->mod_type < nitems(mod_str)) {
12177 		if_printf(ifp, "%dGbps %s transceiver inserted.\n",
12178 		    port_top_speed(pi), mod_str[pi->mod_type]);
12179 	} else {
12180 		if_printf(ifp, "transceiver (type %d) inserted.\n",
12181 		    pi->mod_type);
12182 	}
12183 }
12184 
12185 void
t4_os_link_changed(struct port_info * pi)12186 t4_os_link_changed(struct port_info *pi)
12187 {
12188 	struct vi_info *vi;
12189 	if_t ifp;
12190 	struct link_config *lc = &pi->link_cfg;
12191 	struct adapter *sc = pi->adapter;
12192 	int v;
12193 
12194 	PORT_LOCK_ASSERT_OWNED(pi);
12195 
12196 	if (is_t6(sc)) {
12197 		if (lc->link_ok) {
12198 			if (lc->speed > 25000 ||
12199 			    (lc->speed == 25000 && lc->fec == FEC_RS)) {
12200 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12201 				    A_MAC_PORT_AFRAMECHECKSEQUENCEERRORS);
12202 			} else {
12203 				pi->fcs_reg = T5_PORT_REG(pi->tx_chan,
12204 				    A_MAC_PORT_MTIP_1G10G_RX_CRCERRORS);
12205 			}
12206 			pi->fcs_base = t4_read_reg64(sc, pi->fcs_reg);
12207 			pi->stats.rx_fcs_err = 0;
12208 		} else {
12209 			pi->fcs_reg = -1;
12210 		}
12211 	} else {
12212 		MPASS(pi->fcs_reg != -1);
12213 		MPASS(pi->fcs_base == 0);
12214 	}
12215 
12216 	for_each_vi(pi, v, vi) {
12217 		ifp = vi->ifp;
12218 		if (ifp == NULL)
12219 			continue;
12220 
12221 		if (lc->link_ok) {
12222 			if_setbaudrate(ifp, IF_Mbps(lc->speed));
12223 			if_link_state_change(ifp, LINK_STATE_UP);
12224 		} else {
12225 			if_link_state_change(ifp, LINK_STATE_DOWN);
12226 		}
12227 	}
12228 }
12229 
12230 void
t4_iterate(void (* func)(struct adapter *,void *),void * arg)12231 t4_iterate(void (*func)(struct adapter *, void *), void *arg)
12232 {
12233 	struct adapter *sc;
12234 
12235 	sx_slock(&t4_list_lock);
12236 	SLIST_FOREACH(sc, &t4_list, link) {
12237 		/*
12238 		 * func should not make any assumptions about what state sc is
12239 		 * in - the only guarantee is that sc->sc_lock is a valid lock.
12240 		 */
12241 		func(sc, arg);
12242 	}
12243 	sx_sunlock(&t4_list_lock);
12244 }
12245 
12246 static int
t4_ioctl(struct cdev * dev,unsigned long cmd,caddr_t data,int fflag,struct thread * td)12247 t4_ioctl(struct cdev *dev, unsigned long cmd, caddr_t data, int fflag,
12248     struct thread *td)
12249 {
12250 	int rc;
12251 	struct adapter *sc = dev->si_drv1;
12252 
12253 	rc = priv_check(td, PRIV_DRIVER);
12254 	if (rc != 0)
12255 		return (rc);
12256 
12257 	switch (cmd) {
12258 	case CHELSIO_T4_GETREG: {
12259 		struct t4_reg *edata = (struct t4_reg *)data;
12260 
12261 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12262 			return (EFAULT);
12263 
12264 		mtx_lock(&sc->reg_lock);
12265 		if (hw_off_limits(sc))
12266 			rc = ENXIO;
12267 		else if (edata->size == 4)
12268 			edata->val = t4_read_reg(sc, edata->addr);
12269 		else if (edata->size == 8)
12270 			edata->val = t4_read_reg64(sc, edata->addr);
12271 		else
12272 			rc = EINVAL;
12273 		mtx_unlock(&sc->reg_lock);
12274 
12275 		break;
12276 	}
12277 	case CHELSIO_T4_SETREG: {
12278 		struct t4_reg *edata = (struct t4_reg *)data;
12279 
12280 		if ((edata->addr & 0x3) != 0 || edata->addr >= sc->mmio_len)
12281 			return (EFAULT);
12282 
12283 		mtx_lock(&sc->reg_lock);
12284 		if (hw_off_limits(sc))
12285 			rc = ENXIO;
12286 		else if (edata->size == 4) {
12287 			if (edata->val & 0xffffffff00000000)
12288 				rc = EINVAL;
12289 			t4_write_reg(sc, edata->addr, (uint32_t) edata->val);
12290 		} else if (edata->size == 8)
12291 			t4_write_reg64(sc, edata->addr, edata->val);
12292 		else
12293 			rc = EINVAL;
12294 		mtx_unlock(&sc->reg_lock);
12295 
12296 		break;
12297 	}
12298 	case CHELSIO_T4_REGDUMP: {
12299 		struct t4_regdump *regs = (struct t4_regdump *)data;
12300 		int reglen = t4_get_regs_len(sc);
12301 		uint8_t *buf;
12302 
12303 		if (regs->len < reglen) {
12304 			regs->len = reglen; /* hint to the caller */
12305 			return (ENOBUFS);
12306 		}
12307 
12308 		regs->len = reglen;
12309 		buf = malloc(reglen, M_CXGBE, M_WAITOK | M_ZERO);
12310 		mtx_lock(&sc->reg_lock);
12311 		if (hw_off_limits(sc))
12312 			rc = ENXIO;
12313 		else
12314 			get_regs(sc, regs, buf);
12315 		mtx_unlock(&sc->reg_lock);
12316 		if (rc == 0)
12317 			rc = copyout(buf, regs->data, reglen);
12318 		free(buf, M_CXGBE);
12319 		break;
12320 	}
12321 	case CHELSIO_T4_GET_FILTER_MODE:
12322 		rc = get_filter_mode(sc, (uint32_t *)data);
12323 		break;
12324 	case CHELSIO_T4_SET_FILTER_MODE:
12325 		rc = set_filter_mode(sc, *(uint32_t *)data);
12326 		break;
12327 	case CHELSIO_T4_SET_FILTER_MASK:
12328 		rc = set_filter_mask(sc, *(uint32_t *)data);
12329 		break;
12330 	case CHELSIO_T4_GET_FILTER:
12331 		rc = get_filter(sc, (struct t4_filter *)data);
12332 		break;
12333 	case CHELSIO_T4_SET_FILTER:
12334 		rc = set_filter(sc, (struct t4_filter *)data);
12335 		break;
12336 	case CHELSIO_T4_DEL_FILTER:
12337 		rc = del_filter(sc, (struct t4_filter *)data);
12338 		break;
12339 	case CHELSIO_T4_GET_SGE_CONTEXT:
12340 		rc = get_sge_context(sc, (struct t4_sge_context *)data);
12341 		break;
12342 	case CHELSIO_T4_LOAD_FW:
12343 		rc = load_fw(sc, (struct t4_data *)data);
12344 		break;
12345 	case CHELSIO_T4_GET_MEM:
12346 		rc = read_card_mem(sc, 2, (struct t4_mem_range *)data);
12347 		break;
12348 	case CHELSIO_T4_GET_I2C:
12349 		rc = read_i2c(sc, (struct t4_i2c_data *)data);
12350 		break;
12351 	case CHELSIO_T4_CLEAR_STATS:
12352 		rc = clear_stats(sc, *(uint32_t *)data);
12353 		break;
12354 	case CHELSIO_T4_SCHED_CLASS:
12355 		rc = t4_set_sched_class(sc, (struct t4_sched_params *)data);
12356 		break;
12357 	case CHELSIO_T4_SCHED_QUEUE:
12358 		rc = t4_set_sched_queue(sc, (struct t4_sched_queue *)data);
12359 		break;
12360 	case CHELSIO_T4_GET_TRACER:
12361 		rc = t4_get_tracer(sc, (struct t4_tracer *)data);
12362 		break;
12363 	case CHELSIO_T4_SET_TRACER:
12364 		rc = t4_set_tracer(sc, (struct t4_tracer *)data);
12365 		break;
12366 	case CHELSIO_T4_LOAD_CFG:
12367 		rc = load_cfg(sc, (struct t4_data *)data);
12368 		break;
12369 	case CHELSIO_T4_LOAD_BOOT:
12370 		rc = load_boot(sc, (struct t4_bootrom *)data);
12371 		break;
12372 	case CHELSIO_T4_LOAD_BOOTCFG:
12373 		rc = load_bootcfg(sc, (struct t4_data *)data);
12374 		break;
12375 	case CHELSIO_T4_CUDBG_DUMP:
12376 		rc = cudbg_dump(sc, (struct t4_cudbg_dump *)data);
12377 		break;
12378 	case CHELSIO_T4_SET_OFLD_POLICY:
12379 		rc = set_offload_policy(sc, (struct t4_offload_policy *)data);
12380 		break;
12381 	case CHELSIO_T4_HOLD_CLIP_ADDR:
12382 		rc = hold_clip_addr(sc, (struct t4_clip_addr *)data);
12383 		break;
12384 	case CHELSIO_T4_RELEASE_CLIP_ADDR:
12385 		rc = release_clip_addr(sc, (struct t4_clip_addr *)data);
12386 		break;
12387 	default:
12388 		rc = ENOTTY;
12389 	}
12390 
12391 	return (rc);
12392 }
12393 
12394 #ifdef TCP_OFFLOAD
12395 static int
toe_capability(struct vi_info * vi,bool enable)12396 toe_capability(struct vi_info *vi, bool enable)
12397 {
12398 	int rc;
12399 	struct port_info *pi = vi->pi;
12400 	struct adapter *sc = pi->adapter;
12401 
12402 	ASSERT_SYNCHRONIZED_OP(sc);
12403 
12404 	if (!is_offload(sc))
12405 		return (ENODEV);
12406 	if (hw_off_limits(sc))
12407 		return (ENXIO);
12408 
12409 	if (enable) {
12410 #ifdef KERN_TLS
12411 		if (sc->flags & KERN_TLS_ON && is_t6(sc)) {
12412 			int i, j, n;
12413 			struct port_info *p;
12414 			struct vi_info *v;
12415 
12416 			/*
12417 			 * Reconfigure hardware for TOE if TXTLS is not enabled
12418 			 * on any ifnet.
12419 			 */
12420 			n = 0;
12421 			for_each_port(sc, i) {
12422 				p = sc->port[i];
12423 				for_each_vi(p, j, v) {
12424 					if (if_getcapenable(v->ifp) & IFCAP_TXTLS) {
12425 						CH_WARN(sc,
12426 						    "%s has NIC TLS enabled.\n",
12427 						    device_get_nameunit(v->dev));
12428 						n++;
12429 					}
12430 				}
12431 			}
12432 			if (n > 0) {
12433 				CH_WARN(sc, "Disable NIC TLS on all interfaces "
12434 				    "associated with this adapter before "
12435 				    "trying to enable TOE.\n");
12436 				return (EAGAIN);
12437 			}
12438 			rc = t6_config_kern_tls(sc, false);
12439 			if (rc)
12440 				return (rc);
12441 		}
12442 #endif
12443 		if ((if_getcapenable(vi->ifp) & IFCAP_TOE) != 0) {
12444 			/* TOE is already enabled. */
12445 			return (0);
12446 		}
12447 
12448 		/*
12449 		 * We need the port's queues around so that we're able to send
12450 		 * and receive CPLs to/from the TOE even if the ifnet for this
12451 		 * port has never been UP'd administratively.
12452 		 */
12453 		if (!(vi->flags & VI_INIT_DONE) && ((rc = vi_init(vi)) != 0))
12454 			return (rc);
12455 		if (!(pi->vi[0].flags & VI_INIT_DONE) &&
12456 		    ((rc = vi_init(&pi->vi[0])) != 0))
12457 			return (rc);
12458 
12459 		if (isset(&sc->offload_map, pi->port_id)) {
12460 			/* TOE is enabled on another VI of this port. */
12461 			pi->uld_vis++;
12462 			return (0);
12463 		}
12464 
12465 		if (!uld_active(sc, ULD_TOM)) {
12466 			rc = t4_activate_uld(sc, ULD_TOM);
12467 			if (rc == EAGAIN) {
12468 				log(LOG_WARNING,
12469 				    "You must kldload t4_tom.ko before trying "
12470 				    "to enable TOE on a cxgbe interface.\n");
12471 			}
12472 			if (rc != 0)
12473 				return (rc);
12474 			KASSERT(sc->tom_softc != NULL,
12475 			    ("%s: TOM activated but softc NULL", __func__));
12476 			KASSERT(uld_active(sc, ULD_TOM),
12477 			    ("%s: TOM activated but flag not set", __func__));
12478 		}
12479 
12480 		/* Activate iWARP and iSCSI too, if the modules are loaded. */
12481 		if (!uld_active(sc, ULD_IWARP))
12482 			(void) t4_activate_uld(sc, ULD_IWARP);
12483 		if (!uld_active(sc, ULD_ISCSI))
12484 			(void) t4_activate_uld(sc, ULD_ISCSI);
12485 
12486 		pi->uld_vis++;
12487 		setbit(&sc->offload_map, pi->port_id);
12488 	} else {
12489 		pi->uld_vis--;
12490 
12491 		if (!isset(&sc->offload_map, pi->port_id) || pi->uld_vis > 0)
12492 			return (0);
12493 
12494 		KASSERT(uld_active(sc, ULD_TOM),
12495 		    ("%s: TOM never initialized?", __func__));
12496 		clrbit(&sc->offload_map, pi->port_id);
12497 	}
12498 
12499 	return (0);
12500 }
12501 
12502 /*
12503  * Add an upper layer driver to the global list.
12504  */
12505 int
t4_register_uld(struct uld_info * ui)12506 t4_register_uld(struct uld_info *ui)
12507 {
12508 	int rc = 0;
12509 	struct uld_info *u;
12510 
12511 	sx_xlock(&t4_uld_list_lock);
12512 	SLIST_FOREACH(u, &t4_uld_list, link) {
12513 	    if (u->uld_id == ui->uld_id) {
12514 		    rc = EEXIST;
12515 		    goto done;
12516 	    }
12517 	}
12518 
12519 	SLIST_INSERT_HEAD(&t4_uld_list, ui, link);
12520 	ui->refcount = 0;
12521 done:
12522 	sx_xunlock(&t4_uld_list_lock);
12523 	return (rc);
12524 }
12525 
12526 int
t4_unregister_uld(struct uld_info * ui)12527 t4_unregister_uld(struct uld_info *ui)
12528 {
12529 	int rc = EINVAL;
12530 	struct uld_info *u;
12531 
12532 	sx_xlock(&t4_uld_list_lock);
12533 
12534 	SLIST_FOREACH(u, &t4_uld_list, link) {
12535 	    if (u == ui) {
12536 		    if (ui->refcount > 0) {
12537 			    rc = EBUSY;
12538 			    goto done;
12539 		    }
12540 
12541 		    SLIST_REMOVE(&t4_uld_list, ui, uld_info, link);
12542 		    rc = 0;
12543 		    goto done;
12544 	    }
12545 	}
12546 done:
12547 	sx_xunlock(&t4_uld_list_lock);
12548 	return (rc);
12549 }
12550 
12551 int
t4_activate_uld(struct adapter * sc,int id)12552 t4_activate_uld(struct adapter *sc, int id)
12553 {
12554 	int rc;
12555 	struct uld_info *ui;
12556 
12557 	ASSERT_SYNCHRONIZED_OP(sc);
12558 
12559 	if (id < 0 || id > ULD_MAX)
12560 		return (EINVAL);
12561 	rc = EAGAIN;	/* kldoad the module with this ULD and try again. */
12562 
12563 	sx_slock(&t4_uld_list_lock);
12564 
12565 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12566 		if (ui->uld_id == id) {
12567 			if (!(sc->flags & FULL_INIT_DONE)) {
12568 				rc = adapter_init(sc);
12569 				if (rc != 0)
12570 					break;
12571 			}
12572 
12573 			rc = ui->activate(sc);
12574 			if (rc == 0) {
12575 				setbit(&sc->active_ulds, id);
12576 				ui->refcount++;
12577 			}
12578 			break;
12579 		}
12580 	}
12581 
12582 	sx_sunlock(&t4_uld_list_lock);
12583 
12584 	return (rc);
12585 }
12586 
12587 int
t4_deactivate_uld(struct adapter * sc,int id)12588 t4_deactivate_uld(struct adapter *sc, int id)
12589 {
12590 	int rc;
12591 	struct uld_info *ui;
12592 
12593 	ASSERT_SYNCHRONIZED_OP(sc);
12594 
12595 	if (id < 0 || id > ULD_MAX)
12596 		return (EINVAL);
12597 	rc = ENXIO;
12598 
12599 	sx_slock(&t4_uld_list_lock);
12600 
12601 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12602 		if (ui->uld_id == id) {
12603 			rc = ui->deactivate(sc);
12604 			if (rc == 0) {
12605 				clrbit(&sc->active_ulds, id);
12606 				ui->refcount--;
12607 			}
12608 			break;
12609 		}
12610 	}
12611 
12612 	sx_sunlock(&t4_uld_list_lock);
12613 
12614 	return (rc);
12615 }
12616 
12617 static int
t4_deactivate_all_uld(struct adapter * sc)12618 t4_deactivate_all_uld(struct adapter *sc)
12619 {
12620 	int rc;
12621 	struct uld_info *ui;
12622 
12623 	rc = begin_synchronized_op(sc, NULL, SLEEP_OK, "t4detuld");
12624 	if (rc != 0)
12625 		return (ENXIO);
12626 
12627 	sx_slock(&t4_uld_list_lock);
12628 
12629 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12630 		if (isset(&sc->active_ulds, ui->uld_id)) {
12631 			rc = ui->deactivate(sc);
12632 			if (rc != 0)
12633 				break;
12634 			clrbit(&sc->active_ulds, ui->uld_id);
12635 			ui->refcount--;
12636 		}
12637 	}
12638 
12639 	sx_sunlock(&t4_uld_list_lock);
12640 	end_synchronized_op(sc, 0);
12641 
12642 	return (rc);
12643 }
12644 
12645 static void
t4_async_event(struct adapter * sc)12646 t4_async_event(struct adapter *sc)
12647 {
12648 	struct uld_info *ui;
12649 
12650 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4async") != 0)
12651 		return;
12652 	sx_slock(&t4_uld_list_lock);
12653 	SLIST_FOREACH(ui, &t4_uld_list, link) {
12654 		if (ui->uld_id == ULD_IWARP) {
12655 			ui->async_event(sc);
12656 			break;
12657 		}
12658 	}
12659 	sx_sunlock(&t4_uld_list_lock);
12660 	end_synchronized_op(sc, 0);
12661 }
12662 
12663 int
uld_active(struct adapter * sc,int uld_id)12664 uld_active(struct adapter *sc, int uld_id)
12665 {
12666 
12667 	MPASS(uld_id >= 0 && uld_id <= ULD_MAX);
12668 
12669 	return (isset(&sc->active_ulds, uld_id));
12670 }
12671 #endif
12672 
12673 #ifdef KERN_TLS
12674 static int
ktls_capability(struct adapter * sc,bool enable)12675 ktls_capability(struct adapter *sc, bool enable)
12676 {
12677 	ASSERT_SYNCHRONIZED_OP(sc);
12678 
12679 	if (!is_ktls(sc))
12680 		return (ENODEV);
12681 	if (!is_t6(sc))
12682 		return (0);
12683 	if (hw_off_limits(sc))
12684 		return (ENXIO);
12685 
12686 	if (enable) {
12687 		if (sc->flags & KERN_TLS_ON)
12688 			return (0);	/* already on */
12689 		if (sc->offload_map != 0) {
12690 			CH_WARN(sc,
12691 			    "Disable TOE on all interfaces associated with "
12692 			    "this adapter before trying to enable NIC TLS.\n");
12693 			return (EAGAIN);
12694 		}
12695 		return (t6_config_kern_tls(sc, true));
12696 	} else {
12697 		/*
12698 		 * Nothing to do for disable.  If TOE is enabled sometime later
12699 		 * then toe_capability will reconfigure the hardware.
12700 		 */
12701 		return (0);
12702 	}
12703 }
12704 #endif
12705 
12706 /*
12707  * t  = ptr to tunable.
12708  * nc = number of CPUs.
12709  * c  = compiled in default for that tunable.
12710  */
12711 static void
calculate_nqueues(int * t,int nc,const int c)12712 calculate_nqueues(int *t, int nc, const int c)
12713 {
12714 	int nq;
12715 
12716 	if (*t > 0)
12717 		return;
12718 	nq = *t < 0 ? -*t : c;
12719 	*t = min(nc, nq);
12720 }
12721 
12722 /*
12723  * Come up with reasonable defaults for some of the tunables, provided they're
12724  * not set by the user (in which case we'll use the values as is).
12725  */
12726 static void
tweak_tunables(void)12727 tweak_tunables(void)
12728 {
12729 	int nc = mp_ncpus;	/* our snapshot of the number of CPUs */
12730 
12731 	if (t4_ntxq < 1) {
12732 #ifdef RSS
12733 		t4_ntxq = rss_getnumbuckets();
12734 #else
12735 		calculate_nqueues(&t4_ntxq, nc, NTXQ);
12736 #endif
12737 	}
12738 
12739 	calculate_nqueues(&t4_ntxq_vi, nc, NTXQ_VI);
12740 
12741 	if (t4_nrxq < 1) {
12742 #ifdef RSS
12743 		t4_nrxq = rss_getnumbuckets();
12744 #else
12745 		calculate_nqueues(&t4_nrxq, nc, NRXQ);
12746 #endif
12747 	}
12748 
12749 	calculate_nqueues(&t4_nrxq_vi, nc, NRXQ_VI);
12750 
12751 #if defined(TCP_OFFLOAD) || defined(RATELIMIT)
12752 	calculate_nqueues(&t4_nofldtxq, nc, NOFLDTXQ);
12753 	calculate_nqueues(&t4_nofldtxq_vi, nc, NOFLDTXQ_VI);
12754 #endif
12755 #ifdef TCP_OFFLOAD
12756 	calculate_nqueues(&t4_nofldrxq, nc, NOFLDRXQ);
12757 	calculate_nqueues(&t4_nofldrxq_vi, nc, NOFLDRXQ_VI);
12758 #endif
12759 
12760 #if defined(TCP_OFFLOAD) || defined(KERN_TLS)
12761 	if (t4_toecaps_allowed == -1)
12762 		t4_toecaps_allowed = FW_CAPS_CONFIG_TOE;
12763 #else
12764 	if (t4_toecaps_allowed == -1)
12765 		t4_toecaps_allowed = 0;
12766 #endif
12767 
12768 #ifdef TCP_OFFLOAD
12769 	if (t4_rdmacaps_allowed == -1) {
12770 		t4_rdmacaps_allowed = FW_CAPS_CONFIG_RDMA_RDDP |
12771 		    FW_CAPS_CONFIG_RDMA_RDMAC;
12772 	}
12773 
12774 	if (t4_iscsicaps_allowed == -1) {
12775 		t4_iscsicaps_allowed = FW_CAPS_CONFIG_ISCSI_INITIATOR_PDU |
12776 		    FW_CAPS_CONFIG_ISCSI_TARGET_PDU |
12777 		    FW_CAPS_CONFIG_ISCSI_T10DIF;
12778 	}
12779 
12780 	if (t4_tmr_idx_ofld < 0 || t4_tmr_idx_ofld >= SGE_NTIMERS)
12781 		t4_tmr_idx_ofld = TMR_IDX_OFLD;
12782 
12783 	if (t4_pktc_idx_ofld < -1 || t4_pktc_idx_ofld >= SGE_NCOUNTERS)
12784 		t4_pktc_idx_ofld = PKTC_IDX_OFLD;
12785 #else
12786 	if (t4_rdmacaps_allowed == -1)
12787 		t4_rdmacaps_allowed = 0;
12788 
12789 	if (t4_iscsicaps_allowed == -1)
12790 		t4_iscsicaps_allowed = 0;
12791 #endif
12792 
12793 #ifdef DEV_NETMAP
12794 	calculate_nqueues(&t4_nnmtxq, nc, NNMTXQ);
12795 	calculate_nqueues(&t4_nnmrxq, nc, NNMRXQ);
12796 	calculate_nqueues(&t4_nnmtxq_vi, nc, NNMTXQ_VI);
12797 	calculate_nqueues(&t4_nnmrxq_vi, nc, NNMRXQ_VI);
12798 #endif
12799 
12800 	if (t4_tmr_idx < 0 || t4_tmr_idx >= SGE_NTIMERS)
12801 		t4_tmr_idx = TMR_IDX;
12802 
12803 	if (t4_pktc_idx < -1 || t4_pktc_idx >= SGE_NCOUNTERS)
12804 		t4_pktc_idx = PKTC_IDX;
12805 
12806 	if (t4_qsize_txq < 128)
12807 		t4_qsize_txq = 128;
12808 
12809 	if (t4_qsize_rxq < 128)
12810 		t4_qsize_rxq = 128;
12811 	while (t4_qsize_rxq & 7)
12812 		t4_qsize_rxq++;
12813 
12814 	t4_intr_types &= INTR_MSIX | INTR_MSI | INTR_INTX;
12815 
12816 	/*
12817 	 * Number of VIs to create per-port.  The first VI is the "main" regular
12818 	 * VI for the port.  The rest are additional virtual interfaces on the
12819 	 * same physical port.  Note that the main VI does not have native
12820 	 * netmap support but the extra VIs do.
12821 	 *
12822 	 * Limit the number of VIs per port to the number of available
12823 	 * MAC addresses per port.
12824 	 */
12825 	if (t4_num_vis < 1)
12826 		t4_num_vis = 1;
12827 	if (t4_num_vis > nitems(vi_mac_funcs)) {
12828 		t4_num_vis = nitems(vi_mac_funcs);
12829 		printf("cxgbe: number of VIs limited to %d\n", t4_num_vis);
12830 	}
12831 
12832 	if (pcie_relaxed_ordering < 0 || pcie_relaxed_ordering > 2) {
12833 		pcie_relaxed_ordering = 1;
12834 #if defined(__i386__) || defined(__amd64__)
12835 		if (cpu_vendor_id == CPU_VENDOR_INTEL)
12836 			pcie_relaxed_ordering = 0;
12837 #endif
12838 	}
12839 }
12840 
12841 #ifdef DDB
12842 static void
t4_dump_tcb(struct adapter * sc,int tid)12843 t4_dump_tcb(struct adapter *sc, int tid)
12844 {
12845 	uint32_t base, i, j, off, pf, reg, save, tcb_addr, win_pos;
12846 
12847 	reg = PCIE_MEM_ACCESS_REG(A_PCIE_MEM_ACCESS_OFFSET, 2);
12848 	save = t4_read_reg(sc, reg);
12849 	base = sc->memwin[2].mw_base;
12850 
12851 	/* Dump TCB for the tid */
12852 	tcb_addr = t4_read_reg(sc, A_TP_CMM_TCB_BASE);
12853 	tcb_addr += tid * TCB_SIZE;
12854 
12855 	if (is_t4(sc)) {
12856 		pf = 0;
12857 		win_pos = tcb_addr & ~0xf;	/* start must be 16B aligned */
12858 	} else {
12859 		pf = V_PFNUM(sc->pf);
12860 		win_pos = tcb_addr & ~0x7f;	/* start must be 128B aligned */
12861 	}
12862 	t4_write_reg(sc, reg, win_pos | pf);
12863 	t4_read_reg(sc, reg);
12864 
12865 	off = tcb_addr - win_pos;
12866 	for (i = 0; i < 4; i++) {
12867 		uint32_t buf[8];
12868 		for (j = 0; j < 8; j++, off += 4)
12869 			buf[j] = htonl(t4_read_reg(sc, base + off));
12870 
12871 		db_printf("%08x %08x %08x %08x %08x %08x %08x %08x\n",
12872 		    buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6],
12873 		    buf[7]);
12874 	}
12875 
12876 	t4_write_reg(sc, reg, save);
12877 	t4_read_reg(sc, reg);
12878 }
12879 
12880 static void
t4_dump_devlog(struct adapter * sc)12881 t4_dump_devlog(struct adapter *sc)
12882 {
12883 	struct devlog_params *dparams = &sc->params.devlog;
12884 	struct fw_devlog_e e;
12885 	int i, first, j, m, nentries, rc;
12886 	uint64_t ftstamp = UINT64_MAX;
12887 
12888 	if (dparams->start == 0) {
12889 		db_printf("devlog params not valid\n");
12890 		return;
12891 	}
12892 
12893 	nentries = dparams->size / sizeof(struct fw_devlog_e);
12894 	m = fwmtype_to_hwmtype(dparams->memtype);
12895 
12896 	/* Find the first entry. */
12897 	first = -1;
12898 	for (i = 0; i < nentries && !db_pager_quit; i++) {
12899 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12900 		    sizeof(e), (void *)&e);
12901 		if (rc != 0)
12902 			break;
12903 
12904 		if (e.timestamp == 0)
12905 			break;
12906 
12907 		e.timestamp = be64toh(e.timestamp);
12908 		if (e.timestamp < ftstamp) {
12909 			ftstamp = e.timestamp;
12910 			first = i;
12911 		}
12912 	}
12913 
12914 	if (first == -1)
12915 		return;
12916 
12917 	i = first;
12918 	do {
12919 		rc = -t4_mem_read(sc, m, dparams->start + i * sizeof(e),
12920 		    sizeof(e), (void *)&e);
12921 		if (rc != 0)
12922 			return;
12923 
12924 		if (e.timestamp == 0)
12925 			return;
12926 
12927 		e.timestamp = be64toh(e.timestamp);
12928 		e.seqno = be32toh(e.seqno);
12929 		for (j = 0; j < 8; j++)
12930 			e.params[j] = be32toh(e.params[j]);
12931 
12932 		db_printf("%10d  %15ju  %8s  %8s  ",
12933 		    e.seqno, e.timestamp,
12934 		    (e.level < nitems(devlog_level_strings) ?
12935 			devlog_level_strings[e.level] : "UNKNOWN"),
12936 		    (e.facility < nitems(devlog_facility_strings) ?
12937 			devlog_facility_strings[e.facility] : "UNKNOWN"));
12938 		db_printf(e.fmt, e.params[0], e.params[1], e.params[2],
12939 		    e.params[3], e.params[4], e.params[5], e.params[6],
12940 		    e.params[7]);
12941 
12942 		if (++i == nentries)
12943 			i = 0;
12944 	} while (i != first && !db_pager_quit);
12945 }
12946 
12947 static DB_DEFINE_TABLE(show, t4, show_t4);
12948 
DB_TABLE_COMMAND_FLAGS(show_t4,devlog,db_show_devlog,CS_OWN)12949 DB_TABLE_COMMAND_FLAGS(show_t4, devlog, db_show_devlog, CS_OWN)
12950 {
12951 	device_t dev;
12952 	int t;
12953 	bool valid;
12954 
12955 	valid = false;
12956 	t = db_read_token();
12957 	if (t == tIDENT) {
12958 		dev = device_lookup_by_name(db_tok_string);
12959 		valid = true;
12960 	}
12961 	db_skip_to_eol();
12962 	if (!valid) {
12963 		db_printf("usage: show t4 devlog <nexus>\n");
12964 		return;
12965 	}
12966 
12967 	if (dev == NULL) {
12968 		db_printf("device not found\n");
12969 		return;
12970 	}
12971 
12972 	t4_dump_devlog(device_get_softc(dev));
12973 }
12974 
DB_TABLE_COMMAND_FLAGS(show_t4,tcb,db_show_t4tcb,CS_OWN)12975 DB_TABLE_COMMAND_FLAGS(show_t4, tcb, db_show_t4tcb, CS_OWN)
12976 {
12977 	device_t dev;
12978 	int radix, tid, t;
12979 	bool valid;
12980 
12981 	valid = false;
12982 	radix = db_radix;
12983 	db_radix = 10;
12984 	t = db_read_token();
12985 	if (t == tIDENT) {
12986 		dev = device_lookup_by_name(db_tok_string);
12987 		t = db_read_token();
12988 		if (t == tNUMBER) {
12989 			tid = db_tok_number;
12990 			valid = true;
12991 		}
12992 	}
12993 	db_radix = radix;
12994 	db_skip_to_eol();
12995 	if (!valid) {
12996 		db_printf("usage: show t4 tcb <nexus> <tid>\n");
12997 		return;
12998 	}
12999 
13000 	if (dev == NULL) {
13001 		db_printf("device not found\n");
13002 		return;
13003 	}
13004 	if (tid < 0) {
13005 		db_printf("invalid tid\n");
13006 		return;
13007 	}
13008 
13009 	t4_dump_tcb(device_get_softc(dev), tid);
13010 }
13011 #endif
13012 
13013 static eventhandler_tag vxlan_start_evtag;
13014 static eventhandler_tag vxlan_stop_evtag;
13015 
13016 struct vxlan_evargs {
13017 	if_t ifp;
13018 	uint16_t port;
13019 };
13020 
13021 static void
enable_vxlan_rx(struct adapter * sc)13022 enable_vxlan_rx(struct adapter *sc)
13023 {
13024 	int i, rc;
13025 	struct port_info *pi;
13026 	uint8_t match_all_mac[ETHER_ADDR_LEN] = {0};
13027 
13028 	ASSERT_SYNCHRONIZED_OP(sc);
13029 
13030 	t4_write_reg(sc, A_MPS_RX_VXLAN_TYPE, V_VXLAN(sc->vxlan_port) |
13031 	    F_VXLAN_EN);
13032 	for_each_port(sc, i) {
13033 		pi = sc->port[i];
13034 		if (pi->vxlan_tcam_entry == true)
13035 			continue;
13036 		rc = t4_alloc_raw_mac_filt(sc, pi->vi[0].viid, match_all_mac,
13037 		    match_all_mac, sc->rawf_base + pi->port_id, 1, pi->port_id,
13038 		    true);
13039 		if (rc < 0) {
13040 			rc = -rc;
13041 			CH_ERR(&pi->vi[0],
13042 			    "failed to add VXLAN TCAM entry: %d.\n", rc);
13043 		} else {
13044 			MPASS(rc == sc->rawf_base + pi->port_id);
13045 			pi->vxlan_tcam_entry = true;
13046 		}
13047 	}
13048 }
13049 
13050 static void
t4_vxlan_start(struct adapter * sc,void * arg)13051 t4_vxlan_start(struct adapter *sc, void *arg)
13052 {
13053 	struct vxlan_evargs *v = arg;
13054 
13055 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13056 		return;
13057 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxst") != 0)
13058 		return;
13059 
13060 	if (sc->vxlan_refcount == 0) {
13061 		sc->vxlan_port = v->port;
13062 		sc->vxlan_refcount = 1;
13063 		if (!hw_off_limits(sc))
13064 			enable_vxlan_rx(sc);
13065 	} else if (sc->vxlan_port == v->port) {
13066 		sc->vxlan_refcount++;
13067 	} else {
13068 		CH_ERR(sc, "VXLAN already configured on port  %d; "
13069 		    "ignoring attempt to configure it on port %d\n",
13070 		    sc->vxlan_port, v->port);
13071 	}
13072 	end_synchronized_op(sc, 0);
13073 }
13074 
13075 static void
t4_vxlan_stop(struct adapter * sc,void * arg)13076 t4_vxlan_stop(struct adapter *sc, void *arg)
13077 {
13078 	struct vxlan_evargs *v = arg;
13079 
13080 	if (sc->nrawf == 0 || chip_id(sc) <= CHELSIO_T5)
13081 		return;
13082 	if (begin_synchronized_op(sc, NULL, SLEEP_OK | INTR_OK, "t4vxsp") != 0)
13083 		return;
13084 
13085 	/*
13086 	 * VXLANs may have been configured before the driver was loaded so we
13087 	 * may see more stops than starts.  This is not handled cleanly but at
13088 	 * least we keep the refcount sane.
13089 	 */
13090 	if (sc->vxlan_port != v->port)
13091 		goto done;
13092 	if (sc->vxlan_refcount == 0) {
13093 		CH_ERR(sc, "VXLAN operation on port %d was stopped earlier; "
13094 		    "ignoring attempt to stop it again.\n", sc->vxlan_port);
13095 	} else if (--sc->vxlan_refcount == 0 && !hw_off_limits(sc))
13096 		t4_set_reg_field(sc, A_MPS_RX_VXLAN_TYPE, F_VXLAN_EN, 0);
13097 done:
13098 	end_synchronized_op(sc, 0);
13099 }
13100 
13101 static void
t4_vxlan_start_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13102 t4_vxlan_start_handler(void *arg __unused, if_t ifp,
13103     sa_family_t family, u_int port)
13104 {
13105 	struct vxlan_evargs v;
13106 
13107 	MPASS(family == AF_INET || family == AF_INET6);
13108 	v.ifp = ifp;
13109 	v.port = port;
13110 
13111 	t4_iterate(t4_vxlan_start, &v);
13112 }
13113 
13114 static void
t4_vxlan_stop_handler(void * arg __unused,if_t ifp,sa_family_t family,u_int port)13115 t4_vxlan_stop_handler(void *arg __unused, if_t ifp, sa_family_t family,
13116     u_int port)
13117 {
13118 	struct vxlan_evargs v;
13119 
13120 	MPASS(family == AF_INET || family == AF_INET6);
13121 	v.ifp = ifp;
13122 	v.port = port;
13123 
13124 	t4_iterate(t4_vxlan_stop, &v);
13125 }
13126 
13127 
13128 static struct sx mlu;	/* mod load unload */
13129 SX_SYSINIT(cxgbe_mlu, &mlu, "cxgbe mod load/unload");
13130 
13131 static int
mod_event(module_t mod,int cmd,void * arg)13132 mod_event(module_t mod, int cmd, void *arg)
13133 {
13134 	int rc = 0;
13135 	static int loaded = 0;
13136 
13137 	switch (cmd) {
13138 	case MOD_LOAD:
13139 		sx_xlock(&mlu);
13140 		if (loaded++ == 0) {
13141 			t4_sge_modload();
13142 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13143 			    t4_filter_rpl, CPL_COOKIE_FILTER);
13144 			t4_register_shared_cpl_handler(CPL_L2T_WRITE_RPL,
13145 			    do_l2t_write_rpl, CPL_COOKIE_FILTER);
13146 			t4_register_shared_cpl_handler(CPL_ACT_OPEN_RPL,
13147 			    t4_hashfilter_ao_rpl, CPL_COOKIE_HASHFILTER);
13148 			t4_register_shared_cpl_handler(CPL_SET_TCB_RPL,
13149 			    t4_hashfilter_tcb_rpl, CPL_COOKIE_HASHFILTER);
13150 			t4_register_shared_cpl_handler(CPL_ABORT_RPL_RSS,
13151 			    t4_del_hashfilter_rpl, CPL_COOKIE_HASHFILTER);
13152 			t4_register_cpl_handler(CPL_TRACE_PKT, t4_trace_pkt);
13153 			t4_register_cpl_handler(CPL_T5_TRACE_PKT, t5_trace_pkt);
13154 			t4_register_cpl_handler(CPL_SMT_WRITE_RPL,
13155 			    do_smt_write_rpl);
13156 			sx_init(&t4_list_lock, "T4/T5 adapters");
13157 			SLIST_INIT(&t4_list);
13158 			callout_init(&fatal_callout, 1);
13159 #ifdef TCP_OFFLOAD
13160 			sx_init(&t4_uld_list_lock, "T4/T5 ULDs");
13161 			SLIST_INIT(&t4_uld_list);
13162 #endif
13163 #ifdef INET6
13164 			t4_clip_modload();
13165 #endif
13166 #ifdef KERN_TLS
13167 			t6_ktls_modload();
13168 #endif
13169 			t4_tracer_modload();
13170 			tweak_tunables();
13171 			vxlan_start_evtag =
13172 			    EVENTHANDLER_REGISTER(vxlan_start,
13173 				t4_vxlan_start_handler, NULL,
13174 				EVENTHANDLER_PRI_ANY);
13175 			vxlan_stop_evtag =
13176 			    EVENTHANDLER_REGISTER(vxlan_stop,
13177 				t4_vxlan_stop_handler, NULL,
13178 				EVENTHANDLER_PRI_ANY);
13179 			reset_tq = taskqueue_create("t4_rst_tq", M_WAITOK,
13180 			    taskqueue_thread_enqueue, &reset_tq);
13181 			taskqueue_start_threads(&reset_tq, 1, PI_SOFT,
13182 			    "t4_rst_thr");
13183 		}
13184 		sx_xunlock(&mlu);
13185 		break;
13186 
13187 	case MOD_UNLOAD:
13188 		sx_xlock(&mlu);
13189 		if (--loaded == 0) {
13190 			int tries;
13191 
13192 			taskqueue_free(reset_tq);
13193 			sx_slock(&t4_list_lock);
13194 			if (!SLIST_EMPTY(&t4_list)) {
13195 				rc = EBUSY;
13196 				sx_sunlock(&t4_list_lock);
13197 				goto done_unload;
13198 			}
13199 #ifdef TCP_OFFLOAD
13200 			sx_slock(&t4_uld_list_lock);
13201 			if (!SLIST_EMPTY(&t4_uld_list)) {
13202 				rc = EBUSY;
13203 				sx_sunlock(&t4_uld_list_lock);
13204 				sx_sunlock(&t4_list_lock);
13205 				goto done_unload;
13206 			}
13207 #endif
13208 			tries = 0;
13209 			while (tries++ < 5 && t4_sge_extfree_refs() != 0) {
13210 				uprintf("%ju clusters with custom free routine "
13211 				    "still is use.\n", t4_sge_extfree_refs());
13212 				pause("t4unload", 2 * hz);
13213 			}
13214 #ifdef TCP_OFFLOAD
13215 			sx_sunlock(&t4_uld_list_lock);
13216 #endif
13217 			sx_sunlock(&t4_list_lock);
13218 
13219 			if (t4_sge_extfree_refs() == 0) {
13220 				EVENTHANDLER_DEREGISTER(vxlan_start,
13221 				    vxlan_start_evtag);
13222 				EVENTHANDLER_DEREGISTER(vxlan_stop,
13223 				    vxlan_stop_evtag);
13224 				t4_tracer_modunload();
13225 #ifdef KERN_TLS
13226 				t6_ktls_modunload();
13227 #endif
13228 #ifdef INET6
13229 				t4_clip_modunload();
13230 #endif
13231 #ifdef TCP_OFFLOAD
13232 				sx_destroy(&t4_uld_list_lock);
13233 #endif
13234 				sx_destroy(&t4_list_lock);
13235 				t4_sge_modunload();
13236 				loaded = 0;
13237 			} else {
13238 				rc = EBUSY;
13239 				loaded++;	/* undo earlier decrement */
13240 			}
13241 		}
13242 done_unload:
13243 		sx_xunlock(&mlu);
13244 		break;
13245 	}
13246 
13247 	return (rc);
13248 }
13249 
13250 DRIVER_MODULE(t4nex, pci, t4_driver, mod_event, 0);
13251 MODULE_VERSION(t4nex, 1);
13252 MODULE_DEPEND(t4nex, firmware, 1, 1, 1);
13253 #ifdef DEV_NETMAP
13254 MODULE_DEPEND(t4nex, netmap, 1, 1, 1);
13255 #endif /* DEV_NETMAP */
13256 
13257 DRIVER_MODULE(t5nex, pci, t5_driver, mod_event, 0);
13258 MODULE_VERSION(t5nex, 1);
13259 MODULE_DEPEND(t5nex, firmware, 1, 1, 1);
13260 #ifdef DEV_NETMAP
13261 MODULE_DEPEND(t5nex, netmap, 1, 1, 1);
13262 #endif /* DEV_NETMAP */
13263 
13264 DRIVER_MODULE(t6nex, pci, t6_driver, mod_event, 0);
13265 MODULE_VERSION(t6nex, 1);
13266 MODULE_DEPEND(t6nex, crypto, 1, 1, 1);
13267 MODULE_DEPEND(t6nex, firmware, 1, 1, 1);
13268 #ifdef DEV_NETMAP
13269 MODULE_DEPEND(t6nex, netmap, 1, 1, 1);
13270 #endif /* DEV_NETMAP */
13271 
13272 DRIVER_MODULE(cxgbe, t4nex, cxgbe_driver, 0, 0);
13273 MODULE_VERSION(cxgbe, 1);
13274 
13275 DRIVER_MODULE(cxl, t5nex, cxl_driver, 0, 0);
13276 MODULE_VERSION(cxl, 1);
13277 
13278 DRIVER_MODULE(cc, t6nex, cc_driver, 0, 0);
13279 MODULE_VERSION(cc, 1);
13280 
13281 DRIVER_MODULE(vcxgbe, cxgbe, vcxgbe_driver, 0, 0);
13282 MODULE_VERSION(vcxgbe, 1);
13283 
13284 DRIVER_MODULE(vcxl, cxl, vcxl_driver, 0, 0);
13285 MODULE_VERSION(vcxl, 1);
13286 
13287 DRIVER_MODULE(vcc, cc, vcc_driver, 0, 0);
13288 MODULE_VERSION(vcc, 1);
13289