xref: /netbsd/sys/uvm/uvm_km.c (revision 8a204295)
1 /*	$NetBSD: uvm_km.c,v 1.165 2023/04/09 09:00:56 riastradh Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_km.c: handle kernel memory allocation and management
66  */
67 
68 /*
69  * overview of kernel memory management:
70  *
71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74  *
75  * the kernel_map has several "submaps."   submaps can only appear in
76  * the kernel_map (user processes can't use them).   submaps "take over"
77  * the management of a sub-range of the kernel's address space.  submaps
78  * are typically allocated at boot time and are never released.   kernel
79  * virtual address space that is mapped by a submap is locked by the
80  * submap's lock -- not the kernel_map's lock.
81  *
82  * thus, the useful feature of submaps is that they allow us to break
83  * up the locking and protection of the kernel address space into smaller
84  * chunks.
85  *
86  * the vm system has several standard kernel submaps/arenas, including:
87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
88  *   pager_map => used to map "buf" structures into kernel space
89  *   exec_map => used during exec to handle exec args
90  *   etc...
91  *
92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
93  * within the kernel_map and is controlled by vmem(9).
94  *
95  * the kernel allocates its private memory out of special uvm_objects whose
96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97  * are "special" and never die).   all kernel objects should be thought of
98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99  * object is equal to the size of kernel virtual address space (i.e. the
100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101  *
102  * note that just because a kernel object spans the entire kernel virtual
103  * address space doesn't mean that it has to be mapped into the entire space.
104  * large chunks of a kernel object's space go unused either because
105  * that area of kernel VM is unmapped, or there is some other type of
106  * object mapped into that range (e.g. a vnode).    for submap's kernel
107  * objects, the only part of the object that can ever be populated is the
108  * offsets that are managed by the submap.
109  *
110  * note that the "offset" in a kernel object is always the kernel virtual
111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112  * example:
113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116  *   then that means that the page at offset 0x235000 in kernel_object is
117  *   mapped at 0xf8235000.
118  *
119  * kernel object have one other special property: when the kernel virtual
120  * memory mapping them is unmapped, the backing memory in the object is
121  * freed right away.   this is done with the uvm_km_pgremove() function.
122  * this has to be done because there is no backing store for kernel pages
123  * and no need to save them after they are no longer referenced.
124  *
125  * Generic arenas:
126  *
127  * kmem_arena:
128  *	Main arena controlling the kernel KVA used by other arenas.
129  *
130  * kmem_va_arena:
131  *	Implements quantum caching in order to speedup allocations and
132  *	reduce fragmentation.  The pool(9), unless created with a custom
133  *	meta-data allocator, and kmem(9) subsystems use this arena.
134  *
135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137  * compensates this by importing larger chunks from kmem_arena.
138  *
139  * kmem_va_meta_arena:
140  *	Space for meta-data.
141  *
142  * kmem_meta_arena:
143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144  *	backed with the pages.
145  *
146  * Arena stacking:
147  *
148  *	kmem_arena
149  *		kmem_va_arena
150  *		kmem_va_meta_arena
151  *			kmem_meta_arena
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.165 2023/04/09 09:00:56 riastradh Exp $");
156 
157 #include "opt_uvmhist.h"
158 
159 #include "opt_kmempages.h"
160 
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164 
165 /*
166  * Defaults for lower and upper-bounds for the kmem_arena page count.
167  * Can be overridden by kernel config options.
168  */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172 
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176 
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/atomic.h>
181 #include <sys/proc.h>
182 #include <sys/pool.h>
183 #include <sys/vmem.h>
184 #include <sys/vmem_impl.h>
185 #include <sys/kmem.h>
186 #include <sys/msan.h>
187 
188 #include <uvm/uvm.h>
189 
190 /*
191  * global data structures
192  */
193 
194 struct vm_map *kernel_map = NULL;
195 
196 /*
197  * local data structures
198  */
199 
200 static struct vm_map		kernel_map_store;
201 static struct vm_map_entry	kernel_image_mapent_store;
202 static struct vm_map_entry	kernel_kmem_mapent_store;
203 
204 size_t nkmempages = 0;
205 vaddr_t kmembase;
206 vsize_t kmemsize;
207 
208 static struct vmem kmem_arena_store;
209 vmem_t *kmem_arena = NULL;
210 static struct vmem kmem_va_arena_store;
211 vmem_t *kmem_va_arena;
212 
213 /*
214  * kmeminit_nkmempages: calculate the size of kmem_arena.
215  */
216 void
kmeminit_nkmempages(void)217 kmeminit_nkmempages(void)
218 {
219 	size_t npages;
220 
221 	if (nkmempages != 0) {
222 		/*
223 		 * It's already been set (by us being here before)
224 		 * bail out now;
225 		 */
226 		return;
227 	}
228 
229 #if defined(NKMEMPAGES_MAX_UNLIMITED) && !defined(KMSAN)
230 	npages = physmem;
231 #else
232 
233 #if defined(KMSAN)
234 	npages = (physmem / 4);
235 #elif defined(PMAP_MAP_POOLPAGE)
236 	npages = (physmem / 4);
237 #else
238 	npages = (physmem / 3) * 2;
239 #endif /* defined(PMAP_MAP_POOLPAGE) */
240 
241 #if !defined(NKMEMPAGES_MAX_UNLIMITED)
242 	if (npages > NKMEMPAGES_MAX)
243 		npages = NKMEMPAGES_MAX;
244 #endif
245 
246 #endif
247 
248 	if (npages < NKMEMPAGES_MIN)
249 		npages = NKMEMPAGES_MIN;
250 
251 	nkmempages = npages;
252 }
253 
254 /*
255  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
256  * KVM already allocated for text, data, bss, and static data structures).
257  *
258  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
259  *    we assume that [vmin -> start] has already been allocated and that
260  *    "end" is the end.
261  */
262 
263 void
uvm_km_bootstrap(vaddr_t start,vaddr_t end)264 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
265 {
266 	bool kmem_arena_small;
267 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
268 	struct uvm_map_args args;
269 	int error;
270 
271 	UVMHIST_FUNC(__func__);
272 	UVMHIST_CALLARGS(maphist, "start=%#jx end=%#jx", start, end, 0,0);
273 
274 	kmeminit_nkmempages();
275 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
276 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
277 
278 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
279 
280 	/*
281 	 * next, init kernel memory objects.
282 	 */
283 
284 	/* kernel_object: for pageable anonymous kernel memory */
285 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
286 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
287 
288 	/*
289 	 * init the map and reserve any space that might already
290 	 * have been allocated kernel space before installing.
291 	 */
292 
293 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
294 	kernel_map_store.pmap = pmap_kernel();
295 	if (start != base) {
296 		error = uvm_map_prepare(&kernel_map_store,
297 		    base, start - base,
298 		    NULL, UVM_UNKNOWN_OFFSET, 0,
299 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
300 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
301 		if (!error) {
302 			kernel_image_mapent_store.flags =
303 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
304 			error = uvm_map_enter(&kernel_map_store, &args,
305 			    &kernel_image_mapent_store);
306 		}
307 
308 		if (error)
309 			panic(
310 			    "uvm_km_bootstrap: could not reserve space for kernel");
311 
312 		kmembase = args.uma_start + args.uma_size;
313 	} else {
314 		kmembase = base;
315 	}
316 
317 	error = uvm_map_prepare(&kernel_map_store,
318 	    kmembase, kmemsize,
319 	    NULL, UVM_UNKNOWN_OFFSET, 0,
320 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
321 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
322 	if (!error) {
323 		kernel_kmem_mapent_store.flags =
324 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
325 		error = uvm_map_enter(&kernel_map_store, &args,
326 		    &kernel_kmem_mapent_store);
327 	}
328 
329 	if (error)
330 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
331 
332 	/*
333 	 * install!
334 	 */
335 
336 	kernel_map = &kernel_map_store;
337 
338 	pool_subsystem_init();
339 
340 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
341 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
342 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
343 #ifdef PMAP_GROWKERNEL
344 	/*
345 	 * kmem_arena VA allocations happen independently of uvm_map.
346 	 * grow kernel to accommodate the kmem_arena.
347 	 */
348 	if (uvm_maxkaddr < kmembase + kmemsize) {
349 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
350 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
351 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
352 		    uvm_maxkaddr, kmembase, kmemsize);
353 	}
354 #endif
355 
356 	vmem_subsystem_init(kmem_arena);
357 
358 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
359 	    kmembase, kmemsize, 0,0);
360 
361 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
362 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
363 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
364 	    VM_NOSLEEP, IPL_VM);
365 
366 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
367 }
368 
369 /*
370  * uvm_km_init: init the kernel maps virtual memory caches
371  * and start the pool/kmem allocator.
372  */
373 void
uvm_km_init(void)374 uvm_km_init(void)
375 {
376 	kmem_init();
377 }
378 
379 /*
380  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
381  * is allocated all references to that area of VM must go through it.  this
382  * allows the locking of VAs in kernel_map to be broken up into regions.
383  *
384  * => if `fixed' is true, *vmin specifies where the region described
385  *   pager_map => used to map "buf" structures into kernel space
386  *      by the submap must start
387  * => if submap is non NULL we use that as the submap, otherwise we
388  *	alloc a new map
389  */
390 
391 struct vm_map *
uvm_km_suballoc(struct vm_map * map,vaddr_t * vmin,vaddr_t * vmax,vsize_t size,int flags,bool fixed,struct vm_map * submap)392 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
393     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
394     struct vm_map *submap)
395 {
396 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
397 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
398 
399 	KASSERT(vm_map_pmap(map) == pmap_kernel());
400 
401 	size = round_page(size);	/* round up to pagesize */
402 
403 	/*
404 	 * first allocate a blank spot in the parent map
405 	 */
406 
407 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
408 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
409 	    UVM_ADV_RANDOM, mapflags)) != 0) {
410 		panic("%s: unable to allocate space in parent map", __func__);
411 	}
412 
413 	/*
414 	 * set VM bounds (vmin is filled in by uvm_map)
415 	 */
416 
417 	*vmax = *vmin + size;
418 
419 	/*
420 	 * add references to pmap and create or init the submap
421 	 */
422 
423 	pmap_reference(vm_map_pmap(map));
424 	if (submap == NULL) {
425 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
426 	}
427 	uvm_map_setup(submap, *vmin, *vmax, flags);
428 	submap->pmap = vm_map_pmap(map);
429 
430 	/*
431 	 * now let uvm_map_submap plug in it...
432 	 */
433 
434 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
435 		panic("uvm_km_suballoc: submap allocation failed");
436 
437 	return(submap);
438 }
439 
440 /*
441  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
442  */
443 
444 void
uvm_km_pgremove(vaddr_t startva,vaddr_t endva)445 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
446 {
447 	struct uvm_object * const uobj = uvm_kernel_object;
448 	const voff_t start = startva - vm_map_min(kernel_map);
449 	const voff_t end = endva - vm_map_min(kernel_map);
450 	struct vm_page *pg;
451 	voff_t curoff, nextoff;
452 	int swpgonlydelta = 0;
453 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
454 
455 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
456 	KASSERT(startva < endva);
457 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
458 
459 	rw_enter(uobj->vmobjlock, RW_WRITER);
460 	pmap_remove(pmap_kernel(), startva, endva);
461 	for (curoff = start; curoff < end; curoff = nextoff) {
462 		nextoff = curoff + PAGE_SIZE;
463 		pg = uvm_pagelookup(uobj, curoff);
464 		if (pg != NULL && pg->flags & PG_BUSY) {
465 			uvm_pagewait(pg, uobj->vmobjlock, "km_pgrm");
466 			rw_enter(uobj->vmobjlock, RW_WRITER);
467 			nextoff = curoff;
468 			continue;
469 		}
470 
471 		/*
472 		 * free the swap slot, then the page.
473 		 */
474 
475 		if (pg == NULL &&
476 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
477 			swpgonlydelta++;
478 		}
479 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
480 		if (pg != NULL) {
481 			uvm_pagefree(pg);
482 		}
483 	}
484 	rw_exit(uobj->vmobjlock);
485 
486 	if (swpgonlydelta > 0) {
487 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
488 		atomic_add_int(&uvmexp.swpgonly, -swpgonlydelta);
489 	}
490 }
491 
492 
493 /*
494  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
495  *    regions.
496  *
497  * => when you unmap a part of anonymous kernel memory you want to toss
498  *    the pages right away.    (this is called from uvm_unmap_...).
499  * => none of the pages will ever be busy, and none of them will ever
500  *    be on the active or inactive queues (because they have no object).
501  */
502 
503 void
uvm_km_pgremove_intrsafe(struct vm_map * map,vaddr_t start,vaddr_t end)504 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
505 {
506 #define __PGRM_BATCH 16
507 	struct vm_page *pg;
508 	paddr_t pa[__PGRM_BATCH];
509 	int npgrm, i;
510 	vaddr_t va, batch_vastart;
511 
512 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
513 
514 	KASSERT(VM_MAP_IS_KERNEL(map));
515 	KASSERTMSG(vm_map_min(map) <= start,
516 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
517 	    " (size=%#"PRIxVSIZE")",
518 	    vm_map_min(map), start, end - start);
519 	KASSERT(start < end);
520 	KASSERT(end <= vm_map_max(map));
521 
522 	for (va = start; va < end;) {
523 		batch_vastart = va;
524 		/* create a batch of at most __PGRM_BATCH pages to free */
525 		for (i = 0;
526 		     i < __PGRM_BATCH && va < end;
527 		     va += PAGE_SIZE) {
528 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
529 				continue;
530 			}
531 			i++;
532 		}
533 		npgrm = i;
534 		/* now remove the mappings */
535 		pmap_kremove(batch_vastart, va - batch_vastart);
536 		/* and free the pages */
537 		for (i = 0; i < npgrm; i++) {
538 			pg = PHYS_TO_VM_PAGE(pa[i]);
539 			KASSERT(pg);
540 			KASSERT(pg->uobject == NULL);
541 			KASSERT(pg->uanon == NULL);
542 			KASSERT((pg->flags & PG_BUSY) == 0);
543 			uvm_pagefree(pg);
544 		}
545 	}
546 #undef __PGRM_BATCH
547 }
548 
549 #if defined(DEBUG)
550 void
uvm_km_check_empty(struct vm_map * map,vaddr_t start,vaddr_t end)551 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
552 {
553 	vaddr_t va;
554 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
555 
556 	KDASSERT(VM_MAP_IS_KERNEL(map));
557 	KDASSERT(vm_map_min(map) <= start);
558 	KDASSERT(start < end);
559 	KDASSERT(end <= vm_map_max(map));
560 
561 	for (va = start; va < end; va += PAGE_SIZE) {
562 		paddr_t pa;
563 
564 		if (pmap_extract(pmap_kernel(), va, &pa)) {
565 			panic("uvm_km_check_empty: va %p has pa %#llx",
566 			    (void *)va, (long long)pa);
567 		}
568 		/*
569 		 * kernel_object should not have pages for the corresponding
570 		 * region.  check it.
571 		 *
572 		 * why trylock?  because:
573 		 * - caller might not want to block.
574 		 * - we can recurse when allocating radix_node for
575 		 *   kernel_object.
576 		 */
577 		if (rw_tryenter(uvm_kernel_object->vmobjlock, RW_READER)) {
578 			struct vm_page *pg;
579 
580 			pg = uvm_pagelookup(uvm_kernel_object,
581 			    va - vm_map_min(kernel_map));
582 			rw_exit(uvm_kernel_object->vmobjlock);
583 			if (pg) {
584 				panic("uvm_km_check_empty: "
585 				    "has page hashed at %p",
586 				    (const void *)va);
587 			}
588 		}
589 	}
590 }
591 #endif /* defined(DEBUG) */
592 
593 /*
594  * uvm_km_alloc: allocate an area of kernel memory.
595  *
596  * => NOTE: we can return 0 even if we can wait if there is not enough
597  *	free VM space in the map... caller should be prepared to handle
598  *	this case.
599  * => we return KVA of memory allocated
600  */
601 
602 vaddr_t
uvm_km_alloc(struct vm_map * map,vsize_t size,vsize_t align,uvm_flag_t flags)603 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
604 {
605 	vaddr_t kva, loopva;
606 	vaddr_t offset;
607 	vsize_t loopsize;
608 	struct vm_page *pg;
609 	struct uvm_object *obj;
610 	int pgaflags;
611 	vm_prot_t prot, vaprot;
612 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
613 
614 	KASSERT(vm_map_pmap(map) == pmap_kernel());
615 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
616 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
617 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
618 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
619 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
620 
621 	/*
622 	 * setup for call
623 	 */
624 
625 	kva = vm_map_min(map);	/* hint */
626 	size = round_page(size);
627 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
628 	UVMHIST_LOG(maphist,"  (map=%#jx, obj=%#jx, size=%#jx, flags=%#jx)",
629 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
630 
631 	/*
632 	 * allocate some virtual space
633 	 */
634 
635 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
636 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
637 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
638 	    UVM_ADV_RANDOM,
639 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
640 	     | UVM_KMF_COLORMATCH)))) != 0)) {
641 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
642 		return(0);
643 	}
644 
645 	/*
646 	 * if all we wanted was VA, return now
647 	 */
648 
649 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
650 		UVMHIST_LOG(maphist,"<- done valloc (kva=%#jx)", kva,0,0,0);
651 		return(kva);
652 	}
653 
654 	/*
655 	 * recover object offset from virtual address
656 	 */
657 
658 	offset = kva - vm_map_min(kernel_map);
659 	UVMHIST_LOG(maphist, "  kva=%#jx, offset=%#jx", kva, offset,0,0);
660 
661 	/*
662 	 * now allocate and map in the memory... note that we are the only ones
663 	 * whom should ever get a handle on this area of VM.
664 	 */
665 
666 	loopva = kva;
667 	loopsize = size;
668 
669 	pgaflags = UVM_FLAG_COLORMATCH;
670 	if (flags & UVM_KMF_NOWAIT)
671 		pgaflags |= UVM_PGA_USERESERVE;
672 	if (flags & UVM_KMF_ZERO)
673 		pgaflags |= UVM_PGA_ZERO;
674 	prot = VM_PROT_READ | VM_PROT_WRITE;
675 	if (flags & UVM_KMF_EXEC)
676 		prot |= VM_PROT_EXECUTE;
677 	while (loopsize) {
678 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
679 		    "loopva=%#"PRIxVADDR, loopva);
680 
681 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
682 #ifdef UVM_KM_VMFREELIST
683 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
684 #else
685 		   UVM_PGA_STRAT_NORMAL, 0
686 #endif
687 		   );
688 
689 		/*
690 		 * out of memory?
691 		 */
692 
693 		if (__predict_false(pg == NULL)) {
694 			if ((flags & UVM_KMF_NOWAIT) ||
695 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
696 				/* free everything! */
697 				uvm_km_free(map, kva, size,
698 				    flags & UVM_KMF_TYPEMASK);
699 				return (0);
700 			} else {
701 				uvm_wait("km_getwait2");	/* sleep here */
702 				continue;
703 			}
704 		}
705 
706 		pg->flags &= ~PG_BUSY;	/* new page */
707 		UVM_PAGE_OWN(pg, NULL);
708 
709 		/*
710 		 * map it in
711 		 */
712 
713 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
714 		    prot, PMAP_KMPAGE);
715 		loopva += PAGE_SIZE;
716 		offset += PAGE_SIZE;
717 		loopsize -= PAGE_SIZE;
718 	}
719 
720 	pmap_update(pmap_kernel());
721 
722 	if ((flags & UVM_KMF_ZERO) == 0) {
723 		kmsan_orig((void *)kva, size, KMSAN_TYPE_UVM, __RET_ADDR);
724 		kmsan_mark((void *)kva, size, KMSAN_STATE_UNINIT);
725 	}
726 
727 	UVMHIST_LOG(maphist,"<- done (kva=%#jx)", kva,0,0,0);
728 	return(kva);
729 }
730 
731 /*
732  * uvm_km_protect: change the protection of an allocated area
733  */
734 
735 int
uvm_km_protect(struct vm_map * map,vaddr_t addr,vsize_t size,vm_prot_t prot)736 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
737 {
738 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
739 }
740 
741 /*
742  * uvm_km_free: free an area of kernel memory
743  */
744 
745 void
uvm_km_free(struct vm_map * map,vaddr_t addr,vsize_t size,uvm_flag_t flags)746 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
747 {
748 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
749 
750 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
751 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
752 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
753 	KASSERT((addr & PAGE_MASK) == 0);
754 	KASSERT(vm_map_pmap(map) == pmap_kernel());
755 
756 	size = round_page(size);
757 
758 	if (flags & UVM_KMF_PAGEABLE) {
759 		uvm_km_pgremove(addr, addr + size);
760 	} else if (flags & UVM_KMF_WIRED) {
761 		/*
762 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
763 		 * remove it after.  See comment below about KVA visibility.
764 		 */
765 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
766 	}
767 
768 	/*
769 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
770 	 * KVA becomes globally available.
771 	 */
772 
773 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
774 }
775 
776 /* Sanity; must specify both or none. */
777 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
778     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
779 #error Must specify MAP and UNMAP together.
780 #endif
781 
782 #if defined(PMAP_ALLOC_POOLPAGE) && \
783     !defined(PMAP_MAP_POOLPAGE) && !defined(PMAP_UNMAP_POOLPAGE)
784 #error Must specify ALLOC with MAP and UNMAP
785 #endif
786 
787 int
uvm_km_kmem_alloc(vmem_t * vm,vmem_size_t size,vm_flag_t flags,vmem_addr_t * addr)788 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
789     vmem_addr_t *addr)
790 {
791 	struct vm_page *pg;
792 	vmem_addr_t va;
793 	int rc;
794 	vaddr_t loopva;
795 	vsize_t loopsize;
796 
797 	size = round_page(size);
798 
799 #if defined(PMAP_MAP_POOLPAGE)
800 	if (size == PAGE_SIZE) {
801 again:
802 #ifdef PMAP_ALLOC_POOLPAGE
803 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
804 		   0 : UVM_PGA_USERESERVE);
805 #else
806 		pg = uvm_pagealloc(NULL, 0, NULL,
807 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
808 #endif /* PMAP_ALLOC_POOLPAGE */
809 		if (__predict_false(pg == NULL)) {
810 			if (flags & VM_SLEEP) {
811 				uvm_wait("plpg");
812 				goto again;
813 			}
814 			return ENOMEM;
815 		}
816 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
817 		KASSERT(va != 0);
818 		*addr = va;
819 		return 0;
820 	}
821 #endif /* PMAP_MAP_POOLPAGE */
822 
823 	rc = vmem_alloc(vm, size, flags, &va);
824 	if (rc != 0)
825 		return rc;
826 
827 #ifdef PMAP_GROWKERNEL
828 	/*
829 	 * These VA allocations happen independently of uvm_map
830 	 * so this allocation must not extend beyond the current limit.
831 	 */
832 	KASSERTMSG(uvm_maxkaddr >= va + size,
833 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
834 	    uvm_maxkaddr, va, size);
835 #endif
836 
837 	loopva = va;
838 	loopsize = size;
839 
840 	while (loopsize) {
841 		paddr_t pa __diagused;
842 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
843 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
844 		    " pa=%#"PRIxPADDR" vmem=%p",
845 		    loopva, loopsize, pa, vm);
846 
847 		pg = uvm_pagealloc(NULL, loopva, NULL,
848 		    UVM_FLAG_COLORMATCH
849 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
850 		if (__predict_false(pg == NULL)) {
851 			if (flags & VM_SLEEP) {
852 				uvm_wait("plpg");
853 				continue;
854 			} else {
855 				uvm_km_pgremove_intrsafe(kernel_map, va,
856 				    va + size);
857 				vmem_free(vm, va, size);
858 				return ENOMEM;
859 			}
860 		}
861 
862 		pg->flags &= ~PG_BUSY;	/* new page */
863 		UVM_PAGE_OWN(pg, NULL);
864 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
865 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
866 
867 		loopva += PAGE_SIZE;
868 		loopsize -= PAGE_SIZE;
869 	}
870 	pmap_update(pmap_kernel());
871 
872 	*addr = va;
873 
874 	return 0;
875 }
876 
877 void
uvm_km_kmem_free(vmem_t * vm,vmem_addr_t addr,size_t size)878 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
879 {
880 
881 	size = round_page(size);
882 #if defined(PMAP_UNMAP_POOLPAGE)
883 	if (size == PAGE_SIZE) {
884 		paddr_t pa;
885 
886 		pa = PMAP_UNMAP_POOLPAGE(addr);
887 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
888 		return;
889 	}
890 #endif /* PMAP_UNMAP_POOLPAGE */
891 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
892 	pmap_update(pmap_kernel());
893 
894 	vmem_free(vm, addr, size);
895 }
896 
897 bool
uvm_km_va_starved_p(void)898 uvm_km_va_starved_p(void)
899 {
900 	vmem_size_t total;
901 	vmem_size_t free;
902 
903 	if (kmem_arena == NULL)
904 		return false;
905 
906 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
907 	free = vmem_size(kmem_arena, VMEM_FREE);
908 
909 	return (free < (total / 10));
910 }
911