xref: /linux/drivers/net/dsa/microchip/ksz8795.c (revision ea1078d9)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Microchip KSZ8795 switch driver
4  *
5  * Copyright (C) 2017 Microchip Technology Inc.
6  *	Tristram Ha <Tristram.Ha@microchip.com>
7  */
8 
9 #include <linux/bitfield.h>
10 #include <linux/delay.h>
11 #include <linux/export.h>
12 #include <linux/gpio.h>
13 #include <linux/if_vlan.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/platform_data/microchip-ksz.h>
17 #include <linux/phy.h>
18 #include <linux/etherdevice.h>
19 #include <linux/if_bridge.h>
20 #include <linux/micrel_phy.h>
21 #include <net/dsa.h>
22 #include <net/switchdev.h>
23 #include <linux/phylink.h>
24 
25 #include "ksz_common.h"
26 #include "ksz8795_reg.h"
27 #include "ksz8.h"
28 
ksz_cfg(struct ksz_device * dev,u32 addr,u8 bits,bool set)29 static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
30 {
31 	regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
32 }
33 
ksz_port_cfg(struct ksz_device * dev,int port,int offset,u8 bits,bool set)34 static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
35 			 bool set)
36 {
37 	regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
38 			   bits, set ? bits : 0);
39 }
40 
ksz8_ind_write8(struct ksz_device * dev,u8 table,u16 addr,u8 data)41 static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
42 {
43 	const u16 *regs;
44 	u16 ctrl_addr;
45 	int ret = 0;
46 
47 	regs = dev->info->regs;
48 
49 	mutex_lock(&dev->alu_mutex);
50 
51 	ctrl_addr = IND_ACC_TABLE(table) | addr;
52 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
53 	if (!ret)
54 		ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
55 
56 	mutex_unlock(&dev->alu_mutex);
57 
58 	return ret;
59 }
60 
ksz8_reset_switch(struct ksz_device * dev)61 int ksz8_reset_switch(struct ksz_device *dev)
62 {
63 	if (ksz_is_ksz88x3(dev)) {
64 		/* reset switch */
65 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
66 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
67 		ksz_cfg(dev, KSZ8863_REG_SW_RESET,
68 			KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
69 	} else {
70 		/* reset switch */
71 		ksz_write8(dev, REG_POWER_MANAGEMENT_1,
72 			   SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
73 		ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
74 	}
75 
76 	return 0;
77 }
78 
ksz8863_change_mtu(struct ksz_device * dev,int frame_size)79 static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
80 {
81 	u8 ctrl2 = 0;
82 
83 	if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
84 		ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
85 	else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
86 		ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
87 
88 	return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
89 			KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
90 }
91 
ksz8795_change_mtu(struct ksz_device * dev,int frame_size)92 static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
93 {
94 	u8 ctrl1 = 0, ctrl2 = 0;
95 	int ret;
96 
97 	if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
98 		ctrl2 |= SW_LEGAL_PACKET_DISABLE;
99 	if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
100 		ctrl1 |= SW_HUGE_PACKET;
101 
102 	ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
103 	if (ret)
104 		return ret;
105 
106 	return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
107 }
108 
ksz8_change_mtu(struct ksz_device * dev,int port,int mtu)109 int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
110 {
111 	u16 frame_size;
112 
113 	if (!dsa_is_cpu_port(dev->ds, port))
114 		return 0;
115 
116 	frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
117 
118 	switch (dev->chip_id) {
119 	case KSZ8795_CHIP_ID:
120 	case KSZ8794_CHIP_ID:
121 	case KSZ8765_CHIP_ID:
122 		return ksz8795_change_mtu(dev, frame_size);
123 	case KSZ8830_CHIP_ID:
124 		return ksz8863_change_mtu(dev, frame_size);
125 	}
126 
127 	return -EOPNOTSUPP;
128 }
129 
ksz8_port_queue_split(struct ksz_device * dev,int port,int queues)130 static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues)
131 {
132 	u8 mask_4q, mask_2q;
133 	u8 reg_4q, reg_2q;
134 	u8 data_4q = 0;
135 	u8 data_2q = 0;
136 	int ret;
137 
138 	if (ksz_is_ksz88x3(dev)) {
139 		mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN;
140 		mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN;
141 		reg_4q = REG_PORT_CTRL_0;
142 		reg_2q = REG_PORT_CTRL_2;
143 
144 		/* KSZ8795 family switches have Weighted Fair Queueing (WFQ)
145 		 * enabled by default. Enable it for KSZ8873 family switches
146 		 * too. Default value for KSZ8873 family is strict priority,
147 		 * which should be enabled by using TC_SETUP_QDISC_ETS, not
148 		 * by default.
149 		 */
150 		ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE,
151 			       WEIGHTED_FAIR_QUEUE_ENABLE);
152 		if (ret)
153 			return ret;
154 	} else {
155 		mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN;
156 		mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN;
157 		reg_4q = REG_PORT_CTRL_13;
158 		reg_2q = REG_PORT_CTRL_0;
159 
160 		/* TODO: this is legacy from initial KSZ8795 driver, should be
161 		 * moved to appropriate place in the future.
162 		 */
163 		ret = ksz_rmw8(dev, REG_SW_CTRL_19,
164 			       SW_OUT_RATE_LIMIT_QUEUE_BASED,
165 			       SW_OUT_RATE_LIMIT_QUEUE_BASED);
166 		if (ret)
167 			return ret;
168 	}
169 
170 	if (queues == 4)
171 		data_4q = mask_4q;
172 	else if (queues == 2)
173 		data_2q = mask_2q;
174 
175 	ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q);
176 	if (ret)
177 		return ret;
178 
179 	return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q);
180 }
181 
ksz8_all_queues_split(struct ksz_device * dev,int queues)182 int ksz8_all_queues_split(struct ksz_device *dev, int queues)
183 {
184 	struct dsa_switch *ds = dev->ds;
185 	const struct dsa_port *dp;
186 
187 	dsa_switch_for_each_port(dp, ds) {
188 		int ret = ksz8_port_queue_split(dev, dp->index, queues);
189 
190 		if (ret)
191 			return ret;
192 	}
193 
194 	return 0;
195 }
196 
ksz8_r_mib_cnt(struct ksz_device * dev,int port,u16 addr,u64 * cnt)197 void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
198 {
199 	const u32 *masks;
200 	const u16 *regs;
201 	u16 ctrl_addr;
202 	u32 data;
203 	u8 check;
204 	int loop;
205 
206 	masks = dev->info->masks;
207 	regs = dev->info->regs;
208 
209 	ctrl_addr = addr + dev->info->reg_mib_cnt * port;
210 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
211 
212 	mutex_lock(&dev->alu_mutex);
213 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
214 
215 	/* It is almost guaranteed to always read the valid bit because of
216 	 * slow SPI speed.
217 	 */
218 	for (loop = 2; loop > 0; loop--) {
219 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
220 
221 		if (check & masks[MIB_COUNTER_VALID]) {
222 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
223 			if (check & masks[MIB_COUNTER_OVERFLOW])
224 				*cnt += MIB_COUNTER_VALUE + 1;
225 			*cnt += data & MIB_COUNTER_VALUE;
226 			break;
227 		}
228 	}
229 	mutex_unlock(&dev->alu_mutex);
230 }
231 
ksz8795_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)232 static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
233 			      u64 *dropped, u64 *cnt)
234 {
235 	const u32 *masks;
236 	const u16 *regs;
237 	u16 ctrl_addr;
238 	u32 data;
239 	u8 check;
240 	int loop;
241 
242 	masks = dev->info->masks;
243 	regs = dev->info->regs;
244 
245 	addr -= dev->info->reg_mib_cnt;
246 	ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
247 	ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
248 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
249 
250 	mutex_lock(&dev->alu_mutex);
251 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
252 
253 	/* It is almost guaranteed to always read the valid bit because of
254 	 * slow SPI speed.
255 	 */
256 	for (loop = 2; loop > 0; loop--) {
257 		ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
258 
259 		if (check & masks[MIB_COUNTER_VALID]) {
260 			ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
261 			if (addr < 2) {
262 				u64 total;
263 
264 				total = check & MIB_TOTAL_BYTES_H;
265 				total <<= 32;
266 				*cnt += total;
267 				*cnt += data;
268 				if (check & masks[MIB_COUNTER_OVERFLOW]) {
269 					total = MIB_TOTAL_BYTES_H + 1;
270 					total <<= 32;
271 					*cnt += total;
272 				}
273 			} else {
274 				if (check & masks[MIB_COUNTER_OVERFLOW])
275 					*cnt += MIB_PACKET_DROPPED + 1;
276 				*cnt += data & MIB_PACKET_DROPPED;
277 			}
278 			break;
279 		}
280 	}
281 	mutex_unlock(&dev->alu_mutex);
282 }
283 
ksz8863_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)284 static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
285 			      u64 *dropped, u64 *cnt)
286 {
287 	u32 *last = (u32 *)dropped;
288 	const u16 *regs;
289 	u16 ctrl_addr;
290 	u32 data;
291 	u32 cur;
292 
293 	regs = dev->info->regs;
294 
295 	addr -= dev->info->reg_mib_cnt;
296 	ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
297 			   KSZ8863_MIB_PACKET_DROPPED_RX_0;
298 	ctrl_addr += port;
299 	ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
300 
301 	mutex_lock(&dev->alu_mutex);
302 	ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
303 	ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
304 	mutex_unlock(&dev->alu_mutex);
305 
306 	data &= MIB_PACKET_DROPPED;
307 	cur = last[addr];
308 	if (data != cur) {
309 		last[addr] = data;
310 		if (data < cur)
311 			data += MIB_PACKET_DROPPED + 1;
312 		data -= cur;
313 		*cnt += data;
314 	}
315 }
316 
ksz8_r_mib_pkt(struct ksz_device * dev,int port,u16 addr,u64 * dropped,u64 * cnt)317 void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
318 		    u64 *dropped, u64 *cnt)
319 {
320 	if (ksz_is_ksz88x3(dev))
321 		ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
322 	else
323 		ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
324 }
325 
ksz8_freeze_mib(struct ksz_device * dev,int port,bool freeze)326 void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
327 {
328 	if (ksz_is_ksz88x3(dev))
329 		return;
330 
331 	/* enable the port for flush/freeze function */
332 	if (freeze)
333 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
334 	ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
335 
336 	/* disable the port after freeze is done */
337 	if (!freeze)
338 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
339 }
340 
ksz8_port_init_cnt(struct ksz_device * dev,int port)341 void ksz8_port_init_cnt(struct ksz_device *dev, int port)
342 {
343 	struct ksz_port_mib *mib = &dev->ports[port].mib;
344 	u64 *dropped;
345 
346 	if (!ksz_is_ksz88x3(dev)) {
347 		/* flush all enabled port MIB counters */
348 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
349 		ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
350 		ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
351 	}
352 
353 	mib->cnt_ptr = 0;
354 
355 	/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
356 	while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
357 		dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
358 					&mib->counters[mib->cnt_ptr]);
359 		++mib->cnt_ptr;
360 	}
361 
362 	/* last one in storage */
363 	dropped = &mib->counters[dev->info->mib_cnt];
364 
365 	/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
366 	while (mib->cnt_ptr < dev->info->mib_cnt) {
367 		dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
368 					dropped, &mib->counters[mib->cnt_ptr]);
369 		++mib->cnt_ptr;
370 	}
371 }
372 
ksz8_r_table(struct ksz_device * dev,int table,u16 addr,u64 * data)373 static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
374 {
375 	const u16 *regs;
376 	u16 ctrl_addr;
377 	int ret;
378 
379 	regs = dev->info->regs;
380 
381 	ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
382 
383 	mutex_lock(&dev->alu_mutex);
384 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
385 	if (ret)
386 		goto unlock_alu;
387 
388 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
389 unlock_alu:
390 	mutex_unlock(&dev->alu_mutex);
391 
392 	return ret;
393 }
394 
ksz8_w_table(struct ksz_device * dev,int table,u16 addr,u64 data)395 static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
396 {
397 	const u16 *regs;
398 	u16 ctrl_addr;
399 	int ret;
400 
401 	regs = dev->info->regs;
402 
403 	ctrl_addr = IND_ACC_TABLE(table) | addr;
404 
405 	mutex_lock(&dev->alu_mutex);
406 	ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
407 	if (ret)
408 		goto unlock_alu;
409 
410 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
411 unlock_alu:
412 	mutex_unlock(&dev->alu_mutex);
413 
414 	return ret;
415 }
416 
ksz8_valid_dyn_entry(struct ksz_device * dev,u8 * data)417 static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
418 {
419 	int timeout = 100;
420 	const u32 *masks;
421 	const u16 *regs;
422 	int ret;
423 
424 	masks = dev->info->masks;
425 	regs = dev->info->regs;
426 
427 	do {
428 		ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
429 		if (ret)
430 			return ret;
431 
432 		timeout--;
433 	} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
434 
435 	/* Entry is not ready for accessing. */
436 	if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY])
437 		return -ETIMEDOUT;
438 
439 	/* Entry is ready for accessing. */
440 	return ksz_read8(dev, regs[REG_IND_DATA_8], data);
441 }
442 
ksz8_r_dyn_mac_table(struct ksz_device * dev,u16 addr,u8 * mac_addr,u8 * fid,u8 * src_port,u16 * entries)443 static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
444 				u8 *fid, u8 *src_port, u16 *entries)
445 {
446 	u32 data_hi, data_lo;
447 	const u8 *shifts;
448 	const u32 *masks;
449 	const u16 *regs;
450 	u16 ctrl_addr;
451 	u64 buf = 0;
452 	u8 data;
453 	int cnt;
454 	int ret;
455 
456 	shifts = dev->info->shifts;
457 	masks = dev->info->masks;
458 	regs = dev->info->regs;
459 
460 	ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
461 
462 	mutex_lock(&dev->alu_mutex);
463 	ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
464 	if (ret)
465 		goto unlock_alu;
466 
467 	ret = ksz8_valid_dyn_entry(dev, &data);
468 	if (ret)
469 		goto unlock_alu;
470 
471 	if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) {
472 		*entries = 0;
473 		goto unlock_alu;
474 	}
475 
476 	ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
477 	if (ret)
478 		goto unlock_alu;
479 
480 	data_hi = (u32)(buf >> 32);
481 	data_lo = (u32)buf;
482 
483 	/* Check out how many valid entry in the table. */
484 	cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
485 	cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
486 	cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
487 		shifts[DYNAMIC_MAC_ENTRIES];
488 	*entries = cnt + 1;
489 
490 	*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
491 		shifts[DYNAMIC_MAC_FID];
492 	*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
493 		shifts[DYNAMIC_MAC_SRC_PORT];
494 
495 	mac_addr[5] = (u8)data_lo;
496 	mac_addr[4] = (u8)(data_lo >> 8);
497 	mac_addr[3] = (u8)(data_lo >> 16);
498 	mac_addr[2] = (u8)(data_lo >> 24);
499 
500 	mac_addr[1] = (u8)data_hi;
501 	mac_addr[0] = (u8)(data_hi >> 8);
502 
503 unlock_alu:
504 	mutex_unlock(&dev->alu_mutex);
505 
506 	return ret;
507 }
508 
ksz8_r_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu,bool * valid)509 static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
510 				struct alu_struct *alu, bool *valid)
511 {
512 	u32 data_hi, data_lo;
513 	const u8 *shifts;
514 	const u32 *masks;
515 	u64 data;
516 	int ret;
517 
518 	shifts = dev->info->shifts;
519 	masks = dev->info->masks;
520 
521 	ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
522 	if (ret)
523 		return ret;
524 
525 	data_hi = data >> 32;
526 	data_lo = (u32)data;
527 
528 	if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
529 			 masks[STATIC_MAC_TABLE_OVERRIDE]))) {
530 		*valid = false;
531 		return 0;
532 	}
533 
534 	alu->mac[5] = (u8)data_lo;
535 	alu->mac[4] = (u8)(data_lo >> 8);
536 	alu->mac[3] = (u8)(data_lo >> 16);
537 	alu->mac[2] = (u8)(data_lo >> 24);
538 	alu->mac[1] = (u8)data_hi;
539 	alu->mac[0] = (u8)(data_hi >> 8);
540 	alu->port_forward =
541 		(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
542 			shifts[STATIC_MAC_FWD_PORTS];
543 	alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
544 
545 	/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
546 	 * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
547 	 * static MAC table compared to doing write.
548 	 */
549 	if (ksz_is_ksz87xx(dev))
550 		data_hi >>= 1;
551 	alu->is_static = true;
552 	alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
553 	alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
554 		shifts[STATIC_MAC_FID];
555 
556 	*valid = true;
557 
558 	return 0;
559 }
560 
ksz8_w_sta_mac_table(struct ksz_device * dev,u16 addr,struct alu_struct * alu)561 static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
562 				struct alu_struct *alu)
563 {
564 	u32 data_hi, data_lo;
565 	const u8 *shifts;
566 	const u32 *masks;
567 	u64 data;
568 
569 	shifts = dev->info->shifts;
570 	masks = dev->info->masks;
571 
572 	data_lo = ((u32)alu->mac[2] << 24) |
573 		((u32)alu->mac[3] << 16) |
574 		((u32)alu->mac[4] << 8) | alu->mac[5];
575 	data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
576 	data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
577 
578 	if (alu->is_override)
579 		data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
580 	if (alu->is_use_fid) {
581 		data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
582 		data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
583 	}
584 	if (alu->is_static)
585 		data_hi |= masks[STATIC_MAC_TABLE_VALID];
586 	else
587 		data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
588 
589 	data = (u64)data_hi << 32 | data_lo;
590 
591 	return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
592 }
593 
ksz8_from_vlan(struct ksz_device * dev,u32 vlan,u8 * fid,u8 * member,u8 * valid)594 static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
595 			   u8 *member, u8 *valid)
596 {
597 	const u8 *shifts;
598 	const u32 *masks;
599 
600 	shifts = dev->info->shifts;
601 	masks = dev->info->masks;
602 
603 	*fid = vlan & masks[VLAN_TABLE_FID];
604 	*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
605 			shifts[VLAN_TABLE_MEMBERSHIP_S];
606 	*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
607 }
608 
ksz8_to_vlan(struct ksz_device * dev,u8 fid,u8 member,u8 valid,u16 * vlan)609 static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
610 			 u16 *vlan)
611 {
612 	const u8 *shifts;
613 	const u32 *masks;
614 
615 	shifts = dev->info->shifts;
616 	masks = dev->info->masks;
617 
618 	*vlan = fid;
619 	*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
620 	if (valid)
621 		*vlan |= masks[VLAN_TABLE_VALID];
622 }
623 
ksz8_r_vlan_entries(struct ksz_device * dev,u16 addr)624 static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
625 {
626 	const u8 *shifts;
627 	u64 data;
628 	int i;
629 
630 	shifts = dev->info->shifts;
631 
632 	ksz8_r_table(dev, TABLE_VLAN, addr, &data);
633 	addr *= 4;
634 	for (i = 0; i < 4; i++) {
635 		dev->vlan_cache[addr + i].table[0] = (u16)data;
636 		data >>= shifts[VLAN_TABLE];
637 	}
638 }
639 
ksz8_r_vlan_table(struct ksz_device * dev,u16 vid,u16 * vlan)640 static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
641 {
642 	int index;
643 	u16 *data;
644 	u16 addr;
645 	u64 buf;
646 
647 	data = (u16 *)&buf;
648 	addr = vid / 4;
649 	index = vid & 3;
650 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
651 	*vlan = data[index];
652 }
653 
ksz8_w_vlan_table(struct ksz_device * dev,u16 vid,u16 vlan)654 static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
655 {
656 	int index;
657 	u16 *data;
658 	u16 addr;
659 	u64 buf;
660 
661 	data = (u16 *)&buf;
662 	addr = vid / 4;
663 	index = vid & 3;
664 	ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
665 	data[index] = vlan;
666 	dev->vlan_cache[vid].table[0] = vlan;
667 	ksz8_w_table(dev, TABLE_VLAN, addr, buf);
668 }
669 
670 /**
671  * ksz879x_get_loopback - KSZ879x specific function to get loopback
672  *                        configuration status for a specific port
673  * @dev: Pointer to the device structure
674  * @port: Port number to query
675  * @val: Pointer to store the result
676  *
677  * This function reads the SMI registers to determine whether loopback mode
678  * is enabled for a specific port.
679  *
680  * Return: 0 on success, error code on failure.
681  */
ksz879x_get_loopback(struct ksz_device * dev,u16 port,u16 * val)682 static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
683 				u16 *val)
684 {
685 	u8 stat3;
686 	int ret;
687 
688 	ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
689 	if (ret)
690 		return ret;
691 
692 	if (stat3 & PORT_PHY_LOOPBACK)
693 		*val |= BMCR_LOOPBACK;
694 
695 	return 0;
696 }
697 
698 /**
699  * ksz879x_set_loopback - KSZ879x specific function  to set loopback mode for
700  *			  a specific port
701  * @dev: Pointer to the device structure.
702  * @port: Port number to modify.
703  * @val: Value indicating whether to enable or disable loopback mode.
704  *
705  * This function translates loopback bit of the BMCR register into the
706  * corresponding hardware register bit value and writes it to the SMI interface.
707  *
708  * Return: 0 on success, error code on failure.
709  */
ksz879x_set_loopback(struct ksz_device * dev,u16 port,u16 val)710 static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
711 {
712 	u8 stat3 = 0;
713 
714 	if (val & BMCR_LOOPBACK)
715 		stat3 |= PORT_PHY_LOOPBACK;
716 
717 	return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
718 			 stat3);
719 }
720 
721 /**
722  * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
723  *		     Control register (Reg. 31).
724  * @dev: The KSZ device instance.
725  * @port: The port number to be read.
726  * @val: The value read from the SMI interface.
727  *
728  * This function reads the SMI interface and translates the hardware register
729  * bit values into their corresponding control settings for a MIIM PHY Control
730  * register.
731  *
732  * Return: 0 on success, error code on failure.
733  */
ksz8_r_phy_ctrl(struct ksz_device * dev,int port,u16 * val)734 static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
735 {
736 	const u16 *regs = dev->info->regs;
737 	u8 reg_val;
738 	int ret;
739 
740 	*val = 0;
741 
742 	ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], &reg_val);
743 	if (ret < 0)
744 		return ret;
745 
746 	if (reg_val & PORT_MDIX_STATUS)
747 		*val |= KSZ886X_CTRL_MDIX_STAT;
748 
749 	ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, &reg_val);
750 	if (ret < 0)
751 		return ret;
752 
753 	if (reg_val & PORT_FORCE_LINK)
754 		*val |= KSZ886X_CTRL_FORCE_LINK;
755 
756 	if (reg_val & PORT_POWER_SAVING)
757 		*val |= KSZ886X_CTRL_PWRSAVE;
758 
759 	if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
760 		*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
761 
762 	return 0;
763 }
764 
765 /**
766  * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
767  *		     Basic mode control register (Reg. 0).
768  * @dev: The KSZ device instance.
769  * @port: The port number to be read.
770  * @val: The value read from the SMI interface.
771  *
772  * This function reads the SMI interface and translates the hardware register
773  * bit values into their corresponding control settings for a MIIM PHY Basic
774  * mode control register.
775  *
776  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
777  * -------------------------------------------------------------------
778  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
779  * ----------------------------+-----------------------------+----------------
780  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
781  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
782  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
783  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
784  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
785  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
786  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
787  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
788  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
789  * Bit 6 - Reserved            | Not supported               | Not supported
790  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
791  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
792  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
793  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
794  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
795  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
796  * -------------------------------------------------------------------
797  *
798  * Return: 0 on success, error code on failure.
799  */
ksz8_r_phy_bmcr(struct ksz_device * dev,u16 port,u16 * val)800 static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
801 {
802 	const u16 *regs = dev->info->regs;
803 	u8 restart, speed, ctrl;
804 	int ret;
805 
806 	*val = 0;
807 
808 	ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
809 	if (ret)
810 		return ret;
811 
812 	ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
813 	if (ret)
814 		return ret;
815 
816 	ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
817 	if (ret)
818 		return ret;
819 
820 	if (ctrl & PORT_FORCE_100_MBIT)
821 		*val |= BMCR_SPEED100;
822 
823 	if (ksz_is_ksz88x3(dev)) {
824 		if (restart & KSZ8873_PORT_PHY_LOOPBACK)
825 			*val |= BMCR_LOOPBACK;
826 
827 		if ((ctrl & PORT_AUTO_NEG_ENABLE))
828 			*val |= BMCR_ANENABLE;
829 	} else {
830 		ret = ksz879x_get_loopback(dev, port, val);
831 		if (ret)
832 			return ret;
833 
834 		if (!(ctrl & PORT_AUTO_NEG_DISABLE))
835 			*val |= BMCR_ANENABLE;
836 	}
837 
838 	if (restart & PORT_POWER_DOWN)
839 		*val |= BMCR_PDOWN;
840 
841 	if (restart & PORT_AUTO_NEG_RESTART)
842 		*val |= BMCR_ANRESTART;
843 
844 	if (ctrl & PORT_FORCE_FULL_DUPLEX)
845 		*val |= BMCR_FULLDPLX;
846 
847 	if (speed & PORT_HP_MDIX)
848 		*val |= KSZ886X_BMCR_HP_MDIX;
849 
850 	if (restart & PORT_FORCE_MDIX)
851 		*val |= KSZ886X_BMCR_FORCE_MDI;
852 
853 	if (restart & PORT_AUTO_MDIX_DISABLE)
854 		*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
855 
856 	if (restart & PORT_TX_DISABLE)
857 		*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
858 
859 	if (restart & PORT_LED_OFF)
860 		*val |= KSZ886X_BMCR_DISABLE_LED;
861 
862 	return 0;
863 }
864 
ksz8_r_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 * val)865 int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
866 {
867 	u8 ctrl, link, val1, val2;
868 	int processed = true;
869 	const u16 *regs;
870 	u16 data = 0;
871 	u16 p = phy;
872 	int ret;
873 
874 	regs = dev->info->regs;
875 
876 	switch (reg) {
877 	case MII_BMCR:
878 		ret = ksz8_r_phy_bmcr(dev, p, &data);
879 		if (ret)
880 			return ret;
881 		break;
882 	case MII_BMSR:
883 		ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
884 		if (ret)
885 			return ret;
886 
887 		data = BMSR_100FULL |
888 		       BMSR_100HALF |
889 		       BMSR_10FULL |
890 		       BMSR_10HALF |
891 		       BMSR_ANEGCAPABLE;
892 		if (link & PORT_AUTO_NEG_COMPLETE)
893 			data |= BMSR_ANEGCOMPLETE;
894 		if (link & PORT_STAT_LINK_GOOD)
895 			data |= BMSR_LSTATUS;
896 		break;
897 	case MII_PHYSID1:
898 		data = KSZ8795_ID_HI;
899 		break;
900 	case MII_PHYSID2:
901 		if (ksz_is_ksz88x3(dev))
902 			data = KSZ8863_ID_LO;
903 		else
904 			data = KSZ8795_ID_LO;
905 		break;
906 	case MII_ADVERTISE:
907 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
908 		if (ret)
909 			return ret;
910 
911 		data = ADVERTISE_CSMA;
912 		if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
913 			data |= ADVERTISE_PAUSE_CAP;
914 		if (ctrl & PORT_AUTO_NEG_100BTX_FD)
915 			data |= ADVERTISE_100FULL;
916 		if (ctrl & PORT_AUTO_NEG_100BTX)
917 			data |= ADVERTISE_100HALF;
918 		if (ctrl & PORT_AUTO_NEG_10BT_FD)
919 			data |= ADVERTISE_10FULL;
920 		if (ctrl & PORT_AUTO_NEG_10BT)
921 			data |= ADVERTISE_10HALF;
922 		break;
923 	case MII_LPA:
924 		ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
925 		if (ret)
926 			return ret;
927 
928 		data = LPA_SLCT;
929 		if (link & PORT_REMOTE_SYM_PAUSE)
930 			data |= LPA_PAUSE_CAP;
931 		if (link & PORT_REMOTE_100BTX_FD)
932 			data |= LPA_100FULL;
933 		if (link & PORT_REMOTE_100BTX)
934 			data |= LPA_100HALF;
935 		if (link & PORT_REMOTE_10BT_FD)
936 			data |= LPA_10FULL;
937 		if (link & PORT_REMOTE_10BT)
938 			data |= LPA_10HALF;
939 		if (data & ~LPA_SLCT)
940 			data |= LPA_LPACK;
941 		break;
942 	case PHY_REG_LINK_MD:
943 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
944 		if (ret)
945 			return ret;
946 
947 		ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
948 		if (ret)
949 			return ret;
950 
951 		if (val1 & PORT_START_CABLE_DIAG)
952 			data |= PHY_START_CABLE_DIAG;
953 
954 		if (val1 & PORT_CABLE_10M_SHORT)
955 			data |= PHY_CABLE_10M_SHORT;
956 
957 		data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
958 				FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
959 
960 		data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
961 				(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
962 				FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
963 		break;
964 	case PHY_REG_PHY_CTRL:
965 		ret = ksz8_r_phy_ctrl(dev, p, &data);
966 		if (ret)
967 			return ret;
968 
969 		break;
970 	default:
971 		processed = false;
972 		break;
973 	}
974 	if (processed)
975 		*val = data;
976 
977 	return 0;
978 }
979 
980 /**
981  * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
982  *		     Control register (Reg. 31).
983  * @dev: The KSZ device instance.
984  * @port: The port number to be configured.
985  * @val: The register value to be written.
986  *
987  * This function translates control settings from a MIIM PHY Control register
988  * into their corresponding hardware register bit values for the SMI
989  * interface.
990  *
991  * Return: 0 on success, error code on failure.
992  */
ksz8_w_phy_ctrl(struct ksz_device * dev,int port,u16 val)993 static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
994 {
995 	u8 reg_val = 0;
996 	int ret;
997 
998 	if (val & KSZ886X_CTRL_FORCE_LINK)
999 		reg_val |= PORT_FORCE_LINK;
1000 
1001 	if (val & KSZ886X_CTRL_PWRSAVE)
1002 		reg_val |= PORT_POWER_SAVING;
1003 
1004 	if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
1005 		reg_val |= PORT_PHY_REMOTE_LOOPBACK;
1006 
1007 	ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
1008 			PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
1009 	return ret;
1010 }
1011 
1012 /**
1013  * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
1014  *		     Basic mode control register (Reg. 0).
1015  * @dev: The KSZ device instance.
1016  * @port: The port number to be configured.
1017  * @val: The register value to be written.
1018  *
1019  * This function translates control settings from a MIIM PHY Basic mode control
1020  * register into their corresponding hardware register bit values for the SMI
1021  * interface.
1022  *
1023  * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
1024  * -------------------------------------------------------------------
1025  * MIIM Bit                    | KSZ8794 Reg/Bit             | KSZ8873 Reg/Bit
1026  * ----------------------------+-----------------------------+----------------
1027  * Bit 15 - Soft Reset         | 0xF/4                       | Not supported
1028  * Bit 14 - Loopback           | 0xD/0 (MAC), 0xF/7 (PHY)    ~ 0xD/0 (PHY)
1029  * Bit 13 - Force 100          | 0xC/6                       = 0xC/6
1030  * Bit 12 - AN Enable          | 0xC/7 (reverse logic)       ~ 0xC/7
1031  * Bit 11 - Power Down         | 0xD/3                       = 0xD/3
1032  * Bit 10 - PHY Isolate        | 0xF/5                       | Not supported
1033  * Bit 9 - Restart AN          | 0xD/5                       = 0xD/5
1034  * Bit 8 - Force Full-Duplex   | 0xC/5                       = 0xC/5
1035  * Bit 7 - Collision Test/Res. | Not supported               | Not supported
1036  * Bit 6 - Reserved            | Not supported               | Not supported
1037  * Bit 5 - Hp_mdix             | 0x9/7                       ~ 0xF/7
1038  * Bit 4 - Force MDI           | 0xD/1                       = 0xD/1
1039  * Bit 3 - Disable MDIX        | 0xD/2                       = 0xD/2
1040  * Bit 2 - Disable Far-End F.  | ????                        | 0xD/4
1041  * Bit 1 - Disable Transmit    | 0xD/6                       = 0xD/6
1042  * Bit 0 - Disable LED         | 0xD/7                       = 0xD/7
1043  * -------------------------------------------------------------------
1044  *
1045  * Return: 0 on success, error code on failure.
1046  */
ksz8_w_phy_bmcr(struct ksz_device * dev,u16 port,u16 val)1047 static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
1048 {
1049 	u8 restart, speed, ctrl, restart_mask;
1050 	const u16 *regs = dev->info->regs;
1051 	int ret;
1052 
1053 	/* Do not support PHY reset function. */
1054 	if (val & BMCR_RESET)
1055 		return 0;
1056 
1057 	speed = 0;
1058 	if (val & KSZ886X_BMCR_HP_MDIX)
1059 		speed |= PORT_HP_MDIX;
1060 
1061 	ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
1062 	if (ret)
1063 		return ret;
1064 
1065 	ctrl = 0;
1066 	if (ksz_is_ksz88x3(dev)) {
1067 		if ((val & BMCR_ANENABLE))
1068 			ctrl |= PORT_AUTO_NEG_ENABLE;
1069 	} else {
1070 		if (!(val & BMCR_ANENABLE))
1071 			ctrl |= PORT_AUTO_NEG_DISABLE;
1072 
1073 		/* Fiber port does not support auto-negotiation. */
1074 		if (dev->ports[port].fiber)
1075 			ctrl |= PORT_AUTO_NEG_DISABLE;
1076 	}
1077 
1078 	if (val & BMCR_SPEED100)
1079 		ctrl |= PORT_FORCE_100_MBIT;
1080 
1081 	if (val & BMCR_FULLDPLX)
1082 		ctrl |= PORT_FORCE_FULL_DUPLEX;
1083 
1084 	ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
1085 		 /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
1086 		  * bits
1087 		  */
1088 		 PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
1089 	if (ret)
1090 		return ret;
1091 
1092 	restart = 0;
1093 	restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
1094 		PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
1095 
1096 	if (val & KSZ886X_BMCR_DISABLE_LED)
1097 		restart |= PORT_LED_OFF;
1098 
1099 	if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
1100 		restart |= PORT_TX_DISABLE;
1101 
1102 	if (val & BMCR_ANRESTART)
1103 		restart |= PORT_AUTO_NEG_RESTART;
1104 
1105 	if (val & BMCR_PDOWN)
1106 		restart |= PORT_POWER_DOWN;
1107 
1108 	if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
1109 		restart |= PORT_AUTO_MDIX_DISABLE;
1110 
1111 	if (val & KSZ886X_BMCR_FORCE_MDI)
1112 		restart |= PORT_FORCE_MDIX;
1113 
1114 	if (ksz_is_ksz88x3(dev)) {
1115 		restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
1116 
1117 		if (val & BMCR_LOOPBACK)
1118 			restart |= KSZ8873_PORT_PHY_LOOPBACK;
1119 	} else {
1120 		ret = ksz879x_set_loopback(dev, port, val);
1121 		if (ret)
1122 			return ret;
1123 	}
1124 
1125 	return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
1126 			 restart);
1127 }
1128 
ksz8_w_phy(struct ksz_device * dev,u16 phy,u16 reg,u16 val)1129 int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
1130 {
1131 	const u16 *regs;
1132 	u8 ctrl, data;
1133 	u16 p = phy;
1134 	int ret;
1135 
1136 	regs = dev->info->regs;
1137 
1138 	switch (reg) {
1139 	case MII_BMCR:
1140 		ret = ksz8_w_phy_bmcr(dev, p, val);
1141 		if (ret)
1142 			return ret;
1143 		break;
1144 	case MII_ADVERTISE:
1145 		ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
1146 		if (ret)
1147 			return ret;
1148 
1149 		data = ctrl;
1150 		data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
1151 			  PORT_AUTO_NEG_100BTX_FD |
1152 			  PORT_AUTO_NEG_100BTX |
1153 			  PORT_AUTO_NEG_10BT_FD |
1154 			  PORT_AUTO_NEG_10BT);
1155 		if (val & ADVERTISE_PAUSE_CAP)
1156 			data |= PORT_AUTO_NEG_SYM_PAUSE;
1157 		if (val & ADVERTISE_100FULL)
1158 			data |= PORT_AUTO_NEG_100BTX_FD;
1159 		if (val & ADVERTISE_100HALF)
1160 			data |= PORT_AUTO_NEG_100BTX;
1161 		if (val & ADVERTISE_10FULL)
1162 			data |= PORT_AUTO_NEG_10BT_FD;
1163 		if (val & ADVERTISE_10HALF)
1164 			data |= PORT_AUTO_NEG_10BT;
1165 
1166 		if (data != ctrl) {
1167 			ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
1168 			if (ret)
1169 				return ret;
1170 		}
1171 		break;
1172 	case PHY_REG_LINK_MD:
1173 		if (val & PHY_START_CABLE_DIAG)
1174 			ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
1175 		break;
1176 
1177 	case PHY_REG_PHY_CTRL:
1178 		ret = ksz8_w_phy_ctrl(dev, p, val);
1179 		if (ret)
1180 			return ret;
1181 		break;
1182 	default:
1183 		break;
1184 	}
1185 
1186 	return 0;
1187 }
1188 
ksz8_cfg_port_member(struct ksz_device * dev,int port,u8 member)1189 void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
1190 {
1191 	u8 data;
1192 
1193 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1194 	data &= ~PORT_VLAN_MEMBERSHIP;
1195 	data |= (member & dev->port_mask);
1196 	ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
1197 }
1198 
ksz8_flush_dyn_mac_table(struct ksz_device * dev,int port)1199 void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
1200 {
1201 	u8 learn[DSA_MAX_PORTS];
1202 	int first, index, cnt;
1203 	const u16 *regs;
1204 
1205 	regs = dev->info->regs;
1206 
1207 	if ((uint)port < dev->info->port_cnt) {
1208 		first = port;
1209 		cnt = port + 1;
1210 	} else {
1211 		/* Flush all ports. */
1212 		first = 0;
1213 		cnt = dev->info->port_cnt;
1214 	}
1215 	for (index = first; index < cnt; index++) {
1216 		ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
1217 		if (!(learn[index] & PORT_LEARN_DISABLE))
1218 			ksz_pwrite8(dev, index, regs[P_STP_CTRL],
1219 				    learn[index] | PORT_LEARN_DISABLE);
1220 	}
1221 	ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
1222 	for (index = first; index < cnt; index++) {
1223 		if (!(learn[index] & PORT_LEARN_DISABLE))
1224 			ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
1225 	}
1226 }
1227 
ksz8_fdb_dump(struct ksz_device * dev,int port,dsa_fdb_dump_cb_t * cb,void * data)1228 int ksz8_fdb_dump(struct ksz_device *dev, int port,
1229 		  dsa_fdb_dump_cb_t *cb, void *data)
1230 {
1231 	u8 mac[ETH_ALEN];
1232 	u8 src_port, fid;
1233 	u16 entries = 0;
1234 	int ret, i;
1235 
1236 	for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
1237 		ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
1238 					   &entries);
1239 		if (ret)
1240 			return ret;
1241 
1242 		if (i >= entries)
1243 			return 0;
1244 
1245 		if (port == src_port) {
1246 			ret = cb(mac, fid, false, data);
1247 			if (ret)
1248 				return ret;
1249 		}
1250 	}
1251 
1252 	return 0;
1253 }
1254 
ksz8_add_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1255 static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
1256 			    const unsigned char *addr, u16 vid)
1257 {
1258 	struct alu_struct alu;
1259 	int index, ret;
1260 	int empty = 0;
1261 
1262 	alu.port_forward = 0;
1263 	for (index = 0; index < dev->info->num_statics; index++) {
1264 		bool valid;
1265 
1266 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1267 		if (ret)
1268 			return ret;
1269 		if (!valid) {
1270 			/* Remember the first empty entry. */
1271 			if (!empty)
1272 				empty = index + 1;
1273 			continue;
1274 		}
1275 
1276 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1277 			break;
1278 	}
1279 
1280 	/* no available entry */
1281 	if (index == dev->info->num_statics && !empty)
1282 		return -ENOSPC;
1283 
1284 	/* add entry */
1285 	if (index == dev->info->num_statics) {
1286 		index = empty - 1;
1287 		memset(&alu, 0, sizeof(alu));
1288 		memcpy(alu.mac, addr, ETH_ALEN);
1289 		alu.is_static = true;
1290 	}
1291 	alu.port_forward |= BIT(port);
1292 	if (vid) {
1293 		alu.is_use_fid = true;
1294 
1295 		/* Need a way to map VID to FID. */
1296 		alu.fid = vid;
1297 	}
1298 
1299 	return ksz8_w_sta_mac_table(dev, index, &alu);
1300 }
1301 
ksz8_del_sta_mac(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid)1302 static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
1303 			    const unsigned char *addr, u16 vid)
1304 {
1305 	struct alu_struct alu;
1306 	int index, ret;
1307 
1308 	for (index = 0; index < dev->info->num_statics; index++) {
1309 		bool valid;
1310 
1311 		ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
1312 		if (ret)
1313 			return ret;
1314 		if (!valid)
1315 			continue;
1316 
1317 		if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
1318 			break;
1319 	}
1320 
1321 	/* no available entry */
1322 	if (index == dev->info->num_statics)
1323 		return 0;
1324 
1325 	/* clear port */
1326 	alu.port_forward &= ~BIT(port);
1327 	if (!alu.port_forward)
1328 		alu.is_static = false;
1329 
1330 	return ksz8_w_sta_mac_table(dev, index, &alu);
1331 }
1332 
ksz8_mdb_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1333 int ksz8_mdb_add(struct ksz_device *dev, int port,
1334 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1335 {
1336 	return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
1337 }
1338 
ksz8_mdb_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1339 int ksz8_mdb_del(struct ksz_device *dev, int port,
1340 		 const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
1341 {
1342 	return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
1343 }
1344 
ksz8_fdb_add(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1345 int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
1346 		 u16 vid, struct dsa_db db)
1347 {
1348 	return ksz8_add_sta_mac(dev, port, addr, vid);
1349 }
1350 
ksz8_fdb_del(struct ksz_device * dev,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1351 int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
1352 		 u16 vid, struct dsa_db db)
1353 {
1354 	return ksz8_del_sta_mac(dev, port, addr, vid);
1355 }
1356 
ksz8_port_vlan_filtering(struct ksz_device * dev,int port,bool flag,struct netlink_ext_ack * extack)1357 int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
1358 			     struct netlink_ext_ack *extack)
1359 {
1360 	if (ksz_is_ksz88x3(dev))
1361 		return -ENOTSUPP;
1362 
1363 	/* Discard packets with VID not enabled on the switch */
1364 	ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
1365 
1366 	/* Discard packets with VID not enabled on the ingress port */
1367 	for (port = 0; port < dev->phy_port_cnt; ++port)
1368 		ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
1369 			     flag);
1370 
1371 	return 0;
1372 }
1373 
ksz8_port_enable_pvid(struct ksz_device * dev,int port,bool state)1374 static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
1375 {
1376 	if (ksz_is_ksz88x3(dev)) {
1377 		ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
1378 			0x03 << (4 - 2 * port), state);
1379 	} else {
1380 		ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
1381 	}
1382 }
1383 
ksz8_port_vlan_add(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan,struct netlink_ext_ack * extack)1384 int ksz8_port_vlan_add(struct ksz_device *dev, int port,
1385 		       const struct switchdev_obj_port_vlan *vlan,
1386 		       struct netlink_ext_ack *extack)
1387 {
1388 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1389 	struct ksz_port *p = &dev->ports[port];
1390 	u16 data, new_pvid = 0;
1391 	u8 fid, member, valid;
1392 
1393 	if (ksz_is_ksz88x3(dev))
1394 		return -ENOTSUPP;
1395 
1396 	/* If a VLAN is added with untagged flag different from the
1397 	 * port's Remove Tag flag, we need to change the latter.
1398 	 * Ignore VID 0, which is always untagged.
1399 	 * Ignore CPU port, which will always be tagged.
1400 	 */
1401 	if (untagged != p->remove_tag && vlan->vid != 0 &&
1402 	    port != dev->cpu_port) {
1403 		unsigned int vid;
1404 
1405 		/* Reject attempts to add a VLAN that requires the
1406 		 * Remove Tag flag to be changed, unless there are no
1407 		 * other VLANs currently configured.
1408 		 */
1409 		for (vid = 1; vid < dev->info->num_vlans; ++vid) {
1410 			/* Skip the VID we are going to add or reconfigure */
1411 			if (vid == vlan->vid)
1412 				continue;
1413 
1414 			ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
1415 				       &fid, &member, &valid);
1416 			if (valid && (member & BIT(port)))
1417 				return -EINVAL;
1418 		}
1419 
1420 		ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
1421 		p->remove_tag = untagged;
1422 	}
1423 
1424 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1425 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1426 
1427 	/* First time to setup the VLAN entry. */
1428 	if (!valid) {
1429 		/* Need to find a way to map VID to FID. */
1430 		fid = 1;
1431 		valid = 1;
1432 	}
1433 	member |= BIT(port);
1434 
1435 	ksz8_to_vlan(dev, fid, member, valid, &data);
1436 	ksz8_w_vlan_table(dev, vlan->vid, data);
1437 
1438 	/* change PVID */
1439 	if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
1440 		new_pvid = vlan->vid;
1441 
1442 	if (new_pvid) {
1443 		u16 vid;
1444 
1445 		ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
1446 		vid &= ~VLAN_VID_MASK;
1447 		vid |= new_pvid;
1448 		ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
1449 
1450 		ksz8_port_enable_pvid(dev, port, true);
1451 	}
1452 
1453 	return 0;
1454 }
1455 
ksz8_port_vlan_del(struct ksz_device * dev,int port,const struct switchdev_obj_port_vlan * vlan)1456 int ksz8_port_vlan_del(struct ksz_device *dev, int port,
1457 		       const struct switchdev_obj_port_vlan *vlan)
1458 {
1459 	u16 data, pvid;
1460 	u8 fid, member, valid;
1461 
1462 	if (ksz_is_ksz88x3(dev))
1463 		return -ENOTSUPP;
1464 
1465 	ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
1466 	pvid = pvid & 0xFFF;
1467 
1468 	ksz8_r_vlan_table(dev, vlan->vid, &data);
1469 	ksz8_from_vlan(dev, data, &fid, &member, &valid);
1470 
1471 	member &= ~BIT(port);
1472 
1473 	/* Invalidate the entry if no more member. */
1474 	if (!member) {
1475 		fid = 0;
1476 		valid = 0;
1477 	}
1478 
1479 	ksz8_to_vlan(dev, fid, member, valid, &data);
1480 	ksz8_w_vlan_table(dev, vlan->vid, data);
1481 
1482 	if (pvid == vlan->vid)
1483 		ksz8_port_enable_pvid(dev, port, false);
1484 
1485 	return 0;
1486 }
1487 
ksz8_port_mirror_add(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror,bool ingress,struct netlink_ext_ack * extack)1488 int ksz8_port_mirror_add(struct ksz_device *dev, int port,
1489 			 struct dsa_mall_mirror_tc_entry *mirror,
1490 			 bool ingress, struct netlink_ext_ack *extack)
1491 {
1492 	if (ingress) {
1493 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
1494 		dev->mirror_rx |= BIT(port);
1495 	} else {
1496 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
1497 		dev->mirror_tx |= BIT(port);
1498 	}
1499 
1500 	ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
1501 
1502 	/* configure mirror port */
1503 	if (dev->mirror_rx || dev->mirror_tx)
1504 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1505 			     PORT_MIRROR_SNIFFER, true);
1506 
1507 	return 0;
1508 }
1509 
ksz8_port_mirror_del(struct ksz_device * dev,int port,struct dsa_mall_mirror_tc_entry * mirror)1510 void ksz8_port_mirror_del(struct ksz_device *dev, int port,
1511 			  struct dsa_mall_mirror_tc_entry *mirror)
1512 {
1513 	u8 data;
1514 
1515 	if (mirror->ingress) {
1516 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
1517 		dev->mirror_rx &= ~BIT(port);
1518 	} else {
1519 		ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
1520 		dev->mirror_tx &= ~BIT(port);
1521 	}
1522 
1523 	ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
1524 
1525 	if (!dev->mirror_rx && !dev->mirror_tx)
1526 		ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
1527 			     PORT_MIRROR_SNIFFER, false);
1528 }
1529 
ksz8795_cpu_interface_select(struct ksz_device * dev,int port)1530 static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
1531 {
1532 	struct ksz_port *p = &dev->ports[port];
1533 
1534 	if (!ksz_is_ksz87xx(dev))
1535 		return;
1536 
1537 	if (!p->interface && dev->compat_interface) {
1538 		dev_warn(dev->dev,
1539 			 "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
1540 			 "Please update your device tree.\n",
1541 			 port);
1542 		p->interface = dev->compat_interface;
1543 	}
1544 }
1545 
ksz8_port_setup(struct ksz_device * dev,int port,bool cpu_port)1546 void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
1547 {
1548 	struct dsa_switch *ds = dev->ds;
1549 	const u32 *masks;
1550 	int queues;
1551 	u8 member;
1552 
1553 	masks = dev->info->masks;
1554 
1555 	/* enable broadcast storm limit */
1556 	ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
1557 
1558 	/* For KSZ88x3 enable only one queue by default, otherwise we won't
1559 	 * be able to get rid of PCP prios on Port 2.
1560 	 */
1561 	if (ksz_is_ksz88x3(dev))
1562 		queues = 1;
1563 	else
1564 		queues = dev->info->num_tx_queues;
1565 
1566 	ksz8_port_queue_split(dev, port, queues);
1567 
1568 	/* replace priority */
1569 	ksz_port_cfg(dev, port, P_802_1P_CTRL,
1570 		     masks[PORT_802_1P_REMAPPING], false);
1571 
1572 	if (cpu_port)
1573 		member = dsa_user_ports(ds);
1574 	else
1575 		member = BIT(dsa_upstream_port(ds, port));
1576 
1577 	ksz8_cfg_port_member(dev, port, member);
1578 }
1579 
ksz88x3_config_rmii_clk(struct ksz_device * dev)1580 static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
1581 {
1582 	struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
1583 	bool rmii_clk_internal;
1584 
1585 	if (!ksz_is_ksz88x3(dev))
1586 		return;
1587 
1588 	rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
1589 						  "microchip,rmii-clk-internal");
1590 
1591 	ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
1592 		KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
1593 }
1594 
ksz8_config_cpu_port(struct dsa_switch * ds)1595 void ksz8_config_cpu_port(struct dsa_switch *ds)
1596 {
1597 	struct ksz_device *dev = ds->priv;
1598 	struct ksz_port *p;
1599 	const u32 *masks;
1600 	const u16 *regs;
1601 	u8 remote;
1602 	int i;
1603 
1604 	masks = dev->info->masks;
1605 	regs = dev->info->regs;
1606 
1607 	ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
1608 
1609 	ksz8_port_setup(dev, dev->cpu_port, true);
1610 
1611 	ksz8795_cpu_interface_select(dev, dev->cpu_port);
1612 	ksz88x3_config_rmii_clk(dev);
1613 
1614 	for (i = 0; i < dev->phy_port_cnt; i++) {
1615 		ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
1616 	}
1617 	for (i = 0; i < dev->phy_port_cnt; i++) {
1618 		p = &dev->ports[i];
1619 
1620 		if (!ksz_is_ksz88x3(dev)) {
1621 			ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
1622 			if (remote & KSZ8_PORT_FIBER_MODE)
1623 				p->fiber = 1;
1624 		}
1625 		if (p->fiber)
1626 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1627 				     PORT_FORCE_FLOW_CTRL, true);
1628 		else
1629 			ksz_port_cfg(dev, i, regs[P_STP_CTRL],
1630 				     PORT_FORCE_FLOW_CTRL, false);
1631 	}
1632 }
1633 
1634 /**
1635  * ksz8_phy_port_link_up - Configures ports with integrated PHYs
1636  * @dev: The KSZ device instance.
1637  * @port: The port number to configure.
1638  * @duplex: The desired duplex mode.
1639  * @tx_pause: If true, enables transmit pause.
1640  * @rx_pause: If true, enables receive pause.
1641  *
1642  * Description:
1643  * The function configures flow control settings for a given port based on the
1644  * desired settings and current duplex mode.
1645  *
1646  * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
1647  * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
1648  * determines how flow control is handled on the port:
1649  *    "1 = will always enable full-duplex flow control on the port, regardless
1650  *         of AN result.
1651  *     0 = full-duplex flow control is enabled based on AN result."
1652  *
1653  * This means that the flow control behavior depends on the state of this bit:
1654  * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
1655  *   force flow control on the port.
1656  * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
1657  *   flow control based on the AN results.
1658  *
1659  * However, there is a potential limitation in this configuration. It is
1660  * currently not possible to force disable flow control on a port if we still
1661  * advertise pause support. While such a configuration is not currently
1662  * supported by Linux, and may not make practical sense, it's important to be
1663  * aware of this limitation when working with the KSZ8873 and similar devices.
1664  */
ksz8_phy_port_link_up(struct ksz_device * dev,int port,int duplex,bool tx_pause,bool rx_pause)1665 static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
1666 				  bool tx_pause, bool rx_pause)
1667 {
1668 	const u16 *regs = dev->info->regs;
1669 	u8 sctrl = 0;
1670 
1671 	/* The KSZ8795 switch differs from the KSZ8873 by supporting
1672 	 * asymmetric pause control. However, since a single bit is used to
1673 	 * control both RX and TX pause, we can't enforce asymmetric pause
1674 	 * control - both TX and RX pause will be either enabled or disabled
1675 	 * together.
1676 	 *
1677 	 * If auto-negotiation is enabled, we usually allow the flow control to
1678 	 * be determined by the auto-negotiation process based on the
1679 	 * capabilities of both link partners. However, for KSZ8873, the
1680 	 * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
1681 	 * ignoring the auto-negotiation result. Thus, even in auto-negotiation
1682 	 * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
1683 	 * properly cleared.
1684 	 *
1685 	 * In the absence of pause auto-negotiation, we will enforce symmetric
1686 	 * pause control for both variants of switches - KSZ8873 and KSZ8795.
1687 	 *
1688 	 * Autoneg Pause Autoneg      rx,tx	PORT_FORCE_FLOW_CTRL
1689 	 * 1		1		x	0
1690 	 * 0		1		x	0 (flow control probably disabled)
1691 	 * x		0		1	1 (flow control force enabled)
1692 	 * 1		0		0	0 (flow control still depends on
1693 	 *					   aneg result due to hardware)
1694 	 * 0		0		0	0 (flow control probably disabled)
1695 	 */
1696 	if (dev->ports[port].manual_flow && tx_pause)
1697 		sctrl |= PORT_FORCE_FLOW_CTRL;
1698 
1699 	ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
1700 }
1701 
1702 /**
1703  * ksz8_cpu_port_link_up - Configures the CPU port of the switch.
1704  * @dev: The KSZ device instance.
1705  * @speed: The desired link speed.
1706  * @duplex: The desired duplex mode.
1707  * @tx_pause: If true, enables transmit pause.
1708  * @rx_pause: If true, enables receive pause.
1709  *
1710  * Description:
1711  * The function configures flow control and speed settings for the CPU
1712  * port of the switch based on the desired settings, current duplex mode, and
1713  * speed.
1714  */
ksz8_cpu_port_link_up(struct ksz_device * dev,int speed,int duplex,bool tx_pause,bool rx_pause)1715 static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
1716 				  bool tx_pause, bool rx_pause)
1717 {
1718 	const u16 *regs = dev->info->regs;
1719 	u8 ctrl = 0;
1720 
1721 	/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
1722 	 * at least on KSZ8873. They can have different values depending on your
1723 	 * board setup.
1724 	 */
1725 	if (tx_pause || rx_pause)
1726 		ctrl |= SW_FLOW_CTRL;
1727 
1728 	if (duplex == DUPLEX_HALF)
1729 		ctrl |= SW_HALF_DUPLEX;
1730 
1731 	/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
1732 	 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
1733 	 */
1734 	if (speed == SPEED_10)
1735 		ctrl |= SW_10_MBIT;
1736 
1737 	ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
1738 		 SW_10_MBIT, ctrl);
1739 }
1740 
ksz8_phylink_mac_link_up(struct phylink_config * config,struct phy_device * phydev,unsigned int mode,phy_interface_t interface,int speed,int duplex,bool tx_pause,bool rx_pause)1741 void ksz8_phylink_mac_link_up(struct phylink_config *config,
1742 			      struct phy_device *phydev, unsigned int mode,
1743 			      phy_interface_t interface, int speed, int duplex,
1744 			      bool tx_pause, bool rx_pause)
1745 {
1746 	struct dsa_port *dp = dsa_phylink_to_port(config);
1747 	struct ksz_device *dev = dp->ds->priv;
1748 	int port = dp->index;
1749 
1750 	/* If the port is the CPU port, apply special handling. Only the CPU
1751 	 * port is configured via global registers.
1752 	 */
1753 	if (dev->cpu_port == port)
1754 		ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
1755 	else if (dev->info->internal_phy[port])
1756 		ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
1757 }
1758 
ksz8_handle_global_errata(struct dsa_switch * ds)1759 static int ksz8_handle_global_errata(struct dsa_switch *ds)
1760 {
1761 	struct ksz_device *dev = ds->priv;
1762 	int ret = 0;
1763 
1764 	/* KSZ87xx Errata DS80000687C.
1765 	 * Module 2: Link drops with some EEE link partners.
1766 	 *   An issue with the EEE next page exchange between the
1767 	 *   KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
1768 	 *   the link dropping.
1769 	 */
1770 	if (dev->info->ksz87xx_eee_link_erratum)
1771 		ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
1772 
1773 	return ret;
1774 }
1775 
ksz8_enable_stp_addr(struct ksz_device * dev)1776 int ksz8_enable_stp_addr(struct ksz_device *dev)
1777 {
1778 	struct alu_struct alu;
1779 
1780 	/* Setup STP address for STP operation. */
1781 	memset(&alu, 0, sizeof(alu));
1782 	ether_addr_copy(alu.mac, eth_stp_addr);
1783 	alu.is_static = true;
1784 	alu.is_override = true;
1785 	alu.port_forward = dev->info->cpu_ports;
1786 
1787 	return ksz8_w_sta_mac_table(dev, 0, &alu);
1788 }
1789 
ksz8_setup(struct dsa_switch * ds)1790 int ksz8_setup(struct dsa_switch *ds)
1791 {
1792 	struct ksz_device *dev = ds->priv;
1793 	int i;
1794 
1795 	ds->mtu_enforcement_ingress = true;
1796 
1797 	/* We rely on software untagging on the CPU port, so that we
1798 	 * can support both tagged and untagged VLANs
1799 	 */
1800 	ds->untag_bridge_pvid = true;
1801 
1802 	/* VLAN filtering is partly controlled by the global VLAN
1803 	 * Enable flag
1804 	 */
1805 	ds->vlan_filtering_is_global = true;
1806 
1807 	/* Enable automatic fast aging when link changed detected. */
1808 	ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
1809 
1810 	/* Enable aggressive back off algorithm in half duplex mode. */
1811 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
1812 			   SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
1813 
1814 	/*
1815 	 * Make sure unicast VLAN boundary is set as default and
1816 	 * enable no excessive collision drop.
1817 	 */
1818 	regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
1819 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
1820 			   UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
1821 
1822 	ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
1823 
1824 	ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
1825 
1826 	if (!ksz_is_ksz88x3(dev))
1827 		ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
1828 
1829 	for (i = 0; i < (dev->info->num_vlans / 4); i++)
1830 		ksz8_r_vlan_entries(dev, i);
1831 
1832 	return ksz8_handle_global_errata(ds);
1833 }
1834 
ksz8_get_caps(struct ksz_device * dev,int port,struct phylink_config * config)1835 void ksz8_get_caps(struct ksz_device *dev, int port,
1836 		   struct phylink_config *config)
1837 {
1838 	config->mac_capabilities = MAC_10 | MAC_100;
1839 
1840 	/* Silicon Errata Sheet (DS80000830A):
1841 	 * "Port 1 does not respond to received flow control PAUSE frames"
1842 	 * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
1843 	 * switches.
1844 	 */
1845 	if (!ksz_is_ksz88x3(dev) || port)
1846 		config->mac_capabilities |= MAC_SYM_PAUSE;
1847 
1848 	/* Asym pause is not supported on KSZ8863 and KSZ8873 */
1849 	if (!ksz_is_ksz88x3(dev))
1850 		config->mac_capabilities |= MAC_ASYM_PAUSE;
1851 }
1852 
ksz8_get_port_addr(int port,int offset)1853 u32 ksz8_get_port_addr(int port, int offset)
1854 {
1855 	return PORT_CTRL_ADDR(port, offset);
1856 }
1857 
ksz8_switch_init(struct ksz_device * dev)1858 int ksz8_switch_init(struct ksz_device *dev)
1859 {
1860 	dev->cpu_port = fls(dev->info->cpu_ports) - 1;
1861 	dev->phy_port_cnt = dev->info->port_cnt - 1;
1862 	dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
1863 
1864 	return 0;
1865 }
1866 
ksz8_switch_exit(struct ksz_device * dev)1867 void ksz8_switch_exit(struct ksz_device *dev)
1868 {
1869 	ksz8_reset_switch(dev);
1870 }
1871 
1872 MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
1873 MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
1874 MODULE_LICENSE("GPL");
1875