xref: /openbsd/sys/kern/kern_ktrace.c (revision dd905f50)
1 /*	$OpenBSD: kern_ktrace.c,v 1.114 2023/12/15 15:12:08 deraadt Exp $	*/
2 /*	$NetBSD: kern_ktrace.c,v 1.23 1996/02/09 18:59:36 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the University nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  *
32  *	@(#)kern_ktrace.c	8.2 (Berkeley) 9/23/93
33  */
34 
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/proc.h>
38 #include <sys/sched.h>
39 #include <sys/fcntl.h>
40 #include <sys/namei.h>
41 #include <sys/vnode.h>
42 #include <sys/lock.h>
43 #include <sys/ktrace.h>
44 #include <sys/malloc.h>
45 #include <sys/syslog.h>
46 #include <sys/sysctl.h>
47 #include <sys/pledge.h>
48 
49 #include <sys/mount.h>
50 #include <sys/syscall.h>
51 #include <sys/syscallargs.h>
52 
53 void	ktrinitheaderraw(struct ktr_header *, uint, pid_t, pid_t);
54 void	ktrinitheader(struct ktr_header *, struct proc *, int);
55 int	ktrstart(struct proc *, struct vnode *, struct ucred *);
56 int	ktrops(struct proc *, struct process *, int, int, struct vnode *,
57 	    struct ucred *);
58 int	ktrsetchildren(struct proc *, struct process *, int, int,
59 	    struct vnode *, struct ucred *);
60 int	ktrwrite(struct proc *, struct ktr_header *, const void *, size_t);
61 int	ktrwrite2(struct proc *, struct ktr_header *, const void *, size_t,
62 	    const void *, size_t);
63 int	ktrwriteraw(struct proc *, struct vnode *, struct ucred *,
64 	    struct ktr_header *, struct iovec *);
65 int	ktrcanset(struct proc *, struct process *);
66 
67 /*
68  * Clear the trace settings in a correct way (to avoid races).
69  */
70 void
ktrcleartrace(struct process * pr)71 ktrcleartrace(struct process *pr)
72 {
73 	struct vnode *vp;
74 	struct ucred *cred;
75 
76 	if (pr->ps_tracevp != NULL) {
77 		vp = pr->ps_tracevp;
78 		cred = pr->ps_tracecred;
79 
80 		pr->ps_traceflag = 0;
81 		pr->ps_tracevp = NULL;
82 		pr->ps_tracecred = NULL;
83 
84 		vp->v_writecount--;
85 		vrele(vp);
86 		crfree(cred);
87 	}
88 }
89 
90 /*
91  * Change the trace setting in a correct way (to avoid races).
92  */
93 void
ktrsettrace(struct process * pr,int facs,struct vnode * newvp,struct ucred * newcred)94 ktrsettrace(struct process *pr, int facs, struct vnode *newvp,
95     struct ucred *newcred)
96 {
97 	struct vnode *oldvp;
98 	struct ucred *oldcred;
99 
100 	KASSERT(newvp != NULL);
101 	KASSERT(newcred != NULL);
102 
103 	pr->ps_traceflag |= facs;
104 
105 	/* nothing to change about where the trace goes? */
106 	if (pr->ps_tracevp == newvp && pr->ps_tracecred == newcred)
107 		return;
108 
109 	vref(newvp);
110 	crhold(newcred);
111 	newvp->v_writecount++;
112 
113 	oldvp = pr->ps_tracevp;
114 	oldcred = pr->ps_tracecred;
115 
116 	pr->ps_tracevp = newvp;
117 	pr->ps_tracecred = newcred;
118 
119 	if (oldvp != NULL) {
120 		oldvp->v_writecount--;
121 		vrele(oldvp);
122 		crfree(oldcred);
123 	}
124 }
125 
126 void
ktrinitheaderraw(struct ktr_header * kth,uint type,pid_t pid,pid_t tid)127 ktrinitheaderraw(struct ktr_header *kth, uint type, pid_t pid, pid_t tid)
128 {
129 	memset(kth, 0, sizeof(struct ktr_header));
130 	kth->ktr_type = type;
131 	kth->ktr_pid = pid;
132 	kth->ktr_tid = tid;
133 }
134 
135 void
ktrinitheader(struct ktr_header * kth,struct proc * p,int type)136 ktrinitheader(struct ktr_header *kth, struct proc *p, int type)
137 {
138 	struct process *pr = p->p_p;
139 
140 	ktrinitheaderraw(kth, type, pr->ps_pid, p->p_tid + THREAD_PID_OFFSET);
141 	memcpy(kth->ktr_comm, pr->ps_comm, sizeof(kth->ktr_comm));
142 }
143 
144 int
ktrstart(struct proc * p,struct vnode * vp,struct ucred * cred)145 ktrstart(struct proc *p, struct vnode *vp, struct ucred *cred)
146 {
147 	struct ktr_header kth;
148 
149 	ktrinitheaderraw(&kth, htobe32(KTR_START), -1, -1);
150 	return (ktrwriteraw(p, vp, cred, &kth, NULL));
151 }
152 
153 void
ktrsyscall(struct proc * p,register_t code,size_t argsize,register_t args[])154 ktrsyscall(struct proc *p, register_t code, size_t argsize, register_t args[])
155 {
156 	struct	ktr_header kth;
157 	struct	ktr_syscall *ktp;
158 	size_t len = sizeof(struct ktr_syscall) + argsize;
159 	register_t *argp;
160 	u_int nargs = 0;
161 	int i;
162 
163 	if (code == SYS_sysctl) {
164 		/*
165 		 * The sysctl encoding stores the mib[]
166 		 * array because it is interesting.
167 		 */
168 		if (args[1] > 0)
169 			nargs = lmin(args[1], CTL_MAXNAME);
170 		len += nargs * sizeof(int);
171 	}
172 	atomic_setbits_int(&p->p_flag, P_INKTR);
173 	ktrinitheader(&kth, p, KTR_SYSCALL);
174 	ktp = malloc(len, M_TEMP, M_WAITOK);
175 	ktp->ktr_code = code;
176 	ktp->ktr_argsize = argsize;
177 	argp = (register_t *)((char *)ktp + sizeof(struct ktr_syscall));
178 	for (i = 0; i < (argsize / sizeof *argp); i++)
179 		*argp++ = args[i];
180 	if (nargs && copyin((void *)args[0], argp, nargs * sizeof(int)))
181 		memset(argp, 0, nargs * sizeof(int));
182 	ktrwrite(p, &kth, ktp, len);
183 	free(ktp, M_TEMP, len);
184 	atomic_clearbits_int(&p->p_flag, P_INKTR);
185 }
186 
187 void
ktrsysret(struct proc * p,register_t code,int error,const register_t retval[2])188 ktrsysret(struct proc *p, register_t code, int error,
189     const register_t retval[2])
190 {
191 	struct ktr_header kth;
192 	struct ktr_sysret ktp;
193 	int len;
194 
195 	atomic_setbits_int(&p->p_flag, P_INKTR);
196 	ktrinitheader(&kth, p, KTR_SYSRET);
197 	ktp.ktr_code = code;
198 	ktp.ktr_error = error;
199 	if (error)
200 		len = 0;
201 	else if (code == SYS_lseek)
202 		/* the one exception: lseek on ILP32 needs more */
203 		len = sizeof(long long);
204 	else
205 		len = sizeof(register_t);
206 	ktrwrite2(p, &kth, &ktp, sizeof(ktp), retval, len);
207 	atomic_clearbits_int(&p->p_flag, P_INKTR);
208 }
209 
210 void
ktrnamei(struct proc * p,char * path)211 ktrnamei(struct proc *p, char *path)
212 {
213 	struct ktr_header kth;
214 
215 	atomic_setbits_int(&p->p_flag, P_INKTR);
216 	ktrinitheader(&kth, p, KTR_NAMEI);
217 	ktrwrite(p, &kth, path, strlen(path));
218 	atomic_clearbits_int(&p->p_flag, P_INKTR);
219 }
220 
221 void
ktrgenio(struct proc * p,int fd,enum uio_rw rw,struct iovec * iov,ssize_t len)222 ktrgenio(struct proc *p, int fd, enum uio_rw rw, struct iovec *iov,
223     ssize_t len)
224 {
225 	struct ktr_header kth;
226 	struct ktr_genio ktp;
227 	caddr_t cp;
228 	int count, error;
229 	int buflen;
230 
231 	atomic_setbits_int(&p->p_flag, P_INKTR);
232 
233 	/* beware overflow */
234 	if (len > PAGE_SIZE)
235 		buflen = PAGE_SIZE;
236 	else
237 		buflen = len + sizeof(struct ktr_genio);
238 
239 	ktrinitheader(&kth, p, KTR_GENIO);
240 	ktp.ktr_fd = fd;
241 	ktp.ktr_rw = rw;
242 
243 	cp = malloc(buflen, M_TEMP, M_WAITOK);
244 	while (len > 0) {
245 		/*
246 		 * Don't allow this process to hog the cpu when doing
247 		 * huge I/O.
248 		 */
249 		sched_pause(preempt);
250 
251 		count = lmin(iov->iov_len, buflen);
252 		if (count > len)
253 			count = len;
254 		if (copyin(iov->iov_base, cp, count))
255 			break;
256 
257 		KERNEL_LOCK();
258 		error = ktrwrite2(p, &kth, &ktp, sizeof(ktp), cp, count);
259 		KERNEL_UNLOCK();
260 		if (error != 0)
261 			break;
262 
263 		iov->iov_len -= count;
264 		iov->iov_base = (caddr_t)iov->iov_base + count;
265 
266 		if (iov->iov_len == 0)
267 			iov++;
268 
269 		len -= count;
270 	}
271 
272 	free(cp, M_TEMP, buflen);
273 	atomic_clearbits_int(&p->p_flag, P_INKTR);
274 }
275 
276 void
ktrpsig(struct proc * p,int sig,sig_t action,int mask,int code,siginfo_t * si)277 ktrpsig(struct proc *p, int sig, sig_t action, int mask, int code,
278     siginfo_t *si)
279 {
280 	struct ktr_header kth;
281 	struct ktr_psig kp;
282 
283 	atomic_setbits_int(&p->p_flag, P_INKTR);
284 	ktrinitheader(&kth, p, KTR_PSIG);
285 	kp.signo = (char)sig;
286 	kp.action = action;
287 	kp.mask = mask;
288 	kp.code = code;
289 	kp.si = *si;
290 
291 	KERNEL_LOCK();
292 	ktrwrite(p, &kth, &kp, sizeof(kp));
293 	KERNEL_UNLOCK();
294 	atomic_clearbits_int(&p->p_flag, P_INKTR);
295 }
296 
297 void
ktrstruct(struct proc * p,const char * name,const void * data,size_t datalen)298 ktrstruct(struct proc *p, const char *name, const void *data, size_t datalen)
299 {
300 	struct ktr_header kth;
301 
302 	atomic_setbits_int(&p->p_flag, P_INKTR);
303 	ktrinitheader(&kth, p, KTR_STRUCT);
304 
305 	if (data == NULL)
306 		datalen = 0;
307 	KERNEL_LOCK();
308 	ktrwrite2(p, &kth, name, strlen(name) + 1, data, datalen);
309 	KERNEL_UNLOCK();
310 	atomic_clearbits_int(&p->p_flag, P_INKTR);
311 }
312 
313 int
ktruser(struct proc * p,const char * id,const void * addr,size_t len)314 ktruser(struct proc *p, const char *id, const void *addr, size_t len)
315 {
316 	struct ktr_header kth;
317 	struct ktr_user ktp;
318 	int error;
319 	void *memp;
320 #define	STK_PARAMS	128
321 	long long stkbuf[STK_PARAMS / sizeof(long long)];
322 
323 	if (!KTRPOINT(p, KTR_USER))
324 		return (0);
325 	if (len > KTR_USER_MAXLEN)
326 		return (EINVAL);
327 
328 	atomic_setbits_int(&p->p_flag, P_INKTR);
329 	ktrinitheader(&kth, p, KTR_USER);
330 	memset(ktp.ktr_id, 0, KTR_USER_MAXIDLEN);
331 	error = copyinstr(id, ktp.ktr_id, KTR_USER_MAXIDLEN, NULL);
332 	if (error == 0) {
333 		if (len > sizeof(stkbuf))
334 			memp = malloc(len, M_TEMP, M_WAITOK);
335 		else
336 			memp = stkbuf;
337 		error = copyin(addr, memp, len);
338 		if (error == 0) {
339 			KERNEL_LOCK();
340 			ktrwrite2(p, &kth, &ktp, sizeof(ktp), memp, len);
341 			KERNEL_UNLOCK();
342 		}
343 		if (memp != stkbuf)
344 			free(memp, M_TEMP, len);
345 	}
346 	atomic_clearbits_int(&p->p_flag, P_INKTR);
347 	return (error);
348 }
349 
350 void
ktrexec(struct proc * p,int type,const char * data,ssize_t len)351 ktrexec(struct proc *p, int type, const char *data, ssize_t len)
352 {
353 	struct ktr_header kth;
354 	int count;
355 	int buflen;
356 
357 	assert(type == KTR_EXECARGS || type == KTR_EXECENV);
358 	atomic_setbits_int(&p->p_flag, P_INKTR);
359 
360 	/* beware overflow */
361 	if (len > PAGE_SIZE)
362 		buflen = PAGE_SIZE;
363 	else
364 		buflen = len;
365 
366 	ktrinitheader(&kth, p, type);
367 
368 	while (len > 0) {
369 		/*
370 		 * Don't allow this process to hog the cpu when doing
371 		 * huge I/O.
372 		 */
373 		sched_pause(preempt);
374 
375 		count = lmin(len, buflen);
376 		if (ktrwrite(p, &kth, data, count) != 0)
377 			break;
378 
379 		len -= count;
380 		data += count;
381 	}
382 
383 	atomic_clearbits_int(&p->p_flag, P_INKTR);
384 }
385 
386 void
ktrpledge(struct proc * p,int error,uint64_t code,int syscall)387 ktrpledge(struct proc *p, int error, uint64_t code, int syscall)
388 {
389 	struct ktr_header kth;
390 	struct ktr_pledge kp;
391 
392 	atomic_setbits_int(&p->p_flag, P_INKTR);
393 	ktrinitheader(&kth, p, KTR_PLEDGE);
394 	kp.error = error;
395 	kp.code = code;
396 	kp.syscall = syscall;
397 
398 	KERNEL_LOCK();
399 	ktrwrite(p, &kth, &kp, sizeof(kp));
400 	KERNEL_UNLOCK();
401 	atomic_clearbits_int(&p->p_flag, P_INKTR);
402 }
403 
404 void
ktrpinsyscall(struct proc * p,int error,int syscall,vaddr_t addr)405 ktrpinsyscall(struct proc *p, int error, int syscall, vaddr_t addr)
406 {
407 	struct ktr_header kth;
408 	struct ktr_pinsyscall kp;
409 
410 	atomic_setbits_int(&p->p_flag, P_INKTR);
411 	ktrinitheader(&kth, p, KTR_PINSYSCALL);
412 	kp.error = error;
413 	kp.syscall = syscall;
414 	kp.addr = addr;
415 
416 	KERNEL_LOCK();
417 	ktrwrite(p, &kth, &kp, sizeof(kp));
418 	KERNEL_UNLOCK();
419 	atomic_clearbits_int(&p->p_flag, P_INKTR);
420 }
421 
422 /* Interface and common routines */
423 
424 int
doktrace(struct vnode * vp,int ops,int facs,pid_t pid,struct proc * p)425 doktrace(struct vnode *vp, int ops, int facs, pid_t pid, struct proc *p)
426 {
427 	struct process *pr = NULL;
428 	struct ucred *cred = NULL;
429 	struct pgrp *pg;
430 	int descend = ops & KTRFLAG_DESCEND;
431 	int ret = 0;
432 	int error = 0;
433 
434 	facs = facs & ~((unsigned)KTRFAC_ROOT);
435 	ops = KTROP(ops);
436 
437 	if (ops != KTROP_CLEAR) {
438 		/*
439 		 * an operation which requires a file argument.
440 		 */
441 		cred = p->p_ucred;
442 		if (!vp) {
443 			error = EINVAL;
444 			goto done;
445 		}
446 		if (vp->v_type != VREG) {
447 			error = EACCES;
448 			goto done;
449 		}
450 	}
451 	/*
452 	 * Clear all uses of the tracefile
453 	 */
454 	if (ops == KTROP_CLEARFILE) {
455 		LIST_FOREACH(pr, &allprocess, ps_list) {
456 			if (pr->ps_tracevp == vp) {
457 				if (ktrcanset(p, pr))
458 					ktrcleartrace(pr);
459 				else
460 					error = EPERM;
461 			}
462 		}
463 		goto done;
464 	}
465 	/*
466 	 * need something to (un)trace (XXX - why is this here?)
467 	 */
468 	if (!facs) {
469 		error = EINVAL;
470 		goto done;
471 	}
472 	if (ops == KTROP_SET) {
473 		if (suser(p) == 0)
474 			facs |= KTRFAC_ROOT;
475 		error = ktrstart(p, vp, cred);
476 		if (error != 0)
477 			goto done;
478 	}
479 	/*
480 	 * do it
481 	 */
482 	if (pid < 0) {
483 		/*
484 		 * by process group
485 		 */
486 		pg = pgfind(-pid);
487 		if (pg == NULL) {
488 			error = ESRCH;
489 			goto done;
490 		}
491 		LIST_FOREACH(pr, &pg->pg_members, ps_pglist) {
492 			if (descend)
493 				ret |= ktrsetchildren(p, pr, ops, facs, vp,
494 				    cred);
495 			else
496 				ret |= ktrops(p, pr, ops, facs, vp, cred);
497 		}
498 	} else {
499 		/*
500 		 * by pid
501 		 */
502 		pr = prfind(pid);
503 		if (pr == NULL) {
504 			error = ESRCH;
505 			goto done;
506 		}
507 		if (descend)
508 			ret |= ktrsetchildren(p, pr, ops, facs, vp, cred);
509 		else
510 			ret |= ktrops(p, pr, ops, facs, vp, cred);
511 	}
512 	if (!ret)
513 		error = EPERM;
514 done:
515 	return (error);
516 }
517 
518 /*
519  * ktrace system call
520  */
521 int
sys_ktrace(struct proc * p,void * v,register_t * retval)522 sys_ktrace(struct proc *p, void *v, register_t *retval)
523 {
524 	struct sys_ktrace_args /* {
525 		syscallarg(const char *) fname;
526 		syscallarg(int) ops;
527 		syscallarg(int) facs;
528 		syscallarg(pid_t) pid;
529 	} */ *uap = v;
530 	struct vnode *vp = NULL;
531 	const char *fname = SCARG(uap, fname);
532 	struct ucred *cred = NULL;
533 	int error;
534 
535 	if (fname) {
536 		struct nameidata nd;
537 
538 		cred = p->p_ucred;
539 		NDINIT(&nd, 0, 0, UIO_USERSPACE, fname, p);
540 		nd.ni_pledge = PLEDGE_CPATH | PLEDGE_WPATH;
541 		nd.ni_unveil = UNVEIL_CREATE | UNVEIL_WRITE;
542 		if ((error = vn_open(&nd, FWRITE|O_NOFOLLOW, 0)) != 0)
543 			return error;
544 		vp = nd.ni_vp;
545 
546 		VOP_UNLOCK(vp);
547 	}
548 
549 	error = doktrace(vp, SCARG(uap, ops), SCARG(uap, facs),
550 	    SCARG(uap, pid), p);
551 	if (vp != NULL)
552 		(void)vn_close(vp, FWRITE, cred, p);
553 
554 	return error;
555 }
556 
557 int
ktrops(struct proc * curp,struct process * pr,int ops,int facs,struct vnode * vp,struct ucred * cred)558 ktrops(struct proc *curp, struct process *pr, int ops, int facs,
559     struct vnode *vp, struct ucred *cred)
560 {
561 	if (!ktrcanset(curp, pr))
562 		return (0);
563 	if (ops == KTROP_SET)
564 		ktrsettrace(pr, facs, vp, cred);
565 	else {
566 		/* KTROP_CLEAR */
567 		pr->ps_traceflag &= ~facs;
568 		if ((pr->ps_traceflag & KTRFAC_MASK) == 0) {
569 			/* cleared all the facility bits, so stop completely */
570 			ktrcleartrace(pr);
571 		}
572 	}
573 
574 	return (1);
575 }
576 
577 int
ktrsetchildren(struct proc * curp,struct process * top,int ops,int facs,struct vnode * vp,struct ucred * cred)578 ktrsetchildren(struct proc *curp, struct process *top, int ops, int facs,
579     struct vnode *vp, struct ucred *cred)
580 {
581 	struct process *pr;
582 	int ret = 0;
583 
584 	pr = top;
585 	for (;;) {
586 		ret |= ktrops(curp, pr, ops, facs, vp, cred);
587 		/*
588 		 * If this process has children, descend to them next,
589 		 * otherwise do any siblings, and if done with this level,
590 		 * follow back up the tree (but not past top).
591 		 */
592 		if (!LIST_EMPTY(&pr->ps_children))
593 			pr = LIST_FIRST(&pr->ps_children);
594 		else for (;;) {
595 			if (pr == top)
596 				return (ret);
597 			if (LIST_NEXT(pr, ps_sibling) != NULL) {
598 				pr = LIST_NEXT(pr, ps_sibling);
599 				break;
600 			}
601 			pr = pr->ps_pptr;
602 		}
603 	}
604 	/*NOTREACHED*/
605 }
606 
607 int
ktrwrite(struct proc * p,struct ktr_header * kth,const void * aux,size_t len)608 ktrwrite(struct proc *p, struct ktr_header *kth, const void *aux, size_t len)
609 {
610 	struct vnode *vp = p->p_p->ps_tracevp;
611 	struct ucred *cred = p->p_p->ps_tracecred;
612 	struct iovec data[2];
613 	int error;
614 
615 	if (vp == NULL)
616 		return 0;
617 	crhold(cred);
618 	data[0].iov_base = (void *)aux;
619 	data[0].iov_len = len;
620 	data[1].iov_len = 0;
621 	kth->ktr_len = len;
622 	error = ktrwriteraw(p, vp, cred, kth, data);
623 	crfree(cred);
624 	return (error);
625 }
626 
627 int
ktrwrite2(struct proc * p,struct ktr_header * kth,const void * aux1,size_t len1,const void * aux2,size_t len2)628 ktrwrite2(struct proc *p, struct ktr_header *kth, const void *aux1,
629     size_t len1, const void *aux2, size_t len2)
630 {
631 	struct vnode *vp = p->p_p->ps_tracevp;
632 	struct ucred *cred = p->p_p->ps_tracecred;
633 	struct iovec data[2];
634 	int error;
635 
636 	if (vp == NULL)
637 		return 0;
638 	crhold(cred);
639 	data[0].iov_base = (void *)aux1;
640 	data[0].iov_len = len1;
641 	data[1].iov_base = (void *)aux2;
642 	data[1].iov_len = len2;
643 	kth->ktr_len = len1 + len2;
644 	error = ktrwriteraw(p, vp, cred, kth, data);
645 	crfree(cred);
646 	return (error);
647 }
648 
649 int
ktrwriteraw(struct proc * curp,struct vnode * vp,struct ucred * cred,struct ktr_header * kth,struct iovec * data)650 ktrwriteraw(struct proc *curp, struct vnode *vp, struct ucred *cred,
651     struct ktr_header *kth, struct iovec *data)
652 {
653 	struct uio auio;
654 	struct iovec aiov[3];
655 	struct process *pr;
656 	int error;
657 
658 	nanotime(&kth->ktr_time);
659 
660 	KERNEL_ASSERT_LOCKED();
661 
662 	auio.uio_iov = &aiov[0];
663 	auio.uio_offset = 0;
664 	auio.uio_segflg = UIO_SYSSPACE;
665 	auio.uio_rw = UIO_WRITE;
666 	aiov[0].iov_base = (caddr_t)kth;
667 	aiov[0].iov_len = sizeof(struct ktr_header);
668 	auio.uio_resid = sizeof(struct ktr_header);
669 	auio.uio_iovcnt = 1;
670 	auio.uio_procp = curp;
671 	if (kth->ktr_len > 0) {
672 		aiov[1] = data[0];
673 		aiov[2] = data[1];
674 		auio.uio_iovcnt++;
675 		if (aiov[2].iov_len > 0)
676 			auio.uio_iovcnt++;
677 		auio.uio_resid += kth->ktr_len;
678 	}
679 	error = vget(vp, LK_EXCLUSIVE | LK_RETRY);
680 	if (error)
681 		goto bad;
682 	error = VOP_WRITE(vp, &auio, IO_UNIT|IO_APPEND, cred);
683 	vput(vp);
684 	if (error)
685 		goto bad;
686 
687 	return (0);
688 
689 bad:
690 	/*
691 	 * If error encountered, give up tracing on this vnode.
692 	 */
693 	log(LOG_NOTICE, "ktrace write failed, errno %d, tracing stopped\n",
694 	    error);
695 	LIST_FOREACH(pr, &allprocess, ps_list) {
696 		if (pr == curp->p_p)
697 			continue;
698 		if (pr->ps_tracevp == vp && pr->ps_tracecred == cred)
699 			ktrcleartrace(pr);
700 	}
701 	ktrcleartrace(curp->p_p);
702 	return (error);
703 }
704 
705 /*
706  * Return true if caller has permission to set the ktracing state
707  * of target.  Essentially, the target can't possess any
708  * more permissions than the caller.  KTRFAC_ROOT signifies that
709  * root previously set the tracing status on the target process, and
710  * so, only root may further change it.
711  *
712  * TODO: check groups.  use caller effective gid.
713  */
714 int
ktrcanset(struct proc * callp,struct process * targetpr)715 ktrcanset(struct proc *callp, struct process *targetpr)
716 {
717 	struct ucred *caller = callp->p_ucred;
718 	struct ucred *target = targetpr->ps_ucred;
719 
720 	if ((caller->cr_uid == target->cr_ruid &&
721 	    target->cr_ruid == target->cr_svuid &&
722 	    caller->cr_rgid == target->cr_rgid &&	/* XXX */
723 	    target->cr_rgid == target->cr_svgid &&
724 	    (targetpr->ps_traceflag & KTRFAC_ROOT) == 0 &&
725 	    !ISSET(targetpr->ps_flags, PS_SUGID)) ||
726 	    caller->cr_uid == 0)
727 		return (1);
728 
729 	return (0);
730 }
731