1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7 #include <linux/bug.h>
8 #include <linux/cpu_pm.h>
9 #include <linux/entry-kvm.h>
10 #include <linux/errno.h>
11 #include <linux/err.h>
12 #include <linux/kvm_host.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/vmalloc.h>
16 #include <linux/fs.h>
17 #include <linux/mman.h>
18 #include <linux/sched.h>
19 #include <linux/kvm.h>
20 #include <linux/kvm_irqfd.h>
21 #include <linux/irqbypass.h>
22 #include <linux/sched/stat.h>
23 #include <linux/psci.h>
24 #include <trace/events/kvm.h>
25
26 #define CREATE_TRACE_POINTS
27 #include "trace_arm.h"
28
29 #include <linux/uaccess.h>
30 #include <asm/ptrace.h>
31 #include <asm/mman.h>
32 #include <asm/tlbflush.h>
33 #include <asm/cacheflush.h>
34 #include <asm/cpufeature.h>
35 #include <asm/virt.h>
36 #include <asm/kvm_arm.h>
37 #include <asm/kvm_asm.h>
38 #include <asm/kvm_emulate.h>
39 #include <asm/kvm_mmu.h>
40 #include <asm/kvm_nested.h>
41 #include <asm/kvm_pkvm.h>
42 #include <asm/kvm_ptrauth.h>
43 #include <asm/sections.h>
44
45 #include <kvm/arm_hypercalls.h>
46 #include <kvm/arm_pmu.h>
47 #include <kvm/arm_psci.h>
48
49 #include "sys_regs.h"
50
51 static enum kvm_mode kvm_mode = KVM_MODE_DEFAULT;
52
53 enum kvm_wfx_trap_policy {
54 KVM_WFX_NOTRAP_SINGLE_TASK, /* Default option */
55 KVM_WFX_NOTRAP,
56 KVM_WFX_TRAP,
57 };
58
59 static enum kvm_wfx_trap_policy kvm_wfi_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
60 static enum kvm_wfx_trap_policy kvm_wfe_trap_policy __read_mostly = KVM_WFX_NOTRAP_SINGLE_TASK;
61
62 DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
63
64 DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
65 DECLARE_KVM_NVHE_PER_CPU(struct kvm_nvhe_init_params, kvm_init_params);
66
67 DECLARE_KVM_NVHE_PER_CPU(struct kvm_cpu_context, kvm_hyp_ctxt);
68
69 static bool vgic_present, kvm_arm_initialised;
70
71 static DEFINE_PER_CPU(unsigned char, kvm_hyp_initialized);
72 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
73
is_kvm_arm_initialised(void)74 bool is_kvm_arm_initialised(void)
75 {
76 return kvm_arm_initialised;
77 }
78
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)79 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
80 {
81 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
82 }
83
84 /*
85 * This functions as an allow-list of protected VM capabilities.
86 * Features not explicitly allowed by this function are denied.
87 */
pkvm_ext_allowed(struct kvm * kvm,long ext)88 static bool pkvm_ext_allowed(struct kvm *kvm, long ext)
89 {
90 switch (ext) {
91 case KVM_CAP_IRQCHIP:
92 case KVM_CAP_ARM_PSCI:
93 case KVM_CAP_ARM_PSCI_0_2:
94 case KVM_CAP_NR_VCPUS:
95 case KVM_CAP_MAX_VCPUS:
96 case KVM_CAP_MAX_VCPU_ID:
97 case KVM_CAP_MSI_DEVID:
98 case KVM_CAP_ARM_VM_IPA_SIZE:
99 case KVM_CAP_ARM_PMU_V3:
100 case KVM_CAP_ARM_SVE:
101 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
102 case KVM_CAP_ARM_PTRAUTH_GENERIC:
103 return true;
104 default:
105 return false;
106 }
107 }
108
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)109 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
110 struct kvm_enable_cap *cap)
111 {
112 int r = -EINVAL;
113
114 if (cap->flags)
115 return -EINVAL;
116
117 if (kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, cap->cap))
118 return -EINVAL;
119
120 switch (cap->cap) {
121 case KVM_CAP_ARM_NISV_TO_USER:
122 r = 0;
123 set_bit(KVM_ARCH_FLAG_RETURN_NISV_IO_ABORT_TO_USER,
124 &kvm->arch.flags);
125 break;
126 case KVM_CAP_ARM_MTE:
127 mutex_lock(&kvm->lock);
128 if (system_supports_mte() && !kvm->created_vcpus) {
129 r = 0;
130 set_bit(KVM_ARCH_FLAG_MTE_ENABLED, &kvm->arch.flags);
131 }
132 mutex_unlock(&kvm->lock);
133 break;
134 case KVM_CAP_ARM_SYSTEM_SUSPEND:
135 r = 0;
136 set_bit(KVM_ARCH_FLAG_SYSTEM_SUSPEND_ENABLED, &kvm->arch.flags);
137 break;
138 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
139 mutex_lock(&kvm->slots_lock);
140 /*
141 * To keep things simple, allow changing the chunk
142 * size only when no memory slots have been created.
143 */
144 if (kvm_are_all_memslots_empty(kvm)) {
145 u64 new_cap = cap->args[0];
146
147 if (!new_cap || kvm_is_block_size_supported(new_cap)) {
148 r = 0;
149 kvm->arch.mmu.split_page_chunk_size = new_cap;
150 }
151 }
152 mutex_unlock(&kvm->slots_lock);
153 break;
154 default:
155 break;
156 }
157
158 return r;
159 }
160
kvm_arm_default_max_vcpus(void)161 static int kvm_arm_default_max_vcpus(void)
162 {
163 return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
164 }
165
166 /**
167 * kvm_arch_init_vm - initializes a VM data structure
168 * @kvm: pointer to the KVM struct
169 * @type: kvm device type
170 */
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)171 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
172 {
173 int ret;
174
175 mutex_init(&kvm->arch.config_lock);
176
177 #ifdef CONFIG_LOCKDEP
178 /* Clue in lockdep that the config_lock must be taken inside kvm->lock */
179 mutex_lock(&kvm->lock);
180 mutex_lock(&kvm->arch.config_lock);
181 mutex_unlock(&kvm->arch.config_lock);
182 mutex_unlock(&kvm->lock);
183 #endif
184
185 kvm_init_nested(kvm);
186
187 ret = kvm_share_hyp(kvm, kvm + 1);
188 if (ret)
189 return ret;
190
191 ret = pkvm_init_host_vm(kvm);
192 if (ret)
193 goto err_unshare_kvm;
194
195 if (!zalloc_cpumask_var(&kvm->arch.supported_cpus, GFP_KERNEL_ACCOUNT)) {
196 ret = -ENOMEM;
197 goto err_unshare_kvm;
198 }
199 cpumask_copy(kvm->arch.supported_cpus, cpu_possible_mask);
200
201 ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu, type);
202 if (ret)
203 goto err_free_cpumask;
204
205 kvm_vgic_early_init(kvm);
206
207 kvm_timer_init_vm(kvm);
208
209 /* The maximum number of VCPUs is limited by the host's GIC model */
210 kvm->max_vcpus = kvm_arm_default_max_vcpus();
211
212 kvm_arm_init_hypercalls(kvm);
213
214 bitmap_zero(kvm->arch.vcpu_features, KVM_VCPU_MAX_FEATURES);
215
216 return 0;
217
218 err_free_cpumask:
219 free_cpumask_var(kvm->arch.supported_cpus);
220 err_unshare_kvm:
221 kvm_unshare_hyp(kvm, kvm + 1);
222 return ret;
223 }
224
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)225 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
226 {
227 return VM_FAULT_SIGBUS;
228 }
229
kvm_arch_create_vm_debugfs(struct kvm * kvm)230 void kvm_arch_create_vm_debugfs(struct kvm *kvm)
231 {
232 kvm_sys_regs_create_debugfs(kvm);
233 kvm_s2_ptdump_create_debugfs(kvm);
234 }
235
kvm_destroy_mpidr_data(struct kvm * kvm)236 static void kvm_destroy_mpidr_data(struct kvm *kvm)
237 {
238 struct kvm_mpidr_data *data;
239
240 mutex_lock(&kvm->arch.config_lock);
241
242 data = rcu_dereference_protected(kvm->arch.mpidr_data,
243 lockdep_is_held(&kvm->arch.config_lock));
244 if (data) {
245 rcu_assign_pointer(kvm->arch.mpidr_data, NULL);
246 synchronize_rcu();
247 kfree(data);
248 }
249
250 mutex_unlock(&kvm->arch.config_lock);
251 }
252
253 /**
254 * kvm_arch_destroy_vm - destroy the VM data structure
255 * @kvm: pointer to the KVM struct
256 */
kvm_arch_destroy_vm(struct kvm * kvm)257 void kvm_arch_destroy_vm(struct kvm *kvm)
258 {
259 bitmap_free(kvm->arch.pmu_filter);
260 free_cpumask_var(kvm->arch.supported_cpus);
261
262 kvm_vgic_destroy(kvm);
263
264 if (is_protected_kvm_enabled())
265 pkvm_destroy_hyp_vm(kvm);
266
267 kvm_destroy_mpidr_data(kvm);
268
269 kfree(kvm->arch.sysreg_masks);
270 kvm_destroy_vcpus(kvm);
271
272 kvm_unshare_hyp(kvm, kvm + 1);
273
274 kvm_arm_teardown_hypercalls(kvm);
275 }
276
kvm_has_full_ptr_auth(void)277 static bool kvm_has_full_ptr_auth(void)
278 {
279 bool apa, gpa, api, gpi, apa3, gpa3;
280 u64 isar1, isar2, val;
281
282 /*
283 * Check that:
284 *
285 * - both Address and Generic auth are implemented for a given
286 * algorithm (Q5, IMPDEF or Q3)
287 * - only a single algorithm is implemented.
288 */
289 if (!system_has_full_ptr_auth())
290 return false;
291
292 isar1 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
293 isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
294
295 apa = !!FIELD_GET(ID_AA64ISAR1_EL1_APA_MASK, isar1);
296 val = FIELD_GET(ID_AA64ISAR1_EL1_GPA_MASK, isar1);
297 gpa = (val == ID_AA64ISAR1_EL1_GPA_IMP);
298
299 api = !!FIELD_GET(ID_AA64ISAR1_EL1_API_MASK, isar1);
300 val = FIELD_GET(ID_AA64ISAR1_EL1_GPI_MASK, isar1);
301 gpi = (val == ID_AA64ISAR1_EL1_GPI_IMP);
302
303 apa3 = !!FIELD_GET(ID_AA64ISAR2_EL1_APA3_MASK, isar2);
304 val = FIELD_GET(ID_AA64ISAR2_EL1_GPA3_MASK, isar2);
305 gpa3 = (val == ID_AA64ISAR2_EL1_GPA3_IMP);
306
307 return (apa == gpa && api == gpi && apa3 == gpa3 &&
308 (apa + api + apa3) == 1);
309 }
310
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)311 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
312 {
313 int r;
314
315 if (kvm && kvm_vm_is_protected(kvm) && !pkvm_ext_allowed(kvm, ext))
316 return 0;
317
318 switch (ext) {
319 case KVM_CAP_IRQCHIP:
320 r = vgic_present;
321 break;
322 case KVM_CAP_IOEVENTFD:
323 case KVM_CAP_USER_MEMORY:
324 case KVM_CAP_SYNC_MMU:
325 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
326 case KVM_CAP_ONE_REG:
327 case KVM_CAP_ARM_PSCI:
328 case KVM_CAP_ARM_PSCI_0_2:
329 case KVM_CAP_READONLY_MEM:
330 case KVM_CAP_MP_STATE:
331 case KVM_CAP_IMMEDIATE_EXIT:
332 case KVM_CAP_VCPU_EVENTS:
333 case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
334 case KVM_CAP_ARM_NISV_TO_USER:
335 case KVM_CAP_ARM_INJECT_EXT_DABT:
336 case KVM_CAP_SET_GUEST_DEBUG:
337 case KVM_CAP_VCPU_ATTRIBUTES:
338 case KVM_CAP_PTP_KVM:
339 case KVM_CAP_ARM_SYSTEM_SUSPEND:
340 case KVM_CAP_IRQFD_RESAMPLE:
341 case KVM_CAP_COUNTER_OFFSET:
342 r = 1;
343 break;
344 case KVM_CAP_SET_GUEST_DEBUG2:
345 return KVM_GUESTDBG_VALID_MASK;
346 case KVM_CAP_ARM_SET_DEVICE_ADDR:
347 r = 1;
348 break;
349 case KVM_CAP_NR_VCPUS:
350 /*
351 * ARM64 treats KVM_CAP_NR_CPUS differently from all other
352 * architectures, as it does not always bound it to
353 * KVM_CAP_MAX_VCPUS. It should not matter much because
354 * this is just an advisory value.
355 */
356 r = min_t(unsigned int, num_online_cpus(),
357 kvm_arm_default_max_vcpus());
358 break;
359 case KVM_CAP_MAX_VCPUS:
360 case KVM_CAP_MAX_VCPU_ID:
361 if (kvm)
362 r = kvm->max_vcpus;
363 else
364 r = kvm_arm_default_max_vcpus();
365 break;
366 case KVM_CAP_MSI_DEVID:
367 if (!kvm)
368 r = -EINVAL;
369 else
370 r = kvm->arch.vgic.msis_require_devid;
371 break;
372 case KVM_CAP_ARM_USER_IRQ:
373 /*
374 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
375 * (bump this number if adding more devices)
376 */
377 r = 1;
378 break;
379 case KVM_CAP_ARM_MTE:
380 r = system_supports_mte();
381 break;
382 case KVM_CAP_STEAL_TIME:
383 r = kvm_arm_pvtime_supported();
384 break;
385 case KVM_CAP_ARM_EL1_32BIT:
386 r = cpus_have_final_cap(ARM64_HAS_32BIT_EL1);
387 break;
388 case KVM_CAP_GUEST_DEBUG_HW_BPS:
389 r = get_num_brps();
390 break;
391 case KVM_CAP_GUEST_DEBUG_HW_WPS:
392 r = get_num_wrps();
393 break;
394 case KVM_CAP_ARM_PMU_V3:
395 r = kvm_arm_support_pmu_v3();
396 break;
397 case KVM_CAP_ARM_INJECT_SERROR_ESR:
398 r = cpus_have_final_cap(ARM64_HAS_RAS_EXTN);
399 break;
400 case KVM_CAP_ARM_VM_IPA_SIZE:
401 r = get_kvm_ipa_limit();
402 break;
403 case KVM_CAP_ARM_SVE:
404 r = system_supports_sve();
405 break;
406 case KVM_CAP_ARM_PTRAUTH_ADDRESS:
407 case KVM_CAP_ARM_PTRAUTH_GENERIC:
408 r = kvm_has_full_ptr_auth();
409 break;
410 case KVM_CAP_ARM_EAGER_SPLIT_CHUNK_SIZE:
411 if (kvm)
412 r = kvm->arch.mmu.split_page_chunk_size;
413 else
414 r = KVM_ARM_EAGER_SPLIT_CHUNK_SIZE_DEFAULT;
415 break;
416 case KVM_CAP_ARM_SUPPORTED_BLOCK_SIZES:
417 r = kvm_supported_block_sizes();
418 break;
419 case KVM_CAP_ARM_SUPPORTED_REG_MASK_RANGES:
420 r = BIT(0);
421 break;
422 default:
423 r = 0;
424 }
425
426 return r;
427 }
428
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)429 long kvm_arch_dev_ioctl(struct file *filp,
430 unsigned int ioctl, unsigned long arg)
431 {
432 return -EINVAL;
433 }
434
kvm_arch_alloc_vm(void)435 struct kvm *kvm_arch_alloc_vm(void)
436 {
437 size_t sz = sizeof(struct kvm);
438
439 if (!has_vhe())
440 return kzalloc(sz, GFP_KERNEL_ACCOUNT);
441
442 return __vmalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_HIGHMEM | __GFP_ZERO);
443 }
444
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)445 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
446 {
447 if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
448 return -EBUSY;
449
450 if (id >= kvm->max_vcpus)
451 return -EINVAL;
452
453 return 0;
454 }
455
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)456 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
457 {
458 int err;
459
460 spin_lock_init(&vcpu->arch.mp_state_lock);
461
462 #ifdef CONFIG_LOCKDEP
463 /* Inform lockdep that the config_lock is acquired after vcpu->mutex */
464 mutex_lock(&vcpu->mutex);
465 mutex_lock(&vcpu->kvm->arch.config_lock);
466 mutex_unlock(&vcpu->kvm->arch.config_lock);
467 mutex_unlock(&vcpu->mutex);
468 #endif
469
470 /* Force users to call KVM_ARM_VCPU_INIT */
471 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
472
473 vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
474
475 /* Set up the timer */
476 kvm_timer_vcpu_init(vcpu);
477
478 kvm_pmu_vcpu_init(vcpu);
479
480 kvm_arm_reset_debug_ptr(vcpu);
481
482 kvm_arm_pvtime_vcpu_init(&vcpu->arch);
483
484 vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
485
486 /*
487 * This vCPU may have been created after mpidr_data was initialized.
488 * Throw out the pre-computed mappings if that is the case which forces
489 * KVM to fall back to iteratively searching the vCPUs.
490 */
491 kvm_destroy_mpidr_data(vcpu->kvm);
492
493 err = kvm_vgic_vcpu_init(vcpu);
494 if (err)
495 return err;
496
497 return kvm_share_hyp(vcpu, vcpu + 1);
498 }
499
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)500 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
501 {
502 }
503
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)504 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
505 {
506 if (vcpu_has_run_once(vcpu) && unlikely(!irqchip_in_kernel(vcpu->kvm)))
507 static_branch_dec(&userspace_irqchip_in_use);
508
509 kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
510 kvm_timer_vcpu_terminate(vcpu);
511 kvm_pmu_vcpu_destroy(vcpu);
512 kvm_vgic_vcpu_destroy(vcpu);
513 kvm_arm_vcpu_destroy(vcpu);
514 }
515
kvm_arch_vcpu_blocking(struct kvm_vcpu * vcpu)516 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
517 {
518
519 }
520
kvm_arch_vcpu_unblocking(struct kvm_vcpu * vcpu)521 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
522 {
523
524 }
525
vcpu_set_pauth_traps(struct kvm_vcpu * vcpu)526 static void vcpu_set_pauth_traps(struct kvm_vcpu *vcpu)
527 {
528 if (vcpu_has_ptrauth(vcpu) && !is_protected_kvm_enabled()) {
529 /*
530 * Either we're running an L2 guest, and the API/APK bits come
531 * from L1's HCR_EL2, or API/APK are both set.
532 */
533 if (unlikely(vcpu_has_nv(vcpu) && !is_hyp_ctxt(vcpu))) {
534 u64 val;
535
536 val = __vcpu_sys_reg(vcpu, HCR_EL2);
537 val &= (HCR_API | HCR_APK);
538 vcpu->arch.hcr_el2 &= ~(HCR_API | HCR_APK);
539 vcpu->arch.hcr_el2 |= val;
540 } else {
541 vcpu->arch.hcr_el2 |= (HCR_API | HCR_APK);
542 }
543
544 /*
545 * Save the host keys if there is any chance for the guest
546 * to use pauth, as the entry code will reload the guest
547 * keys in that case.
548 */
549 if (vcpu->arch.hcr_el2 & (HCR_API | HCR_APK)) {
550 struct kvm_cpu_context *ctxt;
551
552 ctxt = this_cpu_ptr_hyp_sym(kvm_hyp_ctxt);
553 ptrauth_save_keys(ctxt);
554 }
555 }
556 }
557
kvm_vcpu_should_clear_twi(struct kvm_vcpu * vcpu)558 static bool kvm_vcpu_should_clear_twi(struct kvm_vcpu *vcpu)
559 {
560 if (unlikely(kvm_wfi_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
561 return kvm_wfi_trap_policy == KVM_WFX_NOTRAP;
562
563 return single_task_running() &&
564 (atomic_read(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count) ||
565 vcpu->kvm->arch.vgic.nassgireq);
566 }
567
kvm_vcpu_should_clear_twe(struct kvm_vcpu * vcpu)568 static bool kvm_vcpu_should_clear_twe(struct kvm_vcpu *vcpu)
569 {
570 if (unlikely(kvm_wfe_trap_policy != KVM_WFX_NOTRAP_SINGLE_TASK))
571 return kvm_wfe_trap_policy == KVM_WFX_NOTRAP;
572
573 return single_task_running();
574 }
575
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)576 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
577 {
578 struct kvm_s2_mmu *mmu;
579 int *last_ran;
580
581 if (vcpu_has_nv(vcpu))
582 kvm_vcpu_load_hw_mmu(vcpu);
583
584 mmu = vcpu->arch.hw_mmu;
585 last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
586
587 /*
588 * We guarantee that both TLBs and I-cache are private to each
589 * vcpu. If detecting that a vcpu from the same VM has
590 * previously run on the same physical CPU, call into the
591 * hypervisor code to nuke the relevant contexts.
592 *
593 * We might get preempted before the vCPU actually runs, but
594 * over-invalidation doesn't affect correctness.
595 */
596 if (*last_ran != vcpu->vcpu_idx) {
597 kvm_call_hyp(__kvm_flush_cpu_context, mmu);
598 *last_ran = vcpu->vcpu_idx;
599 }
600
601 vcpu->cpu = cpu;
602
603 kvm_vgic_load(vcpu);
604 kvm_timer_vcpu_load(vcpu);
605 if (has_vhe())
606 kvm_vcpu_load_vhe(vcpu);
607 kvm_arch_vcpu_load_fp(vcpu);
608 kvm_vcpu_pmu_restore_guest(vcpu);
609 if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
610 kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
611
612 if (kvm_vcpu_should_clear_twe(vcpu))
613 vcpu->arch.hcr_el2 &= ~HCR_TWE;
614 else
615 vcpu->arch.hcr_el2 |= HCR_TWE;
616
617 if (kvm_vcpu_should_clear_twi(vcpu))
618 vcpu->arch.hcr_el2 &= ~HCR_TWI;
619 else
620 vcpu->arch.hcr_el2 |= HCR_TWI;
621
622 vcpu_set_pauth_traps(vcpu);
623
624 kvm_arch_vcpu_load_debug_state_flags(vcpu);
625
626 if (!cpumask_test_cpu(cpu, vcpu->kvm->arch.supported_cpus))
627 vcpu_set_on_unsupported_cpu(vcpu);
628 }
629
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)630 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
631 {
632 kvm_arch_vcpu_put_debug_state_flags(vcpu);
633 kvm_arch_vcpu_put_fp(vcpu);
634 if (has_vhe())
635 kvm_vcpu_put_vhe(vcpu);
636 kvm_timer_vcpu_put(vcpu);
637 kvm_vgic_put(vcpu);
638 kvm_vcpu_pmu_restore_host(vcpu);
639 if (vcpu_has_nv(vcpu))
640 kvm_vcpu_put_hw_mmu(vcpu);
641 kvm_arm_vmid_clear_active();
642
643 vcpu_clear_on_unsupported_cpu(vcpu);
644 vcpu->cpu = -1;
645 }
646
__kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)647 static void __kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
648 {
649 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_STOPPED);
650 kvm_make_request(KVM_REQ_SLEEP, vcpu);
651 kvm_vcpu_kick(vcpu);
652 }
653
kvm_arm_vcpu_power_off(struct kvm_vcpu * vcpu)654 void kvm_arm_vcpu_power_off(struct kvm_vcpu *vcpu)
655 {
656 spin_lock(&vcpu->arch.mp_state_lock);
657 __kvm_arm_vcpu_power_off(vcpu);
658 spin_unlock(&vcpu->arch.mp_state_lock);
659 }
660
kvm_arm_vcpu_stopped(struct kvm_vcpu * vcpu)661 bool kvm_arm_vcpu_stopped(struct kvm_vcpu *vcpu)
662 {
663 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_STOPPED;
664 }
665
kvm_arm_vcpu_suspend(struct kvm_vcpu * vcpu)666 static void kvm_arm_vcpu_suspend(struct kvm_vcpu *vcpu)
667 {
668 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_SUSPENDED);
669 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
670 kvm_vcpu_kick(vcpu);
671 }
672
kvm_arm_vcpu_suspended(struct kvm_vcpu * vcpu)673 static bool kvm_arm_vcpu_suspended(struct kvm_vcpu *vcpu)
674 {
675 return READ_ONCE(vcpu->arch.mp_state.mp_state) == KVM_MP_STATE_SUSPENDED;
676 }
677
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)678 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
679 struct kvm_mp_state *mp_state)
680 {
681 *mp_state = READ_ONCE(vcpu->arch.mp_state);
682
683 return 0;
684 }
685
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)686 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
687 struct kvm_mp_state *mp_state)
688 {
689 int ret = 0;
690
691 spin_lock(&vcpu->arch.mp_state_lock);
692
693 switch (mp_state->mp_state) {
694 case KVM_MP_STATE_RUNNABLE:
695 WRITE_ONCE(vcpu->arch.mp_state, *mp_state);
696 break;
697 case KVM_MP_STATE_STOPPED:
698 __kvm_arm_vcpu_power_off(vcpu);
699 break;
700 case KVM_MP_STATE_SUSPENDED:
701 kvm_arm_vcpu_suspend(vcpu);
702 break;
703 default:
704 ret = -EINVAL;
705 }
706
707 spin_unlock(&vcpu->arch.mp_state_lock);
708
709 return ret;
710 }
711
712 /**
713 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
714 * @v: The VCPU pointer
715 *
716 * If the guest CPU is not waiting for interrupts or an interrupt line is
717 * asserted, the CPU is by definition runnable.
718 */
kvm_arch_vcpu_runnable(struct kvm_vcpu * v)719 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
720 {
721 bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
722 return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
723 && !kvm_arm_vcpu_stopped(v) && !v->arch.pause);
724 }
725
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)726 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
727 {
728 return vcpu_mode_priv(vcpu);
729 }
730
731 #ifdef CONFIG_GUEST_PERF_EVENTS
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)732 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
733 {
734 return *vcpu_pc(vcpu);
735 }
736 #endif
737
kvm_init_mpidr_data(struct kvm * kvm)738 static void kvm_init_mpidr_data(struct kvm *kvm)
739 {
740 struct kvm_mpidr_data *data = NULL;
741 unsigned long c, mask, nr_entries;
742 u64 aff_set = 0, aff_clr = ~0UL;
743 struct kvm_vcpu *vcpu;
744
745 mutex_lock(&kvm->arch.config_lock);
746
747 if (rcu_access_pointer(kvm->arch.mpidr_data) ||
748 atomic_read(&kvm->online_vcpus) == 1)
749 goto out;
750
751 kvm_for_each_vcpu(c, vcpu, kvm) {
752 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
753 aff_set |= aff;
754 aff_clr &= aff;
755 }
756
757 /*
758 * A significant bit can be either 0 or 1, and will only appear in
759 * aff_set. Use aff_clr to weed out the useless stuff.
760 */
761 mask = aff_set ^ aff_clr;
762 nr_entries = BIT_ULL(hweight_long(mask));
763
764 /*
765 * Don't let userspace fool us. If we need more than a single page
766 * to describe the compressed MPIDR array, just fall back to the
767 * iterative method. Single vcpu VMs do not need this either.
768 */
769 if (struct_size(data, cmpidr_to_idx, nr_entries) <= PAGE_SIZE)
770 data = kzalloc(struct_size(data, cmpidr_to_idx, nr_entries),
771 GFP_KERNEL_ACCOUNT);
772
773 if (!data)
774 goto out;
775
776 data->mpidr_mask = mask;
777
778 kvm_for_each_vcpu(c, vcpu, kvm) {
779 u64 aff = kvm_vcpu_get_mpidr_aff(vcpu);
780 u16 index = kvm_mpidr_index(data, aff);
781
782 data->cmpidr_to_idx[index] = c;
783 }
784
785 rcu_assign_pointer(kvm->arch.mpidr_data, data);
786 out:
787 mutex_unlock(&kvm->arch.config_lock);
788 }
789
790 /*
791 * Handle both the initialisation that is being done when the vcpu is
792 * run for the first time, as well as the updates that must be
793 * performed each time we get a new thread dealing with this vcpu.
794 */
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)795 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
796 {
797 struct kvm *kvm = vcpu->kvm;
798 int ret;
799
800 if (!kvm_vcpu_initialized(vcpu))
801 return -ENOEXEC;
802
803 if (!kvm_arm_vcpu_is_finalized(vcpu))
804 return -EPERM;
805
806 ret = kvm_arch_vcpu_run_map_fp(vcpu);
807 if (ret)
808 return ret;
809
810 if (likely(vcpu_has_run_once(vcpu)))
811 return 0;
812
813 kvm_init_mpidr_data(kvm);
814
815 kvm_arm_vcpu_init_debug(vcpu);
816
817 if (likely(irqchip_in_kernel(kvm))) {
818 /*
819 * Map the VGIC hardware resources before running a vcpu the
820 * first time on this VM.
821 */
822 ret = kvm_vgic_map_resources(kvm);
823 if (ret)
824 return ret;
825 }
826
827 ret = kvm_finalize_sys_regs(vcpu);
828 if (ret)
829 return ret;
830
831 /*
832 * This needs to happen after any restriction has been applied
833 * to the feature set.
834 */
835 kvm_calculate_traps(vcpu);
836
837 ret = kvm_timer_enable(vcpu);
838 if (ret)
839 return ret;
840
841 ret = kvm_arm_pmu_v3_enable(vcpu);
842 if (ret)
843 return ret;
844
845 if (is_protected_kvm_enabled()) {
846 ret = pkvm_create_hyp_vm(kvm);
847 if (ret)
848 return ret;
849 }
850
851 if (!irqchip_in_kernel(kvm)) {
852 /*
853 * Tell the rest of the code that there are userspace irqchip
854 * VMs in the wild.
855 */
856 static_branch_inc(&userspace_irqchip_in_use);
857 }
858
859 /*
860 * Initialize traps for protected VMs.
861 * NOTE: Move to run in EL2 directly, rather than via a hypercall, once
862 * the code is in place for first run initialization at EL2.
863 */
864 if (kvm_vm_is_protected(kvm))
865 kvm_call_hyp_nvhe(__pkvm_vcpu_init_traps, vcpu);
866
867 mutex_lock(&kvm->arch.config_lock);
868 set_bit(KVM_ARCH_FLAG_HAS_RAN_ONCE, &kvm->arch.flags);
869 mutex_unlock(&kvm->arch.config_lock);
870
871 return ret;
872 }
873
kvm_arch_intc_initialized(struct kvm * kvm)874 bool kvm_arch_intc_initialized(struct kvm *kvm)
875 {
876 return vgic_initialized(kvm);
877 }
878
kvm_arm_halt_guest(struct kvm * kvm)879 void kvm_arm_halt_guest(struct kvm *kvm)
880 {
881 unsigned long i;
882 struct kvm_vcpu *vcpu;
883
884 kvm_for_each_vcpu(i, vcpu, kvm)
885 vcpu->arch.pause = true;
886 kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
887 }
888
kvm_arm_resume_guest(struct kvm * kvm)889 void kvm_arm_resume_guest(struct kvm *kvm)
890 {
891 unsigned long i;
892 struct kvm_vcpu *vcpu;
893
894 kvm_for_each_vcpu(i, vcpu, kvm) {
895 vcpu->arch.pause = false;
896 __kvm_vcpu_wake_up(vcpu);
897 }
898 }
899
kvm_vcpu_sleep(struct kvm_vcpu * vcpu)900 static void kvm_vcpu_sleep(struct kvm_vcpu *vcpu)
901 {
902 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
903
904 rcuwait_wait_event(wait,
905 (!kvm_arm_vcpu_stopped(vcpu)) && (!vcpu->arch.pause),
906 TASK_INTERRUPTIBLE);
907
908 if (kvm_arm_vcpu_stopped(vcpu) || vcpu->arch.pause) {
909 /* Awaken to handle a signal, request we sleep again later. */
910 kvm_make_request(KVM_REQ_SLEEP, vcpu);
911 }
912
913 /*
914 * Make sure we will observe a potential reset request if we've
915 * observed a change to the power state. Pairs with the smp_wmb() in
916 * kvm_psci_vcpu_on().
917 */
918 smp_rmb();
919 }
920
921 /**
922 * kvm_vcpu_wfi - emulate Wait-For-Interrupt behavior
923 * @vcpu: The VCPU pointer
924 *
925 * Suspend execution of a vCPU until a valid wake event is detected, i.e. until
926 * the vCPU is runnable. The vCPU may or may not be scheduled out, depending
927 * on when a wake event arrives, e.g. there may already be a pending wake event.
928 */
kvm_vcpu_wfi(struct kvm_vcpu * vcpu)929 void kvm_vcpu_wfi(struct kvm_vcpu *vcpu)
930 {
931 /*
932 * Sync back the state of the GIC CPU interface so that we have
933 * the latest PMR and group enables. This ensures that
934 * kvm_arch_vcpu_runnable has up-to-date data to decide whether
935 * we have pending interrupts, e.g. when determining if the
936 * vCPU should block.
937 *
938 * For the same reason, we want to tell GICv4 that we need
939 * doorbells to be signalled, should an interrupt become pending.
940 */
941 preempt_disable();
942 vcpu_set_flag(vcpu, IN_WFI);
943 kvm_vgic_put(vcpu);
944 preempt_enable();
945
946 kvm_vcpu_halt(vcpu);
947 vcpu_clear_flag(vcpu, IN_WFIT);
948
949 preempt_disable();
950 vcpu_clear_flag(vcpu, IN_WFI);
951 kvm_vgic_load(vcpu);
952 preempt_enable();
953 }
954
kvm_vcpu_suspend(struct kvm_vcpu * vcpu)955 static int kvm_vcpu_suspend(struct kvm_vcpu *vcpu)
956 {
957 if (!kvm_arm_vcpu_suspended(vcpu))
958 return 1;
959
960 kvm_vcpu_wfi(vcpu);
961
962 /*
963 * The suspend state is sticky; we do not leave it until userspace
964 * explicitly marks the vCPU as runnable. Request that we suspend again
965 * later.
966 */
967 kvm_make_request(KVM_REQ_SUSPEND, vcpu);
968
969 /*
970 * Check to make sure the vCPU is actually runnable. If so, exit to
971 * userspace informing it of the wakeup condition.
972 */
973 if (kvm_arch_vcpu_runnable(vcpu)) {
974 memset(&vcpu->run->system_event, 0, sizeof(vcpu->run->system_event));
975 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_WAKEUP;
976 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
977 return 0;
978 }
979
980 /*
981 * Otherwise, we were unblocked to process a different event, such as a
982 * pending signal. Return 1 and allow kvm_arch_vcpu_ioctl_run() to
983 * process the event.
984 */
985 return 1;
986 }
987
988 /**
989 * check_vcpu_requests - check and handle pending vCPU requests
990 * @vcpu: the VCPU pointer
991 *
992 * Return: 1 if we should enter the guest
993 * 0 if we should exit to userspace
994 * < 0 if we should exit to userspace, where the return value indicates
995 * an error
996 */
check_vcpu_requests(struct kvm_vcpu * vcpu)997 static int check_vcpu_requests(struct kvm_vcpu *vcpu)
998 {
999 if (kvm_request_pending(vcpu)) {
1000 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu))
1001 return -EIO;
1002
1003 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
1004 kvm_vcpu_sleep(vcpu);
1005
1006 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1007 kvm_reset_vcpu(vcpu);
1008
1009 /*
1010 * Clear IRQ_PENDING requests that were made to guarantee
1011 * that a VCPU sees new virtual interrupts.
1012 */
1013 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
1014
1015 if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
1016 kvm_update_stolen_time(vcpu);
1017
1018 if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
1019 /* The distributor enable bits were changed */
1020 preempt_disable();
1021 vgic_v4_put(vcpu);
1022 vgic_v4_load(vcpu);
1023 preempt_enable();
1024 }
1025
1026 if (kvm_check_request(KVM_REQ_RELOAD_PMU, vcpu))
1027 kvm_vcpu_reload_pmu(vcpu);
1028
1029 if (kvm_check_request(KVM_REQ_RESYNC_PMU_EL0, vcpu))
1030 kvm_vcpu_pmu_restore_guest(vcpu);
1031
1032 if (kvm_check_request(KVM_REQ_SUSPEND, vcpu))
1033 return kvm_vcpu_suspend(vcpu);
1034
1035 if (kvm_dirty_ring_check_request(vcpu))
1036 return 0;
1037
1038 check_nested_vcpu_requests(vcpu);
1039 }
1040
1041 return 1;
1042 }
1043
vcpu_mode_is_bad_32bit(struct kvm_vcpu * vcpu)1044 static bool vcpu_mode_is_bad_32bit(struct kvm_vcpu *vcpu)
1045 {
1046 if (likely(!vcpu_mode_is_32bit(vcpu)))
1047 return false;
1048
1049 if (vcpu_has_nv(vcpu))
1050 return true;
1051
1052 return !kvm_supports_32bit_el0();
1053 }
1054
1055 /**
1056 * kvm_vcpu_exit_request - returns true if the VCPU should *not* enter the guest
1057 * @vcpu: The VCPU pointer
1058 * @ret: Pointer to write optional return code
1059 *
1060 * Returns: true if the VCPU needs to return to a preemptible + interruptible
1061 * and skip guest entry.
1062 *
1063 * This function disambiguates between two different types of exits: exits to a
1064 * preemptible + interruptible kernel context and exits to userspace. For an
1065 * exit to userspace, this function will write the return code to ret and return
1066 * true. For an exit to preemptible + interruptible kernel context (i.e. check
1067 * for pending work and re-enter), return true without writing to ret.
1068 */
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu,int * ret)1069 static bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu, int *ret)
1070 {
1071 struct kvm_run *run = vcpu->run;
1072
1073 /*
1074 * If we're using a userspace irqchip, then check if we need
1075 * to tell a userspace irqchip about timer or PMU level
1076 * changes and if so, exit to userspace (the actual level
1077 * state gets updated in kvm_timer_update_run and
1078 * kvm_pmu_update_run below).
1079 */
1080 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
1081 if (kvm_timer_should_notify_user(vcpu) ||
1082 kvm_pmu_should_notify_user(vcpu)) {
1083 *ret = -EINTR;
1084 run->exit_reason = KVM_EXIT_INTR;
1085 return true;
1086 }
1087 }
1088
1089 if (unlikely(vcpu_on_unsupported_cpu(vcpu))) {
1090 run->exit_reason = KVM_EXIT_FAIL_ENTRY;
1091 run->fail_entry.hardware_entry_failure_reason = KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED;
1092 run->fail_entry.cpu = smp_processor_id();
1093 *ret = 0;
1094 return true;
1095 }
1096
1097 return kvm_request_pending(vcpu) ||
1098 xfer_to_guest_mode_work_pending();
1099 }
1100
1101 /*
1102 * Actually run the vCPU, entering an RCU extended quiescent state (EQS) while
1103 * the vCPU is running.
1104 *
1105 * This must be noinstr as instrumentation may make use of RCU, and this is not
1106 * safe during the EQS.
1107 */
kvm_arm_vcpu_enter_exit(struct kvm_vcpu * vcpu)1108 static int noinstr kvm_arm_vcpu_enter_exit(struct kvm_vcpu *vcpu)
1109 {
1110 int ret;
1111
1112 guest_state_enter_irqoff();
1113 ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
1114 guest_state_exit_irqoff();
1115
1116 return ret;
1117 }
1118
1119 /**
1120 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
1121 * @vcpu: The VCPU pointer
1122 *
1123 * This function is called through the VCPU_RUN ioctl called from user space. It
1124 * will execute VM code in a loop until the time slice for the process is used
1125 * or some emulation is needed from user space in which case the function will
1126 * return with return value 0 and with the kvm_run structure filled in with the
1127 * required data for the requested emulation.
1128 */
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)1129 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1130 {
1131 struct kvm_run *run = vcpu->run;
1132 int ret;
1133
1134 if (run->exit_reason == KVM_EXIT_MMIO) {
1135 ret = kvm_handle_mmio_return(vcpu);
1136 if (ret <= 0)
1137 return ret;
1138 }
1139
1140 vcpu_load(vcpu);
1141
1142 if (!vcpu->wants_to_run) {
1143 ret = -EINTR;
1144 goto out;
1145 }
1146
1147 kvm_sigset_activate(vcpu);
1148
1149 ret = 1;
1150 run->exit_reason = KVM_EXIT_UNKNOWN;
1151 run->flags = 0;
1152 while (ret > 0) {
1153 /*
1154 * Check conditions before entering the guest
1155 */
1156 ret = xfer_to_guest_mode_handle_work(vcpu);
1157 if (!ret)
1158 ret = 1;
1159
1160 if (ret > 0)
1161 ret = check_vcpu_requests(vcpu);
1162
1163 /*
1164 * Preparing the interrupts to be injected also
1165 * involves poking the GIC, which must be done in a
1166 * non-preemptible context.
1167 */
1168 preempt_disable();
1169
1170 /*
1171 * The VMID allocator only tracks active VMIDs per
1172 * physical CPU, and therefore the VMID allocated may not be
1173 * preserved on VMID roll-over if the task was preempted,
1174 * making a thread's VMID inactive. So we need to call
1175 * kvm_arm_vmid_update() in non-premptible context.
1176 */
1177 if (kvm_arm_vmid_update(&vcpu->arch.hw_mmu->vmid) &&
1178 has_vhe())
1179 __load_stage2(vcpu->arch.hw_mmu,
1180 vcpu->arch.hw_mmu->arch);
1181
1182 kvm_pmu_flush_hwstate(vcpu);
1183
1184 local_irq_disable();
1185
1186 kvm_vgic_flush_hwstate(vcpu);
1187
1188 kvm_pmu_update_vcpu_events(vcpu);
1189
1190 /*
1191 * Ensure we set mode to IN_GUEST_MODE after we disable
1192 * interrupts and before the final VCPU requests check.
1193 * See the comment in kvm_vcpu_exiting_guest_mode() and
1194 * Documentation/virt/kvm/vcpu-requests.rst
1195 */
1196 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
1197
1198 if (ret <= 0 || kvm_vcpu_exit_request(vcpu, &ret)) {
1199 vcpu->mode = OUTSIDE_GUEST_MODE;
1200 isb(); /* Ensure work in x_flush_hwstate is committed */
1201 kvm_pmu_sync_hwstate(vcpu);
1202 if (static_branch_unlikely(&userspace_irqchip_in_use))
1203 kvm_timer_sync_user(vcpu);
1204 kvm_vgic_sync_hwstate(vcpu);
1205 local_irq_enable();
1206 preempt_enable();
1207 continue;
1208 }
1209
1210 kvm_arm_setup_debug(vcpu);
1211 kvm_arch_vcpu_ctxflush_fp(vcpu);
1212
1213 /**************************************************************
1214 * Enter the guest
1215 */
1216 trace_kvm_entry(*vcpu_pc(vcpu));
1217 guest_timing_enter_irqoff();
1218
1219 ret = kvm_arm_vcpu_enter_exit(vcpu);
1220
1221 vcpu->mode = OUTSIDE_GUEST_MODE;
1222 vcpu->stat.exits++;
1223 /*
1224 * Back from guest
1225 *************************************************************/
1226
1227 kvm_arm_clear_debug(vcpu);
1228
1229 /*
1230 * We must sync the PMU state before the vgic state so
1231 * that the vgic can properly sample the updated state of the
1232 * interrupt line.
1233 */
1234 kvm_pmu_sync_hwstate(vcpu);
1235
1236 /*
1237 * Sync the vgic state before syncing the timer state because
1238 * the timer code needs to know if the virtual timer
1239 * interrupts are active.
1240 */
1241 kvm_vgic_sync_hwstate(vcpu);
1242
1243 /*
1244 * Sync the timer hardware state before enabling interrupts as
1245 * we don't want vtimer interrupts to race with syncing the
1246 * timer virtual interrupt state.
1247 */
1248 if (static_branch_unlikely(&userspace_irqchip_in_use))
1249 kvm_timer_sync_user(vcpu);
1250
1251 kvm_arch_vcpu_ctxsync_fp(vcpu);
1252
1253 /*
1254 * We must ensure that any pending interrupts are taken before
1255 * we exit guest timing so that timer ticks are accounted as
1256 * guest time. Transiently unmask interrupts so that any
1257 * pending interrupts are taken.
1258 *
1259 * Per ARM DDI 0487G.b section D1.13.4, an ISB (or other
1260 * context synchronization event) is necessary to ensure that
1261 * pending interrupts are taken.
1262 */
1263 if (ARM_EXCEPTION_CODE(ret) == ARM_EXCEPTION_IRQ) {
1264 local_irq_enable();
1265 isb();
1266 local_irq_disable();
1267 }
1268
1269 guest_timing_exit_irqoff();
1270
1271 local_irq_enable();
1272
1273 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
1274
1275 /* Exit types that need handling before we can be preempted */
1276 handle_exit_early(vcpu, ret);
1277
1278 preempt_enable();
1279
1280 /*
1281 * The ARMv8 architecture doesn't give the hypervisor
1282 * a mechanism to prevent a guest from dropping to AArch32 EL0
1283 * if implemented by the CPU. If we spot the guest in such
1284 * state and that we decided it wasn't supposed to do so (like
1285 * with the asymmetric AArch32 case), return to userspace with
1286 * a fatal error.
1287 */
1288 if (vcpu_mode_is_bad_32bit(vcpu)) {
1289 /*
1290 * As we have caught the guest red-handed, decide that
1291 * it isn't fit for purpose anymore by making the vcpu
1292 * invalid. The VMM can try and fix it by issuing a
1293 * KVM_ARM_VCPU_INIT if it really wants to.
1294 */
1295 vcpu_clear_flag(vcpu, VCPU_INITIALIZED);
1296 ret = ARM_EXCEPTION_IL;
1297 }
1298
1299 ret = handle_exit(vcpu, ret);
1300 }
1301
1302 /* Tell userspace about in-kernel device output levels */
1303 if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
1304 kvm_timer_update_run(vcpu);
1305 kvm_pmu_update_run(vcpu);
1306 }
1307
1308 kvm_sigset_deactivate(vcpu);
1309
1310 out:
1311 /*
1312 * In the unlikely event that we are returning to userspace
1313 * with pending exceptions or PC adjustment, commit these
1314 * adjustments in order to give userspace a consistent view of
1315 * the vcpu state. Note that this relies on __kvm_adjust_pc()
1316 * being preempt-safe on VHE.
1317 */
1318 if (unlikely(vcpu_get_flag(vcpu, PENDING_EXCEPTION) ||
1319 vcpu_get_flag(vcpu, INCREMENT_PC)))
1320 kvm_call_hyp(__kvm_adjust_pc, vcpu);
1321
1322 vcpu_put(vcpu);
1323 return ret;
1324 }
1325
vcpu_interrupt_line(struct kvm_vcpu * vcpu,int number,bool level)1326 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
1327 {
1328 int bit_index;
1329 bool set;
1330 unsigned long *hcr;
1331
1332 if (number == KVM_ARM_IRQ_CPU_IRQ)
1333 bit_index = __ffs(HCR_VI);
1334 else /* KVM_ARM_IRQ_CPU_FIQ */
1335 bit_index = __ffs(HCR_VF);
1336
1337 hcr = vcpu_hcr(vcpu);
1338 if (level)
1339 set = test_and_set_bit(bit_index, hcr);
1340 else
1341 set = test_and_clear_bit(bit_index, hcr);
1342
1343 /*
1344 * If we didn't change anything, no need to wake up or kick other CPUs
1345 */
1346 if (set == level)
1347 return 0;
1348
1349 /*
1350 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
1351 * trigger a world-switch round on the running physical CPU to set the
1352 * virtual IRQ/FIQ fields in the HCR appropriately.
1353 */
1354 kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
1355 kvm_vcpu_kick(vcpu);
1356
1357 return 0;
1358 }
1359
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_level,bool line_status)1360 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1361 bool line_status)
1362 {
1363 u32 irq = irq_level->irq;
1364 unsigned int irq_type, vcpu_id, irq_num;
1365 struct kvm_vcpu *vcpu = NULL;
1366 bool level = irq_level->level;
1367
1368 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
1369 vcpu_id = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
1370 vcpu_id += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
1371 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
1372
1373 trace_kvm_irq_line(irq_type, vcpu_id, irq_num, irq_level->level);
1374
1375 switch (irq_type) {
1376 case KVM_ARM_IRQ_TYPE_CPU:
1377 if (irqchip_in_kernel(kvm))
1378 return -ENXIO;
1379
1380 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1381 if (!vcpu)
1382 return -EINVAL;
1383
1384 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
1385 return -EINVAL;
1386
1387 return vcpu_interrupt_line(vcpu, irq_num, level);
1388 case KVM_ARM_IRQ_TYPE_PPI:
1389 if (!irqchip_in_kernel(kvm))
1390 return -ENXIO;
1391
1392 vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
1393 if (!vcpu)
1394 return -EINVAL;
1395
1396 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
1397 return -EINVAL;
1398
1399 return kvm_vgic_inject_irq(kvm, vcpu, irq_num, level, NULL);
1400 case KVM_ARM_IRQ_TYPE_SPI:
1401 if (!irqchip_in_kernel(kvm))
1402 return -ENXIO;
1403
1404 if (irq_num < VGIC_NR_PRIVATE_IRQS)
1405 return -EINVAL;
1406
1407 return kvm_vgic_inject_irq(kvm, NULL, irq_num, level, NULL);
1408 }
1409
1410 return -EINVAL;
1411 }
1412
system_supported_vcpu_features(void)1413 static unsigned long system_supported_vcpu_features(void)
1414 {
1415 unsigned long features = KVM_VCPU_VALID_FEATURES;
1416
1417 if (!cpus_have_final_cap(ARM64_HAS_32BIT_EL1))
1418 clear_bit(KVM_ARM_VCPU_EL1_32BIT, &features);
1419
1420 if (!kvm_arm_support_pmu_v3())
1421 clear_bit(KVM_ARM_VCPU_PMU_V3, &features);
1422
1423 if (!system_supports_sve())
1424 clear_bit(KVM_ARM_VCPU_SVE, &features);
1425
1426 if (!kvm_has_full_ptr_auth()) {
1427 clear_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features);
1428 clear_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features);
1429 }
1430
1431 if (!cpus_have_final_cap(ARM64_HAS_NESTED_VIRT))
1432 clear_bit(KVM_ARM_VCPU_HAS_EL2, &features);
1433
1434 return features;
1435 }
1436
kvm_vcpu_init_check_features(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1437 static int kvm_vcpu_init_check_features(struct kvm_vcpu *vcpu,
1438 const struct kvm_vcpu_init *init)
1439 {
1440 unsigned long features = init->features[0];
1441 int i;
1442
1443 if (features & ~KVM_VCPU_VALID_FEATURES)
1444 return -ENOENT;
1445
1446 for (i = 1; i < ARRAY_SIZE(init->features); i++) {
1447 if (init->features[i])
1448 return -ENOENT;
1449 }
1450
1451 if (features & ~system_supported_vcpu_features())
1452 return -EINVAL;
1453
1454 /*
1455 * For now make sure that both address/generic pointer authentication
1456 * features are requested by the userspace together.
1457 */
1458 if (test_bit(KVM_ARM_VCPU_PTRAUTH_ADDRESS, &features) !=
1459 test_bit(KVM_ARM_VCPU_PTRAUTH_GENERIC, &features))
1460 return -EINVAL;
1461
1462 if (!test_bit(KVM_ARM_VCPU_EL1_32BIT, &features))
1463 return 0;
1464
1465 /* MTE is incompatible with AArch32 */
1466 if (kvm_has_mte(vcpu->kvm))
1467 return -EINVAL;
1468
1469 /* NV is incompatible with AArch32 */
1470 if (test_bit(KVM_ARM_VCPU_HAS_EL2, &features))
1471 return -EINVAL;
1472
1473 return 0;
1474 }
1475
kvm_vcpu_init_changed(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1476 static bool kvm_vcpu_init_changed(struct kvm_vcpu *vcpu,
1477 const struct kvm_vcpu_init *init)
1478 {
1479 unsigned long features = init->features[0];
1480
1481 return !bitmap_equal(vcpu->kvm->arch.vcpu_features, &features,
1482 KVM_VCPU_MAX_FEATURES);
1483 }
1484
kvm_setup_vcpu(struct kvm_vcpu * vcpu)1485 static int kvm_setup_vcpu(struct kvm_vcpu *vcpu)
1486 {
1487 struct kvm *kvm = vcpu->kvm;
1488 int ret = 0;
1489
1490 /*
1491 * When the vCPU has a PMU, but no PMU is set for the guest
1492 * yet, set the default one.
1493 */
1494 if (kvm_vcpu_has_pmu(vcpu) && !kvm->arch.arm_pmu)
1495 ret = kvm_arm_set_default_pmu(kvm);
1496
1497 /* Prepare for nested if required */
1498 if (!ret && vcpu_has_nv(vcpu))
1499 ret = kvm_vcpu_init_nested(vcpu);
1500
1501 return ret;
1502 }
1503
__kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1504 static int __kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1505 const struct kvm_vcpu_init *init)
1506 {
1507 unsigned long features = init->features[0];
1508 struct kvm *kvm = vcpu->kvm;
1509 int ret = -EINVAL;
1510
1511 mutex_lock(&kvm->arch.config_lock);
1512
1513 if (test_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags) &&
1514 kvm_vcpu_init_changed(vcpu, init))
1515 goto out_unlock;
1516
1517 bitmap_copy(kvm->arch.vcpu_features, &features, KVM_VCPU_MAX_FEATURES);
1518
1519 ret = kvm_setup_vcpu(vcpu);
1520 if (ret)
1521 goto out_unlock;
1522
1523 /* Now we know what it is, we can reset it. */
1524 kvm_reset_vcpu(vcpu);
1525
1526 set_bit(KVM_ARCH_FLAG_VCPU_FEATURES_CONFIGURED, &kvm->arch.flags);
1527 vcpu_set_flag(vcpu, VCPU_INITIALIZED);
1528 ret = 0;
1529 out_unlock:
1530 mutex_unlock(&kvm->arch.config_lock);
1531 return ret;
1532 }
1533
kvm_vcpu_set_target(struct kvm_vcpu * vcpu,const struct kvm_vcpu_init * init)1534 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
1535 const struct kvm_vcpu_init *init)
1536 {
1537 int ret;
1538
1539 if (init->target != KVM_ARM_TARGET_GENERIC_V8 &&
1540 init->target != kvm_target_cpu())
1541 return -EINVAL;
1542
1543 ret = kvm_vcpu_init_check_features(vcpu, init);
1544 if (ret)
1545 return ret;
1546
1547 if (!kvm_vcpu_initialized(vcpu))
1548 return __kvm_vcpu_set_target(vcpu, init);
1549
1550 if (kvm_vcpu_init_changed(vcpu, init))
1551 return -EINVAL;
1552
1553 kvm_reset_vcpu(vcpu);
1554 return 0;
1555 }
1556
kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu * vcpu,struct kvm_vcpu_init * init)1557 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1558 struct kvm_vcpu_init *init)
1559 {
1560 bool power_off = false;
1561 int ret;
1562
1563 /*
1564 * Treat the power-off vCPU feature as ephemeral. Clear the bit to avoid
1565 * reflecting it in the finalized feature set, thus limiting its scope
1566 * to a single KVM_ARM_VCPU_INIT call.
1567 */
1568 if (init->features[0] & BIT(KVM_ARM_VCPU_POWER_OFF)) {
1569 init->features[0] &= ~BIT(KVM_ARM_VCPU_POWER_OFF);
1570 power_off = true;
1571 }
1572
1573 ret = kvm_vcpu_set_target(vcpu, init);
1574 if (ret)
1575 return ret;
1576
1577 /*
1578 * Ensure a rebooted VM will fault in RAM pages and detect if the
1579 * guest MMU is turned off and flush the caches as needed.
1580 *
1581 * S2FWB enforces all memory accesses to RAM being cacheable,
1582 * ensuring that the data side is always coherent. We still
1583 * need to invalidate the I-cache though, as FWB does *not*
1584 * imply CTR_EL0.DIC.
1585 */
1586 if (vcpu_has_run_once(vcpu)) {
1587 if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1588 stage2_unmap_vm(vcpu->kvm);
1589 else
1590 icache_inval_all_pou();
1591 }
1592
1593 vcpu_reset_hcr(vcpu);
1594 vcpu->arch.cptr_el2 = kvm_get_reset_cptr_el2(vcpu);
1595
1596 /*
1597 * Handle the "start in power-off" case.
1598 */
1599 spin_lock(&vcpu->arch.mp_state_lock);
1600
1601 if (power_off)
1602 __kvm_arm_vcpu_power_off(vcpu);
1603 else
1604 WRITE_ONCE(vcpu->arch.mp_state.mp_state, KVM_MP_STATE_RUNNABLE);
1605
1606 spin_unlock(&vcpu->arch.mp_state_lock);
1607
1608 return 0;
1609 }
1610
kvm_arm_vcpu_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1611 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1612 struct kvm_device_attr *attr)
1613 {
1614 int ret = -ENXIO;
1615
1616 switch (attr->group) {
1617 default:
1618 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1619 break;
1620 }
1621
1622 return ret;
1623 }
1624
kvm_arm_vcpu_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1625 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1626 struct kvm_device_attr *attr)
1627 {
1628 int ret = -ENXIO;
1629
1630 switch (attr->group) {
1631 default:
1632 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1633 break;
1634 }
1635
1636 return ret;
1637 }
1638
kvm_arm_vcpu_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)1639 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1640 struct kvm_device_attr *attr)
1641 {
1642 int ret = -ENXIO;
1643
1644 switch (attr->group) {
1645 default:
1646 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1647 break;
1648 }
1649
1650 return ret;
1651 }
1652
kvm_arm_vcpu_get_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1653 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1654 struct kvm_vcpu_events *events)
1655 {
1656 memset(events, 0, sizeof(*events));
1657
1658 return __kvm_arm_vcpu_get_events(vcpu, events);
1659 }
1660
kvm_arm_vcpu_set_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)1661 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1662 struct kvm_vcpu_events *events)
1663 {
1664 int i;
1665
1666 /* check whether the reserved field is zero */
1667 for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1668 if (events->reserved[i])
1669 return -EINVAL;
1670
1671 /* check whether the pad field is zero */
1672 for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1673 if (events->exception.pad[i])
1674 return -EINVAL;
1675
1676 return __kvm_arm_vcpu_set_events(vcpu, events);
1677 }
1678
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1679 long kvm_arch_vcpu_ioctl(struct file *filp,
1680 unsigned int ioctl, unsigned long arg)
1681 {
1682 struct kvm_vcpu *vcpu = filp->private_data;
1683 void __user *argp = (void __user *)arg;
1684 struct kvm_device_attr attr;
1685 long r;
1686
1687 switch (ioctl) {
1688 case KVM_ARM_VCPU_INIT: {
1689 struct kvm_vcpu_init init;
1690
1691 r = -EFAULT;
1692 if (copy_from_user(&init, argp, sizeof(init)))
1693 break;
1694
1695 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1696 break;
1697 }
1698 case KVM_SET_ONE_REG:
1699 case KVM_GET_ONE_REG: {
1700 struct kvm_one_reg reg;
1701
1702 r = -ENOEXEC;
1703 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1704 break;
1705
1706 r = -EFAULT;
1707 if (copy_from_user(®, argp, sizeof(reg)))
1708 break;
1709
1710 /*
1711 * We could owe a reset due to PSCI. Handle the pending reset
1712 * here to ensure userspace register accesses are ordered after
1713 * the reset.
1714 */
1715 if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1716 kvm_reset_vcpu(vcpu);
1717
1718 if (ioctl == KVM_SET_ONE_REG)
1719 r = kvm_arm_set_reg(vcpu, ®);
1720 else
1721 r = kvm_arm_get_reg(vcpu, ®);
1722 break;
1723 }
1724 case KVM_GET_REG_LIST: {
1725 struct kvm_reg_list __user *user_list = argp;
1726 struct kvm_reg_list reg_list;
1727 unsigned n;
1728
1729 r = -ENOEXEC;
1730 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1731 break;
1732
1733 r = -EPERM;
1734 if (!kvm_arm_vcpu_is_finalized(vcpu))
1735 break;
1736
1737 r = -EFAULT;
1738 if (copy_from_user(®_list, user_list, sizeof(reg_list)))
1739 break;
1740 n = reg_list.n;
1741 reg_list.n = kvm_arm_num_regs(vcpu);
1742 if (copy_to_user(user_list, ®_list, sizeof(reg_list)))
1743 break;
1744 r = -E2BIG;
1745 if (n < reg_list.n)
1746 break;
1747 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1748 break;
1749 }
1750 case KVM_SET_DEVICE_ATTR: {
1751 r = -EFAULT;
1752 if (copy_from_user(&attr, argp, sizeof(attr)))
1753 break;
1754 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1755 break;
1756 }
1757 case KVM_GET_DEVICE_ATTR: {
1758 r = -EFAULT;
1759 if (copy_from_user(&attr, argp, sizeof(attr)))
1760 break;
1761 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1762 break;
1763 }
1764 case KVM_HAS_DEVICE_ATTR: {
1765 r = -EFAULT;
1766 if (copy_from_user(&attr, argp, sizeof(attr)))
1767 break;
1768 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1769 break;
1770 }
1771 case KVM_GET_VCPU_EVENTS: {
1772 struct kvm_vcpu_events events;
1773
1774 if (kvm_arm_vcpu_get_events(vcpu, &events))
1775 return -EINVAL;
1776
1777 if (copy_to_user(argp, &events, sizeof(events)))
1778 return -EFAULT;
1779
1780 return 0;
1781 }
1782 case KVM_SET_VCPU_EVENTS: {
1783 struct kvm_vcpu_events events;
1784
1785 if (copy_from_user(&events, argp, sizeof(events)))
1786 return -EFAULT;
1787
1788 return kvm_arm_vcpu_set_events(vcpu, &events);
1789 }
1790 case KVM_ARM_VCPU_FINALIZE: {
1791 int what;
1792
1793 if (!kvm_vcpu_initialized(vcpu))
1794 return -ENOEXEC;
1795
1796 if (get_user(what, (const int __user *)argp))
1797 return -EFAULT;
1798
1799 return kvm_arm_vcpu_finalize(vcpu, what);
1800 }
1801 default:
1802 r = -EINVAL;
1803 }
1804
1805 return r;
1806 }
1807
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)1808 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1809 {
1810
1811 }
1812
kvm_vm_ioctl_set_device_addr(struct kvm * kvm,struct kvm_arm_device_addr * dev_addr)1813 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1814 struct kvm_arm_device_addr *dev_addr)
1815 {
1816 switch (FIELD_GET(KVM_ARM_DEVICE_ID_MASK, dev_addr->id)) {
1817 case KVM_ARM_DEVICE_VGIC_V2:
1818 if (!vgic_present)
1819 return -ENXIO;
1820 return kvm_set_legacy_vgic_v2_addr(kvm, dev_addr);
1821 default:
1822 return -ENODEV;
1823 }
1824 }
1825
kvm_vm_has_attr(struct kvm * kvm,struct kvm_device_attr * attr)1826 static int kvm_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1827 {
1828 switch (attr->group) {
1829 case KVM_ARM_VM_SMCCC_CTRL:
1830 return kvm_vm_smccc_has_attr(kvm, attr);
1831 default:
1832 return -ENXIO;
1833 }
1834 }
1835
kvm_vm_set_attr(struct kvm * kvm,struct kvm_device_attr * attr)1836 static int kvm_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1837 {
1838 switch (attr->group) {
1839 case KVM_ARM_VM_SMCCC_CTRL:
1840 return kvm_vm_smccc_set_attr(kvm, attr);
1841 default:
1842 return -ENXIO;
1843 }
1844 }
1845
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)1846 int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1847 {
1848 struct kvm *kvm = filp->private_data;
1849 void __user *argp = (void __user *)arg;
1850 struct kvm_device_attr attr;
1851
1852 switch (ioctl) {
1853 case KVM_CREATE_IRQCHIP: {
1854 int ret;
1855 if (!vgic_present)
1856 return -ENXIO;
1857 mutex_lock(&kvm->lock);
1858 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1859 mutex_unlock(&kvm->lock);
1860 return ret;
1861 }
1862 case KVM_ARM_SET_DEVICE_ADDR: {
1863 struct kvm_arm_device_addr dev_addr;
1864
1865 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1866 return -EFAULT;
1867 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1868 }
1869 case KVM_ARM_PREFERRED_TARGET: {
1870 struct kvm_vcpu_init init = {
1871 .target = KVM_ARM_TARGET_GENERIC_V8,
1872 };
1873
1874 if (copy_to_user(argp, &init, sizeof(init)))
1875 return -EFAULT;
1876
1877 return 0;
1878 }
1879 case KVM_ARM_MTE_COPY_TAGS: {
1880 struct kvm_arm_copy_mte_tags copy_tags;
1881
1882 if (copy_from_user(©_tags, argp, sizeof(copy_tags)))
1883 return -EFAULT;
1884 return kvm_vm_ioctl_mte_copy_tags(kvm, ©_tags);
1885 }
1886 case KVM_ARM_SET_COUNTER_OFFSET: {
1887 struct kvm_arm_counter_offset offset;
1888
1889 if (copy_from_user(&offset, argp, sizeof(offset)))
1890 return -EFAULT;
1891 return kvm_vm_ioctl_set_counter_offset(kvm, &offset);
1892 }
1893 case KVM_HAS_DEVICE_ATTR: {
1894 if (copy_from_user(&attr, argp, sizeof(attr)))
1895 return -EFAULT;
1896
1897 return kvm_vm_has_attr(kvm, &attr);
1898 }
1899 case KVM_SET_DEVICE_ATTR: {
1900 if (copy_from_user(&attr, argp, sizeof(attr)))
1901 return -EFAULT;
1902
1903 return kvm_vm_set_attr(kvm, &attr);
1904 }
1905 case KVM_ARM_GET_REG_WRITABLE_MASKS: {
1906 struct reg_mask_range range;
1907
1908 if (copy_from_user(&range, argp, sizeof(range)))
1909 return -EFAULT;
1910 return kvm_vm_ioctl_get_reg_writable_masks(kvm, &range);
1911 }
1912 default:
1913 return -EINVAL;
1914 }
1915 }
1916
1917 /* unlocks vcpus from @vcpu_lock_idx and smaller */
unlock_vcpus(struct kvm * kvm,int vcpu_lock_idx)1918 static void unlock_vcpus(struct kvm *kvm, int vcpu_lock_idx)
1919 {
1920 struct kvm_vcpu *tmp_vcpu;
1921
1922 for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) {
1923 tmp_vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx);
1924 mutex_unlock(&tmp_vcpu->mutex);
1925 }
1926 }
1927
unlock_all_vcpus(struct kvm * kvm)1928 void unlock_all_vcpus(struct kvm *kvm)
1929 {
1930 lockdep_assert_held(&kvm->lock);
1931
1932 unlock_vcpus(kvm, atomic_read(&kvm->online_vcpus) - 1);
1933 }
1934
1935 /* Returns true if all vcpus were locked, false otherwise */
lock_all_vcpus(struct kvm * kvm)1936 bool lock_all_vcpus(struct kvm *kvm)
1937 {
1938 struct kvm_vcpu *tmp_vcpu;
1939 unsigned long c;
1940
1941 lockdep_assert_held(&kvm->lock);
1942
1943 /*
1944 * Any time a vcpu is in an ioctl (including running), the
1945 * core KVM code tries to grab the vcpu->mutex.
1946 *
1947 * By grabbing the vcpu->mutex of all VCPUs we ensure that no
1948 * other VCPUs can fiddle with the state while we access it.
1949 */
1950 kvm_for_each_vcpu(c, tmp_vcpu, kvm) {
1951 if (!mutex_trylock(&tmp_vcpu->mutex)) {
1952 unlock_vcpus(kvm, c - 1);
1953 return false;
1954 }
1955 }
1956
1957 return true;
1958 }
1959
nvhe_percpu_size(void)1960 static unsigned long nvhe_percpu_size(void)
1961 {
1962 return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1963 (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1964 }
1965
nvhe_percpu_order(void)1966 static unsigned long nvhe_percpu_order(void)
1967 {
1968 unsigned long size = nvhe_percpu_size();
1969
1970 return size ? get_order(size) : 0;
1971 }
1972
pkvm_host_sve_state_order(void)1973 static size_t pkvm_host_sve_state_order(void)
1974 {
1975 return get_order(pkvm_host_sve_state_size());
1976 }
1977
1978 /* A lookup table holding the hypervisor VA for each vector slot */
1979 static void *hyp_spectre_vector_selector[BP_HARDEN_EL2_SLOTS];
1980
kvm_init_vector_slot(void * base,enum arm64_hyp_spectre_vector slot)1981 static void kvm_init_vector_slot(void *base, enum arm64_hyp_spectre_vector slot)
1982 {
1983 hyp_spectre_vector_selector[slot] = __kvm_vector_slot2addr(base, slot);
1984 }
1985
kvm_init_vector_slots(void)1986 static int kvm_init_vector_slots(void)
1987 {
1988 int err;
1989 void *base;
1990
1991 base = kern_hyp_va(kvm_ksym_ref(__kvm_hyp_vector));
1992 kvm_init_vector_slot(base, HYP_VECTOR_DIRECT);
1993
1994 base = kern_hyp_va(kvm_ksym_ref(__bp_harden_hyp_vecs));
1995 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_DIRECT);
1996
1997 if (kvm_system_needs_idmapped_vectors() &&
1998 !is_protected_kvm_enabled()) {
1999 err = create_hyp_exec_mappings(__pa_symbol(__bp_harden_hyp_vecs),
2000 __BP_HARDEN_HYP_VECS_SZ, &base);
2001 if (err)
2002 return err;
2003 }
2004
2005 kvm_init_vector_slot(base, HYP_VECTOR_INDIRECT);
2006 kvm_init_vector_slot(base, HYP_VECTOR_SPECTRE_INDIRECT);
2007 return 0;
2008 }
2009
cpu_prepare_hyp_mode(int cpu,u32 hyp_va_bits)2010 static void __init cpu_prepare_hyp_mode(int cpu, u32 hyp_va_bits)
2011 {
2012 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2013 u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2014 unsigned long tcr;
2015
2016 /*
2017 * Calculate the raw per-cpu offset without a translation from the
2018 * kernel's mapping to the linear mapping, and store it in tpidr_el2
2019 * so that we can use adr_l to access per-cpu variables in EL2.
2020 * Also drop the KASAN tag which gets in the way...
2021 */
2022 params->tpidr_el2 = (unsigned long)kasan_reset_tag(per_cpu_ptr_nvhe_sym(__per_cpu_start, cpu)) -
2023 (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
2024
2025 params->mair_el2 = read_sysreg(mair_el1);
2026
2027 tcr = read_sysreg(tcr_el1);
2028 if (cpus_have_final_cap(ARM64_KVM_HVHE)) {
2029 tcr |= TCR_EPD1_MASK;
2030 } else {
2031 tcr &= TCR_EL2_MASK;
2032 tcr |= TCR_EL2_RES1;
2033 }
2034 tcr &= ~TCR_T0SZ_MASK;
2035 tcr |= TCR_T0SZ(hyp_va_bits);
2036 tcr &= ~TCR_EL2_PS_MASK;
2037 tcr |= FIELD_PREP(TCR_EL2_PS_MASK, kvm_get_parange(mmfr0));
2038 if (kvm_lpa2_is_enabled())
2039 tcr |= TCR_EL2_DS;
2040 params->tcr_el2 = tcr;
2041
2042 params->pgd_pa = kvm_mmu_get_httbr();
2043 if (is_protected_kvm_enabled())
2044 params->hcr_el2 = HCR_HOST_NVHE_PROTECTED_FLAGS;
2045 else
2046 params->hcr_el2 = HCR_HOST_NVHE_FLAGS;
2047 if (cpus_have_final_cap(ARM64_KVM_HVHE))
2048 params->hcr_el2 |= HCR_E2H;
2049 params->vttbr = params->vtcr = 0;
2050
2051 /*
2052 * Flush the init params from the data cache because the struct will
2053 * be read while the MMU is off.
2054 */
2055 kvm_flush_dcache_to_poc(params, sizeof(*params));
2056 }
2057
hyp_install_host_vector(void)2058 static void hyp_install_host_vector(void)
2059 {
2060 struct kvm_nvhe_init_params *params;
2061 struct arm_smccc_res res;
2062
2063 /* Switch from the HYP stub to our own HYP init vector */
2064 __hyp_set_vectors(kvm_get_idmap_vector());
2065
2066 /*
2067 * Call initialization code, and switch to the full blown HYP code.
2068 * If the cpucaps haven't been finalized yet, something has gone very
2069 * wrong, and hyp will crash and burn when it uses any
2070 * cpus_have_*_cap() wrapper.
2071 */
2072 BUG_ON(!system_capabilities_finalized());
2073 params = this_cpu_ptr_nvhe_sym(kvm_init_params);
2074 arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init), virt_to_phys(params), &res);
2075 WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
2076 }
2077
cpu_init_hyp_mode(void)2078 static void cpu_init_hyp_mode(void)
2079 {
2080 hyp_install_host_vector();
2081
2082 /*
2083 * Disabling SSBD on a non-VHE system requires us to enable SSBS
2084 * at EL2.
2085 */
2086 if (this_cpu_has_cap(ARM64_SSBS) &&
2087 arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
2088 kvm_call_hyp_nvhe(__kvm_enable_ssbs);
2089 }
2090 }
2091
cpu_hyp_reset(void)2092 static void cpu_hyp_reset(void)
2093 {
2094 if (!is_kernel_in_hyp_mode())
2095 __hyp_reset_vectors();
2096 }
2097
2098 /*
2099 * EL2 vectors can be mapped and rerouted in a number of ways,
2100 * depending on the kernel configuration and CPU present:
2101 *
2102 * - If the CPU is affected by Spectre-v2, the hardening sequence is
2103 * placed in one of the vector slots, which is executed before jumping
2104 * to the real vectors.
2105 *
2106 * - If the CPU also has the ARM64_SPECTRE_V3A cap, the slot
2107 * containing the hardening sequence is mapped next to the idmap page,
2108 * and executed before jumping to the real vectors.
2109 *
2110 * - If the CPU only has the ARM64_SPECTRE_V3A cap, then an
2111 * empty slot is selected, mapped next to the idmap page, and
2112 * executed before jumping to the real vectors.
2113 *
2114 * Note that ARM64_SPECTRE_V3A is somewhat incompatible with
2115 * VHE, as we don't have hypervisor-specific mappings. If the system
2116 * is VHE and yet selects this capability, it will be ignored.
2117 */
cpu_set_hyp_vector(void)2118 static void cpu_set_hyp_vector(void)
2119 {
2120 struct bp_hardening_data *data = this_cpu_ptr(&bp_hardening_data);
2121 void *vector = hyp_spectre_vector_selector[data->slot];
2122
2123 if (!is_protected_kvm_enabled())
2124 *this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)vector;
2125 else
2126 kvm_call_hyp_nvhe(__pkvm_cpu_set_vector, data->slot);
2127 }
2128
cpu_hyp_init_context(void)2129 static void cpu_hyp_init_context(void)
2130 {
2131 kvm_init_host_cpu_context(host_data_ptr(host_ctxt));
2132
2133 if (!is_kernel_in_hyp_mode())
2134 cpu_init_hyp_mode();
2135 }
2136
cpu_hyp_init_features(void)2137 static void cpu_hyp_init_features(void)
2138 {
2139 cpu_set_hyp_vector();
2140 kvm_arm_init_debug();
2141
2142 if (is_kernel_in_hyp_mode())
2143 kvm_timer_init_vhe();
2144
2145 if (vgic_present)
2146 kvm_vgic_init_cpu_hardware();
2147 }
2148
cpu_hyp_reinit(void)2149 static void cpu_hyp_reinit(void)
2150 {
2151 cpu_hyp_reset();
2152 cpu_hyp_init_context();
2153 cpu_hyp_init_features();
2154 }
2155
cpu_hyp_init(void * discard)2156 static void cpu_hyp_init(void *discard)
2157 {
2158 if (!__this_cpu_read(kvm_hyp_initialized)) {
2159 cpu_hyp_reinit();
2160 __this_cpu_write(kvm_hyp_initialized, 1);
2161 }
2162 }
2163
cpu_hyp_uninit(void * discard)2164 static void cpu_hyp_uninit(void *discard)
2165 {
2166 if (__this_cpu_read(kvm_hyp_initialized)) {
2167 cpu_hyp_reset();
2168 __this_cpu_write(kvm_hyp_initialized, 0);
2169 }
2170 }
2171
kvm_arch_enable_virtualization_cpu(void)2172 int kvm_arch_enable_virtualization_cpu(void)
2173 {
2174 /*
2175 * Most calls to this function are made with migration
2176 * disabled, but not with preemption disabled. The former is
2177 * enough to ensure correctness, but most of the helpers
2178 * expect the later and will throw a tantrum otherwise.
2179 */
2180 preempt_disable();
2181
2182 cpu_hyp_init(NULL);
2183
2184 kvm_vgic_cpu_up();
2185 kvm_timer_cpu_up();
2186
2187 preempt_enable();
2188
2189 return 0;
2190 }
2191
kvm_arch_disable_virtualization_cpu(void)2192 void kvm_arch_disable_virtualization_cpu(void)
2193 {
2194 kvm_timer_cpu_down();
2195 kvm_vgic_cpu_down();
2196
2197 if (!is_protected_kvm_enabled())
2198 cpu_hyp_uninit(NULL);
2199 }
2200
2201 #ifdef CONFIG_CPU_PM
hyp_init_cpu_pm_notifier(struct notifier_block * self,unsigned long cmd,void * v)2202 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
2203 unsigned long cmd,
2204 void *v)
2205 {
2206 /*
2207 * kvm_hyp_initialized is left with its old value over
2208 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
2209 * re-enable hyp.
2210 */
2211 switch (cmd) {
2212 case CPU_PM_ENTER:
2213 if (__this_cpu_read(kvm_hyp_initialized))
2214 /*
2215 * don't update kvm_hyp_initialized here
2216 * so that the hyp will be re-enabled
2217 * when we resume. See below.
2218 */
2219 cpu_hyp_reset();
2220
2221 return NOTIFY_OK;
2222 case CPU_PM_ENTER_FAILED:
2223 case CPU_PM_EXIT:
2224 if (__this_cpu_read(kvm_hyp_initialized))
2225 /* The hyp was enabled before suspend. */
2226 cpu_hyp_reinit();
2227
2228 return NOTIFY_OK;
2229
2230 default:
2231 return NOTIFY_DONE;
2232 }
2233 }
2234
2235 static struct notifier_block hyp_init_cpu_pm_nb = {
2236 .notifier_call = hyp_init_cpu_pm_notifier,
2237 };
2238
hyp_cpu_pm_init(void)2239 static void __init hyp_cpu_pm_init(void)
2240 {
2241 if (!is_protected_kvm_enabled())
2242 cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
2243 }
hyp_cpu_pm_exit(void)2244 static void __init hyp_cpu_pm_exit(void)
2245 {
2246 if (!is_protected_kvm_enabled())
2247 cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
2248 }
2249 #else
hyp_cpu_pm_init(void)2250 static inline void __init hyp_cpu_pm_init(void)
2251 {
2252 }
hyp_cpu_pm_exit(void)2253 static inline void __init hyp_cpu_pm_exit(void)
2254 {
2255 }
2256 #endif
2257
init_cpu_logical_map(void)2258 static void __init init_cpu_logical_map(void)
2259 {
2260 unsigned int cpu;
2261
2262 /*
2263 * Copy the MPIDR <-> logical CPU ID mapping to hyp.
2264 * Only copy the set of online CPUs whose features have been checked
2265 * against the finalized system capabilities. The hypervisor will not
2266 * allow any other CPUs from the `possible` set to boot.
2267 */
2268 for_each_online_cpu(cpu)
2269 hyp_cpu_logical_map[cpu] = cpu_logical_map(cpu);
2270 }
2271
2272 #define init_psci_0_1_impl_state(config, what) \
2273 config.psci_0_1_ ## what ## _implemented = psci_ops.what
2274
init_psci_relay(void)2275 static bool __init init_psci_relay(void)
2276 {
2277 /*
2278 * If PSCI has not been initialized, protected KVM cannot install
2279 * itself on newly booted CPUs.
2280 */
2281 if (!psci_ops.get_version) {
2282 kvm_err("Cannot initialize protected mode without PSCI\n");
2283 return false;
2284 }
2285
2286 kvm_host_psci_config.version = psci_ops.get_version();
2287 kvm_host_psci_config.smccc_version = arm_smccc_get_version();
2288
2289 if (kvm_host_psci_config.version == PSCI_VERSION(0, 1)) {
2290 kvm_host_psci_config.function_ids_0_1 = get_psci_0_1_function_ids();
2291 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_suspend);
2292 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_on);
2293 init_psci_0_1_impl_state(kvm_host_psci_config, cpu_off);
2294 init_psci_0_1_impl_state(kvm_host_psci_config, migrate);
2295 }
2296 return true;
2297 }
2298
init_subsystems(void)2299 static int __init init_subsystems(void)
2300 {
2301 int err = 0;
2302
2303 /*
2304 * Enable hardware so that subsystem initialisation can access EL2.
2305 */
2306 on_each_cpu(cpu_hyp_init, NULL, 1);
2307
2308 /*
2309 * Register CPU lower-power notifier
2310 */
2311 hyp_cpu_pm_init();
2312
2313 /*
2314 * Init HYP view of VGIC
2315 */
2316 err = kvm_vgic_hyp_init();
2317 switch (err) {
2318 case 0:
2319 vgic_present = true;
2320 break;
2321 case -ENODEV:
2322 case -ENXIO:
2323 vgic_present = false;
2324 err = 0;
2325 break;
2326 default:
2327 goto out;
2328 }
2329
2330 /*
2331 * Init HYP architected timer support
2332 */
2333 err = kvm_timer_hyp_init(vgic_present);
2334 if (err)
2335 goto out;
2336
2337 kvm_register_perf_callbacks(NULL);
2338
2339 out:
2340 if (err)
2341 hyp_cpu_pm_exit();
2342
2343 if (err || !is_protected_kvm_enabled())
2344 on_each_cpu(cpu_hyp_uninit, NULL, 1);
2345
2346 return err;
2347 }
2348
teardown_subsystems(void)2349 static void __init teardown_subsystems(void)
2350 {
2351 kvm_unregister_perf_callbacks();
2352 hyp_cpu_pm_exit();
2353 }
2354
teardown_hyp_mode(void)2355 static void __init teardown_hyp_mode(void)
2356 {
2357 bool free_sve = system_supports_sve() && is_protected_kvm_enabled();
2358 int cpu;
2359
2360 free_hyp_pgds();
2361 for_each_possible_cpu(cpu) {
2362 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
2363 free_pages(kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu], nvhe_percpu_order());
2364
2365 if (free_sve) {
2366 struct cpu_sve_state *sve_state;
2367
2368 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2369 free_pages((unsigned long) sve_state, pkvm_host_sve_state_order());
2370 }
2371 }
2372 }
2373
do_pkvm_init(u32 hyp_va_bits)2374 static int __init do_pkvm_init(u32 hyp_va_bits)
2375 {
2376 void *per_cpu_base = kvm_ksym_ref(kvm_nvhe_sym(kvm_arm_hyp_percpu_base));
2377 int ret;
2378
2379 preempt_disable();
2380 cpu_hyp_init_context();
2381 ret = kvm_call_hyp_nvhe(__pkvm_init, hyp_mem_base, hyp_mem_size,
2382 num_possible_cpus(), kern_hyp_va(per_cpu_base),
2383 hyp_va_bits);
2384 cpu_hyp_init_features();
2385
2386 /*
2387 * The stub hypercalls are now disabled, so set our local flag to
2388 * prevent a later re-init attempt in kvm_arch_enable_virtualization_cpu().
2389 */
2390 __this_cpu_write(kvm_hyp_initialized, 1);
2391 preempt_enable();
2392
2393 return ret;
2394 }
2395
get_hyp_id_aa64pfr0_el1(void)2396 static u64 get_hyp_id_aa64pfr0_el1(void)
2397 {
2398 /*
2399 * Track whether the system isn't affected by spectre/meltdown in the
2400 * hypervisor's view of id_aa64pfr0_el1, used for protected VMs.
2401 * Although this is per-CPU, we make it global for simplicity, e.g., not
2402 * to have to worry about vcpu migration.
2403 *
2404 * Unlike for non-protected VMs, userspace cannot override this for
2405 * protected VMs.
2406 */
2407 u64 val = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
2408
2409 val &= ~(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2) |
2410 ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3));
2411
2412 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV2),
2413 arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED);
2414 val |= FIELD_PREP(ARM64_FEATURE_MASK(ID_AA64PFR0_EL1_CSV3),
2415 arm64_get_meltdown_state() == SPECTRE_UNAFFECTED);
2416
2417 return val;
2418 }
2419
kvm_hyp_init_symbols(void)2420 static void kvm_hyp_init_symbols(void)
2421 {
2422 kvm_nvhe_sym(id_aa64pfr0_el1_sys_val) = get_hyp_id_aa64pfr0_el1();
2423 kvm_nvhe_sym(id_aa64pfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64PFR1_EL1);
2424 kvm_nvhe_sym(id_aa64isar0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR0_EL1);
2425 kvm_nvhe_sym(id_aa64isar1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR1_EL1);
2426 kvm_nvhe_sym(id_aa64isar2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
2427 kvm_nvhe_sym(id_aa64mmfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
2428 kvm_nvhe_sym(id_aa64mmfr1_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
2429 kvm_nvhe_sym(id_aa64mmfr2_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64MMFR2_EL1);
2430 kvm_nvhe_sym(id_aa64smfr0_el1_sys_val) = read_sanitised_ftr_reg(SYS_ID_AA64SMFR0_EL1);
2431 kvm_nvhe_sym(__icache_flags) = __icache_flags;
2432 kvm_nvhe_sym(kvm_arm_vmid_bits) = kvm_arm_vmid_bits;
2433 }
2434
kvm_hyp_init_protection(u32 hyp_va_bits)2435 static int __init kvm_hyp_init_protection(u32 hyp_va_bits)
2436 {
2437 void *addr = phys_to_virt(hyp_mem_base);
2438 int ret;
2439
2440 ret = create_hyp_mappings(addr, addr + hyp_mem_size, PAGE_HYP);
2441 if (ret)
2442 return ret;
2443
2444 ret = do_pkvm_init(hyp_va_bits);
2445 if (ret)
2446 return ret;
2447
2448 free_hyp_pgds();
2449
2450 return 0;
2451 }
2452
init_pkvm_host_sve_state(void)2453 static int init_pkvm_host_sve_state(void)
2454 {
2455 int cpu;
2456
2457 if (!system_supports_sve())
2458 return 0;
2459
2460 /* Allocate pages for host sve state in protected mode. */
2461 for_each_possible_cpu(cpu) {
2462 struct page *page = alloc_pages(GFP_KERNEL, pkvm_host_sve_state_order());
2463
2464 if (!page)
2465 return -ENOMEM;
2466
2467 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state = page_address(page);
2468 }
2469
2470 /*
2471 * Don't map the pages in hyp since these are only used in protected
2472 * mode, which will (re)create its own mapping when initialized.
2473 */
2474
2475 return 0;
2476 }
2477
2478 /*
2479 * Finalizes the initialization of hyp mode, once everything else is initialized
2480 * and the initialziation process cannot fail.
2481 */
finalize_init_hyp_mode(void)2482 static void finalize_init_hyp_mode(void)
2483 {
2484 int cpu;
2485
2486 if (system_supports_sve() && is_protected_kvm_enabled()) {
2487 for_each_possible_cpu(cpu) {
2488 struct cpu_sve_state *sve_state;
2489
2490 sve_state = per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state;
2491 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->sve_state =
2492 kern_hyp_va(sve_state);
2493 }
2494 } else {
2495 for_each_possible_cpu(cpu) {
2496 struct user_fpsimd_state *fpsimd_state;
2497
2498 fpsimd_state = &per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->host_ctxt.fp_regs;
2499 per_cpu_ptr_nvhe_sym(kvm_host_data, cpu)->fpsimd_state =
2500 kern_hyp_va(fpsimd_state);
2501 }
2502 }
2503 }
2504
pkvm_hyp_init_ptrauth(void)2505 static void pkvm_hyp_init_ptrauth(void)
2506 {
2507 struct kvm_cpu_context *hyp_ctxt;
2508 int cpu;
2509
2510 for_each_possible_cpu(cpu) {
2511 hyp_ctxt = per_cpu_ptr_nvhe_sym(kvm_hyp_ctxt, cpu);
2512 hyp_ctxt->sys_regs[APIAKEYLO_EL1] = get_random_long();
2513 hyp_ctxt->sys_regs[APIAKEYHI_EL1] = get_random_long();
2514 hyp_ctxt->sys_regs[APIBKEYLO_EL1] = get_random_long();
2515 hyp_ctxt->sys_regs[APIBKEYHI_EL1] = get_random_long();
2516 hyp_ctxt->sys_regs[APDAKEYLO_EL1] = get_random_long();
2517 hyp_ctxt->sys_regs[APDAKEYHI_EL1] = get_random_long();
2518 hyp_ctxt->sys_regs[APDBKEYLO_EL1] = get_random_long();
2519 hyp_ctxt->sys_regs[APDBKEYHI_EL1] = get_random_long();
2520 hyp_ctxt->sys_regs[APGAKEYLO_EL1] = get_random_long();
2521 hyp_ctxt->sys_regs[APGAKEYHI_EL1] = get_random_long();
2522 }
2523 }
2524
2525 /* Inits Hyp-mode on all online CPUs */
init_hyp_mode(void)2526 static int __init init_hyp_mode(void)
2527 {
2528 u32 hyp_va_bits;
2529 int cpu;
2530 int err = -ENOMEM;
2531
2532 /*
2533 * The protected Hyp-mode cannot be initialized if the memory pool
2534 * allocation has failed.
2535 */
2536 if (is_protected_kvm_enabled() && !hyp_mem_base)
2537 goto out_err;
2538
2539 /*
2540 * Allocate Hyp PGD and setup Hyp identity mapping
2541 */
2542 err = kvm_mmu_init(&hyp_va_bits);
2543 if (err)
2544 goto out_err;
2545
2546 /*
2547 * Allocate stack pages for Hypervisor-mode
2548 */
2549 for_each_possible_cpu(cpu) {
2550 unsigned long stack_page;
2551
2552 stack_page = __get_free_page(GFP_KERNEL);
2553 if (!stack_page) {
2554 err = -ENOMEM;
2555 goto out_err;
2556 }
2557
2558 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
2559 }
2560
2561 /*
2562 * Allocate and initialize pages for Hypervisor-mode percpu regions.
2563 */
2564 for_each_possible_cpu(cpu) {
2565 struct page *page;
2566 void *page_addr;
2567
2568 page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
2569 if (!page) {
2570 err = -ENOMEM;
2571 goto out_err;
2572 }
2573
2574 page_addr = page_address(page);
2575 memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
2576 kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu] = (unsigned long)page_addr;
2577 }
2578
2579 /*
2580 * Map the Hyp-code called directly from the host
2581 */
2582 err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
2583 kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
2584 if (err) {
2585 kvm_err("Cannot map world-switch code\n");
2586 goto out_err;
2587 }
2588
2589 err = create_hyp_mappings(kvm_ksym_ref(__hyp_rodata_start),
2590 kvm_ksym_ref(__hyp_rodata_end), PAGE_HYP_RO);
2591 if (err) {
2592 kvm_err("Cannot map .hyp.rodata section\n");
2593 goto out_err;
2594 }
2595
2596 err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
2597 kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
2598 if (err) {
2599 kvm_err("Cannot map rodata section\n");
2600 goto out_err;
2601 }
2602
2603 /*
2604 * .hyp.bss is guaranteed to be placed at the beginning of the .bss
2605 * section thanks to an assertion in the linker script. Map it RW and
2606 * the rest of .bss RO.
2607 */
2608 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_start),
2609 kvm_ksym_ref(__hyp_bss_end), PAGE_HYP);
2610 if (err) {
2611 kvm_err("Cannot map hyp bss section: %d\n", err);
2612 goto out_err;
2613 }
2614
2615 err = create_hyp_mappings(kvm_ksym_ref(__hyp_bss_end),
2616 kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
2617 if (err) {
2618 kvm_err("Cannot map bss section\n");
2619 goto out_err;
2620 }
2621
2622 /*
2623 * Map the Hyp stack pages
2624 */
2625 for_each_possible_cpu(cpu) {
2626 struct kvm_nvhe_init_params *params = per_cpu_ptr_nvhe_sym(kvm_init_params, cpu);
2627 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
2628
2629 err = create_hyp_stack(__pa(stack_page), ¶ms->stack_hyp_va);
2630 if (err) {
2631 kvm_err("Cannot map hyp stack\n");
2632 goto out_err;
2633 }
2634
2635 /*
2636 * Save the stack PA in nvhe_init_params. This will be needed
2637 * to recreate the stack mapping in protected nVHE mode.
2638 * __hyp_pa() won't do the right thing there, since the stack
2639 * has been mapped in the flexible private VA space.
2640 */
2641 params->stack_pa = __pa(stack_page);
2642 }
2643
2644 for_each_possible_cpu(cpu) {
2645 char *percpu_begin = (char *)kvm_nvhe_sym(kvm_arm_hyp_percpu_base)[cpu];
2646 char *percpu_end = percpu_begin + nvhe_percpu_size();
2647
2648 /* Map Hyp percpu pages */
2649 err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
2650 if (err) {
2651 kvm_err("Cannot map hyp percpu region\n");
2652 goto out_err;
2653 }
2654
2655 /* Prepare the CPU initialization parameters */
2656 cpu_prepare_hyp_mode(cpu, hyp_va_bits);
2657 }
2658
2659 kvm_hyp_init_symbols();
2660
2661 if (is_protected_kvm_enabled()) {
2662 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) &&
2663 cpus_have_final_cap(ARM64_HAS_ADDRESS_AUTH))
2664 pkvm_hyp_init_ptrauth();
2665
2666 init_cpu_logical_map();
2667
2668 if (!init_psci_relay()) {
2669 err = -ENODEV;
2670 goto out_err;
2671 }
2672
2673 err = init_pkvm_host_sve_state();
2674 if (err)
2675 goto out_err;
2676
2677 err = kvm_hyp_init_protection(hyp_va_bits);
2678 if (err) {
2679 kvm_err("Failed to init hyp memory protection\n");
2680 goto out_err;
2681 }
2682 }
2683
2684 return 0;
2685
2686 out_err:
2687 teardown_hyp_mode();
2688 kvm_err("error initializing Hyp mode: %d\n", err);
2689 return err;
2690 }
2691
kvm_mpidr_to_vcpu(struct kvm * kvm,unsigned long mpidr)2692 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
2693 {
2694 struct kvm_vcpu *vcpu = NULL;
2695 struct kvm_mpidr_data *data;
2696 unsigned long i;
2697
2698 mpidr &= MPIDR_HWID_BITMASK;
2699
2700 rcu_read_lock();
2701 data = rcu_dereference(kvm->arch.mpidr_data);
2702
2703 if (data) {
2704 u16 idx = kvm_mpidr_index(data, mpidr);
2705
2706 vcpu = kvm_get_vcpu(kvm, data->cmpidr_to_idx[idx]);
2707 if (mpidr != kvm_vcpu_get_mpidr_aff(vcpu))
2708 vcpu = NULL;
2709 }
2710
2711 rcu_read_unlock();
2712
2713 if (vcpu)
2714 return vcpu;
2715
2716 kvm_for_each_vcpu(i, vcpu, kvm) {
2717 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
2718 return vcpu;
2719 }
2720 return NULL;
2721 }
2722
kvm_arch_irqchip_in_kernel(struct kvm * kvm)2723 bool kvm_arch_irqchip_in_kernel(struct kvm *kvm)
2724 {
2725 return irqchip_in_kernel(kvm);
2726 }
2727
kvm_arch_has_irq_bypass(void)2728 bool kvm_arch_has_irq_bypass(void)
2729 {
2730 return true;
2731 }
2732
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2733 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
2734 struct irq_bypass_producer *prod)
2735 {
2736 struct kvm_kernel_irqfd *irqfd =
2737 container_of(cons, struct kvm_kernel_irqfd, consumer);
2738
2739 return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
2740 &irqfd->irq_entry);
2741 }
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)2742 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
2743 struct irq_bypass_producer *prod)
2744 {
2745 struct kvm_kernel_irqfd *irqfd =
2746 container_of(cons, struct kvm_kernel_irqfd, consumer);
2747
2748 kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
2749 &irqfd->irq_entry);
2750 }
2751
kvm_arch_irq_bypass_stop(struct irq_bypass_consumer * cons)2752 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
2753 {
2754 struct kvm_kernel_irqfd *irqfd =
2755 container_of(cons, struct kvm_kernel_irqfd, consumer);
2756
2757 kvm_arm_halt_guest(irqfd->kvm);
2758 }
2759
kvm_arch_irq_bypass_start(struct irq_bypass_consumer * cons)2760 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
2761 {
2762 struct kvm_kernel_irqfd *irqfd =
2763 container_of(cons, struct kvm_kernel_irqfd, consumer);
2764
2765 kvm_arm_resume_guest(irqfd->kvm);
2766 }
2767
2768 /* Initialize Hyp-mode and memory mappings on all CPUs */
kvm_arm_init(void)2769 static __init int kvm_arm_init(void)
2770 {
2771 int err;
2772 bool in_hyp_mode;
2773
2774 if (!is_hyp_mode_available()) {
2775 kvm_info("HYP mode not available\n");
2776 return -ENODEV;
2777 }
2778
2779 if (kvm_get_mode() == KVM_MODE_NONE) {
2780 kvm_info("KVM disabled from command line\n");
2781 return -ENODEV;
2782 }
2783
2784 err = kvm_sys_reg_table_init();
2785 if (err) {
2786 kvm_info("Error initializing system register tables");
2787 return err;
2788 }
2789
2790 in_hyp_mode = is_kernel_in_hyp_mode();
2791
2792 if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
2793 cpus_have_final_cap(ARM64_WORKAROUND_1508412))
2794 kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
2795 "Only trusted guests should be used on this system.\n");
2796
2797 err = kvm_set_ipa_limit();
2798 if (err)
2799 return err;
2800
2801 err = kvm_arm_init_sve();
2802 if (err)
2803 return err;
2804
2805 err = kvm_arm_vmid_alloc_init();
2806 if (err) {
2807 kvm_err("Failed to initialize VMID allocator.\n");
2808 return err;
2809 }
2810
2811 if (!in_hyp_mode) {
2812 err = init_hyp_mode();
2813 if (err)
2814 goto out_err;
2815 }
2816
2817 err = kvm_init_vector_slots();
2818 if (err) {
2819 kvm_err("Cannot initialise vector slots\n");
2820 goto out_hyp;
2821 }
2822
2823 err = init_subsystems();
2824 if (err)
2825 goto out_hyp;
2826
2827 kvm_info("%s%sVHE mode initialized successfully\n",
2828 in_hyp_mode ? "" : (is_protected_kvm_enabled() ?
2829 "Protected " : "Hyp "),
2830 in_hyp_mode ? "" : (cpus_have_final_cap(ARM64_KVM_HVHE) ?
2831 "h" : "n"));
2832
2833 /*
2834 * FIXME: Do something reasonable if kvm_init() fails after pKVM
2835 * hypervisor protection is finalized.
2836 */
2837 err = kvm_init(sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2838 if (err)
2839 goto out_subs;
2840
2841 /*
2842 * This should be called after initialization is done and failure isn't
2843 * possible anymore.
2844 */
2845 if (!in_hyp_mode)
2846 finalize_init_hyp_mode();
2847
2848 kvm_arm_initialised = true;
2849
2850 return 0;
2851
2852 out_subs:
2853 teardown_subsystems();
2854 out_hyp:
2855 if (!in_hyp_mode)
2856 teardown_hyp_mode();
2857 out_err:
2858 kvm_arm_vmid_alloc_free();
2859 return err;
2860 }
2861
early_kvm_mode_cfg(char * arg)2862 static int __init early_kvm_mode_cfg(char *arg)
2863 {
2864 if (!arg)
2865 return -EINVAL;
2866
2867 if (strcmp(arg, "none") == 0) {
2868 kvm_mode = KVM_MODE_NONE;
2869 return 0;
2870 }
2871
2872 if (!is_hyp_mode_available()) {
2873 pr_warn_once("KVM is not available. Ignoring kvm-arm.mode\n");
2874 return 0;
2875 }
2876
2877 if (strcmp(arg, "protected") == 0) {
2878 if (!is_kernel_in_hyp_mode())
2879 kvm_mode = KVM_MODE_PROTECTED;
2880 else
2881 pr_warn_once("Protected KVM not available with VHE\n");
2882
2883 return 0;
2884 }
2885
2886 if (strcmp(arg, "nvhe") == 0 && !WARN_ON(is_kernel_in_hyp_mode())) {
2887 kvm_mode = KVM_MODE_DEFAULT;
2888 return 0;
2889 }
2890
2891 if (strcmp(arg, "nested") == 0 && !WARN_ON(!is_kernel_in_hyp_mode())) {
2892 kvm_mode = KVM_MODE_NV;
2893 return 0;
2894 }
2895
2896 return -EINVAL;
2897 }
2898 early_param("kvm-arm.mode", early_kvm_mode_cfg);
2899
early_kvm_wfx_trap_policy_cfg(char * arg,enum kvm_wfx_trap_policy * p)2900 static int __init early_kvm_wfx_trap_policy_cfg(char *arg, enum kvm_wfx_trap_policy *p)
2901 {
2902 if (!arg)
2903 return -EINVAL;
2904
2905 if (strcmp(arg, "trap") == 0) {
2906 *p = KVM_WFX_TRAP;
2907 return 0;
2908 }
2909
2910 if (strcmp(arg, "notrap") == 0) {
2911 *p = KVM_WFX_NOTRAP;
2912 return 0;
2913 }
2914
2915 return -EINVAL;
2916 }
2917
early_kvm_wfi_trap_policy_cfg(char * arg)2918 static int __init early_kvm_wfi_trap_policy_cfg(char *arg)
2919 {
2920 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfi_trap_policy);
2921 }
2922 early_param("kvm-arm.wfi_trap_policy", early_kvm_wfi_trap_policy_cfg);
2923
early_kvm_wfe_trap_policy_cfg(char * arg)2924 static int __init early_kvm_wfe_trap_policy_cfg(char *arg)
2925 {
2926 return early_kvm_wfx_trap_policy_cfg(arg, &kvm_wfe_trap_policy);
2927 }
2928 early_param("kvm-arm.wfe_trap_policy", early_kvm_wfe_trap_policy_cfg);
2929
kvm_get_mode(void)2930 enum kvm_mode kvm_get_mode(void)
2931 {
2932 return kvm_mode;
2933 }
2934
2935 module_init(kvm_arm_init);
2936